1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/Error.h" 44 #include "lldb/Utility/LLDBAssert.h" 45 #include "lldb/Utility/StringExtractor.h" 46 47 #include "NativeThreadLinux.h" 48 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 49 #include "ProcFileReader.h" 50 #include "Procfs.h" 51 52 #include "llvm/Support/Threading.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 strerror(errno)); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Error EnsureFDFlags(int fd, int flags) { 197 Error error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 Error NativeProcessProtocol::Launch( 218 ProcessLaunchInfo &launch_info, 219 NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, 220 NativeProcessProtocolSP &native_process_sp) { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 Error error; 224 225 // Verify the working directory is valid if one was specified. 226 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 227 if (working_dir && 228 (!working_dir.ResolvePath() || 229 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) { 230 error.SetErrorStringWithFormat("No such file or directory: %s", 231 working_dir.GetCString()); 232 return error; 233 } 234 235 // Create the NativeProcessLinux in launch mode. 236 native_process_sp.reset(new NativeProcessLinux()); 237 238 if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { 239 native_process_sp.reset(); 240 error.SetErrorStringWithFormat("failed to register the native delegate"); 241 return error; 242 } 243 244 error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp) 245 ->LaunchInferior(mainloop, launch_info); 246 247 if (error.Fail()) { 248 native_process_sp.reset(); 249 LLDB_LOG(log, "failed to launch process: {0}", error); 250 return error; 251 } 252 253 launch_info.SetProcessID(native_process_sp->GetID()); 254 255 return error; 256 } 257 258 Error NativeProcessProtocol::Attach( 259 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 260 MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { 261 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 262 LLDB_LOG(log, "pid = {0:x}", pid); 263 264 // Retrieve the architecture for the running process. 265 ArchSpec process_arch; 266 Error error = ResolveProcessArchitecture(pid, process_arch); 267 if (!error.Success()) 268 return error; 269 270 std::shared_ptr<NativeProcessLinux> native_process_linux_sp( 271 new NativeProcessLinux()); 272 273 if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { 274 error.SetErrorStringWithFormat("failed to register the native delegate"); 275 return error; 276 } 277 278 native_process_linux_sp->AttachToInferior(mainloop, pid, error); 279 if (!error.Success()) 280 return error; 281 282 native_process_sp = native_process_linux_sp; 283 return error; 284 } 285 286 // ----------------------------------------------------------------------------- 287 // Public Instance Methods 288 // ----------------------------------------------------------------------------- 289 290 NativeProcessLinux::NativeProcessLinux() 291 : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), 292 m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), 293 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {} 294 295 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, 296 Error &error) { 297 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 298 LLDB_LOG(log, "pid = {0:x}", pid); 299 300 m_sigchld_handle = mainloop.RegisterSignal( 301 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 302 if (!m_sigchld_handle) 303 return; 304 305 error = ResolveProcessArchitecture(pid, m_arch); 306 if (!error.Success()) 307 return; 308 309 // Set the architecture to the exe architecture. 310 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 311 m_arch.GetArchitectureName()); 312 m_pid = pid; 313 SetState(eStateAttaching); 314 315 Attach(pid, error); 316 } 317 318 Error NativeProcessLinux::LaunchInferior(MainLoop &mainloop, 319 ProcessLaunchInfo &launch_info) { 320 Error error; 321 m_sigchld_handle = mainloop.RegisterSignal( 322 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 323 if (!m_sigchld_handle) 324 return error; 325 326 SetState(eStateLaunching); 327 328 MaybeLogLaunchInfo(launch_info); 329 330 ::pid_t pid = 331 ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId(); 332 if (error.Fail()) 333 return error; 334 335 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 336 337 // Wait for the child process to trap on its call to execve. 338 ::pid_t wpid; 339 int status; 340 if ((wpid = waitpid(pid, &status, 0)) < 0) { 341 error.SetErrorToErrno(); 342 LLDB_LOG(log, "waitpid for inferior failed with %s", error); 343 344 // Mark the inferior as invalid. 345 // FIXME this could really use a new state - eStateLaunchFailure. For now, 346 // using eStateInvalid. 347 SetState(StateType::eStateInvalid); 348 349 return error; 350 } 351 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && 352 "Could not sync with inferior process."); 353 354 LLDB_LOG(log, "inferior started, now in stopped state"); 355 error = SetDefaultPtraceOpts(pid); 356 if (error.Fail()) { 357 LLDB_LOG(log, "failed to set default ptrace options: {0}", error); 358 359 // Mark the inferior as invalid. 360 // FIXME this could really use a new state - eStateLaunchFailure. For now, 361 // using eStateInvalid. 362 SetState(StateType::eStateInvalid); 363 364 return error; 365 } 366 367 // Release the master terminal descriptor and pass it off to the 368 // NativeProcessLinux instance. Similarly stash the inferior pid. 369 m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); 370 m_pid = pid; 371 launch_info.SetProcessID(pid); 372 373 if (m_terminal_fd != -1) { 374 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 375 if (error.Fail()) { 376 LLDB_LOG(log, 377 "inferior EnsureFDFlags failed for ensuring terminal " 378 "O_NONBLOCK setting: {0}", 379 error); 380 381 // Mark the inferior as invalid. 382 // FIXME this could really use a new state - eStateLaunchFailure. For 383 // now, using eStateInvalid. 384 SetState(StateType::eStateInvalid); 385 386 return error; 387 } 388 } 389 390 LLDB_LOG(log, "adding pid = {0}", pid); 391 ResolveProcessArchitecture(m_pid, m_arch); 392 NativeThreadLinuxSP thread_sp = AddThread(pid); 393 assert(thread_sp && "AddThread() returned a nullptr thread"); 394 thread_sp->SetStoppedBySignal(SIGSTOP); 395 ThreadWasCreated(*thread_sp); 396 397 // Let our process instance know the thread has stopped. 398 SetCurrentThreadID(thread_sp->GetID()); 399 SetState(StateType::eStateStopped); 400 401 if (error.Fail()) 402 LLDB_LOG(log, "inferior launching failed {0}", error); 403 return error; 404 } 405 406 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) { 407 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 408 409 // Use a map to keep track of the threads which we have attached/need to 410 // attach. 