1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/Error.h"
44 #include "lldb/Utility/LLDBAssert.h"
45 #include "lldb/Utility/StringExtractor.h"
46 
47 #include "NativeThreadLinux.h"
48 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
49 #include "ProcFileReader.h"
50 #include "Procfs.h"
51 
52 #include "llvm/Support/Threading.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                strerror(errno));
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Error EnsureFDFlags(int fd, int flags) {
197   Error error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 Error NativeProcessProtocol::Launch(
218     ProcessLaunchInfo &launch_info,
219     NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop,
220     NativeProcessProtocolSP &native_process_sp) {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   Error error;
224 
225   // Verify the working directory is valid if one was specified.
226   FileSpec working_dir{launch_info.GetWorkingDirectory()};
227   if (working_dir &&
228       (!working_dir.ResolvePath() ||
229        working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) {
230     error.SetErrorStringWithFormat("No such file or directory: %s",
231                                    working_dir.GetCString());
232     return error;
233   }
234 
235   // Create the NativeProcessLinux in launch mode.
236   native_process_sp.reset(new NativeProcessLinux());
237 
238   if (!native_process_sp->RegisterNativeDelegate(native_delegate)) {
239     native_process_sp.reset();
240     error.SetErrorStringWithFormat("failed to register the native delegate");
241     return error;
242   }
243 
244   error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)
245               ->LaunchInferior(mainloop, launch_info);
246 
247   if (error.Fail()) {
248     native_process_sp.reset();
249     LLDB_LOG(log, "failed to launch process: {0}", error);
250     return error;
251   }
252 
253   launch_info.SetProcessID(native_process_sp->GetID());
254 
255   return error;
256 }
257 
258 Error NativeProcessProtocol::Attach(
259     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
260     MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) {
261   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
262   LLDB_LOG(log, "pid = {0:x}", pid);
263 
264   // Retrieve the architecture for the running process.
265   ArchSpec process_arch;
266   Error error = ResolveProcessArchitecture(pid, process_arch);
267   if (!error.Success())
268     return error;
269 
270   std::shared_ptr<NativeProcessLinux> native_process_linux_sp(
271       new NativeProcessLinux());
272 
273   if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) {
274     error.SetErrorStringWithFormat("failed to register the native delegate");
275     return error;
276   }
277 
278   native_process_linux_sp->AttachToInferior(mainloop, pid, error);
279   if (!error.Success())
280     return error;
281 
282   native_process_sp = native_process_linux_sp;
283   return error;
284 }
285 
286 // -----------------------------------------------------------------------------
287 // Public Instance Methods
288 // -----------------------------------------------------------------------------
289 
290 NativeProcessLinux::NativeProcessLinux()
291     : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(),
292       m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(),
293       m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {}
294 
295 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid,
296                                           Error &error) {
297   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
298   LLDB_LOG(log, "pid = {0:x}", pid);
299 
300   m_sigchld_handle = mainloop.RegisterSignal(
301       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
302   if (!m_sigchld_handle)
303     return;
304 
305   error = ResolveProcessArchitecture(pid, m_arch);
306   if (!error.Success())
307     return;
308 
309   // Set the architecture to the exe architecture.
310   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
311            m_arch.GetArchitectureName());
312   m_pid = pid;
313   SetState(eStateAttaching);
314 
315   Attach(pid, error);
316 }
317 
318 Error NativeProcessLinux::LaunchInferior(MainLoop &mainloop,
319                                          ProcessLaunchInfo &launch_info) {
320   Error error;
321   m_sigchld_handle = mainloop.RegisterSignal(
322       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
323   if (!m_sigchld_handle)
324     return error;
325 
326   SetState(eStateLaunching);
327 
328   MaybeLogLaunchInfo(launch_info);
329 
330   ::pid_t pid =
331       ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId();
332   if (error.Fail())
333     return error;
334 
335   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
336 
337   // Wait for the child process to trap on its call to execve.
338   ::pid_t wpid;
339   int status;
340   if ((wpid = waitpid(pid, &status, 0)) < 0) {
341     error.SetErrorToErrno();
342     LLDB_LOG(log, "waitpid for inferior failed with %s", error);
343 
344     // Mark the inferior as invalid.
345     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
346     // using eStateInvalid.
347     SetState(StateType::eStateInvalid);
348 
349     return error;
350   }
351   assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) &&
352          "Could not sync with inferior process.");
353 
354   LLDB_LOG(log, "inferior started, now in stopped state");
355   error = SetDefaultPtraceOpts(pid);
356   if (error.Fail()) {
357     LLDB_LOG(log, "failed to set default ptrace options: {0}", error);
358 
359     // Mark the inferior as invalid.
360     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
361     // using eStateInvalid.
362     SetState(StateType::eStateInvalid);
363 
364     return error;
365   }
366 
367   // Release the master terminal descriptor and pass it off to the
368   // NativeProcessLinux instance.  Similarly stash the inferior pid.
369   m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
370   m_pid = pid;
371   launch_info.SetProcessID(pid);
372 
373   if (m_terminal_fd != -1) {
374     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
375     if (error.Fail()) {
376       LLDB_LOG(log,
377                "inferior EnsureFDFlags failed for ensuring terminal "
378                "O_NONBLOCK setting: {0}",
379                error);
380 
381       // Mark the inferior as invalid.
382       // FIXME this could really use a new state - eStateLaunchFailure.  For
383       // now, using eStateInvalid.
384       SetState(StateType::eStateInvalid);
385 
386       return error;
387     }
388   }
389 
390   LLDB_LOG(log, "adding pid = {0}", pid);
391   ResolveProcessArchitecture(m_pid, m_arch);
392   NativeThreadLinuxSP thread_sp = AddThread(pid);
393   assert(thread_sp && "AddThread() returned a nullptr thread");
394   thread_sp->SetStoppedBySignal(SIGSTOP);
395   ThreadWasCreated(*thread_sp);
396 
397   // Let our process instance know the thread has stopped.
398   SetCurrentThreadID(thread_sp->GetID());
399   SetState(StateType::eStateStopped);
400 
401   if (error.Fail())
402     LLDB_LOG(log, "inferior launching failed {0}", error);
403   return error;
404 }
405 
406 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) {
407   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
408 
409   // Use a map to keep track of the threads which we have attached/need to
410   // attach.
411   Host::TidMap tids_to_attach;
412   if (pid <= 1) {
413     error.SetErrorToGenericError();
414     error.SetErrorString("Attaching to process 1 is not allowed.");
415     return -1;
416   }
417 
418   while (Host::FindProcessThreads(pid, tids_to_attach)) {
419     for (Host::TidMap::iterator it = tids_to_attach.begin();
420          it != tids_to_attach.end();) {
421       if (it->second == false) {
422         lldb::tid_t tid = it->first;
423 
424         // Attach to the requested process.
425         // An attach will cause the thread to stop with a SIGSTOP.
426         error = PtraceWrapper(PTRACE_ATTACH, tid);
427         if (error.Fail()) {
428           // No such thread. The thread may have exited.
429           // More error handling may be needed.
430           if (error.GetError() == ESRCH) {
431             it = tids_to_attach.erase(it);
432             continue;
433           } else
434             return -1;
435         }
436 
437         int status;
438         // Need to use __WALL otherwise we receive an error with errno=ECHLD
439         // At this point we should have a thread stopped if waitpid succeeds.
440         if ((status = waitpid(tid, NULL, __WALL)) < 0) {
441           // No such thread. The thread may have exited.
442           // More error handling may be needed.
443           if (errno == ESRCH) {
444             it = tids_to_attach.erase(it);
445             continue;
446           } else {
447             error.SetErrorToErrno();
448             return -1;
449           }
450         }
451 
452         error = SetDefaultPtraceOpts(tid);
453         if (error.Fail())
454           return -1;
455 
456         LLDB_LOG(log, "adding tid = {0}", tid);
457         it->second = true;
458 
459         // Create the thread, mark it as stopped.
460         NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid)));
461         assert(thread_sp && "AddThread() returned a nullptr");
462 
463         // This will notify this is a new thread and tell the system it is
464         // stopped.
465         thread_sp->SetStoppedBySignal(SIGSTOP);
466         ThreadWasCreated(*thread_sp);
467         SetCurrentThreadID(thread_sp->GetID());
468       }
469 
470       // move the loop forward
471       ++it;
472     }
473   }
474 
475   if (tids_to_attach.size() > 0) {
476     m_pid = pid;
477     // Let our process instance know the thread has stopped.
