1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/State.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StringExtractor.h" 44 #include "llvm/ADT/ScopeExit.h" 45 #include "llvm/Support/Errno.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/Threading.h" 48 49 #include <linux/unistd.h> 50 #include <sys/socket.h> 51 #include <sys/syscall.h> 52 #include <sys/types.h> 53 #include <sys/user.h> 54 #include <sys/wait.h> 55 56 #ifdef __aarch64__ 57 #include <asm/hwcap.h> 58 #include <sys/auxv.h> 59 #endif 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 #ifndef HWCAP2_MTE 67 #define HWCAP2_MTE (1 << 18) 68 #endif 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace lldb_private::process_linux; 73 using namespace llvm; 74 75 // Private bits we only need internally. 76 77 static bool ProcessVmReadvSupported() { 78 static bool is_supported; 79 static llvm::once_flag flag; 80 81 llvm::call_once(flag, [] { 82 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 83 84 uint32_t source = 0x47424742; 85 uint32_t dest = 0; 86 87 struct iovec local, remote; 88 remote.iov_base = &source; 89 local.iov_base = &dest; 90 remote.iov_len = local.iov_len = sizeof source; 91 92 // We shall try if cross-process-memory reads work by attempting to read a 93 // value from our own process. 94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 95 is_supported = (res == sizeof(source) && source == dest); 96 if (is_supported) 97 LLDB_LOG(log, 98 "Detected kernel support for process_vm_readv syscall. " 99 "Fast memory reads enabled."); 100 else 101 LLDB_LOG(log, 102 "syscall process_vm_readv failed (error: {0}). Fast memory " 103 "reads disabled.", 104 llvm::sys::StrError()); 105 }); 106 107 return is_supported; 108 } 109 110 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 112 if (!log) 113 return; 114 115 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 116 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 117 else 118 LLDB_LOG(log, "leaving STDIN as is"); 119 120 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 121 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 122 else 123 LLDB_LOG(log, "leaving STDOUT as is"); 124 125 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 126 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 127 else 128 LLDB_LOG(log, "leaving STDERR as is"); 129 130 int i = 0; 131 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 132 ++args, ++i) 133 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 134 } 135 136 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 137 uint8_t *ptr = (uint8_t *)bytes; 138 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 139 for (uint32_t i = 0; i < loop_count; i++) { 140 s.Printf("[%x]", *ptr); 141 ptr++; 142 } 143 } 144 145 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 146 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 147 if (!log) 148 return; 149 StreamString buf; 150 151 switch (req) { 152 case PTRACE_POKETEXT: { 153 DisplayBytes(buf, &data, 8); 154 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 155 break; 156 } 157 case PTRACE_POKEDATA: { 158 DisplayBytes(buf, &data, 8); 159 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 160 break; 161 } 162 case PTRACE_POKEUSER: { 163 DisplayBytes(buf, &data, 8); 164 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 165 break; 166 } 167 case PTRACE_SETREGS: { 168 DisplayBytes(buf, data, data_size); 169 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 170 break; 171 } 172 case PTRACE_SETFPREGS: { 173 DisplayBytes(buf, data, data_size); 174 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 175 break; 176 } 177 case PTRACE_SETSIGINFO: { 178 DisplayBytes(buf, data, sizeof(siginfo_t)); 179 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 180 break; 181 } 182 case PTRACE_SETREGSET: { 183 // Extract iov_base from data, which is a pointer to the struct iovec 184 DisplayBytes(buf, *(void **)data, data_size); 185 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 186 break; 187 } 188 default: {} 189 } 190 } 191 192 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 193 static_assert(sizeof(long) >= k_ptrace_word_size, 194 "Size of long must be larger than ptrace word size"); 195 196 // Simple helper function to ensure flags are enabled on the given file 197 // descriptor. 198 static Status EnsureFDFlags(int fd, int flags) { 199 Status error; 200 201 int status = fcntl(fd, F_GETFL); 202 if (status == -1) { 203 error.SetErrorToErrno(); 204 return error; 205 } 206 207 if (fcntl(fd, F_SETFL, status | flags) == -1) { 208 error.SetErrorToErrno(); 209 return error; 210 } 211 212 return error; 213 } 214 215 // Public Static Methods 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 NativeProcessLinux::Extension 292 NativeProcessLinux::Factory::GetSupportedExtensions() const { 293 NativeProcessLinux::Extension supported = 294 Extension::multiprocess | Extension::fork | Extension::vfork | 295 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | 296 Extension::siginfo_read; 297 298 #ifdef __aarch64__ 299 // At this point we do not have a process so read auxv directly. 300 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 301 supported |= Extension::memory_tagging; 302 #endif 303 304 return supported; 305 } 306 307 // Public Instance Methods 308 309 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 310 NativeDelegate &delegate, 311 const ArchSpec &arch, MainLoop &mainloop, 312 llvm::ArrayRef<::pid_t> tids) 313 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 314 m_main_loop(mainloop), m_intel_pt_manager(pid) { 315 if (m_terminal_fd != -1) { 316 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 317 assert(status.Success()); 318 } 319 320 Status status; 321 m_sigchld_handle = mainloop.RegisterSignal( 322 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 323 assert(m_sigchld_handle && status.Success()); 324 325 for (const auto &tid : tids) { 326 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 327 ThreadWasCreated(thread); 328 } 329 330 // Let our process instance know the thread has stopped. 331 SetCurrentThreadID(tids[0]); 332 SetState(StateType::eStateStopped, false); 333 334 // Proccess any signals we received before installing our handler 335 SigchldHandler(); 336 } 337 338 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 339 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 340 341 Status status; 342 // Use a map to keep track of the threads which we have attached/need to 343 // attach. 344 Host::TidMap tids_to_attach; 345 while (Host::FindProcessThreads(pid, tids_to_attach)) { 346 for (Host::TidMap::iterator it = tids_to_attach.begin(); 347 it != tids_to_attach.end();) { 348 if (it->second == false) { 349 lldb::tid_t tid = it->first; 350 351 // Attach to the requested process. 352 // An attach will cause the thread to stop with a SIGSTOP. 353 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 354 // No such thread. The thread may have exited. More error handling 355 // may be needed. 356 if (status.GetError() == ESRCH) { 357 it = tids_to_attach.erase(it); 358 continue; 359 } 360 return status.ToError(); 361 } 362 363 int wpid = 364 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 365 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 366 // this point we should have a thread stopped if waitpid succeeds. 367 if (wpid < 0) { 368 // No such thread. The thread may have exited. More error handling 369 // may be needed. 