1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 #if defined (__arm64__) || defined (__aarch64__) 22 // NT_PRSTATUS and NT_FPREGSET definition 23 #include <elf.h> 24 #endif 25 26 // C++ Includes 27 #include <fstream> 28 #include <string> 29 30 // Other libraries and framework includes 31 #include "lldb/Core/Debugger.h" 32 #include "lldb/Core/Error.h" 33 #include "lldb/Core/Module.h" 34 #include "lldb/Core/ModuleSpec.h" 35 #include "lldb/Core/RegisterValue.h" 36 #include "lldb/Core/Scalar.h" 37 #include "lldb/Core/State.h" 38 #include "lldb/Host/Host.h" 39 #include "lldb/Host/HostInfo.h" 40 #include "lldb/Host/ThreadLauncher.h" 41 #include "lldb/Symbol/ObjectFile.h" 42 #include "lldb/Host/common/NativeRegisterContext.h" 43 #include "lldb/Target/ProcessLaunchInfo.h" 44 #include "lldb/Utility/PseudoTerminal.h" 45 46 #include "lldb/Host/common/NativeBreakpoint.h" 47 #include "Utility/StringExtractor.h" 48 49 #include "Plugins/Process/Utility/LinuxSignals.h" 50 #include "NativeThreadLinux.h" 51 #include "ProcFileReader.h" 52 #include "ThreadStateCoordinator.h" 53 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 54 55 // System includes - They have to be included after framework includes because they define some 56 // macros which collide with variable names in other modules 57 #include <linux/unistd.h> 58 #ifndef __ANDROID__ 59 #include <sys/procfs.h> 60 #endif 61 #include <sys/personality.h> 62 #include <sys/ptrace.h> 63 #include <sys/socket.h> 64 #include <sys/syscall.h> 65 #include <sys/types.h> 66 #include <sys/uio.h> 67 #include <sys/user.h> 68 #include <sys/wait.h> 69 70 #ifdef __ANDROID__ 71 #define __ptrace_request int 72 #define PT_DETACH PTRACE_DETACH 73 #endif 74 75 #define DEBUG_PTRACE_MAXBYTES 20 76 77 // Support ptrace extensions even when compiled without required kernel support 78 #ifndef PT_GETREGS 79 #ifndef PTRACE_GETREGS 80 #define PTRACE_GETREGS 12 81 #endif 82 #endif 83 #ifndef PT_SETREGS 84 #ifndef PTRACE_SETREGS 85 #define PTRACE_SETREGS 13 86 #endif 87 #endif 88 #ifndef PT_GETFPREGS 89 #ifndef PTRACE_GETFPREGS 90 #define PTRACE_GETFPREGS 14 91 #endif 92 #endif 93 #ifndef PT_SETFPREGS 94 #ifndef PTRACE_SETFPREGS 95 #define PTRACE_SETFPREGS 15 96 #endif 97 #endif 98 #ifndef PTRACE_GETREGSET 99 #define PTRACE_GETREGSET 0x4204 100 #endif 101 #ifndef PTRACE_SETREGSET 102 #define PTRACE_SETREGSET 0x4205 103 #endif 104 #ifndef PTRACE_GET_THREAD_AREA 105 #define PTRACE_GET_THREAD_AREA 25 106 #endif 107 #ifndef PTRACE_ARCH_PRCTL 108 #define PTRACE_ARCH_PRCTL 30 109 #endif 110 #ifndef ARCH_GET_FS 111 #define ARCH_SET_GS 0x1001 112 #define ARCH_SET_FS 0x1002 113 #define ARCH_GET_FS 0x1003 114 #define ARCH_GET_GS 0x1004 115 #endif 116 117 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 118 119 // Support hardware breakpoints in case it has not been defined 120 #ifndef TRAP_HWBKPT 121 #define TRAP_HWBKPT 4 122 #endif 123 124 // Try to define a macro to encapsulate the tgkill syscall 125 // fall back on kill() if tgkill isn't available 126 #define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig) 127 128 // We disable the tracing of ptrace calls for integration builds to 129 // avoid the additional indirection and checks. 130 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 131 #define PTRACE(req, pid, addr, data, data_size, error) \ 132 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 133 #else 134 #define PTRACE(req, pid, addr, data, data_size, error) \ 135 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 136 #endif 137 138 // Private bits we only need internally. 139 namespace 140 { 141 using namespace lldb; 142 using namespace lldb_private; 143 144 const UnixSignals& 145 GetUnixSignals () 146 { 147 static process_linux::LinuxSignals signals; 148 return signals; 149 } 150 151 ThreadStateCoordinator::LogFunction 152 GetThreadLoggerFunction () 153 { 154 return [](const char *format, va_list args) 155 { 156 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 157 if (log) 158 log->VAPrintf (format, args); 159 }; 160 } 161 162 void 163 CoordinatorErrorHandler (const std::string &error_message) 164 { 165 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 166 if (log) 167 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 168 assert (false && "ThreadStateCoordinator error reported"); 169 } 170 171 Error 172 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 173 { 174 // Grab process info for the running process. 175 ProcessInstanceInfo process_info; 176 if (!platform.GetProcessInfo (pid, process_info)) 177 return lldb_private::Error("failed to get process info"); 178 179 // Resolve the executable module. 180 ModuleSP exe_module_sp; 181 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), platform.GetSystemArchitecture ()); 182 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 183 Error error = platform.ResolveExecutable( 184 exe_module_spec, 185 exe_module_sp, 186 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 187 188 if (!error.Success ()) 189 return error; 190 191 // Check if we've got our architecture from the exe_module. 192 arch = exe_module_sp->GetArchitecture (); 193 if (arch.IsValid ()) 194 return Error(); 195 else 196 return Error("failed to retrieve a valid architecture from the exe module"); 197 } 198 199 void 200 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) 201 { 202 uint8_t *ptr = (uint8_t *)bytes; 203 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 204 for(uint32_t i=0; i<loop_count; i++) 205 { 206 s.Printf ("[%x]", *ptr); 207 ptr++; 208 } 209 } 210 211 void 212 PtraceDisplayBytes(int &req, void *data, size_t data_size) 213 { 214 StreamString buf; 215 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 216 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 217 218 if (verbose_log) 219 { 220 switch(req) 221 { 222 case PTRACE_POKETEXT: 223 { 224 DisplayBytes(buf, &data, 8); 225 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 226 break; 227 } 228 case PTRACE_POKEDATA: 229 { 230 DisplayBytes(buf, &data, 8); 231 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 232 break; 233 } 234 case PTRACE_POKEUSER: 235 { 236 DisplayBytes(buf, &data, 8); 237 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 238 break; 239 } 240 case PTRACE_SETREGS: 241 { 242 DisplayBytes(buf, data, data_size); 243 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 244 break; 245 } 246 case PTRACE_SETFPREGS: 247 { 248 DisplayBytes(buf, data, data_size); 249 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 250 break; 251 } 252 case PTRACE_SETSIGINFO: 253 { 254 DisplayBytes(buf, data, sizeof(siginfo_t)); 255 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 256 break; 257 } 258 case PTRACE_SETREGSET: 259 { 260 // Extract iov_base from data, which is a pointer to the struct IOVEC 261 DisplayBytes(buf, *(void **)data, data_size); 262 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 263 break; 264 } 265 default: 266 { 267 } 268 } 269 } 270 } 271 272 // Wrapper for ptrace to catch errors and log calls. 273 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 274 long 275 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 276 const char* reqName, const char* file, int line) 277 { 278 long int result; 279 280 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 281 282 PtraceDisplayBytes(req, data, data_size); 283 284 error.Clear(); 285 errno = 0; 286 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 287 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 288 else 289 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 290 291 if (result == -1) 292 error.SetErrorToErrno(); 293 294 if (log) 295 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 296 reqName, pid, addr, data, data_size, result, file, line); 297 298 PtraceDisplayBytes(req, data, data_size); 299 300 if (log && error.GetError() != 0) 301 { 302 const char* str; 303 switch (error.GetError()) 304 { 305 case ESRCH: str = "ESRCH"; break; 306 case EINVAL: str = "EINVAL"; break; 307 case EBUSY: str = "EBUSY"; break; 308 case EPERM: str = "EPERM"; break; 309 default: str = error.AsCString(); 310 } 311 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 312 } 313 314 return result; 315 } 316 317 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 318 // Wrapper for ptrace when logging is not required. 319 // Sets errno to 0 prior to calling ptrace. 320 long 321 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 322 { 323 long result = 0; 324 325 error.Clear(); 326 errno = 0; 327 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 328 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 329 else 330 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 331 332 if (result == -1) 333 error.SetErrorToErrno(); 334 return result; 335 } 336 #endif 337 338 //------------------------------------------------------------------------------ 339 // Static implementations of NativeProcessLinux::ReadMemory and 340 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 341 // functions without needed to go thru the thread funnel. 342 343 lldb::addr_t 344 DoReadMemory ( 345 lldb::pid_t pid, 346 lldb::addr_t vm_addr, 347 void *buf, 348 lldb::addr_t size, 349 Error &error) 350 { 351 // ptrace word size is determined by the host, not the child 352 static const unsigned word_size = sizeof(void*); 353 unsigned char *dst = static_cast<unsigned char*>(buf); 354 lldb::addr_t bytes_read; 355 lldb::addr_t remainder; 356 long data; 357 358 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 359 if (log) 360 ProcessPOSIXLog::IncNestLevel(); 361 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 362 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 363 pid, word_size, (void*)vm_addr, buf, size); 364 365 assert(sizeof(data) >= word_size); 366 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 367 { 368 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 369 if (error.Fail()) 370 { 371 if (log) 372 ProcessPOSIXLog::DecNestLevel(); 373 return bytes_read; 374 } 375 376 remainder = size - bytes_read; 377 remainder = remainder > word_size ? word_size : remainder; 378 379 // Copy the data into our buffer 380 for (unsigned i = 0; i < remainder; ++i) 381 dst[i] = ((data >> i*8) & 0xFF); 382 383 if (log && ProcessPOSIXLog::AtTopNestLevel() && 384 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 385 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 386 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 387 { 388 uintptr_t print_dst = 0; 389 // Format bytes from data by moving into print_dst for log output 390 for (unsigned i = 0; i < remainder; ++i) 391 print_dst |= (((data >> i*8) & 0xFF) << i*8); 392 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 393 (void*)vm_addr, print_dst, (unsigned long)data); 394 } 395 396 vm_addr += word_size; 397 dst += word_size; 398 } 399 400 if (log) 401 ProcessPOSIXLog::DecNestLevel(); 402 return bytes_read; 403 } 404 405 lldb::addr_t 406 DoWriteMemory( 407 lldb::pid_t pid, 408 lldb::addr_t vm_addr, 409 const void *buf, 410 lldb::addr_t size, 411 Error &error) 412 { 413 // ptrace word size is determined by the host, not the child 414 static const unsigned word_size = sizeof(void*); 415 const unsigned char *src = static_cast<const unsigned char*>(buf); 416 lldb::addr_t bytes_written = 0; 417 lldb::addr_t remainder; 418 419 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 420 if (log) 421 ProcessPOSIXLog::IncNestLevel(); 422 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 423 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 424 pid, word_size, (void*)vm_addr, buf, size); 425 426 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 427 { 428 remainder = size - bytes_written; 429 remainder = remainder > word_size ? word_size : remainder; 430 431 if (remainder == word_size) 432 { 433 unsigned long data = 0; 434 assert(sizeof(data) >= word_size); 435 for (unsigned i = 0; i < word_size; ++i) 436 data |= (unsigned long)src[i] << i*8; 437 438 if (log && ProcessPOSIXLog::AtTopNestLevel() && 439 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 440 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 441 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 442 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 443 (void*)vm_addr, *(unsigned long*)src, data); 444 445 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 446 { 447 if (log) 448 ProcessPOSIXLog::DecNestLevel(); 449 return bytes_written; 450 } 451 } 452 else 453 { 454 unsigned char buff[8]; 455 if (DoReadMemory(pid, vm_addr, 456 buff, word_size, error) != word_size) 457 { 458 if (log) 459 ProcessPOSIXLog::DecNestLevel(); 460 return bytes_written; 461 } 462 463 memcpy(buff, src, remainder); 464 465 if (DoWriteMemory(pid, vm_addr, 466 buff, word_size, error) != word_size) 467 { 468 if (log) 469 ProcessPOSIXLog::DecNestLevel(); 470 return bytes_written; 471 } 472 473 if (log && ProcessPOSIXLog::AtTopNestLevel() && 474 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 475 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 476 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 477 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 478 (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff); 479 } 480 481 vm_addr += word_size; 482 src += word_size; 483 } 484 if (log) 485 ProcessPOSIXLog::DecNestLevel(); 486 return bytes_written; 487 } 488 489 //------------------------------------------------------------------------------ 490 /// @class Operation 491 /// @brief Represents a NativeProcessLinux operation. 492 /// 493 /// Under Linux, it is not possible to ptrace() from any other thread but the 494 /// one that spawned or attached to the process from the start. Therefore, when 495 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 496 /// process the operation must be "funneled" to a specific thread to perform the 497 /// task. The Operation class provides an abstract base for all services the 498 /// NativeProcessLinux must perform via the single virtual function Execute, thus 499 /// encapsulating the code that needs to run in the privileged context. 