1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ArchSpec arch; 249 if ((status = ResolveProcessArchitecture(pid, arch)).Fail()) 250 return status.ToError(); 251 252 // Set the architecture to the exe architecture. 253 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 254 arch.GetArchitectureName()); 255 256 status = SetDefaultPtraceOpts(pid); 257 if (status.Fail()) { 258 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 259 return status.ToError(); 260 } 261 262 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 263 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 264 arch, mainloop, {pid})); 265 } 266 267 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 268 NativeProcessLinux::Factory::Attach( 269 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 270 MainLoop &mainloop) const { 271 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 272 LLDB_LOG(log, "pid = {0:x}", pid); 273 274 // Retrieve the architecture for the running process. 275 ArchSpec arch; 276 Status status = ResolveProcessArchitecture(pid, arch); 277 if (!status.Success()) 278 return status.ToError(); 279 280 auto tids_or = NativeProcessLinux::Attach(pid); 281 if (!tids_or) 282 return tids_or.takeError(); 283 284 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 285 pid, -1, native_delegate, arch, mainloop, *tids_or)); 286 } 287 288 // ----------------------------------------------------------------------------- 289 // Public Instance Methods 290 // ----------------------------------------------------------------------------- 291 292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 293 NativeDelegate &delegate, 294 const ArchSpec &arch, MainLoop &mainloop, 295 llvm::ArrayRef<::pid_t> tids) 296 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 297 if (m_terminal_fd != -1) { 298 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 299 assert(status.Success()); 300 } 301 302 Status status; 303 m_sigchld_handle = mainloop.RegisterSignal( 304 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 305 assert(m_sigchld_handle && status.Success()); 306 307 for (const auto &tid : tids) { 308 NativeThreadLinux &thread = AddThread(tid); 309 thread.SetStoppedBySignal(SIGSTOP); 310 ThreadWasCreated(thread); 311 } 312 313 // Let our process instance know the thread has stopped. 314 SetCurrentThreadID(tids[0]); 315 SetState(StateType::eStateStopped, false); 316 317 // Proccess any signals we received before installing our handler 318 SigchldHandler(); 319 } 320 321 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 322 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 323 324 Status status; 325 // Use a map to keep track of the threads which we have attached/need to 326 // attach. 327 Host::TidMap tids_to_attach; 328 while (Host::FindProcessThreads(pid, tids_to_attach)) { 329 for (Host::TidMap::iterator it = tids_to_attach.begin(); 330 it != tids_to_attach.end();) { 331 if (it->second == false) { 332 lldb::tid_t tid = it->first; 333 334 // Attach to the requested process. 335 // An attach will cause the thread to stop with a SIGSTOP. 336 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 337 // No such thread. The thread may have exited. 338 // More error handling may be needed. 339 if (status.GetError() == ESRCH) { 340 it = tids_to_attach.erase(it); 341 continue; 342 } 343 return status.ToError(); 344 } 345 346 int wpid = 347 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 348 // Need to use __WALL otherwise we receive an error with errno=ECHLD 349 // At this point we should have a thread stopped if waitpid succeeds. 350 if (wpid < 0) { 351 // No such thread. The thread may have exited. 352 // More error handling may be needed. 353 if (errno == ESRCH) { 354 it = tids_to_attach.erase(it); 355 continue; 356 } 357 return llvm::errorCodeToError( 358 std::error_code(errno, std::generic_category())); 359 } 360 361 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 362 return status.ToError(); 363 364 LLDB_LOG(log, "adding tid = {0}", tid); 365 it->second = true; 366 } 367 368 // move the loop forward 369 ++it; 370 } 371 } 372 373 size_t tid_count = tids_to_attach.size(); 374 if (tid_count == 0) 375 return llvm::make_error<StringError>("No such process", 376 llvm::inconvertibleErrorCode()); 377 378 std::vector<::pid_t> tids; 379 tids.reserve(tid_count); 380 for (const auto &p : tids_to_attach) 381 tids.push_back(p.first); 382 return std::move(tids); 383 } 384 385 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 386 long ptrace_opts = 0; 387 388 // Have the child raise an event on exit. This is used to keep the child in 389 // limbo until it is destroyed. 390 ptrace_opts |= PTRACE_O_TRACEEXIT; 391 392 // Have the tracer trace threads which spawn in the inferior process. 393 // TODO: if we want to support tracing the inferiors' child, add the 394 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 395 ptrace_opts |= PTRACE_O_TRACECLONE; 396 397 // Have the tracer notify us before execve returns 398 // (needed to disable legacy SIGTRAP generation) 399 ptrace_opts |= PTRACE_O_TRACEEXEC; 400 401 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 402 } 403 404 // Handles all waitpid events from the inferior process. 405 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 406 WaitStatus status) { 407 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 408 409 // Certain activities differ based on whether the pid is the tid of the main 410 // thread. 411 const bool is_main_thread = (pid == GetID()); 412 413 // Handle when the thread exits. 414 if (exited) { 415 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 416 pid, is_main_thread ? "is" : "is not"); 417 418 // This is a thread that exited. Ensure we're not tracking it anymore. 419 const bool thread_found = StopTrackingThread(pid); 420 421 if (is_main_thread) { 422 // We only set the exit status and notify the delegate if we haven't 423 // already set the process 424 // state to an exited state. We normally should have received a SIGTRAP | 425 // (PTRACE_EVENT_EXIT << 8) 426 // for the main thread. 427 const bool already_notified = (GetState() == StateType::eStateExited) || 428 (GetState() == StateType::eStateCrashed); 429 if (!already_notified) { 430 LLDB_LOG( 431 log, 432 "tid = {0} handling main thread exit ({1}), expected exit state " 433 "already set but state was {2} instead, setting exit state now", 434 pid, 435 thread_found ? "stopped tracking thread metadata" 436 : "thread metadata not found", 437 GetState()); 438 // The main thread exited. We're done monitoring. Report to delegate. 439 SetExitStatus(status, true); 440 441 // Notify delegate that our process has exited. 442 SetState(StateType::eStateExited, true); 443 } else 444 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 445 thread_found ? "stopped tracking thread metadata" 446 : "thread metadata not found"); 447 } else { 448 // Do we want to report to the delegate in this case? I think not. If 449 // this was an orderly thread exit, we would already have received the 450 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 451 // all-stop then. 452 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 453 thread_found ? "stopped tracking thread metadata" 454 : "thread metadata not found"); 455 } 456 return; 457 } 458 459 siginfo_t info; 460 const auto info_err = GetSignalInfo(pid, &info); 461 auto thread_sp = GetThreadByID(pid); 462 463 if (!thread_sp) { 464 // Normally, the only situation when we cannot find the thread is if we have 465 // just received a new thread notification. This is indicated by 466 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 467 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 468 469 if (info_err.Fail()) { 470 LLDB_LOG(log, 471 "(tid {0}) GetSignalInfo failed ({1}). " 472 "Ingoring this notification.", 473 pid, info_err); 474 return; 475 } 476 477 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 478 info.si_pid); 479 480 NativeThreadLinux &thread = AddThread(pid); 481 482 // Resume the newly created thread. 483 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 484 ThreadWasCreated(thread); 485 return; 486 } 487 488 // Get details on the signal raised. 489 if (info_err.Success()) { 490 // We have retrieved the signal info. Dispatch appropriately. 491 if (info.si_signo == SIGTRAP) 492 MonitorSIGTRAP(info, *thread_sp); 493 else 494 MonitorSignal(info, *thread_sp, exited); 495 } else { 496 if (info_err.GetError() == EINVAL) { 497 // This is a group stop reception for this tid. 498 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 499 // into the tracee, triggering the group-stop mechanism. Normally 500 // receiving these would stop the process, pending a SIGCONT. Simulating 501 // this state in a debugger is hard and is generally not needed (one use 502 // case is debugging background task being managed by a shell). For 503 // general use, it is sufficient to stop the process in a signal-delivery 504 // stop which happens before the group stop. This done by MonitorSignal 505 // and works correctly for all signals. 506 LLDB_LOG(log, 507 "received a group stop for pid {0} tid {1}. Transparent " 508 "handling of group stops not supported, resuming the " 509 "thread.", 510 GetID(), pid); 511 ResumeThread(*thread_sp, thread_sp->GetState(), 512 LLDB_INVALID_SIGNAL_NUMBER); 513 } else { 514 // ptrace(GETSIGINFO) failed (but not due to group-stop). 515 516 // A return value of ESRCH means the thread/process is no longer on the 517 // system, so it was killed somehow outside of our control. Either way, 518 // we can't do anything with it anymore. 