1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 #if defined (__arm64__) || defined (__aarch64__)
22 // NT_PRSTATUS and NT_FPREGSET definition
23 #include <elf.h>
24 #endif
25 
26 // C++ Includes
27 #include <fstream>
28 #include <string>
29 
30 // Other libraries and framework includes
31 #include "lldb/Core/Debugger.h"
32 #include "lldb/Core/Error.h"
33 #include "lldb/Core/Module.h"
34 #include "lldb/Core/ModuleSpec.h"
35 #include "lldb/Core/RegisterValue.h"
36 #include "lldb/Core/Scalar.h"
37 #include "lldb/Core/State.h"
38 #include "lldb/Host/Host.h"
39 #include "lldb/Host/HostInfo.h"
40 #include "lldb/Host/ThreadLauncher.h"
41 #include "lldb/Symbol/ObjectFile.h"
42 #include "lldb/Host/common/NativeRegisterContext.h"
43 #include "lldb/Target/ProcessLaunchInfo.h"
44 #include "lldb/Utility/PseudoTerminal.h"
45 
46 #include "lldb/Host/common/NativeBreakpoint.h"
47 #include "Utility/StringExtractor.h"
48 
49 #include "Plugins/Process/Utility/LinuxSignals.h"
50 #include "NativeThreadLinux.h"
51 #include "ProcFileReader.h"
52 #include "ThreadStateCoordinator.h"
53 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
54 
55 // System includes - They have to be included after framework includes because they define some
56 // macros which collide with variable names in other modules
57 #include <linux/unistd.h>
58 #ifndef __ANDROID__
59 #include <sys/procfs.h>
60 #endif
61 #include <sys/personality.h>
62 #include <sys/ptrace.h>
63 #include <sys/socket.h>
64 #include <sys/syscall.h>
65 #include <sys/types.h>
66 #include <sys/uio.h>
67 #include <sys/user.h>
68 #include <sys/wait.h>
69 
70 #ifdef __ANDROID__
71 #define __ptrace_request int
72 #define PT_DETACH PTRACE_DETACH
73 #endif
74 
75 #define DEBUG_PTRACE_MAXBYTES 20
76 
77 // Support ptrace extensions even when compiled without required kernel support
78 #ifndef PT_GETREGS
79 #ifndef PTRACE_GETREGS
80   #define PTRACE_GETREGS 12
81 #endif
82 #endif
83 #ifndef PT_SETREGS
84 #ifndef PTRACE_SETREGS
85   #define PTRACE_SETREGS 13
86 #endif
87 #endif
88 #ifndef PT_GETFPREGS
89 #ifndef PTRACE_GETFPREGS
90   #define PTRACE_GETFPREGS 14
91 #endif
92 #endif
93 #ifndef PT_SETFPREGS
94 #ifndef PTRACE_SETFPREGS
95   #define PTRACE_SETFPREGS 15
96 #endif
97 #endif
98 #ifndef PTRACE_GETREGSET
99   #define PTRACE_GETREGSET 0x4204
100 #endif
101 #ifndef PTRACE_SETREGSET
102   #define PTRACE_SETREGSET 0x4205
103 #endif
104 #ifndef PTRACE_GET_THREAD_AREA
105   #define PTRACE_GET_THREAD_AREA 25
106 #endif
107 #ifndef PTRACE_ARCH_PRCTL
108   #define PTRACE_ARCH_PRCTL      30
109 #endif
110 #ifndef ARCH_GET_FS
111   #define ARCH_SET_GS 0x1001
112   #define ARCH_SET_FS 0x1002
113   #define ARCH_GET_FS 0x1003
114   #define ARCH_GET_GS 0x1004
115 #endif
116 
117 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
118 
119 // Support hardware breakpoints in case it has not been defined
120 #ifndef TRAP_HWBKPT
121   #define TRAP_HWBKPT 4
122 #endif
123 
124 // Try to define a macro to encapsulate the tgkill syscall
125 // fall back on kill() if tgkill isn't available
126 #define tgkill(pid, tid, sig)  syscall(SYS_tgkill, pid, tid, sig)
127 
128 // We disable the tracing of ptrace calls for integration builds to
129 // avoid the additional indirection and checks.
130 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
131 #define PTRACE(req, pid, addr, data, data_size, error) \
132     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
133 #else
134 #define PTRACE(req, pid, addr, data, data_size, error) \
135     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
136 #endif
137 
138 // Private bits we only need internally.
139 namespace
140 {
141     using namespace lldb;
142     using namespace lldb_private;
143 
144     const UnixSignals&
145     GetUnixSignals ()
146     {
147         static process_linux::LinuxSignals signals;
148         return signals;
149     }
150 
151     ThreadStateCoordinator::LogFunction
152     GetThreadLoggerFunction ()
153     {
154         return [](const char *format, va_list args)
155         {
156             Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
157             if (log)
158                 log->VAPrintf (format, args);
159         };
160     }
161 
162     void
163     CoordinatorErrorHandler (const std::string &error_message)
164     {
165         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
166         if (log)
167             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ());
168         assert (false && "ThreadStateCoordinator error reported");
169     }
170 
171     Error
172     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
173     {
174         // Grab process info for the running process.
175         ProcessInstanceInfo process_info;
176         if (!platform.GetProcessInfo (pid, process_info))
177             return lldb_private::Error("failed to get process info");
178 
179         // Resolve the executable module.
180         ModuleSP exe_module_sp;
181         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), platform.GetSystemArchitecture ());
182         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
183         Error error = platform.ResolveExecutable(
184             exe_module_spec,
185             exe_module_sp,
186             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
187 
188         if (!error.Success ())
189             return error;
190 
191         // Check if we've got our architecture from the exe_module.
192         arch = exe_module_sp->GetArchitecture ();
193         if (arch.IsValid ())
194             return Error();
195         else
196             return Error("failed to retrieve a valid architecture from the exe module");
197     }
198 
199     void
200     DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
201     {
202         uint8_t *ptr = (uint8_t *)bytes;
203         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
204         for(uint32_t i=0; i<loop_count; i++)
205         {
206             s.Printf ("[%x]", *ptr);
207             ptr++;
208         }
209     }
210 
211     void
212     PtraceDisplayBytes(int &req, void *data, size_t data_size)
213     {
214         StreamString buf;
215         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
216                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
217 
218         if (verbose_log)
219         {
220             switch(req)
221             {
222             case PTRACE_POKETEXT:
223             {
224                 DisplayBytes(buf, &data, 8);
225                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
226                 break;
227             }
228             case PTRACE_POKEDATA:
229             {
230                 DisplayBytes(buf, &data, 8);
231                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
232                 break;
233             }
234             case PTRACE_POKEUSER:
235             {
236                 DisplayBytes(buf, &data, 8);
237                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
238                 break;
239             }
240             case PTRACE_SETREGS:
241             {
242                 DisplayBytes(buf, data, data_size);
243                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
244                 break;
245             }
246             case PTRACE_SETFPREGS:
247             {
248                 DisplayBytes(buf, data, data_size);
249                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
250                 break;
251             }
252             case PTRACE_SETSIGINFO:
253             {
254                 DisplayBytes(buf, data, sizeof(siginfo_t));
255                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
256                 break;
257             }
258             case PTRACE_SETREGSET:
259             {
260                 // Extract iov_base from data, which is a pointer to the struct IOVEC
261                 DisplayBytes(buf, *(void **)data, data_size);
262                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
263                 break;
264             }
265             default:
266             {
267             }
268             }
269         }
270     }
271 
272     // Wrapper for ptrace to catch errors and log calls.
273     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
274     long
275     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
276                   const char* reqName, const char* file, int line)
277     {
278         long int result;
279 
280         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
281 
282         PtraceDisplayBytes(req, data, data_size);
283 
284         error.Clear();
285         errno = 0;
286         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
287             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
288         else
289             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
290 
291         if (result == -1)
292             error.SetErrorToErrno();
293 
294         if (log)
295             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
296                     reqName, pid, addr, data, data_size, result, file, line);
297 
298         PtraceDisplayBytes(req, data, data_size);
299 
300         if (log && error.GetError() != 0)
301         {
302             const char* str;
303             switch (error.GetError())
304             {
305             case ESRCH:  str = "ESRCH"; break;
306             case EINVAL: str = "EINVAL"; break;
307             case EBUSY:  str = "EBUSY"; break;
308             case EPERM:  str = "EPERM"; break;
309             default:     str = error.AsCString();
310             }
311             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
312         }
313 
314         return result;
315     }
316 
317 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
318     // Wrapper for ptrace when logging is not required.
319     // Sets errno to 0 prior to calling ptrace.
320     long
321     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
322     {
323         long result = 0;
324 
325         error.Clear();
326         errno = 0;
327         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
328             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
329         else
330             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
331 
332         if (result == -1)
333             error.SetErrorToErrno();
334         return result;
335     }
336 #endif
337 
338     //------------------------------------------------------------------------------
339     // Static implementations of NativeProcessLinux::ReadMemory and
340     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
341     // functions without needed to go thru the thread funnel.
342 
343     lldb::addr_t
344     DoReadMemory (
345         lldb::pid_t pid,
346         lldb::addr_t vm_addr,
347         void *buf,
348         lldb::addr_t size,
349         Error &error)
350     {
351         // ptrace word size is determined by the host, not the child
352         static const unsigned word_size = sizeof(void*);
353         unsigned char *dst = static_cast<unsigned char*>(buf);
354         lldb::addr_t bytes_read;
355         lldb::addr_t remainder;
356         long data;
357 
358         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
359         if (log)
360             ProcessPOSIXLog::IncNestLevel();
361         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
362             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
363                     pid, word_size, (void*)vm_addr, buf, size);
364 
365         assert(sizeof(data) >= word_size);
366         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
367         {
368             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
369             if (error.Fail())
370             {
371                 if (log)
372                     ProcessPOSIXLog::DecNestLevel();
373                 return bytes_read;
374             }
375 
376             remainder = size - bytes_read;
377             remainder = remainder > word_size ? word_size : remainder;
378 
379             // Copy the data into our buffer
380             for (unsigned i = 0; i < remainder; ++i)
381                 dst[i] = ((data >> i*8) & 0xFF);
382 
383             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
384                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
385                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
386                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
387             {
388                 uintptr_t print_dst = 0;
389                 // Format bytes from data by moving into print_dst for log output
390                 for (unsigned i = 0; i < remainder; ++i)
391                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
392                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
393                         (void*)vm_addr, print_dst, (unsigned long)data);
394             }
395 
396             vm_addr += word_size;
397             dst += word_size;
398         }
399 
400         if (log)
401             ProcessPOSIXLog::DecNestLevel();
402         return bytes_read;
403     }
404 
405     lldb::addr_t
406     DoWriteMemory(
407         lldb::pid_t pid,
408         lldb::addr_t vm_addr,
409         const void *buf,
410         lldb::addr_t size,
411         Error &error)
412     {
413         // ptrace word size is determined by the host, not the child
414         static const unsigned word_size = sizeof(void*);
415         const unsigned char *src = static_cast<const unsigned char*>(buf);
416         lldb::addr_t bytes_written = 0;
417         lldb::addr_t remainder;
418 
419         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
420         if (log)
421             ProcessPOSIXLog::IncNestLevel();
422         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
423             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
424                     pid, word_size, (void*)vm_addr, buf, size);
425 
426         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
427         {
428             remainder = size - bytes_written;
429             remainder = remainder > word_size ? word_size : remainder;
430 
431             if (remainder == word_size)
432             {
433                 unsigned long data = 0;
434                 assert(sizeof(data) >= word_size);
435                 for (unsigned i = 0; i < word_size; ++i)
436                     data |= (unsigned long)src[i] << i*8;
437 
438                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
439                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
440                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
441                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
442                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
443                             (void*)vm_addr, *(unsigned long*)src, data);
444 
445                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
446                 {
447                     if (log)
448                         ProcessPOSIXLog::DecNestLevel();
449                     return bytes_written;
450                 }
451             }
452             else
453             {
454                 unsigned char buff[8];
455                 if (DoReadMemory(pid, vm_addr,
456                                 buff, word_size, error) != word_size)
457                 {
458                     if (log)
459                         ProcessPOSIXLog::DecNestLevel();
460                     return bytes_written;
461                 }
462 
463                 memcpy(buff, src, remainder);
464 
465                 if (DoWriteMemory(pid, vm_addr,
466                                 buff, word_size, error) != word_size)
467                 {
468                     if (log)
469                         ProcessPOSIXLog::DecNestLevel();
470                     return bytes_written;
471                 }
472 
473                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
474                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
475                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
476                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
477                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
478                             (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
479             }
480 
481             vm_addr += word_size;
482             src += word_size;
483         }
484         if (log)
485             ProcessPOSIXLog::DecNestLevel();
486         return bytes_written;
487     }
488 
489     //------------------------------------------------------------------------------
490     /// @class Operation
491     /// @brief Represents a NativeProcessLinux operation.