500 class Operation 501 { 502 public: 503 Operation () : m_error() { } 504 505 virtual 506 ~Operation() {} 507 508 virtual void 509 Execute (NativeProcessLinux *process) = 0; 510 511 const Error & 512 GetError () const { return m_error; } 513 514 protected: 515 Error m_error; 516 }; 517 518 //------------------------------------------------------------------------------ 519 /// @class ReadOperation 520 /// @brief Implements NativeProcessLinux::ReadMemory. 521 class ReadOperation : public Operation 522 { 523 public: 524 ReadOperation ( 525 lldb::addr_t addr, 526 void *buff, 527 lldb::addr_t size, 528 lldb::addr_t &result) : 529 Operation (), 530 m_addr (addr), 531 m_buff (buff), 532 m_size (size), 533 m_result (result) 534 { 535 } 536 537 void Execute (NativeProcessLinux *process) override; 538 539 private: 540 lldb::addr_t m_addr; 541 void *m_buff; 542 lldb::addr_t m_size; 543 lldb::addr_t &m_result; 544 }; 545 546 void 547 ReadOperation::Execute (NativeProcessLinux *process) 548 { 549 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 550 } 551 552 //------------------------------------------------------------------------------ 553 /// @class WriteOperation 554 /// @brief Implements NativeProcessLinux::WriteMemory. 555 class WriteOperation : public Operation 556 { 557 public: 558 WriteOperation ( 559 lldb::addr_t addr, 560 const void *buff, 561 lldb::addr_t size, 562 lldb::addr_t &result) : 563 Operation (), 564 m_addr (addr), 565 m_buff (buff), 566 m_size (size), 567 m_result (result) 568 { 569 } 570 571 void Execute (NativeProcessLinux *process) override; 572 573 private: 574 lldb::addr_t m_addr; 575 const void *m_buff; 576 lldb::addr_t m_size; 577 lldb::addr_t &m_result; 578 }; 579 580 void 581 WriteOperation::Execute(NativeProcessLinux *process) 582 { 583 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 584 } 585 586 //------------------------------------------------------------------------------ 587 /// @class ReadRegOperation 588 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 589 class ReadRegOperation : public Operation 590 { 591 public: 592 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 593 RegisterValue &value) 594 : m_tid(tid), 595 m_offset(static_cast<uintptr_t> (offset)), 596 m_reg_name(reg_name), 597 m_value(value) 598 { } 599 600 void Execute(NativeProcessLinux *monitor); 601 602 private: 603 lldb::tid_t m_tid; 604 uintptr_t m_offset; 605 const char *m_reg_name; 606 RegisterValue &m_value; 607 }; 608 609 void 610 ReadRegOperation::Execute(NativeProcessLinux *monitor) 611 { 612 #if defined (__arm64__) || defined (__aarch64__) 613 if (m_offset > sizeof(struct user_pt_regs)) 614 { 615 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 616 if (offset > sizeof(struct user_fpsimd_state)) 617 { 618 m_error.SetErrorString("invalid offset value"); 619 return; 620 } 621 elf_fpregset_t regs; 622 int regset = NT_FPREGSET; 623 struct iovec ioVec; 624 625 ioVec.iov_base = ®s; 626 ioVec.iov_len = sizeof regs; 627 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 628 if (m_error.Success()) 629 { 630 lldb_private::ArchSpec arch; 631 if (monitor->GetArchitecture(arch)) 632 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 633 else 634 m_error.SetErrorString("failed to get architecture"); 635 } 636 } 637 else 638 { 639 elf_gregset_t regs; 640 int regset = NT_PRSTATUS; 641 struct iovec ioVec; 642 643 ioVec.iov_base = ®s; 644 ioVec.iov_len = sizeof regs; 645 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 646 if (m_error.Success()) 647 { 648 lldb_private::ArchSpec arch; 649 if (monitor->GetArchitecture(arch)) 650 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 651 else 652 m_error.SetErrorString("failed to get architecture"); 653 } 654 } 655 #else 656 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 657 658 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error); 659 if (m_error.Success()) 660 m_value = data; 661 662 if (log) 663 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 664 m_reg_name, data); 665 #endif 666 } 667 668 //------------------------------------------------------------------------------ 669 /// @class WriteRegOperation 670 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 671 class WriteRegOperation : public Operation 672 { 673 public: 674 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 675 const RegisterValue &value) 676 : m_tid(tid), 677 m_offset(offset), 678 m_reg_name(reg_name), 679 m_value(value) 680 { } 681 682 void Execute(NativeProcessLinux *monitor); 683 684 private: 685 lldb::tid_t m_tid; 686 uintptr_t m_offset; 687 const char *m_reg_name; 688 const RegisterValue &m_value; 689 }; 690 691 void 692 WriteRegOperation::Execute(NativeProcessLinux *monitor) 693 { 694 #if defined (__arm64__) || defined (__aarch64__) 695 if (m_offset > sizeof(struct user_pt_regs)) 696 { 697 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 698 if (offset > sizeof(struct user_fpsimd_state)) 699 { 700 m_error.SetErrorString("invalid offset value"); 701 return; 702 } 703 elf_fpregset_t regs; 704 int regset = NT_FPREGSET; 705 struct iovec ioVec; 706 707 ioVec.iov_base = ®s; 708 ioVec.iov_len = sizeof regs; 709 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 710 if (m_error.Sucess()) 711 { 712 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 713 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 714 } 715 } 716 else 717 { 718 elf_gregset_t regs; 719 int regset = NT_PRSTATUS; 720 struct iovec ioVec; 721 722 ioVec.iov_base = ®s; 723 ioVec.iov_len = sizeof regs; 724 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 725 if (m_error.Sucess()) 726 { 727 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 728 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 729 } 730 } 731 #else 732 void* buf; 733 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 734 735 buf = (void*) m_value.GetAsUInt64(); 736 737 if (log) 738 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 739 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 740 #endif 741 } 742 743 //------------------------------------------------------------------------------ 744 /// @class ReadGPROperation 745 /// @brief Implements NativeProcessLinux::ReadGPR. 746 class ReadGPROperation : public Operation 747 { 748 public: 749 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 750 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 751 { } 752 753 void Execute(NativeProcessLinux *monitor); 754 755 private: 756 lldb::tid_t m_tid; 757 void *m_buf; 758 size_t m_buf_size; 759 }; 760 761 void 762 ReadGPROperation::Execute(NativeProcessLinux *monitor) 763 { 764 #if defined (__arm64__) || defined (__aarch64__) 765 int regset = NT_PRSTATUS; 766 struct iovec ioVec; 767 768 ioVec.iov_base = m_buf; 769 ioVec.iov_len = m_buf_size; 770 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 771 #else 772 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 773 #endif 774 } 775 776 //------------------------------------------------------------------------------ 777 /// @class ReadFPROperation 778 /// @brief Implements NativeProcessLinux::ReadFPR. 779 class ReadFPROperation : public Operation 780 { 781 public: 782 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 783 : m_tid(tid), 784 m_buf(buf), 785 m_buf_size(buf_size) 786 { } 787 788 void Execute(NativeProcessLinux *monitor); 789 790 private: 791 lldb::tid_t m_tid; 792 void *m_buf; 793 size_t m_buf_size; 794 }; 795 796 void 797 ReadFPROperation::Execute(NativeProcessLinux *monitor) 798 { 799 #if defined (__arm64__) || defined (__aarch64__) 800 int regset = NT_FPREGSET; 801 struct iovec ioVec; 802 803 ioVec.iov_base = m_buf; 804 ioVec.iov_len = m_buf_size; 805 if (PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size) < 0) 806 m_result = false; 807 else 808 m_result = true; 809 #else 810 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 811 #endif 812 } 813 814 //------------------------------------------------------------------------------ 815 /// @class ReadRegisterSetOperation 816 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 817 class ReadRegisterSetOperation : public Operation 818 { 819 public: 820 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 821 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 822 { } 823 824 void Execute(NativeProcessLinux *monitor); 825 826 private: 827 lldb::tid_t m_tid; 828 void *m_buf; 829 size_t m_buf_size; 830 const unsigned int m_regset; 831 }; 832 833 void 834 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 835 { 836 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 837 } 838 839 //------------------------------------------------------------------------------ 840 /// @class WriteGPROperation 841 /// @brief Implements NativeProcessLinux::WriteGPR. 842 class WriteGPROperation : public Operation 843 { 844 public: 845 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 846 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 847 { } 848 849 void Execute(NativeProcessLinux *monitor); 850 851 private: 852 lldb::tid_t m_tid; 853 void *m_buf; 854 size_t m_buf_size; 855 }; 856 857 void 858 WriteGPROperation::Execute(NativeProcessLinux *monitor) 859 { 860 #if defined (__arm64__) || defined (__aarch64__) 861 int regset = NT_PRSTATUS; 862 struct iovec ioVec; 863 864 ioVec.iov_base = m_buf; 865 ioVec.iov_len = m_buf_size; 866 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 867 #else 868 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 869 #endif 870 } 871 872 //------------------------------------------------------------------------------ 873 /// @class WriteFPROperation 874 /// @brief Implements NativeProcessLinux::WriteFPR. 875 class WriteFPROperation : public Operation 876 { 877 public: 878 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 879 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 880 { } 881 882 void Execute(NativeProcessLinux *monitor); 883 884 private: 885 lldb::tid_t m_tid; 886 void *m_buf; 887 size_t m_buf_size; 888 }; 889 890 void 891 WriteFPROperation::Execute(NativeProcessLinux *monitor) 892 { 893 #if defined (__arm64__) || defined (__aarch64__) 894 int regset = NT_FPREGSET; 895 struct iovec ioVec; 896 897 ioVec.iov_base = m_buf; 898 ioVec.iov_len = m_buf_size; 899 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 900 #else 901 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 902 #endif 903 } 904 905 //------------------------------------------------------------------------------ 906 /// @class WriteRegisterSetOperation 907 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 908 class WriteRegisterSetOperation : public Operation 909 { 910 public: 911 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 912 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 913 { } 914 915 void Execute(NativeProcessLinux *monitor); 916 917 private: 918 lldb::tid_t m_tid; 919 void *m_buf; 920 size_t m_buf_size; 921 const unsigned int m_regset; 922 }; 923 924 void 925 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 926 { 927 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 928 } 929 930 //------------------------------------------------------------------------------ 931 /// @class ResumeOperation 932 /// @brief Implements NativeProcessLinux::Resume. 933 class ResumeOperation : public Operation 934 { 935 public: 936 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 937 m_tid(tid), m_signo(signo) { } 938 939 void Execute(NativeProcessLinux *monitor); 940 941 private: 942 lldb::tid_t m_tid; 943 uint32_t m_signo; 944 }; 945 946 void 947 ResumeOperation::Execute(NativeProcessLinux *monitor) 948 { 949 intptr_t data = 0; 950 951 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 952 data = m_signo; 953 954 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 955 if (m_error.Fail()) 956 { 957 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 958 959 if (log) 960 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 961 } 962 } 963 964 //------------------------------------------------------------------------------ 965 /// @class SingleStepOperation 966 /// @brief Implements NativeProcessLinux::SingleStep. 967 class SingleStepOperation : public Operation 968 { 969 public: 970 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 971 : m_tid(tid), m_signo(signo) { } 972 973 void Execute(NativeProcessLinux *monitor); 974 975 private: 976 lldb::tid_t m_tid; 977 uint32_t m_signo; 978 }; 979 980 void 981 SingleStepOperation::Execute(NativeProcessLinux *monitor) 982 { 983 intptr_t data = 0; 984 985 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 986 data = m_signo; 987 988 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 989 } 990 991 //------------------------------------------------------------------------------ 992 /// @class SiginfoOperation 993 /// @brief Implements NativeProcessLinux::GetSignalInfo. 994 class SiginfoOperation : public Operation 995 { 996 public: 997 SiginfoOperation(lldb::tid_t tid, void *info) 998 : m_tid(tid), m_info(info) { } 999 1000 void Execute(NativeProcessLinux *monitor); 1001 1002 private: 1003 lldb::tid_t m_tid; 1004 void *m_info; 1005 }; 1006 1007 void 1008 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1009 { 1010 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1011 } 1012 1013 //------------------------------------------------------------------------------ 1014 /// @class EventMessageOperation 1015 /// @brief Implements NativeProcessLinux::GetEventMessage. 