370 if (errno == ESRCH) { 371 it = tids_to_attach.erase(it); 372 continue; 373 } 374 return llvm::errorCodeToError( 375 std::error_code(errno, std::generic_category())); 376 } 377 378 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 379 return status.ToError(); 380 381 LLDB_LOG(log, "adding tid = {0}", tid); 382 it->second = true; 383 } 384 385 // move the loop forward 386 ++it; 387 } 388 } 389 390 size_t tid_count = tids_to_attach.size(); 391 if (tid_count == 0) 392 return llvm::make_error<StringError>("No such process", 393 llvm::inconvertibleErrorCode()); 394 395 std::vector<::pid_t> tids; 396 tids.reserve(tid_count); 397 for (const auto &p : tids_to_attach) 398 tids.push_back(p.first); 399 return std::move(tids); 400 } 401 402 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 403 long ptrace_opts = 0; 404 405 // Have the child raise an event on exit. This is used to keep the child in 406 // limbo until it is destroyed. 407 ptrace_opts |= PTRACE_O_TRACEEXIT; 408 409 // Have the tracer trace threads which spawn in the inferior process. 410 ptrace_opts |= PTRACE_O_TRACECLONE; 411 412 // Have the tracer notify us before execve returns (needed to disable legacy 413 // SIGTRAP generation) 414 ptrace_opts |= PTRACE_O_TRACEEXEC; 415 416 // Have the tracer trace forked children. 417 ptrace_opts |= PTRACE_O_TRACEFORK; 418 419 // Have the tracer trace vforks. 420 ptrace_opts |= PTRACE_O_TRACEVFORK; 421 422 // Have the tracer trace vfork-done in order to restore breakpoints after 423 // the child finishes sharing memory. 424 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 425 426 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 427 } 428 429 // Handles all waitpid events from the inferior process. 430 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 431 WaitStatus status) { 432 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 433 434 // Certain activities differ based on whether the pid is the tid of the main 435 // thread. 436 const bool is_main_thread = (thread.GetID() == GetID()); 437 438 // Handle when the thread exits. 439 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 440 LLDB_LOG(log, 441 "got exit status({0}) , tid = {1} ({2} main thread), process " 442 "state = {3}", 443 status, thread.GetID(), is_main_thread ? "is" : "is not", 444 GetState()); 445 446 // This is a thread that exited. Ensure we're not tracking it anymore. 447 StopTrackingThread(thread); 448 449 if (is_main_thread) { 450 // The main thread exited. We're done monitoring. Report to delegate. 451 SetExitStatus(status, true); 452 453 // Notify delegate that our process has exited. 454 SetState(StateType::eStateExited, true); 455 } 456 return; 457 } 458 459 siginfo_t info; 460 const auto info_err = GetSignalInfo(thread.GetID(), &info); 461 462 // Get details on the signal raised. 463 if (info_err.Success()) { 464 // We have retrieved the signal info. Dispatch appropriately. 465 if (info.si_signo == SIGTRAP) 466 MonitorSIGTRAP(info, thread); 467 else 468 MonitorSignal(info, thread); 469 } else { 470 if (info_err.GetError() == EINVAL) { 471 // This is a group stop reception for this tid. We can reach here if we 472 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 473 // triggering the group-stop mechanism. Normally receiving these would 474 // stop the process, pending a SIGCONT. Simulating this state in a 475 // debugger is hard and is generally not needed (one use case is 476 // debugging background task being managed by a shell). For general use, 477 // it is sufficient to stop the process in a signal-delivery stop which 478 // happens before the group stop. This done by MonitorSignal and works 479 // correctly for all signals. 480 LLDB_LOG(log, 481 "received a group stop for pid {0} tid {1}. Transparent " 482 "handling of group stops not supported, resuming the " 483 "thread.", 484 GetID(), thread.GetID()); 485 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 486 } else { 487 // ptrace(GETSIGINFO) failed (but not due to group-stop). 488 489 // A return value of ESRCH means the thread/process has died in the mean 490 // time. This can (e.g.) happen when another thread does an exit_group(2) 491 // or the entire process get SIGKILLed. 492 // We can't do anything with this thread anymore, but we keep it around 493 // until we get the WIFEXITED event. 494 495 LLDB_LOG(log, 496 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 497 "{3}. Expecting WIFEXITED soon.", 498 thread.GetID(), info_err, status, is_main_thread); 499 } 500 } 501 } 502 503 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 504 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 505 506 // The PID is not tracked yet, let's wait for it to appear. 507 int status = -1; 508 LLDB_LOG(log, 509 "received clone event for pid {0}. pid not tracked yet, " 510 "waiting for it to appear...", 511 pid); 512 ::pid_t wait_pid = 513 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 514 515 // It's theoretically possible to get other events if the entire process was 516 // SIGKILLed before we got a chance to check this. In that case, we'll just 517 // clean everything up when we get the process exit event. 518 519 LLDB_LOG(log, 520 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 521 pid, wait_pid, errno, WaitStatus::Decode(status)); 522 } 523 524 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 525 NativeThreadLinux &thread) { 526 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 527 const bool is_main_thread = (thread.GetID() == GetID()); 528 529 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 530 531 switch (info.si_code) { 532 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 533 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 534 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 535 // This can either mean a new thread or a new process spawned via 536 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 537 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 538 // of these flags are passed. 539 540 unsigned long event_message = 0; 541 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 542 LLDB_LOG(log, 543 "pid {0} received clone() event but GetEventMessage failed " 544 "so we don't know the new pid/tid", 545 thread.GetID()); 546 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 547 } else { 548 MonitorClone(thread, event_message, info.si_code >> 8); 549 } 550 551 break; 552 } 553 554 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 555 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 556 557 // Exec clears any pending notifications. 558 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 559 560 // Remove all but the main thread here. Linux fork creates a new process 561 // which only copies the main thread. 562 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 563 564 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 565 return t->GetID() != GetID(); 566 }); 567 assert(m_threads.size() == 1); 568 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 569 570 SetCurrentThreadID(main_thread->GetID()); 571 main_thread->SetStoppedByExec(); 572 573 // Tell coordinator about about the "new" (since exec) stopped main thread. 574 ThreadWasCreated(*main_thread); 575 576 // Let our delegate know we have just exec'd. 577 NotifyDidExec(); 578 579 // Let the process know we're stopped. 