411 Host::TidMap tids_to_attach; 412 if (pid <= 1) { 413 error.SetErrorToGenericError(); 414 error.SetErrorString("Attaching to process 1 is not allowed."); 415 return -1; 416 } 417 418 while (Host::FindProcessThreads(pid, tids_to_attach)) { 419 for (Host::TidMap::iterator it = tids_to_attach.begin(); 420 it != tids_to_attach.end();) { 421 if (it->second == false) { 422 lldb::tid_t tid = it->first; 423 424 // Attach to the requested process. 425 // An attach will cause the thread to stop with a SIGSTOP. 426 error = PtraceWrapper(PTRACE_ATTACH, tid); 427 if (error.Fail()) { 428 // No such thread. The thread may have exited. 429 // More error handling may be needed. 430 if (error.GetError() == ESRCH) { 431 it = tids_to_attach.erase(it); 432 continue; 433 } else 434 return -1; 435 } 436 437 int status; 438 // Need to use __WALL otherwise we receive an error with errno=ECHLD 439 // At this point we should have a thread stopped if waitpid succeeds. 440 if ((status = waitpid(tid, NULL, __WALL)) < 0) { 441 // No such thread. The thread may have exited. 442 // More error handling may be needed. 443 if (errno == ESRCH) { 444 it = tids_to_attach.erase(it); 445 continue; 446 } else { 447 error.SetErrorToErrno(); 448 return -1; 449 } 450 } 451 452 error = SetDefaultPtraceOpts(tid); 453 if (error.Fail()) 454 return -1; 455 456 LLDB_LOG(log, "adding tid = {0}", tid); 457 it->second = true; 458 459 // Create the thread, mark it as stopped. 460 NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid))); 461 assert(thread_sp && "AddThread() returned a nullptr"); 462 463 // This will notify this is a new thread and tell the system it is 464 // stopped. 465 thread_sp->SetStoppedBySignal(SIGSTOP); 466 ThreadWasCreated(*thread_sp); 467 SetCurrentThreadID(thread_sp->GetID()); 468 } 469 470 // move the loop forward 471 ++it; 472 } 473 } 474 475 if (tids_to_attach.size() > 0) { 476 m_pid = pid; 477 // Let our process instance know the thread has stopped. 478 SetState(StateType::eStateStopped); 479 } else { 480 error.SetErrorToGenericError(); 481 error.SetErrorString("No such process."); 482 return -1; 483 } 484 485 return pid; 486 } 487 488 Error NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 489 long ptrace_opts = 0; 490 491 // Have the child raise an event on exit. This is used to keep the child in 492 // limbo until it is destroyed. 493 ptrace_opts |= PTRACE_O_TRACEEXIT; 494 495 // Have the tracer trace threads which spawn in the inferior process. 496 // TODO: if we want to support tracing the inferiors' child, add the 497 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 498 ptrace_opts |= PTRACE_O_TRACECLONE; 499 500 // Have the tracer notify us before execve returns 501 // (needed to disable legacy SIGTRAP generation) 502 ptrace_opts |= PTRACE_O_TRACEEXEC; 503 504 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 505 } 506 507 static ExitType convert_pid_status_to_exit_type(int status) { 508 if (WIFEXITED(status)) 509 return ExitType::eExitTypeExit; 510 else if (WIFSIGNALED(status)) 511 return ExitType::eExitTypeSignal; 512 else if (WIFSTOPPED(status)) 513 return ExitType::eExitTypeStop; 514 else { 515 // We don't know what this is. 516 return ExitType::eExitTypeInvalid; 517 } 518 } 519 520 static int convert_pid_status_to_return_code(int status) { 521 if (WIFEXITED(status)) 522 return WEXITSTATUS(status); 523 else if (WIFSIGNALED(status)) 524 return WTERMSIG(status); 525 else if (WIFSTOPPED(status)) 526 return WSTOPSIG(status); 527 else { 528 // We don't know what this is. 529 return ExitType::eExitTypeInvalid; 530 } 531 } 532 533 // Handles all waitpid events from the inferior process. 534 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 535 int signal, int status) { 536 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 537 538 // Certain activities differ based on whether the pid is the tid of the main 539 // thread. 540 const bool is_main_thread = (pid == GetID()); 541 542 // Handle when the thread exits. 543 if (exited) { 544 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 545 pid, is_main_thread ? "is" : "is not"); 546 547 // This is a thread that exited. Ensure we're not tracking it anymore. 548 const bool thread_found = StopTrackingThread(pid); 549 550 if (is_main_thread) { 551 // We only set the exit status and notify the delegate if we haven't 552 // already set the process 553 // state to an exited state. We normally should have received a SIGTRAP | 554 // (PTRACE_EVENT_EXIT << 8) 555 // for the main thread. 556 const bool already_notified = (GetState() == StateType::eStateExited) || 557 (GetState() == StateType::eStateCrashed); 558 if (!already_notified) { 559 LLDB_LOG( 560 log, 561 "tid = {0} handling main thread exit ({1}), expected exit state " 562 "already set but state was {2} instead, setting exit state now", 563 pid, 564 thread_found ? "stopped tracking thread metadata" 565 : "thread metadata not found", 566 GetState()); 567 // The main thread exited. We're done monitoring. Report to delegate. 568 SetExitStatus(convert_pid_status_to_exit_type(status), 569 convert_pid_status_to_return_code(status), nullptr, true); 570 571 // Notify delegate that our process has exited. 572 SetState(StateType::eStateExited, true); 573 } else 574 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 575 thread_found ? "stopped tracking thread metadata" 576 : "thread metadata not found"); 577 } else { 578 // Do we want to report to the delegate in this case? I think not. If 579 // this was an orderly thread exit, we would already have received the 580 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 581 // all-stop then. 582 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 583 thread_found ? "stopped tracking thread metadata" 584 : "thread metadata not found"); 585 } 586 return; 587 } 588 589 siginfo_t info; 590 const auto info_err = GetSignalInfo(pid, &info); 591 auto thread_sp = GetThreadByID(pid); 592 593 if (!thread_sp) { 594 // Normally, the only situation when we cannot find the thread is if we have 595 // just received a new thread notification. This is indicated by 596 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 597 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 598 599 if (info_err.Fail()) { 600 LLDB_LOG(log, 601 "(tid {0}) GetSignalInfo failed ({1}). " 602 "Ingoring this notification.", 603 pid, info_err); 604 return; 605 } 606 607 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 608 info.si_pid); 609 610 auto thread_sp = AddThread(pid); 611 // Resume the newly created thread. 612 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 613 ThreadWasCreated(*thread_sp); 614 return; 615 } 616 617 // Get details on the signal raised. 