1016 class EventMessageOperation : public Operation 1017 { 1018 public: 1019 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1020 : m_tid(tid), m_message(message) { } 1021 1022 void Execute(NativeProcessLinux *monitor); 1023 1024 private: 1025 lldb::tid_t m_tid; 1026 unsigned long *m_message; 1027 }; 1028 1029 void 1030 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1031 { 1032 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1033 } 1034 1035 class DetachOperation : public Operation 1036 { 1037 public: 1038 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1039 1040 void Execute(NativeProcessLinux *monitor); 1041 1042 private: 1043 lldb::tid_t m_tid; 1044 }; 1045 1046 void 1047 DetachOperation::Execute(NativeProcessLinux *monitor) 1048 { 1049 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1050 } 1051 1052 } 1053 1054 using namespace lldb_private; 1055 1056 // Simple helper function to ensure flags are enabled on the given file 1057 // descriptor. 1058 static bool 1059 EnsureFDFlags(int fd, int flags, Error &error) 1060 { 1061 int status; 1062 1063 if ((status = fcntl(fd, F_GETFL)) == -1) 1064 { 1065 error.SetErrorToErrno(); 1066 return false; 1067 } 1068 1069 if (fcntl(fd, F_SETFL, status | flags) == -1) 1070 { 1071 error.SetErrorToErrno(); 1072 return false; 1073 } 1074 1075 return true; 1076 } 1077 1078 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) 1079 : m_monitor(monitor) 1080 { 1081 sem_init(&m_semaphore, 0, 0); 1082 } 1083 1084 NativeProcessLinux::OperationArgs::~OperationArgs() 1085 { 1086 sem_destroy(&m_semaphore); 1087 } 1088 1089 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, 1090 lldb_private::Module *module, 1091 char const **argv, 1092 char const **envp, 1093 const std::string &stdin_path, 1094 const std::string &stdout_path, 1095 const std::string &stderr_path, 1096 const char *working_dir, 1097 const lldb_private::ProcessLaunchInfo &launch_info) 1098 : OperationArgs(monitor), 1099 m_module(module), 1100 m_argv(argv), 1101 m_envp(envp), 1102 m_stdin_path(stdin_path), 1103 m_stdout_path(stdout_path), 1104 m_stderr_path(stderr_path), 1105 m_working_dir(working_dir), 1106 m_launch_info(launch_info) 1107 { 1108 } 1109 1110 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1111 { } 1112 1113 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, 1114 lldb::pid_t pid) 1115 : OperationArgs(monitor), m_pid(pid) { } 1116 1117 NativeProcessLinux::AttachArgs::~AttachArgs() 1118 { } 1119 1120 // ----------------------------------------------------------------------------- 1121 // Public Static Methods 1122 // ----------------------------------------------------------------------------- 1123 1124 lldb_private::Error 1125 NativeProcessLinux::LaunchProcess ( 1126 lldb_private::Module *exe_module, 1127 lldb_private::ProcessLaunchInfo &launch_info, 1128 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1129 NativeProcessProtocolSP &native_process_sp) 1130 { 1131 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1132 1133 Error error; 1134 1135 // Verify the working directory is valid if one was specified. 1136 const char* working_dir = launch_info.GetWorkingDirectory (); 1137 if (working_dir) 1138 { 1139 FileSpec working_dir_fs (working_dir, true); 1140 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1141 { 1142 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1143 return error; 1144 } 1145 } 1146 1147 const lldb_private::FileAction *file_action; 1148 1149 // Default of NULL will mean to use existing open file descriptors. 1150 std::string stdin_path; 1151 std::string stdout_path; 1152 std::string stderr_path; 1153 1154 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1155 if (file_action) 1156 stdin_path = file_action->GetPath (); 1157 1158 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1159 if (file_action) 1160 stdout_path = file_action->GetPath (); 1161 1162 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1163 if (file_action) 1164 stderr_path = file_action->GetPath (); 1165 1166 if (log) 1167 { 1168 if (!stdin_path.empty ()) 1169 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1170 else 1171 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1172 1173 if (!stdout_path.empty ()) 1174 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1175 else 1176 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1177 1178 if (!stderr_path.empty ()) 1179 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1180 else 1181 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1182 } 1183 1184 // Create the NativeProcessLinux in launch mode. 1185 native_process_sp.reset (new NativeProcessLinux ()); 1186 1187 if (log) 1188 { 1189 int i = 0; 1190 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1191 { 1192 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1193 ++i; 1194 } 1195 } 1196 1197 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1198 { 1199 native_process_sp.reset (); 1200 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1201 return error; 1202 } 1203 1204 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior ( 1205 exe_module, 1206 launch_info.GetArguments ().GetConstArgumentVector (), 1207 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1208 stdin_path, 1209 stdout_path, 1210 stderr_path, 1211 working_dir, 1212 launch_info, 1213 error); 1214 1215 if (error.Fail ()) 1216 { 1217 native_process_sp.reset (); 1218 if (log) 1219 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1220 return error; 1221 } 1222 1223 launch_info.SetProcessID (native_process_sp->GetID ()); 1224 1225 return error; 1226 } 1227 1228 lldb_private::Error 1229 NativeProcessLinux::AttachToProcess ( 1230 lldb::pid_t pid, 1231 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1232 NativeProcessProtocolSP &native_process_sp) 1233 { 1234 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1235 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1236 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1237 1238 // Grab the current platform architecture. This should be Linux, 1239 // since this code is only intended to run on a Linux host. 1240 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1241 if (!platform_sp) 1242 return Error("failed to get a valid default platform"); 1243 1244 // Retrieve the architecture for the running process. 1245 ArchSpec process_arch; 1246 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1247 if (!error.Success ()) 1248 return error; 1249 1250 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1251 1252 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1253 { 1254 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1255 return error; 1256 } 1257 1258 native_process_linux_sp->AttachToInferior (pid, error); 1259 if (!error.Success ()) 1260 return error; 1261 1262 native_process_sp = native_process_linux_sp; 1263 return error; 1264 } 1265 1266 // ----------------------------------------------------------------------------- 1267 // Public Instance Methods 1268 // ----------------------------------------------------------------------------- 1269 1270 NativeProcessLinux::NativeProcessLinux () : 1271 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1272 m_arch (), 1273 m_operation_thread (), 1274 m_monitor_thread (), 1275 m_operation (nullptr), 1276 m_operation_mutex (), 1277 m_operation_pending (), 1278 m_operation_done (), 1279 m_supports_mem_region (eLazyBoolCalculate), 1280 m_mem_region_cache (), 1281 m_mem_region_cache_mutex (), 1282 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1283 m_coordinator_thread () 1284 { 1285 } 1286 1287 //------------------------------------------------------------------------------ 1288 /// The basic design of the NativeProcessLinux is built around two threads. 1289 /// 1290 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking 1291 /// for changes in the debugee state. When a change is detected a 1292 /// ProcessMessage is sent to the associated ProcessLinux instance. This thread 1293 /// "drives" state changes in the debugger. 1294 /// 1295 /// The second thread (@see OperationThread) is responsible for two things 1) 1296 /// launching or attaching to the inferior process, and then 2) servicing 1297 /// operations such as register reads/writes, stepping, etc. See the comments 1298 /// on the Operation class for more info as to why this is needed. 1299 void 1300 NativeProcessLinux::LaunchInferior ( 1301 Module *module, 1302 const char *argv[], 1303 const char *envp[], 1304 const std::string &stdin_path, 1305 const std::string &stdout_path, 1306 const std::string &stderr_path, 1307 const char *working_dir, 1308 const lldb_private::ProcessLaunchInfo &launch_info, 1309 lldb_private::Error &error) 1310 { 1311 if (module) 1312 m_arch = module->GetArchitecture (); 1313 1314 SetState (eStateLaunching); 1315 1316 std::unique_ptr<LaunchArgs> args( 1317 new LaunchArgs( 1318 this, module, argv, envp, 1319 stdin_path, stdout_path, stderr_path, 1320 working_dir, launch_info)); 1321 1322 sem_init (&m_operation_pending, 0, 0); 1323 sem_init (&m_operation_done, 0, 0); 1324 1325 StartLaunchOpThread (args.get(), error); 1326 if (!error.Success ()) 1327 return; 1328 1329 error = StartCoordinatorThread (); 1330 if (!error.Success ()) 1331 return; 1332 1333 WAIT_AGAIN: 1334 // Wait for the operation thread to initialize. 1335 if (sem_wait(&args->m_semaphore)) 1336 { 1337 if (errno == EINTR) 1338 goto WAIT_AGAIN; 1339 else 1340 { 1341 error.SetErrorToErrno(); 1342 return; 1343 } 1344 } 1345 1346 // Check that the launch was a success. 1347 if (!args->m_error.Success()) 1348 { 1349 StopOpThread(); 1350 StopCoordinatorThread (); 1351 error = args->m_error; 1352 return; 1353 } 1354 1355 // Finally, start monitoring the child process for change in state. 1356 m_monitor_thread = Host::StartMonitoringChildProcess( 1357 NativeProcessLinux::MonitorCallback, this, GetID(), true); 1358 if (!m_monitor_thread.IsJoinable()) 1359 { 1360 error.SetErrorToGenericError(); 1361 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1362 return; 1363 } 1364 } 1365 1366 void 1367 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) 1368 { 1369 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1370 if (log) 1371 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1372 1373 // We can use the Host for everything except the ResolveExecutable portion. 1374 PlatformSP platform_sp = Platform::GetHostPlatform (); 1375 if (!platform_sp) 1376 { 1377 if (log) 1378 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1379 error.SetErrorString ("no default platform available"); 1380 return; 1381 } 1382 1383 // Gather info about the process. 1384 ProcessInstanceInfo process_info; 1385 if (!platform_sp->GetProcessInfo (pid, process_info)) 1386 { 1387 if (log) 1388 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1389 error.SetErrorString ("failed to get process info"); 1390 return; 1391 } 1392 1393 // Resolve the executable module 1394 ModuleSP exe_module_sp; 1395 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1396 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), HostInfo::GetArchitecture()); 1397 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1398 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1399 if (!error.Success()) 1400 return; 1401 1402 // Set the architecture to the exe architecture. 1403 m_arch = exe_module_sp->GetArchitecture(); 1404 if (log) 1405 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1406 1407 m_pid = pid; 1408 SetState(eStateAttaching); 1409 1410 sem_init (&m_operation_pending, 0, 0); 1411 sem_init (&m_operation_done, 0, 0); 1412 1413 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid)); 1414 1415 StartAttachOpThread(args.get (), error); 1416 if (!error.Success ()) 1417 return; 1418 1419 error = StartCoordinatorThread (); 1420 if (!error.Success ()) 1421 return; 1422 1423 WAIT_AGAIN: 1424 // Wait for the operation thread to initialize. 1425 if (sem_wait (&args->m_semaphore)) 1426 { 1427 if (errno == EINTR) 1428 goto WAIT_AGAIN; 1429 else 1430 { 1431 error.SetErrorToErrno (); 1432 return; 1433 } 1434 } 1435 1436 // Check that the attach was a success. 1437 if (!args->m_error.Success ()) 1438 { 1439 StopOpThread (); 1440 StopCoordinatorThread (); 1441 error = args->m_error; 1442 return; 1443 } 1444 1445 // Finally, start monitoring the child process for change in state. 1446 m_monitor_thread = Host::StartMonitoringChildProcess ( 1447 NativeProcessLinux::MonitorCallback, this, GetID (), true); 1448 if (!m_monitor_thread.IsJoinable()) 1449 { 1450 error.SetErrorToGenericError (); 1451 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1452 return; 1453 } 1454 } 1455 1456 NativeProcessLinux::~NativeProcessLinux() 1457 { 1458 StopMonitor(); 1459 } 1460 1461 //------------------------------------------------------------------------------ 1462 // Thread setup and tear down. 1463 1464 void 1465 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) 1466 { 1467 static const char *g_thread_name = "lldb.process.nativelinux.operation"; 1468 1469 if (m_operation_thread.IsJoinable()) 1470 return; 1471 1472 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error); 1473 } 1474 1475 void * 1476 NativeProcessLinux::LaunchOpThread(void *arg) 1477 { 1478 LaunchArgs *args = static_cast<LaunchArgs*>(arg); 1479 1480 if (!Launch(args)) { 1481 sem_post(&args->m_semaphore); 1482 return NULL; 1483 } 1484 1485 ServeOperation(args); 1486 return NULL; 1487 } 1488 1489 bool 1490 NativeProcessLinux::Launch(LaunchArgs *args) 1491 { 1492 assert (args && "null args"); 1493 if (!args) 1494 return false; 1495 1496 NativeProcessLinux *monitor = args->m_monitor; 1497 assert (monitor && "monitor is NULL"); 1498 1499 const char **argv = args->m_argv; 1500 const char **envp = args->m_envp; 1501 const char *working_dir = args->m_working_dir; 1502 1503 lldb_utility::PseudoTerminal terminal; 1504 const size_t err_len = 1024; 1505 char err_str[err_len]; 1506 lldb::pid_t pid; 1507 NativeThreadProtocolSP thread_sp; 1508 1509 lldb::ThreadSP inferior; 1510 1511 // Propagate the environment if one is not supplied. 