492     ///
493     /// Under Linux, it is not possible to ptrace() from any other thread but the
494     /// one that spawned or attached to the process from the start.  Therefore, when
495     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
496     /// process the operation must be "funneled" to a specific thread to perform the
497     /// task.  The Operation class provides an abstract base for all services the
498     /// NativeProcessLinux must perform via the single virtual function Execute, thus
499     /// encapsulating the code that needs to run in the privileged context.
500     class Operation
501     {
502     public:
503         Operation () : m_error() { }
504 
505         virtual
506         ~Operation() {}
507 
508         virtual void
509         Execute (NativeProcessLinux *process) = 0;
510 
511         const Error &
512         GetError () const { return m_error; }
513 
514     protected:
515         Error m_error;
516     };
517 
518     //------------------------------------------------------------------------------
519     /// @class ReadOperation
520     /// @brief Implements NativeProcessLinux::ReadMemory.
521     class ReadOperation : public Operation
522     {
523     public:
524         ReadOperation (
525             lldb::addr_t addr,
526             void *buff,
527             lldb::addr_t size,
528             lldb::addr_t &result) :
529             Operation (),
530             m_addr (addr),
531             m_buff (buff),
532             m_size (size),
533             m_result (result)
534             {
535             }
536 
537         void Execute (NativeProcessLinux *process) override;
538 
539     private:
540         lldb::addr_t m_addr;
541         void *m_buff;
542         lldb::addr_t m_size;
543         lldb::addr_t &m_result;
544     };
545 
546     void
547     ReadOperation::Execute (NativeProcessLinux *process)
548     {
549         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
550     }
551 
552     //------------------------------------------------------------------------------
553     /// @class WriteOperation
554     /// @brief Implements NativeProcessLinux::WriteMemory.
555     class WriteOperation : public Operation
556     {
557     public:
558         WriteOperation (
559             lldb::addr_t addr,
560             const void *buff,
561             lldb::addr_t size,
562             lldb::addr_t &result) :
563             Operation (),
564             m_addr (addr),
565             m_buff (buff),
566             m_size (size),
567             m_result (result)
568             {
569             }
570 
571         void Execute (NativeProcessLinux *process) override;
572 
573     private:
574         lldb::addr_t m_addr;
575         const void *m_buff;
576         lldb::addr_t m_size;
577         lldb::addr_t &m_result;
578     };
579 
580     void
581     WriteOperation::Execute(NativeProcessLinux *process)
582     {
583         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
584     }
585 
586     //------------------------------------------------------------------------------
587     /// @class ReadRegOperation
588     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
589     class ReadRegOperation : public Operation
590     {
591     public:
592         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
593                 RegisterValue &value)
594             : m_tid(tid),
595               m_offset(static_cast<uintptr_t> (offset)),
596               m_reg_name(reg_name),
597               m_value(value)
598             { }
599 
600         void Execute(NativeProcessLinux *monitor);
601 
602     private:
603         lldb::tid_t m_tid;
604         uintptr_t m_offset;
605         const char *m_reg_name;
606         RegisterValue &m_value;
607     };
608 
609     void
610     ReadRegOperation::Execute(NativeProcessLinux *monitor)
611     {
612 #if defined (__arm64__) || defined (__aarch64__)
613         if (m_offset > sizeof(struct user_pt_regs))
614         {
615             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
616             if (offset > sizeof(struct user_fpsimd_state))
617             {
618                 m_error.SetErrorString("invalid offset value");
619                 return;
620             }
621             elf_fpregset_t regs;
622             int regset = NT_FPREGSET;
623             struct iovec ioVec;
624 
625             ioVec.iov_base = &regs;
626             ioVec.iov_len = sizeof regs;
627             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
628             if (m_error.Success())
629             {
630                 lldb_private::ArchSpec arch;
631                 if (monitor->GetArchitecture(arch))
632                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
633                 else
634                     m_error.SetErrorString("failed to get architecture");
635             }
636         }
637         else
638         {
639             elf_gregset_t regs;
640             int regset = NT_PRSTATUS;
641             struct iovec ioVec;
642 
643             ioVec.iov_base = &regs;
644             ioVec.iov_len = sizeof regs;
645             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
646             if (m_error.Success())
647             {
648                 lldb_private::ArchSpec arch;
649                 if (monitor->GetArchitecture(arch))
650                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
651                 else
652                     m_error.SetErrorString("failed to get architecture");
653             }
654         }
655 #else
656         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
657 
658         lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error);
659         if (m_error.Success())
660             m_value = data;
661 
662         if (log)
663             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
664                     m_reg_name, data);
665 #endif
666     }
667 
668     //------------------------------------------------------------------------------
669     /// @class WriteRegOperation
670     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
671     class WriteRegOperation : public Operation
672     {
673     public:
674         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
675                 const RegisterValue &value)
676             : m_tid(tid),
677               m_offset(offset),
678               m_reg_name(reg_name),
679               m_value(value)
680             { }
681 
682         void Execute(NativeProcessLinux *monitor);
683 
684     private:
685         lldb::tid_t m_tid;
686         uintptr_t m_offset;
687         const char *m_reg_name;
688         const RegisterValue &m_value;
689     };
690 
691     void
692     WriteRegOperation::Execute(NativeProcessLinux *monitor)
693     {
694 #if defined (__arm64__) || defined (__aarch64__)
695         if (m_offset > sizeof(struct user_pt_regs))
696         {
697             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
698             if (offset > sizeof(struct user_fpsimd_state))
699             {
700                 m_error.SetErrorString("invalid offset value");
701                 return;
702             }
703             elf_fpregset_t regs;
704             int regset = NT_FPREGSET;
705             struct iovec ioVec;
706 
707             ioVec.iov_base = &regs;
708             ioVec.iov_len = sizeof regs;
709             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
710             if (m_error.Sucess())
711             {
712                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
713                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
714             }
715         }
716         else
717         {
718             elf_gregset_t regs;
719             int regset = NT_PRSTATUS;
720             struct iovec ioVec;
721 
722             ioVec.iov_base = &regs;
723             ioVec.iov_len = sizeof regs;
724             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
725             if (m_error.Sucess())
726             {
727                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
728                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
729             }
730         }
731 #else
732         void* buf;
733         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
734 
735         buf = (void*) m_value.GetAsUInt64();
736 
737         if (log)
738             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
739         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
740 #endif
741     }
742 
743     //------------------------------------------------------------------------------
744     /// @class ReadGPROperation
745     /// @brief Implements NativeProcessLinux::ReadGPR.
746     class ReadGPROperation : public Operation
747     {
748     public:
749         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
750             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
751             { }
752 
753         void Execute(NativeProcessLinux *monitor);
754 
755     private:
756         lldb::tid_t m_tid;
757         void *m_buf;
758         size_t m_buf_size;
759     };
760 
761     void
762     ReadGPROperation::Execute(NativeProcessLinux *monitor)
763     {
764 #if defined (__arm64__) || defined (__aarch64__)
765         int regset = NT_PRSTATUS;
766         struct iovec ioVec;
767 
768         ioVec.iov_base = m_buf;
769         ioVec.iov_len = m_buf_size;
770         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
771 #else
772         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
773 #endif
774     }
775 
776     //------------------------------------------------------------------------------
777     /// @class ReadFPROperation
778     /// @brief Implements NativeProcessLinux::ReadFPR.
779     class ReadFPROperation : public Operation
780     {
781     public:
782         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
783             : m_tid(tid),
784               m_buf(buf),
785               m_buf_size(buf_size)
786             { }
787 
788         void Execute(NativeProcessLinux *monitor);
789 
790     private:
791         lldb::tid_t m_tid;
792         void *m_buf;
793         size_t m_buf_size;
794     };
795 
796     void
797     ReadFPROperation::Execute(NativeProcessLinux *monitor)
798     {
799 #if defined (__arm64__) || defined (__aarch64__)
800         int regset = NT_FPREGSET;
801         struct iovec ioVec;
802 
803         ioVec.iov_base = m_buf;
804         ioVec.iov_len = m_buf_size;
805         if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
806             m_result = false;
807         else
808             m_result = true;
809 #else
810         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
811 #endif
812     }
813 
814     //------------------------------------------------------------------------------
815     /// @class ReadRegisterSetOperation
816     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
817     class ReadRegisterSetOperation : public Operation
818     {
819     public:
820         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
821             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
822             { }
823 
824         void Execute(NativeProcessLinux *monitor);
825 
826     private:
827         lldb::tid_t m_tid;
828         void *m_buf;
829         size_t m_buf_size;
830         const unsigned int m_regset;
831     };
832 
833     void
834     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
835     {
836         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
837     }
838 
839     //------------------------------------------------------------------------------
840     /// @class WriteGPROperation
841     /// @brief Implements NativeProcessLinux::WriteGPR.
842     class WriteGPROperation : public Operation
843     {
844     public:
845         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
846             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
847             { }
848 
849         void Execute(NativeProcessLinux *monitor);
850 
851     private:
852         lldb::tid_t m_tid;
853         void *m_buf;
854         size_t m_buf_size;
855     };
856 
857     void
858     WriteGPROperation::Execute(NativeProcessLinux *monitor)
859     {
860 #if defined (__arm64__) || defined (__aarch64__)
861         int regset = NT_PRSTATUS;
862         struct iovec ioVec;
863 
864         ioVec.iov_base = m_buf;
865         ioVec.iov_len = m_buf_size;
866         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
867 #else
868         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
869 #endif
870     }
871 
872     //------------------------------------------------------------------------------
873     /// @class WriteFPROperation
874     /// @brief Implements NativeProcessLinux::WriteFPR.
875     class WriteFPROperation : public Operation
876     {
877     public:
878         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
879             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
880             { }
881 
882         void Execute(NativeProcessLinux *monitor);
883 
884     private:
885         lldb::tid_t m_tid;
886         void *m_buf;
887         size_t m_buf_size;
888     };
889 
890     void
891     WriteFPROperation::Execute(NativeProcessLinux *monitor)
892     {
893 #if defined (__arm64__) || defined (__aarch64__)
894         int regset = NT_FPREGSET;
895         struct iovec ioVec;
896 
897         ioVec.iov_base = m_buf;
898         ioVec.iov_len = m_buf_size;
899         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
900 #else
901         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
902 #endif
903     }
904 
905     //------------------------------------------------------------------------------
906     /// @class WriteRegisterSetOperation
907     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
908     class WriteRegisterSetOperation : public Operation
909     {
910     public:
911         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
912             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
913             { }
914 
915         void Execute(NativeProcessLinux *monitor);
916 
917     private:
918         lldb::tid_t m_tid;
919         void *m_buf;
920         size_t m_buf_size;
921         const unsigned int m_regset;
922     };
923 
924     void
925     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
926     {
927         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
928     }
929 
930     //------------------------------------------------------------------------------
931     /// @class ResumeOperation
932     /// @brief Implements NativeProcessLinux::Resume.
933     class ResumeOperation : public Operation
934     {
935     public:
936         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
937             m_tid(tid), m_signo(signo) { }
938 
939         void Execute(NativeProcessLinux *monitor);
940 
941     private:
942         lldb::tid_t m_tid;
943         uint32_t m_signo;
944     };
945 
946     void
947     ResumeOperation::Execute(NativeProcessLinux *monitor)
948     {
949         intptr_t data = 0;
950 
951         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
952             data = m_signo;
953 
954         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
955         if (m_error.Fail())
956         {
957             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
958 
959             if (log)
960                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
961         }
962     }
963 
964     //------------------------------------------------------------------------------
965     /// @class SingleStepOperation
966     /// @brief Implements NativeProcessLinux::SingleStep.
967     class SingleStepOperation : public Operation
968     {
969     public:
970         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
971             : m_tid(tid), m_signo(signo) { }
972 
973         void Execute(NativeProcessLinux *monitor);
974 
975     private:
976         lldb::tid_t m_tid;
977         uint32_t m_signo;
978     };
979 
980     void
981     SingleStepOperation::Execute(NativeProcessLinux *monitor)
982     {
983         intptr_t data = 0;
984 
985         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
986             data = m_signo;
987 
988         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
989     }
990 
991     //------------------------------------------------------------------------------
992     /// @class SiginfoOperation
993     /// @brief Implements NativeProcessLinux::GetSignalInfo.
994     class SiginfoOperation : public Operation
995     {
996     public:
997         SiginfoOperation(lldb::tid_t tid, void *info)
998             : m_tid(tid), m_info(info) { }
999 
1000         void Execute(NativeProcessLinux *monitor);
1001 
1002     private:
1003         lldb::tid_t m_tid;
1004         void *m_info;
1005     };
1006 
1007     void
1008     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1009     {
1010         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1011     }
1012 
1013     //------------------------------------------------------------------------------
1014     /// @class EventMessageOperation
1015     /// @brief Implements NativeProcessLinux::GetEventMessage.