618 if (info_err.Success()) { 619 // We have retrieved the signal info. Dispatch appropriately. 620 if (info.si_signo == SIGTRAP) 621 MonitorSIGTRAP(info, *thread_sp); 622 else 623 MonitorSignal(info, *thread_sp, exited); 624 } else { 625 if (info_err.GetError() == EINVAL) { 626 // This is a group stop reception for this tid. 627 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 628 // into the tracee, triggering the group-stop mechanism. Normally 629 // receiving these would stop the process, pending a SIGCONT. Simulating 630 // this state in a debugger is hard and is generally not needed (one use 631 // case is debugging background task being managed by a shell). For 632 // general use, it is sufficient to stop the process in a signal-delivery 633 // stop which happens before the group stop. This done by MonitorSignal 634 // and works correctly for all signals. 635 LLDB_LOG(log, 636 "received a group stop for pid {0} tid {1}. Transparent " 637 "handling of group stops not supported, resuming the " 638 "thread.", 639 GetID(), pid); 640 ResumeThread(*thread_sp, thread_sp->GetState(), 641 LLDB_INVALID_SIGNAL_NUMBER); 642 } else { 643 // ptrace(GETSIGINFO) failed (but not due to group-stop). 644 645 // A return value of ESRCH means the thread/process is no longer on the 646 // system, so it was killed somehow outside of our control. Either way, 647 // we can't do anything with it anymore. 648 649 // Stop tracking the metadata for the thread since it's entirely off the 650 // system now. 651 const bool thread_found = StopTrackingThread(pid); 652 653 LLDB_LOG(log, 654 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 655 "status = {3}, main_thread = {4}, thread_found: {5}", 656 info_err, pid, signal, status, is_main_thread, thread_found); 657 658 if (is_main_thread) { 659 // Notify the delegate - our process is not available but appears to 660 // have been killed outside 661 // our control. Is eStateExited the right exit state in this case? 662 SetExitStatus(convert_pid_status_to_exit_type(status), 663 convert_pid_status_to_return_code(status), nullptr, true); 664 SetState(StateType::eStateExited, true); 665 } else { 666 // This thread was pulled out from underneath us. Anything to do here? 667 // Do we want to do an all stop? 668 LLDB_LOG(log, 669 "pid {0} tid {1} non-main thread exit occurred, didn't " 670 "tell delegate anything since thread disappeared out " 671 "from underneath us", 672 GetID(), pid); 673 } 674 } 675 } 676 } 677 678 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 679 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 680 681 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 682 683 if (new_thread_sp) { 684 // We are already tracking the thread - we got the event on the new thread 685 // (see 686 // MonitorSignal) before this one. We are done. 687 return; 688 } 689 690 // The thread is not tracked yet, let's wait for it to appear. 691 int status = -1; 692 ::pid_t wait_pid; 693 do { 694 LLDB_LOG(log, 695 "received thread creation event for tid {0}. tid not tracked " 696 "yet, waiting for thread to appear...", 697 tid); 698 wait_pid = waitpid(tid, &status, __WALL); 699 } while (wait_pid == -1 && errno == EINTR); 700 // Since we are waiting on a specific tid, this must be the creation event. 701 // But let's do some checks just in case. 702 if (wait_pid != tid) { 703 LLDB_LOG(log, 704 "waiting for tid {0} failed. Assuming the thread has " 705 "disappeared in the meantime", 706 tid); 707 // The only way I know of this could happen is if the whole process was 708 // SIGKILLed in the mean time. In any case, we can't do anything about that 709 // now. 710 return; 711 } 712 if (WIFEXITED(status)) { 713 LLDB_LOG(log, 714 "waiting for tid {0} returned an 'exited' event. Not " 715 "tracking the thread.", 716 tid); 717 // Also a very improbable event. 718 return; 719 } 720 721 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 722 new_thread_sp = AddThread(tid); 723 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 724 ThreadWasCreated(*new_thread_sp); 725 } 726 727 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 728 NativeThreadLinux &thread) { 729 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 730 const bool is_main_thread = (thread.GetID() == GetID()); 731 732 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 733 734 switch (info.si_code) { 735 // TODO: these two cases are required if we want to support tracing of the 736 // inferiors' children. We'd need this to debug a monitor. 737 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 738 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 739 740 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 741 // This is the notification on the parent thread which informs us of new 742 // thread 743 // creation. 744 // We don't want to do anything with the parent thread so we just resume it. 745 // In case we 746 // want to implement "break on thread creation" functionality, we would need 747 // to stop 748 // here. 749 750 unsigned long event_message = 0; 751 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 752 LLDB_LOG(log, 753 "pid {0} received thread creation event but " 754 "GetEventMessage failed so we don't know the new tid", 755 thread.GetID()); 756 } else 757 WaitForNewThread(event_message); 758 759 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 760 break; 761 } 762 763 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 764 NativeThreadLinuxSP main_thread_sp; 765 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 766 767 // Exec clears any pending notifications. 768 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 769 770 // Remove all but the main thread here. Linux fork creates a new process 771 // which only copies the main thread. 772 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 773 774 for (auto thread_sp : m_threads) { 775 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 776 if (is_main_thread) { 777 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 778 LLDB_LOG(log, "found main thread with tid {0}, keeping", 779 main_thread_sp->GetID()); 780 } else { 781 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 782 thread_sp->GetID()); 783 } 784 } 785 786 m_threads.clear(); 787 788 if (main_thread_sp) { 789 m_threads.push_back(main_thread_sp); 790 SetCurrentThreadID(main_thread_sp->GetID()); 791 main_thread_sp->SetStoppedByExec(); 792 } else { 793 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 794 LLDB_LOG(log, 795 "pid {0} no main thread found, discarded all threads, " 796 "we're in a no-thread state!", 797 GetID()); 798 } 799 800 // Tell coordinator about about the "new" (since exec) stopped main thread. 