1512 if (envp == NULL || envp[0] == NULL) 1513 envp = const_cast<const char **>(environ); 1514 1515 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1516 { 1517 args->m_error.SetErrorToGenericError(); 1518 args->m_error.SetErrorString("Process fork failed."); 1519 return false; 1520 } 1521 1522 // Recognized child exit status codes. 1523 enum { 1524 ePtraceFailed = 1, 1525 eDupStdinFailed, 1526 eDupStdoutFailed, 1527 eDupStderrFailed, 1528 eChdirFailed, 1529 eExecFailed, 1530 eSetGidFailed 1531 }; 1532 1533 // Child process. 1534 if (pid == 0) 1535 { 1536 // FIXME consider opening a pipe between parent/child and have this forked child 1537 // send log info to parent re: launch status, in place of the log lines removed here. 1538 1539 // Start tracing this child that is about to exec. 1540 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error); 1541 if (args->m_error.Fail()) 1542 exit(ePtraceFailed); 1543 1544 // terminal has already dupped the tty descriptors to stdin/out/err. 1545 // This closes original fd from which they were copied (and avoids 1546 // leaking descriptors to the debugged process. 1547 terminal.CloseSlaveFileDescriptor(); 1548 1549 // Do not inherit setgid powers. 1550 if (setgid(getgid()) != 0) 1551 exit(eSetGidFailed); 1552 1553 // Attempt to have our own process group. 1554 if (setpgid(0, 0) != 0) 1555 { 1556 // FIXME log that this failed. This is common. 1557 // Don't allow this to prevent an inferior exec. 1558 } 1559 1560 // Dup file descriptors if needed. 1561 if (!args->m_stdin_path.empty ()) 1562 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1563 exit(eDupStdinFailed); 1564 1565 if (!args->m_stdout_path.empty ()) 1566 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT)) 1567 exit(eDupStdoutFailed); 1568 1569 if (!args->m_stderr_path.empty ()) 1570 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT)) 1571 exit(eDupStderrFailed); 1572 1573 // Change working directory 1574 if (working_dir != NULL && working_dir[0]) 1575 if (0 != ::chdir(working_dir)) 1576 exit(eChdirFailed); 1577 1578 // Disable ASLR if requested. 1579 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1580 { 1581 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1582 if (old_personality == -1) 1583 { 1584 // Can't retrieve Linux personality. Cannot disable ASLR. 1585 } 1586 else 1587 { 1588 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1589 if (new_personality == -1) 1590 { 1591 // Disabling ASLR failed. 1592 } 1593 else 1594 { 1595 // Disabling ASLR succeeded. 1596 } 1597 } 1598 } 1599 1600 // Execute. We should never return... 1601 execve(argv[0], 1602 const_cast<char *const *>(argv), 1603 const_cast<char *const *>(envp)); 1604 1605 // ...unless exec fails. In which case we definitely need to end the child here. 1606 exit(eExecFailed); 1607 } 1608 1609 // 1610 // This is the parent code here. 1611 // 1612 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1613 1614 // Wait for the child process to trap on its call to execve. 1615 ::pid_t wpid; 1616 int status; 1617 if ((wpid = waitpid(pid, &status, 0)) < 0) 1618 { 1619 args->m_error.SetErrorToErrno(); 1620 1621 if (log) 1622 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); 1623 1624 // Mark the inferior as invalid. 1625 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1626 monitor->SetState (StateType::eStateInvalid); 1627 1628 return false; 1629 } 1630 else if (WIFEXITED(status)) 1631 { 1632 // open, dup or execve likely failed for some reason. 1633 args->m_error.SetErrorToGenericError(); 1634 switch (WEXITSTATUS(status)) 1635 { 1636 case ePtraceFailed: 1637 args->m_error.SetErrorString("Child ptrace failed."); 1638 break; 1639 case eDupStdinFailed: 1640 args->m_error.SetErrorString("Child open stdin failed."); 1641 break; 1642 case eDupStdoutFailed: 1643 args->m_error.SetErrorString("Child open stdout failed."); 1644 break; 1645 case eDupStderrFailed: 1646 args->m_error.SetErrorString("Child open stderr failed."); 1647 break; 1648 case eChdirFailed: 1649 args->m_error.SetErrorString("Child failed to set working directory."); 1650 break; 1651 case eExecFailed: 1652 args->m_error.SetErrorString("Child exec failed."); 1653 break; 1654 case eSetGidFailed: 1655 args->m_error.SetErrorString("Child setgid failed."); 1656 break; 1657 default: 1658 args->m_error.SetErrorString("Child returned unknown exit status."); 1659 break; 1660 } 1661 1662 if (log) 1663 { 1664 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1665 __FUNCTION__, 1666 WEXITSTATUS(status)); 1667 } 1668 1669 // Mark the inferior as invalid. 1670 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1671 monitor->SetState (StateType::eStateInvalid); 1672 1673 return false; 1674 } 1675 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1676 "Could not sync with inferior process."); 1677 1678 if (log) 1679 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1680 1681 args->m_error = SetDefaultPtraceOpts(pid); 1682 if (args->m_error.Fail()) 1683 { 1684 if (log) 1685 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1686 __FUNCTION__, 1687 args->m_error.AsCString ()); 1688 1689 // Mark the inferior as invalid. 1690 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1691 monitor->SetState (StateType::eStateInvalid); 1692 1693 return false; 1694 } 1695 1696 // Release the master terminal descriptor and pass it off to the 1697 // NativeProcessLinux instance. Similarly stash the inferior pid. 1698 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1699 monitor->m_pid = pid; 1700 1701 // Set the terminal fd to be in non blocking mode (it simplifies the 1702 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1703 // descriptor to read from). 1704 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) 1705 { 1706 if (log) 1707 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1708 __FUNCTION__, 1709 args->m_error.AsCString ()); 1710 1711 // Mark the inferior as invalid. 1712 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1713 monitor->SetState (StateType::eStateInvalid); 1714 1715 return false; 1716 } 1717 1718 if (log) 1719 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1720 1721 thread_sp = monitor->AddThread (pid); 1722 assert (thread_sp && "AddThread() returned a nullptr thread"); 1723 monitor->NotifyThreadCreateStopped (pid); 1724 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1725 1726 // Let our process instance know the thread has stopped. 1727 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1728 monitor->SetState (StateType::eStateStopped); 1729 1730 if (log) 1731 { 1732 if (args->m_error.Success ()) 1733 { 1734 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1735 } 1736 else 1737 { 1738 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1739 __FUNCTION__, 1740 args->m_error.AsCString ()); 1741 } 1742 } 1743 return args->m_error.Success(); 1744 } 1745 1746 void 1747 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) 1748 { 1749 static const char *g_thread_name = "lldb.process.linux.operation"; 1750 1751 if (m_operation_thread.IsJoinable()) 1752 return; 1753 1754 m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error); 1755 } 1756 1757 void * 1758 NativeProcessLinux::AttachOpThread(void *arg) 1759 { 1760 AttachArgs *args = static_cast<AttachArgs*>(arg); 1761 1762 if (!Attach(args)) { 1763 sem_post(&args->m_semaphore); 1764 return nullptr; 1765 } 1766 1767 ServeOperation(args); 1768 return nullptr; 1769 } 1770 1771 bool 1772 NativeProcessLinux::Attach(AttachArgs *args) 1773 { 1774 lldb::pid_t pid = args->m_pid; 1775 1776 NativeProcessLinux *monitor = args->m_monitor; 1777 lldb::ThreadSP inferior; 1778 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1779 1780 // Use a map to keep track of the threads which we have attached/need to attach. 1781 Host::TidMap tids_to_attach; 1782 if (pid <= 1) 1783 { 1784 args->m_error.SetErrorToGenericError(); 1785 args->m_error.SetErrorString("Attaching to process 1 is not allowed."); 1786 goto FINISH; 1787 } 1788 1789 while (Host::FindProcessThreads(pid, tids_to_attach)) 1790 { 1791 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1792 it != tids_to_attach.end();) 1793 { 1794 if (it->second == false) 1795 { 1796 lldb::tid_t tid = it->first; 1797 1798 // Attach to the requested process. 1799 // An attach will cause the thread to stop with a SIGSTOP. 1800 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error); 1801 if (args->m_error.Fail()) 1802 { 1803 // No such thread. The thread may have exited. 1804 // More error handling may be needed. 1805 if (args->m_error.GetError() == ESRCH) 1806 { 1807 it = tids_to_attach.erase(it); 1808 continue; 1809 } 1810 else 1811 goto FINISH; 1812 } 1813 1814 int status; 1815 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1816 // At this point we should have a thread stopped if waitpid succeeds. 1817 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1818 { 1819 // No such thread. The thread may have exited. 1820 // More error handling may be needed. 1821 if (errno == ESRCH) 1822 { 1823 it = tids_to_attach.erase(it); 1824 continue; 1825 } 1826 else 1827 { 1828 args->m_error.SetErrorToErrno(); 1829 goto FINISH; 1830 } 1831 } 1832 1833 args->m_error = SetDefaultPtraceOpts(tid); 1834 if (args->m_error.Fail()) 1835 goto FINISH; 1836 1837 1838 if (log) 1839 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1840 1841 it->second = true; 1842 1843 // Create the thread, mark it as stopped. 1844 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid))); 1845 assert (thread_sp && "AddThread() returned a nullptr"); 1846 1847 // This will notify this is a new thread and tell the system it is stopped. 1848 monitor->NotifyThreadCreateStopped (tid); 1849 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1850 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1851 } 1852 1853 // move the loop forward 1854 ++it; 1855 } 1856 } 1857 1858 if (tids_to_attach.size() > 0) 1859 { 1860 monitor->m_pid = pid; 1861 // Let our process instance know the thread has stopped. 1862 monitor->SetState (StateType::eStateStopped); 1863 } 1864 else 1865 { 1866 args->m_error.SetErrorToGenericError(); 1867 args->m_error.SetErrorString("No such process."); 1868 } 1869 1870 FINISH: 1871 return args->m_error.Success(); 1872 } 1873 1874 Error 1875 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1876 { 1877 long ptrace_opts = 0; 1878 1879 // Have the child raise an event on exit. This is used to keep the child in 1880 // limbo until it is destroyed. 1881 ptrace_opts |= PTRACE_O_TRACEEXIT; 1882 1883 // Have the tracer trace threads which spawn in the inferior process. 1884 // TODO: if we want to support tracing the inferiors' child, add the 1885 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1886 ptrace_opts |= PTRACE_O_TRACECLONE; 1887 1888 // Have the tracer notify us before execve returns 1889 // (needed to disable legacy SIGTRAP generation) 1890 ptrace_opts |= PTRACE_O_TRACEEXEC; 1891 1892 Error error; 1893 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 1894 return error; 1895 } 1896 1897 static ExitType convert_pid_status_to_exit_type (int status) 1898 { 1899 if (WIFEXITED (status)) 1900 return ExitType::eExitTypeExit; 1901 else if (WIFSIGNALED (status)) 1902 return ExitType::eExitTypeSignal; 1903 else if (WIFSTOPPED (status)) 1904 return ExitType::eExitTypeStop; 1905 else 1906 { 1907 // We don't know what this is. 1908 return ExitType::eExitTypeInvalid; 1909 } 1910 } 1911 1912 static int convert_pid_status_to_return_code (int status) 1913 { 1914 if (WIFEXITED (status)) 1915 return WEXITSTATUS (status); 1916 else if (WIFSIGNALED (status)) 1917 return WTERMSIG (status); 1918 else if (WIFSTOPPED (status)) 1919 return WSTOPSIG (status); 1920 else 1921 { 1922 // We don't know what this is. 1923 return ExitType::eExitTypeInvalid; 1924 } 1925 } 1926 1927 // Main process monitoring waitpid-loop handler. 1928 bool 1929 NativeProcessLinux::MonitorCallback(void *callback_baton, 1930 lldb::pid_t pid, 1931 bool exited, 1932 int signal, 1933 int status) 1934 { 1935 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1936 1937 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton); 1938 assert (process && "process is null"); 1939 if (!process) 1940 { 1941 if (log) 1942 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); 1943 return true; 1944 } 1945 1946 // Certain activities differ based on whether the pid is the tid of the main thread. 1947 const bool is_main_thread = (pid == process->GetID ()); 1948 1949 // Assume we keep monitoring by default. 1950 bool stop_monitoring = false; 1951 1952 // Handle when the thread exits. 1953 if (exited) 1954 { 1955 if (log) 1956 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1957 1958 // This is a thread that exited. Ensure we're not tracking it anymore. 1959 const bool thread_found = process->StopTrackingThread (pid); 1960 1961 // Make sure the thread state coordinator knows about this. 1962 process->NotifyThreadDeath (pid); 1963 1964 if (is_main_thread) 1965 { 1966 // We only set the exit status and notify the delegate if we haven't already set the process 1967 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1968 // for the main thread. 1969 const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed); 1970 if (!already_notified) 1971 { 1972 if (log) 1973 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); 1974 // The main thread exited. We're done monitoring. Report to delegate. 1975 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1976 1977 // Notify delegate that our process has exited. 1978 process->SetState (StateType::eStateExited, true); 1979 } 1980 else 1981 { 1982 if (log) 1983 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1984 } 1985 return true; 1986 } 1987 else 1988 { 1989 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1990 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1991 // and we would have done an all-stop then. 1992 if (log) 1993 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1994 1995 // Not the main thread, we keep going. 