580 StopRunningThreads(main_thread->GetID()); 581 582 break; 583 } 584 585 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 586 // The inferior process or one of its threads is about to exit. We don't 587 // want to do anything with the thread so we just resume it. In case we 588 // want to implement "break on thread exit" functionality, we would need to 589 // stop here. 590 591 unsigned long data = 0; 592 if (GetEventMessage(thread.GetID(), &data).Fail()) 593 data = -1; 594 595 LLDB_LOG(log, 596 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 597 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 598 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 599 is_main_thread); 600 601 602 StateType state = thread.GetState(); 603 if (!StateIsRunningState(state)) { 604 // Due to a kernel bug, we may sometimes get this stop after the inferior 605 // gets a SIGKILL. This confuses our state tracking logic in 606 // ResumeThread(), since normally, we should not be receiving any ptrace 607 // events while the inferior is stopped. This makes sure that the 608 // inferior is resumed and exits normally. 609 state = eStateRunning; 610 } 611 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 612 613 break; 614 } 615 616 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 617 if (bool(m_enabled_extensions & Extension::vfork)) { 618 thread.SetStoppedByVForkDone(); 619 StopRunningThreads(thread.GetID()); 620 } 621 else 622 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 623 break; 624 } 625 626 case 0: 627 case TRAP_TRACE: // We receive this on single stepping. 628 case TRAP_HWBKPT: // We receive this on watchpoint hit 629 { 630 // If a watchpoint was hit, report it 631 uint32_t wp_index; 632 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 633 wp_index, (uintptr_t)info.si_addr); 634 if (error.Fail()) 635 LLDB_LOG(log, 636 "received error while checking for watchpoint hits, pid = " 637 "{0}, error = {1}", 638 thread.GetID(), error); 639 if (wp_index != LLDB_INVALID_INDEX32) { 640 MonitorWatchpoint(thread, wp_index); 641 break; 642 } 643 644 // If a breakpoint was hit, report it 645 uint32_t bp_index; 646 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 647 bp_index, (uintptr_t)info.si_addr); 648 if (error.Fail()) 649 LLDB_LOG(log, "received error while checking for hardware " 650 "breakpoint hits, pid = {0}, error = {1}", 651 thread.GetID(), error); 652 if (bp_index != LLDB_INVALID_INDEX32) { 653 MonitorBreakpoint(thread); 654 break; 655 } 656 657 // Otherwise, report step over 658 MonitorTrace(thread); 659 break; 660 } 661 662 case SI_KERNEL: 663 #if defined __mips__ 664 // For mips there is no special signal for watchpoint So we check for 665 // watchpoint in kernel trap 666 { 667 // If a watchpoint was hit, report it 668 uint32_t wp_index; 669 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 670 wp_index, LLDB_INVALID_ADDRESS); 671 if (error.Fail()) 672 LLDB_LOG(log, 673 "received error while checking for watchpoint hits, pid = " 674 "{0}, error = {1}", 675 thread.GetID(), error); 676 if (wp_index != LLDB_INVALID_INDEX32) { 677 MonitorWatchpoint(thread, wp_index); 678 break; 679 } 680 } 681 // NO BREAK 682 #endif 683 case TRAP_BRKPT: 684 MonitorBreakpoint(thread); 685 break; 686 687 case SIGTRAP: 688 case (SIGTRAP | 0x80): 689 LLDB_LOG( 690 log, 691 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 692 info.si_code, GetID(), thread.GetID()); 693 694 // Ignore these signals until we know more about them. 695 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 696 break; 697 698 default: 699 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 700 info.si_code, GetID(), thread.GetID()); 701 MonitorSignal(info, thread); 702 break; 703 } 704 } 705 706 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 707 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 708 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 709 710 // This thread is currently stopped. 711 thread.SetStoppedByTrace(); 712 713 StopRunningThreads(thread.GetID()); 714 } 715 716 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 717 Log *log( 718 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 719 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 720 721 // Mark the thread as stopped at breakpoint. 722 thread.SetStoppedByBreakpoint(); 723 FixupBreakpointPCAsNeeded(thread); 724 725 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 726 m_threads_stepping_with_breakpoint.end()) 727 thread.SetStoppedByTrace(); 728 729 StopRunningThreads(thread.GetID()); 730 } 731 732 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 733 uint32_t wp_index) { 734 Log *log( 735 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 736 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 737 thread.GetID(), wp_index); 738 739 // Mark the thread as stopped at watchpoint. The address is at 740 // (lldb::addr_t)info->si_addr if we need it. 741 thread.SetStoppedByWatchpoint(wp_index); 742 743 // We need to tell all other running threads before we notify the delegate 744 // about this stop. 745 StopRunningThreads(thread.GetID()); 746 } 747 748 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 749 NativeThreadLinux &thread) { 750 const int signo = info.si_signo; 751 const bool is_from_llgs = info.si_pid == getpid(); 752 753 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 754 755 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 756 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 757 // or raise(3). Similarly for tgkill(2) on Linux. 758 // 759 // IOW, user generated signals never generate what we consider to be a 760 // "crash". 761 // 762 // Similarly, ACK signals generated by this monitor. 763 764 // Handle the signal. 765 LLDB_LOG(log, 766 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 767 "waitpid pid = {4})", 768 Host::GetSignalAsCString(signo), signo, info.si_code, 769 thread.GetID()); 770 771 // Check for thread stop notification. 772 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 773 // This is a tgkill()-based stop. 774 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 775 776 // Check that we're not already marked with a stop reason. Note this thread 777 // really shouldn't already be marked as stopped - if we were, that would 778 // imply that the kernel signaled us with the thread stopping which we 779 // handled and marked as stopped, and that, without an intervening resume, 780 // we received another stop. It is more likely that we are missing the 781 // marking of a run state somewhere if we find that the thread was marked 782 // as stopped. 783 const StateType thread_state = thread.GetState(); 784 if (!StateIsStoppedState(thread_state, false)) { 785 // An inferior thread has stopped because of a SIGSTOP we have sent it. 786 // Generally, these are not important stops and we don't want to report 787 // them as they are just used to stop other threads when one thread (the 788 // one with the *real* stop reason) hits a breakpoint (watchpoint, 789 // etc...). However, in the case of an asynchronous Interrupt(), this 790 // *is* the real stop reason, so we leave the signal intact if this is 791 // the thread that was chosen as the triggering thread. 792 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 793 if (m_pending_notification_tid == thread.GetID()) 794 thread.SetStoppedBySignal(SIGSTOP, &info); 795 else 796 thread.SetStoppedWithNoReason(); 797 798 SetCurrentThreadID(thread.GetID()); 799 SignalIfAllThreadsStopped(); 800 } else { 801 // We can end up here if stop was initiated by LLGS but by this time a 802 // thread stop has occurred - maybe initiated by another event. 803 Status error = ResumeThread(thread, thread.GetState(), 0); 804 if (error.Fail()) 805 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 806 error); 807 } 808 } else { 809 LLDB_LOG(log, 810 "pid {0} tid {1}, thread was already marked as a stopped " 811 "state (state={2}), leaving stop signal as is", 812 GetID(), thread.GetID(), thread_state); 813 SignalIfAllThreadsStopped(); 814 } 815 816 // Done handling. 817 return; 818 } 819 820 // Check if debugger should stop at this signal or just ignore it and resume 821 // the inferior. 