519 520 // Stop tracking the metadata for the thread since it's entirely off the 521 // system now. 522 const bool thread_found = StopTrackingThread(pid); 523 524 LLDB_LOG(log, 525 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 526 "status = {3}, main_thread = {4}, thread_found: {5}", 527 info_err, pid, signal, status, is_main_thread, thread_found); 528 529 if (is_main_thread) { 530 // Notify the delegate - our process is not available but appears to 531 // have been killed outside 532 // our control. Is eStateExited the right exit state in this case? 533 SetExitStatus(status, true); 534 SetState(StateType::eStateExited, true); 535 } else { 536 // This thread was pulled out from underneath us. Anything to do here? 537 // Do we want to do an all stop? 538 LLDB_LOG(log, 539 "pid {0} tid {1} non-main thread exit occurred, didn't " 540 "tell delegate anything since thread disappeared out " 541 "from underneath us", 542 GetID(), pid); 543 } 544 } 545 } 546 } 547 548 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 549 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 550 551 if (GetThreadByID(tid)) { 552 // We are already tracking the thread - we got the event on the new thread 553 // (see MonitorSignal) before this one. We are done. 554 return; 555 } 556 557 // The thread is not tracked yet, let's wait for it to appear. 558 int status = -1; 559 LLDB_LOG(log, 560 "received thread creation event for tid {0}. tid not tracked " 561 "yet, waiting for thread to appear...", 562 tid); 563 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 564 // Since we are waiting on a specific tid, this must be the creation event. 565 // But let's do some checks just in case. 566 if (wait_pid != tid) { 567 LLDB_LOG(log, 568 "waiting for tid {0} failed. Assuming the thread has " 569 "disappeared in the meantime", 570 tid); 571 // The only way I know of this could happen is if the whole process was 572 // SIGKILLed in the mean time. In any case, we can't do anything about that 573 // now. 574 return; 575 } 576 if (WIFEXITED(status)) { 577 LLDB_LOG(log, 578 "waiting for tid {0} returned an 'exited' event. Not " 579 "tracking the thread.", 580 tid); 581 // Also a very improbable event. 582 return; 583 } 584 585 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 586 NativeThreadLinux &new_thread = AddThread(tid); 587 588 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 589 ThreadWasCreated(new_thread); 590 } 591 592 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 593 NativeThreadLinux &thread) { 594 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 595 const bool is_main_thread = (thread.GetID() == GetID()); 596 597 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 598 599 switch (info.si_code) { 600 // TODO: these two cases are required if we want to support tracing of the 601 // inferiors' children. We'd need this to debug a monitor. 602 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 603 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 604 605 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 606 // This is the notification on the parent thread which informs us of new 607 // thread 608 // creation. 609 // We don't want to do anything with the parent thread so we just resume it. 610 // In case we 611 // want to implement "break on thread creation" functionality, we would need 612 // to stop 613 // here. 614 615 unsigned long event_message = 0; 616 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 617 LLDB_LOG(log, 618 "pid {0} received thread creation event but " 619 "GetEventMessage failed so we don't know the new tid", 620 thread.GetID()); 621 } else 622 WaitForNewThread(event_message); 623 624 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 625 break; 626 } 627 628 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 629 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 630 631 // Exec clears any pending notifications. 632 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 633 634 // Remove all but the main thread here. Linux fork creates a new process 635 // which only copies the main thread. 636 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 637 638 for (auto i = m_threads.begin(); i != m_threads.end();) { 639 if ((*i)->GetID() == GetID()) 640 i = m_threads.erase(i); 641 else 642 ++i; 643 } 644 assert(m_threads.size() == 1); 645 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 646 647 SetCurrentThreadID(main_thread->GetID()); 648 main_thread->SetStoppedByExec(); 649 650 // Tell coordinator about about the "new" (since exec) stopped main thread. 651 ThreadWasCreated(*main_thread); 652 653 // Let our delegate know we have just exec'd. 654 NotifyDidExec(); 655 656 // Let the process know we're stopped. 657 StopRunningThreads(main_thread->GetID()); 658 659 break; 660 } 661 662 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 663 // The inferior process or one of its threads is about to exit. 664 // We don't want to do anything with the thread so we just resume it. In 665 // case we 666 // want to implement "break on thread exit" functionality, we would need to 667 // stop 668 // here. 669 670 unsigned long data = 0; 671 if (GetEventMessage(thread.GetID(), &data).Fail()) 672 data = -1; 673 674 LLDB_LOG(log, 675 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 676 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 677 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 678 is_main_thread); 679 680 if (is_main_thread) 681 SetExitStatus(WaitStatus::Decode(data), true); 682 683 StateType state = thread.GetState(); 684 if (!StateIsRunningState(state)) { 685 // Due to a kernel bug, we may sometimes get this stop after the inferior 686 // gets a 687 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 688 // since normally, 689 // we should not be receiving any ptrace events while the inferior is 690 // stopped. This 691 // makes sure that the inferior is resumed and exits normally. 692 state = eStateRunning; 693 } 694 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 695 696 break; 697 } 698 699 case 0: 700 case TRAP_TRACE: // We receive this on single stepping. 701 case TRAP_HWBKPT: // We receive this on watchpoint hit 702 { 703 // If a watchpoint was hit, report it 704 uint32_t wp_index; 705 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 706 wp_index, (uintptr_t)info.si_addr); 707 if (error.Fail()) 708 LLDB_LOG(log, 709 "received error while checking for watchpoint hits, pid = " 710 "{0}, error = {1}", 711 thread.GetID(), error); 712 if (wp_index != LLDB_INVALID_INDEX32) { 713 MonitorWatchpoint(thread, wp_index); 714 break; 715 } 716 717 // If a breakpoint was hit, report it 718 uint32_t bp_index; 719 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 720 bp_index, (uintptr_t)info.si_addr); 721 if (error.Fail()) 722 LLDB_LOG(log, "received error while checking for hardware " 723 "breakpoint hits, pid = {0}, error = {1}", 724 thread.GetID(), error); 725 if (bp_index != LLDB_INVALID_INDEX32) { 726 MonitorBreakpoint(thread); 727 break; 728 } 729 730 // Otherwise, report step over 731 MonitorTrace(thread); 732 break; 733 } 734 735 case SI_KERNEL: 736 #if defined __mips__ 737 // For mips there is no special signal for watchpoint 738 // So we check for watchpoint in kernel trap 739 { 740 // If a watchpoint was hit, report it 741 uint32_t wp_index; 742 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 743 wp_index, LLDB_INVALID_ADDRESS); 744 if (error.Fail()) 745 LLDB_LOG(log, 746 "received error while checking for watchpoint hits, pid = " 747 "{0}, error = {1}", 748 thread.GetID(), error); 749 if (wp_index != LLDB_INVALID_INDEX32) { 750 MonitorWatchpoint(thread, wp_index); 751 break; 752 } 753 } 754 // NO BREAK 755 #endif 756 case TRAP_BRKPT: 757 MonitorBreakpoint(thread); 758 break; 759 760 case SIGTRAP: 761 case (SIGTRAP | 0x80): 762 LLDB_LOG( 763 log, 764 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 765 info.si_code, GetID(), thread.GetID()); 766 767 // Ignore these signals until we know more about them. 768 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 769 break; 770 771 default: 772 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 773 info.si_code, GetID(), thread.GetID()); 774 MonitorSignal(info, thread, false); 775 break; 776 } 777 } 778 779 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 780 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 781 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 782 783 // This thread is currently stopped. 784 thread.SetStoppedByTrace(); 785 786 StopRunningThreads(thread.GetID()); 787 } 788 789 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 790 Log *log( 791 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 792 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 793 794 // Mark the thread as stopped at breakpoint. 795 thread.SetStoppedByBreakpoint(); 796 Status error = FixupBreakpointPCAsNeeded(thread); 797 if (error.Fail()) 798 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 799 800 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 801 m_threads_stepping_with_breakpoint.end()) 802 thread.SetStoppedByTrace(); 803 804 StopRunningThreads(thread.GetID()); 805 } 806 807 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 808 uint32_t wp_index) { 809 Log *log( 810 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 811 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 812 thread.GetID(), wp_index); 813 814 // Mark the thread as stopped at watchpoint. 