1996 return false; 1997 } 1998 } 1999 2000 // Get details on the signal raised. 2001 siginfo_t info; 2002 const auto err = process->GetSignalInfo(pid, &info); 2003 if (err.Success()) 2004 { 2005 // We have retrieved the signal info. Dispatch appropriately. 2006 if (info.si_signo == SIGTRAP) 2007 process->MonitorSIGTRAP(&info, pid); 2008 else 2009 process->MonitorSignal(&info, pid, exited); 2010 2011 stop_monitoring = false; 2012 } 2013 else 2014 { 2015 if (err.GetError() == EINVAL) 2016 { 2017 // This is a group stop reception for this tid. 2018 if (log) 2019 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid); 2020 process->NotifyThreadStop (pid); 2021 } 2022 else 2023 { 2024 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2025 2026 // A return value of ESRCH means the thread/process is no longer on the system, 2027 // so it was killed somehow outside of our control. Either way, we can't do anything 2028 // with it anymore. 2029 2030 // We stop monitoring if it was the main thread. 2031 stop_monitoring = is_main_thread; 2032 2033 // Stop tracking the metadata for the thread since it's entirely off the system now. 2034 const bool thread_found = process->StopTrackingThread (pid); 2035 2036 // Make sure the thread state coordinator knows about this. 2037 process->NotifyThreadDeath (pid); 2038 2039 if (log) 2040 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2041 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2042 2043 if (is_main_thread) 2044 { 2045 // Notify the delegate - our process is not available but appears to have been killed outside 2046 // our control. Is eStateExited the right exit state in this case? 2047 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2048 process->SetState (StateType::eStateExited, true); 2049 } 2050 else 2051 { 2052 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2053 if (log) 2054 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); 2055 } 2056 } 2057 } 2058 2059 return stop_monitoring; 2060 } 2061 2062 void 2063 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2064 { 2065 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2066 const bool is_main_thread = (pid == GetID ()); 2067 2068 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2069 if (!info) 2070 return; 2071 2072 Mutex::Locker locker (m_threads_mutex); 2073 2074 // See if we can find a thread for this signal. 2075 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2076 if (!thread_sp) 2077 { 2078 if (log) 2079 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2080 } 2081 2082 switch (info->si_code) 2083 { 2084 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2085 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2086 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2087 2088 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2089 { 2090 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 2091 2092 // The main thread is stopped here. 2093 if (thread_sp) 2094 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2095 NotifyThreadStop (pid); 2096 2097 unsigned long event_message = 0; 2098 if (GetEventMessage (pid, &event_message).Success()) 2099 { 2100 tid = static_cast<lldb::tid_t> (event_message); 2101 if (log) 2102 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 2103 2104 // If we don't track the thread yet: create it, mark as stopped. 2105 // If we do track it, this is the wait we needed. Now resume the new thread. 2106 // In all cases, resume the current (i.e. main process) thread. 2107 bool created_now = false; 2108 NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now); 2109 assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2110 2111 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 2112 if (!created_now) 2113 { 2114 // We can now resume the newly created thread since it is fully created. 2115 NotifyThreadCreateStopped (tid); 2116 m_coordinator_up->RequestThreadResume (tid, 2117 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2118 { 2119 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning (); 2120 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2121 }, 2122 CoordinatorErrorHandler); 2123 } 2124 else 2125 { 2126 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2127 // this thread is ready to go. 2128 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching (); 2129 } 2130 } 2131 else 2132 { 2133 if (log) 2134 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2135 } 2136 2137 // In all cases, we can resume the main thread here. 2138 m_coordinator_up->RequestThreadResume (pid, 2139 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2140 { 2141 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2142 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2143 }, 2144 CoordinatorErrorHandler); 2145 2146 break; 2147 } 2148 2149 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2150 { 2151 NativeThreadProtocolSP main_thread_sp; 2152 if (log) 2153 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2154 2155 // The thread state coordinator needs to reset due to the exec. 2156 m_coordinator_up->ResetForExec (); 2157 2158 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2159 if (log) 2160 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2161 2162 for (auto thread_sp : m_threads) 2163 { 2164 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2165 if (is_main_thread) 2166 { 2167 main_thread_sp = thread_sp; 2168 if (log) 2169 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2170 } 2171 else 2172 { 2173 // Tell thread coordinator this thread is dead. 2174 if (log) 2175 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2176 } 2177 } 2178 2179 m_threads.clear (); 2180 2181 if (main_thread_sp) 2182 { 2183 m_threads.push_back (main_thread_sp); 2184 SetCurrentThreadID (main_thread_sp->GetID ()); 2185 reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec (); 2186 } 2187 else 2188 { 2189 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2190 if (log) 2191 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2192 } 2193 2194 // Tell coordinator about about the "new" (since exec) stopped main thread. 2195 const lldb::tid_t main_thread_tid = GetID (); 2196 NotifyThreadCreateStopped (main_thread_tid); 2197 2198 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2199 // Consider a handler that can execute when that happens. 2200 // Let our delegate know we have just exec'd. 2201 NotifyDidExec (); 2202 2203 // If we have a main thread, indicate we are stopped. 2204 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2205 2206 // Let the process know we're stopped. 2207 CallAfterRunningThreadsStop (pid, 2208 [=] (lldb::tid_t signaling_tid) 2209 { 2210 SetState (StateType::eStateStopped, true); 2211 }); 2212 2213 break; 2214 } 2215 2216 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2217 { 2218 // The inferior process or one of its threads is about to exit. 2219 2220 // This thread is currently stopped. It's not actually dead yet, just about to be. 2221 NotifyThreadStop (pid); 2222 2223 unsigned long data = 0; 2224 if (GetEventMessage(pid, &data).Fail()) 2225 data = -1; 2226 2227 if (log) 2228 { 2229 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2230 __FUNCTION__, 2231 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2232 pid, 2233 is_main_thread ? "is main thread" : "not main thread"); 2234 } 2235 2236 if (is_main_thread) 2237 { 2238 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2239 } 2240 2241 const int signo = static_cast<int> (data); 2242 m_coordinator_up->RequestThreadResume (pid, 2243 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2244 { 2245 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2246 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2247 }, 2248 CoordinatorErrorHandler); 2249 2250 break; 2251 } 2252 2253 case 0: 2254 case TRAP_TRACE: 2255 // We receive this on single stepping. 2256 if (log) 2257 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); 2258 2259 if (thread_sp) 2260 { 2261 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace (); 2262 } 2263 2264 // This thread is currently stopped. 2265 NotifyThreadStop (pid); 2266 2267 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2268 // This would have already happened at the time the Resume() with step operation was signaled. 2269 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2270 // once all running threads have checked in as stopped. 2271 SetCurrentThreadID (pid); 2272 // Tell the process we have a stop (from software breakpoint). 2273 CallAfterRunningThreadsStop (pid, 2274 [=] (lldb::tid_t signaling_tid) 2275 { 2276 SetState (StateType::eStateStopped, true); 2277 }); 2278 break; 2279 2280 case SI_KERNEL: 2281 case TRAP_BRKPT: 2282 if (log) 2283 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2284 2285 // This thread is currently stopped. 2286 NotifyThreadStop (pid); 2287 2288 // Mark the thread as stopped at breakpoint. 2289 if (thread_sp) 2290 { 2291 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint (); 2292 Error error = FixupBreakpointPCAsNeeded (thread_sp); 2293 if (error.Fail ()) 2294 { 2295 if (log) 2296 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); 2297 } 2298 } 2299 else 2300 { 2301 if (log) 2302 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); 2303 } 2304 2305 2306 // We need to tell all other running threads before we notify the delegate about this stop. 2307 CallAfterRunningThreadsStop (pid, 2308 [=](lldb::tid_t deferred_notification_tid) 2309 { 2310 SetCurrentThreadID (deferred_notification_tid); 2311 // Tell the process we have a stop (from software breakpoint). 2312 SetState (StateType::eStateStopped, true); 2313 }); 2314 break; 2315 2316 case TRAP_HWBKPT: 2317 if (log) 2318 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2319 2320 // This thread is currently stopped. 2321 NotifyThreadStop (pid); 2322 2323 // Mark the thread as stopped at watchpoint. 2324 // The address is at (lldb::addr_t)info->si_addr if we need it. 2325 if (thread_sp) 2326 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByWatchpoint (); 2327 else 2328 { 2329 if (log) 2330 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); 2331 } 2332 2333 // We need to tell all other running threads before we notify the delegate about this stop. 2334 CallAfterRunningThreadsStop (pid, 2335 [=](lldb::tid_t deferred_notification_tid) 2336 { 2337 SetCurrentThreadID (deferred_notification_tid); 2338 // Tell the process we have a stop (from hardware breakpoint). 2339 SetState (StateType::eStateStopped, true); 2340 }); 2341 break; 2342 2343 case SIGTRAP: 2344 case (SIGTRAP | 0x80): 2345 if (log) 2346 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2347 2348 // This thread is currently stopped. 2349 NotifyThreadStop (pid); 2350 if (thread_sp) 2351 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2352 2353 2354 // Ignore these signals until we know more about them. 2355 m_coordinator_up->RequestThreadResume (pid, 2356 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2357 { 2358 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2359 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2360 }, 2361 CoordinatorErrorHandler); 2362 break; 2363 2364 default: 2365 assert(false && "Unexpected SIGTRAP code!"); 2366 if (log) 2367 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2368 break; 2369 2370 } 2371 } 2372 2373 void 2374 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2375 { 2376 assert (info && "null info"); 2377 if (!info) 2378 return; 2379 2380 const int signo = info->si_signo; 2381 const bool is_from_llgs = info->si_pid == getpid (); 2382 2383 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2384 2385 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2386 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2387 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2388 // 2389 // IOW, user generated signals never generate what we consider to be a 2390 // "crash". 2391 // 2392 // Similarly, ACK signals generated by this monitor. 2393 2394 Mutex::Locker locker (m_threads_mutex); 2395 2396 // See if we can find a thread for this signal. 2397 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2398 if (!thread_sp) 2399 { 2400 if (log) 2401 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2402 } 2403 2404 // Handle the signal. 2405 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2406 { 2407 if (log) 2408 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2409 __FUNCTION__, 2410 GetUnixSignals ().GetSignalAsCString (signo), 2411 signo, 2412 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2413 info->si_pid, 2414 is_from_llgs ? "from llgs" : "not from llgs", 2415 pid); 2416 } 2417 2418 // Check for new thread notification. 2419 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2420 { 2421 // A new thread creation is being signaled. This is one of two parts that come in 2422 // a non-deterministic order. pid is the thread id. 2423 if (log) 2424 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2425 __FUNCTION__, GetID (), pid); 2426 2427 // Did we already create the thread? 2428 bool created_now = false; 2429 thread_sp = GetOrCreateThread (pid, created_now); 2430 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2431 2432 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2433 if (!created_now) 2434 { 2435 // We can now resume the newly created thread since it is fully created. 