1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <errno.h>
12 #include <stdint.h>
13 #include <string.h>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "lldb/Core/EmulateInstruction.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Host/HostProcess.h"
26 #include "lldb/Host/PseudoTerminal.h"
27 #include "lldb/Host/ThreadLauncher.h"
28 #include "lldb/Host/common/NativeRegisterContext.h"
29 #include "lldb/Host/linux/Ptrace.h"
30 #include "lldb/Host/linux/Uio.h"
31 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
32 #include "lldb/Symbol/ObjectFile.h"
33 #include "lldb/Target/Process.h"
34 #include "lldb/Target/ProcessLaunchInfo.h"
35 #include "lldb/Target/Target.h"
36 #include "lldb/Utility/LLDBAssert.h"
37 #include "lldb/Utility/RegisterValue.h"
38 #include "lldb/Utility/State.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StringExtractor.h"
41 #include "llvm/Support/Errno.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/Threading.h"
44 
45 #include "NativeThreadLinux.h"
46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
47 #include "Plugins/Process/Utility/LinuxProcMaps.h"
48 #include "Procfs.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 // Support hardware breakpoints in case it has not been defined
58 #ifndef TRAP_HWBKPT
59 #define TRAP_HWBKPT 4
60 #endif
61 
62 using namespace lldb;
63 using namespace lldb_private;
64 using namespace lldb_private::process_linux;
65 using namespace llvm;
66 
67 // Private bits we only need internally.
68 
69 static bool ProcessVmReadvSupported() {
70   static bool is_supported;
71   static llvm::once_flag flag;
72 
73   llvm::call_once(flag, [] {
74     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
75 
76     uint32_t source = 0x47424742;
77     uint32_t dest = 0;
78 
79     struct iovec local, remote;
80     remote.iov_base = &source;
81     local.iov_base = &dest;
82     remote.iov_len = local.iov_len = sizeof source;
83 
84     // We shall try if cross-process-memory reads work by attempting to read a
85     // value from our own process.
86     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
87     is_supported = (res == sizeof(source) && source == dest);
88     if (is_supported)
89       LLDB_LOG(log,
90                "Detected kernel support for process_vm_readv syscall. "
91                "Fast memory reads enabled.");
92     else
93       LLDB_LOG(log,
94                "syscall process_vm_readv failed (error: {0}). Fast memory "
95                "reads disabled.",
96                llvm::sys::StrError());
97   });
98 
99   return is_supported;
100 }
101 
102 namespace {
103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
104   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
105   if (!log)
106     return;
107 
108   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
109     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
110   else
111     LLDB_LOG(log, "leaving STDIN as is");
112 
113   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
114     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
115   else
116     LLDB_LOG(log, "leaving STDOUT as is");
117 
118   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
119     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
120   else
121     LLDB_LOG(log, "leaving STDERR as is");
122 
123   int i = 0;
124   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
125        ++args, ++i)
126     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
127 }
128 
129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
130   uint8_t *ptr = (uint8_t *)bytes;
131   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
132   for (uint32_t i = 0; i < loop_count; i++) {
133     s.Printf("[%x]", *ptr);
134     ptr++;
135   }
136 }
137 
138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
139   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
140   if (!log)
141     return;
142   StreamString buf;
143 
144   switch (req) {
145   case PTRACE_POKETEXT: {
146     DisplayBytes(buf, &data, 8);
147     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
148     break;
149   }
150   case PTRACE_POKEDATA: {
151     DisplayBytes(buf, &data, 8);
152     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
153     break;
154   }
155   case PTRACE_POKEUSER: {
156     DisplayBytes(buf, &data, 8);
157     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
158     break;
159   }
160   case PTRACE_SETREGS: {
161     DisplayBytes(buf, data, data_size);
162     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
163     break;
164   }
165   case PTRACE_SETFPREGS: {
166     DisplayBytes(buf, data, data_size);
167     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
168     break;
169   }
170   case PTRACE_SETSIGINFO: {
171     DisplayBytes(buf, data, sizeof(siginfo_t));
172     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
173     break;
174   }
175   case PTRACE_SETREGSET: {
176     // Extract iov_base from data, which is a pointer to the struct iovec
177     DisplayBytes(buf, *(void **)data, data_size);
178     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
179     break;
180   }
181   default: {}
182   }
183 }
184 
185 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
186 static_assert(sizeof(long) >= k_ptrace_word_size,
187               "Size of long must be larger than ptrace word size");
188 } // end of anonymous namespace
189 
190 // Simple helper function to ensure flags are enabled on the given file
191 // descriptor.
192 static Status EnsureFDFlags(int fd, int flags) {
193   Status error;
194 
195   int status = fcntl(fd, F_GETFL);
196   if (status == -1) {
197     error.SetErrorToErrno();
198     return error;
199   }
200 
201   if (fcntl(fd, F_SETFL, status | flags) == -1) {
202     error.SetErrorToErrno();
203     return error;
204   }
205 
206   return error;
207 }
208 
209 // -----------------------------------------------------------------------------
210 // Public Static Methods
211 // -----------------------------------------------------------------------------
212 
213 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
214 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
215                                     NativeDelegate &native_delegate,
216                                     MainLoop &mainloop) const {
217   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
218 
219   MaybeLogLaunchInfo(launch_info);
220 
221   Status status;
222   ::pid_t pid = ProcessLauncherPosixFork()
223                     .LaunchProcess(launch_info, status)
224                     .GetProcessId();
225   LLDB_LOG(log, "pid = {0:x}", pid);
226   if (status.Fail()) {
227     LLDB_LOG(log, "failed to launch process: {0}", status);
228     return status.ToError();
229   }
230 
231   // Wait for the child process to trap on its call to execve.
232   int wstatus;
233   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
234   assert(wpid == pid);
235   (void)wpid;
236   if (!WIFSTOPPED(wstatus)) {
237     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
238              WaitStatus::Decode(wstatus));
239     return llvm::make_error<StringError>("Could not sync with inferior process",
240                                          llvm::inconvertibleErrorCode());
241   }
242   LLDB_LOG(log, "inferior started, now in stopped state");
243 
244   ProcessInstanceInfo Info;
245   if (!Host::GetProcessInfo(pid, Info)) {
246     return llvm::make_error<StringError>("Cannot get process architecture",
247                                          llvm::inconvertibleErrorCode());
248   }
249 
250   // Set the architecture to the exe architecture.
251   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
252            Info.GetArchitecture().GetArchitectureName());
253 
254   status = SetDefaultPtraceOpts(pid);
255   if (status.Fail()) {
256     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
257     return status.ToError();
258   }
259 
260   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
261       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
262       Info.GetArchitecture(), mainloop, {pid}));
263 }
264 
265 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
266 NativeProcessLinux::Factory::Attach(
267     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
268     MainLoop &mainloop) const {
269   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
270   LLDB_LOG(log, "pid = {0:x}", pid);
271 
272   // Retrieve the architecture for the running process.
273   ProcessInstanceInfo Info;
274   if (!Host::GetProcessInfo(pid, Info)) {
275     return llvm::make_error<StringError>("Cannot get process architecture",
276                                          llvm::inconvertibleErrorCode());
277   }
278 
279   auto tids_or = NativeProcessLinux::Attach(pid);
280   if (!tids_or)
281     return tids_or.takeError();
282 
283   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
284       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
285 }
286 
287 // -----------------------------------------------------------------------------
288 // Public Instance Methods
289 // -----------------------------------------------------------------------------
290 
291 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
292                                        NativeDelegate &delegate,
293                                        const ArchSpec &arch, MainLoop &mainloop,
294                                        llvm::ArrayRef<::pid_t> tids)
295     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
296   if (m_terminal_fd != -1) {
297     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
298     assert(status.Success());
299   }
300 
301   Status status;
302   m_sigchld_handle = mainloop.RegisterSignal(
303       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
304   assert(m_sigchld_handle && status.Success());
305 
306   for (const auto &tid : tids) {
307     NativeThreadLinux &thread = AddThread(tid);
308     thread.SetStoppedBySignal(SIGSTOP);
309     ThreadWasCreated(thread);
310   }
311 
312   // Let our process instance know the thread has stopped.