815 // The address is at (lldb::addr_t)info->si_addr if we need it. 816 thread.SetStoppedByWatchpoint(wp_index); 817 818 // We need to tell all other running threads before we notify the delegate 819 // about this stop. 820 StopRunningThreads(thread.GetID()); 821 } 822 823 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 824 NativeThreadLinux &thread, bool exited) { 825 const int signo = info.si_signo; 826 const bool is_from_llgs = info.si_pid == getpid(); 827 828 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 829 830 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 831 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 832 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 833 // 834 // IOW, user generated signals never generate what we consider to be a 835 // "crash". 836 // 837 // Similarly, ACK signals generated by this monitor. 838 839 // Handle the signal. 840 LLDB_LOG(log, 841 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 842 "waitpid pid = {4})", 843 Host::GetSignalAsCString(signo), signo, info.si_code, 844 thread.GetID()); 845 846 // Check for thread stop notification. 847 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 848 // This is a tgkill()-based stop. 849 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 850 851 // Check that we're not already marked with a stop reason. 852 // Note this thread really shouldn't already be marked as stopped - if we 853 // were, that would imply that the kernel signaled us with the thread 854 // stopping which we handled and marked as stopped, and that, without an 855 // intervening resume, we received another stop. It is more likely that we 856 // are missing the marking of a run state somewhere if we find that the 857 // thread was marked as stopped. 858 const StateType thread_state = thread.GetState(); 859 if (!StateIsStoppedState(thread_state, false)) { 860 // An inferior thread has stopped because of a SIGSTOP we have sent it. 861 // Generally, these are not important stops and we don't want to report 862 // them as they are just used to stop other threads when one thread (the 863 // one with the *real* stop reason) hits a breakpoint (watchpoint, 864 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 865 // the real stop reason, so we leave the signal intact if this is the 866 // thread that was chosen as the triggering thread. 867 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 868 if (m_pending_notification_tid == thread.GetID()) 869 thread.SetStoppedBySignal(SIGSTOP, &info); 870 else 871 thread.SetStoppedWithNoReason(); 872 873 SetCurrentThreadID(thread.GetID()); 874 SignalIfAllThreadsStopped(); 875 } else { 876 // We can end up here if stop was initiated by LLGS but by this time a 877 // thread stop has occurred - maybe initiated by another event. 878 Status error = ResumeThread(thread, thread.GetState(), 0); 879 if (error.Fail()) 880 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 881 error); 882 } 883 } else { 884 LLDB_LOG(log, 885 "pid {0} tid {1}, thread was already marked as a stopped " 886 "state (state={2}), leaving stop signal as is", 887 GetID(), thread.GetID(), thread_state); 888 SignalIfAllThreadsStopped(); 889 } 890 891 // Done handling. 892 return; 893 } 894 895 // Check if debugger should stop at this signal or just ignore it 896 // and resume the inferior. 897 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 898 ResumeThread(thread, thread.GetState(), signo); 899 return; 900 } 901 902 // This thread is stopped. 903 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 904 thread.SetStoppedBySignal(signo, &info); 905 906 // Send a stop to the debugger after we get all other threads to stop. 907 StopRunningThreads(thread.GetID()); 908 } 909 910 namespace { 911 912 struct EmulatorBaton { 913 NativeProcessLinux *m_process; 914 NativeRegisterContext *m_reg_context; 915 916 // eRegisterKindDWARF -> RegsiterValue 917 std::unordered_map<uint32_t, RegisterValue> m_register_values; 918 919 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 920 : m_process(process), m_reg_context(reg_context) {} 921 }; 922 923 } // anonymous namespace 924 925 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 926 const EmulateInstruction::Context &context, 927 lldb::addr_t addr, void *dst, size_t length) { 928 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 929 930 size_t bytes_read; 931 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 932 return bytes_read; 933 } 934 935 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 936 const RegisterInfo *reg_info, 937 RegisterValue ®_value) { 938 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 939 940 auto it = emulator_baton->m_register_values.find( 941 reg_info->kinds[eRegisterKindDWARF]); 942 if (it != emulator_baton->m_register_values.end()) { 943 reg_value = it->second; 944 return true; 945 } 946 947 // The emulator only fill in the dwarf regsiter numbers (and in some case 948 // the generic register numbers). Get the full register info from the 949 // register context based on the dwarf register numbers. 950 const RegisterInfo *full_reg_info = 951 emulator_baton->m_reg_context->GetRegisterInfo( 952 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 953 954 Status error = 955 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 956 if (error.Success()) 957 return true; 958 959 return false; 960 } 961 962 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 963 const EmulateInstruction::Context &context, 964 const RegisterInfo *reg_info, 965 const RegisterValue ®_value) { 966 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 967 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 968 reg_value; 969 return true; 970 } 971 972 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 973 const EmulateInstruction::Context &context, 974 lldb::addr_t addr, const void *dst, 975 size_t length) { 976 return length; 977 } 978 979 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 980 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 981 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 982 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 983 LLDB_INVALID_ADDRESS); 984 } 985 986 Status 987 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 988 Status error; 989 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 990 991 std::unique_ptr<EmulateInstruction> emulator_ap( 992 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 993 nullptr)); 994 995 if (emulator_ap == nullptr) 996 return Status("Instruction emulator not found!"); 997 998 EmulatorBaton baton(this, register_context_sp.get()); 999 emulator_ap->SetBaton(&baton); 1000 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1001 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1002 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1003 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1004 1005 if (!emulator_ap->ReadInstruction()) 1006 return Status("Read instruction failed!"); 1007 1008 bool emulation_result = 1009 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1010 1011 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1012 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1013 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1014 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1015 1016 auto pc_it = 1017 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1018 auto flags_it = 1019 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1020 1021 lldb::addr_t next_pc; 1022 lldb::addr_t next_flags; 1023 if (emulation_result) { 1024 assert(pc_it != baton.m_register_values.end() && 1025 "Emulation was successfull but PC wasn't updated"); 1026 next_pc = pc_it->second.GetAsUInt64(); 1027 1028 if (flags_it != baton.m_register_values.end()) 1029 next_flags = flags_it->second.GetAsUInt64(); 1030 else 1031 next_flags = ReadFlags(register_context_sp.get()); 1032 } else if (pc_it == baton.m_register_values.end()) { 1033 // Emulate instruction failed and it haven't changed PC. Advance PC 1034 // with the size of the current opcode because the emulation of all 1035 // PC modifying instruction should be successful. The failure most 1036 // likely caused by a not supported instruction which don't modify PC. 1037 next_pc = 1038 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1039 next_flags = ReadFlags(register_context_sp.get()); 1040 } else { 1041 // The instruction emulation failed after it modified the PC. It is an 1042 // unknown error where we can't continue because the next instruction is 1043 // modifying the PC but we don't know how. 1044 return Status("Instruction emulation failed unexpectedly."); 1045 } 1046 1047 if (m_arch.GetMachine() == llvm::Triple::arm) { 1048 if (next_flags & 0x20) { 1049 // Thumb mode 1050 error = SetSoftwareBreakpoint(next_pc, 2); 1051 } else { 1052 // Arm mode 1053 error = SetSoftwareBreakpoint(next_pc, 4); 1054 } 1055 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1056 m_arch.GetMachine() == llvm::Triple::mips64el || 1057 m_arch.GetMachine() == llvm::Triple::mips || 1058 m_arch.GetMachine() == llvm::Triple::mipsel || 1059 m_arch.GetMachine() == llvm::Triple::ppc64le) 1060 error = SetSoftwareBreakpoint(next_pc, 4); 1061 else { 1062 // No size hint is given for the next breakpoint 1063 error = SetSoftwareBreakpoint(next_pc, 0); 1064 } 1065 1066 // If setting the breakpoint fails because next_pc is out of 1067 // the address space, ignore it and let the debugee segfault. 