1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 #include <linux/unistd.h>
21 #if defined(__ANDROID_NDK__) && defined (__arm__)
22 #include <linux/personality.h>
23 #include <linux/user.h>
24 #else
25 #include <sys/personality.h>
26 #include <sys/user.h>
27 #endif
28 #ifndef __ANDROID__
29 #include <sys/procfs.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include <sys/uio.h>
33 #include <sys/socket.h>
34 #include <sys/syscall.h>
35 #include <sys/types.h>
36 #include <sys/wait.h>
37 
38 #if defined (__arm64__) || defined (__aarch64__)
39 // NT_PRSTATUS and NT_FPREGSET definition
40 #include <elf.h>
41 #endif
42 
43 // C++ Includes
44 #include <fstream>
45 #include <string>
46 
47 // Other libraries and framework includes
48 #include "lldb/Core/Debugger.h"
49 #include "lldb/Core/Error.h"
50 #include "lldb/Core/Module.h"
51 #include "lldb/Core/RegisterValue.h"
52 #include "lldb/Core/Scalar.h"
53 #include "lldb/Core/State.h"
54 #include "lldb/Host/Host.h"
55 #include "lldb/Host/HostInfo.h"
56 #include "lldb/Host/ThreadLauncher.h"
57 #include "lldb/Symbol/ObjectFile.h"
58 #include "lldb/Target/NativeRegisterContext.h"
59 #include "lldb/Target/ProcessLaunchInfo.h"
60 #include "lldb/Utility/PseudoTerminal.h"
61 
62 #include "Host/common/NativeBreakpoint.h"
63 #include "Utility/StringExtractor.h"
64 
65 #include "Plugins/Process/Utility/LinuxSignals.h"
66 #include "NativeThreadLinux.h"
67 #include "ProcFileReader.h"
68 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
69 
70 #ifdef __ANDROID__
71 #define __ptrace_request int
72 #define PT_DETACH PTRACE_DETACH
73 #endif
74 
75 #define DEBUG_PTRACE_MAXBYTES 20
76 
77 // Support ptrace extensions even when compiled without required kernel support
78 #ifndef PT_GETREGS
79 #ifndef PTRACE_GETREGS
80   #define PTRACE_GETREGS 12
81 #endif
82 #endif
83 #ifndef PT_SETREGS
84 #ifndef PTRACE_SETREGS
85   #define PTRACE_SETREGS 13
86 #endif
87 #endif
88 #ifndef PT_GETFPREGS
89 #ifndef PTRACE_GETFPREGS
90   #define PTRACE_GETFPREGS 14
91 #endif
92 #endif
93 #ifndef PT_SETFPREGS
94 #ifndef PTRACE_SETFPREGS
95   #define PTRACE_SETFPREGS 15
96 #endif
97 #endif
98 #ifndef PTRACE_GETREGSET
99   #define PTRACE_GETREGSET 0x4204
100 #endif
101 #ifndef PTRACE_SETREGSET
102   #define PTRACE_SETREGSET 0x4205
103 #endif
104 #ifndef PTRACE_GET_THREAD_AREA
105   #define PTRACE_GET_THREAD_AREA 25
106 #endif
107 #ifndef PTRACE_ARCH_PRCTL
108   #define PTRACE_ARCH_PRCTL      30
109 #endif
110 #ifndef ARCH_GET_FS
111   #define ARCH_SET_GS 0x1001
112   #define ARCH_SET_FS 0x1002
113   #define ARCH_GET_FS 0x1003
114   #define ARCH_GET_GS 0x1004
115 #endif
116 
117 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
118 
119 // Support hardware breakpoints in case it has not been defined
120 #ifndef TRAP_HWBKPT
121   #define TRAP_HWBKPT 4
122 #endif
123 
124 // Try to define a macro to encapsulate the tgkill syscall
125 // fall back on kill() if tgkill isn't available
126 #define tgkill(pid, tid, sig)  syscall(SYS_tgkill, pid, tid, sig)
127 
128 // We disable the tracing of ptrace calls for integration builds to
129 // avoid the additional indirection and checks.
130 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
131 #define PTRACE(req, pid, addr, data, data_size) \
132     PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__)
133 #else
134 #define PTRACE(req, pid, addr, data, data_size) \
135     PtraceWrapper((req), (pid), (addr), (data), (data_size))
136 #endif
137 
138 // Private bits we only need internally.
139 namespace
140 {
141     using namespace lldb;
142     using namespace lldb_private;
143 
144     const UnixSignals&
145     GetUnixSignals ()
146     {
147         static process_linux::LinuxSignals signals;
148         return signals;
149     }
150 
151     Error
152     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
153     {
154         // Grab process info for the running process.
155         ProcessInstanceInfo process_info;
156         if (!platform.GetProcessInfo (pid, process_info))
157             return lldb_private::Error("failed to get process info");
158 
159         // Resolve the executable module.
160         ModuleSP exe_module_sp;
161         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
162         Error error = platform.ResolveExecutable(
163             process_info.GetExecutableFile (),
164             platform.GetSystemArchitecture (),
165             exe_module_sp,
166             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
167 
168         if (!error.Success ())
169             return error;
170 
171         // Check if we've got our architecture from the exe_module.
172         arch = exe_module_sp->GetArchitecture ();
173         if (arch.IsValid ())
174             return Error();
175         else
176             return Error("failed to retrieve a valid architecture from the exe module");
177     }
178 
179     void
180     DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
181     {
182         uint8_t *ptr = (uint8_t *)bytes;
183         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
184         for(uint32_t i=0; i<loop_count; i++)
185         {
186             s.Printf ("[%x]", *ptr);
187             ptr++;
188         }
189     }
190 
191     void
192     PtraceDisplayBytes(int &req, void *data, size_t data_size)
193     {
194         StreamString buf;
195         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
196                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
197 
198         if (verbose_log)
199         {
200             switch(req)
201             {
202             case PTRACE_POKETEXT:
203             {
204                 DisplayBytes(buf, &data, 8);
205                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
206                 break;
207             }
208             case PTRACE_POKEDATA:
209             {
210                 DisplayBytes(buf, &data, 8);
211                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
212                 break;
213             }
214             case PTRACE_POKEUSER:
215             {
216                 DisplayBytes(buf, &data, 8);
217                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
218                 break;
219             }
220             case PTRACE_SETREGS:
221             {
222                 DisplayBytes(buf, data, data_size);
223                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
224                 break;
225             }
226             case PTRACE_SETFPREGS:
227             {
228                 DisplayBytes(buf, data, data_size);
229                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
230                 break;
231             }
232             case PTRACE_SETSIGINFO:
233             {
234                 DisplayBytes(buf, data, sizeof(siginfo_t));
235                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
236                 break;
237             }
238             case PTRACE_SETREGSET:
239             {
240                 // Extract iov_base from data, which is a pointer to the struct IOVEC
241                 DisplayBytes(buf, *(void **)data, data_size);
242                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
243                 break;
244             }
245             default:
246             {
247             }
248             }
249         }
250     }
251 
252     // Wrapper for ptrace to catch errors and log calls.
253     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
254     long
255     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size,
256             const char* reqName, const char* file, int line)
257     {
258         long int result;
259 
260         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
261 
262         PtraceDisplayBytes(req, data, data_size);
263 
264         errno = 0;
265         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
266             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
267         else
268             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
269 
270         if (log)
271             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
272                     reqName, pid, addr, data, data_size, result, file, line);
273 
274         PtraceDisplayBytes(req, data, data_size);
275 
276         if (log && errno != 0)
277         {
278             const char* str;
279             switch (errno)
280             {
281             case ESRCH:  str = "ESRCH"; break;
282             case EINVAL: str = "EINVAL"; break;
283             case EBUSY:  str = "EBUSY"; break;
284             case EPERM:  str = "EPERM"; break;
285             default:     str = "<unknown>";
286             }
287             log->Printf("ptrace() failed; errno=%d (%s)", errno, str);
288         }
289 
290         return result;
291     }
292 
293 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
294     // Wrapper for ptrace when logging is not required.
295     // Sets errno to 0 prior to calling ptrace.
296     long
297     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size)
298     {
299         long result = 0;
300         errno = 0;
301         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
302             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
303         else
304             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
305         return result;
306     }
307 #endif
308 
309     //------------------------------------------------------------------------------
310     // Static implementations of NativeProcessLinux::ReadMemory and
311     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
312     // functions without needed to go thru the thread funnel.
313 
314     static lldb::addr_t
315     DoReadMemory (
316         lldb::pid_t pid,
317         lldb::addr_t vm_addr,
318         void *buf,
319         lldb::addr_t size,
320         Error &error)
321     {
322         // ptrace word size is determined by the host, not the child
323         static const unsigned word_size = sizeof(void*);
324         unsigned char *dst = static_cast<unsigned char*>(buf);
325         lldb::addr_t bytes_read;
326         lldb::addr_t remainder;
327         long data;
328 
329         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
330         if (log)
331             ProcessPOSIXLog::IncNestLevel();
332         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
333             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
334                     pid, word_size, (void*)vm_addr, buf, size);
335 
336         assert(sizeof(data) >= word_size);
337         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
338         {
339             errno = 0;
340             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0);
341             if (errno)
342             {
343                 error.SetErrorToErrno();
344                 if (log)
345                     ProcessPOSIXLog::DecNestLevel();
346                 return bytes_read;
347             }
348 
349             remainder = size - bytes_read;
350             remainder = remainder > word_size ? word_size : remainder;
351 
352             // Copy the data into our buffer
353             for (unsigned i = 0; i < remainder; ++i)
354                 dst[i] = ((data >> i*8) & 0xFF);
355 
356             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
357                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
358                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
359                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
360             {
361                 uintptr_t print_dst = 0;
362                 // Format bytes from data by moving into print_dst for log output
363                 for (unsigned i = 0; i < remainder; ++i)
364                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
365                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
366                         (void*)vm_addr, print_dst, (unsigned long)data);
367             }
368 
369             vm_addr += word_size;
370             dst += word_size;
371         }
372 
373         if (log)
374             ProcessPOSIXLog::DecNestLevel();
375         return bytes_read;
376     }
377 
378     static lldb::addr_t
379     DoWriteMemory(
380         lldb::pid_t pid,
381         lldb::addr_t vm_addr,
382         const void *buf,
383         lldb::addr_t size,
384         Error &error)
385     {
386         // ptrace word size is determined by the host, not the child
387         static const unsigned word_size = sizeof(void*);
388         const unsigned char *src = static_cast<const unsigned char*>(buf);
389         lldb::addr_t bytes_written = 0;
390         lldb::addr_t remainder;
391 
392         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
393         if (log)
394             ProcessPOSIXLog::IncNestLevel();
395         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
396             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
397                     pid, word_size, (void*)vm_addr, buf, size);
398 
399         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
400         {
401             remainder = size - bytes_written;
402             remainder = remainder > word_size ? word_size : remainder;
403 
404             if (remainder == word_size)
405             {
406                 unsigned long data = 0;
407                 assert(sizeof(data) >= word_size);
408                 for (unsigned i = 0; i < word_size; ++i)
409                     data |= (unsigned long)src[i] << i*8;
410 
411                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
412                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
413                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
414                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
415                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
416                             (void*)vm_addr, *(unsigned long*)src, data);
417 
418                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0))
419                 {
420                     error.SetErrorToErrno();
421                     if (log)
422                         ProcessPOSIXLog::DecNestLevel();
423                     return bytes_written;
424                 }
425             }
426             else
427             {
428                 unsigned char buff[8];
429                 if (DoReadMemory(pid, vm_addr,
430                                 buff, word_size, error) != word_size)
431                 {
432                     if (log)
433                         ProcessPOSIXLog::DecNestLevel();
434                     return bytes_written;
435                 }
436 
437                 memcpy(buff, src, remainder);
438 
439                 if (DoWriteMemory(pid, vm_addr,
440                                 buff, word_size, error) != word_size)
441                 {
442                     if (log)
443                         ProcessPOSIXLog::DecNestLevel();
444                     return bytes_written;
445                 }
446 
447                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
448                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
449                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
450                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
451                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
452                             (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
453             }
454 
455             vm_addr += word_size;
456             src += word_size;
457         }
458         if (log)
459             ProcessPOSIXLog::DecNestLevel();
460         return bytes_written;
461     }
462 
463     //------------------------------------------------------------------------------
464     /// @class Operation
465     /// @brief Represents a NativeProcessLinux operation.
466     ///
467     /// Under Linux, it is not possible to ptrace() from any other thread but the
468     /// one that spawned or attached to the process from the start.  Therefore, when
469     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
470     /// process the operation must be "funneled" to a specific thread to perform the
471     /// task.  The Operation class provides an abstract base for all services the
472     /// NativeProcessLinux must perform via the single virtual function Execute, thus
473     /// encapsulating the code that needs to run in the privileged context.