1016     class EventMessageOperation : public Operation
1017     {
1018     public:
1019         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1020             : m_tid(tid), m_message(message) { }
1021 
1022         void Execute(NativeProcessLinux *monitor);
1023 
1024     private:
1025         lldb::tid_t m_tid;
1026         unsigned long *m_message;
1027     };
1028 
1029     void
1030     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1031     {
1032         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1033     }
1034 
1035     class DetachOperation : public Operation
1036     {
1037     public:
1038         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1039 
1040         void Execute(NativeProcessLinux *monitor);
1041 
1042     private:
1043         lldb::tid_t m_tid;
1044     };
1045 
1046     void
1047     DetachOperation::Execute(NativeProcessLinux *monitor)
1048     {
1049         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1050     }
1051 
1052 }
1053 
1054 using namespace lldb_private;
1055 
1056 // Simple helper function to ensure flags are enabled on the given file
1057 // descriptor.
1058 static bool
1059 EnsureFDFlags(int fd, int flags, Error &error)
1060 {
1061     int status;
1062 
1063     if ((status = fcntl(fd, F_GETFL)) == -1)
1064     {
1065         error.SetErrorToErrno();
1066         return false;
1067     }
1068 
1069     if (fcntl(fd, F_SETFL, status | flags) == -1)
1070     {
1071         error.SetErrorToErrno();
1072         return false;
1073     }
1074 
1075     return true;
1076 }
1077 
1078 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor)
1079     : m_monitor(monitor)
1080 {
1081     sem_init(&m_semaphore, 0, 0);
1082 }
1083 
1084 NativeProcessLinux::OperationArgs::~OperationArgs()
1085 {
1086     sem_destroy(&m_semaphore);
1087 }
1088 
1089 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor,
1090                                        lldb_private::Module *module,
1091                                        char const **argv,
1092                                        char const **envp,
1093                                        const std::string &stdin_path,
1094                                        const std::string &stdout_path,
1095                                        const std::string &stderr_path,
1096                                        const char *working_dir,
1097                                        const lldb_private::ProcessLaunchInfo &launch_info)
1098     : OperationArgs(monitor),
1099       m_module(module),
1100       m_argv(argv),
1101       m_envp(envp),
1102       m_stdin_path(stdin_path),
1103       m_stdout_path(stdout_path),
1104       m_stderr_path(stderr_path),
1105       m_working_dir(working_dir),
1106       m_launch_info(launch_info)
1107 {
1108 }
1109 
1110 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1111 { }
1112 
1113 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor,
1114                                        lldb::pid_t pid)
1115     : OperationArgs(monitor), m_pid(pid) { }
1116 
1117 NativeProcessLinux::AttachArgs::~AttachArgs()
1118 { }
1119 
1120 // -----------------------------------------------------------------------------
1121 // Public Static Methods
1122 // -----------------------------------------------------------------------------
1123 
1124 lldb_private::Error
1125 NativeProcessLinux::LaunchProcess (
1126     lldb_private::Module *exe_module,
1127     lldb_private::ProcessLaunchInfo &launch_info,
1128     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1129     NativeProcessProtocolSP &native_process_sp)
1130 {
1131     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1132 
1133     Error error;
1134 
1135     // Verify the working directory is valid if one was specified.
1136     const char* working_dir = launch_info.GetWorkingDirectory ();
1137     if (working_dir)
1138     {
1139       FileSpec working_dir_fs (working_dir, true);
1140       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1141       {
1142           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1143           return error;
1144       }
1145     }
1146 
1147     const lldb_private::FileAction *file_action;
1148 
1149     // Default of NULL will mean to use existing open file descriptors.
1150     std::string stdin_path;
1151     std::string stdout_path;
1152     std::string stderr_path;
1153 
1154     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1155     if (file_action)
1156         stdin_path = file_action->GetPath ();
1157 
1158     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1159     if (file_action)
1160         stdout_path = file_action->GetPath ();
1161 
1162     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1163     if (file_action)
1164         stderr_path = file_action->GetPath ();
1165 
1166     if (log)
1167     {
1168         if (!stdin_path.empty ())
1169             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1170         else
1171             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1172 
1173         if (!stdout_path.empty ())
1174             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1175         else
1176             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1177 
1178         if (!stderr_path.empty ())
1179             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1180         else
1181             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1182     }
1183 
1184     // Create the NativeProcessLinux in launch mode.
1185     native_process_sp.reset (new NativeProcessLinux ());
1186 
1187     if (log)
1188     {
1189         int i = 0;
1190         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1191         {
1192             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1193             ++i;
1194         }
1195     }
1196 
1197     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1198     {
1199         native_process_sp.reset ();
1200         error.SetErrorStringWithFormat ("failed to register the native delegate");
1201         return error;
1202     }
1203 
1204     reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior (
1205             exe_module,
1206             launch_info.GetArguments ().GetConstArgumentVector (),
1207             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1208             stdin_path,
1209             stdout_path,
1210             stderr_path,
1211             working_dir,
1212             launch_info,
1213             error);
1214 
1215     if (error.Fail ())
1216     {
1217         native_process_sp.reset ();
1218         if (log)
1219             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1220         return error;
1221     }
1222 
1223     launch_info.SetProcessID (native_process_sp->GetID ());
1224 
1225     return error;
1226 }
1227 
1228 lldb_private::Error
1229 NativeProcessLinux::AttachToProcess (
1230     lldb::pid_t pid,
1231     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1232     NativeProcessProtocolSP &native_process_sp)
1233 {
1234     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1235     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1236         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1237 
1238     // Grab the current platform architecture.  This should be Linux,
1239     // since this code is only intended to run on a Linux host.
1240     PlatformSP platform_sp (Platform::GetHostPlatform ());
1241     if (!platform_sp)
1242         return Error("failed to get a valid default platform");
1243 
1244     // Retrieve the architecture for the running process.
1245     ArchSpec process_arch;
1246     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1247     if (!error.Success ())
1248         return error;
1249 
1250     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1251 
1252     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1253     {
1254         error.SetErrorStringWithFormat ("failed to register the native delegate");
1255         return error;
1256     }
1257 
1258     native_process_linux_sp->AttachToInferior (pid, error);
1259     if (!error.Success ())
1260         return error;
1261 
1262     native_process_sp = native_process_linux_sp;
1263     return error;
1264 }
1265 
1266 // -----------------------------------------------------------------------------
1267 // Public Instance Methods
1268 // -----------------------------------------------------------------------------
1269 
1270 NativeProcessLinux::NativeProcessLinux () :
1271     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1272     m_arch (),
1273     m_operation_thread (),
1274     m_monitor_thread (),
1275     m_operation (nullptr),
1276     m_operation_mutex (),
1277     m_operation_pending (),
1278     m_operation_done (),
1279     m_supports_mem_region (eLazyBoolCalculate),
1280     m_mem_region_cache (),
1281     m_mem_region_cache_mutex (),
1282     m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())),
1283     m_coordinator_thread ()
1284 {
1285 }
1286 
1287 //------------------------------------------------------------------------------
1288 /// The basic design of the NativeProcessLinux is built around two threads.
1289 ///
1290 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
1291 /// for changes in the debugee state.  When a change is detected a
1292 /// ProcessMessage is sent to the associated ProcessLinux instance.  This thread
1293 /// "drives" state changes in the debugger.
1294 ///
1295 /// The second thread (@see OperationThread) is responsible for two things 1)
1296 /// launching or attaching to the inferior process, and then 2) servicing
1297 /// operations such as register reads/writes, stepping, etc.  See the comments
1298 /// on the Operation class for more info as to why this is needed.
1299 void
1300 NativeProcessLinux::LaunchInferior (
1301     Module *module,
1302     const char *argv[],
1303     const char *envp[],
1304     const std::string &stdin_path,
1305     const std::string &stdout_path,
1306     const std::string &stderr_path,
1307     const char *working_dir,
1308     const lldb_private::ProcessLaunchInfo &launch_info,
1309     lldb_private::Error &error)
1310 {
1311     if (module)
1312         m_arch = module->GetArchitecture ();
1313 
1314     SetState (eStateLaunching);
1315 
1316     std::unique_ptr<LaunchArgs> args(
1317         new LaunchArgs(
1318             this, module, argv, envp,
1319             stdin_path, stdout_path, stderr_path,
1320             working_dir, launch_info));
1321 
1322     sem_init (&m_operation_pending, 0, 0);
1323     sem_init (&m_operation_done, 0, 0);
1324 
1325     StartLaunchOpThread (args.get(), error);
1326     if (!error.Success ())
1327         return;
1328 
1329     error = StartCoordinatorThread ();
1330     if (!error.Success ())
1331         return;
1332 
1333 WAIT_AGAIN:
1334     // Wait for the operation thread to initialize.
1335     if (sem_wait(&args->m_semaphore))
1336     {
1337         if (errno == EINTR)
1338             goto WAIT_AGAIN;
1339         else
1340         {
1341             error.SetErrorToErrno();
1342             return;
1343         }
1344     }
1345 
1346     // Check that the launch was a success.
1347     if (!args->m_error.Success())
1348     {
1349         StopOpThread();
1350         StopCoordinatorThread ();
1351         error = args->m_error;
1352         return;
1353     }
1354 
1355     // Finally, start monitoring the child process for change in state.
1356     m_monitor_thread = Host::StartMonitoringChildProcess(
1357         NativeProcessLinux::MonitorCallback, this, GetID(), true);
1358     if (!m_monitor_thread.IsJoinable())
1359     {
1360         error.SetErrorToGenericError();
1361         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1362         return;
1363     }
1364 }
1365 
1366 void
1367 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error)
1368 {
1369     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1370     if (log)
1371         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1372 
1373     // We can use the Host for everything except the ResolveExecutable portion.
1374     PlatformSP platform_sp = Platform::GetHostPlatform ();
1375     if (!platform_sp)
1376     {
1377         if (log)
1378             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1379         error.SetErrorString ("no default platform available");
1380         return;
1381     }
1382 
1383     // Gather info about the process.
1384     ProcessInstanceInfo process_info;
1385     if (!platform_sp->GetProcessInfo (pid, process_info))
1386     {
1387         if (log)
1388             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1389         error.SetErrorString ("failed to get process info");
1390         return;
1391     }
1392 
1393     // Resolve the executable module
1394     ModuleSP exe_module_sp;
1395     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1396     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), HostInfo::GetArchitecture());
1397     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1398                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1399     if (!error.Success())
1400         return;
1401 
1402     // Set the architecture to the exe architecture.
1403     m_arch = exe_module_sp->GetArchitecture();
1404     if (log)
1405         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1406 
1407     m_pid = pid;
1408     SetState(eStateAttaching);
1409 
1410     sem_init (&m_operation_pending, 0, 0);
1411     sem_init (&m_operation_done, 0, 0);
1412 
1413     std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid));
1414 
1415     StartAttachOpThread(args.get (), error);
1416     if (!error.Success ())
1417         return;
1418 
1419     error = StartCoordinatorThread ();
1420     if (!error.Success ())
1421         return;
1422 
1423 WAIT_AGAIN:
1424     // Wait for the operation thread to initialize.
1425     if (sem_wait (&args->m_semaphore))
1426     {
1427         if (errno == EINTR)
1428             goto WAIT_AGAIN;
1429         else
1430         {
1431             error.SetErrorToErrno ();
1432             return;
1433         }
1434     }
1435 
1436     // Check that the attach was a success.
1437     if (!args->m_error.Success ())
1438     {
1439         StopOpThread ();
1440         StopCoordinatorThread ();
1441         error = args->m_error;
1442         return;
1443     }
1444 
1445     // Finally, start monitoring the child process for change in state.
1446     m_monitor_thread = Host::StartMonitoringChildProcess (
1447         NativeProcessLinux::MonitorCallback, this, GetID (), true);
1448     if (!m_monitor_thread.IsJoinable())
1449     {
1450         error.SetErrorToGenericError ();
1451         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1452         return;
1453     }
1454 }
1455 
1456 NativeProcessLinux::~NativeProcessLinux()
1457 {
1458     StopMonitor();
1459 }
1460 
1461 //------------------------------------------------------------------------------
1462 // Thread setup and tear down.
1463 
1464 void
1465 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error)
1466 {
1467     static const char *g_thread_name = "lldb.process.nativelinux.operation";
1468 
1469     if (m_operation_thread.IsJoinable())
1470         return;
1471 
1472     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error);
1473 }
1474 
1475 void *
1476 NativeProcessLinux::LaunchOpThread(void *arg)
1477 {
1478     LaunchArgs *args = static_cast<LaunchArgs*>(arg);
1479 
1480     if (!Launch(args)) {
1481         sem_post(&args->m_semaphore);
1482         return NULL;
1483     }
1484 
1485     ServeOperation(args);
1486     return NULL;
1487 }
1488 
1489 bool
1490 NativeProcessLinux::Launch(LaunchArgs *args)
1491 {
1492     assert (args && "null args");
1493     if (!args)
1494         return false;
1495 
1496     NativeProcessLinux *monitor = args->m_monitor;
1497     assert (monitor && "monitor is NULL");
1498 
1499     const char **argv = args->m_argv;
1500     const char **envp = args->m_envp;
1501     const char *working_dir = args->m_working_dir;
1502 
1503     lldb_utility::PseudoTerminal terminal;
1504     const size_t err_len = 1024;
1505     char err_str[err_len];
1506     lldb::pid_t pid;
1507     NativeThreadProtocolSP thread_sp;
1508 
1509     lldb::ThreadSP inferior;
1510 
1511     // Propagate the environment if one is not supplied.