1068 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1069 return Status(); 1070 } else if (error.Fail()) 1071 return error; 1072 1073 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1074 1075 return Status(); 1076 } 1077 1078 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1079 if (m_arch.GetMachine() == llvm::Triple::arm || 1080 m_arch.GetMachine() == llvm::Triple::mips64 || 1081 m_arch.GetMachine() == llvm::Triple::mips64el || 1082 m_arch.GetMachine() == llvm::Triple::mips || 1083 m_arch.GetMachine() == llvm::Triple::mipsel) 1084 return false; 1085 return true; 1086 } 1087 1088 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1089 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1090 LLDB_LOG(log, "pid {0}", GetID()); 1091 1092 bool software_single_step = !SupportHardwareSingleStepping(); 1093 1094 if (software_single_step) { 1095 for (const auto &thread : m_threads) { 1096 assert(thread && "thread list should not contain NULL threads"); 1097 1098 const ResumeAction *const action = 1099 resume_actions.GetActionForThread(thread->GetID(), true); 1100 if (action == nullptr) 1101 continue; 1102 1103 if (action->state == eStateStepping) { 1104 Status error = SetupSoftwareSingleStepping( 1105 static_cast<NativeThreadLinux &>(*thread)); 1106 if (error.Fail()) 1107 return error; 1108 } 1109 } 1110 } 1111 1112 for (const auto &thread : m_threads) { 1113 assert(thread && "thread list should not contain NULL threads"); 1114 1115 const ResumeAction *const action = 1116 resume_actions.GetActionForThread(thread->GetID(), true); 1117 1118 if (action == nullptr) { 1119 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1120 thread->GetID()); 1121 continue; 1122 } 1123 1124 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1125 action->state, GetID(), thread->GetID()); 1126 1127 switch (action->state) { 1128 case eStateRunning: 1129 case eStateStepping: { 1130 // Run the thread, possibly feeding it the signal. 1131 const int signo = action->signal; 1132 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1133 signo); 1134 break; 1135 } 1136 1137 case eStateSuspended: 1138 case eStateStopped: 1139 llvm_unreachable("Unexpected state"); 1140 1141 default: 1142 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1143 "for pid %" PRIu64 ", tid %" PRIu64, 1144 __FUNCTION__, StateAsCString(action->state), GetID(), 1145 thread->GetID()); 1146 } 1147 } 1148 1149 return Status(); 1150 } 1151 1152 Status NativeProcessLinux::Halt() { 1153 Status error; 1154 1155 if (kill(GetID(), SIGSTOP) != 0) 1156 error.SetErrorToErrno(); 1157 1158 return error; 1159 } 1160 1161 Status NativeProcessLinux::Detach() { 1162 Status error; 1163 1164 // Stop monitoring the inferior. 1165 m_sigchld_handle.reset(); 1166 1167 // Tell ptrace to detach from the process. 1168 if (GetID() == LLDB_INVALID_PROCESS_ID) 1169 return error; 1170 1171 for (const auto &thread : m_threads) { 1172 Status e = Detach(thread->GetID()); 1173 if (e.Fail()) 1174 error = 1175 e; // Save the error, but still attempt to detach from other threads. 1176 } 1177 1178 m_processor_trace_monitor.clear(); 1179 m_pt_proces_trace_id = LLDB_INVALID_UID; 1180 1181 return error; 1182 } 1183 1184 Status NativeProcessLinux::Signal(int signo) { 1185 Status error; 1186 1187 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1188 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1189 Host::GetSignalAsCString(signo), GetID()); 1190 1191 if (kill(GetID(), signo)) 1192 error.SetErrorToErrno(); 1193 1194 return error; 1195 } 1196 1197 Status NativeProcessLinux::Interrupt() { 1198 // Pick a running thread (or if none, a not-dead stopped thread) as 1199 // the chosen thread that will be the stop-reason thread. 1200 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1201 1202 NativeThreadProtocol *running_thread = nullptr; 1203 NativeThreadProtocol *stopped_thread = nullptr; 1204 1205 LLDB_LOG(log, "selecting running thread for interrupt target"); 1206 for (const auto &thread : m_threads) { 1207 // If we have a running or stepping thread, we'll call that the 1208 // target of the interrupt. 1209 const auto thread_state = thread->GetState(); 1210 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1211 running_thread = thread.get(); 1212 break; 1213 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1214 // Remember the first non-dead stopped thread. We'll use that as a backup 1215 // if there are no running threads. 1216 stopped_thread = thread.get(); 1217 } 1218 } 1219 1220 if (!running_thread && !stopped_thread) { 1221 Status error("found no running/stepping or live stopped threads as target " 1222 "for interrupt"); 1223 LLDB_LOG(log, "skipping due to error: {0}", error); 1224 1225 return error; 1226 } 1227 1228 NativeThreadProtocol *deferred_signal_thread = 1229 running_thread ? running_thread : stopped_thread; 1230 1231 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1232 running_thread ? "running" : "stopped", 1233 deferred_signal_thread->GetID()); 1234 1235 StopRunningThreads(deferred_signal_thread->GetID()); 1236 1237 return Status(); 1238 } 1239 1240 Status NativeProcessLinux::Kill() { 1241 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1242 LLDB_LOG(log, "pid {0}", GetID()); 1243 1244 Status error; 1245 1246 switch (m_state) { 1247 case StateType::eStateInvalid: 1248 case StateType::eStateExited: 1249 case StateType::eStateCrashed: 1250 case StateType::eStateDetached: 1251 case StateType::eStateUnloaded: 1252 // Nothing to do - the process is already dead. 1253 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1254 m_state); 1255 return error; 1256 1257 case StateType::eStateConnected: 1258 case StateType::eStateAttaching: 1259 case StateType::eStateLaunching: 1260 case StateType::eStateStopped: 1261 case StateType::eStateRunning: 1262 case StateType::eStateStepping: 1263 case StateType::eStateSuspended: 1264 // We can try to kill a process in these states. 1265 break; 1266 } 1267 1268 if (kill(GetID(), SIGKILL) != 0) { 1269 error.SetErrorToErrno(); 1270 return error; 1271 } 1272 1273 return error; 1274 } 1275 1276 static Status 1277 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1278 MemoryRegionInfo &memory_region_info) { 1279 memory_region_info.Clear(); 1280 1281 StringExtractor line_extractor(maps_line); 1282 1283 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1284 // pathname 1285 // perms: rwxp (letter is present if set, '-' if not, final character is 1286 // p=private, s=shared). 1287 1288 // Parse out the starting address 1289 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1290 1291 // Parse out hyphen separating start and end address from range. 1292 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1293 return Status( 1294 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1295 1296 // Parse out the ending address 1297 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1298 1299 // Parse out the space after the address. 1300 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1301 return Status( 1302 "malformed /proc/{pid}/maps entry, missing space after range"); 1303 1304 // Save the range. 1305 memory_region_info.GetRange().SetRangeBase(start_address); 1306 memory_region_info.GetRange().SetRangeEnd(end_address); 1307 1308 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1309 // process. 1310 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1311 1312 // Parse out each permission entry. 1313 if (line_extractor.GetBytesLeft() < 4) 1314 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1315 "permissions"); 1316 1317 // Handle read permission. 1318 const char read_perm_char = line_extractor.GetChar(); 1319 if (read_perm_char == 'r') 1320 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1321 else if (read_perm_char == '-') 1322 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1323 else 1324 return Status("unexpected /proc/{pid}/maps read permission char"); 1325 1326 // Handle write permission. 1327 const char write_perm_char = line_extractor.GetChar(); 1328 if (write_perm_char == 'w') 1329 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1330 else if (write_perm_char == '-') 1331 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1332 else 1333 return Status("unexpected /proc/{pid}/maps write permission char"); 1334 1335 // Handle execute permission. 1336 const char exec_perm_char = line_extractor.GetChar(); 1337 if (exec_perm_char == 'x') 1338 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1339 else if (exec_perm_char == '-') 1340 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1341 else 1342 return Status("unexpected /proc/{pid}/maps exec permission char"); 1343 1344 line_extractor.GetChar(); // Read the private bit 1345 line_extractor.SkipSpaces(); // Skip the separator 1346 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1347 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1348 line_extractor.GetChar(); // Read the device id separator 1349 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1350 line_extractor.SkipSpaces(); // Skip the separator 1351 line_extractor.GetU64(0, 10); // Read the inode number 1352 1353 line_extractor.SkipSpaces(); 1354 const char *name = line_extractor.Peek(); 1355 if (name) 1356 memory_region_info.SetName(name); 1357 1358 return Status(); 1359 } 1360 1361 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1362 MemoryRegionInfo &range_info) { 1363 // FIXME review that the final memory region returned extends to the end of 1364 // the virtual address space, 1365 // with no perms if it is not mapped. 1366 1367 // Use an approach that reads memory regions from /proc/{pid}/maps. 1368 // Assume proc maps entries are in ascending order. 