478     SetState(StateType::eStateStopped);
479   } else {
480     error.SetErrorToGenericError();
481     error.SetErrorString("No such process.");
482     return -1;
483   }
484 
485   return pid;
486 }
487 
488 Error NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
489   long ptrace_opts = 0;
490 
491   // Have the child raise an event on exit.  This is used to keep the child in
492   // limbo until it is destroyed.
493   ptrace_opts |= PTRACE_O_TRACEEXIT;
494 
495   // Have the tracer trace threads which spawn in the inferior process.
496   // TODO: if we want to support tracing the inferiors' child, add the
497   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
498   ptrace_opts |= PTRACE_O_TRACECLONE;
499 
500   // Have the tracer notify us before execve returns
501   // (needed to disable legacy SIGTRAP generation)
502   ptrace_opts |= PTRACE_O_TRACEEXEC;
503 
504   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
505 }
506 
507 static ExitType convert_pid_status_to_exit_type(int status) {
508   if (WIFEXITED(status))
509     return ExitType::eExitTypeExit;
510   else if (WIFSIGNALED(status))
511     return ExitType::eExitTypeSignal;
512   else if (WIFSTOPPED(status))
513     return ExitType::eExitTypeStop;
514   else {
515     // We don't know what this is.
516     return ExitType::eExitTypeInvalid;
517   }
518 }
519 
520 static int convert_pid_status_to_return_code(int status) {
521   if (WIFEXITED(status))
522     return WEXITSTATUS(status);
523   else if (WIFSIGNALED(status))
524     return WTERMSIG(status);
525   else if (WIFSTOPPED(status))
526     return WSTOPSIG(status);
527   else {
528     // We don't know what this is.
529     return ExitType::eExitTypeInvalid;
530   }
531 }
532 
533 // Handles all waitpid events from the inferior process.
534 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
535                                          int signal, int status) {
536   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
537 
538   // Certain activities differ based on whether the pid is the tid of the main
539   // thread.
540   const bool is_main_thread = (pid == GetID());
541 
542   // Handle when the thread exits.
543   if (exited) {
544     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
545              pid, is_main_thread ? "is" : "is not");
546 
547     // This is a thread that exited.  Ensure we're not tracking it anymore.
548     const bool thread_found = StopTrackingThread(pid);
549 
550     if (is_main_thread) {
551       // We only set the exit status and notify the delegate if we haven't
552       // already set the process
553       // state to an exited state.  We normally should have received a SIGTRAP |
554       // (PTRACE_EVENT_EXIT << 8)
555       // for the main thread.
556       const bool already_notified = (GetState() == StateType::eStateExited) ||
557                                     (GetState() == StateType::eStateCrashed);
558       if (!already_notified) {
559         LLDB_LOG(
560             log,
561             "tid = {0} handling main thread exit ({1}), expected exit state "
562             "already set but state was {2} instead, setting exit state now",
563             pid,
564             thread_found ? "stopped tracking thread metadata"
565                          : "thread metadata not found",
566             GetState());
567         // The main thread exited.  We're done monitoring.  Report to delegate.
568         SetExitStatus(convert_pid_status_to_exit_type(status),
569                       convert_pid_status_to_return_code(status), nullptr, true);
570 
571         // Notify delegate that our process has exited.
572         SetState(StateType::eStateExited, true);
573       } else
574         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
575                  thread_found ? "stopped tracking thread metadata"
576                               : "thread metadata not found");
577     } else {
578       // Do we want to report to the delegate in this case?  I think not.  If
579       // this was an orderly thread exit, we would already have received the
580       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
581       // all-stop then.
582       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
583                thread_found ? "stopped tracking thread metadata"
584                             : "thread metadata not found");
585     }
586     return;
587   }
588 
589   siginfo_t info;
590   const auto info_err = GetSignalInfo(pid, &info);
591   auto thread_sp = GetThreadByID(pid);
592 
593   if (!thread_sp) {
594     // Normally, the only situation when we cannot find the thread is if we have
595     // just received a new thread notification. This is indicated by
596     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
597     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
598 
599     if (info_err.Fail()) {
600       LLDB_LOG(log,
601                "(tid {0}) GetSignalInfo failed ({1}). "
602                "Ingoring this notification.",
603                pid, info_err);
604       return;
605     }
606 
607     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
608              info.si_pid);
609 
610     auto thread_sp = AddThread(pid);
611     // Resume the newly created thread.
612     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
613     ThreadWasCreated(*thread_sp);
614     return;
615   }
616 
617   // Get details on the signal raised.
618   if (info_err.Success()) {
619     // We have retrieved the signal info.  Dispatch appropriately.
620     if (info.si_signo == SIGTRAP)
621       MonitorSIGTRAP(info, *thread_sp);
622     else
623       MonitorSignal(info, *thread_sp, exited);
624   } else {
625     if (info_err.GetError() == EINVAL) {
626       // This is a group stop reception for this tid.
627       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
628       // into the tracee, triggering the group-stop mechanism. Normally
629       // receiving these would stop the process, pending a SIGCONT. Simulating
630       // this state in a debugger is hard and is generally not needed (one use
631       // case is debugging background task being managed by a shell). For
632       // general use, it is sufficient to stop the process in a signal-delivery
633       // stop which happens before the group stop. This done by MonitorSignal
634       // and works correctly for all signals.
635       LLDB_LOG(log,
636                "received a group stop for pid {0} tid {1}. Transparent "
637                "handling of group stops not supported, resuming the "
638                "thread.",
639                GetID(), pid);
640       ResumeThread(*thread_sp, thread_sp->GetState(),
641                    LLDB_INVALID_SIGNAL_NUMBER);
642     } else {
643       // ptrace(GETSIGINFO) failed (but not due to group-stop).
644 
645       // A return value of ESRCH means the thread/process is no longer on the
646       // system, so it was killed somehow outside of our control.  Either way,
647       // we can't do anything with it anymore.
648 
649       // Stop tracking the metadata for the thread since it's entirely off the
650       // system now.
651       const bool thread_found = StopTrackingThread(pid);
652 
653       LLDB_LOG(log,
654                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
655                "status = {3}, main_thread = {4}, thread_found: {5}",
656                info_err, pid, signal, status, is_main_thread, thread_found);
657 
658       if (is_main_thread) {
659         // Notify the delegate - our process is not available but appears to
660         // have been killed outside
661         // our control.  Is eStateExited the right exit state in this case?
662         SetExitStatus(convert_pid_status_to_exit_type(status),
663                       convert_pid_status_to_return_code(status), nullptr, true);
664         SetState(StateType::eStateExited, true);
665       } else {
666         // This thread was pulled out from underneath us.  Anything to do here?
667         // Do we want to do an all stop?
668         LLDB_LOG(log,
669                  "pid {0} tid {1} non-main thread exit occurred, didn't "
670                  "tell delegate anything since thread disappeared out "
671                  "from underneath us",
672                  GetID(), pid);
673       }
674     }
675   }
676 }
677 
678 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
679   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
680 
681   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
682 
683   if (new_thread_sp) {
684     // We are already tracking the thread - we got the event on the new thread
685     // (see
686     // MonitorSignal) before this one. We are done.
687     return;
688   }
689 
690   // The thread is not tracked yet, let's wait for it to appear.
691   int status = -1;
692   ::pid_t wait_pid;
693   do {
694     LLDB_LOG(log,
695              "received thread creation event for tid {0}. tid not tracked "
696              "yet, waiting for thread to appear...",
697              tid);
698     wait_pid = waitpid(tid, &status, __WALL);
699   } while (wait_pid == -1 && errno == EINTR);
700   // Since we are waiting on a specific tid, this must be the creation event.
701   // But let's do some checks just in case.
702   if (wait_pid != tid) {
703     LLDB_LOG(log,
704              "waiting for tid {0} failed. Assuming the thread has "
705              "disappeared in the meantime",
706              tid);
707     // The only way I know of this could happen is if the whole process was
708     // SIGKILLed in the mean time. In any case, we can't do anything about that
709     // now.
710     return;
711   }
712   if (WIFEXITED(status)) {
713     LLDB_LOG(log,
714              "waiting for tid {0} returned an 'exited' event. Not "
715              "tracking the thread.",
716              tid);
717     // Also a very improbable event.
718     return;
719   }
720 
721   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
722   new_thread_sp = AddThread(tid);
723   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
724   ThreadWasCreated(*new_thread_sp);
725 }
726 
727 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
728                                         NativeThreadLinux &thread) {
729   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
730   const bool is_main_thread = (thread.GetID() == GetID());
731 
732   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
733 
734   switch (info.si_code) {
735   // TODO: these two cases are required if we want to support tracing of the
736   // inferiors' children.  We'd need this to debug a monitor.
737   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
738   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
739 
740   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
741     // This is the notification on the parent thread which informs us of new
742     // thread
743     // creation.