474     class Operation
475     {
476     public:
477         Operation () : m_error() { }
478 
479         virtual
480         ~Operation() {}
481 
482         virtual void
483         Execute (NativeProcessLinux *process) = 0;
484 
485         const Error &
486         GetError () const { return m_error; }
487 
488     protected:
489         Error m_error;
490     };
491 
492     //------------------------------------------------------------------------------
493     /// @class ReadOperation
494     /// @brief Implements NativeProcessLinux::ReadMemory.
495     class ReadOperation : public Operation
496     {
497     public:
498         ReadOperation (
499             lldb::addr_t addr,
500             void *buff,
501             lldb::addr_t size,
502             lldb::addr_t &result) :
503             Operation (),
504             m_addr (addr),
505             m_buff (buff),
506             m_size (size),
507             m_result (result)
508             {
509             }
510 
511         void Execute (NativeProcessLinux *process) override;
512 
513     private:
514         lldb::addr_t m_addr;
515         void *m_buff;
516         lldb::addr_t m_size;
517         lldb::addr_t &m_result;
518     };
519 
520     void
521     ReadOperation::Execute (NativeProcessLinux *process)
522     {
523         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
524     }
525 
526     //------------------------------------------------------------------------------
527     /// @class WriteOperation
528     /// @brief Implements NativeProcessLinux::WriteMemory.
529     class WriteOperation : public Operation
530     {
531     public:
532         WriteOperation (
533             lldb::addr_t addr,
534             const void *buff,
535             lldb::addr_t size,
536             lldb::addr_t &result) :
537             Operation (),
538             m_addr (addr),
539             m_buff (buff),
540             m_size (size),
541             m_result (result)
542             {
543             }
544 
545         void Execute (NativeProcessLinux *process) override;
546 
547     private:
548         lldb::addr_t m_addr;
549         const void *m_buff;
550         lldb::addr_t m_size;
551         lldb::addr_t &m_result;
552     };
553 
554     void
555     WriteOperation::Execute(NativeProcessLinux *process)
556     {
557         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
558     }
559 
560     //------------------------------------------------------------------------------
561     /// @class ReadRegOperation
562     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
563     class ReadRegOperation : public Operation
564     {
565     public:
566         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
567                 RegisterValue &value, bool &result)
568             : m_tid(tid), m_offset(static_cast<uintptr_t> (offset)), m_reg_name(reg_name),
569               m_value(value), m_result(result)
570             { }
571 
572         void Execute(NativeProcessLinux *monitor);
573 
574     private:
575         lldb::tid_t m_tid;
576         uintptr_t m_offset;
577         const char *m_reg_name;
578         RegisterValue &m_value;
579         bool &m_result;
580     };
581 
582     void
583     ReadRegOperation::Execute(NativeProcessLinux *monitor)
584     {
585 #if defined (__arm64__) || defined (__aarch64__)
586         if (m_offset > sizeof(struct user_pt_regs))
587         {
588             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
589             if (offset > sizeof(struct user_fpsimd_state))
590             {
591                 m_result = false;
592             }
593             else
594             {
595                 elf_fpregset_t regs;
596                 int regset = NT_FPREGSET;
597                 struct iovec ioVec;
598 
599                 ioVec.iov_base = &regs;
600                 ioVec.iov_len = sizeof regs;
601                 if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
602                     m_result = false;
603                 else
604                 {
605                     lldb_private::ArchSpec arch;
606                     if (monitor->GetArchitecture(arch))
607                     {
608                         m_result = true;
609                         m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
610                     }
611                     else
612                         m_result = false;
613                 }
614             }
615         }
616         else
617         {
618             elf_gregset_t regs;
619             int regset = NT_PRSTATUS;
620             struct iovec ioVec;
621 
622             ioVec.iov_base = &regs;
623             ioVec.iov_len = sizeof regs;
624             if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
625                 m_result = false;
626             else
627             {
628                 lldb_private::ArchSpec arch;
629                 if (monitor->GetArchitecture(arch))
630                 {
631                     m_result = true;
632                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
633                 } else
634                     m_result = false;
635             }
636         }
637 #else
638         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
639 
640         // Set errno to zero so that we can detect a failed peek.
641         errno = 0;
642         lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0);
643         if (errno)
644             m_result = false;
645         else
646         {
647             m_value = data;
648             m_result = true;
649         }
650         if (log)
651             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
652                     m_reg_name, data);
653 #endif
654     }
655 
656     //------------------------------------------------------------------------------
657     /// @class WriteRegOperation
658     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
659     class WriteRegOperation : public Operation
660     {
661     public:
662         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
663                 const RegisterValue &value, bool &result)
664             : m_tid(tid), m_offset(offset), m_reg_name(reg_name),
665               m_value(value), m_result(result)
666             { }
667 
668         void Execute(NativeProcessLinux *monitor);
669 
670     private:
671         lldb::tid_t m_tid;
672         uintptr_t m_offset;
673         const char *m_reg_name;
674         const RegisterValue &m_value;
675         bool &m_result;
676     };
677 
678     void
679     WriteRegOperation::Execute(NativeProcessLinux *monitor)
680     {
681 #if defined (__arm64__) || defined (__aarch64__)
682         if (m_offset > sizeof(struct user_pt_regs))
683         {
684             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
685             if (offset > sizeof(struct user_fpsimd_state))
686             {
687                 m_result = false;
688             }
689             else
690             {
691                 elf_fpregset_t regs;
692                 int regset = NT_FPREGSET;
693                 struct iovec ioVec;
694 
695                 ioVec.iov_base = &regs;
696                 ioVec.iov_len = sizeof regs;
697                 if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
698                     m_result = false;
699                 else
700                 {
701                     ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
702                     if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
703                         m_result = false;
704                     else
705                         m_result = true;
706                 }
707             }
708         }
709         else
710         {
711             elf_gregset_t regs;
712             int regset = NT_PRSTATUS;
713             struct iovec ioVec;
714 
715             ioVec.iov_base = &regs;
716             ioVec.iov_len = sizeof regs;
717             if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
718                 m_result = false;
719             else
720             {
721                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
722                 if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
723                     m_result = false;
724                 else
725                     m_result = true;
726             }
727         }
728 #else
729         void* buf;
730         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
731 
732         buf = (void*) m_value.GetAsUInt64();
733 
734         if (log)
735             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
736         if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0))
737             m_result = false;
738         else
739             m_result = true;
740 #endif
741     }
742 
743     //------------------------------------------------------------------------------
744     /// @class ReadGPROperation
745     /// @brief Implements NativeProcessLinux::ReadGPR.
746     class ReadGPROperation : public Operation
747     {
748     public:
749         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
750             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
751             { }
752 
753         void Execute(NativeProcessLinux *monitor);
754 
755     private:
756         lldb::tid_t m_tid;
757         void *m_buf;
758         size_t m_buf_size;
759         bool &m_result;
760     };
761 
762     void
763     ReadGPROperation::Execute(NativeProcessLinux *monitor)
764     {
765 #if defined (__arm64__) || defined (__aarch64__)
766         int regset = NT_PRSTATUS;
767         struct iovec ioVec;
768 
769         ioVec.iov_base = m_buf;
770         ioVec.iov_len = m_buf_size;
771         if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
772             m_result = false;
773         else
774             m_result = true;
775 #else
776         if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
777             m_result = false;
778         else
779             m_result = true;
780 #endif
781     }
782 
783     //------------------------------------------------------------------------------
784     /// @class ReadFPROperation
785     /// @brief Implements NativeProcessLinux::ReadFPR.
786     class ReadFPROperation : public Operation
787     {
788     public:
789         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
790             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
791             { }
792 
793         void Execute(NativeProcessLinux *monitor);
794 
795     private:
796         lldb::tid_t m_tid;
797         void *m_buf;
798         size_t m_buf_size;
799         bool &m_result;
800     };
801 
802     void
803     ReadFPROperation::Execute(NativeProcessLinux *monitor)
804     {
805 #if defined (__arm64__) || defined (__aarch64__)
806         int regset = NT_FPREGSET;
807         struct iovec ioVec;
808 
809         ioVec.iov_base = m_buf;
810         ioVec.iov_len = m_buf_size;
811         if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
812             m_result = false;
813         else
814             m_result = true;
815 #else
816         if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
817             m_result = false;
818         else
819             m_result = true;
820 #endif
821     }
822 
823     //------------------------------------------------------------------------------
824     /// @class ReadRegisterSetOperation
825     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
826     class ReadRegisterSetOperation : public Operation
827     {
828     public:
829         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
830             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
831             { }
832 
833         void Execute(NativeProcessLinux *monitor);
834 
835     private:
836         lldb::tid_t m_tid;
837         void *m_buf;
838         size_t m_buf_size;
839         const unsigned int m_regset;
840         bool &m_result;
841     };
842 
843     void
844     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
845     {
846         if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
847             m_result = false;
848         else
849             m_result = true;
850     }
851 
852     //------------------------------------------------------------------------------
853     /// @class WriteGPROperation
854     /// @brief Implements NativeProcessLinux::WriteGPR.
855     class WriteGPROperation : public Operation
856     {
857     public:
858         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
859             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
860             { }
861 
862         void Execute(NativeProcessLinux *monitor);
863 
864     private:
865         lldb::tid_t m_tid;
866         void *m_buf;
867         size_t m_buf_size;
868         bool &m_result;
869     };
870 
871     void
872     WriteGPROperation::Execute(NativeProcessLinux *monitor)
873     {
874 #if defined (__arm64__) || defined (__aarch64__)
875         int regset = NT_PRSTATUS;
876         struct iovec ioVec;
877 
878         ioVec.iov_base = m_buf;
879         ioVec.iov_len = m_buf_size;
880         if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
881             m_result = false;
882         else
883             m_result = true;
884 #else
885         if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
886             m_result = false;
887         else
888             m_result = true;
889 #endif
890     }
891 
892     //------------------------------------------------------------------------------
893     /// @class WriteFPROperation
894     /// @brief Implements NativeProcessLinux::WriteFPR.
895     class WriteFPROperation : public Operation
896     {
897     public:
898         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
899             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
900             { }
901 
902         void Execute(NativeProcessLinux *monitor);
903 
904     private:
905         lldb::tid_t m_tid;
906         void *m_buf;
907         size_t m_buf_size;
908         bool &m_result;
909     };
910 
911     void
912     WriteFPROperation::Execute(NativeProcessLinux *monitor)
913     {
914 #if defined (__arm64__) || defined (__aarch64__)
915         int regset = NT_FPREGSET;
916         struct iovec ioVec;
917 
918         ioVec.iov_base = m_buf;
919         ioVec.iov_len = m_buf_size;
920         if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
921             m_result = false;
922         else
923             m_result = true;
924 #else
925         if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
926             m_result = false;
927         else
928             m_result = true;
929 #endif
930     }
931 
932     //------------------------------------------------------------------------------
933     /// @class WriteRegisterSetOperation
934     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
935     class WriteRegisterSetOperation : public Operation
936     {
937     public:
938         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
939             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
940             { }
941 
942         void Execute(NativeProcessLinux *monitor);
943 
944     private:
945         lldb::tid_t m_tid;
946         void *m_buf;
947         size_t m_buf_size;
948         const unsigned int m_regset;
949         bool &m_result;
950     };
951 
952     void
953     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
954     {
955         if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
956             m_result = false;
957         else
958             m_result = true;
959     }
960 
961     //------------------------------------------------------------------------------
962     /// @class ResumeOperation
963     /// @brief Implements NativeProcessLinux::Resume.
964     class ResumeOperation : public Operation
965     {
966     public:
967         ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) :
968             m_tid(tid), m_signo(signo), m_result(result) { }
969 
970         void Execute(NativeProcessLinux *monitor);
971 
972     private:
973         lldb::tid_t m_tid;
974         uint32_t m_signo;
975         bool &m_result;
976     };
977 
978     void
979     ResumeOperation::Execute(NativeProcessLinux *monitor)
980     {
981         intptr_t data = 0;
982 
983         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
984             data = m_signo;
985 
986         if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0))
987         {
988             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
989 
990             if (log)
991                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, strerror(errno));
992             m_result = false;
993         }
994         else
995             m_result = true;
996     }
997 
998     //------------------------------------------------------------------------------
999     /// @class SingleStepOperation
1000     /// @brief Implements NativeProcessLinux::SingleStep.
1001     class SingleStepOperation : public Operation
1002     {
1003     public:
1004         SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result)
1005             : m_tid(tid), m_signo(signo), m_result(result) { }
1006 
1007         void Execute(NativeProcessLinux *monitor);
1008 
1009     private:
1010         lldb::tid_t m_tid;
1011         uint32_t m_signo;
1012         bool &m_result;
1013     };
1014 
1015     void
1016     SingleStepOperation::Execute(NativeProcessLinux *monitor)
1017     {
1018         intptr_t data = 0;
1019 
1020         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
1021             data = m_signo;
1022 
1023         if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0))
1024             m_result = false;
1025         else
1026             m_result = true;
1027     }
1028 
1029     //------------------------------------------------------------------------------
1030     /// @class SiginfoOperation
1031     /// @brief Implements NativeProcessLinux::GetSignalInfo.