1512     if (envp == NULL || envp[0] == NULL)
1513         envp = const_cast<const char **>(environ);
1514 
1515     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1516     {
1517         args->m_error.SetErrorToGenericError();
1518         args->m_error.SetErrorString("Process fork failed.");
1519         return false;
1520     }
1521 
1522     // Recognized child exit status codes.
1523     enum {
1524         ePtraceFailed = 1,
1525         eDupStdinFailed,
1526         eDupStdoutFailed,
1527         eDupStderrFailed,
1528         eChdirFailed,
1529         eExecFailed,
1530         eSetGidFailed
1531     };
1532 
1533     // Child process.
1534     if (pid == 0)
1535     {
1536         // FIXME consider opening a pipe between parent/child and have this forked child
1537         // send log info to parent re: launch status, in place of the log lines removed here.
1538 
1539         // Start tracing this child that is about to exec.
1540         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error);
1541         if (args->m_error.Fail())
1542             exit(ePtraceFailed);
1543 
1544         // terminal has already dupped the tty descriptors to stdin/out/err.
1545         // This closes original fd from which they were copied (and avoids
1546         // leaking descriptors to the debugged process.
1547         terminal.CloseSlaveFileDescriptor();
1548 
1549         // Do not inherit setgid powers.
1550         if (setgid(getgid()) != 0)
1551             exit(eSetGidFailed);
1552 
1553         // Attempt to have our own process group.
1554         if (setpgid(0, 0) != 0)
1555         {
1556             // FIXME log that this failed. This is common.
1557             // Don't allow this to prevent an inferior exec.
1558         }
1559 
1560         // Dup file descriptors if needed.
1561         if (!args->m_stdin_path.empty ())
1562             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1563                 exit(eDupStdinFailed);
1564 
1565         if (!args->m_stdout_path.empty ())
1566             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT))
1567                 exit(eDupStdoutFailed);
1568 
1569         if (!args->m_stderr_path.empty ())
1570             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT))
1571                 exit(eDupStderrFailed);
1572 
1573         // Change working directory
1574         if (working_dir != NULL && working_dir[0])
1575           if (0 != ::chdir(working_dir))
1576               exit(eChdirFailed);
1577 
1578         // Disable ASLR if requested.
1579         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1580         {
1581             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1582             if (old_personality == -1)
1583             {
1584                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1585             }
1586             else
1587             {
1588                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1589                 if (new_personality == -1)
1590                 {
1591                     // Disabling ASLR failed.
1592                 }
1593                 else
1594                 {
1595                     // Disabling ASLR succeeded.
1596                 }
1597             }
1598         }
1599 
1600         // Execute.  We should never return...
1601         execve(argv[0],
1602                const_cast<char *const *>(argv),
1603                const_cast<char *const *>(envp));
1604 
1605         // ...unless exec fails.  In which case we definitely need to end the child here.
1606         exit(eExecFailed);
1607     }
1608 
1609     //
1610     // This is the parent code here.
1611     //
1612     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1613 
1614     // Wait for the child process to trap on its call to execve.
1615     ::pid_t wpid;
1616     int status;
1617     if ((wpid = waitpid(pid, &status, 0)) < 0)
1618     {
1619         args->m_error.SetErrorToErrno();
1620 
1621         if (log)
1622             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ());
1623 
1624         // Mark the inferior as invalid.
1625         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1626         monitor->SetState (StateType::eStateInvalid);
1627 
1628         return false;
1629     }
1630     else if (WIFEXITED(status))
1631     {
1632         // open, dup or execve likely failed for some reason.
1633         args->m_error.SetErrorToGenericError();
1634         switch (WEXITSTATUS(status))
1635         {
1636             case ePtraceFailed:
1637                 args->m_error.SetErrorString("Child ptrace failed.");
1638                 break;
1639             case eDupStdinFailed:
1640                 args->m_error.SetErrorString("Child open stdin failed.");
1641                 break;
1642             case eDupStdoutFailed:
1643                 args->m_error.SetErrorString("Child open stdout failed.");
1644                 break;
1645             case eDupStderrFailed:
1646                 args->m_error.SetErrorString("Child open stderr failed.");
1647                 break;
1648             case eChdirFailed:
1649                 args->m_error.SetErrorString("Child failed to set working directory.");
1650                 break;
1651             case eExecFailed:
1652                 args->m_error.SetErrorString("Child exec failed.");
1653                 break;
1654             case eSetGidFailed:
1655                 args->m_error.SetErrorString("Child setgid failed.");
1656                 break;
1657             default:
1658                 args->m_error.SetErrorString("Child returned unknown exit status.");
1659                 break;
1660         }
1661 
1662         if (log)
1663         {
1664             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1665                     __FUNCTION__,
1666                     WEXITSTATUS(status));
1667         }
1668 
1669         // Mark the inferior as invalid.
1670         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1671         monitor->SetState (StateType::eStateInvalid);
1672 
1673         return false;
1674     }
1675     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1676            "Could not sync with inferior process.");
1677 
1678     if (log)
1679         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1680 
1681     args->m_error = SetDefaultPtraceOpts(pid);
1682     if (args->m_error.Fail())
1683     {
1684         if (log)
1685             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1686                     __FUNCTION__,
1687                     args->m_error.AsCString ());
1688 
1689         // Mark the inferior as invalid.
1690         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1691         monitor->SetState (StateType::eStateInvalid);
1692 
1693         return false;
1694     }
1695 
1696     // Release the master terminal descriptor and pass it off to the
1697     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1698     monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1699     monitor->m_pid = pid;
1700 
1701     // Set the terminal fd to be in non blocking mode (it simplifies the
1702     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1703     // descriptor to read from).
1704     if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
1705     {
1706         if (log)
1707             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1708                     __FUNCTION__,
1709                     args->m_error.AsCString ());
1710 
1711         // Mark the inferior as invalid.
1712         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1713         monitor->SetState (StateType::eStateInvalid);
1714 
1715         return false;
1716     }
1717 
1718     if (log)
1719         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1720 
1721     thread_sp = monitor->AddThread (pid);
1722     assert (thread_sp && "AddThread() returned a nullptr thread");
1723     monitor->NotifyThreadCreateStopped (pid);
1724     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1725 
1726     // Let our process instance know the thread has stopped.
1727     monitor->SetCurrentThreadID (thread_sp->GetID ());
1728     monitor->SetState (StateType::eStateStopped);
1729 
1730     if (log)
1731     {
1732         if (args->m_error.Success ())
1733         {
1734             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1735         }
1736         else
1737         {
1738             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1739                 __FUNCTION__,
1740                 args->m_error.AsCString ());
1741         }
1742     }
1743     return args->m_error.Success();
1744 }
1745 
1746 void
1747 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
1748 {
1749     static const char *g_thread_name = "lldb.process.linux.operation";
1750 
1751     if (m_operation_thread.IsJoinable())
1752         return;
1753 
1754     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error);
1755 }
1756 
1757 void *
1758 NativeProcessLinux::AttachOpThread(void *arg)
1759 {
1760     AttachArgs *args = static_cast<AttachArgs*>(arg);
1761 
1762     if (!Attach(args)) {
1763         sem_post(&args->m_semaphore);
1764         return nullptr;
1765     }
1766 
1767     ServeOperation(args);
1768     return nullptr;
1769 }
1770 
1771 bool
1772 NativeProcessLinux::Attach(AttachArgs *args)
1773 {
1774     lldb::pid_t pid = args->m_pid;
1775 
1776     NativeProcessLinux *monitor = args->m_monitor;
1777     lldb::ThreadSP inferior;
1778     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1779 
1780     // Use a map to keep track of the threads which we have attached/need to attach.
1781     Host::TidMap tids_to_attach;
1782     if (pid <= 1)
1783     {
1784         args->m_error.SetErrorToGenericError();
1785         args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
1786         goto FINISH;
1787     }
1788 
1789     while (Host::FindProcessThreads(pid, tids_to_attach))
1790     {
1791         for (Host::TidMap::iterator it = tids_to_attach.begin();
1792              it != tids_to_attach.end();)
1793         {
1794             if (it->second == false)
1795             {
1796                 lldb::tid_t tid = it->first;
1797 
1798                 // Attach to the requested process.
1799                 // An attach will cause the thread to stop with a SIGSTOP.
1800                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error);
1801                 if (args->m_error.Fail())
1802                 {
1803                     // No such thread. The thread may have exited.
1804                     // More error handling may be needed.
1805                     if (args->m_error.GetError() == ESRCH)
1806                     {
1807                         it = tids_to_attach.erase(it);
1808                         continue;
1809                     }
1810                     else
1811                         goto FINISH;
1812                 }
1813 
1814                 int status;
1815                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1816                 // At this point we should have a thread stopped if waitpid succeeds.
1817                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1818                 {
1819                     // No such thread. The thread may have exited.
1820                     // More error handling may be needed.
1821                     if (errno == ESRCH)
1822                     {
1823                         it = tids_to_attach.erase(it);
1824                         continue;
1825                     }
1826                     else
1827                     {
1828                         args->m_error.SetErrorToErrno();
1829                         goto FINISH;
1830                     }
1831                 }
1832 
1833                 args->m_error = SetDefaultPtraceOpts(tid);
1834                 if (args->m_error.Fail())
1835                     goto FINISH;
1836 
1837 
1838                 if (log)
1839                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1840 
1841                 it->second = true;
1842 
1843                 // Create the thread, mark it as stopped.
1844                 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid)));
1845                 assert (thread_sp && "AddThread() returned a nullptr");
1846 
1847                 // This will notify this is a new thread and tell the system it is stopped.
1848                 monitor->NotifyThreadCreateStopped (tid);
1849                 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1850                 monitor->SetCurrentThreadID (thread_sp->GetID ());
1851             }
1852 
1853             // move the loop forward
1854             ++it;
1855         }
1856     }
1857 
1858     if (tids_to_attach.size() > 0)
1859     {
1860         monitor->m_pid = pid;
1861         // Let our process instance know the thread has stopped.
1862         monitor->SetState (StateType::eStateStopped);
1863     }
1864     else
1865     {
1866         args->m_error.SetErrorToGenericError();
1867         args->m_error.SetErrorString("No such process.");
1868     }
1869 
1870  FINISH:
1871     return args->m_error.Success();
1872 }
1873 
1874 Error
1875 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1876 {
1877     long ptrace_opts = 0;
1878 
1879     // Have the child raise an event on exit.  This is used to keep the child in
1880     // limbo until it is destroyed.
1881     ptrace_opts |= PTRACE_O_TRACEEXIT;
1882 
1883     // Have the tracer trace threads which spawn in the inferior process.
1884     // TODO: if we want to support tracing the inferiors' child, add the
1885     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1886     ptrace_opts |= PTRACE_O_TRACECLONE;
1887 
1888     // Have the tracer notify us before execve returns
1889     // (needed to disable legacy SIGTRAP generation)
1890     ptrace_opts |= PTRACE_O_TRACEEXEC;
1891 
1892     Error error;
1893     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1894     return error;
1895 }
1896 
1897 static ExitType convert_pid_status_to_exit_type (int status)
1898 {
1899     if (WIFEXITED (status))
1900         return ExitType::eExitTypeExit;
1901     else if (WIFSIGNALED (status))
1902         return ExitType::eExitTypeSignal;
1903     else if (WIFSTOPPED (status))
1904         return ExitType::eExitTypeStop;
1905     else
1906     {
1907         // We don't know what this is.
1908         return ExitType::eExitTypeInvalid;
1909     }
1910 }
1911 
1912 static int convert_pid_status_to_return_code (int status)
1913 {
1914     if (WIFEXITED (status))
1915         return WEXITSTATUS (status);
1916     else if (WIFSIGNALED (status))
1917         return WTERMSIG (status);
1918     else if (WIFSTOPPED (status))
1919         return WSTOPSIG (status);
1920     else
1921     {
1922         // We don't know what this is.
1923         return ExitType::eExitTypeInvalid;
1924     }
1925 }
1926 
1927 // Main process monitoring waitpid-loop handler.
1928 bool
1929 NativeProcessLinux::MonitorCallback(void *callback_baton,
1930                                 lldb::pid_t pid,
1931                                 bool exited,
1932                                 int signal,
1933                                 int status)
1934 {
1935     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1936 
1937     NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton);
1938     assert (process && "process is null");
1939     if (!process)
1940     {
1941         if (log)
1942             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid);
1943         return true;
1944     }
1945 
1946     // Certain activities differ based on whether the pid is the tid of the main thread.