744     // We don't want to do anything with the parent thread so we just resume it.
745     // In case we
746     // want to implement "break on thread creation" functionality, we would need
747     // to stop
748     // here.
749 
750     unsigned long event_message = 0;
751     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
752       LLDB_LOG(log,
753                "pid {0} received thread creation event but "
754                "GetEventMessage failed so we don't know the new tid",
755                thread.GetID());
756     } else
757       WaitForNewThread(event_message);
758 
759     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
760     break;
761   }
762 
763   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
764     NativeThreadLinuxSP main_thread_sp;
765     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
766 
767     // Exec clears any pending notifications.
768     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
769 
770     // Remove all but the main thread here.  Linux fork creates a new process
771     // which only copies the main thread.
772     LLDB_LOG(log, "exec received, stop tracking all but main thread");
773 
774     for (auto thread_sp : m_threads) {
775       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
776       if (is_main_thread) {
777         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
778         LLDB_LOG(log, "found main thread with tid {0}, keeping",
779                  main_thread_sp->GetID());
780       } else {
781         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
782                  thread_sp->GetID());
783       }
784     }
785 
786     m_threads.clear();
787 
788     if (main_thread_sp) {
789       m_threads.push_back(main_thread_sp);
790       SetCurrentThreadID(main_thread_sp->GetID());
791       main_thread_sp->SetStoppedByExec();
792     } else {
793       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
794       LLDB_LOG(log,
795                "pid {0} no main thread found, discarded all threads, "
796                "we're in a no-thread state!",
797                GetID());
798     }
799 
800     // Tell coordinator about about the "new" (since exec) stopped main thread.
801     ThreadWasCreated(*main_thread_sp);
802 
803     // Let our delegate know we have just exec'd.
804     NotifyDidExec();
805 
806     // If we have a main thread, indicate we are stopped.
807     assert(main_thread_sp && "exec called during ptraced process but no main "
808                              "thread metadata tracked");
809 
810     // Let the process know we're stopped.
811     StopRunningThreads(main_thread_sp->GetID());
812 
813     break;
814   }
815 
816   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
817     // The inferior process or one of its threads is about to exit.
818     // We don't want to do anything with the thread so we just resume it. In
819     // case we
820     // want to implement "break on thread exit" functionality, we would need to
821     // stop
822     // here.
823 
824     unsigned long data = 0;
825     if (GetEventMessage(thread.GetID(), &data).Fail())
826       data = -1;
827 
828     LLDB_LOG(log,
829              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
830              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
831              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
832              is_main_thread);
833 
834     if (is_main_thread) {
835       SetExitStatus(convert_pid_status_to_exit_type(data),
836                     convert_pid_status_to_return_code(data), nullptr, true);
837     }
838 
839     StateType state = thread.GetState();
840     if (!StateIsRunningState(state)) {
841       // Due to a kernel bug, we may sometimes get this stop after the inferior
842       // gets a
843       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
844       // since normally,
845       // we should not be receiving any ptrace events while the inferior is
846       // stopped. This
847       // makes sure that the inferior is resumed and exits normally.
848       state = eStateRunning;
849     }
850     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
851 
852     break;
853   }
854 
855   case 0:
856   case TRAP_TRACE:  // We receive this on single stepping.
857   case TRAP_HWBKPT: // We receive this on watchpoint hit
858   {
859     // If a watchpoint was hit, report it
860     uint32_t wp_index;
861     Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(
862         wp_index, (uintptr_t)info.si_addr);
863     if (error.Fail())
864       LLDB_LOG(log,
865                "received error while checking for watchpoint hits, pid = "
866                "{0}, error = {1}",
867                thread.GetID(), error);
868     if (wp_index != LLDB_INVALID_INDEX32) {
869       MonitorWatchpoint(thread, wp_index);
870       break;
871     }
872 
873     // If a breakpoint was hit, report it
874     uint32_t bp_index;
875     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
876         bp_index, (uintptr_t)info.si_addr);
877     if (error.Fail())
878       LLDB_LOG(log, "received error while checking for hardware "
879                     "breakpoint hits, pid = {0}, error = {1}",
880                thread.GetID(), error);
881     if (bp_index != LLDB_INVALID_INDEX32) {
882       MonitorBreakpoint(thread);
883       break;
884     }
885 
886     // Otherwise, report step over
887     MonitorTrace(thread);
888     break;
889   }
890 
891   case SI_KERNEL:
892 #if defined __mips__
893     // For mips there is no special signal for watchpoint
894     // So we check for watchpoint in kernel trap
895     {
896       // If a watchpoint was hit, report it
897       uint32_t wp_index;
898       Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(
899           wp_index, LLDB_INVALID_ADDRESS);
900       if (error.Fail())
901         LLDB_LOG(log,
902                  "received error while checking for watchpoint hits, pid = "
903                  "{0}, error = {1}",
904                  thread.GetID(), error);
905       if (wp_index != LLDB_INVALID_INDEX32) {
906         MonitorWatchpoint(thread, wp_index);
907         break;
908       }
909     }
910 // NO BREAK
911 #endif
912   case TRAP_BRKPT:
913     MonitorBreakpoint(thread);
914     break;
915 
916   case SIGTRAP:
917   case (SIGTRAP | 0x80):
918     LLDB_LOG(
919         log,
920         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
921         info.si_code, GetID(), thread.GetID());
922 
923     // Ignore these signals until we know more about them.
924     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
925     break;
926 
927   default:
928     LLDB_LOG(
929         log,
930         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
931         info.si_code, GetID(), thread.GetID());
932     llvm_unreachable("Unexpected SIGTRAP code!");
933     break;
934   }
935 }
936 
937 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
938   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
939   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
940 
941   // This thread is currently stopped.
942   thread.SetStoppedByTrace();
943 
944   StopRunningThreads(thread.GetID());
945 }
946 
947 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
948   Log *log(
949       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
950   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
951 
952   // Mark the thread as stopped at breakpoint.
953   thread.SetStoppedByBreakpoint();
954   Error error = FixupBreakpointPCAsNeeded(thread);
955   if (error.Fail())
956     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
957 
958   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
959       m_threads_stepping_with_breakpoint.end())
960     thread.SetStoppedByTrace();
961 
962   StopRunningThreads(thread.GetID());
963 }
964 
965 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
966                                            uint32_t wp_index) {
967   Log *log(
968       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
969   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
970            thread.GetID(), wp_index);
971 
972   // Mark the thread as stopped at watchpoint.
973   // The address is at (lldb::addr_t)info->si_addr if we need it.
974   thread.SetStoppedByWatchpoint(wp_index);
975 
976   // We need to tell all other running threads before we notify the delegate
977   // about this stop.
978   StopRunningThreads(thread.GetID());
979 }
980 
981 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
982                                        NativeThreadLinux &thread, bool exited) {
983   const int signo = info.si_signo;
984   const bool is_from_llgs = info.si_pid == getpid();
985 
986   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
987 
988   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
989   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
990   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
991   //
992   // IOW, user generated signals never generate what we consider to be a
993   // "crash".
994   //
995   // Similarly, ACK signals generated by this monitor.
996 
997   // Handle the signal.
998   LLDB_LOG(log,
999            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
1000            "waitpid pid = {4})",
1001            Host::GetSignalAsCString(signo), signo, info.si_code,
1002            thread.GetID());
1003 
1004   // Check for thread stop notification.
1005   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
1006     // This is a tgkill()-based stop.
1007     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
1008 
1009     // Check that we're not already marked with a stop reason.
1010     // Note this thread really shouldn't already be marked as stopped - if we
1011     // were, that would imply that the kernel signaled us with the thread
1012     // stopping which we handled and marked as stopped, and that, without an
1013     // intervening resume, we received another stop.  It is more likely that we
1014     // are missing the marking of a run state somewhere if we find that the
1015     // thread was marked as stopped.
1016     const StateType thread_state = thread.GetState();
1017     if (!StateIsStoppedState(thread_state, false)) {
1018       // An inferior thread has stopped because of a SIGSTOP we have sent it.
1019       // Generally, these are not important stops and we don't want to report
1020       // them as they are just used to stop other threads when one thread (the
1021       // one with the *real* stop reason) hits a breakpoint (watchpoint,
1022       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
1023       // the real stop reason, so we leave the signal intact if this is the
1024       // thread that was chosen as the triggering thread.
1025       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1026         if (m_pending_notification_tid == thread.GetID())
1027           thread.SetStoppedBySignal(SIGSTOP, &info);
1028         else
1029           thread.SetStoppedWithNoReason();
1030 
1031         SetCurrentThreadID(thread.GetID());
1032         SignalIfAllThreadsStopped();
1033       } else {
1034         // We can end up here if stop was initiated by LLGS but by this time a
1035         // thread stop has occurred - maybe initiated by another event.