1032     class SiginfoOperation : public Operation
1033     {
1034     public:
1035         SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err)
1036             : m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { }
1037 
1038         void Execute(NativeProcessLinux *monitor);
1039 
1040     private:
1041         lldb::tid_t m_tid;
1042         void *m_info;
1043         bool &m_result;
1044         int &m_err;
1045     };
1046 
1047     void
1048     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1049     {
1050         if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) {
1051             m_result = false;
1052             m_err = errno;
1053         }
1054         else
1055             m_result = true;
1056     }
1057 
1058     //------------------------------------------------------------------------------
1059     /// @class EventMessageOperation
1060     /// @brief Implements NativeProcessLinux::GetEventMessage.
1061     class EventMessageOperation : public Operation
1062     {
1063     public:
1064         EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result)
1065             : m_tid(tid), m_message(message), m_result(result) { }
1066 
1067         void Execute(NativeProcessLinux *monitor);
1068 
1069     private:
1070         lldb::tid_t m_tid;
1071         unsigned long *m_message;
1072         bool &m_result;
1073     };
1074 
1075     void
1076     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1077     {
1078         if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0))
1079             m_result = false;
1080         else
1081             m_result = true;
1082     }
1083 
1084     class DetachOperation : public Operation
1085     {
1086     public:
1087         DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { }
1088 
1089         void Execute(NativeProcessLinux *monitor);
1090 
1091     private:
1092         lldb::tid_t m_tid;
1093         Error &m_error;
1094     };
1095 
1096     void
1097     DetachOperation::Execute(NativeProcessLinux *monitor)
1098     {
1099         if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0)
1100             m_error.SetErrorToErrno();
1101     }
1102 
1103 }
1104 
1105 using namespace lldb_private;
1106 
1107 // Simple helper function to ensure flags are enabled on the given file
1108 // descriptor.
1109 static bool
1110 EnsureFDFlags(int fd, int flags, Error &error)
1111 {
1112     int status;
1113 
1114     if ((status = fcntl(fd, F_GETFL)) == -1)
1115     {
1116         error.SetErrorToErrno();
1117         return false;
1118     }
1119 
1120     if (fcntl(fd, F_SETFL, status | flags) == -1)
1121     {
1122         error.SetErrorToErrno();
1123         return false;
1124     }
1125 
1126     return true;
1127 }
1128 
1129 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor)
1130     : m_monitor(monitor)
1131 {
1132     sem_init(&m_semaphore, 0, 0);
1133 }
1134 
1135 NativeProcessLinux::OperationArgs::~OperationArgs()
1136 {
1137     sem_destroy(&m_semaphore);
1138 }
1139 
1140 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor,
1141                                        lldb_private::Module *module,
1142                                        char const **argv,
1143                                        char const **envp,
1144                                        const std::string &stdin_path,
1145                                        const std::string &stdout_path,
1146                                        const std::string &stderr_path,
1147                                        const char *working_dir,
1148                                        const lldb_private::ProcessLaunchInfo &launch_info)
1149     : OperationArgs(monitor),
1150       m_module(module),
1151       m_argv(argv),
1152       m_envp(envp),
1153       m_stdin_path(stdin_path),
1154       m_stdout_path(stdout_path),
1155       m_stderr_path(stderr_path),
1156       m_working_dir(working_dir),
1157       m_launch_info(launch_info)
1158 {
1159 }
1160 
1161 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1162 { }
1163 
1164 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor,
1165                                        lldb::pid_t pid)
1166     : OperationArgs(monitor), m_pid(pid) { }
1167 
1168 NativeProcessLinux::AttachArgs::~AttachArgs()
1169 { }
1170 
1171 // -----------------------------------------------------------------------------
1172 // Public Static Methods
1173 // -----------------------------------------------------------------------------
1174 
1175 lldb_private::Error
1176 NativeProcessLinux::LaunchProcess (
1177     lldb_private::Module *exe_module,
1178     lldb_private::ProcessLaunchInfo &launch_info,
1179     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1180     NativeProcessProtocolSP &native_process_sp)
1181 {
1182     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1183 
1184     Error error;
1185 
1186     // Verify the working directory is valid if one was specified.
1187     const char* working_dir = launch_info.GetWorkingDirectory ();
1188     if (working_dir)
1189     {
1190       FileSpec working_dir_fs (working_dir, true);
1191       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1192       {
1193           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1194           return error;
1195       }
1196     }
1197 
1198     const lldb_private::FileAction *file_action;
1199 
1200     // Default of NULL will mean to use existing open file descriptors.
1201     std::string stdin_path;
1202     std::string stdout_path;
1203     std::string stderr_path;
1204 
1205     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1206     if (file_action)
1207         stdin_path = file_action->GetPath ();
1208 
1209     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1210     if (file_action)
1211         stdout_path = file_action->GetPath ();
1212 
1213     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1214     if (file_action)
1215         stderr_path = file_action->GetPath ();
1216 
1217     if (log)
1218     {
1219         if (!stdin_path.empty ())
1220             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1221         else
1222             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1223 
1224         if (!stdout_path.empty ())
1225             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1226         else
1227             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1228 
1229         if (!stderr_path.empty ())
1230             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1231         else
1232             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1233     }
1234 
1235     // Create the NativeProcessLinux in launch mode.
1236     native_process_sp.reset (new NativeProcessLinux ());
1237 
1238     if (log)
1239     {
1240         int i = 0;
1241         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1242         {
1243             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1244             ++i;
1245         }
1246     }
1247 
1248     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1249     {
1250         native_process_sp.reset ();
1251         error.SetErrorStringWithFormat ("failed to register the native delegate");
1252         return error;
1253     }
1254 
1255     reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior (
1256             exe_module,
1257             launch_info.GetArguments ().GetConstArgumentVector (),
1258             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1259             stdin_path,
1260             stdout_path,
1261             stderr_path,
1262             working_dir,
1263             launch_info,
1264             error);
1265 
1266     if (error.Fail ())
1267     {
1268         native_process_sp.reset ();
1269         if (log)
1270             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1271         return error;
1272     }
1273 
1274     launch_info.SetProcessID (native_process_sp->GetID ());
1275 
1276     return error;
1277 }
1278 
1279 lldb_private::Error
1280 NativeProcessLinux::AttachToProcess (
1281     lldb::pid_t pid,
1282     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1283     NativeProcessProtocolSP &native_process_sp)
1284 {
1285     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1286     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1287         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1288 
1289     // Grab the current platform architecture.  This should be Linux,
1290     // since this code is only intended to run on a Linux host.
1291     PlatformSP platform_sp (Platform::GetHostPlatform ());
1292     if (!platform_sp)
1293         return Error("failed to get a valid default platform");
1294 
1295     // Retrieve the architecture for the running process.
1296     ArchSpec process_arch;
1297     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1298     if (!error.Success ())
1299         return error;
1300 
1301     native_process_sp.reset (new NativeProcessLinux ());
1302 
1303     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1304     {
1305         native_process_sp.reset (new NativeProcessLinux ());
1306         error.SetErrorStringWithFormat ("failed to register the native delegate");
1307         return error;
1308     }
1309 
1310     reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->AttachToInferior (pid, error);
1311     if (!error.Success ())
1312     {
1313         native_process_sp.reset ();
1314         return error;
1315     }
1316 
1317     return error;
1318 }
1319 
1320 // -----------------------------------------------------------------------------
1321 // Public Instance Methods
1322 // -----------------------------------------------------------------------------
1323 
1324 NativeProcessLinux::NativeProcessLinux () :
1325     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1326     m_arch (),
1327     m_operation (nullptr),
1328     m_operation_mutex (),
1329     m_operation_pending (),
1330     m_operation_done (),
1331     m_wait_for_stop_tids (),
1332     m_wait_for_stop_tids_mutex (),
1333     m_wait_for_group_stop_tids (),
1334     m_group_stop_signal_tid (LLDB_INVALID_THREAD_ID),
1335     m_group_stop_signal (LLDB_INVALID_SIGNAL_NUMBER),
1336     m_wait_for_group_stop_tids_mutex (),
1337     m_supports_mem_region (eLazyBoolCalculate),
1338     m_mem_region_cache (),
1339     m_mem_region_cache_mutex ()
1340 {
1341 }
1342 
1343 //------------------------------------------------------------------------------
1344 /// The basic design of the NativeProcessLinux is built around two threads.
1345 ///
1346 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
1347 /// for changes in the debugee state.  When a change is detected a
1348 /// ProcessMessage is sent to the associated ProcessLinux instance.  This thread
1349 /// "drives" state changes in the debugger.
1350 ///
1351 /// The second thread (@see OperationThread) is responsible for two things 1)
1352 /// launching or attaching to the inferior process, and then 2) servicing
1353 /// operations such as register reads/writes, stepping, etc.  See the comments
1354 /// on the Operation class for more info as to why this is needed.
1355 void
1356 NativeProcessLinux::LaunchInferior (
1357     Module *module,
1358     const char *argv[],
1359     const char *envp[],
1360     const std::string &stdin_path,
1361     const std::string &stdout_path,
1362     const std::string &stderr_path,
1363     const char *working_dir,
1364     const lldb_private::ProcessLaunchInfo &launch_info,
1365     lldb_private::Error &error)
1366 {
1367     if (module)
1368         m_arch = module->GetArchitecture ();
1369 
1370     SetState(eStateLaunching);
1371 
1372     std::unique_ptr<LaunchArgs> args(
1373         new LaunchArgs(
1374             this, module, argv, envp,
1375             stdin_path, stdout_path, stderr_path,
1376             working_dir, launch_info));
1377 
1378     sem_init(&m_operation_pending, 0, 0);
1379     sem_init(&m_operation_done, 0, 0);
1380 
1381     StartLaunchOpThread(args.get(), error);
1382     if (!error.Success())
1383         return;
1384 
1385 WAIT_AGAIN:
1386     // Wait for the operation thread to initialize.
1387     if (sem_wait(&args->m_semaphore))
1388     {
1389         if (errno == EINTR)
1390             goto WAIT_AGAIN;
1391         else
1392         {
1393             error.SetErrorToErrno();
1394             return;
1395         }
1396     }
1397 
1398     // Check that the launch was a success.
1399     if (!args->m_error.Success())
1400     {
1401         StopOpThread();
1402         error = args->m_error;
1403         return;
1404     }
1405 
1406     // Finally, start monitoring the child process for change in state.
1407     m_monitor_thread = Host::StartMonitoringChildProcess(
1408         NativeProcessLinux::MonitorCallback, this, GetID(), true);
1409     if (!m_monitor_thread.IsJoinable())
1410     {
1411         error.SetErrorToGenericError();
1412         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1413         return;
1414     }
1415 }
1416 
1417 void
1418 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error)
1419 {
1420     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1421     if (log)
1422         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1423 
1424     // We can use the Host for everything except the ResolveExecutable portion.
1425     PlatformSP platform_sp = Platform::GetHostPlatform ();
1426     if (!platform_sp)
1427     {
1428         if (log)
1429             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1430         error.SetErrorString ("no default platform available");
1431         return;
1432     }
1433 
1434     // Gather info about the process.
1435     ProcessInstanceInfo process_info;
1436     if (!platform_sp->GetProcessInfo (pid, process_info))
1437     {
1438         if (log)
1439             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1440         error.SetErrorString ("failed to get process info");
1441         return;
1442     }
1443 
1444     // Resolve the executable module
1445     ModuleSP exe_module_sp;
1446     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1447 
1448     error = platform_sp->ResolveExecutable(process_info.GetExecutableFile(), HostInfo::GetArchitecture(), exe_module_sp,
1449                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1450     if (!error.Success())
1451         return;
1452 
1453     // Set the architecture to the exe architecture.
1454     m_arch = exe_module_sp->GetArchitecture();
1455     if (log)
1456         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1457 
1458     m_pid = pid;
1459     SetState(eStateAttaching);
1460 
1461     sem_init (&m_operation_pending, 0, 0);
1462     sem_init (&m_operation_done, 0, 0);
1463 
1464     std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid));
1465 
1466     StartAttachOpThread(args.get (), error);
1467     if (!error.Success ())
1468         return;
1469 
1470 WAIT_AGAIN:
1471     // Wait for the operation thread to initialize.
1472     if (sem_wait (&args->m_semaphore))
1473     {
1474         if (errno == EINTR)
1475             goto WAIT_AGAIN;
1476         else
1477         {
1478             error.SetErrorToErrno ();
1479             return;
1480         }
1481     }
1482 
1483     // Check that the attach was a success.
1484     if (!args->m_error.Success ())
1485     {
1486         StopOpThread ();
1487         error = args->m_error;
1488         return;
1489     }
1490 
1491     // Finally, start monitoring the child process for change in state.
1492     m_monitor_thread = Host::StartMonitoringChildProcess (
1493         NativeProcessLinux::MonitorCallback, this, GetID (), true);
1494     if (!m_monitor_thread.IsJoinable())
1495     {
1496         error.SetErrorToGenericError ();
1497         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1498         return;
1499     }
1500 }
1501 
1502 NativeProcessLinux::~NativeProcessLinux()
1503 {
1504     StopMonitor();
1505 }
1506 
1507 //------------------------------------------------------------------------------
1508 // Thread setup and tear down.