313   SetCurrentThreadID(tids[0]);
314   SetState(StateType::eStateStopped, false);
315 
316   // Proccess any signals we received before installing our handler
317   SigchldHandler();
318 }
319 
320 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
321   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
322 
323   Status status;
324   // Use a map to keep track of the threads which we have attached/need to
325   // attach.
326   Host::TidMap tids_to_attach;
327   while (Host::FindProcessThreads(pid, tids_to_attach)) {
328     for (Host::TidMap::iterator it = tids_to_attach.begin();
329          it != tids_to_attach.end();) {
330       if (it->second == false) {
331         lldb::tid_t tid = it->first;
332 
333         // Attach to the requested process.
334         // An attach will cause the thread to stop with a SIGSTOP.
335         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
336           // No such thread. The thread may have exited. More error handling
337           // may be needed.
338           if (status.GetError() == ESRCH) {
339             it = tids_to_attach.erase(it);
340             continue;
341           }
342           return status.ToError();
343         }
344 
345         int wpid =
346             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
347         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
348         // this point we should have a thread stopped if waitpid succeeds.
349         if (wpid < 0) {
350           // No such thread. The thread may have exited. More error handling
351           // may be needed.
352           if (errno == ESRCH) {
353             it = tids_to_attach.erase(it);
354             continue;
355           }
356           return llvm::errorCodeToError(
357               std::error_code(errno, std::generic_category()));
358         }
359 
360         if ((status = SetDefaultPtraceOpts(tid)).Fail())
361           return status.ToError();
362 
363         LLDB_LOG(log, "adding tid = {0}", tid);
364         it->second = true;
365       }
366 
367       // move the loop forward
368       ++it;
369     }
370   }
371 
372   size_t tid_count = tids_to_attach.size();
373   if (tid_count == 0)
374     return llvm::make_error<StringError>("No such process",
375                                          llvm::inconvertibleErrorCode());
376 
377   std::vector<::pid_t> tids;
378   tids.reserve(tid_count);
379   for (const auto &p : tids_to_attach)
380     tids.push_back(p.first);
381   return std::move(tids);
382 }
383 
384 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
385   long ptrace_opts = 0;
386 
387   // Have the child raise an event on exit.  This is used to keep the child in
388   // limbo until it is destroyed.
389   ptrace_opts |= PTRACE_O_TRACEEXIT;
390 
391   // Have the tracer trace threads which spawn in the inferior process.
392   // TODO: if we want to support tracing the inferiors' child, add the
393   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
394   ptrace_opts |= PTRACE_O_TRACECLONE;
395 
396   // Have the tracer notify us before execve returns (needed to disable legacy
397   // SIGTRAP generation)
398   ptrace_opts |= PTRACE_O_TRACEEXEC;
399 
400   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
401 }
402 
403 // Handles all waitpid events from the inferior process.
404 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
405                                          WaitStatus status) {
406   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
407 
408   // Certain activities differ based on whether the pid is the tid of the main
409   // thread.
410   const bool is_main_thread = (pid == GetID());
411 
412   // Handle when the thread exits.
413   if (exited) {
414     LLDB_LOG(log,
415              "got exit signal({0}) , tid = {1} ({2} main thread), process "
416              "state = {3}",
417              signal, pid, is_main_thread ? "is" : "is not", GetState());
418 
419     // This is a thread that exited.  Ensure we're not tracking it anymore.
420     StopTrackingThread(pid);
421 
422     if (is_main_thread) {
423       // The main thread exited.  We're done monitoring.  Report to delegate.
424       SetExitStatus(status, true);
425 
426       // Notify delegate that our process has exited.
427       SetState(StateType::eStateExited, true);
428     }
429     return;
430   }
431 
432   siginfo_t info;
433   const auto info_err = GetSignalInfo(pid, &info);
434   auto thread_sp = GetThreadByID(pid);
435 
436   if (!thread_sp) {
437     // Normally, the only situation when we cannot find the thread is if we
438     // have just received a new thread notification. This is indicated by
439     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
440     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
441 
442     if (info_err.Fail()) {
443       LLDB_LOG(log,
444                "(tid {0}) GetSignalInfo failed ({1}). "
445                "Ingoring this notification.",
446                pid, info_err);
447       return;
448     }
449 
450     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
451              info.si_pid);
452 
453     NativeThreadLinux &thread = AddThread(pid);
454 
455     // Resume the newly created thread.
456     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
457     ThreadWasCreated(thread);
458     return;
459   }
460 
461   // Get details on the signal raised.
462   if (info_err.Success()) {
463     // We have retrieved the signal info.  Dispatch appropriately.
464     if (info.si_signo == SIGTRAP)
465       MonitorSIGTRAP(info, *thread_sp);
466     else
467       MonitorSignal(info, *thread_sp, exited);
468   } else {
469     if (info_err.GetError() == EINVAL) {
470       // This is a group stop reception for this tid. We can reach here if we
471       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
472       // triggering the group-stop mechanism. Normally receiving these would
473       // stop the process, pending a SIGCONT. Simulating this state in a
474       // debugger is hard and is generally not needed (one use case is
475       // debugging background task being managed by a shell). For general use,
476       // it is sufficient to stop the process in a signal-delivery stop which
477       // happens before the group stop. This done by MonitorSignal and works
478       // correctly for all signals.
479       LLDB_LOG(log,
480                "received a group stop for pid {0} tid {1}. Transparent "
481                "handling of group stops not supported, resuming the "
482                "thread.",
483                GetID(), pid);
484       ResumeThread(*thread_sp, thread_sp->GetState(),
485                    LLDB_INVALID_SIGNAL_NUMBER);
486     } else {
487       // ptrace(GETSIGINFO) failed (but not due to group-stop).
488 
489       // A return value of ESRCH means the thread/process is no longer on the
490       // system, so it was killed somehow outside of our control.  Either way,
491       // we can't do anything with it anymore.
492 
493       // Stop tracking the metadata for the thread since it's entirely off the
494       // system now.
495       const bool thread_found = StopTrackingThread(pid);
496 
497       LLDB_LOG(log,
498                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
499                "status = {3}, main_thread = {4}, thread_found: {5}",
500                info_err, pid, signal, status, is_main_thread, thread_found);
501 
502       if (is_main_thread) {
503         // Notify the delegate - our process is not available but appears to
504         // have been killed outside our control.  Is eStateExited the right
505         // exit state in this case?
506         SetExitStatus(status, true);
507         SetState(StateType::eStateExited, true);
508       } else {
509         // This thread was pulled out from underneath us.  Anything to do here?
510         // Do we want to do an all stop?
511         LLDB_LOG(log,
512                  "pid {0} tid {1} non-main thread exit occurred, didn't "
513                  "tell delegate anything since thread disappeared out "
514                  "from underneath us",
515                  GetID(), pid);
516       }
517     }
518   }
519 }
520 
521 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
522   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
523 
524   if (GetThreadByID(tid)) {
525     // We are already tracking the thread - we got the event on the new thread
526     // (see MonitorSignal) before this one. We are done.
527     return;
528   }
529 
530   // The thread is not tracked yet, let's wait for it to appear.
531   int status = -1;
532   LLDB_LOG(log,
533            "received thread creation event for tid {0}. tid not tracked "
534            "yet, waiting for thread to appear...",
535            tid);
536   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
537   // Since we are waiting on a specific tid, this must be the creation event.