801 ThreadWasCreated(*main_thread_sp); 802 803 // Let our delegate know we have just exec'd. 804 NotifyDidExec(); 805 806 // If we have a main thread, indicate we are stopped. 807 assert(main_thread_sp && "exec called during ptraced process but no main " 808 "thread metadata tracked"); 809 810 // Let the process know we're stopped. 811 StopRunningThreads(main_thread_sp->GetID()); 812 813 break; 814 } 815 816 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 817 // The inferior process or one of its threads is about to exit. 818 // We don't want to do anything with the thread so we just resume it. In 819 // case we 820 // want to implement "break on thread exit" functionality, we would need to 821 // stop 822 // here. 823 824 unsigned long data = 0; 825 if (GetEventMessage(thread.GetID(), &data).Fail()) 826 data = -1; 827 828 LLDB_LOG(log, 829 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 830 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 831 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 832 is_main_thread); 833 834 if (is_main_thread) { 835 SetExitStatus(convert_pid_status_to_exit_type(data), 836 convert_pid_status_to_return_code(data), nullptr, true); 837 } 838 839 StateType state = thread.GetState(); 840 if (!StateIsRunningState(state)) { 841 // Due to a kernel bug, we may sometimes get this stop after the inferior 842 // gets a 843 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 844 // since normally, 845 // we should not be receiving any ptrace events while the inferior is 846 // stopped. This 847 // makes sure that the inferior is resumed and exits normally. 848 state = eStateRunning; 849 } 850 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 851 852 break; 853 } 854 855 case 0: 856 case TRAP_TRACE: // We receive this on single stepping. 857 case TRAP_HWBKPT: // We receive this on watchpoint hit 858 { 859 // If a watchpoint was hit, report it 860 uint32_t wp_index; 861 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex( 862 wp_index, (uintptr_t)info.si_addr); 863 if (error.Fail()) 864 LLDB_LOG(log, 865 "received error while checking for watchpoint hits, pid = " 866 "{0}, error = {1}", 867 thread.GetID(), error); 868 if (wp_index != LLDB_INVALID_INDEX32) { 869 MonitorWatchpoint(thread, wp_index); 870 break; 871 } 872 873 // If a breakpoint was hit, report it 874 uint32_t bp_index; 875 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 876 bp_index, (uintptr_t)info.si_addr); 877 if (error.Fail()) 878 LLDB_LOG(log, "received error while checking for hardware " 879 "breakpoint hits, pid = {0}, error = {1}", 880 thread.GetID(), error); 881 if (bp_index != LLDB_INVALID_INDEX32) { 882 MonitorBreakpoint(thread); 883 break; 884 } 885 886 // Otherwise, report step over 887 MonitorTrace(thread); 888 break; 889 } 890 891 case SI_KERNEL: 892 #if defined __mips__ 893 // For mips there is no special signal for watchpoint 894 // So we check for watchpoint in kernel trap 895 { 896 // If a watchpoint was hit, report it 897 uint32_t wp_index; 898 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex( 899 wp_index, LLDB_INVALID_ADDRESS); 900 if (error.Fail()) 901 LLDB_LOG(log, 902 "received error while checking for watchpoint hits, pid = " 903 "{0}, error = {1}", 904 thread.GetID(), error); 905 if (wp_index != LLDB_INVALID_INDEX32) { 906 MonitorWatchpoint(thread, wp_index); 907 break; 908 } 909 } 910 // NO BREAK 911 #endif 912 case TRAP_BRKPT: 913 MonitorBreakpoint(thread); 914 break; 915 916 case SIGTRAP: 917 case (SIGTRAP | 0x80): 918 LLDB_LOG( 919 log, 920 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 921 info.si_code, GetID(), thread.GetID()); 922 923 // Ignore these signals until we know more about them. 924 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 925 break; 926 927 default: 928 LLDB_LOG( 929 log, 930 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 931 info.si_code, GetID(), thread.GetID()); 932 llvm_unreachable("Unexpected SIGTRAP code!"); 933 break; 934 } 935 } 936 937 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 938 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 939 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 940 941 // This thread is currently stopped. 942 thread.SetStoppedByTrace(); 943 944 StopRunningThreads(thread.GetID()); 945 } 946 947 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 948 Log *log( 949 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 950 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 951 952 // Mark the thread as stopped at breakpoint. 953 thread.SetStoppedByBreakpoint(); 954 Error error = FixupBreakpointPCAsNeeded(thread); 955 if (error.Fail()) 956 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 957 958 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 959 m_threads_stepping_with_breakpoint.end()) 960 thread.SetStoppedByTrace(); 961 962 StopRunningThreads(thread.GetID()); 963 } 964 965 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 966 uint32_t wp_index) { 967 Log *log( 968 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 969 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 970 thread.GetID(), wp_index); 971 972 // Mark the thread as stopped at watchpoint. 973 // The address is at (lldb::addr_t)info->si_addr if we need it. 974 thread.SetStoppedByWatchpoint(wp_index); 975 976 // We need to tell all other running threads before we notify the delegate 977 // about this stop. 978 StopRunningThreads(thread.GetID()); 979 } 980 981 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 982 NativeThreadLinux &thread, bool exited) { 983 const int signo = info.si_signo; 984 const bool is_from_llgs = info.si_pid == getpid(); 985 986 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 987 988 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 989 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 990 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 991 // 992 // IOW, user generated signals never generate what we consider to be a 993 // "crash". 994 // 995 // Similarly, ACK signals generated by this monitor. 996 997 // Handle the signal. 998 LLDB_LOG(log, 999 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 1000 "waitpid pid = {4})", 1001 Host::GetSignalAsCString(signo), signo, info.si_code, 1002 thread.GetID()); 1003 1004 // Check for thread stop notification. 1005 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 1006 // This is a tgkill()-based stop. 1007 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 1008 1009 // Check that we're not already marked with a stop reason. 