1509 
1510 void
1511 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error)
1512 {
1513     static const char *g_thread_name = "lldb.process.nativelinux.operation";
1514 
1515     if (m_operation_thread.IsJoinable())
1516         return;
1517 
1518     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error);
1519 }
1520 
1521 void *
1522 NativeProcessLinux::LaunchOpThread(void *arg)
1523 {
1524     LaunchArgs *args = static_cast<LaunchArgs*>(arg);
1525 
1526     if (!Launch(args)) {
1527         sem_post(&args->m_semaphore);
1528         return NULL;
1529     }
1530 
1531     ServeOperation(args);
1532     return NULL;
1533 }
1534 
1535 bool
1536 NativeProcessLinux::Launch(LaunchArgs *args)
1537 {
1538     assert (args && "null args");
1539     if (!args)
1540         return false;
1541 
1542     NativeProcessLinux *monitor = args->m_monitor;
1543     assert (monitor && "monitor is NULL");
1544     if (!monitor)
1545         return false;
1546 
1547     const char **argv = args->m_argv;
1548     const char **envp = args->m_envp;
1549     const char *working_dir = args->m_working_dir;
1550 
1551     lldb_utility::PseudoTerminal terminal;
1552     const size_t err_len = 1024;
1553     char err_str[err_len];
1554     lldb::pid_t pid;
1555     NativeThreadProtocolSP thread_sp;
1556 
1557     lldb::ThreadSP inferior;
1558 
1559     // Propagate the environment if one is not supplied.
1560     if (envp == NULL || envp[0] == NULL)
1561         envp = const_cast<const char **>(environ);
1562 
1563     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1564     {
1565         args->m_error.SetErrorToGenericError();
1566         args->m_error.SetErrorString("Process fork failed.");
1567         return false;
1568     }
1569 
1570     // Recognized child exit status codes.
1571     enum {
1572         ePtraceFailed = 1,
1573         eDupStdinFailed,
1574         eDupStdoutFailed,
1575         eDupStderrFailed,
1576         eChdirFailed,
1577         eExecFailed,
1578         eSetGidFailed
1579     };
1580 
1581     // Child process.
1582     if (pid == 0)
1583     {
1584         // FIXME consider opening a pipe between parent/child and have this forked child
1585         // send log info to parent re: launch status, in place of the log lines removed here.
1586 
1587         // Start tracing this child that is about to exec.
1588         if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0)
1589             exit(ePtraceFailed);
1590 
1591         // Do not inherit setgid powers.
1592         if (setgid(getgid()) != 0)
1593             exit(eSetGidFailed);
1594 
1595         // Attempt to have our own process group.
1596         if (setpgid(0, 0) != 0)
1597         {
1598             // FIXME log that this failed. This is common.
1599             // Don't allow this to prevent an inferior exec.
1600         }
1601 
1602         // Dup file descriptors if needed.
1603         if (!args->m_stdin_path.empty ())
1604             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1605                 exit(eDupStdinFailed);
1606 
1607         if (!args->m_stdout_path.empty ())
1608             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT))
1609                 exit(eDupStdoutFailed);
1610 
1611         if (!args->m_stderr_path.empty ())
1612             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT))
1613                 exit(eDupStderrFailed);
1614 
1615         // Change working directory
1616         if (working_dir != NULL && working_dir[0])
1617           if (0 != ::chdir(working_dir))
1618               exit(eChdirFailed);
1619 
1620         // Disable ASLR if requested.
1621         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1622         {
1623             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1624             if (old_personality == -1)
1625             {
1626                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1627             }
1628             else
1629             {
1630                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1631                 if (new_personality == -1)
1632                 {
1633                     // Disabling ASLR failed.
1634                 }
1635                 else
1636                 {
1637                     // Disabling ASLR succeeded.
1638                 }
1639             }
1640         }
1641 
1642         // Execute.  We should never return...
1643         execve(argv[0],
1644                const_cast<char *const *>(argv),
1645                const_cast<char *const *>(envp));
1646 
1647         // ...unless exec fails.  In which case we definitely need to end the child here.
1648         exit(eExecFailed);
1649     }
1650 
1651     //
1652     // This is the parent code here.
1653     //
1654     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1655 
1656     // Wait for the child process to trap on its call to execve.
1657     ::pid_t wpid;
1658     int status;
1659     if ((wpid = waitpid(pid, &status, 0)) < 0)
1660     {
1661         args->m_error.SetErrorToErrno();
1662 
1663         if (log)
1664             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ());
1665 
1666         // Mark the inferior as invalid.
1667         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1668         monitor->SetState (StateType::eStateInvalid);
1669 
1670         return false;
1671     }
1672     else if (WIFEXITED(status))
1673     {
1674         // open, dup or execve likely failed for some reason.
1675         args->m_error.SetErrorToGenericError();
1676         switch (WEXITSTATUS(status))
1677         {
1678             case ePtraceFailed:
1679                 args->m_error.SetErrorString("Child ptrace failed.");
1680                 break;
1681             case eDupStdinFailed:
1682                 args->m_error.SetErrorString("Child open stdin failed.");
1683                 break;
1684             case eDupStdoutFailed:
1685                 args->m_error.SetErrorString("Child open stdout failed.");
1686                 break;
1687             case eDupStderrFailed:
1688                 args->m_error.SetErrorString("Child open stderr failed.");
1689                 break;
1690             case eChdirFailed:
1691                 args->m_error.SetErrorString("Child failed to set working directory.");
1692                 break;
1693             case eExecFailed:
1694                 args->m_error.SetErrorString("Child exec failed.");
1695                 break;
1696             case eSetGidFailed:
1697                 args->m_error.SetErrorString("Child setgid failed.");
1698                 break;
1699             default:
1700                 args->m_error.SetErrorString("Child returned unknown exit status.");
1701                 break;
1702         }
1703 
1704         if (log)
1705         {
1706             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1707                     __FUNCTION__,
1708                     WEXITSTATUS(status));
1709         }
1710 
1711         // Mark the inferior as invalid.
1712         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1713         monitor->SetState (StateType::eStateInvalid);
1714 
1715         return false;
1716     }
1717     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1718            "Could not sync with inferior process.");
1719 
1720     if (log)
1721         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1722 
1723     if (!SetDefaultPtraceOpts(pid))
1724     {
1725         args->m_error.SetErrorToErrno();
1726         if (log)
1727             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1728                     __FUNCTION__,
1729                     args->m_error.AsCString ());
1730 
1731         // Mark the inferior as invalid.
1732         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1733         monitor->SetState (StateType::eStateInvalid);
1734 
1735         return false;
1736     }
1737 
1738     // Release the master terminal descriptor and pass it off to the
1739     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1740     monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1741     monitor->m_pid = pid;
1742 
1743     // Set the terminal fd to be in non blocking mode (it simplifies the
1744     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1745     // descriptor to read from).
1746     if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
1747     {
1748         if (log)
1749             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1750                     __FUNCTION__,
1751                     args->m_error.AsCString ());
1752 
1753         // Mark the inferior as invalid.
1754         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1755         monitor->SetState (StateType::eStateInvalid);
1756 
1757         return false;
1758     }
1759 
1760     if (log)
1761         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1762 
1763     thread_sp = monitor->AddThread (static_cast<lldb::tid_t> (pid));
1764     assert (thread_sp && "AddThread() returned a nullptr thread");
1765     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1766     monitor->SetCurrentThreadID (thread_sp->GetID ());
1767 
1768     // Let our process instance know the thread has stopped.
1769     monitor->SetState (StateType::eStateStopped);
1770 
1771     if (log)
1772     {
1773         if (args->m_error.Success ())
1774         {
1775             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1776         }
1777         else
1778         {
1779             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1780                 __FUNCTION__,
1781                 args->m_error.AsCString ());
1782         }
1783     }
1784     return args->m_error.Success();
1785 }
1786 
1787 void
1788 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
1789 {
1790     static const char *g_thread_name = "lldb.process.linux.operation";
1791 
1792     if (m_operation_thread.IsJoinable())
1793         return;
1794 
1795     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error);
1796 }
1797 
1798 void *
1799 NativeProcessLinux::AttachOpThread(void *arg)
1800 {
1801     AttachArgs *args = static_cast<AttachArgs*>(arg);
1802 
1803     if (!Attach(args)) {
1804         sem_post(&args->m_semaphore);
1805         return NULL;
1806     }
1807 
1808     ServeOperation(args);
1809     return NULL;
1810 }
1811 
1812 bool
1813 NativeProcessLinux::Attach(AttachArgs *args)
1814 {
1815     lldb::pid_t pid = args->m_pid;
1816 
1817     NativeProcessLinux *monitor = args->m_monitor;
1818     lldb::ThreadSP inferior;
1819     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1820 
1821     // Use a map to keep track of the threads which we have attached/need to attach.
1822     Host::TidMap tids_to_attach;
1823     if (pid <= 1)
1824     {
1825         args->m_error.SetErrorToGenericError();
1826         args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
1827         goto FINISH;
1828     }
1829 
1830     while (Host::FindProcessThreads(pid, tids_to_attach))
1831     {
1832         for (Host::TidMap::iterator it = tids_to_attach.begin();
1833              it != tids_to_attach.end();)
1834         {
1835             if (it->second == false)
1836             {
1837                 lldb::tid_t tid = it->first;
1838 
1839                 // Attach to the requested process.
1840                 // An attach will cause the thread to stop with a SIGSTOP.
1841                 if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0)
1842                 {
1843                     // No such thread. The thread may have exited.
1844                     // More error handling may be needed.
1845                     if (errno == ESRCH)
1846                     {
1847                         it = tids_to_attach.erase(it);
1848                         continue;
1849                     }
1850                     else
1851                     {
1852                         args->m_error.SetErrorToErrno();
1853                         goto FINISH;
1854                     }
1855                 }
1856 
1857                 int status;
1858                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1859                 // At this point we should have a thread stopped if waitpid succeeds.
1860                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1861                 {
1862                     // No such thread. The thread may have exited.
1863                     // More error handling may be needed.
1864                     if (errno == ESRCH)
1865                     {
1866                         it = tids_to_attach.erase(it);
1867                         continue;
1868                     }
1869                     else
1870                     {
1871                         args->m_error.SetErrorToErrno();
1872                         goto FINISH;
1873                     }
1874                 }
1875 
1876                 if (!SetDefaultPtraceOpts(tid))
1877                 {
1878                     args->m_error.SetErrorToErrno();
1879                     goto FINISH;
1880                 }
1881 
1882 
1883                 if (log)
1884                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1885 
1886                 it->second = true;
1887 
1888                 // Create the thread, mark it as stopped.
1889                 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid)));
1890                 assert (thread_sp && "AddThread() returned a nullptr");
1891                 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1892                 monitor->SetCurrentThreadID (thread_sp->GetID ());
1893             }
1894 
1895             // move the loop forward
1896             ++it;
1897         }
1898     }
1899 
1900     if (tids_to_attach.size() > 0)
1901     {
1902         monitor->m_pid = pid;
1903         // Let our process instance know the thread has stopped.
1904         monitor->SetState (StateType::eStateStopped);
1905     }
1906     else
1907     {
1908         args->m_error.SetErrorToGenericError();
1909         args->m_error.SetErrorString("No such process.");
1910     }
1911 
1912  FINISH:
1913     return args->m_error.Success();
1914 }
1915 
1916 bool
1917 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1918 {
1919     long ptrace_opts = 0;
1920 
1921     // Have the child raise an event on exit.  This is used to keep the child in
1922     // limbo until it is destroyed.
1923     ptrace_opts |= PTRACE_O_TRACEEXIT;
1924 
1925     // Have the tracer trace threads which spawn in the inferior process.
1926     // TODO: if we want to support tracing the inferiors' child, add the
1927     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1928     ptrace_opts |= PTRACE_O_TRACECLONE;
1929 
1930     // Have the tracer notify us before execve returns
1931     // (needed to disable legacy SIGTRAP generation)
1932     ptrace_opts |= PTRACE_O_TRACEEXEC;
1933 
1934     return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0;
1935 }
1936 
1937 static ExitType convert_pid_status_to_exit_type (int status)
1938 {
1939     if (WIFEXITED (status))
1940         return ExitType::eExitTypeExit;
1941     else if (WIFSIGNALED (status))
1942         return ExitType::eExitTypeSignal;
1943     else if (WIFSTOPPED (status))
1944         return ExitType::eExitTypeStop;
1945     else
1946     {
1947         // We don't know what this is.
1948         return ExitType::eExitTypeInvalid;
1949     }
1950 }
1951 
1952 static int convert_pid_status_to_return_code (int status)
1953 {
1954     if (WIFEXITED (status))
1955         return WEXITSTATUS (status);
1956     else if (WIFSIGNALED (status))
1957         return WTERMSIG (status);
1958     else if (WIFSTOPPED (status))
1959         return WSTOPSIG (status);
1960     else
1961     {
1962         // We don't know what this is.