1036         Error error = ResumeThread(thread, thread.GetState(), 0);
1037         if (error.Fail())
1038           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
1039                    error);
1040       }
1041     } else {
1042       LLDB_LOG(log,
1043                "pid {0} tid {1}, thread was already marked as a stopped "
1044                "state (state={2}), leaving stop signal as is",
1045                GetID(), thread.GetID(), thread_state);
1046       SignalIfAllThreadsStopped();
1047     }
1048 
1049     // Done handling.
1050     return;
1051   }
1052 
1053   // Check if debugger should stop at this signal or just ignore it
1054   // and resume the inferior.
1055   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
1056      ResumeThread(thread, thread.GetState(), signo);
1057      return;
1058   }
1059 
1060   // This thread is stopped.
1061   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
1062   thread.SetStoppedBySignal(signo, &info);
1063 
1064   // Send a stop to the debugger after we get all other threads to stop.
1065   StopRunningThreads(thread.GetID());
1066 }
1067 
1068 namespace {
1069 
1070 struct EmulatorBaton {
1071   NativeProcessLinux *m_process;
1072   NativeRegisterContext *m_reg_context;
1073 
1074   // eRegisterKindDWARF -> RegsiterValue
1075   std::unordered_map<uint32_t, RegisterValue> m_register_values;
1076 
1077   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
1078       : m_process(process), m_reg_context(reg_context) {}
1079 };
1080 
1081 } // anonymous namespace
1082 
1083 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
1084                                  const EmulateInstruction::Context &context,
1085                                  lldb::addr_t addr, void *dst, size_t length) {
1086   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1087 
1088   size_t bytes_read;
1089   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1090   return bytes_read;
1091 }
1092 
1093 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
1094                                  const RegisterInfo *reg_info,
1095                                  RegisterValue &reg_value) {
1096   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1097 
1098   auto it = emulator_baton->m_register_values.find(
1099       reg_info->kinds[eRegisterKindDWARF]);
1100   if (it != emulator_baton->m_register_values.end()) {
1101     reg_value = it->second;
1102     return true;
1103   }
1104 
1105   // The emulator only fill in the dwarf regsiter numbers (and in some case
1106   // the generic register numbers). Get the full register info from the
1107   // register context based on the dwarf register numbers.
1108   const RegisterInfo *full_reg_info =
1109       emulator_baton->m_reg_context->GetRegisterInfo(
1110           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1111 
1112   Error error =
1113       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1114   if (error.Success())
1115     return true;
1116 
1117   return false;
1118 }
1119 
1120 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
1121                                   const EmulateInstruction::Context &context,
1122                                   const RegisterInfo *reg_info,
1123                                   const RegisterValue &reg_value) {
1124   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1125   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
1126       reg_value;
1127   return true;
1128 }
1129 
1130 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
1131                                   const EmulateInstruction::Context &context,
1132                                   lldb::addr_t addr, const void *dst,
1133                                   size_t length) {
1134   return length;
1135 }
1136 
1137 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1138   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1139       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1140   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1141                                                   LLDB_INVALID_ADDRESS);
1142 }
1143 
1144 Error NativeProcessLinux::SetupSoftwareSingleStepping(
1145     NativeThreadLinux &thread) {
1146   Error error;
1147   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1148 
1149   std::unique_ptr<EmulateInstruction> emulator_ap(
1150       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1151                                      nullptr));
1152 
1153   if (emulator_ap == nullptr)
1154     return Error("Instruction emulator not found!");
1155 
1156   EmulatorBaton baton(this, register_context_sp.get());
1157   emulator_ap->SetBaton(&baton);
1158   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1159   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1160   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1161   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1162 
1163   if (!emulator_ap->ReadInstruction())
1164     return Error("Read instruction failed!");
1165 
1166   bool emulation_result =
1167       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1168 
1169   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1170       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1171   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1172       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1173 
1174   auto pc_it =
1175       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1176   auto flags_it =
1177       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1178 
1179   lldb::addr_t next_pc;
1180   lldb::addr_t next_flags;
1181   if (emulation_result) {
1182     assert(pc_it != baton.m_register_values.end() &&
1183            "Emulation was successfull but PC wasn't updated");
1184     next_pc = pc_it->second.GetAsUInt64();
1185 
1186     if (flags_it != baton.m_register_values.end())
1187       next_flags = flags_it->second.GetAsUInt64();
1188     else
1189       next_flags = ReadFlags(register_context_sp.get());
1190   } else if (pc_it == baton.m_register_values.end()) {
1191     // Emulate instruction failed and it haven't changed PC. Advance PC
1192     // with the size of the current opcode because the emulation of all
1193     // PC modifying instruction should be successful. The failure most
1194     // likely caused by a not supported instruction which don't modify PC.
1195     next_pc =
1196         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1197     next_flags = ReadFlags(register_context_sp.get());
1198   } else {
1199     // The instruction emulation failed after it modified the PC. It is an
1200     // unknown error where we can't continue because the next instruction is
1201     // modifying the PC but we don't  know how.
1202     return Error("Instruction emulation failed unexpectedly.");
1203   }
1204 
1205   if (m_arch.GetMachine() == llvm::Triple::arm) {
1206     if (next_flags & 0x20) {
1207       // Thumb mode
1208       error = SetSoftwareBreakpoint(next_pc, 2);
1209     } else {
1210       // Arm mode
1211       error = SetSoftwareBreakpoint(next_pc, 4);
1212     }
1213   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1214              m_arch.GetMachine() == llvm::Triple::mips64el ||
1215              m_arch.GetMachine() == llvm::Triple::mips ||
1216              m_arch.GetMachine() == llvm::Triple::mipsel)
1217     error = SetSoftwareBreakpoint(next_pc, 4);
1218   else {
1219     // No size hint is given for the next breakpoint
1220     error = SetSoftwareBreakpoint(next_pc, 0);
1221   }
1222 
1223   // If setting the breakpoint fails because next_pc is out of
1224   // the address space, ignore it and let the debugee segfault.
1225   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1226     return Error();
1227   } else if (error.Fail())
1228     return error;
1229 
1230   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1231 
1232   return Error();
1233 }
1234 
1235 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1236   if (m_arch.GetMachine() == llvm::Triple::arm ||
1237       m_arch.GetMachine() == llvm::Triple::mips64 ||
1238       m_arch.GetMachine() == llvm::Triple::mips64el ||
1239       m_arch.GetMachine() == llvm::Triple::mips ||
1240       m_arch.GetMachine() == llvm::Triple::mipsel)
1241     return false;
1242   return true;
1243 }
1244 
1245 Error NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1246   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1247   LLDB_LOG(log, "pid {0}", GetID());
1248 
1249   bool software_single_step = !SupportHardwareSingleStepping();
1250 
1251   if (software_single_step) {
1252     for (auto thread_sp : m_threads) {
1253       assert(thread_sp && "thread list should not contain NULL threads");
1254 
1255       const ResumeAction *const action =
1256           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1257       if (action == nullptr)
1258         continue;
1259 
1260       if (action->state == eStateStepping) {
1261         Error error = SetupSoftwareSingleStepping(
1262             static_cast<NativeThreadLinux &>(*thread_sp));
1263         if (error.Fail())
1264           return error;
1265       }
1266     }
1267   }
1268 
1269   for (auto thread_sp : m_threads) {
1270     assert(thread_sp && "thread list should not contain NULL threads");
1271 
1272     const ResumeAction *const action =
1273         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1274 
1275     if (action == nullptr) {
1276       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1277                thread_sp->GetID());
1278       continue;
1279     }
1280 
1281     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1282              action->state, GetID(), thread_sp->GetID());
1283 
1284     switch (action->state) {
1285     case eStateRunning:
1286     case eStateStepping: {
1287       // Run the thread, possibly feeding it the signal.
1288       const int signo = action->signal;
1289       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1290                    signo);
1291       break;
1292     }
1293 
1294     case eStateSuspended:
1295     case eStateStopped:
1296       llvm_unreachable("Unexpected state");
1297 
1298     default:
1299       return Error("NativeProcessLinux::%s (): unexpected state %s specified "
1300                    "for pid %" PRIu64 ", tid %" PRIu64,
1301                    __FUNCTION__, StateAsCString(action->state), GetID(),
1302                    thread_sp->GetID());
1303     }
1304   }
1305 
1306   return Error();
1307 }
1308 
1309 Error NativeProcessLinux::Halt() {
1310   Error error;
1311 
1312   if (kill(GetID(), SIGSTOP) != 0)
1313     error.SetErrorToErrno();
1314 
1315   return error;
1316 }
1317 
1318 Error NativeProcessLinux::Detach() {
1319   Error error;
1320 
1321   // Stop monitoring the inferior.