1947     const bool is_main_thread = (pid == process->GetID ());
1948 
1949     // Assume we keep monitoring by default.
1950     bool stop_monitoring = false;
1951 
1952     // Handle when the thread exits.
1953     if (exited)
1954     {
1955         if (log)
1956             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1957 
1958         // This is a thread that exited.  Ensure we're not tracking it anymore.
1959         const bool thread_found = process->StopTrackingThread (pid);
1960 
1961         // Make sure the thread state coordinator knows about this.
1962         process->NotifyThreadDeath (pid);
1963 
1964         if (is_main_thread)
1965         {
1966             // We only set the exit status and notify the delegate if we haven't already set the process
1967             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1968             // for the main thread.
1969             const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed);
1970             if (!already_notified)
1971             {
1972                 if (log)
1973                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ()));
1974                 // The main thread exited.  We're done monitoring.  Report to delegate.
1975                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1976 
1977                 // Notify delegate that our process has exited.
1978                 process->SetState (StateType::eStateExited, true);
1979             }
1980             else
1981             {
1982                 if (log)
1983                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1984             }
1985             return true;
1986         }
1987         else
1988         {
1989             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1990             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1991             // and we would have done an all-stop then.
1992             if (log)
1993                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1994 
1995             // Not the main thread, we keep going.
1996             return false;
1997         }
1998     }
1999 
2000     // Get details on the signal raised.
2001     siginfo_t info;
2002     const auto err = process->GetSignalInfo(pid, &info);
2003     if (err.Success())
2004     {
2005         // We have retrieved the signal info.  Dispatch appropriately.
2006         if (info.si_signo == SIGTRAP)
2007             process->MonitorSIGTRAP(&info, pid);
2008         else
2009             process->MonitorSignal(&info, pid, exited);
2010 
2011         stop_monitoring = false;
2012     }
2013     else
2014     {
2015         if (err.GetError() == EINVAL)
2016         {
2017             // This is a group stop reception for this tid.
2018             if (log)
2019                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid);
2020             process->NotifyThreadStop (pid);
2021         }
2022         else
2023         {
2024             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2025 
2026             // A return value of ESRCH means the thread/process is no longer on the system,
2027             // so it was killed somehow outside of our control.  Either way, we can't do anything
2028             // with it anymore.
2029 
2030             // We stop monitoring if it was the main thread.
2031             stop_monitoring = is_main_thread;
2032 
2033             // Stop tracking the metadata for the thread since it's entirely off the system now.
2034             const bool thread_found = process->StopTrackingThread (pid);
2035 
2036             // Make sure the thread state coordinator knows about this.
2037             process->NotifyThreadDeath (pid);
2038 
2039             if (log)
2040                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2041                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2042 
2043             if (is_main_thread)
2044             {
2045                 // Notify the delegate - our process is not available but appears to have been killed outside
2046                 // our control.  Is eStateExited the right exit state in this case?
2047                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2048                 process->SetState (StateType::eStateExited, true);
2049             }
2050             else
2051             {
2052                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2053                 if (log)
2054                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid);
2055             }
2056         }
2057     }
2058 
2059     return stop_monitoring;
2060 }
2061 
2062 void
2063 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2064 {
2065     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2066     const bool is_main_thread = (pid == GetID ());
2067 
2068     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2069     if (!info)
2070         return;
2071 
2072     Mutex::Locker locker (m_threads_mutex);
2073 
2074     // See if we can find a thread for this signal.
2075     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2076     if (!thread_sp)
2077     {
2078         if (log)
2079             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2080     }
2081 
2082     switch (info->si_code)
2083     {
2084     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2085     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2086     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2087 
2088     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2089     {
2090         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
2091 
2092         // The main thread is stopped here.
2093         if (thread_sp)
2094             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2095         NotifyThreadStop (pid);
2096 
2097         unsigned long event_message = 0;
2098         if (GetEventMessage (pid, &event_message).Success())
2099         {
2100             tid = static_cast<lldb::tid_t> (event_message);
2101             if (log)
2102                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
2103 
2104             // If we don't track the thread yet: create it, mark as stopped.
2105             // If we do track it, this is the wait we needed.  Now resume the new thread.
2106             // In all cases, resume the current (i.e. main process) thread.
2107             bool created_now = false;
2108             NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now);
2109             assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2110 
2111             // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation.
2112             if (!created_now)
2113             {
2114                 // We can now resume the newly created thread since it is fully created.
2115                 NotifyThreadCreateStopped (tid);
2116                 m_coordinator_up->RequestThreadResume (tid,
2117                                                        [=](lldb::tid_t tid_to_resume, bool supress_signal)
2118                                                        {
2119                                                            reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning ();
2120                                                            return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2121                                                        },
2122                                                        CoordinatorErrorHandler);
2123             }
2124             else
2125             {
2126                 // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2127                 // this thread is ready to go.
2128                 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching ();
2129             }
2130         }
2131         else
2132         {
2133             if (log)
2134                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2135         }
2136 
2137         // In all cases, we can resume the main thread here.
2138         m_coordinator_up->RequestThreadResume (pid,
2139                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2140                                                {
2141                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2142                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2143                                                },
2144                                                CoordinatorErrorHandler);
2145 
2146         break;
2147     }
2148 
2149     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2150     {
2151         NativeThreadProtocolSP main_thread_sp;
2152         if (log)
2153             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2154 
2155         // The thread state coordinator needs to reset due to the exec.
2156         m_coordinator_up->ResetForExec ();
2157 
2158         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2159         if (log)
2160             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2161 
2162         for (auto thread_sp : m_threads)
2163         {
2164             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2165             if (is_main_thread)
2166             {
2167                 main_thread_sp = thread_sp;
2168                 if (log)
2169                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2170             }
2171             else
2172             {
2173                 // Tell thread coordinator this thread is dead.
2174                 if (log)
2175                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2176             }
2177         }
2178 
2179         m_threads.clear ();
2180 
2181         if (main_thread_sp)
2182         {
2183             m_threads.push_back (main_thread_sp);
2184             SetCurrentThreadID (main_thread_sp->GetID ());
2185             reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec ();
2186         }
2187         else
2188         {
2189             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2190             if (log)
2191                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2192         }
2193 
2194         // Tell coordinator about about the "new" (since exec) stopped main thread.
2195         const lldb::tid_t main_thread_tid = GetID ();
2196         NotifyThreadCreateStopped (main_thread_tid);
2197 
2198         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2199         // Consider a handler that can execute when that happens.
2200         // Let our delegate know we have just exec'd.
2201         NotifyDidExec ();
2202 
2203         // If we have a main thread, indicate we are stopped.
2204         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2205 
2206         // Let the process know we're stopped.
2207         CallAfterRunningThreadsStop (pid,
2208                                      [=] (lldb::tid_t signaling_tid)
2209                                      {
2210                                          SetState (StateType::eStateStopped, true);
2211                                      });
2212 
2213         break;
2214     }
2215 
2216     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2217     {
2218         // The inferior process or one of its threads is about to exit.
2219 
2220         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2221         NotifyThreadStop (pid);
2222 
2223         unsigned long data = 0;
2224         if (GetEventMessage(pid, &data).Fail())
2225             data = -1;
2226 
2227         if (log)
2228         {
2229             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2230                          __FUNCTION__,
2231                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2232                          pid,
2233                     is_main_thread ? "is main thread" : "not main thread");
2234         }
2235 
2236         if (is_main_thread)
2237         {
2238             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2239         }
2240 
2241         const int signo = static_cast<int> (data);
2242         m_coordinator_up->RequestThreadResume (pid,
2243                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2244                                                {
2245                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2246                                                    return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2247                                                },
2248                                                CoordinatorErrorHandler);
2249 
2250         break;
2251     }
2252 
2253     case 0:
2254     case TRAP_TRACE:
2255         // We receive this on single stepping.
2256         if (log)
2257             log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid);
2258 
2259         if (thread_sp)
2260         {
2261             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace ();
2262         }
2263 
2264         // This thread is currently stopped.
2265         NotifyThreadStop (pid);
2266 
2267         // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2268         // This would have already happened at the time the Resume() with step operation was signaled.
2269         // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2270         // once all running threads have checked in as stopped.
2271         SetCurrentThreadID (pid);
2272         // Tell the process we have a stop (from software breakpoint).
2273         CallAfterRunningThreadsStop (pid,
2274                                      [=] (lldb::tid_t signaling_tid)
2275                                      {
2276                                          SetState (StateType::eStateStopped, true);
2277                                      });
2278         break;
2279 
2280     case SI_KERNEL:
2281     case TRAP_BRKPT:
2282         if (log)
2283             log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2284 
2285         // This thread is currently stopped.
2286         NotifyThreadStop (pid);
2287 
2288         // Mark the thread as stopped at breakpoint.
2289         if (thread_sp)
2290         {
2291             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint ();
2292             Error error = FixupBreakpointPCAsNeeded (thread_sp);
2293             if (error.Fail ())
2294             {
2295                 if (log)
2296                     log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ());
2297             }
2298         }
2299         else
2300         {
2301             if (log)
2302                 log->Printf ("NativeProcessLinux::%s()  pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid);
2303         }
2304 
2305 
2306         // We need to tell all other running threads before we notify the delegate about this stop.
2307         CallAfterRunningThreadsStop (pid,
2308                                      [=](lldb::tid_t deferred_notification_tid)
2309                                      {
2310                                          SetCurrentThreadID (deferred_notification_tid);
2311                                          // Tell the process we have a stop (from software breakpoint).
2312                                          SetState (StateType::eStateStopped, true);
2313                                      });
2314         break;
2315 
2316     case TRAP_HWBKPT:
2317         if (log)
2318             log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2319 
2320         // This thread is currently stopped.
2321         NotifyThreadStop (pid);
2322 
2323         // Mark the thread as stopped at watchpoint.
2324         // The address is at (lldb::addr_t)info->si_addr if we need it.
2325         if (thread_sp)
2326             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByWatchpoint ();
2327         else
2328         {
2329             if (log)
2330                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid);
2331         }
2332 
2333         // We need to tell all other running threads before we notify the delegate about this stop.
2334         CallAfterRunningThreadsStop (pid,
2335                                      [=](lldb::tid_t deferred_notification_tid)
2336                                      {
2337                                          SetCurrentThreadID (deferred_notification_tid);
2338                                          // Tell the process we have a stop (from hardware breakpoint).
2339                                          SetState (StateType::eStateStopped, true);
2340                                      });
2341         break;
2342 
2343     case SIGTRAP:
2344     case (SIGTRAP | 0x80):
2345         if (log)
2346             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2347 
2348         // This thread is currently stopped.
2349         NotifyThreadStop (pid);
2350         if (thread_sp)
2351             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2352 
2353 
2354         // Ignore these signals until we know more about them.
2355         m_coordinator_up->RequestThreadResume (pid,
2356                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2357                                                {
2358                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2359                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2360                                                },
2361                                                CoordinatorErrorHandler);
2362         break;
2363 
2364     default:
2365         assert(false && "Unexpected SIGTRAP code!");
2366         if (log)
2367             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2368         break;
2369 
2370     }
2371 }
2372 
2373 void
2374 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2375 {
2376     assert (info && "null info");
2377     if (!info)
2378         return;
2379 
2380     const int signo = info->si_signo;
2381     const bool is_from_llgs = info->si_pid == getpid ();
2382 
2383     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2384 
2385     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2386     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2387     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2388     //
2389     // IOW, user generated signals never generate what we consider to be a
2390     // "crash".
2391     //
2392     // Similarly, ACK signals generated by this monitor.
2393 
2394     Mutex::Locker locker (m_threads_mutex);
2395 
2396     // See if we can find a thread for this signal.
2397     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2398     if (!thread_sp)
2399     {
2400         if (log)
2401             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2402     }
2403 
2404     // Handle the signal.
2405     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2406     {
2407         if (log)
2408             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2409                             __FUNCTION__,
2410                             GetUnixSignals ().GetSignalAsCString (signo),
2411                             signo,
2412                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2413                             info->si_pid,
2414                             is_from_llgs ? "from llgs" : "not from llgs",
2415                             pid);
2416     }
2417 
2418     // Check for new thread notification.
2419     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2420     {
2421         // A new thread creation is being signaled.  This is one of two parts that come in
2422         // a non-deterministic order.  pid is the thread id.
2423         if (log)
2424             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2425                      __FUNCTION__, GetID (), pid);
2426 
2427         // Did we already create the thread?
2428         bool created_now = false;
2429         thread_sp = GetOrCreateThread (pid, created_now);
2430         assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2431 
2432         // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create.
2433         if (!created_now)
2434         {
2435             // We can now resume the newly created thread since it is fully created.
2436             NotifyThreadCreateStopped (pid);
2437             m_coordinator_up->RequestThreadResume (pid,
2438                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2439                                                    {
2440                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2441                                                        return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2442                                                    },
2443                                                    CoordinatorErrorHandler);
2444         }
2445         else
2446         {
2447             // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2448             // this thread is ready to go.