1369 // FIXME assert if we find differently. 1370 1371 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1372 // We're done. 1373 return Status("unsupported"); 1374 } 1375 1376 Status error = PopulateMemoryRegionCache(); 1377 if (error.Fail()) { 1378 return error; 1379 } 1380 1381 lldb::addr_t prev_base_address = 0; 1382 1383 // FIXME start by finding the last region that is <= target address using 1384 // binary search. Data is sorted. 1385 // There can be a ton of regions on pthreads apps with lots of threads. 1386 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1387 ++it) { 1388 MemoryRegionInfo &proc_entry_info = it->first; 1389 1390 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1391 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1392 "descending /proc/pid/maps entries detected, unexpected"); 1393 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1394 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1395 1396 // If the target address comes before this entry, indicate distance to next 1397 // region. 1398 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1399 range_info.GetRange().SetRangeBase(load_addr); 1400 range_info.GetRange().SetByteSize( 1401 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1402 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1403 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1404 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1405 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1406 1407 return error; 1408 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1409 // The target address is within the memory region we're processing here. 1410 range_info = proc_entry_info; 1411 return error; 1412 } 1413 1414 // The target memory address comes somewhere after the region we just 1415 // parsed. 1416 } 1417 1418 // If we made it here, we didn't find an entry that contained the given 1419 // address. Return the 1420 // load_addr as start and the amount of bytes betwwen load address and the end 1421 // of the memory as 1422 // size. 1423 range_info.GetRange().SetRangeBase(load_addr); 1424 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1425 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1426 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1427 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1428 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1429 return error; 1430 } 1431 1432 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1433 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1434 1435 // If our cache is empty, pull the latest. There should always be at least 1436 // one memory region if memory region handling is supported. 1437 if (!m_mem_region_cache.empty()) { 1438 LLDB_LOG(log, "reusing {0} cached memory region entries", 1439 m_mem_region_cache.size()); 1440 return Status(); 1441 } 1442 1443 auto BufferOrError = getProcFile(GetID(), "maps"); 1444 if (!BufferOrError) { 1445 m_supports_mem_region = LazyBool::eLazyBoolNo; 1446 return BufferOrError.getError(); 1447 } 1448 StringRef Rest = BufferOrError.get()->getBuffer(); 1449 while (! Rest.empty()) { 1450 StringRef Line; 1451 std::tie(Line, Rest) = Rest.split('\n'); 1452 MemoryRegionInfo info; 1453 const Status parse_error = 1454 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1455 if (parse_error.Fail()) { 1456 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1457 parse_error); 1458 m_supports_mem_region = LazyBool::eLazyBoolNo; 1459 return parse_error; 1460 } 1461 m_mem_region_cache.emplace_back( 1462 info, FileSpec(info.GetName().GetCString(), true)); 1463 } 1464 1465 if (m_mem_region_cache.empty()) { 1466 // No entries after attempting to read them. This shouldn't happen if 1467 // /proc/{pid}/maps is supported. Assume we don't support map entries 1468 // via procfs. 1469 m_supports_mem_region = LazyBool::eLazyBoolNo; 1470 LLDB_LOG(log, 1471 "failed to find any procfs maps entries, assuming no support " 1472 "for memory region metadata retrieval"); 1473 return Status("not supported"); 1474 } 1475 1476 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1477 m_mem_region_cache.size(), GetID()); 1478 1479 // We support memory retrieval, remember that. 1480 m_supports_mem_region = LazyBool::eLazyBoolYes; 1481 return Status(); 1482 } 1483 1484 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1485 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1486 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1487 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1488 m_mem_region_cache.size()); 1489 m_mem_region_cache.clear(); 1490 } 1491 1492 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1493 lldb::addr_t &addr) { 1494 // FIXME implementing this requires the equivalent of 1495 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1496 // functional ThreadPlans working with Native*Protocol. 1497 #if 1 1498 return Status("not implemented yet"); 1499 #else 1500 addr = LLDB_INVALID_ADDRESS; 1501 1502 unsigned prot = 0; 1503 if (permissions & lldb::ePermissionsReadable) 1504 prot |= eMmapProtRead; 1505 if (permissions & lldb::ePermissionsWritable) 1506 prot |= eMmapProtWrite; 1507 if (permissions & lldb::ePermissionsExecutable) 1508 prot |= eMmapProtExec; 1509 1510 // TODO implement this directly in NativeProcessLinux 1511 // (and lift to NativeProcessPOSIX if/when that class is 1512 // refactored out). 1513 if (InferiorCallMmap(this, addr, 0, size, prot, 1514 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1515 m_addr_to_mmap_size[addr] = size; 1516 return Status(); 1517 } else { 1518 addr = LLDB_INVALID_ADDRESS; 1519 return Status("unable to allocate %" PRIu64 1520 " bytes of memory with permissions %s", 1521 size, GetPermissionsAsCString(permissions)); 1522 } 1523 #endif 1524 } 1525 1526 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1527 // FIXME see comments in AllocateMemory - required lower-level 1528 // bits not in place yet (ThreadPlans) 1529 return Status("not implemented"); 1530 } 1531 1532 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1533 // punt on this for now 1534 return LLDB_INVALID_ADDRESS; 1535 } 1536 1537 size_t NativeProcessLinux::UpdateThreads() { 1538 // The NativeProcessLinux monitoring threads are always up to date 1539 // with respect to thread state and they keep the thread list 1540 // populated properly. All this method needs to do is return the 1541 // thread count. 1542 return m_threads.size(); 1543 } 1544 1545 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1546 uint32_t &actual_opcode_size) { 1547 // FIXME put this behind a breakpoint protocol class that can be 1548 // set per architecture. Need ARM, MIPS support here. 1549 static const uint8_t g_i386_opcode[] = {0xCC}; 1550 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1551 static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap 1552 1553 switch (m_arch.GetMachine()) { 1554 case llvm::Triple::x86: 1555 case llvm::Triple::x86_64: 1556 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1557 return Status(); 1558 1559 case llvm::Triple::systemz: 1560 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1561 return Status(); 1562 1563 case llvm::Triple::ppc64le: 1564 actual_opcode_size = static_cast<uint32_t>(sizeof(g_ppc64le_opcode)); 1565 return Status(); 1566 1567 case llvm::Triple::arm: 1568 case llvm::Triple::aarch64: 1569 case llvm::Triple::mips64: 1570 case llvm::Triple::mips64el: 1571 case llvm::Triple::mips: 1572 case llvm::Triple::mipsel: 1573 // On these architectures the PC don't get updated for breakpoint hits 1574 actual_opcode_size = 0; 1575 return Status(); 1576 1577 default: 1578 assert(false && "CPU type not supported!"); 1579 return Status("CPU type not supported"); 1580 } 1581 } 1582 1583 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1584 bool hardware) { 1585 if (hardware) 1586 return SetHardwareBreakpoint(addr, size); 1587 else 1588 return SetSoftwareBreakpoint(addr, size); 1589 } 1590 1591 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1592 if (hardware) 1593 return RemoveHardwareBreakpoint(addr); 1594 else 1595 return NativeProcessProtocol::RemoveBreakpoint(addr); 1596 } 1597 1598 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1599 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1600 const uint8_t *&trap_opcode_bytes) { 1601 // FIXME put this behind a breakpoint protocol class that can be set per 1602 // architecture. Need MIPS support here. 1603 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1604 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1605 // linux kernel does otherwise. 