822 if (m_signals_to_ignore.contains(signo)) { 823 ResumeThread(thread, thread.GetState(), signo); 824 return; 825 } 826 827 // This thread is stopped. 828 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 829 thread.SetStoppedBySignal(signo, &info); 830 831 // Send a stop to the debugger after we get all other threads to stop. 832 StopRunningThreads(thread.GetID()); 833 } 834 835 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 836 lldb::pid_t child_pid, int event) { 837 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 838 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 839 child_pid, event); 840 841 WaitForCloneNotification(child_pid); 842 843 switch (event) { 844 case PTRACE_EVENT_CLONE: { 845 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 846 // Try to grab the new process' PGID to figure out which one it is. 847 // If PGID is the same as the PID, then it's a new process. Otherwise, 848 // it's a thread. 849 auto tgid_ret = getPIDForTID(child_pid); 850 if (tgid_ret != child_pid) { 851 // A new thread should have PGID matching our process' PID. 852 assert(!tgid_ret || tgid_ret.getValue() == GetID()); 853 854 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 855 ThreadWasCreated(child_thread); 856 857 // Resume the parent. 858 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 859 break; 860 } 861 } 862 LLVM_FALLTHROUGH; 863 case PTRACE_EVENT_FORK: 864 case PTRACE_EVENT_VFORK: { 865 bool is_vfork = event == PTRACE_EVENT_VFORK; 866 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 867 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 868 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 869 if (!is_vfork) 870 child_process->m_software_breakpoints = m_software_breakpoints; 871 872 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 873 if (bool(m_enabled_extensions & expected_ext)) { 874 m_delegate.NewSubprocess(this, std::move(child_process)); 875 // NB: non-vfork clone() is reported as fork 876 parent.SetStoppedByFork(is_vfork, child_pid); 877 StopRunningThreads(parent.GetID()); 878 } else { 879 child_process->Detach(); 880 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 881 } 882 break; 883 } 884 default: 885 llvm_unreachable("unknown clone_info.event"); 886 } 887 888 return true; 889 } 890 891 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 892 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 893 return false; 894 return true; 895 } 896 897 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 898 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 899 LLDB_LOG(log, "pid {0}", GetID()); 900 901 bool software_single_step = !SupportHardwareSingleStepping(); 902 903 if (software_single_step) { 904 for (const auto &thread : m_threads) { 905 assert(thread && "thread list should not contain NULL threads"); 906 907 const ResumeAction *const action = 908 resume_actions.GetActionForThread(thread->GetID(), true); 909 if (action == nullptr) 910 continue; 911 912 if (action->state == eStateStepping) { 913 Status error = SetupSoftwareSingleStepping( 914 static_cast<NativeThreadLinux &>(*thread)); 915 if (error.Fail()) 916 return error; 917 } 918 } 919 } 920 921 for (const auto &thread : m_threads) { 922 assert(thread && "thread list should not contain NULL threads"); 923 924 const ResumeAction *const action = 925 resume_actions.GetActionForThread(thread->GetID(), true); 926 927 if (action == nullptr) { 928 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 929 thread->GetID()); 930 continue; 931 } 932 933 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 934 action->state, GetID(), thread->GetID()); 935 936 switch (action->state) { 937 case eStateRunning: 938 case eStateStepping: { 939 // Run the thread, possibly feeding it the signal. 940 const int signo = action->signal; 941 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 942 signo); 943 break; 944 } 945 946 case eStateSuspended: 947 case eStateStopped: 948 llvm_unreachable("Unexpected state"); 949 950 default: 951 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 952 "for pid %" PRIu64 ", tid %" PRIu64, 953 __FUNCTION__, StateAsCString(action->state), GetID(), 954 thread->GetID()); 955 } 956 } 957 958 return Status(); 959 } 960 961 Status NativeProcessLinux::Halt() { 962 Status error; 963 964 if (kill(GetID(), SIGSTOP) != 0) 965 error.SetErrorToErrno(); 966 967 return error; 968 } 969 970 Status NativeProcessLinux::Detach() { 971 Status error; 972 973 // Stop monitoring the inferior. 974 m_sigchld_handle.reset(); 975 976 // Tell ptrace to detach from the process. 977 if (GetID() == LLDB_INVALID_PROCESS_ID) 978 return error; 979 980 for (const auto &thread : m_threads) { 981 Status e = Detach(thread->GetID()); 982 if (e.Fail()) 983 error = 984 e; // Save the error, but still attempt to detach from other threads. 985 } 986 987 m_intel_pt_manager.Clear(); 988 989 return error; 990 } 991 992 Status NativeProcessLinux::Signal(int signo) { 993 Status error; 994 995 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 996 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 997 Host::GetSignalAsCString(signo), GetID()); 998 999 if (kill(GetID(), signo)) 1000 error.SetErrorToErrno(); 1001 1002 return error; 1003 } 1004 1005 Status NativeProcessLinux::Interrupt() { 1006 // Pick a running thread (or if none, a not-dead stopped thread) as the 1007 // chosen thread that will be the stop-reason thread. 1008 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1009 1010 NativeThreadProtocol *running_thread = nullptr; 1011 NativeThreadProtocol *stopped_thread = nullptr; 1012 1013 LLDB_LOG(log, "selecting running thread for interrupt target"); 1014 for (const auto &thread : m_threads) { 1015 // If we have a running or stepping thread, we'll call that the target of 1016 // the interrupt. 1017 const auto thread_state = thread->GetState(); 1018 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1019 running_thread = thread.get(); 1020 break; 1021 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1022 // Remember the first non-dead stopped thread. We'll use that as a 1023 // backup if there are no running threads. 1024 stopped_thread = thread.get(); 1025 } 1026 } 1027 1028 if (!running_thread && !stopped_thread) { 1029 Status error("found no running/stepping or live stopped threads as target " 1030 "for interrupt"); 1031 LLDB_LOG(log, "skipping due to error: {0}", error); 1032 1033 return error; 1034 } 1035 1036 NativeThreadProtocol *deferred_signal_thread = 1037 running_thread ? running_thread : stopped_thread; 1038 1039 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1040 running_thread ? "running" : "stopped", 1041 deferred_signal_thread->GetID()); 1042 1043 StopRunningThreads(deferred_signal_thread->GetID()); 1044 1045 return Status(); 1046 } 1047 1048 Status NativeProcessLinux::Kill() { 1049 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1050 LLDB_LOG(log, "pid {0}", GetID()); 1051 1052 Status error; 1053 1054 switch (m_state) { 1055 case StateType::eStateInvalid: 1056 case StateType::eStateExited: 1057 case StateType::eStateCrashed: 1058 case StateType::eStateDetached: 1059 case StateType::eStateUnloaded: 1060 // Nothing to do - the process is already dead. 1061 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1062 m_state); 1063 return error; 1064 1065 case StateType::eStateConnected: 1066 case StateType::eStateAttaching: 1067 case StateType::eStateLaunching: 1068 case StateType::eStateStopped: 1069 case StateType::eStateRunning: 1070 case StateType::eStateStepping: 1071 case StateType::eStateSuspended: 1072 // We can try to kill a process in these states. 