1010 // Note this thread really shouldn't already be marked as stopped - if we 1011 // were, that would imply that the kernel signaled us with the thread 1012 // stopping which we handled and marked as stopped, and that, without an 1013 // intervening resume, we received another stop. It is more likely that we 1014 // are missing the marking of a run state somewhere if we find that the 1015 // thread was marked as stopped. 1016 const StateType thread_state = thread.GetState(); 1017 if (!StateIsStoppedState(thread_state, false)) { 1018 // An inferior thread has stopped because of a SIGSTOP we have sent it. 1019 // Generally, these are not important stops and we don't want to report 1020 // them as they are just used to stop other threads when one thread (the 1021 // one with the *real* stop reason) hits a breakpoint (watchpoint, 1022 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 1023 // the real stop reason, so we leave the signal intact if this is the 1024 // thread that was chosen as the triggering thread. 1025 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1026 if (m_pending_notification_tid == thread.GetID()) 1027 thread.SetStoppedBySignal(SIGSTOP, &info); 1028 else 1029 thread.SetStoppedWithNoReason(); 1030 1031 SetCurrentThreadID(thread.GetID()); 1032 SignalIfAllThreadsStopped(); 1033 } else { 1034 // We can end up here if stop was initiated by LLGS but by this time a 1035 // thread stop has occurred - maybe initiated by another event. 1036 Error error = ResumeThread(thread, thread.GetState(), 0); 1037 if (error.Fail()) 1038 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 1039 error); 1040 } 1041 } else { 1042 LLDB_LOG(log, 1043 "pid {0} tid {1}, thread was already marked as a stopped " 1044 "state (state={2}), leaving stop signal as is", 1045 GetID(), thread.GetID(), thread_state); 1046 SignalIfAllThreadsStopped(); 1047 } 1048 1049 // Done handling. 1050 return; 1051 } 1052 1053 // Check if debugger should stop at this signal or just ignore it 1054 // and resume the inferior. 1055 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 1056 ResumeThread(thread, thread.GetState(), signo); 1057 return; 1058 } 1059 1060 // This thread is stopped. 1061 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 1062 thread.SetStoppedBySignal(signo, &info); 1063 1064 // Send a stop to the debugger after we get all other threads to stop. 1065 StopRunningThreads(thread.GetID()); 1066 } 1067 1068 namespace { 1069 1070 struct EmulatorBaton { 1071 NativeProcessLinux *m_process; 1072 NativeRegisterContext *m_reg_context; 1073 1074 // eRegisterKindDWARF -> RegsiterValue 1075 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1076 1077 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 1078 : m_process(process), m_reg_context(reg_context) {} 1079 }; 1080 1081 } // anonymous namespace 1082 1083 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 1084 const EmulateInstruction::Context &context, 1085 lldb::addr_t addr, void *dst, size_t length) { 1086 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1087 1088 size_t bytes_read; 1089 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1090 return bytes_read; 1091 } 1092 1093 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 1094 const RegisterInfo *reg_info, 1095 RegisterValue ®_value) { 1096 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1097 1098 auto it = emulator_baton->m_register_values.find( 1099 reg_info->kinds[eRegisterKindDWARF]); 1100 if (it != emulator_baton->m_register_values.end()) { 1101 reg_value = it->second; 1102 return true; 1103 } 1104 1105 // The emulator only fill in the dwarf regsiter numbers (and in some case 1106 // the generic register numbers). Get the full register info from the 1107 // register context based on the dwarf register numbers. 1108 const RegisterInfo *full_reg_info = 1109 emulator_baton->m_reg_context->GetRegisterInfo( 1110 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1111 1112 Error error = 1113 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1114 if (error.Success()) 1115 return true; 1116 1117 return false; 1118 } 1119 1120 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 1121 const EmulateInstruction::Context &context, 1122 const RegisterInfo *reg_info, 1123 const RegisterValue ®_value) { 1124 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1125 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 1126 reg_value; 1127 return true; 1128 } 1129 1130 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1131 const EmulateInstruction::Context &context, 1132 lldb::addr_t addr, const void *dst, 1133 size_t length) { 1134 return length; 1135 } 1136 1137 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1138 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1139 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1140 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1141 LLDB_INVALID_ADDRESS); 1142 } 1143 1144 Error NativeProcessLinux::SetupSoftwareSingleStepping( 1145 NativeThreadLinux &thread) { 1146 Error error; 1147 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1148 1149 std::unique_ptr<EmulateInstruction> emulator_ap( 1150 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1151 nullptr)); 1152 1153 if (emulator_ap == nullptr) 1154 return Error("Instruction emulator not found!"); 1155 1156 EmulatorBaton baton(this, register_context_sp.get()); 1157 emulator_ap->SetBaton(&baton); 1158 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1159 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1160 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1161 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1162 1163 if (!emulator_ap->ReadInstruction()) 1164 return Error("Read instruction failed!"); 1165 1166 bool emulation_result = 1167 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1168 1169 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1170 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1171 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1172 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1173 1174 auto pc_it = 1175 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1176 auto flags_it = 1177 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1178 1179 lldb::addr_t next_pc; 1180 lldb::addr_t next_flags; 1181 if (emulation_result) { 1182 assert(pc_it != baton.m_register_values.end() && 1183 "Emulation was successfull but PC wasn't updated"); 1184 next_pc = pc_it->second.GetAsUInt64(); 1185 1186 if (flags_it != baton.m_register_values.end()) 1187 next_flags = flags_it->second.GetAsUInt64(); 1188 else 1189 next_flags = ReadFlags(register_context_sp.get()); 1190 } else if (pc_it == baton.m_register_values.end()) { 1191 // Emulate instruction failed and it haven't changed PC. Advance PC 1192 // with the size of the current opcode because the emulation of all 1193 // PC modifying instruction should be successful. The failure most 1194 // likely