538   // But let's do some checks just in case.
539   if (wait_pid != tid) {
540     LLDB_LOG(log,
541              "waiting for tid {0} failed. Assuming the thread has "
542              "disappeared in the meantime",
543              tid);
544     // The only way I know of this could happen is if the whole process was
545     // SIGKILLed in the mean time. In any case, we can't do anything about that
546     // now.
547     return;
548   }
549   if (WIFEXITED(status)) {
550     LLDB_LOG(log,
551              "waiting for tid {0} returned an 'exited' event. Not "
552              "tracking the thread.",
553              tid);
554     // Also a very improbable event.
555     return;
556   }
557 
558   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
559   NativeThreadLinux &new_thread = AddThread(tid);
560 
561   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
562   ThreadWasCreated(new_thread);
563 }
564 
565 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
566                                         NativeThreadLinux &thread) {
567   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
568   const bool is_main_thread = (thread.GetID() == GetID());
569 
570   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
571 
572   switch (info.si_code) {
573   // TODO: these two cases are required if we want to support tracing of the
574   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
575   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
576 
577   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
578     // This is the notification on the parent thread which informs us of new
579     // thread creation. We don't want to do anything with the parent thread so
580     // we just resume it. In case we want to implement "break on thread
581     // creation" functionality, we would need to stop here.
582 
583     unsigned long event_message = 0;
584     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
585       LLDB_LOG(log,
586                "pid {0} received thread creation event but "
587                "GetEventMessage failed so we don't know the new tid",
588                thread.GetID());
589     } else
590       WaitForNewThread(event_message);
591 
592     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
593     break;
594   }
595 
596   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
597     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
598 
599     // Exec clears any pending notifications.
600     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
601 
602     // Remove all but the main thread here.  Linux fork creates a new process
603     // which only copies the main thread.
604     LLDB_LOG(log, "exec received, stop tracking all but main thread");
605 
606     for (auto i = m_threads.begin(); i != m_threads.end();) {
607       if ((*i)->GetID() == GetID())
608         i = m_threads.erase(i);
609       else
610         ++i;
611     }
612     assert(m_threads.size() == 1);
613     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
614 
615     SetCurrentThreadID(main_thread->GetID());
616     main_thread->SetStoppedByExec();
617 
618     // Tell coordinator about about the "new" (since exec) stopped main thread.
619     ThreadWasCreated(*main_thread);
620 
621     // Let our delegate know we have just exec'd.
622     NotifyDidExec();
623 
624     // Let the process know we're stopped.
625     StopRunningThreads(main_thread->GetID());
626 
627     break;
628   }
629 
630   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
631     // The inferior process or one of its threads is about to exit. We don't
632     // want to do anything with the thread so we just resume it. In case we
633     // want to implement "break on thread exit" functionality, we would need to
634     // stop here.
635 
636     unsigned long data = 0;
637     if (GetEventMessage(thread.GetID(), &data).Fail())
638       data = -1;
639 
640     LLDB_LOG(log,
641              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
642              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
643              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
644              is_main_thread);
645 
646 
647     StateType state = thread.GetState();
648     if (!StateIsRunningState(state)) {
649       // Due to a kernel bug, we may sometimes get this stop after the inferior
650       // gets a SIGKILL. This confuses our state tracking logic in
651       // ResumeThread(), since normally, we should not be receiving any ptrace
652       // events while the inferior is stopped. This makes sure that the
653       // inferior is resumed and exits normally.
654       state = eStateRunning;
655     }
656     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
657 
658     break;
659   }
660 
661   case 0:
662   case TRAP_TRACE:  // We receive this on single stepping.
663   case TRAP_HWBKPT: // We receive this on watchpoint hit
664   {
665     // If a watchpoint was hit, report it
666     uint32_t wp_index;
667     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
668         wp_index, (uintptr_t)info.si_addr);
669     if (error.Fail())
670       LLDB_LOG(log,
671                "received error while checking for watchpoint hits, pid = "
672                "{0}, error = {1}",
673                thread.GetID(), error);
674     if (wp_index != LLDB_INVALID_INDEX32) {
675       MonitorWatchpoint(thread, wp_index);
676       break;
677     }
678 
679     // If a breakpoint was hit, report it
680     uint32_t bp_index;
681     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
682         bp_index, (uintptr_t)info.si_addr);
683     if (error.Fail())
684       LLDB_LOG(log, "received error while checking for hardware "
685                     "breakpoint hits, pid = {0}, error = {1}",
686                thread.GetID(), error);
687     if (bp_index != LLDB_INVALID_INDEX32) {
688       MonitorBreakpoint(thread);
689       break;
690     }
691 
692     // Otherwise, report step over
693     MonitorTrace(thread);
694     break;
695   }
696 
697   case SI_KERNEL:
698 #if defined __mips__
699     // For mips there is no special signal for watchpoint So we check for
700     // watchpoint in kernel trap
701     {
702       // If a watchpoint was hit, report it
703       uint32_t wp_index;
704       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
705           wp_index, LLDB_INVALID_ADDRESS);
706       if (error.Fail())
707         LLDB_LOG(log,
708                  "received error while checking for watchpoint hits, pid = "
709                  "{0}, error = {1}",
710                  thread.GetID(), error);
711       if (wp_index != LLDB_INVALID_INDEX32) {
712         MonitorWatchpoint(thread, wp_index);
713         break;
714       }
715     }
716 // NO BREAK
717 #endif
718   case TRAP_BRKPT:
719     MonitorBreakpoint(thread);
720     break;
721 
722   case SIGTRAP:
723   case (SIGTRAP | 0x80):
724     LLDB_LOG(
725         log,
726         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
727         info.si_code, GetID(), thread.GetID());
728 
729     // Ignore these signals until we know more about them.
730     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
731     break;
732 
733   default:
734     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
735              info.si_code, GetID(), thread.GetID());
736     MonitorSignal(info, thread, false);
737     break;
738   }
739 }
740 
741 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
742   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
743   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
744 
745   // This thread is currently stopped.
746   thread.SetStoppedByTrace();
747 
748   StopRunningThreads(thread.GetID());
749 }
750 
751 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
752   Log *log(
753       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
754   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
755 
756   // Mark the thread as stopped at breakpoint.
757   thread.SetStoppedByBreakpoint();
758   FixupBreakpointPCAsNeeded(thread);
759 
760   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
761       m_threads_stepping_with_breakpoint.end())
762     thread.SetStoppedByTrace();
763 
764   StopRunningThreads(thread.GetID());
765 }
766 
767 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
768                                            uint32_t wp_index) {
769   Log *log(
770       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
771   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
772            thread.GetID(), wp_index);
773 
774   // Mark the thread as stopped at watchpoint. The address is at
775   // (lldb::addr_t)info->si_addr if we need it.
776   thread.SetStoppedByWatchpoint(wp_index);
777 
778   // We need to tell all other running threads before we notify the delegate
779   // about this stop.
780   StopRunningThreads(thread.GetID());
781 }
782 
783 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
784                                        NativeThreadLinux &thread, bool exited) {
785   const int signo = info.si_signo;
786   const bool is_from_llgs = info.si_pid == getpid();
787 
788   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
789 
790   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
791   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
792   // or raise(3).  Similarly for tgkill(2) on Linux.
793   //
794   // IOW, user generated signals never generate what we consider to be a
795   // "crash".
796   //
797   // Similarly, ACK signals generated by this monitor.
798 
799   // Handle the signal.
800   LLDB_LOG(log,
801            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
802            "waitpid pid = {4})",
803            Host::GetSignalAsCString(signo), signo, info.si_code,
804            thread.GetID());
805 
806   // Check for thread stop notification.
807   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
808     // This is a tgkill()-based stop.