1322   m_sigchld_handle.reset();
1323 
1324   // Tell ptrace to detach from the process.
1325   if (GetID() == LLDB_INVALID_PROCESS_ID)
1326     return error;
1327 
1328   for (auto thread_sp : m_threads) {
1329     Error e = Detach(thread_sp->GetID());
1330     if (e.Fail())
1331       error =
1332           e; // Save the error, but still attempt to detach from other threads.
1333   }
1334 
1335   return error;
1336 }
1337 
1338 Error NativeProcessLinux::Signal(int signo) {
1339   Error error;
1340 
1341   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1342   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1343            Host::GetSignalAsCString(signo), GetID());
1344 
1345   if (kill(GetID(), signo))
1346     error.SetErrorToErrno();
1347 
1348   return error;
1349 }
1350 
1351 Error NativeProcessLinux::Interrupt() {
1352   // Pick a running thread (or if none, a not-dead stopped thread) as
1353   // the chosen thread that will be the stop-reason thread.
1354   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1355 
1356   NativeThreadProtocolSP running_thread_sp;
1357   NativeThreadProtocolSP stopped_thread_sp;
1358 
1359   LLDB_LOG(log, "selecting running thread for interrupt target");
1360   for (auto thread_sp : m_threads) {
1361     // The thread shouldn't be null but lets just cover that here.
1362     if (!thread_sp)
1363       continue;
1364 
1365     // If we have a running or stepping thread, we'll call that the
1366     // target of the interrupt.
1367     const auto thread_state = thread_sp->GetState();
1368     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1369       running_thread_sp = thread_sp;
1370       break;
1371     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1372       // Remember the first non-dead stopped thread.  We'll use that as a backup
1373       // if there are no running threads.
1374       stopped_thread_sp = thread_sp;
1375     }
1376   }
1377 
1378   if (!running_thread_sp && !stopped_thread_sp) {
1379     Error error("found no running/stepping or live stopped threads as target "
1380                 "for interrupt");
1381     LLDB_LOG(log, "skipping due to error: {0}", error);
1382 
1383     return error;
1384   }
1385 
1386   NativeThreadProtocolSP deferred_signal_thread_sp =
1387       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1388 
1389   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1390            running_thread_sp ? "running" : "stopped",
1391            deferred_signal_thread_sp->GetID());
1392 
1393   StopRunningThreads(deferred_signal_thread_sp->GetID());
1394 
1395   return Error();
1396 }
1397 
1398 Error NativeProcessLinux::Kill() {
1399   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1400   LLDB_LOG(log, "pid {0}", GetID());
1401 
1402   Error error;
1403 
1404   switch (m_state) {
1405   case StateType::eStateInvalid:
1406   case StateType::eStateExited:
1407   case StateType::eStateCrashed:
1408   case StateType::eStateDetached:
1409   case StateType::eStateUnloaded:
1410     // Nothing to do - the process is already dead.
1411     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1412              m_state);
1413     return error;
1414 
1415   case StateType::eStateConnected:
1416   case StateType::eStateAttaching:
1417   case StateType::eStateLaunching:
1418   case StateType::eStateStopped:
1419   case StateType::eStateRunning:
1420   case StateType::eStateStepping:
1421   case StateType::eStateSuspended:
1422     // We can try to kill a process in these states.
1423     break;
1424   }
1425 
1426   if (kill(GetID(), SIGKILL) != 0) {
1427     error.SetErrorToErrno();
1428     return error;
1429   }
1430 
1431   return error;
1432 }
1433 
1434 static Error
1435 ParseMemoryRegionInfoFromProcMapsLine(const std::string &maps_line,
1436                                       MemoryRegionInfo &memory_region_info) {
1437   memory_region_info.Clear();
1438 
1439   StringExtractor line_extractor(maps_line.c_str());
1440 
1441   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1442   // pathname
1443   // perms: rwxp   (letter is present if set, '-' if not, final character is
1444   // p=private, s=shared).
1445 
1446   // Parse out the starting address
1447   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1448 
1449   // Parse out hyphen separating start and end address from range.
1450   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1451     return Error(
1452         "malformed /proc/{pid}/maps entry, missing dash between address range");
1453 
1454   // Parse out the ending address
1455   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1456 
1457   // Parse out the space after the address.
1458   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1459     return Error("malformed /proc/{pid}/maps entry, missing space after range");
1460 
1461   // Save the range.
1462   memory_region_info.GetRange().SetRangeBase(start_address);
1463   memory_region_info.GetRange().SetRangeEnd(end_address);
1464 
1465   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1466   // process.
1467   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1468 
1469   // Parse out each permission entry.
1470   if (line_extractor.GetBytesLeft() < 4)
1471     return Error("malformed /proc/{pid}/maps entry, missing some portion of "
1472                  "permissions");
1473 
1474   // Handle read permission.
1475   const char read_perm_char = line_extractor.GetChar();
1476   if (read_perm_char == 'r')
1477     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1478   else if (read_perm_char == '-')
1479     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1480   else
1481     return Error("unexpected /proc/{pid}/maps read permission char");
1482 
1483   // Handle write permission.
1484   const char write_perm_char = line_extractor.GetChar();
1485   if (write_perm_char == 'w')
1486     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1487   else if (write_perm_char == '-')
1488     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1489   else
1490     return Error("unexpected /proc/{pid}/maps write permission char");
1491 
1492   // Handle execute permission.
1493   const char exec_perm_char = line_extractor.GetChar();
1494   if (exec_perm_char == 'x')
1495     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1496   else if (exec_perm_char == '-')
1497     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1498   else
1499     return Error("unexpected /proc/{pid}/maps exec permission char");
1500 
1501   line_extractor.GetChar();              // Read the private bit
1502   line_extractor.SkipSpaces();           // Skip the separator
1503   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1504   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1505   line_extractor.GetChar();              // Read the device id separator
1506   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1507   line_extractor.SkipSpaces();           // Skip the separator
1508   line_extractor.GetU64(0, 10);          // Read the inode number
1509 
1510   line_extractor.SkipSpaces();
1511   const char *name = line_extractor.Peek();
1512   if (name)
1513     memory_region_info.SetName(name);
1514 
1515   return Error();
1516 }
1517 
1518 Error NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1519                                               MemoryRegionInfo &range_info) {
1520   // FIXME review that the final memory region returned extends to the end of
1521   // the virtual address space,
1522   // with no perms if it is not mapped.
1523 
1524   // Use an approach that reads memory regions from /proc/{pid}/maps.
1525   // Assume proc maps entries are in ascending order.
1526   // FIXME assert if we find differently.
1527 
1528   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1529     // We're done.
1530     return Error("unsupported");
1531   }
1532 
1533   Error error = PopulateMemoryRegionCache();
1534   if (error.Fail()) {
1535     return error;
1536   }
1537 
1538   lldb::addr_t prev_base_address = 0;
1539 
1540   // FIXME start by finding the last region that is <= target address using
1541   // binary search.  Data is sorted.
1542   // There can be a ton of regions on pthreads apps with lots of threads.
1543   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1544        ++it) {
1545     MemoryRegionInfo &proc_entry_info = it->first;
1546 
1547     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1548     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1549            "descending /proc/pid/maps entries detected, unexpected");
1550     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1551     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1552 
1553     // If the target address comes before this entry, indicate distance to next
1554     // region.
1555     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1556       range_info.GetRange().SetRangeBase(load_addr);
1557       range_info.GetRange().SetByteSize(
1558           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1559       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1560       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1561       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1562       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1563 
1564       return error;
1565     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1566       // The target address is within the memory region we're processing here.
1567       range_info = proc_entry_info;
1568       return error;
1569     }
1570 
1571     // The target memory address comes somewhere after the region we just
1572     // parsed.
1573   }
1574 
1575   // If we made it here, we didn't find an entry that contained the given
1576   // address. Return the
1577   // load_addr as start and the amount of bytes betwwen load address and the end
1578   // of the memory as
1579   // size.
1580   range_info.GetRange().SetRangeBase(load_addr);
1581   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1582   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1583   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1584   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1585   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1586   return error;
1587 }
1588 
1589 Error NativeProcessLinux::PopulateMemoryRegionCache() {
1590   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1591 
1592   // If our cache is empty, pull the latest.  There should always be at least
1593   // one memory region if memory region handling is supported.