2436 NotifyThreadCreateStopped (pid); 2437 m_coordinator_up->RequestThreadResume (pid, 2438 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2439 { 2440 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2441 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2442 }, 2443 CoordinatorErrorHandler); 2444 } 2445 else 2446 { 2447 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2448 // this thread is ready to go. 2449 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching (); 2450 } 2451 2452 // Done handling. 2453 return; 2454 } 2455 2456 // Check for thread stop notification. 2457 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2458 { 2459 // This is a tgkill()-based stop. 2460 if (thread_sp) 2461 { 2462 if (log) 2463 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2464 __FUNCTION__, 2465 GetID (), 2466 pid); 2467 2468 // Check that we're not already marked with a stop reason. 2469 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2470 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2471 // and that, without an intervening resume, we received another stop. It is more likely 2472 // that we are missing the marking of a run state somewhere if we find that the thread was 2473 // marked as stopped. 2474 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ()); 2475 assert (linux_thread_p && "linux_thread_p is null!"); 2476 2477 const StateType thread_state = linux_thread_p->GetState (); 2478 if (!StateIsStoppedState (thread_state, false)) 2479 { 2480 // An inferior thread just stopped, but was not the primary cause of the process stop. 2481 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2482 // stop signal as 0 to let lldb know this isn't the important stop. 2483 linux_thread_p->SetStoppedBySignal (0); 2484 SetCurrentThreadID (thread_sp->GetID ()); 2485 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2486 } 2487 else 2488 { 2489 if (log) 2490 { 2491 // Retrieve the signal name if the thread was stopped by a signal. 2492 int stop_signo = 0; 2493 const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo); 2494 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2495 if (!signal_name) 2496 signal_name = "<no-signal-name>"; 2497 2498 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2499 __FUNCTION__, 2500 GetID (), 2501 linux_thread_p->GetID (), 2502 StateAsCString (thread_state), 2503 stop_signo, 2504 signal_name); 2505 } 2506 // Tell the thread state coordinator about the stop. 2507 NotifyThreadStop (thread_sp->GetID ()); 2508 } 2509 } 2510 2511 // Done handling. 2512 return; 2513 } 2514 2515 if (log) 2516 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2517 2518 // This thread is stopped. 2519 NotifyThreadStop (pid); 2520 2521 switch (signo) 2522 { 2523 case SIGSTOP: 2524 { 2525 if (log) 2526 { 2527 if (is_from_llgs) 2528 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2529 else 2530 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2531 } 2532 2533 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2534 // This thread will get stopped again as part of the group-stop completion. 2535 m_coordinator_up->RequestThreadResume (pid, 2536 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2537 { 2538 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2539 // Pass this signal number on to the inferior to handle. 2540 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2541 }, 2542 CoordinatorErrorHandler); 2543 } 2544 break; 2545 case SIGSEGV: 2546 case SIGILL: 2547 case SIGFPE: 2548 case SIGBUS: 2549 if (thread_sp) 2550 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info); 2551 break; 2552 default: 2553 // This is just a pre-signal-delivery notification of the incoming signal. 2554 if (thread_sp) 2555 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo); 2556 2557 break; 2558 } 2559 2560 // Send a stop to the debugger after we get all other threads to stop. 2561 CallAfterRunningThreadsStop (pid, 2562 [=] (lldb::tid_t signaling_tid) 2563 { 2564 SetCurrentThreadID (signaling_tid); 2565 SetState (StateType::eStateStopped, true); 2566 }); 2567 } 2568 2569 Error 2570 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2571 { 2572 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2573 if (log) 2574 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2575 2576 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2577 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2578 int deferred_signo = 0; 2579 NativeThreadProtocolSP deferred_signal_thread_sp; 2580 bool stepping = false; 2581 2582 Mutex::Locker locker (m_threads_mutex); 2583 2584 for (auto thread_sp : m_threads) 2585 { 2586 assert (thread_sp && "thread list should not contain NULL threads"); 2587 2588 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2589 2590 if (action == nullptr) 2591 { 2592 if (log) 2593 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2594 __FUNCTION__, GetID (), thread_sp->GetID ()); 2595 continue; 2596 } 2597 2598 if (log) 2599 { 2600 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2601 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2602 } 2603 2604 switch (action->state) 2605 { 2606 case eStateRunning: 2607 { 2608 // Run the thread, possibly feeding it the signal. 2609 const int signo = action->signal; 2610 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 2611 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2612 { 2613 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2614 // Pass this signal number on to the inferior to handle. 2615 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2616 if (resume_result.Success()) 2617 SetState(eStateRunning, true); 2618 return resume_result; 2619 }, 2620 CoordinatorErrorHandler); 2621 break; 2622 } 2623 2624 case eStateStepping: 2625 { 2626 // Request the step. 2627 const int signo = action->signal; 2628 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 2629 [=](lldb::tid_t tid_to_step, bool supress_signal) 2630 { 2631 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping (); 2632 const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2633 assert (step_result.Success() && "SingleStep() failed"); 2634 if (step_result.Success()) 2635 SetState(eStateStepping, true); 2636 return step_result; 2637 }, 2638 CoordinatorErrorHandler); 2639 stepping = true; 2640 break; 2641 } 2642 2643 case eStateSuspended: 2644 case eStateStopped: 2645 // if we haven't chosen a deferred signal tid yet, use this one. 2646 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 2647 { 2648 deferred_signal_tid = thread_sp->GetID (); 2649 deferred_signal_thread_sp = thread_sp; 2650 deferred_signo = SIGSTOP; 2651 } 2652 break; 2653 2654 default: 2655 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2656 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2657 } 2658 } 2659 2660 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 2661 // after all other running threads have stopped. 2662 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 2663 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 2664 { 2665 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 2666 deferred_signal_skip_tid, 2667 [=](lldb::tid_t deferred_notification_tid) 2668 { 2669 // Set the signal thread to the current thread. 2670 SetCurrentThreadID (deferred_notification_tid); 2671 2672 // Set the thread state as stopped by the deferred signo. 2673 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo); 2674 2675 // Tell the process delegate that the process is in a stopped state. 2676 SetState (StateType::eStateStopped, true); 2677 }); 2678 } 2679 2680 return Error(); 2681 } 2682 2683 Error 2684 NativeProcessLinux::Halt () 2685 { 2686 Error error; 2687 2688 if (kill (GetID (), SIGSTOP) != 0) 2689 error.SetErrorToErrno (); 2690 2691 return error; 2692 } 2693 2694 Error 2695 NativeProcessLinux::Detach () 2696 { 2697 Error error; 2698 2699 // Tell ptrace to detach from the process. 2700 if (GetID () != LLDB_INVALID_PROCESS_ID) 2701 error = Detach (GetID ()); 2702 2703 // Stop monitoring the inferior. 2704 StopMonitor (); 2705 2706 // No error. 2707 return error; 2708 } 2709 2710 Error 2711 NativeProcessLinux::Signal (int signo) 2712 { 2713 Error error; 2714 2715 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2716 if (log) 2717 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2718 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2719 2720 if (kill(GetID(), signo)) 2721 error.SetErrorToErrno(); 2722 2723 return error; 2724 } 2725 2726 Error 2727 NativeProcessLinux::Interrupt () 2728 { 2729 // Pick a running thread (or if none, a not-dead stopped thread) as 2730 // the chosen thread that will be the stop-reason thread. 2731 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2732 2733 NativeThreadProtocolSP running_thread_sp; 2734 NativeThreadProtocolSP stopped_thread_sp; 2735 2736 if (log) 2737 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2738 2739 Mutex::Locker locker (m_threads_mutex); 2740 2741 for (auto thread_sp : m_threads) 2742 { 2743 // The thread shouldn't be null but lets just cover that here. 2744 if (!thread_sp) 2745 continue; 2746 2747 // If we have a running or stepping thread, we'll call that the 2748 // target of the interrupt. 2749 const auto thread_state = thread_sp->GetState (); 2750 if (thread_state == eStateRunning || 2751 thread_state == eStateStepping) 2752 { 2753 running_thread_sp = thread_sp; 2754 break; 2755 } 2756 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2757 { 2758 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2759 stopped_thread_sp = thread_sp; 2760 } 2761 } 2762 2763 if (!running_thread_sp && !stopped_thread_sp) 2764 { 2765 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2766 if (log) 2767 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2768 2769 return error; 2770 } 2771 2772 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2773 2774 if (log) 2775 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2776 __FUNCTION__, 2777 GetID (), 2778 running_thread_sp ? "running" : "stopped", 2779 deferred_signal_thread_sp->GetID ()); 2780 2781 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 2782 [=](lldb::tid_t deferred_notification_tid) 2783 { 2784 // Set the signal thread to the current thread. 2785 SetCurrentThreadID (deferred_notification_tid); 2786 2787 // Set the thread state as stopped by the deferred signo. 2788 reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 2789 2790 // Tell the process delegate that the process is in a stopped state. 2791 SetState (StateType::eStateStopped, true); 2792 }); 2793 return Error(); 2794 } 2795 2796 Error 2797 NativeProcessLinux::Kill () 2798 { 2799 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2800 if (log) 2801 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2802 2803 Error error; 2804 2805 switch (m_state) 2806 { 2807 case StateType::eStateInvalid: 2808 case StateType::eStateExited: 2809 case StateType::eStateCrashed: 2810 case StateType::eStateDetached: 2811 case StateType::eStateUnloaded: 2812 // Nothing to do - the process is already dead. 2813 if (log) 2814 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2815 return error; 2816 2817 case StateType::eStateConnected: 2818 case StateType::eStateAttaching: 2819 case StateType::eStateLaunching: 2820 case StateType::eStateStopped: 2821 case StateType::eStateRunning: 2822 case StateType::eStateStepping: 2823 case StateType::eStateSuspended: 2824 // We can try to kill a process in these states. 2825 break; 2826 } 2827 2828 if (kill (GetID (), SIGKILL) != 0) 2829 { 2830 error.SetErrorToErrno (); 2831 return error; 2832 } 2833 2834 return error; 2835 } 2836 2837 static Error 2838 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2839 { 2840 memory_region_info.Clear(); 2841 2842 StringExtractor line_extractor (maps_line.c_str ()); 2843 2844 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2845 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2846 2847 // Parse out the starting address 2848 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2849 2850 // Parse out hyphen separating start and end address from range. 2851 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2852 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2853 2854 // Parse out the ending address 2855 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2856 2857 // Parse out the space after the address. 2858 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2859 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2860 2861 // Save the range. 2862 memory_region_info.GetRange ().SetRangeBase (start_address); 2863 memory_region_info.GetRange ().SetRangeEnd (end_address); 2864 2865 // Parse out each permission entry. 2866 if (line_extractor.GetBytesLeft () < 4) 2867 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2868 2869 // Handle read permission. 2870 const char read_perm_char = line_extractor.GetChar (); 2871 if (read_perm_char == 'r') 2872 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2873 else 2874 { 2875 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2876 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2877 } 2878 2879 // Handle write permission. 2880 const char write_perm_char = line_extractor.GetChar (); 2881 if (write_perm_char == 'w') 2882 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2883 else 2884 { 2885 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2886 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2887 } 2888 2889 // Handle execute permission. 2890 const char exec_perm_char = line_extractor.GetChar (); 2891 if (exec_perm_char == 'x') 2892 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2893 else 2894 { 2895 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2896 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2897 } 2898 2899 return Error (); 2900 } 2901 2902 Error 2903 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2904 { 2905 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2906 // with no perms if it is not mapped. 2907 2908 // Use an approach that reads memory regions from /proc/{pid}/maps. 2909 // Assume proc maps entries are in ascending order. 