caused by a not supported instruction which don't modify PC. 1195 next_pc = 1196 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1197 next_flags = ReadFlags(register_context_sp.get()); 1198 } else { 1199 // The instruction emulation failed after it modified the PC. It is an 1200 // unknown error where we can't continue because the next instruction is 1201 // modifying the PC but we don't know how. 1202 return Error("Instruction emulation failed unexpectedly."); 1203 } 1204 1205 if (m_arch.GetMachine() == llvm::Triple::arm) { 1206 if (next_flags & 0x20) { 1207 // Thumb mode 1208 error = SetSoftwareBreakpoint(next_pc, 2); 1209 } else { 1210 // Arm mode 1211 error = SetSoftwareBreakpoint(next_pc, 4); 1212 } 1213 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1214 m_arch.GetMachine() == llvm::Triple::mips64el || 1215 m_arch.GetMachine() == llvm::Triple::mips || 1216 m_arch.GetMachine() == llvm::Triple::mipsel) 1217 error = SetSoftwareBreakpoint(next_pc, 4); 1218 else { 1219 // No size hint is given for the next breakpoint 1220 error = SetSoftwareBreakpoint(next_pc, 0); 1221 } 1222 1223 // If setting the breakpoint fails because next_pc is out of 1224 // the address space, ignore it and let the debugee segfault. 1225 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1226 return Error(); 1227 } else if (error.Fail()) 1228 return error; 1229 1230 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1231 1232 return Error(); 1233 } 1234 1235 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1236 if (m_arch.GetMachine() == llvm::Triple::arm || 1237 m_arch.GetMachine() == llvm::Triple::mips64 || 1238 m_arch.GetMachine() == llvm::Triple::mips64el || 1239 m_arch.GetMachine() == llvm::Triple::mips || 1240 m_arch.GetMachine() == llvm::Triple::mipsel) 1241 return false; 1242 return true; 1243 } 1244 1245 Error NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1246 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1247 LLDB_LOG(log, "pid {0}", GetID()); 1248 1249 bool software_single_step = !SupportHardwareSingleStepping(); 1250 1251 if (software_single_step) { 1252 for (auto thread_sp : m_threads) { 1253 assert(thread_sp && "thread list should not contain NULL threads"); 1254 1255 const ResumeAction *const action = 1256 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1257 if (action == nullptr) 1258 continue; 1259 1260 if (action->state == eStateStepping) { 1261 Error error = SetupSoftwareSingleStepping( 1262 static_cast<NativeThreadLinux &>(*thread_sp)); 1263 if (error.Fail()) 1264 return error; 1265 } 1266 } 1267 } 1268 1269 for (auto thread_sp : m_threads) { 1270 assert(thread_sp && "thread list should not contain NULL threads"); 1271 1272 const ResumeAction *const action = 1273 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1274 1275 if (action == nullptr) { 1276 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1277 thread_sp->GetID()); 1278 continue; 1279 } 1280 1281 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1282 action->state, GetID(), thread_sp->GetID()); 1283 1284 switch (action->state) { 1285 case eStateRunning: 1286 case eStateStepping: { 1287 // Run the thread, possibly feeding it the signal. 1288 const int signo = action->signal; 1289 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1290 signo); 1291 break; 1292 } 1293 1294 case eStateSuspended: 1295 case eStateStopped: 1296 llvm_unreachable("Unexpected state"); 1297 1298 default: 1299 return Error("NativeProcessLinux::%s (): unexpected state %s specified " 1300 "for pid %" PRIu64 ", tid %" PRIu64, 1301 __FUNCTION__, StateAsCString(action->state), GetID(), 1302 thread_sp->GetID()); 1303 } 1304 } 1305 1306 return Error(); 1307 } 1308 1309 Error NativeProcessLinux::Halt() { 1310 Error error; 1311 1312 if (kill(GetID(), SIGSTOP) != 0) 1313 error.SetErrorToErrno(); 1314 1315 return error; 1316 } 1317 1318 Error NativeProcessLinux::Detach() { 1319 Error error; 1320 1321 // Stop monitoring the inferior. 1322 m_sigchld_handle.reset(); 1323 1324 // Tell ptrace to detach from the process. 1325 if (GetID() == LLDB_INVALID_PROCESS_ID) 1326 return error; 1327 1328 for (auto thread_sp : m_threads) { 1329 Error e = Detach(thread_sp->GetID()); 1330 if (e.Fail()) 1331 error = 1332 e; // Save the error, but still attempt to detach from other threads. 1333 } 1334 1335 return error; 1336 } 1337 1338 Error NativeProcessLinux::Signal(int signo) { 1339 Error error; 1340 1341 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1342 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1343 Host::GetSignalAsCString(signo), GetID()); 1344 1345 if (kill(GetID(), signo)) 1346 error.SetErrorToErrno(); 1347 1348 return error; 1349 } 1350 1351 Error NativeProcessLinux::Interrupt() { 1352 // Pick a running thread (or if none, a not-dead stopped thread) as 1353 // the chosen thread that will be the stop-reason thread. 1354 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1355 1356 NativeThreadProtocolSP running_thread_sp; 1357 NativeThreadProtocolSP stopped_thread_sp; 1358 1359 LLDB_LOG(log, "selecting running thread for interrupt target"); 1360 for (auto thread_sp : m_threads) { 1361 // The thread shouldn't be null but lets just cover that here. 1362 if (!thread_sp) 1363 continue; 1364 1365 // If we have a running or stepping thread, we'll call that the 1366 // target of the interrupt. 1367 const auto thread_state = thread_sp->GetState(); 1368 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1369 running_thread_sp = thread_sp; 1370 break; 1371 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1372 // Remember the first non-dead stopped thread. We'll use that as a backup 1373 // if there are no running threads. 1374 stopped_thread_sp = thread_sp; 1375 } 1376 } 1377 1378 if (!running_thread_sp && !stopped_thread_sp) { 1379 Error error("found no running/stepping or live stopped threads as target " 1380 "for interrupt"); 1381 LLDB_LOG(log, "skipping due to error: {0}", error); 1382 1383 return error; 1384 } 1385 1386 NativeThreadProtocolSP deferred_signal_thread_sp = 1387 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1388 1389 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1390 running_thread_sp ? "running" : "stopped", 1391 deferred_signal_thread_sp->GetID()); 1392 1393 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1394 1395 return Error(); 1396 } 1397 1398 Error NativeProcessLinux::Kill() { 1399 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1400 LLDB_LOG(log, "pid {0}", GetID()); 1401 1402 Error error; 1403 1404 switch (m_state) { 1405 case StateType::eStateInvalid: 1406 case StateType::eStateExited: 1407 case StateType::eStateCrashed: 1408 case StateType::eStateDetached: 1409 case StateType::eStateUnloaded: 1410 // Nothing to do - the process is already dead. 1411 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1412 m_state); 1413 return error; 1414 1415 case StateType::eStateConnected: 1416 case StateType::eStateAttaching: 1417 case StateType::eStateLaunching: 1418 case StateType::eStateStopped: 1419 case StateType::eStateRunning: 1420 case StateType::eStateStepping: 1421 case StateType::eStateSuspended: 1422 // We can try to kill a process in these states. 