1963         return ExitType::eExitTypeInvalid;
1964     }
1965 }
1966 
1967 // Main process monitoring waitpid-loop handler.
1968 bool
1969 NativeProcessLinux::MonitorCallback(void *callback_baton,
1970                                 lldb::pid_t pid,
1971                                 bool exited,
1972                                 int signal,
1973                                 int status)
1974 {
1975     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1976 
1977     NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton);
1978     assert (process && "process is null");
1979     if (!process)
1980     {
1981         if (log)
1982             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid);
1983         return true;
1984     }
1985 
1986     // Certain activities differ based on whether the pid is the tid of the main thread.
1987     const bool is_main_thread = (pid == process->GetID ());
1988 
1989     // Assume we keep monitoring by default.
1990     bool stop_monitoring = false;
1991 
1992     // Handle when the thread exits.
1993     if (exited)
1994     {
1995         if (log)
1996             log->Printf ("NativeProcessLinux::%s() got exit signal, tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, pid, is_main_thread ? "is" : "is not");
1997 
1998         // This is a thread that exited.  Ensure we're not tracking it anymore.
1999         const bool thread_found = process->StopTrackingThread (pid);
2000 
2001         if (is_main_thread)
2002         {
2003             // We only set the exit status and notify the delegate if we haven't already set the process
2004             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
2005             // for the main thread.
2006             const bool already_notified = (process->GetState() == StateType::eStateExited) | (process->GetState () == StateType::eStateCrashed);
2007             if (!already_notified)
2008             {
2009                 if (log)
2010                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ()));
2011                 // The main thread exited.  We're done monitoring.  Report to delegate.
2012                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2013 
2014                 // Notify delegate that our process has exited.
2015                 process->SetState (StateType::eStateExited, true);
2016             }
2017             else
2018             {
2019                 if (log)
2020                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2021             }
2022             return true;
2023         }
2024         else
2025         {
2026             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
2027             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
2028             // and we would have done an all-stop then.
2029             if (log)
2030                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2031 
2032             // Not the main thread, we keep going.
2033             return false;
2034         }
2035     }
2036 
2037     // Get details on the signal raised.
2038     siginfo_t info;
2039     int ptrace_err = 0;
2040 
2041     if (!process->GetSignalInfo (pid, &info, ptrace_err))
2042     {
2043         if (ptrace_err == EINVAL)
2044         {
2045             process->OnGroupStop (pid);
2046         }
2047         else
2048         {
2049             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2050 
2051             // A return value of ESRCH means the thread/process is no longer on the system,
2052             // so it was killed somehow outside of our control.  Either way, we can't do anything
2053             // with it anymore.
2054 
2055             // We stop monitoring if it was the main thread.
2056             stop_monitoring = is_main_thread;
2057 
2058             // Stop tracking the metadata for the thread since it's entirely off the system now.
2059             const bool thread_found = process->StopTrackingThread (pid);
2060 
2061             if (log)
2062                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2063                              __FUNCTION__, strerror(ptrace_err), pid, signal, status, ptrace_err == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2064 
2065             if (is_main_thread)
2066             {
2067                 // Notify the delegate - our process is not available but appears to have been killed outside
2068                 // our control.  Is eStateExited the right exit state in this case?
2069                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2070                 process->SetState (StateType::eStateExited, true);
2071             }
2072             else
2073             {
2074                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2075                 if (log)
2076                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid);
2077             }
2078         }
2079     }
2080     else
2081     {
2082         // We have retrieved the signal info.  Dispatch appropriately.
2083         if (info.si_signo == SIGTRAP)
2084             process->MonitorSIGTRAP(&info, pid);
2085         else
2086             process->MonitorSignal(&info, pid, exited);
2087 
2088         stop_monitoring = false;
2089     }
2090 
2091     return stop_monitoring;
2092 }
2093 
2094 void
2095 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2096 {
2097     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2098     const bool is_main_thread = (pid == GetID ());
2099 
2100     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2101     if (!info)
2102         return;
2103 
2104     // See if we can find a thread for this signal.
2105     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2106     if (!thread_sp)
2107     {
2108         if (log)
2109             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2110     }
2111 
2112     switch (info->si_code)
2113     {
2114     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2115     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2116     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2117 
2118     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2119     {
2120         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
2121 
2122         unsigned long event_message = 0;
2123         if (GetEventMessage(pid, &event_message))
2124             tid = static_cast<lldb::tid_t> (event_message);
2125 
2126         if (log)
2127             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
2128 
2129         // If we don't track the thread yet: create it, mark as stopped.
2130         // If we do track it, this is the wait we needed.  Now resume the new thread.
2131         // In all cases, resume the current (i.e. main process) thread.
2132         bool created_now = false;
2133         thread_sp = GetOrCreateThread (tid, created_now);
2134         assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2135 
2136         // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation.
2137         if (!created_now)
2138         {
2139             // FIXME loops like we want to stop all theads here.
2140             // StopAllThreads
2141 
2142             // We can now resume the newly created thread since it is fully created.
2143             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2144             Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
2145         }
2146         else
2147         {
2148             // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2149             // this thread is ready to go.
2150             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
2151         }
2152 
2153         // In all cases, we can resume the main thread here.
2154         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2155         break;
2156     }
2157 
2158     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2159     {
2160         NativeThreadProtocolSP main_thread_sp;
2161 
2162         if (log)
2163             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2164 
2165         // Remove all but the main thread here.
2166         // FIXME check if we really need to do this - how does ptrace behave under exec when multiple threads were present
2167         // before the exec?  If we get all the detach signals right, we don't need to do this.  However, it makes it clearer
2168         // what we should really be tracking.
2169         {
2170             Mutex::Locker locker (m_threads_mutex);
2171 
2172             if (log)
2173                 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2174 
2175             for (auto thread_sp : m_threads)
2176             {
2177                 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2178                 if (is_main_thread)
2179                 {
2180                     main_thread_sp = thread_sp;
2181                     if (log)
2182                         log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2183                 }
2184                 else
2185                 {
2186                     if (log)
2187                         log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2188                 }
2189             }
2190 
2191             m_threads.clear ();
2192 
2193             if (main_thread_sp)
2194             {
2195                 m_threads.push_back (main_thread_sp);
2196                 SetCurrentThreadID (main_thread_sp->GetID ());
2197                 reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec ();
2198             }
2199             else
2200             {
2201                 SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2202                 if (log)
2203                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2204             }
2205         }
2206 
2207         // Let our delegate know we have just exec'd.
2208         NotifyDidExec ();
2209 
2210         // If we have a main thread, indicate we are stopped.
2211         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2212         SetState (StateType::eStateStopped);
2213 
2214         break;
2215     }
2216 
2217     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2218     {
2219         // The inferior process or one of its threads is about to exit.
2220         unsigned long data = 0;
2221         if (!GetEventMessage(pid, &data))
2222             data = -1;
2223 
2224         if (log)
2225         {
2226             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2227                          __FUNCTION__,
2228                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2229                          pid,
2230                     is_main_thread ? "is main thread" : "not main thread");
2231         }
2232 
2233         // Set the thread to exited.
2234         if (thread_sp)
2235             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetExited ();
2236         else
2237         {
2238             if (log)
2239                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " failed to retrieve thread for tid %" PRIu64", cannot set thread state", __FUNCTION__, GetID (), pid);
2240         }
2241 
2242         if (is_main_thread)
2243         {
2244             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2245         }
2246 
2247         // Resume the thread so it completely exits.
2248         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2249 
2250         break;
2251     }
2252 
2253     case 0:
2254     case TRAP_TRACE:
2255         // We receive this on single stepping.
2256         if (log)
2257             log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid);
2258 
2259         if (thread_sp)
2260         {
2261             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2262             SetCurrentThreadID (thread_sp->GetID ());
2263         }
2264         else
2265         {
2266             if (log)
2267                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 " single stepping received trace but thread not found", __FUNCTION__, GetID (), pid);
2268         }
2269 
2270         // Tell the process we have a stop (from single stepping).
2271         SetState (StateType::eStateStopped, true);
2272         break;
2273 
2274     case SI_KERNEL:
2275     case TRAP_BRKPT:
2276         if (log)
2277             log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2278 
2279         // Mark the thread as stopped at breakpoint.
2280         if (thread_sp)
2281         {
2282             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2283             Error error = FixupBreakpointPCAsNeeded (thread_sp);
2284             if (error.Fail ())
2285             {
2286                 if (log)
2287                     log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ());
2288             }
2289         }
2290         else
2291         {
2292             if (log)
2293                 log->Printf ("NativeProcessLinux::%s()  pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid);
2294         }
2295 
2296 
2297         // Tell the process we have a stop from this thread.
2298         SetCurrentThreadID (pid);
2299         SetState (StateType::eStateStopped, true);
2300         break;
2301 
2302     case TRAP_HWBKPT:
2303         if (log)
2304             log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2305 
2306         // Mark the thread as stopped at watchpoint.
2307         // The address is at (lldb::addr_t)info->si_addr if we need it.
2308         if (thread_sp)
2309             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2310         else
2311         {
2312             if (log)
2313                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid);
2314         }
2315 
2316         // Tell the process we have a stop from this thread.
2317         SetCurrentThreadID (pid);
2318         SetState (StateType::eStateStopped, true);
2319         break;
2320 
2321     case SIGTRAP:
2322     case (SIGTRAP | 0x80):
2323         if (log)
2324             log->Printf ("NativeProcessLinux::%s() received system call stop event, pid %" PRIu64 "tid %" PRIu64, __FUNCTION__, GetID (), pid);
2325         // Ignore these signals until we know more about them.
2326         Resume(pid, 0);
2327         break;
2328 
2329     default:
2330         assert(false && "Unexpected SIGTRAP code!");
2331         if (log)
2332             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2333         break;
2334 
2335     }
2336 }
2337 
2338 void
2339 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2340 {
2341     assert (info && "null info");
2342     if (!info)
2343         return;
2344 
2345     const int signo = info->si_signo;
2346     const bool is_from_llgs = info->si_pid == getpid ();
2347 
2348     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2349 
2350     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2351     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2352     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2353     //
2354     // IOW, user generated signals never generate what we consider to be a
2355     // "crash".
2356     //
2357     // Similarly, ACK signals generated by this monitor.
2358 
2359     // See if we can find a thread for this signal.
2360     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2361     if (!thread_sp)
2362     {
2363         if (log)
2364             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2365     }
2366 
2367     // Handle the signal.
2368     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2369     {
2370         if (log)
2371             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2372                             __FUNCTION__,
2373                             GetUnixSignals ().GetSignalAsCString (signo),
2374                             signo,
2375                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2376                             info->si_pid,
2377                             is_from_llgs ? "from llgs" : "not from llgs",
2378                             pid);
2379     }
2380 
2381     // Check for new thread notification.
2382     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2383     {
2384         // A new thread creation is being signaled.  This is one of two parts that come in
2385         // a non-deterministic order.  pid is the thread id.
2386         if (log)
2387             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2388                      __FUNCTION__, GetID (), pid);
2389 
2390         // Did we already create the thread?
2391         bool created_now = false;
2392         thread_sp = GetOrCreateThread (pid, created_now);
2393         assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2394 
2395         // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create.
2396         if (!created_now)
2397         {
2398             // We can now resume this thread up since it is fully created.
2399             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2400             Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER);
2401         }
2402         else
2403         {
2404             // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2405             // this thread is ready to go.
2406             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
2407         }
2408 
2409         // Done handling.
2410         return;
2411     }
2412 
2413     // Check for thread stop notification.
2414     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2415     {
2416         // This is a tgkill()-based stop.
2417         if (thread_sp)
2418         {
2419             // An inferior thread just stopped.  Mark it as such.
2420             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2421             SetCurrentThreadID (thread_sp->GetID ());
2422 
2423             // Remove this tid from the wait-for-stop set.
2424             Mutex::Locker locker (m_wait_for_stop_tids_mutex);
2425 
2426             auto removed_count = m_wait_for_stop_tids.erase (thread_sp->GetID ());
2427             if (removed_count < 1)
2428             {
2429                 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": tgkill()-stopped thread not in m_wait_for_stop_tids",
2430                              __FUNCTION__, GetID (), thread_sp->GetID ());
2431 
2432             }
2433 
2434             // If this is the last thread in the m_wait_for_stop_tids, we need to notify
2435             // the delegate that a stop has occurred now that every thread that was supposed
2436             // to stop has stopped.
2437             if (m_wait_for_stop_tids.empty ())
2438             {
2439                 if (log)
2440                 {
2441                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", setting process state to stopped now that all tids marked for stop have completed",
2442                                  __FUNCTION__,
2443                                  GetID (),
2444                                  pid);
2445                 }
2446                 SetState (StateType::eStateStopped, true);
2447             }
2448         }
2449 
2450         // Done handling.
2451         return;
2452     }
2453 
2454     if (log)
2455         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2456 
2457     switch (signo)
2458     {
2459     case SIGSEGV:
2460         {
2461             lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
2462 
2463             // FIXME figure out how to propagate this properly.  Seems like it
2464             // should go in ThreadStopInfo.