1073 break; 1074 } 1075 1076 if (kill(GetID(), SIGKILL) != 0) { 1077 error.SetErrorToErrno(); 1078 return error; 1079 } 1080 1081 return error; 1082 } 1083 1084 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1085 MemoryRegionInfo &range_info) { 1086 // FIXME review that the final memory region returned extends to the end of 1087 // the virtual address space, 1088 // with no perms if it is not mapped. 1089 1090 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1091 // proc maps entries are in ascending order. 1092 // FIXME assert if we find differently. 1093 1094 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1095 // We're done. 1096 return Status("unsupported"); 1097 } 1098 1099 Status error = PopulateMemoryRegionCache(); 1100 if (error.Fail()) { 1101 return error; 1102 } 1103 1104 lldb::addr_t prev_base_address = 0; 1105 1106 // FIXME start by finding the last region that is <= target address using 1107 // binary search. Data is sorted. 1108 // There can be a ton of regions on pthreads apps with lots of threads. 1109 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1110 ++it) { 1111 MemoryRegionInfo &proc_entry_info = it->first; 1112 1113 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1114 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1115 "descending /proc/pid/maps entries detected, unexpected"); 1116 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1117 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1118 1119 // If the target address comes before this entry, indicate distance to next 1120 // region. 1121 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1122 range_info.GetRange().SetRangeBase(load_addr); 1123 range_info.GetRange().SetByteSize( 1124 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1125 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1126 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1127 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1128 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1129 1130 return error; 1131 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1132 // The target address is within the memory region we're processing here. 1133 range_info = proc_entry_info; 1134 return error; 1135 } 1136 1137 // The target memory address comes somewhere after the region we just 1138 // parsed. 1139 } 1140 1141 // If we made it here, we didn't find an entry that contained the given 1142 // address. Return the load_addr as start and the amount of bytes betwwen 1143 // load address and the end of the memory as size. 1144 range_info.GetRange().SetRangeBase(load_addr); 1145 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1146 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1147 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1148 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1149 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1150 return error; 1151 } 1152 1153 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1154 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1155 1156 // If our cache is empty, pull the latest. There should always be at least 1157 // one memory region if memory region handling is supported. 1158 if (!m_mem_region_cache.empty()) { 1159 LLDB_LOG(log, "reusing {0} cached memory region entries", 1160 m_mem_region_cache.size()); 1161 return Status(); 1162 } 1163 1164 Status Result; 1165 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1166 if (Info) { 1167 FileSpec file_spec(Info->GetName().GetCString()); 1168 FileSystem::Instance().Resolve(file_spec); 1169 m_mem_region_cache.emplace_back(*Info, file_spec); 1170 return true; 1171 } 1172 1173 Result = Info.takeError(); 1174 m_supports_mem_region = LazyBool::eLazyBoolNo; 1175 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1176 return false; 1177 }; 1178 1179 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1180 // if CONFIG_PROC_PAGE_MONITOR is enabled 1181 auto BufferOrError = getProcFile(GetID(), "smaps"); 1182 if (BufferOrError) 1183 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1184 else { 1185 BufferOrError = getProcFile(GetID(), "maps"); 1186 if (!BufferOrError) { 1187 m_supports_mem_region = LazyBool::eLazyBoolNo; 1188 return BufferOrError.getError(); 1189 } 1190 1191 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1192 } 1193 1194 if (Result.Fail()) 1195 return Result; 1196 1197 if (m_mem_region_cache.empty()) { 1198 // No entries after attempting to read them. This shouldn't happen if 1199 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1200 // procfs. 1201 m_supports_mem_region = LazyBool::eLazyBoolNo; 1202 LLDB_LOG(log, 1203 "failed to find any procfs maps entries, assuming no support " 1204 "for memory region metadata retrieval"); 1205 return Status("not supported"); 1206 } 1207 1208 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1209 m_mem_region_cache.size(), GetID()); 1210 1211 // We support memory retrieval, remember that. 1212 m_supports_mem_region = LazyBool::eLazyBoolYes; 1213 return Status(); 1214 } 1215 1216 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1217 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1218 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1219 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1220 m_mem_region_cache.size()); 1221 m_mem_region_cache.clear(); 1222 } 1223 1224 llvm::Expected<uint64_t> 1225 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1226 PopulateMemoryRegionCache(); 1227 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1228 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1229 }); 1230 if (region_it == m_mem_region_cache.end()) 1231 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1232 "No executable memory region found!"); 1233 1234 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1235 1236 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1237 assert(thread.GetState() == eStateStopped); 1238 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1239 1240 NativeRegisterContextLinux::SyscallData syscall_data = 1241 *reg_ctx.GetSyscallData(); 1242 1243 DataBufferSP registers_sp; 1244 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1245 return std::move(Err); 1246 auto restore_regs = llvm::make_scope_exit( 1247 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1248 1249 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1250 size_t bytes_read; 1251 if (llvm::Error Err = 1252 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1253 .ToError()) { 1254 return std::move(Err); 1255 } 1256 1257 auto restore_mem = llvm::make_scope_exit( 1258 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1259 1260 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1261 return std::move(Err); 1262 1263 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1264 if (llvm::Error Err = 1265 reg_ctx 1266 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1267 .ToError()) { 1268 return std::move(Err); 1269 } 1270 } 1271 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1272 syscall_data.Insn.size(), bytes_read) 1273 .ToError()) 1274 return std::move(Err); 1275 1276 m_mem_region_cache.clear(); 1277 1278 // With software single stepping the syscall insn buffer must also include a 1279 // trap instruction to stop the process. 1280 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1281 if (llvm::Error Err = 1282 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1283 return std::move(Err); 1284 1285 int status; 1286 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1287 &status, __WALL); 1288 if (wait_pid == -1) { 1289 return llvm::errorCodeToError( 1290 std::error_code(errno, std::generic_category())); 1291 } 1292 assert((unsigned)wait_pid == thread.GetID()); 1293 1294 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1295 1296 // Values larger than this are actually negative errno numbers. 