2449             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
2450         }
2451 
2452         // Done handling.
2453         return;
2454     }
2455 
2456     // Check for thread stop notification.
2457     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2458     {
2459         // This is a tgkill()-based stop.
2460         if (thread_sp)
2461         {
2462             if (log)
2463                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2464                              __FUNCTION__,
2465                              GetID (),
2466                              pid);
2467 
2468             // Check that we're not already marked with a stop reason.
2469             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2470             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2471             // and that, without an intervening resume, we received another stop.  It is more likely
2472             // that we are missing the marking of a run state somewhere if we find that the thread was
2473             // marked as stopped.
2474             NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ());
2475             assert (linux_thread_p && "linux_thread_p is null!");
2476 
2477             const StateType thread_state = linux_thread_p->GetState ();
2478             if (!StateIsStoppedState (thread_state, false))
2479             {
2480                 // An inferior thread just stopped, but was not the primary cause of the process stop.
2481                 // Instead, something else (like a breakpoint or step) caused the stop.  Mark the
2482                 // stop signal as 0 to let lldb know this isn't the important stop.
2483                 linux_thread_p->SetStoppedBySignal (0);
2484                 SetCurrentThreadID (thread_sp->GetID ());
2485                 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler);
2486             }
2487             else
2488             {
2489                 if (log)
2490                 {
2491                     // Retrieve the signal name if the thread was stopped by a signal.
2492                     int stop_signo = 0;
2493                     const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo);
2494                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2495                     if (!signal_name)
2496                         signal_name = "<no-signal-name>";
2497 
2498                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2499                                  __FUNCTION__,
2500                                  GetID (),
2501                                  linux_thread_p->GetID (),
2502                                  StateAsCString (thread_state),
2503                                  stop_signo,
2504                                  signal_name);
2505                 }
2506                 // Tell the thread state coordinator about the stop.
2507                 NotifyThreadStop (thread_sp->GetID ());
2508             }
2509         }
2510 
2511         // Done handling.
2512         return;
2513     }
2514 
2515     if (log)
2516         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2517 
2518     // This thread is stopped.
2519     NotifyThreadStop (pid);
2520 
2521     switch (signo)
2522     {
2523     case SIGSTOP:
2524         {
2525             if (log)
2526             {
2527                 if (is_from_llgs)
2528                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2529                 else
2530                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2531             }
2532 
2533             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2534             // This thread will get stopped again as part of the group-stop completion.
2535             m_coordinator_up->RequestThreadResume (pid,
2536                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2537                                                    {
2538                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2539                                                        // Pass this signal number on to the inferior to handle.
2540                                                        return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2541                                                    },
2542                                                    CoordinatorErrorHandler);
2543         }
2544         break;
2545     case SIGSEGV:
2546     case SIGILL:
2547     case SIGFPE:
2548     case SIGBUS:
2549         if (thread_sp)
2550             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info);
2551         break;
2552     default:
2553         // This is just a pre-signal-delivery notification of the incoming signal.
2554         if (thread_sp)
2555             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2556 
2557         break;
2558     }
2559 
2560     // Send a stop to the debugger after we get all other threads to stop.
2561     CallAfterRunningThreadsStop (pid,
2562                                  [=] (lldb::tid_t signaling_tid)
2563                                  {
2564                                      SetCurrentThreadID (signaling_tid);
2565                                      SetState (StateType::eStateStopped, true);
2566                                  });
2567 }
2568 
2569 Error
2570 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2571 {
2572     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2573     if (log)
2574         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2575 
2576     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
2577     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
2578     int deferred_signo = 0;
2579     NativeThreadProtocolSP deferred_signal_thread_sp;
2580     bool stepping = false;
2581 
2582     Mutex::Locker locker (m_threads_mutex);
2583 
2584     for (auto thread_sp : m_threads)
2585     {
2586         assert (thread_sp && "thread list should not contain NULL threads");
2587 
2588         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2589 
2590         if (action == nullptr)
2591         {
2592             if (log)
2593                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2594                     __FUNCTION__, GetID (), thread_sp->GetID ());
2595             continue;
2596         }
2597 
2598         if (log)
2599         {
2600             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2601                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2602         }
2603 
2604         switch (action->state)
2605         {
2606         case eStateRunning:
2607         {
2608             // Run the thread, possibly feeding it the signal.
2609             const int signo = action->signal;
2610             m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (),
2611                                                            [=](lldb::tid_t tid_to_resume, bool supress_signal)
2612                                                            {
2613                                                                reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2614                                                                // Pass this signal number on to the inferior to handle.
2615                                                                const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2616                                                                if (resume_result.Success())
2617                                                                    SetState(eStateRunning, true);
2618                                                                return resume_result;
2619                                                            },
2620                                                            CoordinatorErrorHandler);
2621             break;
2622         }
2623 
2624         case eStateStepping:
2625         {
2626             // Request the step.
2627             const int signo = action->signal;
2628             m_coordinator_up->RequestThreadResume (thread_sp->GetID (),
2629                                                    [=](lldb::tid_t tid_to_step, bool supress_signal)
2630                                                    {
2631                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping ();
2632                                                        const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2633                                                        assert (step_result.Success() && "SingleStep() failed");
2634                                                        if (step_result.Success())
2635                                                            SetState(eStateStepping, true);
2636                                                        return step_result;
2637                                                    },
2638                                                    CoordinatorErrorHandler);
2639             stepping = true;
2640             break;
2641         }
2642 
2643         case eStateSuspended:
2644         case eStateStopped:
2645             // if we haven't chosen a deferred signal tid yet, use this one.
2646             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
2647             {
2648                 deferred_signal_tid = thread_sp->GetID ();
2649                 deferred_signal_thread_sp = thread_sp;
2650                 deferred_signo = SIGSTOP;
2651             }
2652             break;
2653 
2654         default:
2655             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2656                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2657         }
2658     }
2659 
2660     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
2661     // after all other running threads have stopped.
2662     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
2663     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
2664     {
2665         CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid,
2666                                                 deferred_signal_skip_tid,
2667                                      [=](lldb::tid_t deferred_notification_tid)
2668                                      {
2669                                          // Set the signal thread to the current thread.
2670                                          SetCurrentThreadID (deferred_notification_tid);
2671 
2672                                          // Set the thread state as stopped by the deferred signo.
2673                                          reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo);
2674 
2675                                          // Tell the process delegate that the process is in a stopped state.
2676                                          SetState (StateType::eStateStopped, true);
2677                                      });
2678     }
2679 
2680     return Error();
2681 }
2682 
2683 Error
2684 NativeProcessLinux::Halt ()
2685 {
2686     Error error;
2687 
2688     if (kill (GetID (), SIGSTOP) != 0)
2689         error.SetErrorToErrno ();
2690 
2691     return error;
2692 }
2693 
2694 Error
2695 NativeProcessLinux::Detach ()
2696 {
2697     Error error;
2698 
2699     // Tell ptrace to detach from the process.
2700     if (GetID () != LLDB_INVALID_PROCESS_ID)
2701         error = Detach (GetID ());
2702 
2703     // Stop monitoring the inferior.
2704     StopMonitor ();
2705 
2706     // No error.
2707     return error;
2708 }
2709 
2710 Error
2711 NativeProcessLinux::Signal (int signo)
2712 {
2713     Error error;
2714 
2715     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2716     if (log)
2717         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2718                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2719 
2720     if (kill(GetID(), signo))
2721         error.SetErrorToErrno();
2722 
2723     return error;
2724 }
2725 
2726 Error
2727 NativeProcessLinux::Interrupt ()
2728 {
2729     // Pick a running thread (or if none, a not-dead stopped thread) as
2730     // the chosen thread that will be the stop-reason thread.
2731     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2732 
2733     NativeThreadProtocolSP running_thread_sp;
2734     NativeThreadProtocolSP stopped_thread_sp;
2735 
2736     if (log)
2737         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2738 
2739     Mutex::Locker locker (m_threads_mutex);
2740 
2741     for (auto thread_sp : m_threads)
2742     {
2743         // The thread shouldn't be null but lets just cover that here.
2744         if (!thread_sp)
2745             continue;
2746 
2747         // If we have a running or stepping thread, we'll call that the
2748         // target of the interrupt.
2749         const auto thread_state = thread_sp->GetState ();
2750         if (thread_state == eStateRunning ||
2751             thread_state == eStateStepping)
2752         {
2753             running_thread_sp = thread_sp;
2754             break;
2755         }
2756         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2757         {
2758             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2759             stopped_thread_sp = thread_sp;
2760         }
2761     }
2762 
2763     if (!running_thread_sp && !stopped_thread_sp)
2764     {
2765         Error error("found no running/stepping or live stopped threads as target for interrupt");
2766         if (log)
2767             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2768 
2769         return error;
2770     }
2771 
2772     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2773 
2774     if (log)
2775         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2776                      __FUNCTION__,
2777                      GetID (),
2778                      running_thread_sp ? "running" : "stopped",
2779                      deferred_signal_thread_sp->GetID ());
2780 
2781     CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (),
2782                                  [=](lldb::tid_t deferred_notification_tid)
2783                                  {
2784                                      // Set the signal thread to the current thread.
2785                                      SetCurrentThreadID (deferred_notification_tid);
2786 
2787                                      // Set the thread state as stopped by the deferred signo.
2788                                      reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
2789 
2790                                      // Tell the process delegate that the process is in a stopped state.
2791                                      SetState (StateType::eStateStopped, true);
2792                                  });
2793     return Error();
2794 }
2795 
2796 Error
2797 NativeProcessLinux::Kill ()
2798 {
2799     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2800     if (log)
2801         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2802 
2803     Error error;
2804 
2805     switch (m_state)
2806     {
2807         case StateType::eStateInvalid:
2808         case StateType::eStateExited:
2809         case StateType::eStateCrashed:
2810         case StateType::eStateDetached:
2811         case StateType::eStateUnloaded:
2812             // Nothing to do - the process is already dead.
2813             if (log)
2814                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2815             return error;
2816 
2817         case StateType::eStateConnected:
2818         case StateType::eStateAttaching:
2819         case StateType::eStateLaunching:
2820         case StateType::eStateStopped:
2821         case StateType::eStateRunning:
2822         case StateType::eStateStepping:
2823         case StateType::eStateSuspended:
2824             // We can try to kill a process in these states.
2825             break;
2826     }
2827 
2828     if (kill (GetID (), SIGKILL) != 0)
2829     {
2830         error.SetErrorToErrno ();
2831         return error;
2832     }
2833 
2834     return error;
2835 }
2836 
2837 static Error
2838 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2839 {
2840     memory_region_info.Clear();
2841 
2842     StringExtractor line_extractor (maps_line.c_str ());
2843 
2844     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2845     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2846 
2847     // Parse out the starting address
2848     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2849 
2850     // Parse out hyphen separating start and end address from range.
2851     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2852         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2853 
2854     // Parse out the ending address
2855     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2856 
2857     // Parse out the space after the address.
2858     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2859         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2860 
2861     // Save the range.
2862     memory_region_info.GetRange ().SetRangeBase (start_address);
2863     memory_region_info.GetRange ().SetRangeEnd (end_address);
2864 
2865     // Parse out each permission entry.
2866     if (line_extractor.GetBytesLeft () < 4)
2867         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2868 
2869     // Handle read permission.
2870     const char read_perm_char = line_extractor.GetChar ();
2871     if (read_perm_char == 'r')
2872         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2873     else
2874     {
2875         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2876         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2877     }
2878 
2879     // Handle write permission.
2880     const char write_perm_char = line_extractor.GetChar ();
2881     if (write_perm_char == 'w')
2882         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2883     else
2884     {
2885         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2886         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2887     }
2888 
2889     // Handle execute permission.
2890     const char exec_perm_char = line_extractor.GetChar ();
2891     if (exec_perm_char == 'x')
2892         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2893     else
2894     {
2895         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2896         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2897     }
2898 
2899     return Error ();
2900 }
2901 
2902 Error
2903 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2904 {
2905     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2906     // with no perms if it is not mapped.
2907 
2908     // Use an approach that reads memory regions from /proc/{pid}/maps.
2909     // Assume proc maps entries are in ascending order.
2910     // FIXME assert if we find differently.
2911     Mutex::Locker locker (m_mem_region_cache_mutex);
2912 
2913     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2914     Error error;
2915 
2916     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2917     {
2918         // We're done.
2919         error.SetErrorString ("unsupported");
2920         return error;
2921     }
2922 
2923     // If our cache is empty, pull the latest.  There should always be at least one memory region
2924     // if memory region handling is supported.
2925     if (m_mem_region_cache.empty ())
2926     {
2927         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2928              [&] (const std::string &line) -> bool
2929              {
2930                  MemoryRegionInfo info;
2931                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2932                  if (parse_error.Success ())
2933                  {
2934                      m_mem_region_cache.push_back (info);
2935                      return true;
2936                  }
2937                  else
2938                  {
2939                      if (log)
2940                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2941                      return false;
2942                  }
2943              });
2944 
2945         // If we had an error, we'll mark unsupported.