2465             // We can get more details on the exact nature of the crash here.
2466             // ProcessMessage::CrashReason reason = GetCrashReasonForSIGSEGV(info);
2467             if (!exited)
2468             {
2469                 // This is just a pre-signal-delivery notification of the incoming signal.
2470                 // Send a stop to the debugger.
2471                 if (thread_sp)
2472                 {
2473                     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2474                     SetCurrentThreadID (thread_sp->GetID ());
2475                 }
2476                 SetState (StateType::eStateStopped, true);
2477             }
2478             else
2479             {
2480                 if (thread_sp)
2481                 {
2482                     // FIXME figure out what type this is.
2483                     const uint64_t exception_type = static_cast<uint64_t> (SIGSEGV);
2484                     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (exception_type, fault_addr);
2485                 }
2486                 SetState (StateType::eStateCrashed, true);
2487             }
2488         }
2489         break;
2490 
2491     case SIGABRT:
2492     case SIGILL:
2493     case SIGFPE:
2494     case SIGBUS:
2495         {
2496             // Break these out into separate cases once I have more data for each type of signal.
2497             lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
2498             if (!exited)
2499             {
2500                 // This is just a pre-signal-delivery notification of the incoming signal.
2501                 // Send a stop to the debugger.
2502                 if (thread_sp)
2503                 {
2504                     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2505                     SetCurrentThreadID (thread_sp->GetID ());
2506                 }
2507                 SetState (StateType::eStateStopped, true);
2508             }
2509             else
2510             {
2511                 if (thread_sp)
2512                 {
2513                     // FIXME figure out how to report exit by signal correctly.
2514                     const uint64_t exception_type = static_cast<uint64_t> (SIGABRT);
2515                     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (exception_type, fault_addr);
2516                 }
2517                 SetState (StateType::eStateCrashed, true);
2518             }
2519         }
2520         break;
2521 
2522     case SIGSTOP:
2523         {
2524             if (log)
2525             {
2526                 if (is_from_llgs)
2527                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2528                 else
2529                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2530             }
2531 
2532             // Save group stop tids to wait for.
2533             SetGroupStopTids (pid, SIGSTOP);
2534             // Fall through to deliver signal to thread.
2535             // This will trigger a group stop sequence, after which we'll notify the process that everything stopped.
2536         }
2537 
2538     default:
2539         {
2540             if (log)
2541                 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " resuming thread with signal %s (%d)", __FUNCTION__, GetID (), pid, GetUnixSignals().GetSignalAsCString (signo), signo);
2542 
2543             // Pass the signal on to the inferior.
2544             const bool resume_success = Resume (pid, signo);
2545 
2546             if (log)
2547                 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " resume %s", __FUNCTION__, GetID (), pid, resume_success ? "SUCCESS" : "FAILURE");
2548 
2549         }
2550         break;
2551     }
2552 }
2553 
2554 void
2555 NativeProcessLinux::SetGroupStopTids (lldb::tid_t signaled_thread_tid, int signo)
2556 {
2557     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2558 
2559     // Lock 1 - thread lock.
2560     {
2561         Mutex::Locker locker (m_threads_mutex);
2562         // Lock 2 - group stop tids
2563         {
2564             Mutex::Locker locker (m_wait_for_group_stop_tids_mutex);
2565             if (log)
2566                 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " loading up known threads in set%s",
2567                              __FUNCTION__,
2568                              GetID (),
2569                              signaled_thread_tid,
2570                              m_wait_for_group_stop_tids.empty () ? " (currently empty)"
2571                                 : "(group_stop_tids not empty?!?)");
2572 
2573             // Add all known threads not already stopped into the wait for group-stop tids.
2574             for (auto thread_sp : m_threads)
2575             {
2576                 int unused_signo = LLDB_INVALID_SIGNAL_NUMBER;
2577                 if (thread_sp && !((NativeThreadLinux*)thread_sp.get())->IsStopped (&unused_signo))
2578                 {
2579                     // Wait on this thread for a group stop before we notify the delegate about the process state change.
2580                     m_wait_for_group_stop_tids.insert (thread_sp->GetID ());
2581                 }
2582             }
2583 
2584             m_group_stop_signal_tid = signaled_thread_tid;
2585             m_group_stop_signal = signo;
2586         }
2587     }
2588 }
2589 
2590 void
2591 NativeProcessLinux::OnGroupStop (lldb::tid_t tid)
2592 {
2593     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2594     bool should_tell_delegate = false;
2595 
2596     // Lock 1 - thread lock.
2597     {
2598         Mutex::Locker locker (m_threads_mutex);
2599         // Lock 2 - group stop tids
2600         {
2601             Mutex::Locker locker (m_wait_for_group_stop_tids_mutex);
2602 
2603             // Remove this thread from the set.
2604             auto remove_result = m_wait_for_group_stop_tids.erase (tid);
2605             if (log)
2606                 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " tried to remove tid from group-stop set: %s",
2607                              __FUNCTION__,
2608                              GetID (),
2609                              tid,
2610                              remove_result > 0 ? "SUCCESS" : "FAILURE");
2611 
2612             // Grab the thread metadata for this thread.
2613             NativeThreadProtocolSP thread_sp = GetThreadByIDUnlocked (tid);
2614             if (thread_sp)
2615             {
2616                 NativeThreadLinux *const linux_thread = static_cast<NativeThreadLinux*> (thread_sp.get ());
2617                 if (thread_sp->GetID () == m_group_stop_signal_tid)
2618                 {
2619                     linux_thread->SetStoppedBySignal (m_group_stop_signal);
2620                     if (log)
2621                         log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " set group stop tid to state 'stopped by signal %d'",
2622                                      __FUNCTION__,
2623                                      GetID (),
2624                                      tid,
2625                                      m_group_stop_signal);
2626                 }
2627                 else
2628                 {
2629                     int stopping_signal = LLDB_INVALID_SIGNAL_NUMBER;
2630                     if (linux_thread->IsStopped (&stopping_signal))
2631                     {
2632                         if (log)
2633                             log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " thread is already stopped with signal %d, not clearing",
2634                                          __FUNCTION__,
2635                                          GetID (),
2636                                          tid,
2637                                          stopping_signal);
2638 
2639                     }
2640                     else
2641                     {
2642                         linux_thread->SetStoppedBySignal (0);
2643                         if (log)
2644                             log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " set stopped by signal with signal 0 (i.e. debugger-initiated stop)",
2645                                          __FUNCTION__,
2646                                          GetID (),
2647                                          tid);
2648 
2649                     }
2650                 }
2651             }
2652             else
2653             {
2654                 if (log)
2655                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " WARNING failed to find thread metadata for tid",
2656                                  __FUNCTION__,
2657                                  GetID (),
2658                                  tid);
2659 
2660             }
2661 
2662             // If there are no more threads we're waiting on for group stop, signal the process.
2663             if (m_wait_for_group_stop_tids.empty ())
2664             {
2665                 if (log)
2666                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " done waiting for group stop, will notify delegate of process state change",
2667                                  __FUNCTION__,
2668                                  GetID (),
2669                                  tid);
2670 
2671                 SetCurrentThreadID (m_group_stop_signal_tid);
2672 
2673                 // Tell the delegate about the stop event, after we release our mutexes.
2674                 should_tell_delegate = true;
2675             }
2676         }
2677     }
2678 
2679     // If we're ready to broadcast the process event change, do it now that we're no longer
2680     // holding any locks.  Note this does introduce a potential race, we should think about
2681     // adding a notification queue.
2682     if (should_tell_delegate)
2683     {
2684         if (log)
2685             log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " done waiting for group stop, notifying delegate of process state change",
2686                          __FUNCTION__,
2687                          GetID (),
2688                          tid);
2689         SetState (StateType::eStateStopped, true);
2690     }
2691 }
2692 
2693 Error
2694 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2695 {
2696     Error error;
2697 
2698     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2699     if (log)
2700         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2701 
2702     int run_thread_count = 0;
2703     int stop_thread_count = 0;
2704     int step_thread_count = 0;
2705 
2706     std::vector<NativeThreadProtocolSP> new_stop_threads;
2707 
2708     Mutex::Locker locker (m_threads_mutex);
2709     for (auto thread_sp : m_threads)
2710     {
2711         assert (thread_sp && "thread list should not contain NULL threads");
2712         NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ());
2713 
2714         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2715         assert (action && "NULL ResumeAction returned for thread during Resume ()");
2716 
2717         if (log)
2718         {
2719             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2720                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2721         }
2722 
2723         switch (action->state)
2724         {
2725         case eStateRunning:
2726             // Run the thread, possibly feeding it the signal.
2727             linux_thread_p->SetRunning ();
2728             if (action->signal > 0)
2729             {
2730                 // Resume the thread and deliver the given signal,
2731                 // then mark as delivered.
2732                 Resume (thread_sp->GetID (), action->signal);
2733                 resume_actions.SetSignalHandledForThread (thread_sp->GetID ());
2734             }
2735             else
2736             {
2737                 // Just resume the thread with no signal.
2738                 Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER);
2739             }
2740             ++run_thread_count;
2741             break;
2742 
2743         case eStateStepping:
2744             // Note: if we have multiple threads, we may need to stop
2745             // the other threads first, then step this one.
2746             linux_thread_p->SetStepping ();
2747             if (SingleStep (thread_sp->GetID (), 0))
2748             {
2749                 if (log)
2750                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step succeeded",
2751                                  __FUNCTION__, GetID (), thread_sp->GetID ());
2752             }
2753             else
2754             {
2755                 if (log)
2756                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step failed",
2757                                  __FUNCTION__, GetID (), thread_sp->GetID ());
2758             }
2759             ++step_thread_count;
2760             break;
2761 
2762         case eStateSuspended:
2763         case eStateStopped:
2764             if (!StateIsStoppedState (linux_thread_p->GetState (), false))
2765                 new_stop_threads.push_back (thread_sp);
2766             else
2767             {
2768                 if (log)
2769                     log->Printf ("NativeProcessLinux::%s no need to stop pid %" PRIu64 " tid %" PRIu64 ", thread state already %s",
2770                                  __FUNCTION__, GetID (), thread_sp->GetID (), StateAsCString (linux_thread_p->GetState ()));
2771             }
2772 
2773             ++stop_thread_count;
2774             break;
2775 
2776         default:
2777             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2778                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2779         }
2780     }
2781 
2782     // If any thread was set to run, notify the process state as running.
2783     if (run_thread_count > 0)
2784         SetState (StateType::eStateRunning, true);
2785 
2786     // Now do a tgkill SIGSTOP on each thread we want to stop.
2787     if (!new_stop_threads.empty ())
2788     {
2789         // Lock the m_wait_for_stop_tids set so we can fill it with every thread we expect to have stopped.
2790         Mutex::Locker stop_thread_id_locker (m_wait_for_stop_tids_mutex);
2791         for (auto thread_sp : new_stop_threads)
2792         {
2793             // Send a stop signal to the thread.
2794             const int result = tgkill (GetID (), thread_sp->GetID (), SIGSTOP);
2795             if (result != 0)
2796             {
2797                 // tgkill failed.
2798                 if (log)
2799                     log->Printf ("NativeProcessLinux::%s error: tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 "failed, retval %d",
2800                                  __FUNCTION__, GetID (), thread_sp->GetID (), result);
2801             }
2802             else
2803             {
2804                 // tgkill succeeded.  Don't mark the thread state, though.  Let the signal
2805                 // handling mark it.
2806                 if (log)
2807                     log->Printf ("NativeProcessLinux::%s tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 " succeeded",
2808                                  __FUNCTION__, GetID (), thread_sp->GetID ());
2809 
2810                 // Add it to the set of threads we expect to signal a stop.
2811                 // We won't tell the delegate about it until this list drains to empty.
2812                 m_wait_for_stop_tids.insert (thread_sp->GetID ());
2813             }
2814         }
2815     }
2816 
2817     return error;
2818 }
2819 
2820 Error
2821 NativeProcessLinux::Halt ()
2822 {
2823     Error error;
2824 
2825     // FIXME check if we're already stopped
2826     const bool is_stopped = false;
2827     if (is_stopped)
2828         return error;
2829 
2830     if (kill (GetID (), SIGSTOP) != 0)
2831         error.SetErrorToErrno ();
2832 
2833     return error;
2834 }
2835 
2836 Error
2837 NativeProcessLinux::Detach ()
2838 {
2839     Error error;
2840 
2841     // Tell ptrace to detach from the process.
2842     if (GetID () != LLDB_INVALID_PROCESS_ID)
2843         error = Detach (GetID ());
2844 
2845     // Stop monitoring the inferior.
2846     StopMonitor ();
2847 
2848     // No error.