2910 // FIXME assert if we find differently. 2911 Mutex::Locker locker (m_mem_region_cache_mutex); 2912 2913 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2914 Error error; 2915 2916 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2917 { 2918 // We're done. 2919 error.SetErrorString ("unsupported"); 2920 return error; 2921 } 2922 2923 // If our cache is empty, pull the latest. There should always be at least one memory region 2924 // if memory region handling is supported. 2925 if (m_mem_region_cache.empty ()) 2926 { 2927 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2928 [&] (const std::string &line) -> bool 2929 { 2930 MemoryRegionInfo info; 2931 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2932 if (parse_error.Success ()) 2933 { 2934 m_mem_region_cache.push_back (info); 2935 return true; 2936 } 2937 else 2938 { 2939 if (log) 2940 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2941 return false; 2942 } 2943 }); 2944 2945 // If we had an error, we'll mark unsupported. 2946 if (error.Fail ()) 2947 { 2948 m_supports_mem_region = LazyBool::eLazyBoolNo; 2949 return error; 2950 } 2951 else if (m_mem_region_cache.empty ()) 2952 { 2953 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2954 // is supported. Assume we don't support map entries via procfs. 2955 if (log) 2956 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2957 m_supports_mem_region = LazyBool::eLazyBoolNo; 2958 error.SetErrorString ("not supported"); 2959 return error; 2960 } 2961 2962 if (log) 2963 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2964 2965 // We support memory retrieval, remember that. 2966 m_supports_mem_region = LazyBool::eLazyBoolYes; 2967 } 2968 else 2969 { 2970 if (log) 2971 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2972 } 2973 2974 lldb::addr_t prev_base_address = 0; 2975 2976 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2977 // There can be a ton of regions on pthreads apps with lots of threads. 2978 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2979 { 2980 MemoryRegionInfo &proc_entry_info = *it; 2981 2982 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2983 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2984 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2985 2986 // If the target address comes before this entry, indicate distance to next region. 2987 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2988 { 2989 range_info.GetRange ().SetRangeBase (load_addr); 2990 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2991 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2992 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2993 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2994 2995 return error; 2996 } 2997 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2998 { 2999 // The target address is within the memory region we're processing here. 3000 range_info = proc_entry_info; 3001 return error; 3002 } 3003 3004 // The target memory address comes somewhere after the region we just parsed. 3005 } 3006 3007 // If we made it here, we didn't find an entry that contained the given address. 3008 error.SetErrorString ("address comes after final region"); 3009 3010 if (log) 3011 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3012 3013 return error; 3014 } 3015 3016 void 3017 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3018 { 3019 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3020 if (log) 3021 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3022 3023 { 3024 Mutex::Locker locker (m_mem_region_cache_mutex); 3025 if (log) 3026 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3027 m_mem_region_cache.clear (); 3028 } 3029 } 3030 3031 Error 3032 NativeProcessLinux::AllocateMemory ( 3033 lldb::addr_t size, 3034 uint32_t permissions, 3035 lldb::addr_t &addr) 3036 { 3037 // FIXME implementing this requires the equivalent of 3038 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3039 // functional ThreadPlans working with Native*Protocol. 3040 #if 1 3041 return Error ("not implemented yet"); 3042 #else 3043 addr = LLDB_INVALID_ADDRESS; 3044 3045 unsigned prot = 0; 3046 if (permissions & lldb::ePermissionsReadable) 3047 prot |= eMmapProtRead; 3048 if (permissions & lldb::ePermissionsWritable) 3049 prot |= eMmapProtWrite; 3050 if (permissions & lldb::ePermissionsExecutable) 3051 prot |= eMmapProtExec; 3052 3053 // TODO implement this directly in NativeProcessLinux 3054 // (and lift to NativeProcessPOSIX if/when that class is 3055 // refactored out). 3056 if (InferiorCallMmap(this, addr, 0, size, prot, 3057 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3058 m_addr_to_mmap_size[addr] = size; 3059 return Error (); 3060 } else { 3061 addr = LLDB_INVALID_ADDRESS; 3062 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3063 } 3064 #endif 3065 } 3066 3067 Error 3068 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3069 { 3070 // FIXME see comments in AllocateMemory - required lower-level 3071 // bits not in place yet (ThreadPlans) 3072 return Error ("not implemented"); 3073 } 3074 3075 lldb::addr_t 3076 NativeProcessLinux::GetSharedLibraryInfoAddress () 3077 { 3078 #if 1 3079 // punt on this for now 3080 return LLDB_INVALID_ADDRESS; 3081 #else 3082 // Return the image info address for the exe module 3083 #if 1 3084 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3085 3086 ModuleSP module_sp; 3087 Error error = GetExeModuleSP (module_sp); 3088 if (error.Fail ()) 3089 { 3090 if (log) 3091 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3092 return LLDB_INVALID_ADDRESS; 3093 } 3094 3095 if (module_sp == nullptr) 3096 { 3097 if (log) 3098 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3099 return LLDB_INVALID_ADDRESS; 3100 } 3101 3102 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3103 if (object_file_sp == nullptr) 3104 { 3105 if (log) 3106 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3107 return LLDB_INVALID_ADDRESS; 3108 } 3109 3110 return obj_file_sp->GetImageInfoAddress(); 3111 #else 3112 Target *target = &GetTarget(); 3113 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3114 Address addr = obj_file->GetImageInfoAddress(target); 3115 3116 if (addr.IsValid()) 3117 return addr.GetLoadAddress(target); 3118 return LLDB_INVALID_ADDRESS; 3119 #endif 3120 #endif // punt on this for now 3121 } 3122 3123 size_t 3124 NativeProcessLinux::UpdateThreads () 3125 { 3126 // The NativeProcessLinux monitoring threads are always up to date 3127 // with respect to thread state and they keep the thread list 3128 // populated properly. All this method needs to do is return the 3129 // thread count. 3130 Mutex::Locker locker (m_threads_mutex); 3131 return m_threads.size (); 3132 } 3133 3134 bool 3135 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3136 { 3137 arch = m_arch; 3138 return true; 3139 } 3140 3141 Error 3142 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3143 { 3144 // FIXME put this behind a breakpoint protocol class that can be 3145 // set per architecture. Need ARM, MIPS support here. 3146 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3147 static const uint8_t g_i386_opcode [] = { 0xCC }; 3148 3149 switch (m_arch.GetMachine ()) 3150 { 3151 case llvm::Triple::aarch64: 3152 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3153 return Error (); 3154 3155 case llvm::Triple::x86: 3156 case llvm::Triple::x86_64: 3157 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3158 return Error (); 3159 3160 default: 3161 assert(false && "CPU type not supported!"); 3162 return Error ("CPU type not supported"); 3163 } 3164 } 3165 3166 Error 3167 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3168 { 3169 if (hardware) 3170 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3171 else 3172 return SetSoftwareBreakpoint (addr, size); 3173 } 3174 3175 Error 3176 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) 3177 { 3178 // FIXME put this behind a breakpoint protocol class that can be 3179 // set per architecture. Need ARM, MIPS support here. 3180 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3181 static const uint8_t g_i386_opcode [] = { 0xCC }; 3182 3183 switch (m_arch.GetMachine ()) 3184 { 3185 case llvm::Triple::aarch64: 3186 trap_opcode_bytes = g_aarch64_opcode; 3187 actual_opcode_size = sizeof(g_aarch64_opcode); 3188 return Error (); 3189 3190 case llvm::Triple::x86: 3191 case llvm::Triple::x86_64: 3192 trap_opcode_bytes = g_i386_opcode; 3193 actual_opcode_size = sizeof(g_i386_opcode); 3194 return Error (); 3195 3196 default: 3197 assert(false && "CPU type not supported!"); 3198 return Error ("CPU type not supported"); 3199 } 3200 } 3201 3202 #if 0 3203 ProcessMessage::CrashReason 3204 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3205 { 3206 ProcessMessage::CrashReason reason; 3207 assert(info->si_signo == SIGSEGV); 3208 3209 reason = ProcessMessage::eInvalidCrashReason; 3210 3211 switch (info->si_code) 3212 { 3213 default: 3214 assert(false && "unexpected si_code for SIGSEGV"); 3215 break; 3216 case SI_KERNEL: 3217 // Linux will occasionally send spurious SI_KERNEL codes. 3218 // (this is poorly documented in sigaction) 3219 // One way to get this is via unaligned SIMD loads. 3220 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3221 break; 3222 case SEGV_MAPERR: 3223 reason = ProcessMessage::eInvalidAddress; 3224 break; 3225 case SEGV_ACCERR: 3226 reason = ProcessMessage::ePrivilegedAddress; 3227 break; 3228 } 3229 3230 return reason; 3231 } 3232 #endif 3233 3234 3235 #if 0 3236 ProcessMessage::CrashReason 3237 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3238 { 3239 ProcessMessage::CrashReason reason; 3240 assert(info->si_signo == SIGILL); 3241 3242 reason = ProcessMessage::eInvalidCrashReason; 3243 3244 switch (info->si_code) 3245 { 3246 default: 3247 assert(false && "unexpected si_code for SIGILL"); 3248 break; 3249 case ILL_ILLOPC: 3250 reason = ProcessMessage::eIllegalOpcode; 3251 break; 3252 case ILL_ILLOPN: 3253 reason = ProcessMessage::eIllegalOperand; 3254 break; 3255 case ILL_ILLADR: 3256 reason = ProcessMessage::eIllegalAddressingMode; 3257 break; 3258 case ILL_ILLTRP: 3259 reason = ProcessMessage::eIllegalTrap; 3260 break; 3261 case ILL_PRVOPC: 3262 reason = ProcessMessage::ePrivilegedOpcode; 3263 break; 3264 case ILL_PRVREG: 3265 reason = ProcessMessage::ePrivilegedRegister; 3266 break; 3267 case ILL_COPROC: 3268 reason = ProcessMessage::eCoprocessorError; 3269 break; 3270 case ILL_BADSTK: 3271 reason = ProcessMessage::eInternalStackError; 3272 break; 3273 } 3274 3275 return reason; 3276 } 3277 #endif 3278 3279 #if 0 3280 ProcessMessage::CrashReason 3281 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3282 { 3283 ProcessMessage::CrashReason reason; 3284 assert(info->si_signo == SIGFPE); 3285 3286 reason = ProcessMessage::eInvalidCrashReason; 3287 3288 switch (info->si_code) 3289 { 3290 default: 3291 assert(false && "unexpected si_code for SIGFPE"); 3292 break; 3293 case FPE_INTDIV: 3294 reason = ProcessMessage::eIntegerDivideByZero; 3295 break; 3296 case FPE_INTOVF: 3297 reason = ProcessMessage::eIntegerOverflow; 3298 break; 3299 case FPE_FLTDIV: 3300 reason = ProcessMessage::eFloatDivideByZero; 3301 break; 3302 case FPE_FLTOVF: 3303 reason = ProcessMessage::eFloatOverflow; 3304 break; 3305 case FPE_FLTUND: 3306 reason = ProcessMessage::eFloatUnderflow; 3307 break; 3308 case FPE_FLTRES: 3309 reason = ProcessMessage::eFloatInexactResult; 3310 break; 3311 case FPE_FLTINV: 3312 reason = ProcessMessage::eFloatInvalidOperation; 3313 break; 3314 case FPE_FLTSUB: 3315 reason = ProcessMessage::eFloatSubscriptRange; 3316 break; 3317 } 3318 3319 return reason; 3320 } 3321 #endif 3322 3323 #if 0 3324 ProcessMessage::CrashReason 3325 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3326 { 3327 ProcessMessage::CrashReason reason; 3328 assert(info->si_signo == SIGBUS); 3329 3330 reason = ProcessMessage::eInvalidCrashReason; 3331 3332 switch (info->si_code) 3333 { 3334 default: 3335 assert(false && "unexpected si_code for SIGBUS"); 3336 break; 3337 case BUS_ADRALN: 3338 reason = ProcessMessage::eIllegalAlignment; 3339 break; 3340 case BUS_ADRERR: 3341 reason = ProcessMessage::eIllegalAddress; 3342 break; 3343 case BUS_OBJERR: 3344 reason = ProcessMessage::eHardwareError; 3345 break; 3346 } 3347 3348 return reason; 3349 } 3350 #endif 3351 3352 void 3353 NativeProcessLinux::ServeOperation(OperationArgs *args) 3354 { 3355 NativeProcessLinux *monitor = args->m_monitor; 3356 3357 // We are finised with the arguments and are ready to go. Sync with the 3358 // parent thread and start serving operations on the inferior. 