1594   if (!m_mem_region_cache.empty()) {
1595     LLDB_LOG(log, "reusing {0} cached memory region entries",
1596              m_mem_region_cache.size());
1597     return Error();
1598   }
1599 
1600   Error error = ProcFileReader::ProcessLineByLine(
1601       GetID(), "maps", [&](const std::string &line) -> bool {
1602         MemoryRegionInfo info;
1603         const Error parse_error =
1604             ParseMemoryRegionInfoFromProcMapsLine(line, info);
1605         if (parse_error.Success()) {
1606           m_mem_region_cache.emplace_back(
1607               info, FileSpec(info.GetName().GetCString(), true));
1608           return true;
1609         } else {
1610           LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", line,
1611                    parse_error);
1612           return false;
1613         }
1614       });
1615 
1616   // If we had an error, we'll mark unsupported.
1617   if (error.Fail()) {
1618     m_supports_mem_region = LazyBool::eLazyBoolNo;
1619     return error;
1620   } else if (m_mem_region_cache.empty()) {
1621     // No entries after attempting to read them.  This shouldn't happen if
1622     // /proc/{pid}/maps is supported. Assume we don't support map entries
1623     // via procfs.
1624     LLDB_LOG(log,
1625              "failed to find any procfs maps entries, assuming no support "
1626              "for memory region metadata retrieval");
1627     m_supports_mem_region = LazyBool::eLazyBoolNo;
1628     error.SetErrorString("not supported");
1629     return error;
1630   }
1631 
1632   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1633            m_mem_region_cache.size(), GetID());
1634 
1635   // We support memory retrieval, remember that.
1636   m_supports_mem_region = LazyBool::eLazyBoolYes;
1637   return Error();
1638 }
1639 
1640 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1641   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1642   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1643   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1644            m_mem_region_cache.size());
1645   m_mem_region_cache.clear();
1646 }
1647 
1648 Error NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1649                                          lldb::addr_t &addr) {
1650 // FIXME implementing this requires the equivalent of
1651 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1652 // functional ThreadPlans working with Native*Protocol.
1653 #if 1
1654   return Error("not implemented yet");
1655 #else
1656   addr = LLDB_INVALID_ADDRESS;
1657 
1658   unsigned prot = 0;
1659   if (permissions & lldb::ePermissionsReadable)
1660     prot |= eMmapProtRead;
1661   if (permissions & lldb::ePermissionsWritable)
1662     prot |= eMmapProtWrite;
1663   if (permissions & lldb::ePermissionsExecutable)
1664     prot |= eMmapProtExec;
1665 
1666   // TODO implement this directly in NativeProcessLinux
1667   // (and lift to NativeProcessPOSIX if/when that class is
1668   // refactored out).
1669   if (InferiorCallMmap(this, addr, 0, size, prot,
1670                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1671     m_addr_to_mmap_size[addr] = size;
1672     return Error();
1673   } else {
1674     addr = LLDB_INVALID_ADDRESS;
1675     return Error("unable to allocate %" PRIu64
1676                  " bytes of memory with permissions %s",
1677                  size, GetPermissionsAsCString(permissions));
1678   }
1679 #endif
1680 }
1681 
1682 Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1683   // FIXME see comments in AllocateMemory - required lower-level
1684   // bits not in place yet (ThreadPlans)
1685   return Error("not implemented");
1686 }
1687 
1688 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1689   // punt on this for now
1690   return LLDB_INVALID_ADDRESS;
1691 }
1692 
1693 size_t NativeProcessLinux::UpdateThreads() {
1694   // The NativeProcessLinux monitoring threads are always up to date
1695   // with respect to thread state and they keep the thread list
1696   // populated properly. All this method needs to do is return the
1697   // thread count.
1698   return m_threads.size();
1699 }
1700 
1701 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1702   arch = m_arch;
1703   return true;
1704 }
1705 
1706 Error NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1707     uint32_t &actual_opcode_size) {
1708   // FIXME put this behind a breakpoint protocol class that can be
1709   // set per architecture.  Need ARM, MIPS support here.
1710   static const uint8_t g_i386_opcode[] = {0xCC};
1711   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1712 
1713   switch (m_arch.GetMachine()) {
1714   case llvm::Triple::x86:
1715   case llvm::Triple::x86_64:
1716     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1717     return Error();
1718 
1719   case llvm::Triple::systemz:
1720     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1721     return Error();
1722 
1723   case llvm::Triple::arm:
1724   case llvm::Triple::aarch64:
1725   case llvm::Triple::mips64:
1726   case llvm::Triple::mips64el:
1727   case llvm::Triple::mips:
1728   case llvm::Triple::mipsel:
1729     // On these architectures the PC don't get updated for breakpoint hits
1730     actual_opcode_size = 0;
1731     return Error();
1732 
1733   default:
1734     assert(false && "CPU type not supported!");
1735     return Error("CPU type not supported");
1736   }
1737 }
1738 
1739 Error NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1740                                         bool hardware) {
1741   if (hardware)
1742     return SetHardwareBreakpoint(addr, size);
1743   else
1744     return SetSoftwareBreakpoint(addr, size);
1745 }
1746 
1747 Error NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1748   if (hardware)
1749     return RemoveHardwareBreakpoint(addr);
1750   else
1751     return NativeProcessProtocol::RemoveBreakpoint(addr);
1752 }
1753 
1754 Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1755     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1756     const uint8_t *&trap_opcode_bytes) {
1757   // FIXME put this behind a breakpoint protocol class that can be set per
1758   // architecture.  Need MIPS support here.
1759   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1760   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1761   // linux kernel does otherwise.
1762   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1763   static const uint8_t g_i386_opcode[] = {0xCC};
1764   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1765   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1766   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1767   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1768 
1769   switch (m_arch.GetMachine()) {
1770   case llvm::Triple::aarch64:
1771     trap_opcode_bytes = g_aarch64_opcode;
1772     actual_opcode_size = sizeof(g_aarch64_opcode);
1773     return Error();
1774 
1775   case llvm::Triple::arm:
1776     switch (trap_opcode_size_hint) {
1777     case 2:
1778       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1779       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1780       return Error();
1781     case 4:
1782       trap_opcode_bytes = g_arm_breakpoint_opcode;
1783       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1784       return Error();
1785     default:
1786       assert(false && "Unrecognised trap opcode size hint!");
1787       return Error("Unrecognised trap opcode size hint!");
1788     }
1789 
1790   case llvm::Triple::x86:
1791   case llvm::Triple::x86_64:
1792     trap_opcode_bytes = g_i386_opcode;
1793     actual_opcode_size = sizeof(g_i386_opcode);
1794     return Error();
1795 
1796   case llvm::Triple::mips:
1797   case llvm::Triple::mips64:
1798     trap_opcode_bytes = g_mips64_opcode;
1799     actual_opcode_size = sizeof(g_mips64_opcode);
1800     return Error();
1801 
1802   case llvm::Triple::mipsel:
1803   case llvm::Triple::mips64el:
1804     trap_opcode_bytes = g_mips64el_opcode;
1805     actual_opcode_size = sizeof(g_mips64el_opcode);
1806     return Error();
1807 
1808   case llvm::Triple::systemz:
1809     trap_opcode_bytes = g_s390x_opcode;
1810     actual_opcode_size = sizeof(g_s390x_opcode);
1811     return Error();
1812 
1813   default:
1814     assert(false && "CPU type not supported!");
1815     return Error("CPU type not supported");
1816   }
1817 }
1818 
1819 #if 0
1820 ProcessMessage::CrashReason
1821 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1822 {
1823     ProcessMessage::CrashReason reason;
1824     assert(info->si_signo == SIGSEGV);
1825 
1826     reason = ProcessMessage::eInvalidCrashReason;
1827 
1828     switch (info->si_code)
1829     {
1830     default:
1831         assert(false && "unexpected si_code for SIGSEGV");
1832         break;
1833     case SI_KERNEL:
1834         // Linux will occasionally send spurious SI_KERNEL codes.
1835         // (this is poorly documented in sigaction)
1836         // One way to get this is via unaligned SIMD loads.