2849     return error;
2850 }
2851 
2852 Error
2853 NativeProcessLinux::Signal (int signo)
2854 {
2855     Error error;
2856 
2857     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2858     if (log)
2859         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2860                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2861 
2862     if (kill(GetID(), signo))
2863         error.SetErrorToErrno();
2864 
2865     return error;
2866 }
2867 
2868 Error
2869 NativeProcessLinux::Kill ()
2870 {
2871     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2872     if (log)
2873         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2874 
2875     Error error;
2876 
2877     switch (m_state)
2878     {
2879         case StateType::eStateInvalid:
2880         case StateType::eStateExited:
2881         case StateType::eStateCrashed:
2882         case StateType::eStateDetached:
2883         case StateType::eStateUnloaded:
2884             // Nothing to do - the process is already dead.
2885             if (log)
2886                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2887             return error;
2888 
2889         case StateType::eStateConnected:
2890         case StateType::eStateAttaching:
2891         case StateType::eStateLaunching:
2892         case StateType::eStateStopped:
2893         case StateType::eStateRunning:
2894         case StateType::eStateStepping:
2895         case StateType::eStateSuspended:
2896             // We can try to kill a process in these states.
2897             break;
2898     }
2899 
2900     if (kill (GetID (), SIGKILL) != 0)
2901     {
2902         error.SetErrorToErrno ();
2903         return error;
2904     }
2905 
2906     return error;
2907 }
2908 
2909 static Error
2910 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2911 {
2912     memory_region_info.Clear();
2913 
2914     StringExtractor line_extractor (maps_line.c_str ());
2915 
2916     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2917     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2918 
2919     // Parse out the starting address
2920     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2921 
2922     // Parse out hyphen separating start and end address from range.
2923     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2924         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2925 
2926     // Parse out the ending address
2927     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2928 
2929     // Parse out the space after the address.
2930     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2931         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2932 
2933     // Save the range.
2934     memory_region_info.GetRange ().SetRangeBase (start_address);
2935     memory_region_info.GetRange ().SetRangeEnd (end_address);
2936 
2937     // Parse out each permission entry.
2938     if (line_extractor.GetBytesLeft () < 4)
2939         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2940 
2941     // Handle read permission.
2942     const char read_perm_char = line_extractor.GetChar ();
2943     if (read_perm_char == 'r')
2944         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2945     else
2946     {
2947         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2948         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2949     }
2950 
2951     // Handle write permission.
2952     const char write_perm_char = line_extractor.GetChar ();
2953     if (write_perm_char == 'w')
2954         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2955     else
2956     {
2957         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2958         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2959     }
2960 
2961     // Handle execute permission.
2962     const char exec_perm_char = line_extractor.GetChar ();
2963     if (exec_perm_char == 'x')
2964         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2965     else
2966     {
2967         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2968         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2969     }
2970 
2971     return Error ();
2972 }
2973 
2974 Error
2975 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2976 {
2977     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2978     // with no perms if it is not mapped.
2979 
2980     // Use an approach that reads memory regions from /proc/{pid}/maps.
2981     // Assume proc maps entries are in ascending order.
2982     // FIXME assert if we find differently.
2983     Mutex::Locker locker (m_mem_region_cache_mutex);
2984 
2985     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2986     Error error;
2987 
2988     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2989     {
2990         // We're done.
2991         error.SetErrorString ("unsupported");
2992         return error;
2993     }
2994 
2995     // If our cache is empty, pull the latest.  There should always be at least one memory region
2996     // if memory region handling is supported.
2997     if (m_mem_region_cache.empty ())
2998     {
2999         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3000              [&] (const std::string &line) -> bool
3001              {
3002                  MemoryRegionInfo info;
3003                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
3004                  if (parse_error.Success ())
3005                  {
3006                      m_mem_region_cache.push_back (info);
3007                      return true;
3008                  }
3009                  else
3010                  {
3011                      if (log)
3012                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
3013                      return false;
3014                  }
3015              });
3016 
3017         // If we had an error, we'll mark unsupported.
3018         if (error.Fail ())
3019         {
3020             m_supports_mem_region = LazyBool::eLazyBoolNo;
3021             return error;
3022         }
3023         else if (m_mem_region_cache.empty ())
3024         {
3025             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
3026             // is supported.  Assume we don't support map entries via procfs.
3027             if (log)
3028                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
3029             m_supports_mem_region = LazyBool::eLazyBoolNo;
3030             error.SetErrorString ("not supported");
3031             return error;
3032         }
3033 
3034         if (log)
3035             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
3036 
3037         // We support memory retrieval, remember that.
3038         m_supports_mem_region = LazyBool::eLazyBoolYes;
3039     }
3040     else
3041     {
3042         if (log)
3043             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3044     }
3045 
3046     lldb::addr_t prev_base_address = 0;
3047 
3048     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
3049     // There can be a ton of regions on pthreads apps with lots of threads.
3050     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
3051     {
3052         MemoryRegionInfo &proc_entry_info = *it;
3053 
3054         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
3055         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
3056         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
3057 
3058         // If the target address comes before this entry, indicate distance to next region.
3059         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
3060         {
3061             range_info.GetRange ().SetRangeBase (load_addr);
3062             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
3063             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3064             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3065             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3066 
3067             return error;
3068         }
3069         else if (proc_entry_info.GetRange ().Contains (load_addr))
3070         {
3071             // The target address is within the memory region we're processing here.
3072             range_info = proc_entry_info;
3073             return error;
3074         }
3075 
3076         // The target memory address comes somewhere after the region we just parsed.
3077     }
3078 
3079     // If we made it here, we didn't find an entry that contained the given address.
3080     error.SetErrorString ("address comes after final region");
3081 
3082     if (log)
3083         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3084 
3085     return error;
3086 }
3087 
3088 void
3089 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3090 {
3091     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3092     if (log)
3093         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3094 
3095     {
3096         Mutex::Locker locker (m_mem_region_cache_mutex);
3097         if (log)
3098             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3099         m_mem_region_cache.clear ();
3100     }
3101 }
3102 
3103 Error
3104 NativeProcessLinux::AllocateMemory (
3105     lldb::addr_t size,
3106     uint32_t permissions,
3107     lldb::addr_t &addr)
3108 {
3109     // FIXME implementing this requires the equivalent of
3110     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3111     // functional ThreadPlans working with Native*Protocol.
3112 #if 1
3113     return Error ("not implemented yet");
3114 #else
3115     addr = LLDB_INVALID_ADDRESS;
3116 
3117     unsigned prot = 0;
3118     if (permissions & lldb::ePermissionsReadable)
3119         prot |= eMmapProtRead;
3120     if (permissions & lldb::ePermissionsWritable)
3121         prot |= eMmapProtWrite;
3122     if (permissions & lldb::ePermissionsExecutable)
3123         prot |= eMmapProtExec;
3124 
3125     // TODO implement this directly in NativeProcessLinux
3126     // (and lift to NativeProcessPOSIX if/when that class is
3127     // refactored out).
3128     if (InferiorCallMmap(this, addr, 0, size, prot,
3129                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3130         m_addr_to_mmap_size[addr] = size;
3131         return Error ();
3132     } else {
3133         addr = LLDB_INVALID_ADDRESS;
3134         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3135     }
3136 #endif
3137 }
3138 
3139 Error
3140 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3141 {
3142     // FIXME see comments in AllocateMemory - required lower-level
3143     // bits not in place yet (ThreadPlans)
3144     return Error ("not implemented");
3145 }
3146 
3147 lldb::addr_t
3148 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3149 {
3150 #if 1
3151     // punt on this for now
3152     return LLDB_INVALID_ADDRESS;
3153 #else
3154     // Return the image info address for the exe module
3155 #if 1
3156     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3157 
3158     ModuleSP module_sp;
3159     Error error = GetExeModuleSP (module_sp);
3160     if (error.Fail ())
3161     {
3162          if (log)
3163             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3164         return LLDB_INVALID_ADDRESS;
3165     }
3166 
3167     if (module_sp == nullptr)
3168     {
3169          if (log)
3170             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3171          return LLDB_INVALID_ADDRESS;
3172     }
3173 
3174     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3175     if (object_file_sp == nullptr)
3176     {
3177          if (log)
3178             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3179          return LLDB_INVALID_ADDRESS;
3180     }
3181 
3182     return obj_file_sp->GetImageInfoAddress();
3183 #else
3184     Target *target = &GetTarget();
3185     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3186     Address addr = obj_file->GetImageInfoAddress(target);
3187 
3188     if (addr.IsValid())
3189         return addr.GetLoadAddress(target);
3190     return LLDB_INVALID_ADDRESS;
3191 #endif
3192 #endif // punt on this for now
3193 }
3194 
3195 size_t
3196 NativeProcessLinux::UpdateThreads ()
3197 {
3198     // The NativeProcessLinux monitoring threads are always up to date
3199     // with respect to thread state and they keep the thread list
3200     // populated properly. All this method needs to do is return the
3201     // thread count.
3202     Mutex::Locker locker (m_threads_mutex);
3203     return m_threads.size ();
3204 }
3205 
3206 bool
3207 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3208 {
3209     arch = m_arch;
3210     return true;
3211 }
3212 
3213 Error
3214 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3215 {
3216     // FIXME put this behind a breakpoint protocol class that can be
3217     // set per architecture.  Need ARM, MIPS support here.
3218     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3219     static const uint8_t g_i386_opcode [] = { 0xCC };
3220 
3221     switch (m_arch.GetMachine ())
3222     {
3223         case llvm::Triple::aarch64:
3224             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3225             return Error ();
3226 
3227         case llvm::Triple::x86:
3228         case llvm::Triple::x86_64:
3229             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3230             return Error ();
3231 
3232         default:
3233             assert(false && "CPU type not supported!");
3234             return Error ("CPU type not supported");
3235     }
3236 }
3237 
3238 Error
3239 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3240 {
3241     if (hardware)
3242         return Error ("NativeProcessLinux does not support hardware breakpoints");
3243     else
3244         return SetSoftwareBreakpoint (addr, size);
3245 }
3246 
3247 Error
3248 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes)
3249 {
3250     // FIXME put this behind a breakpoint protocol class that can be
3251     // set per architecture.  Need ARM, MIPS support here.
3252     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3253     static const uint8_t g_i386_opcode [] = { 0xCC };
3254 
3255     switch (m_arch.GetMachine ())
3256     {
3257     case llvm::Triple::aarch64:
3258         trap_opcode_bytes = g_aarch64_opcode;
3259         actual_opcode_size = sizeof(g_aarch64_opcode);
3260         return Error ();
3261 
3262     case llvm::Triple::x86:
3263     case llvm::Triple::x86_64:
3264         trap_opcode_bytes = g_i386_opcode;
3265         actual_opcode_size = sizeof(g_i386_opcode);
3266         return Error ();
3267 
3268     default:
3269         assert(false && "CPU type not supported!");
3270         return Error ("CPU type not supported");
3271     }
3272 }
3273 
3274 #if 0
3275 ProcessMessage::CrashReason
3276 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3277 {
3278     ProcessMessage::CrashReason reason;
3279     assert(info->si_signo == SIGSEGV);
3280 
3281     reason = ProcessMessage::eInvalidCrashReason;
3282 
3283     switch (info->si_code)
3284     {
3285     default:
3286         assert(false && "unexpected si_code for SIGSEGV");
3287         break;
3288     case SI_KERNEL:
3289         // Linux will occasionally send spurious SI_KERNEL codes.
3290         // (this is poorly documented in sigaction)
3291         // One way to get this is via unaligned SIMD loads.