2946         if (error.Fail ())
2947         {
2948             m_supports_mem_region = LazyBool::eLazyBoolNo;
2949             return error;
2950         }
2951         else if (m_mem_region_cache.empty ())
2952         {
2953             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2954             // is supported.  Assume we don't support map entries via procfs.
2955             if (log)
2956                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2957             m_supports_mem_region = LazyBool::eLazyBoolNo;
2958             error.SetErrorString ("not supported");
2959             return error;
2960         }
2961 
2962         if (log)
2963             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2964 
2965         // We support memory retrieval, remember that.
2966         m_supports_mem_region = LazyBool::eLazyBoolYes;
2967     }
2968     else
2969     {
2970         if (log)
2971             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2972     }
2973 
2974     lldb::addr_t prev_base_address = 0;
2975 
2976     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2977     // There can be a ton of regions on pthreads apps with lots of threads.
2978     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2979     {
2980         MemoryRegionInfo &proc_entry_info = *it;
2981 
2982         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2983         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2984         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2985 
2986         // If the target address comes before this entry, indicate distance to next region.
2987         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2988         {
2989             range_info.GetRange ().SetRangeBase (load_addr);
2990             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2991             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2992             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2993             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2994 
2995             return error;
2996         }
2997         else if (proc_entry_info.GetRange ().Contains (load_addr))
2998         {
2999             // The target address is within the memory region we're processing here.
3000             range_info = proc_entry_info;
3001             return error;
3002         }
3003 
3004         // The target memory address comes somewhere after the region we just parsed.
3005     }
3006 
3007     // If we made it here, we didn't find an entry that contained the given address.
3008     error.SetErrorString ("address comes after final region");
3009 
3010     if (log)
3011         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3012 
3013     return error;
3014 }
3015 
3016 void
3017 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3018 {
3019     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3020     if (log)
3021         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3022 
3023     {
3024         Mutex::Locker locker (m_mem_region_cache_mutex);
3025         if (log)
3026             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3027         m_mem_region_cache.clear ();
3028     }
3029 }
3030 
3031 Error
3032 NativeProcessLinux::AllocateMemory (
3033     lldb::addr_t size,
3034     uint32_t permissions,
3035     lldb::addr_t &addr)
3036 {
3037     // FIXME implementing this requires the equivalent of
3038     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3039     // functional ThreadPlans working with Native*Protocol.
3040 #if 1
3041     return Error ("not implemented yet");
3042 #else
3043     addr = LLDB_INVALID_ADDRESS;
3044 
3045     unsigned prot = 0;
3046     if (permissions & lldb::ePermissionsReadable)
3047         prot |= eMmapProtRead;
3048     if (permissions & lldb::ePermissionsWritable)
3049         prot |= eMmapProtWrite;
3050     if (permissions & lldb::ePermissionsExecutable)
3051         prot |= eMmapProtExec;
3052 
3053     // TODO implement this directly in NativeProcessLinux
3054     // (and lift to NativeProcessPOSIX if/when that class is
3055     // refactored out).
3056     if (InferiorCallMmap(this, addr, 0, size, prot,
3057                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3058         m_addr_to_mmap_size[addr] = size;
3059         return Error ();
3060     } else {
3061         addr = LLDB_INVALID_ADDRESS;
3062         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3063     }
3064 #endif
3065 }
3066 
3067 Error
3068 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3069 {
3070     // FIXME see comments in AllocateMemory - required lower-level
3071     // bits not in place yet (ThreadPlans)
3072     return Error ("not implemented");
3073 }
3074 
3075 lldb::addr_t
3076 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3077 {
3078 #if 1
3079     // punt on this for now
3080     return LLDB_INVALID_ADDRESS;
3081 #else
3082     // Return the image info address for the exe module
3083 #if 1
3084     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3085 
3086     ModuleSP module_sp;
3087     Error error = GetExeModuleSP (module_sp);
3088     if (error.Fail ())
3089     {
3090          if (log)
3091             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3092         return LLDB_INVALID_ADDRESS;
3093     }
3094 
3095     if (module_sp == nullptr)
3096     {
3097          if (log)
3098             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3099          return LLDB_INVALID_ADDRESS;
3100     }
3101 
3102     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3103     if (object_file_sp == nullptr)
3104     {
3105          if (log)
3106             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3107          return LLDB_INVALID_ADDRESS;
3108     }
3109 
3110     return obj_file_sp->GetImageInfoAddress();
3111 #else
3112     Target *target = &GetTarget();
3113     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3114     Address addr = obj_file->GetImageInfoAddress(target);
3115 
3116     if (addr.IsValid())
3117         return addr.GetLoadAddress(target);
3118     return LLDB_INVALID_ADDRESS;
3119 #endif
3120 #endif // punt on this for now
3121 }
3122 
3123 size_t
3124 NativeProcessLinux::UpdateThreads ()
3125 {
3126     // The NativeProcessLinux monitoring threads are always up to date
3127     // with respect to thread state and they keep the thread list
3128     // populated properly. All this method needs to do is return the
3129     // thread count.
3130     Mutex::Locker locker (m_threads_mutex);
3131     return m_threads.size ();
3132 }
3133 
3134 bool
3135 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3136 {
3137     arch = m_arch;
3138     return true;
3139 }
3140 
3141 Error
3142 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3143 {
3144     // FIXME put this behind a breakpoint protocol class that can be
3145     // set per architecture.  Need ARM, MIPS support here.
3146     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3147     static const uint8_t g_i386_opcode [] = { 0xCC };
3148 
3149     switch (m_arch.GetMachine ())
3150     {
3151         case llvm::Triple::aarch64:
3152             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3153             return Error ();
3154 
3155         case llvm::Triple::x86:
3156         case llvm::Triple::x86_64:
3157             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3158             return Error ();
3159 
3160         default:
3161             assert(false && "CPU type not supported!");
3162             return Error ("CPU type not supported");
3163     }
3164 }
3165 
3166 Error
3167 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3168 {
3169     if (hardware)
3170         return Error ("NativeProcessLinux does not support hardware breakpoints");
3171     else
3172         return SetSoftwareBreakpoint (addr, size);
3173 }
3174 
3175 Error
3176 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes)
3177 {
3178     // FIXME put this behind a breakpoint protocol class that can be
3179     // set per architecture.  Need ARM, MIPS support here.
3180     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3181     static const uint8_t g_i386_opcode [] = { 0xCC };
3182 
3183     switch (m_arch.GetMachine ())
3184     {
3185     case llvm::Triple::aarch64:
3186         trap_opcode_bytes = g_aarch64_opcode;
3187         actual_opcode_size = sizeof(g_aarch64_opcode);
3188         return Error ();
3189 
3190     case llvm::Triple::x86:
3191     case llvm::Triple::x86_64:
3192         trap_opcode_bytes = g_i386_opcode;
3193         actual_opcode_size = sizeof(g_i386_opcode);
3194         return Error ();
3195 
3196     default:
3197         assert(false && "CPU type not supported!");
3198         return Error ("CPU type not supported");
3199     }
3200 }
3201 
3202 #if 0
3203 ProcessMessage::CrashReason
3204 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3205 {
3206     ProcessMessage::CrashReason reason;
3207     assert(info->si_signo == SIGSEGV);
3208 
3209     reason = ProcessMessage::eInvalidCrashReason;
3210 
3211     switch (info->si_code)
3212     {
3213     default:
3214         assert(false && "unexpected si_code for SIGSEGV");
3215         break;
3216     case SI_KERNEL:
3217         // Linux will occasionally send spurious SI_KERNEL codes.
3218         // (this is poorly documented in sigaction)
3219         // One way to get this is via unaligned SIMD loads.
3220         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3221         break;
3222     case SEGV_MAPERR:
3223         reason = ProcessMessage::eInvalidAddress;
3224         break;
3225     case SEGV_ACCERR:
3226         reason = ProcessMessage::ePrivilegedAddress;
3227         break;
3228     }
3229 
3230     return reason;
3231 }
3232 #endif
3233 
3234 
3235 #if 0
3236 ProcessMessage::CrashReason
3237 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3238 {
3239     ProcessMessage::CrashReason reason;
3240     assert(info->si_signo == SIGILL);
3241 
3242     reason = ProcessMessage::eInvalidCrashReason;
3243 
3244     switch (info->si_code)
3245     {
3246     default:
3247         assert(false && "unexpected si_code for SIGILL");
3248         break;
3249     case ILL_ILLOPC:
3250         reason = ProcessMessage::eIllegalOpcode;
3251         break;
3252     case ILL_ILLOPN:
3253         reason = ProcessMessage::eIllegalOperand;
3254         break;
3255     case ILL_ILLADR:
3256         reason = ProcessMessage::eIllegalAddressingMode;
3257         break;
3258     case ILL_ILLTRP:
3259         reason = ProcessMessage::eIllegalTrap;
3260         break;
3261     case ILL_PRVOPC:
3262         reason = ProcessMessage::ePrivilegedOpcode;
3263         break;
3264     case ILL_PRVREG:
3265         reason = ProcessMessage::ePrivilegedRegister;
3266         break;
3267     case ILL_COPROC:
3268         reason = ProcessMessage::eCoprocessorError;
3269         break;
3270     case ILL_BADSTK:
3271         reason = ProcessMessage::eInternalStackError;
3272         break;
3273     }
3274 
3275     return reason;
3276 }
3277 #endif
3278 
3279 #if 0
3280 ProcessMessage::CrashReason
3281 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3282 {
3283     ProcessMessage::CrashReason reason;
3284     assert(info->si_signo == SIGFPE);
3285 
3286     reason = ProcessMessage::eInvalidCrashReason;
3287 
3288     switch (info->si_code)
3289     {
3290     default:
3291         assert(false && "unexpected si_code for SIGFPE");
3292         break;
3293     case FPE_INTDIV:
3294         reason = ProcessMessage::eIntegerDivideByZero;
3295         break;
3296     case FPE_INTOVF:
3297         reason = ProcessMessage::eIntegerOverflow;
3298         break;
3299     case FPE_FLTDIV:
3300         reason = ProcessMessage::eFloatDivideByZero;
3301         break;
3302     case FPE_FLTOVF:
3303         reason = ProcessMessage::eFloatOverflow;
3304         break;
3305     case FPE_FLTUND:
3306         reason = ProcessMessage::eFloatUnderflow;
3307         break;
3308     case FPE_FLTRES:
3309         reason = ProcessMessage::eFloatInexactResult;
3310         break;
3311     case FPE_FLTINV:
3312         reason = ProcessMessage::eFloatInvalidOperation;
3313         break;
3314     case FPE_FLTSUB:
3315         reason = ProcessMessage::eFloatSubscriptRange;
3316         break;
3317     }
3318 
3319     return reason;
3320 }
3321 #endif
3322 
3323 #if 0
3324 ProcessMessage::CrashReason
3325 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3326 {
3327     ProcessMessage::CrashReason reason;
3328     assert(info->si_signo == SIGBUS);
3329 
3330     reason = ProcessMessage::eInvalidCrashReason;
3331 
3332     switch (info->si_code)
3333     {
3334     default:
3335         assert(false && "unexpected si_code for SIGBUS");
3336         break;
3337     case BUS_ADRALN:
3338         reason = ProcessMessage::eIllegalAlignment;
3339         break;
3340     case BUS_ADRERR:
3341         reason = ProcessMessage::eIllegalAddress;
3342         break;
3343     case BUS_OBJERR:
3344         reason = ProcessMessage::eHardwareError;
3345         break;
3346     }
3347 
3348     return reason;
3349 }
3350 #endif
3351 
3352 void
3353 NativeProcessLinux::ServeOperation(OperationArgs *args)
3354 {
3355     NativeProcessLinux *monitor = args->m_monitor;
3356 
3357     // We are finised with the arguments and are ready to go.  Sync with the
3358     // parent thread and start serving operations on the inferior.