1837         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1838         break;
1839     case SEGV_MAPERR:
1840         reason = ProcessMessage::eInvalidAddress;
1841         break;
1842     case SEGV_ACCERR:
1843         reason = ProcessMessage::ePrivilegedAddress;
1844         break;
1845     }
1846 
1847     return reason;
1848 }
1849 #endif
1850 
1851 #if 0
1852 ProcessMessage::CrashReason
1853 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1854 {
1855     ProcessMessage::CrashReason reason;
1856     assert(info->si_signo == SIGILL);
1857 
1858     reason = ProcessMessage::eInvalidCrashReason;
1859 
1860     switch (info->si_code)
1861     {
1862     default:
1863         assert(false && "unexpected si_code for SIGILL");
1864         break;
1865     case ILL_ILLOPC:
1866         reason = ProcessMessage::eIllegalOpcode;
1867         break;
1868     case ILL_ILLOPN:
1869         reason = ProcessMessage::eIllegalOperand;
1870         break;
1871     case ILL_ILLADR:
1872         reason = ProcessMessage::eIllegalAddressingMode;
1873         break;
1874     case ILL_ILLTRP:
1875         reason = ProcessMessage::eIllegalTrap;
1876         break;
1877     case ILL_PRVOPC:
1878         reason = ProcessMessage::ePrivilegedOpcode;
1879         break;
1880     case ILL_PRVREG:
1881         reason = ProcessMessage::ePrivilegedRegister;
1882         break;
1883     case ILL_COPROC:
1884         reason = ProcessMessage::eCoprocessorError;
1885         break;
1886     case ILL_BADSTK:
1887         reason = ProcessMessage::eInternalStackError;
1888         break;
1889     }
1890 
1891     return reason;
1892 }
1893 #endif
1894 
1895 #if 0
1896 ProcessMessage::CrashReason
1897 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1898 {
1899     ProcessMessage::CrashReason reason;
1900     assert(info->si_signo == SIGFPE);
1901 
1902     reason = ProcessMessage::eInvalidCrashReason;
1903 
1904     switch (info->si_code)
1905     {
1906     default:
1907         assert(false && "unexpected si_code for SIGFPE");
1908         break;
1909     case FPE_INTDIV:
1910         reason = ProcessMessage::eIntegerDivideByZero;
1911         break;
1912     case FPE_INTOVF:
1913         reason = ProcessMessage::eIntegerOverflow;
1914         break;
1915     case FPE_FLTDIV:
1916         reason = ProcessMessage::eFloatDivideByZero;
1917         break;
1918     case FPE_FLTOVF:
1919         reason = ProcessMessage::eFloatOverflow;
1920         break;
1921     case FPE_FLTUND:
1922         reason = ProcessMessage::eFloatUnderflow;
1923         break;
1924     case FPE_FLTRES:
1925         reason = ProcessMessage::eFloatInexactResult;
1926         break;
1927     case FPE_FLTINV:
1928         reason = ProcessMessage::eFloatInvalidOperation;
1929         break;
1930     case FPE_FLTSUB:
1931         reason = ProcessMessage::eFloatSubscriptRange;
1932         break;
1933     }
1934 
1935     return reason;
1936 }
1937 #endif
1938 
1939 #if 0
1940 ProcessMessage::CrashReason
1941 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1942 {
1943     ProcessMessage::CrashReason reason;
1944     assert(info->si_signo == SIGBUS);
1945 
1946     reason = ProcessMessage::eInvalidCrashReason;
1947 
1948     switch (info->si_code)
1949     {
1950     default:
1951         assert(false && "unexpected si_code for SIGBUS");
1952         break;
1953     case BUS_ADRALN:
1954         reason = ProcessMessage::eIllegalAlignment;
1955         break;
1956     case BUS_ADRERR:
1957         reason = ProcessMessage::eIllegalAddress;
1958         break;
1959     case BUS_OBJERR:
1960         reason = ProcessMessage::eHardwareError;
1961         break;
1962     }
1963 
1964     return reason;
1965 }
1966 #endif
1967 
1968 Error NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1969                                      size_t &bytes_read) {
1970   if (ProcessVmReadvSupported()) {
1971     // The process_vm_readv path is about 50 times faster than ptrace api. We
1972     // want to use
1973     // this syscall if it is supported.
1974 
1975     const ::pid_t pid = GetID();
1976 
1977     struct iovec local_iov, remote_iov;
1978     local_iov.iov_base = buf;
1979     local_iov.iov_len = size;
1980     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1981     remote_iov.iov_len = size;
1982 
1983     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1984     const bool success = bytes_read == size;
1985 
1986     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1987     LLDB_LOG(log,
1988              "using process_vm_readv to read {0} bytes from inferior "
1989              "address {1:x}: {2}",
1990              size, addr, success ? "Success" : strerror(errno));
1991 
1992     if (success)
1993       return Error();
1994     // else the call failed for some reason, let's retry the read using ptrace
1995     // api.
1996   }
1997 
1998   unsigned char *dst = static_cast<unsigned char *>(buf);
1999   size_t remainder;
2000   long data;
2001 
2002   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
2003   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
2004 
2005   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
2006     Error error = NativeProcessLinux::PtraceWrapper(
2007         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
2008     if (error.Fail())
2009       return error;
2010 
2011     remainder = size - bytes_read;
2012     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2013 
2014     // Copy the data into our buffer
2015     memcpy(dst, &data, remainder);
2016 
2017     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
2018     addr += k_ptrace_word_size;
2019     dst += k_ptrace_word_size;
2020   }
2021   return Error();
2022 }
2023 
2024 Error NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
2025                                                 size_t size,
2026                                                 size_t &bytes_read) {
2027   Error error = ReadMemory(addr, buf, size, bytes_read);
2028   if (error.Fail())
2029     return error;
2030   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2031 }
2032 
2033 Error NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
2034                                       size_t size, size_t &bytes_written) {
2035   const unsigned char *src = static_cast<const unsigned char *>(buf);
2036   size_t remainder;
2037   Error error;
2038 
2039   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
2040   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
2041 
2042   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
2043     remainder = size - bytes_written;
2044     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2045 
2046     if (remainder == k_ptrace_word_size) {
2047       unsigned long data = 0;
2048       memcpy(&data, src, k_ptrace_word_size);
2049 
2050       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
2051       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
2052                                                 (void *)addr, (void *)data);
2053       if (error.Fail())
2054         return error;
2055     } else {
2056       unsigned char buff[8];
2057       size_t bytes_read;
2058       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2059       if (error.Fail())
2060         return error;
2061 
2062       memcpy(buff, src, remainder);
2063 
2064       size_t bytes_written_rec;
2065       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2066       if (error.Fail())
2067         return error;
2068 
2069       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
2070                *(unsigned long *)buff);
2071     }
2072 
2073     addr += k_ptrace_word_size;
2074     src += k_ptrace_word_size;
2075   }
2076   return error;
2077 }
2078 
2079 Error NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
2080   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2081 }
2082 
2083 Error NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
2084                                           unsigned long *message) {
2085   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2086 }
2087 
2088 Error NativeProcessLinux::Detach(lldb::tid_t tid) {
2089   if (tid == LLDB_INVALID_THREAD_ID)
2090     return Error();
2091 
2092   return PtraceWrapper(PTRACE_DETACH, tid);
2093 }
2094 
2095 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
2096   for (auto thread_sp : m_threads) {
2097     assert(thread_sp && "thread list should not contain NULL threads");
2098     if (thread_sp->GetID() == thread_id) {
2099       // We have this thread.
2100       return true;
2101     }
2102   }
2103 
2104   // We don't have this thread.
2105   return false;
2106 }
2107 
2108 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
2109   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2110   LLDB_LOG(log, "tid: {0})", thread_id);
2111 
2112   bool found = false;
2113   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
2114     if (*it && ((*it)->GetID() == thread_id)) {
2115       m_threads.erase(it);
2116       found = true;
2117       break;
2118     }
2119   }
2120 
2121   SignalIfAllThreadsStopped();
2122   return found;
2123 }
2124 
2125 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
2126   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
2127   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2128 
2129   assert(!HasThreadNoLock(thread_id) &&
2130          "attempted to add a thread by id that already exists");
2131 
2132   // If this is the first thread, save it as the current thread
2133   if (m_threads.empty())
2134     SetCurrentThreadID(thread_id);
2135 
2136   auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2137   m_threads.push_back(thread_sp);
2138   return thread_sp;
2139 }
2140 
2141 Error NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2142   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2143 
2144   Error error;
2145 
2146   // Find out the size of a breakpoint (might depend on where we are in the
2147   // code).
2148   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2149   if (!context_sp) {
2150     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2151     LLDB_LOG(log, "failed: {0}", error);
2152     return error;
2153   }
2154 
2155   uint32_t breakpoint_size = 0;
2156   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2157   if (error.Fail()) {
2158     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2159     return error;
2160   } else
2161     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2162 
2163   // First try probing for a breakpoint at a software breakpoint location: PC -
2164   // breakpoint size.
2165   const lldb::addr_t initial_pc_addr =
2166       context_sp->GetPCfromBreakpointLocation();
2167   lldb::addr_t breakpoint_addr = initial_pc_addr;
2168   if (breakpoint_size > 0) {
2169     // Do not allow breakpoint probe to wrap around.