3292         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3293         break;
3294     case SEGV_MAPERR:
3295         reason = ProcessMessage::eInvalidAddress;
3296         break;
3297     case SEGV_ACCERR:
3298         reason = ProcessMessage::ePrivilegedAddress;
3299         break;
3300     }
3301 
3302     return reason;
3303 }
3304 #endif
3305 
3306 
3307 #if 0
3308 ProcessMessage::CrashReason
3309 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3310 {
3311     ProcessMessage::CrashReason reason;
3312     assert(info->si_signo == SIGILL);
3313 
3314     reason = ProcessMessage::eInvalidCrashReason;
3315 
3316     switch (info->si_code)
3317     {
3318     default:
3319         assert(false && "unexpected si_code for SIGILL");
3320         break;
3321     case ILL_ILLOPC:
3322         reason = ProcessMessage::eIllegalOpcode;
3323         break;
3324     case ILL_ILLOPN:
3325         reason = ProcessMessage::eIllegalOperand;
3326         break;
3327     case ILL_ILLADR:
3328         reason = ProcessMessage::eIllegalAddressingMode;
3329         break;
3330     case ILL_ILLTRP:
3331         reason = ProcessMessage::eIllegalTrap;
3332         break;
3333     case ILL_PRVOPC:
3334         reason = ProcessMessage::ePrivilegedOpcode;
3335         break;
3336     case ILL_PRVREG:
3337         reason = ProcessMessage::ePrivilegedRegister;
3338         break;
3339     case ILL_COPROC:
3340         reason = ProcessMessage::eCoprocessorError;
3341         break;
3342     case ILL_BADSTK:
3343         reason = ProcessMessage::eInternalStackError;
3344         break;
3345     }
3346 
3347     return reason;
3348 }
3349 #endif
3350 
3351 #if 0
3352 ProcessMessage::CrashReason
3353 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3354 {
3355     ProcessMessage::CrashReason reason;
3356     assert(info->si_signo == SIGFPE);
3357 
3358     reason = ProcessMessage::eInvalidCrashReason;
3359 
3360     switch (info->si_code)
3361     {
3362     default:
3363         assert(false && "unexpected si_code for SIGFPE");
3364         break;
3365     case FPE_INTDIV:
3366         reason = ProcessMessage::eIntegerDivideByZero;
3367         break;
3368     case FPE_INTOVF:
3369         reason = ProcessMessage::eIntegerOverflow;
3370         break;
3371     case FPE_FLTDIV:
3372         reason = ProcessMessage::eFloatDivideByZero;
3373         break;
3374     case FPE_FLTOVF:
3375         reason = ProcessMessage::eFloatOverflow;
3376         break;
3377     case FPE_FLTUND:
3378         reason = ProcessMessage::eFloatUnderflow;
3379         break;
3380     case FPE_FLTRES:
3381         reason = ProcessMessage::eFloatInexactResult;
3382         break;
3383     case FPE_FLTINV:
3384         reason = ProcessMessage::eFloatInvalidOperation;
3385         break;
3386     case FPE_FLTSUB:
3387         reason = ProcessMessage::eFloatSubscriptRange;
3388         break;
3389     }
3390 
3391     return reason;
3392 }
3393 #endif
3394 
3395 #if 0
3396 ProcessMessage::CrashReason
3397 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3398 {
3399     ProcessMessage::CrashReason reason;
3400     assert(info->si_signo == SIGBUS);
3401 
3402     reason = ProcessMessage::eInvalidCrashReason;
3403 
3404     switch (info->si_code)
3405     {
3406     default:
3407         assert(false && "unexpected si_code for SIGBUS");
3408         break;
3409     case BUS_ADRALN:
3410         reason = ProcessMessage::eIllegalAlignment;
3411         break;
3412     case BUS_ADRERR:
3413         reason = ProcessMessage::eIllegalAddress;
3414         break;
3415     case BUS_OBJERR:
3416         reason = ProcessMessage::eHardwareError;
3417         break;
3418     }
3419 
3420     return reason;
3421 }
3422 #endif
3423 
3424 void
3425 NativeProcessLinux::ServeOperation(OperationArgs *args)
3426 {
3427     NativeProcessLinux *monitor = args->m_monitor;
3428 
3429     // We are finised with the arguments and are ready to go.  Sync with the
3430     // parent thread and start serving operations on the inferior.
3431     sem_post(&args->m_semaphore);
3432 
3433     for(;;)
3434     {
3435         // wait for next pending operation
3436         if (sem_wait(&monitor->m_operation_pending))
3437         {
3438             if (errno == EINTR)
3439                 continue;
3440             assert(false && "Unexpected errno from sem_wait");
3441         }
3442 
3443         reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor);
3444 
3445         // notify calling thread that operation is complete
3446         sem_post(&monitor->m_operation_done);
3447     }
3448 }
3449 
3450 void
3451 NativeProcessLinux::DoOperation(void *op)
3452 {
3453     Mutex::Locker lock(m_operation_mutex);
3454 
3455     m_operation = op;
3456 
3457     // notify operation thread that an operation is ready to be processed
3458     sem_post(&m_operation_pending);
3459 
3460     // wait for operation to complete
3461     while (sem_wait(&m_operation_done))
3462     {
3463         if (errno == EINTR)
3464             continue;
3465         assert(false && "Unexpected errno from sem_wait");
3466     }
3467 }
3468 
3469 Error
3470 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3471 {
3472     ReadOperation op(addr, buf, size, bytes_read);
3473     DoOperation(&op);
3474     return op.GetError ();
3475 }
3476 
3477 Error
3478 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3479 {
3480     WriteOperation op(addr, buf, size, bytes_written);
3481     DoOperation(&op);
3482     return op.GetError ();
3483 }
3484 
3485 bool
3486 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3487                                   uint32_t size, RegisterValue &value)
3488 {
3489     bool result;
3490     ReadRegOperation op(tid, offset, reg_name, value, result);
3491     DoOperation(&op);
3492     return result;
3493 }
3494 
3495 bool
3496 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3497                                    const char* reg_name, const RegisterValue &value)
3498 {
3499     bool result;
3500     WriteRegOperation op(tid, offset, reg_name, value, result);
3501     DoOperation(&op);
3502     return result;
3503 }
3504 
3505 bool
3506 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3507 {
3508     bool result;
3509     ReadGPROperation op(tid, buf, buf_size, result);
3510     DoOperation(&op);
3511     return result;
3512 }
3513 
3514 bool
3515 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3516 {
3517     bool result;
3518     ReadFPROperation op(tid, buf, buf_size, result);
3519     DoOperation(&op);
3520     return result;
3521 }
3522 
3523 bool
3524 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3525 {
3526     bool result;
3527     ReadRegisterSetOperation op(tid, buf, buf_size, regset, result);
3528     DoOperation(&op);
3529     return result;
3530 }
3531 
3532 bool
3533 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3534 {
3535     bool result;
3536     WriteGPROperation op(tid, buf, buf_size, result);
3537     DoOperation(&op);
3538     return result;
3539 }
3540 
3541 bool
3542 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3543 {
3544     bool result;
3545     WriteFPROperation op(tid, buf, buf_size, result);
3546     DoOperation(&op);
3547     return result;
3548 }
3549 
3550 bool
3551 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3552 {
3553     bool result;
3554     WriteRegisterSetOperation op(tid, buf, buf_size, regset, result);
3555     DoOperation(&op);
3556     return result;
3557 }
3558 
3559 bool
3560 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3561 {
3562     bool result;
3563     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3564 
3565     if (log)
3566         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3567                                  GetUnixSignals().GetSignalAsCString (signo));
3568     ResumeOperation op (tid, signo, result);
3569     DoOperation (&op);
3570     if (log)
3571         log->Printf ("NativeProcessLinux::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false");
3572     return result;
3573 }
3574 
3575 bool
3576 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3577 {
3578     bool result;
3579     SingleStepOperation op(tid, signo, result);
3580     DoOperation(&op);
3581     return result;
3582 }
3583 
3584 bool
3585 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err)
3586 {
3587     bool result;
3588     SiginfoOperation op(tid, siginfo, result, ptrace_err);
3589     DoOperation(&op);
3590     return result;
3591 }
3592 
3593 bool
3594 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3595 {
3596     bool result;
3597     EventMessageOperation op(tid, message, result);
3598     DoOperation(&op);
3599     return result;
3600 }
3601 
3602 lldb_private::Error
3603 NativeProcessLinux::Detach(lldb::tid_t tid)
3604 {
3605     lldb_private::Error error;
3606     if (tid != LLDB_INVALID_THREAD_ID)
3607     {
3608         DetachOperation op(tid, error);
3609         DoOperation(&op);
3610     }
3611     return error;
3612 }
3613 
3614 bool
3615 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3616 {
3617     int target_fd = open(path, flags, 0666);
3618 
3619     if (target_fd == -1)
3620         return false;
3621 
3622     return (dup2(target_fd, fd) == -1) ? false : true;
3623 }
3624 
3625 void
3626 NativeProcessLinux::StopMonitoringChildProcess()
3627 {
3628     if (m_monitor_thread.IsJoinable())
3629     {
3630         m_monitor_thread.Cancel();
3631         m_monitor_thread.Join(nullptr);
3632     }
3633 }
3634 
3635 void
3636 NativeProcessLinux::StopMonitor()
3637 {
3638     StopMonitoringChildProcess();
3639     StopOpThread();
3640     sem_destroy(&m_operation_pending);
3641     sem_destroy(&m_operation_done);
3642 
3643     // TODO: validate whether this still holds, fix up comment.
3644     // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
3645     // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
3646     // the descriptor to a ConnectionFileDescriptor object.  Consequently
3647     // even though still has the file descriptor, we shouldn't close it here.
3648 }
3649 
3650 void
3651 NativeProcessLinux::StopOpThread()
3652 {
3653     if (!m_operation_thread.IsJoinable())
3654         return;
3655 
3656     m_operation_thread.Cancel();
3657     m_operation_thread.Join(nullptr);
3658 }
3659 
3660 bool
3661 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3662 {
3663     for (auto thread_sp : m_threads)
3664     {
3665         assert (thread_sp && "thread list should not contain NULL threads");
3666         if (thread_sp->GetID () == thread_id)
3667         {
3668             // We have this thread.
3669             return true;
3670         }
3671     }
3672 
3673     // We don't have this thread.
3674     return false;
3675 }
3676 
3677 NativeThreadProtocolSP
3678 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3679 {
3680     // CONSIDER organize threads by map - we can do better than linear.
3681     for (auto thread_sp : m_threads)
3682     {
3683         if (thread_sp->GetID () == thread_id)
3684             return thread_sp;
3685     }
3686 
3687     // We don't have this thread.
3688     return NativeThreadProtocolSP ();
3689 }
3690 
3691 bool
3692 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3693 {
3694     Mutex::Locker locker (m_threads_mutex);
3695     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3696     {
3697         if (*it && ((*it)->GetID () == thread_id))
3698         {
3699             m_threads.erase (it);
3700             return true;
3701         }
3702     }
3703 
3704     // Didn't find it.
3705     return false;
3706 }
3707 
3708 NativeThreadProtocolSP
3709 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3710 {
3711     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3712 
3713     Mutex::Locker locker (m_threads_mutex);
3714 
3715     if (log)
3716     {
3717         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3718                 __FUNCTION__,
3719                 GetID (),
3720                 thread_id);
3721     }
3722 
3723     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3724 
3725     // If this is the first thread, save it as the current thread
3726     if (m_threads.empty ())
3727         SetCurrentThreadID (thread_id);
3728 
3729     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3730     m_threads.push_back (thread_sp);
3731 
3732     return thread_sp;
3733 }
3734 
3735 NativeThreadProtocolSP
3736 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created)
3737 {
3738     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3739 
3740     Mutex::Locker locker (m_threads_mutex);
3741     if (log)
3742     {
3743         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64,
3744                      __FUNCTION__,
3745                      GetID (),
3746                      thread_id);
3747     }
3748 
3749     // Retrieve the thread if it is already getting tracked.
3750     NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id);
3751     if (thread_sp)
3752     {
3753         if (log)
3754             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning",
3755                          __FUNCTION__,
3756                          GetID (),
3757                          thread_id);
3758         created = false;
3759         return thread_sp;
3760 
3761     }
3762 
3763     // Create the thread metadata since it isn't being tracked.
3764     if (log)
3765         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now",
3766                      __FUNCTION__,
3767                      GetID (),
3768                      thread_id);
3769 
3770     thread_sp.reset (new NativeThreadLinux (this, thread_id));
3771     m_threads.push_back (thread_sp);
3772     created = true;
3773 
3774     return thread_sp;
3775 }
3776 
3777 Error
3778 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3779 {
3780     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3781 
3782     Error error;
3783 
3784     // Get a linux thread pointer.
3785     if (!thread_sp)
3786     {
3787         error.SetErrorString ("null thread_sp");
3788         if (log)
3789             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3790         return error;
3791     }
3792     NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get());
3793 
3794     // Find out the size of a breakpoint (might depend on where we are in the code).
3795     NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext ();
3796     if (!context_sp)
3797     {
3798         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3799         if (log)
3800             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3801         return error;
3802     }
3803 
3804     uint32_t breakpoint_size = 0;
3805     error = GetSoftwareBreakpointSize (context_sp, breakpoint_size);
3806     if (error.Fail ())
3807     {
3808         if (log)
3809             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3810         return error;
3811     }
3812     else
3813     {
3814         if (log)
3815             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3816     }
3817 
3818     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3819     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3820     lldb::addr_t breakpoint_addr = initial_pc_addr;
3821     if (breakpoint_size > static_cast<lldb::addr_t> (0))
3822     {
3823         // Do not allow breakpoint probe to wrap around.
3824         if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
3825             breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
3826     }
3827 
3828     // Check if we stopped because of a breakpoint.
3829     NativeBreakpointSP breakpoint_sp;
3830     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3831     if (!error.Success () || !breakpoint_sp)
3832     {
3833         // We didn't find one at a software probe location.  Nothing to do.
3834         if (log)
3835             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3836         return Error ();
3837     }
3838 
3839     // If the breakpoint is not a software breakpoint, nothing to do.
3840     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3841     {
3842         if (log)
3843             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3844         return Error ();
3845     }
3846 
3847     //
3848     // We have a software breakpoint and need to adjust the PC.
3849     //
3850 
3851     // Sanity check.
3852     if (breakpoint_size == 0)
3853     {
3854         // Nothing to do!  How did we get here?
3855         if (log)
3856             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3857         return Error ();
3858     }
3859 
3860     // Change the program counter.
3861     if (log)
3862         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr);
3863 
3864     error = context_sp->SetPC (breakpoint_addr);
3865     if (error.Fail ())
3866     {
3867         if (log)
3868             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ());
3869         return error;
3870     }
3871 
3872     return error;
3873 }
3874