1423 break; 1424 } 1425 1426 if (kill(GetID(), SIGKILL) != 0) { 1427 error.SetErrorToErrno(); 1428 return error; 1429 } 1430 1431 return error; 1432 } 1433 1434 static Error 1435 ParseMemoryRegionInfoFromProcMapsLine(const std::string &maps_line, 1436 MemoryRegionInfo &memory_region_info) { 1437 memory_region_info.Clear(); 1438 1439 StringExtractor line_extractor(maps_line.c_str()); 1440 1441 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1442 // pathname 1443 // perms: rwxp (letter is present if set, '-' if not, final character is 1444 // p=private, s=shared). 1445 1446 // Parse out the starting address 1447 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1448 1449 // Parse out hyphen separating start and end address from range. 1450 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1451 return Error( 1452 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1453 1454 // Parse out the ending address 1455 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1456 1457 // Parse out the space after the address. 1458 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1459 return Error("malformed /proc/{pid}/maps entry, missing space after range"); 1460 1461 // Save the range. 1462 memory_region_info.GetRange().SetRangeBase(start_address); 1463 memory_region_info.GetRange().SetRangeEnd(end_address); 1464 1465 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1466 // process. 1467 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1468 1469 // Parse out each permission entry. 1470 if (line_extractor.GetBytesLeft() < 4) 1471 return Error("malformed /proc/{pid}/maps entry, missing some portion of " 1472 "permissions"); 1473 1474 // Handle read permission. 1475 const char read_perm_char = line_extractor.GetChar(); 1476 if (read_perm_char == 'r') 1477 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1478 else if (read_perm_char == '-') 1479 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1480 else 1481 return Error("unexpected /proc/{pid}/maps read permission char"); 1482 1483 // Handle write permission. 1484 const char write_perm_char = line_extractor.GetChar(); 1485 if (write_perm_char == 'w') 1486 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1487 else if (write_perm_char == '-') 1488 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1489 else 1490 return Error("unexpected /proc/{pid}/maps write permission char"); 1491 1492 // Handle execute permission. 1493 const char exec_perm_char = line_extractor.GetChar(); 1494 if (exec_perm_char == 'x') 1495 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1496 else if (exec_perm_char == '-') 1497 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1498 else 1499 return Error("unexpected /proc/{pid}/maps exec permission char"); 1500 1501 line_extractor.GetChar(); // Read the private bit 1502 line_extractor.SkipSpaces(); // Skip the separator 1503 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1504 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1505 line_extractor.GetChar(); // Read the device id separator 1506 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1507 line_extractor.SkipSpaces(); // Skip the separator 1508 line_extractor.GetU64(0, 10); // Read the inode number 1509 1510 line_extractor.SkipSpaces(); 1511 const char *name = line_extractor.Peek(); 1512 if (name) 1513 memory_region_info.SetName(name); 1514 1515 return Error(); 1516 } 1517 1518 Error NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1519 MemoryRegionInfo &range_info) { 1520 // FIXME review that the final memory region returned extends to the end of 1521 // the virtual address space, 1522 // with no perms if it is not mapped. 1523 1524 // Use an approach that reads memory regions from /proc/{pid}/maps. 1525 // Assume proc maps entries are in ascending order. 1526 // FIXME assert if we find differently. 1527 1528 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1529 // We're done. 1530 return Error("unsupported"); 1531 } 1532 1533 Error error = PopulateMemoryRegionCache(); 1534 if (error.Fail()) { 1535 return error; 1536 } 1537 1538 lldb::addr_t prev_base_address = 0; 1539 1540 // FIXME start by finding the last region that is <= target address using 1541 // binary search. Data is sorted. 1542 // There can be a ton of regions on pthreads apps with lots of threads. 1543 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1544 ++it) { 1545 MemoryRegionInfo &proc_entry_info = it->first; 1546 1547 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1548 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1549 "descending /proc/pid/maps entries detected, unexpected"); 1550 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1551 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1552 1553 // If the target address comes before this entry, indicate distance to next 1554 // region. 1555 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1556 range_info.GetRange().SetRangeBase(load_addr); 1557 range_info.GetRange().SetByteSize( 1558 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1559 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1560 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1561 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1562 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1563 1564 return error; 1565 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1566 // The target address is within the memory region we're processing here. 1567 range_info = proc_entry_info; 1568 return error; 1569 } 1570 1571 // The target memory address comes somewhere after the region we just 1572 // parsed. 1573 } 1574 1575 // If we made it here, we didn't find an entry that contained the given 1576 // address. Return the 1577 // load_addr as start and the amount of bytes betwwen load address and the end 1578 // of the memory as 1579 // size. 1580 range_info.GetRange().SetRangeBase(load_addr); 1581 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1582 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1583 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1584 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1585 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1586 return error; 1587 } 1588 1589 Error NativeProcessLinux::PopulateMemoryRegionCache() { 1590 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1591 1592 // If our cache is empty, pull the latest. There should always be at least 1593 // one memory region if memory region handling is supported. 