2170     if (breakpoint_addr >= breakpoint_size)
2171       breakpoint_addr -= breakpoint_size;
2172   }
2173 
2174   // Check if we stopped because of a breakpoint.
2175   NativeBreakpointSP breakpoint_sp;
2176   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2177   if (!error.Success() || !breakpoint_sp) {
2178     // We didn't find one at a software probe location.  Nothing to do.
2179     LLDB_LOG(log,
2180              "pid {0} no lldb breakpoint found at current pc with "
2181              "adjustment: {1}",
2182              GetID(), breakpoint_addr);
2183     return Error();
2184   }
2185 
2186   // If the breakpoint is not a software breakpoint, nothing to do.
2187   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2188     LLDB_LOG(
2189         log,
2190         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2191         GetID(), breakpoint_addr);
2192     return Error();
2193   }
2194 
2195   //
2196   // We have a software breakpoint and need to adjust the PC.
2197   //
2198 
2199   // Sanity check.
2200   if (breakpoint_size == 0) {
2201     // Nothing to do!  How did we get here?
2202     LLDB_LOG(log,
2203              "pid {0} breakpoint found at {1:x}, it is software, but the "
2204              "size is zero, nothing to do (unexpected)",
2205              GetID(), breakpoint_addr);
2206     return Error();
2207   }
2208 
2209   // Change the program counter.
2210   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2211            thread.GetID(), initial_pc_addr, breakpoint_addr);
2212 
2213   error = context_sp->SetPC(breakpoint_addr);
2214   if (error.Fail()) {
2215     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2216              thread.GetID(), error);
2217     return error;
2218   }
2219 
2220   return error;
2221 }
2222 
2223 Error NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2224                                                   FileSpec &file_spec) {
2225   Error error = PopulateMemoryRegionCache();
2226   if (error.Fail())
2227     return error;
2228 
2229   FileSpec module_file_spec(module_path, true);
2230 
2231   file_spec.Clear();
2232   for (const auto &it : m_mem_region_cache) {
2233     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2234       file_spec = it.second;
2235       return Error();
2236     }
2237   }
2238   return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2239                module_file_spec.GetFilename().AsCString(), GetID());
2240 }
2241 
2242 Error NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2243                                              lldb::addr_t &load_addr) {
2244   load_addr = LLDB_INVALID_ADDRESS;
2245   Error error = PopulateMemoryRegionCache();
2246   if (error.Fail())
2247     return error;
2248 
2249   FileSpec file(file_name, false);
2250   for (const auto &it : m_mem_region_cache) {
2251     if (it.second == file) {
2252       load_addr = it.first.GetRange().GetRangeBase();
2253       return Error();
2254     }
2255   }
2256   return Error("No load address found for specified file.");
2257 }
2258 
2259 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2260   return std::static_pointer_cast<NativeThreadLinux>(
2261       NativeProcessProtocol::GetThreadByID(tid));
2262 }
2263 
2264 Error NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2265                                        lldb::StateType state, int signo) {
2266   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2267   LLDB_LOG(log, "tid: {0}", thread.GetID());
2268 
2269   // Before we do the resume below, first check if we have a pending
2270   // stop notification that is currently waiting for
2271   // all threads to stop.  This is potentially a buggy situation since
2272   // we're ostensibly waiting for threads to stop before we send out the
2273   // pending notification, and here we are resuming one before we send
2274   // out the pending stop notification.
2275   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2276     LLDB_LOG(log,
2277              "about to resume tid {0} per explicit request but we have a "
2278              "pending stop notification (tid {1}) that is actively "
2279              "waiting for this thread to stop. Valid sequence of events?",
2280              thread.GetID(), m_pending_notification_tid);
2281   }
2282 
2283   // Request a resume.  We expect this to be synchronous and the system
2284   // to reflect it is running after this completes.
2285   switch (state) {
2286   case eStateRunning: {
2287     const auto resume_result = thread.Resume(signo);
2288     if (resume_result.Success())
2289       SetState(eStateRunning, true);
2290     return resume_result;
2291   }
2292   case eStateStepping: {
2293     const auto step_result = thread.SingleStep(signo);
2294     if (step_result.Success())
2295       SetState(eStateRunning, true);
2296     return step_result;
2297   }
2298   default:
2299     LLDB_LOG(log, "Unhandled state {0}.", state);
2300     llvm_unreachable("Unhandled state for resume");
2301   }
2302 }
2303 
2304 //===----------------------------------------------------------------------===//
2305 
2306 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2307   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2308   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2309            triggering_tid);
2310 
2311   m_pending_notification_tid = triggering_tid;
2312 
2313   // Request a stop for all the thread stops that need to be stopped
2314   // and are not already known to be stopped.
2315   for (const auto &thread_sp : m_threads) {
2316     if (StateIsRunningState(thread_sp->GetState()))
2317       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2318   }
2319 
2320   SignalIfAllThreadsStopped();
2321   LLDB_LOG(log, "event processing done");
2322 }
2323 
2324 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2325   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2326     return; // No pending notification. Nothing to do.
2327 
2328   for (const auto &thread_sp : m_threads) {
2329     if (StateIsRunningState(thread_sp->GetState()))
2330       return; // Some threads are still running. Don't signal yet.
2331   }
2332 
2333   // We have a pending notification and all threads have stopped.
2334   Log *log(
2335       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2336 
2337   // Clear any temporary breakpoints we used to implement software single
2338   // stepping.
2339   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2340     Error error = RemoveBreakpoint(thread_info.second);
2341     if (error.Fail())
2342       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2343                thread_info.first, error);
2344   }
2345   m_threads_stepping_with_breakpoint.clear();
2346 
2347   // Notify the delegate about the stop
2348   SetCurrentThreadID(m_pending_notification_tid);
2349   SetState(StateType::eStateStopped, true);
2350   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2351 }
2352 
2353 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2354   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2355   LLDB_LOG(log, "tid: {0}", thread.GetID());
2356 
2357   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2358       StateIsRunningState(thread.GetState())) {
2359     // We will need to wait for this new thread to stop as well before firing
2360     // the
2361     // notification.
2362     thread.RequestStop();
2363   }
2364 }
2365 
2366 void NativeProcessLinux::SigchldHandler() {
2367   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2368   // Process all pending waitpid notifications.
2369   while (true) {
2370     int status = -1;
2371     ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2372 
2373     if (wait_pid == 0)
2374       break; // We are done.
2375 
2376     if (wait_pid == -1) {
2377       if (errno == EINTR)
2378         continue;
2379 
2380       Error error(errno, eErrorTypePOSIX);
2381       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2382       break;
2383     }
2384 
2385     bool exited = false;
2386     int signal = 0;
2387     int exit_status = 0;
2388     const char *status_cstr = nullptr;
2389     if (WIFSTOPPED(status)) {
2390       signal = WSTOPSIG(status);
2391       status_cstr = "STOPPED";
2392     } else if (WIFEXITED(status)) {
2393       exit_status = WEXITSTATUS(status);
2394       status_cstr = "EXITED";
2395       exited = true;
2396     } else if (WIFSIGNALED(status)) {
2397       signal = WTERMSIG(status);
2398       status_cstr = "SIGNALED";
2399       if (wait_pid == static_cast<::pid_t>(GetID())) {
2400         exited = true;
2401         exit_status = -1;
2402       }
2403     } else
2404       status_cstr = "(\?\?\?)";
2405 
2406     LLDB_LOG(log,
2407              "waitpid (-1, &status, _) => pid = {0}, status = {1:x} "
2408              "({2}), signal = {3}, exit_state = {4}",
2409              wait_pid, status, status_cstr, signal, exit_status);
2410 
2411     MonitorCallback(wait_pid, exited, signal, exit_status);
2412   }
2413 }
2414 
2415 // Wrapper for ptrace to catch errors and log calls.
2416 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2417 // for PTRACE_PEEK*)
2418 Error NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2419                                         void *data, size_t data_size,
2420                                         long *result) {
2421   Error error;
2422   long int ret;
2423 
2424   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2425 
2426   PtraceDisplayBytes(req, data, data_size);
2427 
2428   errno = 0;
2429   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2430     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2431                  *(unsigned int *)addr, data);
2432   else
2433     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2434                  addr, data);
2435 
2436   if (ret == -1)
2437     error.SetErrorToErrno();
2438 
2439   if (result)
2440     *result = ret;
2441 
2442   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2443            data_size, ret);
2444 
2445   PtraceDisplayBytes(req, data, data_size);
2446 
2447   if (error.Fail())
2448     LLDB_LOG(log, "ptrace() failed: {0}", error);
2449 
2450   return error;
2451 }
2452