1606 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1607 static const uint8_t g_i386_opcode[] = {0xCC}; 1608 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1609 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1610 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1611 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1612 static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap 1613 1614 switch (m_arch.GetMachine()) { 1615 case llvm::Triple::aarch64: 1616 trap_opcode_bytes = g_aarch64_opcode; 1617 actual_opcode_size = sizeof(g_aarch64_opcode); 1618 return Status(); 1619 1620 case llvm::Triple::arm: 1621 switch (trap_opcode_size_hint) { 1622 case 2: 1623 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1624 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1625 return Status(); 1626 case 4: 1627 trap_opcode_bytes = g_arm_breakpoint_opcode; 1628 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1629 return Status(); 1630 default: 1631 assert(false && "Unrecognised trap opcode size hint!"); 1632 return Status("Unrecognised trap opcode size hint!"); 1633 } 1634 1635 case llvm::Triple::x86: 1636 case llvm::Triple::x86_64: 1637 trap_opcode_bytes = g_i386_opcode; 1638 actual_opcode_size = sizeof(g_i386_opcode); 1639 return Status(); 1640 1641 case llvm::Triple::mips: 1642 case llvm::Triple::mips64: 1643 trap_opcode_bytes = g_mips64_opcode; 1644 actual_opcode_size = sizeof(g_mips64_opcode); 1645 return Status(); 1646 1647 case llvm::Triple::mipsel: 1648 case llvm::Triple::mips64el: 1649 trap_opcode_bytes = g_mips64el_opcode; 1650 actual_opcode_size = sizeof(g_mips64el_opcode); 1651 return Status(); 1652 1653 case llvm::Triple::systemz: 1654 trap_opcode_bytes = g_s390x_opcode; 1655 actual_opcode_size = sizeof(g_s390x_opcode); 1656 return Status(); 1657 1658 case llvm::Triple::ppc64le: 1659 trap_opcode_bytes = g_ppc64le_opcode; 1660 actual_opcode_size = sizeof(g_ppc64le_opcode); 1661 return Status(); 1662 1663 default: 1664 assert(false && "CPU type not supported!"); 1665 return Status("CPU type not supported"); 1666 } 1667 } 1668 1669 #if 0 1670 ProcessMessage::CrashReason 1671 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1672 { 1673 ProcessMessage::CrashReason reason; 1674 assert(info->si_signo == SIGSEGV); 1675 1676 reason = ProcessMessage::eInvalidCrashReason; 1677 1678 switch (info->si_code) 1679 { 1680 default: 1681 assert(false && "unexpected si_code for SIGSEGV"); 1682 break; 1683 case SI_KERNEL: 1684 // Linux will occasionally send spurious SI_KERNEL codes. 1685 // (this is poorly documented in sigaction) 1686 // One way to get this is via unaligned SIMD loads. 1687 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1688 break; 1689 case SEGV_MAPERR: 1690 reason = ProcessMessage::eInvalidAddress; 1691 break; 1692 case SEGV_ACCERR: 1693 reason = ProcessMessage::ePrivilegedAddress; 1694 break; 1695 } 1696 1697 return reason; 1698 } 1699 #endif 1700 1701 #if 0 1702 ProcessMessage::CrashReason 1703 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1704 { 1705 ProcessMessage::CrashReason reason; 1706 assert(info->si_signo == SIGILL); 1707 1708 reason = ProcessMessage::eInvalidCrashReason; 1709 1710 switch (info->si_code) 1711 { 1712 default: 1713 assert(false && "unexpected si_code for SIGILL"); 1714 break; 1715 case ILL_ILLOPC: 1716 reason = ProcessMessage::eIllegalOpcode; 1717 break; 1718 case ILL_ILLOPN: 1719 reason = ProcessMessage::eIllegalOperand; 1720 break; 1721 case ILL_ILLADR: 1722 reason = ProcessMessage::eIllegalAddressingMode; 1723 break; 1724 case ILL_ILLTRP: 1725 reason = ProcessMessage::eIllegalTrap; 1726 break; 1727 case ILL_PRVOPC: 1728 reason = ProcessMessage::ePrivilegedOpcode; 1729 break; 1730 case ILL_PRVREG: 1731 reason = ProcessMessage::ePrivilegedRegister; 1732 break; 1733 case ILL_COPROC: 1734 reason = ProcessMessage::eCoprocessorError; 1735 break; 1736 case ILL_BADSTK: 1737 reason = ProcessMessage::eInternalStackError; 1738 break; 1739 } 1740 1741 return reason; 1742 } 1743 #endif 1744 1745 #if 0 1746 ProcessMessage::CrashReason 1747 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1748 { 1749 ProcessMessage::CrashReason reason; 1750 assert(info->si_signo == SIGFPE); 1751 1752 reason = ProcessMessage::eInvalidCrashReason; 1753 1754 switch (info->si_code) 1755 { 1756 default: 1757 assert(false && "unexpected si_code for SIGFPE"); 1758 break; 1759 case FPE_INTDIV: 1760 reason = ProcessMessage::eIntegerDivideByZero; 1761 break; 1762 case FPE_INTOVF: 1763 reason = ProcessMessage::eIntegerOverflow; 1764 break; 1765 case FPE_FLTDIV: 1766 reason = ProcessMessage::eFloatDivideByZero; 1767 break; 1768 case FPE_FLTOVF: 1769 reason = ProcessMessage::eFloatOverflow; 1770 break; 1771 case FPE_FLTUND: 1772 reason = ProcessMessage::eFloatUnderflow; 1773 break; 1774 case FPE_FLTRES: 1775 reason = ProcessMessage::eFloatInexactResult; 1776 break; 1777 case FPE_FLTINV: 1778 reason = ProcessMessage::eFloatInvalidOperation; 1779 break; 1780 case FPE_FLTSUB: 1781 reason = ProcessMessage::eFloatSubscriptRange; 1782 break; 1783 } 1784 1785 return reason; 1786 } 1787 #endif 1788 1789 #if 0 1790 ProcessMessage::CrashReason 1791 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1792 { 1793 ProcessMessage::CrashReason reason; 1794 assert(info->si_signo == SIGBUS); 1795 1796 reason = ProcessMessage::eInvalidCrashReason; 1797 1798 switch (info->si_code) 1799 { 1800 default: 1801 assert(false && "unexpected si_code for SIGBUS"); 1802 break; 1803 case BUS_ADRALN: 1804 reason = ProcessMessage::eIllegalAlignment; 1805 break; 1806 case BUS_ADRERR: 1807 reason = ProcessMessage::eIllegalAddress; 1808 break; 1809 case BUS_OBJERR: 1810 reason = ProcessMessage::eHardwareError; 1811 break; 1812 } 1813 1814 return reason; 1815 } 1816 #endif 1817 1818 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1819 size_t &bytes_read) { 1820 if (ProcessVmReadvSupported()) { 1821 // The process_vm_readv path is about 50 times faster than ptrace api. We 1822 // want to use 1823 // this syscall if it is supported. 1824 1825 const ::pid_t pid = GetID(); 1826 1827 struct iovec local_iov, remote_iov; 1828 local_iov.iov_base = buf; 1829 local_iov.iov_len = size; 1830 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1831 remote_iov.iov_len = size; 1832 1833 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1834 const bool success = bytes_read == size; 1835 1836 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1837 LLDB_LOG(log, 1838 "using process_vm_readv to read {0} bytes from inferior " 1839 "address {1:x}: {2}", 1840 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1841 1842 if (success) 1843 return Status(); 1844 // else the call failed for some reason, let's retry the read using ptrace 1845 // api. 1846 } 1847 1848 unsigned char *dst = static_cast<unsigned char *>(buf); 1849 size_t remainder; 1850 long data; 1851 1852 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1853 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1854 1855 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1856 Status error = NativeProcessLinux::PtraceWrapper( 1857 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1858 if (error.Fail()) 1859 return error; 1860 1861 remainder = size - bytes_read; 1862 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1863 1864 // Copy the data into our buffer 1865 memcpy(dst, &data, remainder); 1866 1867 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1868 addr += k_ptrace_word_size; 1869 dst += k_ptrace_word_size; 1870 } 1871 return Status(); 1872 } 1873 1874 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1875 size_t size, 1876 size_t &bytes_read) { 1877 Status error = ReadMemory(addr, buf, size, bytes_read); 1878 if (error.Fail()) 1879 return error; 1880 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 1881 } 1882 1883 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1884 size_t size, size_t &bytes_written) { 1885 const unsigned char *src = static_cast<const unsigned char *>(buf); 1886 size_t remainder; 1887 Status error; 1888 1889 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1890 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1891 1892 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1893 remainder = size - bytes_written; 1894 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1895 1896 if (remainder == k_ptrace_word_size) { 1897 unsigned long data = 0; 1898 memcpy(&data, src, k_ptrace_word_size); 1899 1900 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1901 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1902 (void *)addr, (void *)data); 1903 if (error.Fail()) 1904 return error; 1905 } else { 1906 unsigned char buff[8]; 1907 size_t bytes_read; 1908 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1909 if (error.Fail()) 1910 return error; 1911 1912 memcpy(buff, src, remainder); 1913 1914 size_t bytes_written_rec; 1915 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1916 if (error.Fail()) 1917 return error; 1918 1919 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1920 *(unsigned long *)buff); 1921 } 1922 1923 addr += k_ptrace_word_size; 1924 src += k_ptrace_word_size; 1925 } 1926 return error; 1927 } 1928 1929 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1930 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1931 } 1932 1933 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1934 unsigned long *message) { 1935 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1936 } 1937 1938 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1939 if (tid == LLDB_INVALID_THREAD_ID) 1940 return Status(); 1941 1942 return PtraceWrapper(PTRACE_DETACH, tid); 1943 } 1944 1945 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1946 for (const auto &thread : m_threads) { 1947 assert(thread && "thread list should not contain NULL threads"); 1948 if (thread->GetID() == thread_id) { 1949 // We have this thread. 1950 return true; 1951 } 1952 } 1953 1954 // We don't have this thread. 