3359     sem_post(&args->m_semaphore);
3360 
3361     for(;;)
3362     {
3363         // wait for next pending operation
3364         if (sem_wait(&monitor->m_operation_pending))
3365         {
3366             if (errno == EINTR)
3367                 continue;
3368             assert(false && "Unexpected errno from sem_wait");
3369         }
3370 
3371         reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor);
3372 
3373         // notify calling thread that operation is complete
3374         sem_post(&monitor->m_operation_done);
3375     }
3376 }
3377 
3378 void
3379 NativeProcessLinux::DoOperation(void *op)
3380 {
3381     Mutex::Locker lock(m_operation_mutex);
3382 
3383     m_operation = op;
3384 
3385     // notify operation thread that an operation is ready to be processed
3386     sem_post(&m_operation_pending);
3387 
3388     // wait for operation to complete
3389     while (sem_wait(&m_operation_done))
3390     {
3391         if (errno == EINTR)
3392             continue;
3393         assert(false && "Unexpected errno from sem_wait");
3394     }
3395 }
3396 
3397 Error
3398 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3399 {
3400     ReadOperation op(addr, buf, size, bytes_read);
3401     DoOperation(&op);
3402     return op.GetError ();
3403 }
3404 
3405 Error
3406 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3407 {
3408     WriteOperation op(addr, buf, size, bytes_written);
3409     DoOperation(&op);
3410     return op.GetError ();
3411 }
3412 
3413 Error
3414 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3415                                   uint32_t size, RegisterValue &value)
3416 {
3417     ReadRegOperation op(tid, offset, reg_name, value);
3418     DoOperation(&op);
3419     return op.GetError();
3420 }
3421 
3422 Error
3423 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3424                                    const char* reg_name, const RegisterValue &value)
3425 {
3426     WriteRegOperation op(tid, offset, reg_name, value);
3427     DoOperation(&op);
3428     return op.GetError();
3429 }
3430 
3431 Error
3432 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3433 {
3434     ReadGPROperation op(tid, buf, buf_size);
3435     DoOperation(&op);
3436     return op.GetError();
3437 }
3438 
3439 Error
3440 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3441 {
3442     ReadFPROperation op(tid, buf, buf_size);
3443     DoOperation(&op);
3444     return op.GetError();
3445 }
3446 
3447 Error
3448 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3449 {
3450     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3451     DoOperation(&op);
3452     return op.GetError();
3453 }
3454 
3455 Error
3456 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3457 {
3458     WriteGPROperation op(tid, buf, buf_size);
3459     DoOperation(&op);
3460     return op.GetError();
3461 }
3462 
3463 Error
3464 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3465 {
3466     WriteFPROperation op(tid, buf, buf_size);
3467     DoOperation(&op);
3468     return op.GetError();
3469 }
3470 
3471 Error
3472 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3473 {
3474     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3475     DoOperation(&op);
3476     return op.GetError();
3477 }
3478 
3479 Error
3480 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3481 {
3482     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3483 
3484     if (log)
3485         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3486                                  GetUnixSignals().GetSignalAsCString (signo));
3487     ResumeOperation op (tid, signo);
3488     DoOperation (&op);
3489     if (log)
3490         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3491     return op.GetError();
3492 }
3493 
3494 Error
3495 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3496 {
3497     SingleStepOperation op(tid, signo);
3498     DoOperation(&op);
3499     return op.GetError();
3500 }
3501 
3502 Error
3503 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3504 {
3505     SiginfoOperation op(tid, siginfo);
3506     DoOperation(&op);
3507     return op.GetError();
3508 }
3509 
3510 Error
3511 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3512 {
3513     EventMessageOperation op(tid, message);
3514     DoOperation(&op);
3515     return op.GetError();
3516 }
3517 
3518 lldb_private::Error
3519 NativeProcessLinux::Detach(lldb::tid_t tid)
3520 {
3521     if (tid == LLDB_INVALID_THREAD_ID)
3522         return Error();
3523 
3524     DetachOperation op(tid);
3525     DoOperation(&op);
3526     return op.GetError();
3527 }
3528 
3529 bool
3530 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3531 {
3532     int target_fd = open(path, flags, 0666);
3533 
3534     if (target_fd == -1)
3535         return false;
3536 
3537     if (dup2(target_fd, fd) == -1)
3538         return false;
3539 
3540     return (close(target_fd) == -1) ? false : true;
3541 }
3542 
3543 void
3544 NativeProcessLinux::StopMonitoringChildProcess()
3545 {
3546     if (m_monitor_thread.IsJoinable())
3547     {
3548         m_monitor_thread.Cancel();
3549         m_monitor_thread.Join(nullptr);
3550     }
3551 }
3552 
3553 void
3554 NativeProcessLinux::StopMonitor()
3555 {
3556     StopMonitoringChildProcess();
3557     StopOpThread();
3558     StopCoordinatorThread ();
3559     sem_destroy(&m_operation_pending);
3560     sem_destroy(&m_operation_done);
3561 
3562     // TODO: validate whether this still holds, fix up comment.
3563     // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
3564     // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
3565     // the descriptor to a ConnectionFileDescriptor object.  Consequently
3566     // even though still has the file descriptor, we shouldn't close it here.
3567 }
3568 
3569 void
3570 NativeProcessLinux::StopOpThread()
3571 {
3572     if (!m_operation_thread.IsJoinable())
3573         return;
3574 
3575     m_operation_thread.Cancel();
3576     m_operation_thread.Join(nullptr);
3577 }
3578 
3579 Error
3580 NativeProcessLinux::StartCoordinatorThread ()
3581 {
3582     Error error;
3583     static const char *g_thread_name = "lldb.process.linux.ts_coordinator";
3584     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3585 
3586     // Skip if thread is already running
3587     if (m_coordinator_thread.IsJoinable())
3588     {
3589         error.SetErrorString ("ThreadStateCoordinator's run loop is already running");
3590         if (log)
3591             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ());
3592         return error;
3593     }
3594 
3595     // Enable verbose logging if lldb thread logging is enabled.
3596     m_coordinator_up->LogEnableEventProcessing (log != nullptr);
3597 
3598     if (log)
3599         log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ());
3600     m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error);
3601     return error;
3602 }
3603 
3604 void *
3605 NativeProcessLinux::CoordinatorThread (void *arg)
3606 {
3607     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3608 
3609     NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg);
3610     assert (process && "null process passed to CoordinatorThread");
3611     if (!process)
3612     {
3613         if (log)
3614             log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__);
3615         return nullptr;
3616     }
3617 
3618     // Run the thread state coordinator loop until it is done.  This call uses
3619     // efficient waiting for an event to be ready.
3620     while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue)
3621     {
3622     }
3623 
3624     if (log)
3625         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ());
3626 
3627     return nullptr;
3628 }
3629 
3630 void
3631 NativeProcessLinux::StopCoordinatorThread()
3632 {
3633     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3634     if (log)
3635         log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ());
3636 
3637     // Tell the coordinator we're done.  This will cause the coordinator
3638     // run loop thread to exit when the processing queue hits this message.
3639     m_coordinator_up->StopCoordinator ();
3640 }
3641 
3642 bool
3643 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3644 {
3645     for (auto thread_sp : m_threads)
3646     {
3647         assert (thread_sp && "thread list should not contain NULL threads");
3648         if (thread_sp->GetID () == thread_id)
3649         {
3650             // We have this thread.
3651             return true;
3652         }
3653     }
3654 
3655     // We don't have this thread.
3656     return false;
3657 }
3658 
3659 NativeThreadProtocolSP
3660 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3661 {
3662     // CONSIDER organize threads by map - we can do better than linear.
3663     for (auto thread_sp : m_threads)
3664     {
3665         if (thread_sp->GetID () == thread_id)
3666             return thread_sp;
3667     }
3668 
3669     // We don't have this thread.
3670     return NativeThreadProtocolSP ();
3671 }
3672 
3673 bool
3674 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3675 {
3676     Mutex::Locker locker (m_threads_mutex);
3677     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3678     {
3679         if (*it && ((*it)->GetID () == thread_id))
3680         {
3681             m_threads.erase (it);
3682             return true;
3683         }
3684     }
3685 
3686     // Didn't find it.
3687     return false;
3688 }
3689 
3690 NativeThreadProtocolSP
3691 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3692 {
3693     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3694 
3695     Mutex::Locker locker (m_threads_mutex);
3696 
3697     if (log)
3698     {
3699         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3700                 __FUNCTION__,
3701                 GetID (),
3702                 thread_id);
3703     }
3704 
3705     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3706 
3707     // If this is the first thread, save it as the current thread
3708     if (m_threads.empty ())
3709         SetCurrentThreadID (thread_id);
3710 
3711     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3712     m_threads.push_back (thread_sp);
3713 
3714     return thread_sp;
3715 }
3716 
3717 NativeThreadProtocolSP
3718 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created)
3719 {
3720     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3721 
3722     Mutex::Locker locker (m_threads_mutex);
3723     if (log)
3724     {
3725         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64,
3726                      __FUNCTION__,
3727                      GetID (),
3728                      thread_id);
3729     }
3730 
3731     // Retrieve the thread if it is already getting tracked.
3732     NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id);
3733     if (thread_sp)
3734     {
3735         if (log)
3736             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning",
3737                          __FUNCTION__,
3738                          GetID (),
3739                          thread_id);
3740         created = false;
3741         return thread_sp;
3742 
3743     }
3744 
3745     // Create the thread metadata since it isn't being tracked.
3746     if (log)
3747         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now",
3748                      __FUNCTION__,
3749                      GetID (),
3750                      thread_id);
3751 
3752     thread_sp.reset (new NativeThreadLinux (this, thread_id));
3753     m_threads.push_back (thread_sp);
3754     created = true;
3755 
3756     return thread_sp;
3757 }
3758 
3759 Error
3760 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3761 {
3762     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3763 
3764     Error error;
3765 
3766     // Get a linux thread pointer.
3767     if (!thread_sp)
3768     {
3769         error.SetErrorString ("null thread_sp");
3770         if (log)
3771             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3772         return error;
3773     }
3774     NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get());
3775 
3776     // Find out the size of a breakpoint (might depend on where we are in the code).
3777     NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext ();
3778     if (!context_sp)
3779     {
3780         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3781         if (log)
3782             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3783         return error;
3784     }
3785 
3786     uint32_t breakpoint_size = 0;
3787     error = GetSoftwareBreakpointSize (context_sp, breakpoint_size);
3788     if (error.Fail ())
3789     {
3790         if (log)
3791             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3792         return error;
3793     }
3794     else
3795     {
3796         if (log)
3797             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3798     }
3799 
3800     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3801     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3802     lldb::addr_t breakpoint_addr = initial_pc_addr;
3803     if (breakpoint_size > static_cast<lldb::addr_t> (0))
3804     {
3805         // Do not allow breakpoint probe to wrap around.
3806         if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
3807             breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
3808     }
3809 
3810     // Check if we stopped because of a breakpoint.
3811     NativeBreakpointSP breakpoint_sp;
3812     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3813     if (!error.Success () || !breakpoint_sp)
3814     {
3815         // We didn't find one at a software probe location.  Nothing to do.
3816         if (log)
3817             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3818         return Error ();
3819     }
3820 
3821     // If the breakpoint is not a software breakpoint, nothing to do.
3822     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3823     {
3824         if (log)
3825             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3826         return Error ();
3827     }
3828 
3829     //
3830     // We have a software breakpoint and need to adjust the PC.
3831     //
3832 
3833     // Sanity check.
3834     if (breakpoint_size == 0)
3835     {
3836         // Nothing to do!  How did we get here?
3837         if (log)
3838             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3839         return Error ();
3840     }
3841 
3842     // Change the program counter.
3843     if (log)
3844         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr);
3845 
3846     error = context_sp->SetPC (breakpoint_addr);
3847     if (error.Fail ())
3848     {
3849         if (log)
3850             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ());
3851         return error;
3852     }
3853 
3854     return error;
3855 }
3856 
3857 void
3858 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
3859 {
3860     const bool is_stopped = true;
3861     m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler);
3862 }
3863 
3864 void
3865 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
3866 {
3867     m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler);
3868 }
3869 
3870 void
3871 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid)
3872 {
3873     m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler);
3874 }
3875 
3876 void
3877 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid,
3878                                                  const std::function<void (lldb::tid_t tid)> &call_after_function)
3879 {
3880     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3881     if (log)
3882         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid);
3883 
3884     const lldb::pid_t pid = GetID ();
3885     m_coordinator_up->CallAfterRunningThreadsStop (tid,
3886                                                    [=](lldb::tid_t request_stop_tid)
3887                                                    {
3888                                                        return RequestThreadStop(pid, request_stop_tid);
3889                                                    },
3890                                                    call_after_function,
3891                                                    CoordinatorErrorHandler);
3892 }
3893 
3894 void
3895 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid,
3896                                                             lldb::tid_t skip_stop_request_tid,
3897                                                             const std::function<void (lldb::tid_t tid)> &call_after_function)
3898 {
3899     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3900     if (log)
3901         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
3902 
3903     const lldb::pid_t pid = GetID ();
3904     m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid,
3905                                                                skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (),
3906                                                                [=](lldb::tid_t request_stop_tid)
3907                                                                {
3908                                                                    return RequestThreadStop(pid, request_stop_tid);
3909                                                                },
3910                                                                call_after_function,
3911                                                                CoordinatorErrorHandler);
3912 }
3913 
3914 lldb_private::Error
3915 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
3916 {
3917     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3918     if (log)
3919         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
3920 
3921     Error err;
3922     errno = 0;
3923     if (::tgkill (pid, tid, SIGSTOP) != 0)
3924     {
3925         err.SetErrorToErrno ();
3926         if (log)
3927             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
3928     }
3929 
3930     return err;
3931 }
3932