809     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
810 
811     // Check that we're not already marked with a stop reason. Note this thread
812     // really shouldn't already be marked as stopped - if we were, that would
813     // imply that the kernel signaled us with the thread stopping which we
814     // handled and marked as stopped, and that, without an intervening resume,
815     // we received another stop.  It is more likely that we are missing the
816     // marking of a run state somewhere if we find that the thread was marked
817     // as stopped.
818     const StateType thread_state = thread.GetState();
819     if (!StateIsStoppedState(thread_state, false)) {
820       // An inferior thread has stopped because of a SIGSTOP we have sent it.
821       // Generally, these are not important stops and we don't want to report
822       // them as they are just used to stop other threads when one thread (the
823       // one with the *real* stop reason) hits a breakpoint (watchpoint,
824       // etc...). However, in the case of an asynchronous Interrupt(), this
825       // *is* the real stop reason, so we leave the signal intact if this is
826       // the thread that was chosen as the triggering thread.
827       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
828         if (m_pending_notification_tid == thread.GetID())
829           thread.SetStoppedBySignal(SIGSTOP, &info);
830         else
831           thread.SetStoppedWithNoReason();
832 
833         SetCurrentThreadID(thread.GetID());
834         SignalIfAllThreadsStopped();
835       } else {
836         // We can end up here if stop was initiated by LLGS but by this time a
837         // thread stop has occurred - maybe initiated by another event.
838         Status error = ResumeThread(thread, thread.GetState(), 0);
839         if (error.Fail())
840           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
841                    error);
842       }
843     } else {
844       LLDB_LOG(log,
845                "pid {0} tid {1}, thread was already marked as a stopped "
846                "state (state={2}), leaving stop signal as is",
847                GetID(), thread.GetID(), thread_state);
848       SignalIfAllThreadsStopped();
849     }
850 
851     // Done handling.
852     return;
853   }
854 
855   // Check if debugger should stop at this signal or just ignore it and resume
856   // the inferior.
857   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
858      ResumeThread(thread, thread.GetState(), signo);
859      return;
860   }
861 
862   // This thread is stopped.
863   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
864   thread.SetStoppedBySignal(signo, &info);
865 
866   // Send a stop to the debugger after we get all other threads to stop.
867   StopRunningThreads(thread.GetID());
868 }
869 
870 namespace {
871 
872 struct EmulatorBaton {
873   NativeProcessLinux &m_process;
874   NativeRegisterContext &m_reg_context;
875 
876   // eRegisterKindDWARF -> RegsiterValue
877   std::unordered_map<uint32_t, RegisterValue> m_register_values;
878 
879   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
880       : m_process(process), m_reg_context(reg_context) {}
881 };
882 
883 } // anonymous namespace
884 
885 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
886                                  const EmulateInstruction::Context &context,
887                                  lldb::addr_t addr, void *dst, size_t length) {
888   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
889 
890   size_t bytes_read;
891   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
892   return bytes_read;
893 }
894 
895 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
896                                  const RegisterInfo *reg_info,
897                                  RegisterValue &reg_value) {
898   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
899 
900   auto it = emulator_baton->m_register_values.find(
901       reg_info->kinds[eRegisterKindDWARF]);
902   if (it != emulator_baton->m_register_values.end()) {
903     reg_value = it->second;
904     return true;
905   }
906 
907   // The emulator only fill in the dwarf regsiter numbers (and in some case the
908   // generic register numbers). Get the full register info from the register
909   // context based on the dwarf register numbers.
910   const RegisterInfo *full_reg_info =
911       emulator_baton->m_reg_context.GetRegisterInfo(
912           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
913 
914   Status error =
915       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
916   if (error.Success())
917     return true;
918 
919   return false;
920 }
921 
922 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
923                                   const EmulateInstruction::Context &context,
924                                   const RegisterInfo *reg_info,
925                                   const RegisterValue &reg_value) {
926   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
927   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
928       reg_value;
929   return true;
930 }
931 
932 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
933                                   const EmulateInstruction::Context &context,
934                                   lldb::addr_t addr, const void *dst,
935                                   size_t length) {
936   return length;
937 }
938 
939 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
940   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
941       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
942   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
943                                                  LLDB_INVALID_ADDRESS);
944 }
945 
946 Status
947 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
948   Status error;
949   NativeRegisterContext& register_context = thread.GetRegisterContext();
950 
951   std::unique_ptr<EmulateInstruction> emulator_ap(
952       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
953                                      nullptr));
954 
955   if (emulator_ap == nullptr)
956     return Status("Instruction emulator not found!");
957 
958   EmulatorBaton baton(*this, register_context);
959   emulator_ap->SetBaton(&baton);
960   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
961   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
962   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
963   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
964 
965   if (!emulator_ap->ReadInstruction())
966     return Status("Read instruction failed!");
967 
968   bool emulation_result =
969       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
970 
971   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
972       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
973   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
974       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
975 
976   auto pc_it =
977       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
978   auto flags_it =
979       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
980 
981   lldb::addr_t next_pc;
982   lldb::addr_t next_flags;
983   if (emulation_result) {
984     assert(pc_it != baton.m_register_values.end() &&
985            "Emulation was successfull but PC wasn't updated");
986     next_pc = pc_it->second.GetAsUInt64();
987 
988     if (flags_it != baton.m_register_values.end())
989       next_flags = flags_it->second.GetAsUInt64();
990     else
991       next_flags = ReadFlags(register_context);
992   } else if (pc_it == baton.m_register_values.end()) {
993     // Emulate instruction failed and it haven't changed PC. Advance PC with
994     // the size of the current opcode because the emulation of all
995     // PC modifying instruction should be successful. The failure most
996     // likely caused by a not supported instruction which don't modify PC.
997     next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize();
998     next_flags = ReadFlags(register_context);
999   } else {
1000     // The instruction emulation failed after it modified the PC. It is an
1001     // unknown error where we can't continue because the next instruction is
1002     // modifying the PC but we don't  know how.
1003     return Status("Instruction emulation failed unexpectedly.");
1004   }
1005 
1006   if (m_arch.GetMachine() == llvm::Triple::arm) {
1007     if (next_flags & 0x20) {
1008       // Thumb mode
1009       error = SetSoftwareBreakpoint(next_pc, 2);
1010     } else {
1011       // Arm mode
1012       error = SetSoftwareBreakpoint(next_pc, 4);
1013     }
1014   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1015              m_arch.GetMachine() == llvm::Triple::mips64el ||
1016              m_arch.GetMachine() == llvm::Triple::mips ||
1017              m_arch.GetMachine() == llvm::Triple::mipsel ||
1018              m_arch.GetMachine() == llvm::Triple::ppc64le)
1019     error = SetSoftwareBreakpoint(next_pc, 4);
1020   else {
1021     // No size hint is given for the next breakpoint
1022     error = SetSoftwareBreakpoint(next_pc, 0);
1023   }
1024 
1025   // If setting the breakpoint fails because next_pc is out of the address
1026   // space, ignore it and let the debugee segfault.