1297 uint64_t errno_threshold = 1298 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1299 if (result > errno_threshold) { 1300 return llvm::errorCodeToError( 1301 std::error_code(-result & 0xfff, std::generic_category())); 1302 } 1303 1304 return result; 1305 } 1306 1307 llvm::Expected<addr_t> 1308 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1309 1310 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1311 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1312 if (!mmap_data) 1313 return llvm::make_error<UnimplementedError>(); 1314 1315 unsigned prot = PROT_NONE; 1316 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1317 ePermissionsExecutable)) == permissions && 1318 "Unknown permission!"); 1319 if (permissions & ePermissionsReadable) 1320 prot |= PROT_READ; 1321 if (permissions & ePermissionsWritable) 1322 prot |= PROT_WRITE; 1323 if (permissions & ePermissionsExecutable) 1324 prot |= PROT_EXEC; 1325 1326 llvm::Expected<uint64_t> Result = 1327 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1328 uint64_t(-1), 0}); 1329 if (Result) 1330 m_allocated_memory.try_emplace(*Result, size); 1331 return Result; 1332 } 1333 1334 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1335 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1336 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1337 if (!mmap_data) 1338 return llvm::make_error<UnimplementedError>(); 1339 1340 auto it = m_allocated_memory.find(addr); 1341 if (it == m_allocated_memory.end()) 1342 return llvm::createStringError(llvm::errc::invalid_argument, 1343 "Memory not allocated by the debugger."); 1344 1345 llvm::Expected<uint64_t> Result = 1346 Syscall({mmap_data->SysMunmap, addr, it->second}); 1347 if (!Result) 1348 return Result.takeError(); 1349 1350 m_allocated_memory.erase(it); 1351 return llvm::Error::success(); 1352 } 1353 1354 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1355 size_t len, 1356 std::vector<uint8_t> &tags) { 1357 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1358 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1359 if (!details) 1360 return Status(details.takeError()); 1361 1362 // Ignore 0 length read 1363 if (!len) 1364 return Status(); 1365 1366 // lldb will align the range it requests but it is not required to by 1367 // the protocol so we'll do it again just in case. 1368 // Remove tag bits too. Ptrace calls may work regardless but that 1369 // is not a guarantee. 1370 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1371 range = details->manager->ExpandToGranule(range); 1372 1373 // Allocate enough space for all tags to be read 1374 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1375 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1376 1377 struct iovec tags_iovec; 1378 uint8_t *dest = tags.data(); 1379 lldb::addr_t read_addr = range.GetRangeBase(); 1380 1381 // This call can return partial data so loop until we error or 1382 // get all tags back. 1383 while (num_tags) { 1384 tags_iovec.iov_base = dest; 1385 tags_iovec.iov_len = num_tags; 1386 1387 Status error = NativeProcessLinux::PtraceWrapper( 1388 details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr), 1389 static_cast<void *>(&tags_iovec), 0, nullptr); 1390 1391 if (error.Fail()) { 1392 // Discard partial reads 1393 tags.resize(0); 1394 return error; 1395 } 1396 1397 size_t tags_read = tags_iovec.iov_len; 1398 assert(tags_read && (tags_read <= num_tags)); 1399 1400 dest += tags_read * details->manager->GetTagSizeInBytes(); 1401 read_addr += details->manager->GetGranuleSize() * tags_read; 1402 num_tags -= tags_read; 1403 } 1404 1405 return Status(); 1406 } 1407 1408 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1409 size_t len, 1410 const std::vector<uint8_t> &tags) { 1411 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1412 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1413 if (!details) 1414 return Status(details.takeError()); 1415 1416 // Ignore 0 length write 1417 if (!len) 1418 return Status(); 1419 1420 // lldb will align the range it requests but it is not required to by 1421 // the protocol so we'll do it again just in case. 1422 // Remove tag bits too. Ptrace calls may work regardless but that 1423 // is not a guarantee. 1424 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1425 range = details->manager->ExpandToGranule(range); 1426 1427 // Not checking number of tags here, we may repeat them below 1428 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1429 details->manager->UnpackTagsData(tags); 1430 if (!unpacked_tags_or_err) 1431 return Status(unpacked_tags_or_err.takeError()); 1432 1433 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1434 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1435 if (!repeated_tags_or_err) 1436 return Status(repeated_tags_or_err.takeError()); 1437 1438 // Repack them for ptrace to use 1439 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1440 details->manager->PackTags(*repeated_tags_or_err); 1441 if (!final_tag_data) 1442 return Status(final_tag_data.takeError()); 1443 1444 struct iovec tags_vec; 1445 uint8_t *src = final_tag_data->data(); 1446 lldb::addr_t write_addr = range.GetRangeBase(); 1447 // unpacked tags size because the number of bytes per tag might not be 1 1448 size_t num_tags = repeated_tags_or_err->size(); 1449 1450 // This call can partially write tags, so we loop until we 1451 // error or all tags have been written. 1452 while (num_tags > 0) { 1453 tags_vec.iov_base = src; 1454 tags_vec.iov_len = num_tags; 1455 1456 Status error = NativeProcessLinux::PtraceWrapper( 1457 details->ptrace_write_req, GetID(), 1458 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1459 nullptr); 1460 1461 if (error.Fail()) { 1462 // Don't attempt to restore the original values in the case of a partial 1463 // write 1464 return error; 1465 } 1466 1467 size_t tags_written = tags_vec.iov_len; 1468 assert(tags_written && (tags_written <= num_tags)); 1469 1470 src += tags_written * details->manager->GetTagSizeInBytes(); 1471 write_addr += details->manager->GetGranuleSize() * tags_written; 1472 num_tags -= tags_written; 1473 } 1474 1475 return Status(); 1476 } 1477 1478 size_t NativeProcessLinux::UpdateThreads() { 1479 // The NativeProcessLinux monitoring threads are always up to date with 1480 // respect to thread state and they keep the thread list populated properly. 1481 // All this method needs to do is return the thread count. 1482 return m_threads.size(); 1483 } 1484 1485 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1486 bool hardware) { 1487 if (hardware) 1488 return SetHardwareBreakpoint(addr, size); 1489 else 1490 return SetSoftwareBreakpoint(addr, size); 1491 } 1492 1493 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1494 if (hardware) 1495 return RemoveHardwareBreakpoint(addr); 1496 else 1497 return NativeProcessProtocol::RemoveBreakpoint(addr); 1498 } 1499 1500 llvm::Expected<llvm::ArrayRef<uint8_t>> 1501 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1502 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1503 // linux kernel does otherwise. 1504 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1505 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1506 1507 switch (GetArchitecture().GetMachine()) { 1508 case llvm::Triple::arm: 1509 switch (size_hint) { 1510 case 2: 1511 return llvm::makeArrayRef(g_thumb_opcode); 1512 case 4: 1513 return llvm::makeArrayRef(g_arm_opcode); 1514 default: 1515 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1516 "Unrecognised trap opcode size hint!"); 1517 } 1518 default: 1519 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1520 } 1521 } 1522 1523 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1524 size_t &bytes_read) { 1525 if (ProcessVmReadvSupported()) { 1526 // The process_vm_readv path is about 50 times faster than ptrace api. We 1527 // want to use this syscall if it is supported. 