1955 return false; 1956 } 1957 1958 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1959 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1960 LLDB_LOG(log, "tid: {0})", thread_id); 1961 1962 bool found = false; 1963 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1964 if (*it && ((*it)->GetID() == thread_id)) { 1965 m_threads.erase(it); 1966 found = true; 1967 break; 1968 } 1969 } 1970 1971 if (found) 1972 StopTracingForThread(thread_id); 1973 SignalIfAllThreadsStopped(); 1974 return found; 1975 } 1976 1977 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1978 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1979 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1980 1981 assert(!HasThreadNoLock(thread_id) && 1982 "attempted to add a thread by id that already exists"); 1983 1984 // If this is the first thread, save it as the current thread 1985 if (m_threads.empty()) 1986 SetCurrentThreadID(thread_id); 1987 1988 m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id)); 1989 1990 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1991 auto traceMonitor = ProcessorTraceMonitor::Create( 1992 GetID(), thread_id, m_pt_process_trace_config, true); 1993 if (traceMonitor) { 1994 m_pt_traced_thread_group.insert(thread_id); 1995 m_processor_trace_monitor.insert( 1996 std::make_pair(thread_id, std::move(*traceMonitor))); 1997 } else { 1998 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1999 Status error(traceMonitor.takeError()); 2000 LLDB_LOG(log, "error {0}", error); 2001 } 2002 } 2003 2004 return static_cast<NativeThreadLinux &>(*m_threads.back()); 2005 } 2006 2007 Status 2008 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2009 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2010 2011 Status error; 2012 2013 // Find out the size of a breakpoint (might depend on where we are in the 2014 // code). 2015 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2016 if (!context_sp) { 2017 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2018 LLDB_LOG(log, "failed: {0}", error); 2019 return error; 2020 } 2021 2022 uint32_t breakpoint_size = 0; 2023 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2024 if (error.Fail()) { 2025 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2026 return error; 2027 } else 2028 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2029 2030 // First try probing for a breakpoint at a software breakpoint location: PC - 2031 // breakpoint size. 2032 const lldb::addr_t initial_pc_addr = 2033 context_sp->GetPCfromBreakpointLocation(); 2034 lldb::addr_t breakpoint_addr = initial_pc_addr; 2035 if (breakpoint_size > 0) { 2036 // Do not allow breakpoint probe to wrap around. 2037 if (breakpoint_addr >= breakpoint_size) 2038 breakpoint_addr -= breakpoint_size; 2039 } 2040 2041 // Check if we stopped because of a breakpoint. 2042 NativeBreakpointSP breakpoint_sp; 2043 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2044 if (!error.Success() || !breakpoint_sp) { 2045 // We didn't find one at a software probe location. Nothing to do. 2046 LLDB_LOG(log, 2047 "pid {0} no lldb breakpoint found at current pc with " 2048 "adjustment: {1}", 2049 GetID(), breakpoint_addr); 2050 return Status(); 2051 } 2052 2053 // If the breakpoint is not a software breakpoint, nothing to do. 2054 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2055 LLDB_LOG( 2056 log, 2057 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2058 GetID(), breakpoint_addr); 2059 return Status(); 2060 } 2061 2062 // 2063 // We have a software breakpoint and need to adjust the PC. 2064 // 2065 2066 // Sanity check. 2067 if (breakpoint_size == 0) { 2068 // Nothing to do! How did we get here? 2069 LLDB_LOG(log, 2070 "pid {0} breakpoint found at {1:x}, it is software, but the " 2071 "size is zero, nothing to do (unexpected)", 2072 GetID(), breakpoint_addr); 2073 return Status(); 2074 } 2075 2076 // Change the program counter. 2077 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2078 thread.GetID(), initial_pc_addr, breakpoint_addr); 2079 2080 error = context_sp->SetPC(breakpoint_addr); 2081 if (error.Fail()) { 2082 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2083 thread.GetID(), error); 2084 return error; 2085 } 2086 2087 return error; 2088 } 2089 2090 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2091 FileSpec &file_spec) { 2092 Status error = PopulateMemoryRegionCache(); 2093 if (error.Fail()) 2094 return error; 2095 2096 FileSpec module_file_spec(module_path, true); 2097 2098 file_spec.Clear(); 2099 for (const auto &it : m_mem_region_cache) { 2100 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2101 file_spec = it.second; 2102 return Status(); 2103 } 2104 } 2105 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2106 module_file_spec.GetFilename().AsCString(), GetID()); 2107 } 2108 2109 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2110 lldb::addr_t &load_addr) { 2111 load_addr = LLDB_INVALID_ADDRESS; 2112 Status error = PopulateMemoryRegionCache(); 2113 if (error.Fail()) 2114 return error; 2115 2116 FileSpec file(file_name, false); 2117 for (const auto &it : m_mem_region_cache) { 2118 if (it.second == file) { 2119 load_addr = it.first.GetRange().GetRangeBase(); 2120 return Status(); 2121 } 2122 } 2123 return Status("No load address found for specified file."); 2124 } 2125 2126 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2127 return static_cast<NativeThreadLinux *>( 2128 NativeProcessProtocol::GetThreadByID(tid)); 2129 } 2130 2131 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2132 lldb::StateType state, int signo) { 2133 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2134 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2135 2136 // Before we do the resume below, first check if we have a pending 2137 // stop notification that is currently waiting for 2138 // all threads to stop. This is potentially a buggy situation since 2139 // we're ostensibly waiting for threads to stop before we send out the 2140 // pending notification, and here we are resuming one before we send 2141 // out the pending stop notification. 2142 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2143 LLDB_LOG(log, 2144 "about to resume tid {0} per explicit request but we have a " 2145 "pending stop notification (tid {1}) that is actively " 2146 "waiting for this thread to stop. Valid sequence of events?", 2147 thread.GetID(), m_pending_notification_tid); 2148 } 2149 2150 // Request a resume. We expect this to be synchronous and the system 2151 // to reflect it is running after this completes. 2152 switch (state) { 2153 case eStateRunning: { 2154 const auto resume_result = thread.Resume(signo); 2155 if (resume_result.Success()) 2156 SetState(eStateRunning, true); 2157 return resume_result; 2158 } 2159 case eStateStepping: { 2160 const auto step_result = thread.SingleStep(signo); 2161 if (step_result.Success()) 2162 SetState(eStateRunning, true); 2163 return step_result; 2164 } 2165 default: 2166 LLDB_LOG(log, "Unhandled state {0}.", state); 2167 llvm_unreachable("Unhandled state for resume"); 2168 } 2169 } 2170 2171 //===----------------------------------------------------------------------===// 2172 2173 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2174 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2175 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2176 triggering_tid); 2177 2178 m_pending_notification_tid = triggering_tid; 2179 2180 // Request a stop for all the thread stops that need to be stopped 2181 // and are not already known to be stopped. 2182 for (const auto &thread : m_threads) { 2183 if (StateIsRunningState(thread->GetState())) 2184 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 2185 } 2186 2187 SignalIfAllThreadsStopped(); 2188 LLDB_LOG(log, "event processing done"); 2189 } 2190 2191 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2192 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2193 return; // No pending notification. Nothing to do. 2194 2195 for (const auto &thread_sp : m_threads) { 2196 if (StateIsRunningState(thread_sp->GetState())) 2197 return; // Some threads are still running. Don't signal yet. 2198 } 2199 2200 // We have a pending notification and all threads have stopped. 2201 Log *log( 2202 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2203 2204 // Clear any temporary breakpoints we used to implement software single 2205 // stepping. 2206 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2207 Status error = RemoveBreakpoint(thread_info.second); 2208 if (error.Fail()) 2209 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2210 thread_info.first, error); 2211 } 2212 m_threads_stepping_with_breakpoint.clear(); 2213 2214 // Notify the delegate about the stop 2215 SetCurrentThreadID(m_pending_notification_tid); 2216 SetState(StateType::eStateStopped, true); 2217 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2218 } 2219 2220 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2221 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2222 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2223 2224 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2225 StateIsRunningState(thread.GetState())) { 2226 // We will need to wait for this new thread to stop as well before firing 2227 // the 2228 // notification. 2229 thread.RequestStop(); 2230 } 2231 } 2232 2233 void NativeProcessLinux::SigchldHandler() { 2234 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2235 // Process all pending waitpid notifications. 2236 while (true) { 2237 int status = -1; 2238 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2239 __WALL | __WNOTHREAD | WNOHANG); 2240 2241 if (wait_pid == 0) 2242 break; // We are done. 2243 2244 if (wait_pid == -1) { 2245 Status error(errno, eErrorTypePOSIX); 2246 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2247 break; 2248 } 2249 2250 WaitStatus wait_status = WaitStatus::Decode(status); 2251 bool exited = wait_status.type == WaitStatus::Exit || 2252 (wait_status.type == WaitStatus::Signal && 2253 wait_pid == static_cast<::pid_t>(GetID())); 2254 2255 LLDB_LOG( 2256 log, 2257 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2258 wait_pid, wait_status, exited); 2259 2260 MonitorCallback(wait_pid, exited, wait_status); 2261 } 2262 } 2263 2264 // Wrapper for ptrace to catch errors and log calls. 