1027   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1028     return Status();
1029   } else if (error.Fail())
1030     return error;
1031 
1032   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1033 
1034   return Status();
1035 }
1036 
1037 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1038   if (m_arch.GetMachine() == llvm::Triple::arm ||
1039       m_arch.GetMachine() == llvm::Triple::mips64 ||
1040       m_arch.GetMachine() == llvm::Triple::mips64el ||
1041       m_arch.GetMachine() == llvm::Triple::mips ||
1042       m_arch.GetMachine() == llvm::Triple::mipsel)
1043     return false;
1044   return true;
1045 }
1046 
1047 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1048   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1049   LLDB_LOG(log, "pid {0}", GetID());
1050 
1051   bool software_single_step = !SupportHardwareSingleStepping();
1052 
1053   if (software_single_step) {
1054     for (const auto &thread : m_threads) {
1055       assert(thread && "thread list should not contain NULL threads");
1056 
1057       const ResumeAction *const action =
1058           resume_actions.GetActionForThread(thread->GetID(), true);
1059       if (action == nullptr)
1060         continue;
1061 
1062       if (action->state == eStateStepping) {
1063         Status error = SetupSoftwareSingleStepping(
1064             static_cast<NativeThreadLinux &>(*thread));
1065         if (error.Fail())
1066           return error;
1067       }
1068     }
1069   }
1070 
1071   for (const auto &thread : m_threads) {
1072     assert(thread && "thread list should not contain NULL threads");
1073 
1074     const ResumeAction *const action =
1075         resume_actions.GetActionForThread(thread->GetID(), true);
1076 
1077     if (action == nullptr) {
1078       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1079                thread->GetID());
1080       continue;
1081     }
1082 
1083     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1084              action->state, GetID(), thread->GetID());
1085 
1086     switch (action->state) {
1087     case eStateRunning:
1088     case eStateStepping: {
1089       // Run the thread, possibly feeding it the signal.
1090       const int signo = action->signal;
1091       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1092                    signo);
1093       break;
1094     }
1095 
1096     case eStateSuspended:
1097     case eStateStopped:
1098       llvm_unreachable("Unexpected state");
1099 
1100     default:
1101       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1102                     "for pid %" PRIu64 ", tid %" PRIu64,
1103                     __FUNCTION__, StateAsCString(action->state), GetID(),
1104                     thread->GetID());
1105     }
1106   }
1107 
1108   return Status();
1109 }
1110 
1111 Status NativeProcessLinux::Halt() {
1112   Status error;
1113 
1114   if (kill(GetID(), SIGSTOP) != 0)
1115     error.SetErrorToErrno();
1116 
1117   return error;
1118 }
1119 
1120 Status NativeProcessLinux::Detach() {
1121   Status error;
1122 
1123   // Stop monitoring the inferior.
1124   m_sigchld_handle.reset();
1125 
1126   // Tell ptrace to detach from the process.
1127   if (GetID() == LLDB_INVALID_PROCESS_ID)
1128     return error;
1129 
1130   for (const auto &thread : m_threads) {
1131     Status e = Detach(thread->GetID());
1132     if (e.Fail())
1133       error =
1134           e; // Save the error, but still attempt to detach from other threads.
1135   }
1136 
1137   m_processor_trace_monitor.clear();
1138   m_pt_proces_trace_id = LLDB_INVALID_UID;
1139 
1140   return error;
1141 }
1142 
1143 Status NativeProcessLinux::Signal(int signo) {
1144   Status error;
1145 
1146   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1147   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1148            Host::GetSignalAsCString(signo), GetID());
1149 
1150   if (kill(GetID(), signo))
1151     error.SetErrorToErrno();
1152 
1153   return error;
1154 }
1155 
1156 Status NativeProcessLinux::Interrupt() {
1157   // Pick a running thread (or if none, a not-dead stopped thread) as the
1158   // chosen thread that will be the stop-reason thread.
1159   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1160 
1161   NativeThreadProtocol *running_thread = nullptr;
1162   NativeThreadProtocol *stopped_thread = nullptr;
1163 
1164   LLDB_LOG(log, "selecting running thread for interrupt target");
1165   for (const auto &thread : m_threads) {
1166     // If we have a running or stepping thread, we'll call that the target of
1167     // the interrupt.
1168     const auto thread_state = thread->GetState();
1169     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1170       running_thread = thread.get();
1171       break;
1172     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1173       // Remember the first non-dead stopped thread.  We'll use that as a
1174       // backup if there are no running threads.
1175       stopped_thread = thread.get();
1176     }
1177   }
1178 
1179   if (!running_thread && !stopped_thread) {
1180     Status error("found no running/stepping or live stopped threads as target "
1181                  "for interrupt");
1182     LLDB_LOG(log, "skipping due to error: {0}", error);
1183 
1184     return error;
1185   }
1186 
1187   NativeThreadProtocol *deferred_signal_thread =
1188       running_thread ? running_thread : stopped_thread;
1189 
1190   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1191            running_thread ? "running" : "stopped",
1192            deferred_signal_thread->GetID());
1193 
1194   StopRunningThreads(deferred_signal_thread->GetID());
1195 
1196   return Status();
1197 }
1198 
1199 Status NativeProcessLinux::Kill() {
1200   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1201   LLDB_LOG(log, "pid {0}", GetID());
1202 
1203   Status error;
1204 
1205   switch (m_state) {
1206   case StateType::eStateInvalid:
1207   case StateType::eStateExited:
1208   case StateType::eStateCrashed:
1209   case StateType::eStateDetached:
1210   case StateType::eStateUnloaded:
1211     // Nothing to do - the process is already dead.
1212     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1213              m_state);
1214     return error;
1215 
1216   case StateType::eStateConnected:
1217   case StateType::eStateAttaching:
1218   case StateType::eStateLaunching:
1219   case StateType::eStateStopped:
1220   case StateType::eStateRunning:
1221   case StateType::eStateStepping:
1222   case StateType::eStateSuspended:
1223     // We can try to kill a process in these states.
1224     break;
1225   }
1226 
1227   if (kill(GetID(), SIGKILL) != 0) {
1228     error.SetErrorToErrno();
1229     return error;
1230   }
1231 
1232   return error;
1233 }
1234 
1235 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1236                                                MemoryRegionInfo &range_info) {
1237   // FIXME review that the final memory region returned extends to the end of
1238   // the virtual address space,
1239   // with no perms if it is not mapped.
1240 
1241   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1242   // proc maps entries are in ascending order.
1243   // FIXME assert if we find differently.
1244 
1245   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1246     // We're done.
1247     return Status("unsupported");
1248   }
1249 
1250   Status error = PopulateMemoryRegionCache();
1251   if (error.Fail()) {
1252     return error;
1253   }
1254 
1255   lldb::addr_t prev_base_address = 0;
1256 
1257   // FIXME start by finding the last region that is <= target address using
1258   // binary search.  Data is sorted.
1259   // There can be a ton of regions on pthreads apps with lots of threads.
1260   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1261        ++it) {
1262     MemoryRegionInfo &proc_entry_info = it->first;
1263 
1264     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1265     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1266            "descending /proc/pid/maps entries detected, unexpected");
1267     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1268     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1269 
1270     // If the target address comes before this entry, indicate distance to next
1271     // region.
1272     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1273       range_info.GetRange().SetRangeBase(load_addr);
1274       range_info.GetRange().SetByteSize(
1275           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1276       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1277       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1278       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1279       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1280 
1281       return error;
1282     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1283       // The target address is within the memory region we're processing here.
1284       range_info = proc_entry_info;
1285       return error;
1286     }
1287 
1288     // The target memory address comes somewhere after the region we just
1289     // parsed.
1290   }
1291 
1292   // If we made it here, we didn't find an entry that contained the given
1293   // address. Return the load_addr as start and the amount of bytes betwwen
1294   // load address and the end of the memory as size.
1295   range_info.GetRange().SetRangeBase(load_addr);
1296   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1297   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1298   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1299   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1300   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1301   return error;
1302 }
1303 
1304 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1305   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1306 
1307   // If our cache is empty, pull the latest.  There should always be at least
1308   // one memory region if memory region handling is supported.