1528 1529 const ::pid_t pid = GetID(); 1530 1531 struct iovec local_iov, remote_iov; 1532 local_iov.iov_base = buf; 1533 local_iov.iov_len = size; 1534 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1535 remote_iov.iov_len = size; 1536 1537 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1538 const bool success = bytes_read == size; 1539 1540 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1541 LLDB_LOG(log, 1542 "using process_vm_readv to read {0} bytes from inferior " 1543 "address {1:x}: {2}", 1544 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1545 1546 if (success) 1547 return Status(); 1548 // else the call failed for some reason, let's retry the read using ptrace 1549 // api. 1550 } 1551 1552 unsigned char *dst = static_cast<unsigned char *>(buf); 1553 size_t remainder; 1554 long data; 1555 1556 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1557 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1558 1559 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1560 Status error = NativeProcessLinux::PtraceWrapper( 1561 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1562 if (error.Fail()) 1563 return error; 1564 1565 remainder = size - bytes_read; 1566 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1567 1568 // Copy the data into our buffer 1569 memcpy(dst, &data, remainder); 1570 1571 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1572 addr += k_ptrace_word_size; 1573 dst += k_ptrace_word_size; 1574 } 1575 return Status(); 1576 } 1577 1578 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1579 size_t size, size_t &bytes_written) { 1580 const unsigned char *src = static_cast<const unsigned char *>(buf); 1581 size_t remainder; 1582 Status error; 1583 1584 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1585 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1586 1587 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1588 remainder = size - bytes_written; 1589 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1590 1591 if (remainder == k_ptrace_word_size) { 1592 unsigned long data = 0; 1593 memcpy(&data, src, k_ptrace_word_size); 1594 1595 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1596 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1597 (void *)addr, (void *)data); 1598 if (error.Fail()) 1599 return error; 1600 } else { 1601 unsigned char buff[8]; 1602 size_t bytes_read; 1603 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1604 if (error.Fail()) 1605 return error; 1606 1607 memcpy(buff, src, remainder); 1608 1609 size_t bytes_written_rec; 1610 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1611 if (error.Fail()) 1612 return error; 1613 1614 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1615 *(unsigned long *)buff); 1616 } 1617 1618 addr += k_ptrace_word_size; 1619 src += k_ptrace_word_size; 1620 } 1621 return error; 1622 } 1623 1624 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { 1625 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1626 } 1627 1628 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1629 unsigned long *message) { 1630 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1631 } 1632 1633 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1634 if (tid == LLDB_INVALID_THREAD_ID) 1635 return Status(); 1636 1637 return PtraceWrapper(PTRACE_DETACH, tid); 1638 } 1639 1640 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1641 for (const auto &thread : m_threads) { 1642 assert(thread && "thread list should not contain NULL threads"); 1643 if (thread->GetID() == thread_id) { 1644 // We have this thread. 1645 return true; 1646 } 1647 } 1648 1649 // We don't have this thread. 1650 return false; 1651 } 1652 1653 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1654 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1655 lldb::tid_t thread_id = thread.GetID(); 1656 LLDB_LOG(log, "tid: {0}", thread_id); 1657 1658 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1659 return thread_up.get() == &thread; 1660 }); 1661 assert(it != m_threads.end()); 1662 m_threads.erase(it); 1663 1664 NotifyTracersOfThreadDestroyed(thread_id); 1665 SignalIfAllThreadsStopped(); 1666 } 1667 1668 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1669 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1670 Status error(m_intel_pt_manager.OnThreadCreated(tid)); 1671 if (error.Fail()) 1672 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1673 tid, error.AsCString()); 1674 return error; 1675 } 1676 1677 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1678 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1679 Status error(m_intel_pt_manager.OnThreadDestroyed(tid)); 1680 if (error.Fail()) 1681 LLDB_LOG(log, 1682 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1683 tid, error.AsCString()); 1684 return error; 1685 } 1686 1687 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1688 bool resume) { 1689 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1690 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1691 1692 assert(!HasThreadNoLock(thread_id) && 1693 "attempted to add a thread by id that already exists"); 1694 1695 // If this is the first thread, save it as the current thread 1696 if (m_threads.empty()) 1697 SetCurrentThreadID(thread_id); 1698 1699 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1700 NativeThreadLinux &thread = 1701 static_cast<NativeThreadLinux &>(*m_threads.back()); 1702 1703 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1704 if (tracing_error.Fail()) { 1705 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1706 StopRunningThreads(thread.GetID()); 1707 } else if (resume) 1708 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1709 else 1710 thread.SetStoppedBySignal(SIGSTOP); 1711 1712 return thread; 1713 } 1714 1715 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1716 FileSpec &file_spec) { 1717 Status error = PopulateMemoryRegionCache(); 1718 if (error.Fail()) 1719 return error; 1720 1721 FileSpec module_file_spec(module_path); 1722 FileSystem::Instance().Resolve(module_file_spec); 1723 1724 file_spec.Clear(); 1725 for (const auto &it : m_mem_region_cache) { 1726 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1727 file_spec = it.second; 1728 return Status(); 1729 } 1730 } 1731 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1732 module_file_spec.GetFilename().AsCString(), GetID()); 1733 } 1734 1735 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1736 lldb::addr_t &load_addr) { 1737 load_addr = LLDB_INVALID_ADDRESS; 1738 Status error = PopulateMemoryRegionCache(); 1739 if (error.Fail()) 1740 return error; 1741 1742 FileSpec file(file_name); 1743 for (const auto &it : m_mem_region_cache) { 1744 if (it.second == file) { 1745 load_addr = it.first.GetRange().GetRangeBase(); 1746 return Status(); 1747 } 1748 } 1749 return Status("No load address found for specified file."); 1750 } 1751 1752 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1753 return static_cast<NativeThreadLinux *>( 1754 NativeProcessProtocol::GetThreadByID(tid)); 1755 } 1756 1757 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1758 return static_cast<NativeThreadLinux *>( 1759 NativeProcessProtocol::GetCurrentThread()); 1760 } 1761 1762 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1763 lldb::StateType state, int signo) { 1764 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1765 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1766 1767 // Before we do the resume below, first check if we have a pending stop 1768 // notification that is currently waiting for all threads to stop. This is 1769 // potentially a buggy situation since we're ostensibly waiting for threads 1770 // to stop before we send out the pending notification, and here we are 1771 // resuming one before we send out the pending stop notification. 