3359 sem_post(&args->m_semaphore); 3360 3361 for(;;) 3362 { 3363 // wait for next pending operation 3364 if (sem_wait(&monitor->m_operation_pending)) 3365 { 3366 if (errno == EINTR) 3367 continue; 3368 assert(false && "Unexpected errno from sem_wait"); 3369 } 3370 3371 reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor); 3372 3373 // notify calling thread that operation is complete 3374 sem_post(&monitor->m_operation_done); 3375 } 3376 } 3377 3378 void 3379 NativeProcessLinux::DoOperation(void *op) 3380 { 3381 Mutex::Locker lock(m_operation_mutex); 3382 3383 m_operation = op; 3384 3385 // notify operation thread that an operation is ready to be processed 3386 sem_post(&m_operation_pending); 3387 3388 // wait for operation to complete 3389 while (sem_wait(&m_operation_done)) 3390 { 3391 if (errno == EINTR) 3392 continue; 3393 assert(false && "Unexpected errno from sem_wait"); 3394 } 3395 } 3396 3397 Error 3398 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3399 { 3400 ReadOperation op(addr, buf, size, bytes_read); 3401 DoOperation(&op); 3402 return op.GetError (); 3403 } 3404 3405 Error 3406 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3407 { 3408 WriteOperation op(addr, buf, size, bytes_written); 3409 DoOperation(&op); 3410 return op.GetError (); 3411 } 3412 3413 Error 3414 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3415 uint32_t size, RegisterValue &value) 3416 { 3417 ReadRegOperation op(tid, offset, reg_name, value); 3418 DoOperation(&op); 3419 return op.GetError(); 3420 } 3421 3422 Error 3423 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3424 const char* reg_name, const RegisterValue &value) 3425 { 3426 WriteRegOperation op(tid, offset, reg_name, value); 3427 DoOperation(&op); 3428 return op.GetError(); 3429 } 3430 3431 Error 3432 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3433 { 3434 ReadGPROperation op(tid, buf, buf_size); 3435 DoOperation(&op); 3436 return op.GetError(); 3437 } 3438 3439 Error 3440 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3441 { 3442 ReadFPROperation op(tid, buf, buf_size); 3443 DoOperation(&op); 3444 return op.GetError(); 3445 } 3446 3447 Error 3448 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3449 { 3450 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3451 DoOperation(&op); 3452 return op.GetError(); 3453 } 3454 3455 Error 3456 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3457 { 3458 WriteGPROperation op(tid, buf, buf_size); 3459 DoOperation(&op); 3460 return op.GetError(); 3461 } 3462 3463 Error 3464 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3465 { 3466 WriteFPROperation op(tid, buf, buf_size); 3467 DoOperation(&op); 3468 return op.GetError(); 3469 } 3470 3471 Error 3472 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3473 { 3474 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3475 DoOperation(&op); 3476 return op.GetError(); 3477 } 3478 3479 Error 3480 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3481 { 3482 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3483 3484 if (log) 3485 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3486 GetUnixSignals().GetSignalAsCString (signo)); 3487 ResumeOperation op (tid, signo); 3488 DoOperation (&op); 3489 if (log) 3490 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3491 return op.GetError(); 3492 } 3493 3494 Error 3495 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3496 { 3497 SingleStepOperation op(tid, signo); 3498 DoOperation(&op); 3499 return op.GetError(); 3500 } 3501 3502 Error 3503 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3504 { 3505 SiginfoOperation op(tid, siginfo); 3506 DoOperation(&op); 3507 return op.GetError(); 3508 } 3509 3510 Error 3511 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3512 { 3513 EventMessageOperation op(tid, message); 3514 DoOperation(&op); 3515 return op.GetError(); 3516 } 3517 3518 lldb_private::Error 3519 NativeProcessLinux::Detach(lldb::tid_t tid) 3520 { 3521 if (tid == LLDB_INVALID_THREAD_ID) 3522 return Error(); 3523 3524 DetachOperation op(tid); 3525 DoOperation(&op); 3526 return op.GetError(); 3527 } 3528 3529 bool 3530 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3531 { 3532 int target_fd = open(path, flags, 0666); 3533 3534 if (target_fd == -1) 3535 return false; 3536 3537 if (dup2(target_fd, fd) == -1) 3538 return false; 3539 3540 return (close(target_fd) == -1) ? false : true; 3541 } 3542 3543 void 3544 NativeProcessLinux::StopMonitoringChildProcess() 3545 { 3546 if (m_monitor_thread.IsJoinable()) 3547 { 3548 m_monitor_thread.Cancel(); 3549 m_monitor_thread.Join(nullptr); 3550 } 3551 } 3552 3553 void 3554 NativeProcessLinux::StopMonitor() 3555 { 3556 StopMonitoringChildProcess(); 3557 StopOpThread(); 3558 StopCoordinatorThread (); 3559 sem_destroy(&m_operation_pending); 3560 sem_destroy(&m_operation_done); 3561 3562 // TODO: validate whether this still holds, fix up comment. 3563 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to 3564 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of 3565 // the descriptor to a ConnectionFileDescriptor object. Consequently 3566 // even though still has the file descriptor, we shouldn't close it here. 3567 } 3568 3569 void 3570 NativeProcessLinux::StopOpThread() 3571 { 3572 if (!m_operation_thread.IsJoinable()) 3573 return; 3574 3575 m_operation_thread.Cancel(); 3576 m_operation_thread.Join(nullptr); 3577 } 3578 3579 Error 3580 NativeProcessLinux::StartCoordinatorThread () 3581 { 3582 Error error; 3583 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 3584 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3585 3586 // Skip if thread is already running 3587 if (m_coordinator_thread.IsJoinable()) 3588 { 3589 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 3590 if (log) 3591 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 3592 return error; 3593 } 3594 3595 // Enable verbose logging if lldb thread logging is enabled. 3596 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 3597 3598 if (log) 3599 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 3600 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 3601 return error; 3602 } 3603 3604 void * 3605 NativeProcessLinux::CoordinatorThread (void *arg) 3606 { 3607 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3608 3609 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 3610 assert (process && "null process passed to CoordinatorThread"); 3611 if (!process) 3612 { 3613 if (log) 3614 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 3615 return nullptr; 3616 } 3617 3618 // Run the thread state coordinator loop until it is done. This call uses 3619 // efficient waiting for an event to be ready. 3620 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 3621 { 3622 } 3623 3624 if (log) 3625 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 3626 3627 return nullptr; 3628 } 3629 3630 void 3631 NativeProcessLinux::StopCoordinatorThread() 3632 { 3633 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3634 if (log) 3635 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 3636 3637 // Tell the coordinator we're done. This will cause the coordinator 3638 // run loop thread to exit when the processing queue hits this message. 3639 m_coordinator_up->StopCoordinator (); 3640 } 3641 3642 bool 3643 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3644 { 3645 for (auto thread_sp : m_threads) 3646 { 3647 assert (thread_sp && "thread list should not contain NULL threads"); 3648 if (thread_sp->GetID () == thread_id) 3649 { 3650 // We have this thread. 3651 return true; 3652 } 3653 } 3654 3655 // We don't have this thread. 3656 return false; 3657 } 3658 3659 NativeThreadProtocolSP 3660 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3661 { 3662 // CONSIDER organize threads by map - we can do better than linear. 3663 for (auto thread_sp : m_threads) 3664 { 3665 if (thread_sp->GetID () == thread_id) 3666 return thread_sp; 3667 } 3668 3669 // We don't have this thread. 3670 return NativeThreadProtocolSP (); 3671 } 3672 3673 bool 3674 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3675 { 3676 Mutex::Locker locker (m_threads_mutex); 3677 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3678 { 3679 if (*it && ((*it)->GetID () == thread_id)) 3680 { 3681 m_threads.erase (it); 3682 return true; 3683 } 3684 } 3685 3686 // Didn't find it. 3687 return false; 3688 } 3689 3690 NativeThreadProtocolSP 3691 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3692 { 3693 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3694 3695 Mutex::Locker locker (m_threads_mutex); 3696 3697 if (log) 3698 { 3699 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3700 __FUNCTION__, 3701 GetID (), 3702 thread_id); 3703 } 3704 3705 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3706 3707 // If this is the first thread, save it as the current thread 3708 if (m_threads.empty ()) 3709 SetCurrentThreadID (thread_id); 3710 3711 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3712 m_threads.push_back (thread_sp); 3713 3714 return thread_sp; 3715 } 3716 3717 NativeThreadProtocolSP 3718 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 3719 { 3720 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3721 3722 Mutex::Locker locker (m_threads_mutex); 3723 if (log) 3724 { 3725 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 3726 __FUNCTION__, 3727 GetID (), 3728 thread_id); 3729 } 3730 3731 // Retrieve the thread if it is already getting tracked. 3732 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 3733 if (thread_sp) 3734 { 3735 if (log) 3736 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 3737 __FUNCTION__, 3738 GetID (), 3739 thread_id); 3740 created = false; 3741 return thread_sp; 3742 3743 } 3744 3745 // Create the thread metadata since it isn't being tracked. 3746 if (log) 3747 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 3748 __FUNCTION__, 3749 GetID (), 3750 thread_id); 3751 3752 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 3753 m_threads.push_back (thread_sp); 3754 created = true; 3755 3756 return thread_sp; 3757 } 3758 3759 Error 3760 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3761 { 3762 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3763 3764 Error error; 3765 3766 // Get a linux thread pointer. 3767 if (!thread_sp) 3768 { 3769 error.SetErrorString ("null thread_sp"); 3770 if (log) 3771 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3772 return error; 3773 } 3774 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get()); 3775 3776 // Find out the size of a breakpoint (might depend on where we are in the code). 3777 NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext (); 3778 if (!context_sp) 3779 { 3780 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3781 if (log) 3782 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3783 return error; 3784 } 3785 3786 uint32_t breakpoint_size = 0; 3787 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); 3788 if (error.Fail ()) 3789 { 3790 if (log) 3791 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3792 return error; 3793 } 3794 else 3795 { 3796 if (log) 3797 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3798 } 3799 3800 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3801 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 3802 lldb::addr_t breakpoint_addr = initial_pc_addr; 3803 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 3804 { 3805 // Do not allow breakpoint probe to wrap around. 3806 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 3807 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 3808 } 3809 3810 // Check if we stopped because of a breakpoint. 3811 NativeBreakpointSP breakpoint_sp; 3812 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3813 if (!error.Success () || !breakpoint_sp) 3814 { 3815 // We didn't find one at a software probe location. Nothing to do. 3816 if (log) 3817 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3818 return Error (); 3819 } 3820 3821 // If the breakpoint is not a software breakpoint, nothing to do. 3822 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3823 { 3824 if (log) 3825 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3826 return Error (); 3827 } 3828 3829 // 3830 // We have a software breakpoint and need to adjust the PC. 3831 // 3832 3833 // Sanity check. 3834 if (breakpoint_size == 0) 3835 { 3836 // Nothing to do! How did we get here? 3837 if (log) 3838 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3839 return Error (); 3840 } 3841 3842 // Change the program counter. 3843 if (log) 3844 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr); 3845 3846 error = context_sp->SetPC (breakpoint_addr); 3847 if (error.Fail ()) 3848 { 3849 if (log) 3850 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ()); 3851 return error; 3852 } 3853 3854 return error; 3855 } 3856 3857 void 3858 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 3859 { 3860 const bool is_stopped = true; 3861 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 3862 } 3863 3864 void 3865 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 3866 { 3867 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 3868 } 3869 3870 void 3871 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 3872 { 3873 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 3874 } 3875 3876 void 3877 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 3878 const std::function<void (lldb::tid_t tid)> &call_after_function) 3879 { 3880 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3881 if (log) 3882 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 3883 3884 const lldb::pid_t pid = GetID (); 3885 m_coordinator_up->CallAfterRunningThreadsStop (tid, 3886 [=](lldb::tid_t request_stop_tid) 3887 { 3888 return RequestThreadStop(pid, request_stop_tid); 3889 }, 3890 call_after_function, 3891 CoordinatorErrorHandler); 3892 } 3893 3894 void 3895 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 3896 lldb::tid_t skip_stop_request_tid, 3897 const std::function<void (lldb::tid_t tid)> &call_after_function) 3898 { 3899 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3900 if (log) 3901 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 3902 3903 const lldb::pid_t pid = GetID (); 3904 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 3905 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 3906 [=](lldb::tid_t request_stop_tid) 3907 { 3908 return RequestThreadStop(pid, request_stop_tid); 3909 }, 3910 call_after_function, 3911 CoordinatorErrorHandler); 3912 } 3913 3914 lldb_private::Error 3915 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 3916 { 3917 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3918 if (log) 3919 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 3920 3921 Error err; 3922 errno = 0; 3923 if (::tgkill (pid, tid, SIGSTOP) != 0) 3924 { 3925 err.SetErrorToErrno (); 3926 if (log) 3927 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 3928 } 3929 3930 return err; 3931 } 3932