1309   if (!m_mem_region_cache.empty()) {
1310     LLDB_LOG(log, "reusing {0} cached memory region entries",
1311              m_mem_region_cache.size());
1312     return Status();
1313   }
1314 
1315   auto BufferOrError = getProcFile(GetID(), "maps");
1316   if (!BufferOrError) {
1317     m_supports_mem_region = LazyBool::eLazyBoolNo;
1318     return BufferOrError.getError();
1319   }
1320   Status Result;
1321   ParseLinuxMapRegions(BufferOrError.get()->getBuffer(),
1322                        [&](const MemoryRegionInfo &Info, const Status &ST) {
1323                          if (ST.Success()) {
1324                            FileSpec file_spec(Info.GetName().GetCString());
1325                            FileSystem::Instance().Resolve(file_spec);
1326                            m_mem_region_cache.emplace_back(Info, file_spec);
1327                            return true;
1328                          } else {
1329                            m_supports_mem_region = LazyBool::eLazyBoolNo;
1330                            LLDB_LOG(log, "failed to parse proc maps: {0}", ST);
1331                            Result = ST;
1332                            return false;
1333                          }
1334                        });
1335   if (Result.Fail())
1336     return Result;
1337 
1338   if (m_mem_region_cache.empty()) {
1339     // No entries after attempting to read them.  This shouldn't happen if
1340     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1341     // procfs.
1342     m_supports_mem_region = LazyBool::eLazyBoolNo;
1343     LLDB_LOG(log,
1344              "failed to find any procfs maps entries, assuming no support "
1345              "for memory region metadata retrieval");
1346     return Status("not supported");
1347   }
1348 
1349   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1350            m_mem_region_cache.size(), GetID());
1351 
1352   // We support memory retrieval, remember that.
1353   m_supports_mem_region = LazyBool::eLazyBoolYes;
1354   return Status();
1355 }
1356 
1357 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1358   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1359   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1360   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1361            m_mem_region_cache.size());
1362   m_mem_region_cache.clear();
1363 }
1364 
1365 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1366                                           lldb::addr_t &addr) {
1367 // FIXME implementing this requires the equivalent of
1368 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans
1369 // working with Native*Protocol.
1370 #if 1
1371   return Status("not implemented yet");
1372 #else
1373   addr = LLDB_INVALID_ADDRESS;
1374 
1375   unsigned prot = 0;
1376   if (permissions & lldb::ePermissionsReadable)
1377     prot |= eMmapProtRead;
1378   if (permissions & lldb::ePermissionsWritable)
1379     prot |= eMmapProtWrite;
1380   if (permissions & lldb::ePermissionsExecutable)
1381     prot |= eMmapProtExec;
1382 
1383   // TODO implement this directly in NativeProcessLinux
1384   // (and lift to NativeProcessPOSIX if/when that class is refactored out).
1385   if (InferiorCallMmap(this, addr, 0, size, prot,
1386                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1387     m_addr_to_mmap_size[addr] = size;
1388     return Status();
1389   } else {
1390     addr = LLDB_INVALID_ADDRESS;
1391     return Status("unable to allocate %" PRIu64
1392                   " bytes of memory with permissions %s",
1393                   size, GetPermissionsAsCString(permissions));
1394   }
1395 #endif
1396 }
1397 
1398 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1399   // FIXME see comments in AllocateMemory - required lower-level
1400   // bits not in place yet (ThreadPlans)
1401   return Status("not implemented");
1402 }
1403 
1404 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1405   // punt on this for now
1406   return LLDB_INVALID_ADDRESS;
1407 }
1408 
1409 size_t NativeProcessLinux::UpdateThreads() {
1410   // The NativeProcessLinux monitoring threads are always up to date with
1411   // respect to thread state and they keep the thread list populated properly.
1412   // All this method needs to do is return the thread count.
1413   return m_threads.size();
1414 }
1415 
1416 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1417                                          bool hardware) {
1418   if (hardware)
1419     return SetHardwareBreakpoint(addr, size);
1420   else
1421     return SetSoftwareBreakpoint(addr, size);
1422 }
1423 
1424 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1425   if (hardware)
1426     return RemoveHardwareBreakpoint(addr);
1427   else
1428     return NativeProcessProtocol::RemoveBreakpoint(addr);
1429 }
1430 
1431 llvm::Expected<llvm::ArrayRef<uint8_t>>
1432 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1433   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1434   // linux kernel does otherwise.
1435   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1436   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1437 
1438   switch (GetArchitecture().GetMachine()) {
1439   case llvm::Triple::arm:
1440     switch (size_hint) {
1441     case 2:
1442       return llvm::makeArrayRef(g_thumb_opcode);
1443     case 4:
1444       return llvm::makeArrayRef(g_arm_opcode);
1445     default:
1446       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1447                                      "Unrecognised trap opcode size hint!");
1448     }
1449   default:
1450     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1451   }
1452 }
1453 
1454 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1455                                       size_t &bytes_read) {
1456   if (ProcessVmReadvSupported()) {
1457     // The process_vm_readv path is about 50 times faster than ptrace api. We
1458     // want to use this syscall if it is supported.
1459 
1460     const ::pid_t pid = GetID();
1461 
1462     struct iovec local_iov, remote_iov;
1463     local_iov.iov_base = buf;
1464     local_iov.iov_len = size;
1465     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1466     remote_iov.iov_len = size;
1467 
1468     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1469     const bool success = bytes_read == size;
1470 
1471     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1472     LLDB_LOG(log,
1473              "using process_vm_readv to read {0} bytes from inferior "
1474              "address {1:x}: {2}",
1475              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1476 
1477     if (success)
1478       return Status();
1479     // else the call failed for some reason, let's retry the read using ptrace
1480     // api.
1481   }
1482 
1483   unsigned char *dst = static_cast<unsigned char *>(buf);
1484   size_t remainder;
1485   long data;
1486 
1487   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1488   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1489 
1490   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1491     Status error = NativeProcessLinux::PtraceWrapper(
1492         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1493     if (error.Fail())
1494       return error;
1495 
1496     remainder = size - bytes_read;
1497     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1498 
1499     // Copy the data into our buffer
1500     memcpy(dst, &data, remainder);
1501 
1502     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1503     addr += k_ptrace_word_size;
1504     dst += k_ptrace_word_size;
1505   }
1506   return Status();
1507 }
1508 
1509 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1510                                        size_t size, size_t &bytes_written) {
1511   const unsigned char *src = static_cast<const unsigned char *>(buf);
1512   size_t remainder;
1513   Status error;
1514 
1515   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1516   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1517 
1518   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1519     remainder = size - bytes_written;
1520     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1521 
1522     if (remainder == k_ptrace_word_size) {
1523       unsigned long data = 0;
1524       memcpy(&data, src, k_ptrace_word_size);
1525 
1526       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1527       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1528                                                 (void *)addr, (void *)data);
1529       if (error.Fail())
1530         return error;
1531     } else {
1532       unsigned char buff[8];
1533       size_t bytes_read;
1534       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1535       if (error.Fail())
1536         return error;
1537 
1538       memcpy(buff, src, remainder);
1539 
1540       size_t bytes_written_rec;
1541       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1542       if (error.Fail())
1543         return error;
1544 
1545       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1546                *(unsigned long *)buff);
1547     }
1548 
1549     addr += k_ptrace_word_size;
1550     src += k_ptrace_word_size;
1551   }
1552   return error;
1553 }
1554 
1555 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1556   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1557 }
1558 
1559 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1560                                            unsigned long *message) {
1561   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1562 }
1563 
1564 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1565   if (tid == LLDB_INVALID_THREAD_ID)
1566     return Status();
1567 
1568   return PtraceWrapper(PTRACE_DETACH, tid);
1569 }
1570 
1571 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1572   for (const auto &thread : m_threads) {
1573     assert(thread && "thread list should not contain NULL threads");
1574     if (thread->GetID() == thread_id) {
1575       // We have this thread.
1576       return true;
1577     }
1578   }
1579 
1580   // We don't have this thread.