1772 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1773 LLDB_LOG(log, 1774 "about to resume tid {0} per explicit request but we have a " 1775 "pending stop notification (tid {1}) that is actively " 1776 "waiting for this thread to stop. Valid sequence of events?", 1777 thread.GetID(), m_pending_notification_tid); 1778 } 1779 1780 // Request a resume. We expect this to be synchronous and the system to 1781 // reflect it is running after this completes. 1782 switch (state) { 1783 case eStateRunning: { 1784 const auto resume_result = thread.Resume(signo); 1785 if (resume_result.Success()) 1786 SetState(eStateRunning, true); 1787 return resume_result; 1788 } 1789 case eStateStepping: { 1790 const auto step_result = thread.SingleStep(signo); 1791 if (step_result.Success()) 1792 SetState(eStateRunning, true); 1793 return step_result; 1794 } 1795 default: 1796 LLDB_LOG(log, "Unhandled state {0}.", state); 1797 llvm_unreachable("Unhandled state for resume"); 1798 } 1799 } 1800 1801 //===----------------------------------------------------------------------===// 1802 1803 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1804 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1805 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1806 triggering_tid); 1807 1808 m_pending_notification_tid = triggering_tid; 1809 1810 // Request a stop for all the thread stops that need to be stopped and are 1811 // not already known to be stopped. 1812 for (const auto &thread : m_threads) { 1813 if (StateIsRunningState(thread->GetState())) 1814 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1815 } 1816 1817 SignalIfAllThreadsStopped(); 1818 LLDB_LOG(log, "event processing done"); 1819 } 1820 1821 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1822 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1823 return; // No pending notification. Nothing to do. 1824 1825 for (const auto &thread_sp : m_threads) { 1826 if (StateIsRunningState(thread_sp->GetState())) 1827 return; // Some threads are still running. Don't signal yet. 1828 } 1829 1830 // We have a pending notification and all threads have stopped. 1831 Log *log( 1832 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1833 1834 // Clear any temporary breakpoints we used to implement software single 1835 // stepping. 1836 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1837 Status error = RemoveBreakpoint(thread_info.second); 1838 if (error.Fail()) 1839 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1840 thread_info.first, error); 1841 } 1842 m_threads_stepping_with_breakpoint.clear(); 1843 1844 // Notify the delegate about the stop 1845 SetCurrentThreadID(m_pending_notification_tid); 1846 SetState(StateType::eStateStopped, true); 1847 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1848 } 1849 1850 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1851 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1852 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1853 1854 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1855 StateIsRunningState(thread.GetState())) { 1856 // We will need to wait for this new thread to stop as well before firing 1857 // the notification. 1858 thread.RequestStop(); 1859 } 1860 } 1861 1862 void NativeProcessLinux::SigchldHandler() { 1863 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1864 1865 // Threads can appear or disappear as a result of event processing, so gather 1866 // the events upfront. 1867 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1868 for (const auto &thread_up : m_threads) { 1869 int status = -1; 1870 ::pid_t wait_pid = 1871 llvm::sys::RetryAfterSignal(-1, ::waitpid, thread_up->GetID(), &status, 1872 __WALL | __WNOTHREAD | WNOHANG); 1873 1874 if (wait_pid == 0) 1875 continue; // Nothing to do for this thread. 1876 1877 if (wait_pid == -1) { 1878 Status error(errno, eErrorTypePOSIX); 1879 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", thread_up->GetID(), 1880 error); 1881 continue; 1882 } 1883 1884 assert(wait_pid == static_cast<::pid_t>(thread_up->GetID())); 1885 1886 WaitStatus wait_status = WaitStatus::Decode(status); 1887 1888 LLDB_LOG(log, "waitpid({0}) got status = {1}", thread_up->GetID(), 1889 wait_status); 1890 tid_events.try_emplace(thread_up->GetID(), wait_status); 1891 } 1892 1893 for (auto &KV : tid_events) { 1894 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1895 NativeThreadLinux *thread = GetThreadByID(KV.first); 1896 if (thread) { 1897 MonitorCallback(*thread, KV.second); 1898 } else { 1899 // This can happen if one of the events is an main thread exit. 1900 LLDB_LOG(log, "... but the thread has disappeared"); 1901 } 1902 } 1903 } 1904 1905 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1906 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1907 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1908 void *data, size_t data_size, 1909 long *result) { 1910 Status error; 1911 long int ret; 1912 1913 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1914 1915 PtraceDisplayBytes(req, data, data_size); 1916 1917 errno = 0; 1918 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1919 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1920 *(unsigned int *)addr, data); 1921 else 1922 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1923 addr, data); 1924 1925 if (ret == -1) 1926 error.SetErrorToErrno(); 1927 1928 if (result) 1929 *result = ret; 1930 1931 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1932 data_size, ret); 1933 1934 PtraceDisplayBytes(req, data, data_size); 1935 1936 if (error.Fail()) 1937 LLDB_LOG(log, "ptrace() failed: {0}", error); 1938 1939 return error; 1940 } 1941 1942 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1943 if (IntelPTManager::IsSupported()) 1944 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1945 return NativeProcessProtocol::TraceSupported(); 1946 } 1947 1948 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1949 if (type == "intel-pt") { 1950 if (Expected<TraceIntelPTStartRequest> request = 1951 json::parse<TraceIntelPTStartRequest>(json_request, 1952 "TraceIntelPTStartRequest")) { 1953 std::vector<lldb::tid_t> process_threads; 1954 for (auto &thread : m_threads) 1955 process_threads.push_back(thread->GetID()); 1956 return m_intel_pt_manager.TraceStart(*request, process_threads); 1957 } else 1958 return request.takeError(); 1959 } 1960 1961 return NativeProcessProtocol::TraceStart(json_request, type); 1962 } 1963 1964 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1965 if (request.type == "intel-pt") 1966 return m_intel_pt_manager.TraceStop(request); 1967 return NativeProcessProtocol::TraceStop(request); 1968 } 1969 1970 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1971 if (type == "intel-pt") 1972 return m_intel_pt_manager.GetState(); 1973 return NativeProcessProtocol::TraceGetState(type); 1974 } 1975 1976 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 1977 const TraceGetBinaryDataRequest &request) { 1978 if (request.type == "intel-pt") 1979 return m_intel_pt_manager.GetBinaryData(request); 1980 return NativeProcessProtocol::TraceGetBinaryData(request); 1981 } 1982