2265 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2266 // for PTRACE_PEEK*) 2267 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2268 void *data, size_t data_size, 2269 long *result) { 2270 Status error; 2271 long int ret; 2272 2273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2274 2275 PtraceDisplayBytes(req, data, data_size); 2276 2277 errno = 0; 2278 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2279 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2280 *(unsigned int *)addr, data); 2281 else 2282 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2283 addr, data); 2284 2285 if (ret == -1) 2286 error.SetErrorToErrno(); 2287 2288 if (result) 2289 *result = ret; 2290 2291 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2292 data_size, ret); 2293 2294 PtraceDisplayBytes(req, data, data_size); 2295 2296 if (error.Fail()) 2297 LLDB_LOG(log, "ptrace() failed: {0}", error); 2298 2299 return error; 2300 } 2301 2302 llvm::Expected<ProcessorTraceMonitor &> 2303 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2304 lldb::tid_t thread) { 2305 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2306 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2307 LLDB_LOG(log, "thread not specified: {0}", traceid); 2308 return Status("tracing not active thread not specified").ToError(); 2309 } 2310 2311 for (auto& iter : m_processor_trace_monitor) { 2312 if (traceid == iter.second->GetTraceID() && 2313 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2314 return *(iter.second); 2315 } 2316 2317 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2318 return Status("tracing not active for this thread").ToError(); 2319 } 2320 2321 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2322 lldb::tid_t thread, 2323 llvm::MutableArrayRef<uint8_t> &buffer, 2324 size_t offset) { 2325 TraceOptions trace_options; 2326 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2327 Status error; 2328 2329 LLDB_LOG(log, "traceid {0}", traceid); 2330 2331 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2332 if (!perf_monitor) { 2333 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2334 buffer = buffer.slice(buffer.size()); 2335 error = perf_monitor.takeError(); 2336 return error; 2337 } 2338 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2339 } 2340 2341 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2342 llvm::MutableArrayRef<uint8_t> &buffer, 2343 size_t offset) { 2344 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2345 Status error; 2346 2347 LLDB_LOG(log, "traceid {0}", traceid); 2348 2349 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2350 if (!perf_monitor) { 2351 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2352 buffer = buffer.slice(buffer.size()); 2353 error = perf_monitor.takeError(); 2354 return error; 2355 } 2356 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2357 } 2358 2359 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2360 TraceOptions &config) { 2361 Status error; 2362 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2363 m_pt_proces_trace_id == traceid) { 2364 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2365 error.SetErrorString("tracing not active for this process"); 2366 return error; 2367 } 2368 config = m_pt_process_trace_config; 2369 } else { 2370 auto perf_monitor = 2371 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2372 if (!perf_monitor) { 2373 error = perf_monitor.takeError(); 2374 return error; 2375 } 2376 error = (*perf_monitor).GetTraceConfig(config); 2377 } 2378 return error; 2379 } 2380 2381 lldb::user_id_t 2382 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2383 Status &error) { 2384 2385 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2386 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2387 return LLDB_INVALID_UID; 2388 2389 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2390 error.SetErrorString("tracing already active on this process"); 2391 return m_pt_proces_trace_id; 2392 } 2393 2394 for (const auto &thread_sp : m_threads) { 2395 if (auto traceInstance = ProcessorTraceMonitor::Create( 2396 GetID(), thread_sp->GetID(), config, true)) { 2397 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2398 m_processor_trace_monitor.insert( 2399 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2400 } 2401 } 2402 2403 m_pt_process_trace_config = config; 2404 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2405 2406 // Trace on Complete process will have traceid of 0 2407 m_pt_proces_trace_id = 0; 2408 2409 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2410 return m_pt_proces_trace_id; 2411 } 2412 2413 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2414 Status &error) { 2415 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2416 return NativeProcessProtocol::StartTrace(config, error); 2417 2418 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2419 2420 lldb::tid_t threadid = config.getThreadID(); 2421 2422 if (threadid == LLDB_INVALID_THREAD_ID) 2423 return StartTraceGroup(config, error); 2424 2425 auto thread_sp = GetThreadByID(threadid); 2426 if (!thread_sp) { 2427 // Thread not tracked by lldb so don't trace. 2428 error.SetErrorString("invalid thread id"); 2429 return LLDB_INVALID_UID; 2430 } 2431 2432 const auto &iter = m_processor_trace_monitor.find(threadid); 2433 if (iter != m_processor_trace_monitor.end()) { 2434 LLDB_LOG(log, "Thread already being traced"); 2435 error.SetErrorString("tracing already active on this thread"); 2436 return LLDB_INVALID_UID; 2437 } 2438 2439 auto traceMonitor = 2440 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2441 if (!traceMonitor) { 2442 error = traceMonitor.takeError(); 2443 LLDB_LOG(log, "error {0}", error); 2444 return LLDB_INVALID_UID; 2445 } 2446 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2447 m_processor_trace_monitor.insert( 2448 std::make_pair(threadid, std::move(*traceMonitor))); 2449 return ret_trace_id; 2450 } 2451 2452 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2453 Status error; 2454 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2455 LLDB_LOG(log, "Thread {0}", thread); 2456 2457 const auto& iter = m_processor_trace_monitor.find(thread); 2458 if (iter == m_processor_trace_monitor.end()) { 2459 error.SetErrorString("tracing not active for this thread"); 2460 return error; 2461 } 2462 2463 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2464 // traceid maps to the whole process so we have to erase it from the 2465 // thread group. 2466 LLDB_LOG(log, "traceid maps to process"); 2467 m_pt_traced_thread_group.erase(thread); 2468 } 2469 m_processor_trace_monitor.erase(iter); 2470 2471 return error; 2472 } 2473 2474 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2475 lldb::tid_t thread) { 2476 Status error; 2477 2478 TraceOptions trace_options; 2479 trace_options.setThreadID(thread); 2480 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2481 2482 if (error.Fail()) 2483 return error; 2484 2485 switch (trace_options.getType()) { 2486 case lldb::TraceType::eTraceTypeProcessorTrace: 2487 if (traceid == m_pt_proces_trace_id && 2488 thread == LLDB_INVALID_THREAD_ID) 2489 StopProcessorTracingOnProcess(); 2490 else 2491 error = StopProcessorTracingOnThread(traceid, thread); 2492 break; 2493 default: 2494 error.SetErrorString("trace not supported"); 2495 break; 2496 } 2497 2498 return error; 2499 } 2500 2501 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2502 for (auto thread_id_iter : m_pt_traced_thread_group) 2503 m_processor_trace_monitor.erase(thread_id_iter); 2504 m_pt_traced_thread_group.clear(); 2505 m_pt_proces_trace_id = LLDB_INVALID_UID; 2506 } 2507 2508 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2509 lldb::tid_t thread) { 2510 Status error; 2511 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2512 2513 if (thread == LLDB_INVALID_THREAD_ID) { 2514 for (auto& iter : m_processor_trace_monitor) { 2515 if (iter.second->GetTraceID() == traceid) { 2516 // Stopping a trace instance for an individual thread 2517 // hence there will only be one traceid that can match. 2518 m_processor_trace_monitor.erase(iter.first); 2519 return error; 2520 } 2521 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2522 } 2523 2524 LLDB_LOG(log, "Invalid TraceID"); 2525 error.SetErrorString("invalid trace id"); 2526 return error; 2527 } 2528 2529 // thread is specified so we can use find function on the map. 2530 const auto& iter = m_processor_trace_monitor.find(thread); 2531 if (iter == m_processor_trace_monitor.end()) { 2532 // thread not found in our map. 2533 LLDB_LOG(log, "thread not being traced"); 2534 error.SetErrorString("tracing not active for this thread"); 2535 return error; 2536 } 2537 if (iter->second->GetTraceID() != traceid) { 2538 // traceid did not match so it has to be invalid. 2539 LLDB_LOG(log, "Invalid TraceID"); 2540 error.SetErrorString("invalid trace id"); 2541 return error; 2542 } 2543 2544 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2545 2546 if (traceid == m_pt_proces_trace_id) { 2547 // traceid maps to the whole process so we have to erase it from the 2548 // thread group. 2549 LLDB_LOG(log, "traceid maps to process"); 2550 m_pt_traced_thread_group.erase(thread); 2551 } 2552 m_processor_trace_monitor.erase(iter); 2553 2554 return error; 2555 } 2556