1581   return false;
1582 }
1583 
1584 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1585   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1586   LLDB_LOG(log, "tid: {0})", thread_id);
1587 
1588   bool found = false;
1589   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1590     if (*it && ((*it)->GetID() == thread_id)) {
1591       m_threads.erase(it);
1592       found = true;
1593       break;
1594     }
1595   }
1596 
1597   if (found)
1598     StopTracingForThread(thread_id);
1599   SignalIfAllThreadsStopped();
1600   return found;
1601 }
1602 
1603 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1604   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1605   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1606 
1607   assert(!HasThreadNoLock(thread_id) &&
1608          "attempted to add a thread by id that already exists");
1609 
1610   // If this is the first thread, save it as the current thread
1611   if (m_threads.empty())
1612     SetCurrentThreadID(thread_id);
1613 
1614   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1615 
1616   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1617     auto traceMonitor = ProcessorTraceMonitor::Create(
1618         GetID(), thread_id, m_pt_process_trace_config, true);
1619     if (traceMonitor) {
1620       m_pt_traced_thread_group.insert(thread_id);
1621       m_processor_trace_monitor.insert(
1622           std::make_pair(thread_id, std::move(*traceMonitor)));
1623     } else {
1624       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1625       Status error(traceMonitor.takeError());
1626       LLDB_LOG(log, "error {0}", error);
1627     }
1628   }
1629 
1630   return static_cast<NativeThreadLinux &>(*m_threads.back());
1631 }
1632 
1633 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1634                                                    FileSpec &file_spec) {
1635   Status error = PopulateMemoryRegionCache();
1636   if (error.Fail())
1637     return error;
1638 
1639   FileSpec module_file_spec(module_path);
1640   FileSystem::Instance().Resolve(module_file_spec);
1641 
1642   file_spec.Clear();
1643   for (const auto &it : m_mem_region_cache) {
1644     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1645       file_spec = it.second;
1646       return Status();
1647     }
1648   }
1649   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1650                 module_file_spec.GetFilename().AsCString(), GetID());
1651 }
1652 
1653 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1654                                               lldb::addr_t &load_addr) {
1655   load_addr = LLDB_INVALID_ADDRESS;
1656   Status error = PopulateMemoryRegionCache();
1657   if (error.Fail())
1658     return error;
1659 
1660   FileSpec file(file_name);
1661   for (const auto &it : m_mem_region_cache) {
1662     if (it.second == file) {
1663       load_addr = it.first.GetRange().GetRangeBase();
1664       return Status();
1665     }
1666   }
1667   return Status("No load address found for specified file.");
1668 }
1669 
1670 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1671   return static_cast<NativeThreadLinux *>(
1672       NativeProcessProtocol::GetThreadByID(tid));
1673 }
1674 
1675 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1676                                         lldb::StateType state, int signo) {
1677   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1678   LLDB_LOG(log, "tid: {0}", thread.GetID());
1679 
1680   // Before we do the resume below, first check if we have a pending stop
1681   // notification that is currently waiting for all threads to stop.  This is
1682   // potentially a buggy situation since we're ostensibly waiting for threads
1683   // to stop before we send out the pending notification, and here we are
1684   // resuming one before we send out the pending stop notification.
1685   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1686     LLDB_LOG(log,
1687              "about to resume tid {0} per explicit request but we have a "
1688              "pending stop notification (tid {1}) that is actively "
1689              "waiting for this thread to stop. Valid sequence of events?",
1690              thread.GetID(), m_pending_notification_tid);
1691   }
1692 
1693   // Request a resume.  We expect this to be synchronous and the system to
1694   // reflect it is running after this completes.
1695   switch (state) {
1696   case eStateRunning: {
1697     const auto resume_result = thread.Resume(signo);
1698     if (resume_result.Success())
1699       SetState(eStateRunning, true);
1700     return resume_result;
1701   }
1702   case eStateStepping: {
1703     const auto step_result = thread.SingleStep(signo);
1704     if (step_result.Success())
1705       SetState(eStateRunning, true);
1706     return step_result;
1707   }
1708   default:
1709     LLDB_LOG(log, "Unhandled state {0}.", state);
1710     llvm_unreachable("Unhandled state for resume");
1711   }
1712 }
1713 
1714 //===----------------------------------------------------------------------===//
1715 
1716 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1717   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1718   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1719            triggering_tid);
1720 
1721   m_pending_notification_tid = triggering_tid;
1722 
1723   // Request a stop for all the thread stops that need to be stopped and are
1724   // not already known to be stopped.
1725   for (const auto &thread : m_threads) {
1726     if (StateIsRunningState(thread->GetState()))
1727       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1728   }
1729 
1730   SignalIfAllThreadsStopped();
1731   LLDB_LOG(log, "event processing done");
1732 }
1733 
1734 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1735   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1736     return; // No pending notification. Nothing to do.
1737 
1738   for (const auto &thread_sp : m_threads) {
1739     if (StateIsRunningState(thread_sp->GetState()))
1740       return; // Some threads are still running. Don't signal yet.
1741   }
1742 
1743   // We have a pending notification and all threads have stopped.
1744   Log *log(
1745       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1746 
1747   // Clear any temporary breakpoints we used to implement software single
1748   // stepping.
1749   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1750     Status error = RemoveBreakpoint(thread_info.second);
1751     if (error.Fail())
1752       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1753                thread_info.first, error);
1754   }
1755   m_threads_stepping_with_breakpoint.clear();
1756 
1757   // Notify the delegate about the stop
1758   SetCurrentThreadID(m_pending_notification_tid);
1759   SetState(StateType::eStateStopped, true);
1760   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1761 }
1762 
1763 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1764   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1765   LLDB_LOG(log, "tid: {0}", thread.GetID());
1766 
1767   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1768       StateIsRunningState(thread.GetState())) {
1769     // We will need to wait for this new thread to stop as well before firing
1770     // the notification.
1771     thread.RequestStop();
1772   }
1773 }
1774 
1775 void NativeProcessLinux::SigchldHandler() {
1776   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1777   // Process all pending waitpid notifications.
1778   while (true) {
1779     int status = -1;
1780     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1781                                           __WALL | __WNOTHREAD | WNOHANG);
1782 
1783     if (wait_pid == 0)
1784       break; // We are done.
1785 
1786     if (wait_pid == -1) {
1787       Status error(errno, eErrorTypePOSIX);
1788       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1789       break;
1790     }
1791 
1792     WaitStatus wait_status = WaitStatus::Decode(status);
1793     bool exited = wait_status.type == WaitStatus::Exit ||
1794                   (wait_status.type == WaitStatus::Signal &&
1795                    wait_pid == static_cast<::pid_t>(GetID()));
1796 
1797     LLDB_LOG(
1798         log,
1799         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1800         wait_pid, wait_status, exited);
1801 
1802     MonitorCallback(wait_pid, exited, wait_status);
1803   }
1804 }
1805 
1806 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1807 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1808 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1809                                          void *data, size_t data_size,
1810                                          long *result) {
1811   Status error;
1812   long int ret;
1813 
1814   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1815 
1816   PtraceDisplayBytes(req, data, data_size);
1817 
1818   errno = 0;
1819   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1820     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1821                  *(unsigned int *)addr, data);
1822   else
1823     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1824                  addr, data);
1825 
1826   if (ret == -1)
1827     error.SetErrorToErrno();
1828 
1829   if (result)
1830     *result = ret;
1831 
1832   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1833            data_size, ret);
1834 
1835   PtraceDisplayBytes(req, data, data_size);
1836 
1837   if (error.Fail())
1838     LLDB_LOG(log, "ptrace() failed: {0}", error);
1839 
1840   return error;
1841 }
1842 
1843 llvm::Expected<ProcessorTraceMonitor &>
1844 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
1845                                                  lldb::tid_t thread) {
1846   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1847   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
1848     LLDB_LOG(log, "thread not specified: {0}", traceid);
1849     return Status("tracing not active thread not specified").ToError();
1850   }
1851 
1852   for (auto& iter : m_processor_trace_monitor) {
1853     if (traceid == iter.second->GetTraceID() &&
1854         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
1855       return *(iter.second);
1856   }
1857 
1858   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1859   return Status("tracing not active for this thread").ToError();
1860 }
1861 
1862 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
1863                                        lldb::tid_t thread,
1864                                        llvm::MutableArrayRef<uint8_t> &buffer,
1865                                        size_t offset) {
1866   TraceOptions trace_options;
1867   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1868   Status error;
1869 
1870   LLDB_LOG(log, "traceid {0}", traceid);
1871 
1872   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1873   if (!perf_monitor) {
1874     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1875     buffer = buffer.slice(buffer.size());
1876     error = perf_monitor.takeError();
1877     return error;
1878   }
1879   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
1880 }
1881 
1882 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
1883                                    llvm::MutableArrayRef<uint8_t> &buffer,
1884                                    size_t offset) {
1885   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1886   Status error;
1887 
1888   LLDB_LOG(log, "traceid {0}", traceid);
1889 
1890   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1891   if (!perf_monitor) {
1892     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1893     buffer = buffer.slice(buffer.size());
1894     error = perf_monitor.takeError();
1895     return error;
1896   }
1897   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
1898 }
1899 
1900 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
1901                                           TraceOptions &config) {
1902   Status error;
1903   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
1904       m_pt_proces_trace_id == traceid) {
1905     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
1906       error.SetErrorString("tracing not active for this process");
1907       return error;
1908     }
1909     config = m_pt_process_trace_config;
1910   } else {
1911     auto perf_monitor =
1912         LookupProcessorTraceInstance(traceid, config.getThreadID());
1913     if (!perf_monitor) {
1914       error = perf_monitor.takeError();
1915       return error;
1916     }
1917     error = (*perf_monitor).GetTraceConfig(config);
1918   }
1919   return error;
1920 }
1921 
1922 lldb::user_id_t
1923 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
1924                                            Status &error) {
1925 
1926   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1927   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1928     return LLDB_INVALID_UID;
1929 
1930   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1931     error.SetErrorString("tracing already active on this process");
1932     return m_pt_proces_trace_id;
1933   }
1934 
1935   for (const auto &thread_sp : m_threads) {
1936     if (auto traceInstance = ProcessorTraceMonitor::Create(
1937             GetID(), thread_sp->GetID(), config, true)) {
1938       m_pt_traced_thread_group.insert(thread_sp->GetID());
1939       m_processor_trace_monitor.insert(
1940           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
1941     }
1942   }
1943 
1944   m_pt_process_trace_config = config;
1945   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
1946 
1947   // Trace on Complete process will have traceid of 0
1948   m_pt_proces_trace_id = 0;
1949 
1950   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
1951   return m_pt_proces_trace_id;
1952 }
1953 
1954 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
1955                                                Status &error) {
1956   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1957     return NativeProcessProtocol::StartTrace(config, error);
1958 
1959   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1960 
1961   lldb::tid_t threadid = config.getThreadID();
1962 
1963   if (threadid == LLDB_INVALID_THREAD_ID)
1964     return StartTraceGroup(config, error);
1965 
1966   auto thread_sp = GetThreadByID(threadid);
1967   if (!thread_sp) {
1968     // Thread not tracked by lldb so don't trace.
1969     error.SetErrorString("invalid thread id");
1970     return LLDB_INVALID_UID;
1971   }
1972 
1973   const auto &iter = m_processor_trace_monitor.find(threadid);
1974   if (iter != m_processor_trace_monitor.end()) {
1975     LLDB_LOG(log, "Thread already being traced");
1976     error.SetErrorString("tracing already active on this thread");
1977     return LLDB_INVALID_UID;
1978   }
1979 
1980   auto traceMonitor =
1981       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
1982   if (!traceMonitor) {
1983     error = traceMonitor.takeError();
1984     LLDB_LOG(log, "error {0}", error);
1985     return LLDB_INVALID_UID;
1986   }
1987   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
1988   m_processor_trace_monitor.insert(
1989       std::make_pair(threadid, std::move(*traceMonitor)));
1990   return ret_trace_id;
1991 }
1992 
1993 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
1994   Status error;
1995   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1996   LLDB_LOG(log, "Thread {0}", thread);
1997 
1998   const auto& iter = m_processor_trace_monitor.find(thread);
1999   if (iter == m_processor_trace_monitor.end()) {
2000     error.SetErrorString("tracing not active for this thread");
2001     return error;
2002   }
2003 
2004   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2005     // traceid maps to the whole process so we have to erase it from the thread
2006     // group.
2007     LLDB_LOG(log, "traceid maps to process");
2008     m_pt_traced_thread_group.erase(thread);
2009   }
2010   m_processor_trace_monitor.erase(iter);
2011 
2012   return error;
2013 }
2014 
2015 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2016                                      lldb::tid_t thread) {
2017   Status error;
2018 
2019   TraceOptions trace_options;
2020   trace_options.setThreadID(thread);
2021   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2022 
2023   if (error.Fail())
2024     return error;
2025 
2026   switch (trace_options.getType()) {
2027   case lldb::TraceType::eTraceTypeProcessorTrace:
2028     if (traceid == m_pt_proces_trace_id &&
2029         thread == LLDB_INVALID_THREAD_ID)
2030       StopProcessorTracingOnProcess();
2031     else
2032       error = StopProcessorTracingOnThread(traceid, thread);
2033     break;
2034   default:
2035     error.SetErrorString("trace not supported");
2036     break;
2037   }
2038 
2039   return error;
2040 }
2041 
2042 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2043   for (auto thread_id_iter : m_pt_traced_thread_group)
2044     m_processor_trace_monitor.erase(thread_id_iter);
2045   m_pt_traced_thread_group.clear();
2046   m_pt_proces_trace_id = LLDB_INVALID_UID;
2047 }
2048 
2049 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2050                                                         lldb::tid_t thread) {
2051   Status error;
2052   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2053 
2054   if (thread == LLDB_INVALID_THREAD_ID) {
2055     for (auto& iter : m_processor_trace_monitor) {
2056       if (iter.second->GetTraceID() == traceid) {
2057         // Stopping a trace instance for an individual thread hence there will
2058         // only be one traceid that can match.
2059         m_processor_trace_monitor.erase(iter.first);
2060         return error;
2061       }
2062       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2063     }
2064 
2065     LLDB_LOG(log, "Invalid TraceID");
2066     error.SetErrorString("invalid trace id");
2067     return error;
2068   }
2069 
2070   // thread is specified so we can use find function on the map.
2071   const auto& iter = m_processor_trace_monitor.find(thread);
2072   if (iter == m_processor_trace_monitor.end()) {
2073     // thread not found in our map.
2074     LLDB_LOG(log, "thread not being traced");
2075     error.SetErrorString("tracing not active for this thread");
2076     return error;
2077   }
2078   if (iter->second->GetTraceID() != traceid) {
2079     // traceid did not match so it has to be invalid.
2080     LLDB_LOG(log, "Invalid TraceID");
2081     error.SetErrorString("invalid trace id");
2082     return error;
2083   }
2084 
2085   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2086 
2087   if (traceid == m_pt_proces_trace_id) {
2088     // traceid maps to the whole process so we have to erase it from the thread
2089     // group.
2090     LLDB_LOG(log, "traceid maps to process");
2091     m_pt_traced_thread_group.erase(thread);
2092   }
2093   m_processor_trace_monitor.erase(iter);
2094 
2095   return error;
2096 }
2097