1594 if (!m_mem_region_cache.empty()) { 1595 LLDB_LOG(log, "reusing {0} cached memory region entries", 1596 m_mem_region_cache.size()); 1597 return Error(); 1598 } 1599 1600 Error error = ProcFileReader::ProcessLineByLine( 1601 GetID(), "maps", [&](const std::string &line) -> bool { 1602 MemoryRegionInfo info; 1603 const Error parse_error = 1604 ParseMemoryRegionInfoFromProcMapsLine(line, info); 1605 if (parse_error.Success()) { 1606 m_mem_region_cache.emplace_back( 1607 info, FileSpec(info.GetName().GetCString(), true)); 1608 return true; 1609 } else { 1610 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", line, 1611 parse_error); 1612 return false; 1613 } 1614 }); 1615 1616 // If we had an error, we'll mark unsupported. 1617 if (error.Fail()) { 1618 m_supports_mem_region = LazyBool::eLazyBoolNo; 1619 return error; 1620 } else if (m_mem_region_cache.empty()) { 1621 // No entries after attempting to read them. This shouldn't happen if 1622 // /proc/{pid}/maps is supported. Assume we don't support map entries 1623 // via procfs. 1624 LLDB_LOG(log, 1625 "failed to find any procfs maps entries, assuming no support " 1626 "for memory region metadata retrieval"); 1627 m_supports_mem_region = LazyBool::eLazyBoolNo; 1628 error.SetErrorString("not supported"); 1629 return error; 1630 } 1631 1632 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1633 m_mem_region_cache.size(), GetID()); 1634 1635 // We support memory retrieval, remember that. 1636 m_supports_mem_region = LazyBool::eLazyBoolYes; 1637 return Error(); 1638 } 1639 1640 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1641 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1642 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1643 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1644 m_mem_region_cache.size()); 1645 m_mem_region_cache.clear(); 1646 } 1647 1648 Error NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1649 lldb::addr_t &addr) { 1650 // FIXME implementing this requires the equivalent of 1651 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1652 // functional ThreadPlans working with Native*Protocol. 1653 #if 1 1654 return Error("not implemented yet"); 1655 #else 1656 addr = LLDB_INVALID_ADDRESS; 1657 1658 unsigned prot = 0; 1659 if (permissions & lldb::ePermissionsReadable) 1660 prot |= eMmapProtRead; 1661 if (permissions & lldb::ePermissionsWritable) 1662 prot |= eMmapProtWrite; 1663 if (permissions & lldb::ePermissionsExecutable) 1664 prot |= eMmapProtExec; 1665 1666 // TODO implement this directly in NativeProcessLinux 1667 // (and lift to NativeProcessPOSIX if/when that class is 1668 // refactored out). 1669 if (InferiorCallMmap(this, addr, 0, size, prot, 1670 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1671 m_addr_to_mmap_size[addr] = size; 1672 return Error(); 1673 } else { 1674 addr = LLDB_INVALID_ADDRESS; 1675 return Error("unable to allocate %" PRIu64 1676 " bytes of memory with permissions %s", 1677 size, GetPermissionsAsCString(permissions)); 1678 } 1679 #endif 1680 } 1681 1682 Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1683 // FIXME see comments in AllocateMemory - required lower-level 1684 // bits not in place yet (ThreadPlans) 1685 return Error("not implemented"); 1686 } 1687 1688 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1689 // punt on this for now 1690 return LLDB_INVALID_ADDRESS; 1691 } 1692 1693 size_t NativeProcessLinux::UpdateThreads() { 1694 // The NativeProcessLinux monitoring threads are always up to date 1695 // with respect to thread state and they keep the thread list 1696 // populated properly. All this method needs to do is return the 1697 // thread count. 1698 return m_threads.size(); 1699 } 1700 1701 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1702 arch = m_arch; 1703 return true; 1704 } 1705 1706 Error NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1707 uint32_t &actual_opcode_size) { 1708 // FIXME put this behind a breakpoint protocol class that can be 1709 // set per architecture. Need ARM, MIPS support here. 1710 static const uint8_t g_i386_opcode[] = {0xCC}; 1711 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1712 1713 switch (m_arch.GetMachine()) { 1714 case llvm::Triple::x86: 1715 case llvm::Triple::x86_64: 1716 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1717 return Error(); 1718 1719 case llvm::Triple::systemz: 1720 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1721 return Error(); 1722 1723 case llvm::Triple::arm: 1724 case llvm::Triple::aarch64: 1725 case llvm::Triple::mips64: 1726 case llvm::Triple::mips64el: 1727 case llvm::Triple::mips: 1728 case llvm::Triple::mipsel: 1729 // On these architectures the PC don't get updated for breakpoint hits 1730 actual_opcode_size = 0; 1731 return Error(); 1732 1733 default: 1734 assert(false && "CPU type not supported!"); 1735 return Error("CPU type not supported"); 1736 } 1737 } 1738 1739 Error NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1740 bool hardware) { 1741 if (hardware) 1742 return SetHardwareBreakpoint(addr, size); 1743 else 1744 return SetSoftwareBreakpoint(addr, size); 1745 } 1746 1747 Error NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1748 if (hardware) 1749 return RemoveHardwareBreakpoint(addr); 1750 else 1751 return NativeProcessProtocol::RemoveBreakpoint(addr); 1752 } 1753 1754 Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1755 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1756 const uint8_t *&trap_opcode_bytes) { 1757 // FIXME put this behind a breakpoint protocol class that can be set per 1758 // architecture. Need MIPS support here. 1759 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1760 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1761 // linux kernel does otherwise. 1762 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1763 static const uint8_t g_i386_opcode[] = {0xCC}; 1764 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1765 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1766 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1767 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1768 1769 switch (m_arch.GetMachine()) { 1770 case llvm::Triple::aarch64: 1771 trap_opcode_bytes = g_aarch64_opcode; 1772 actual_opcode_size = sizeof(g_aarch64_opcode); 1773 return Error(); 1774 1775 case llvm::Triple::arm: 1776 switch (trap_opcode_size_hint) { 1777 case 2: 1778 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1779 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1780 return Error(); 1781 case 4: 1782 trap_opcode_bytes = g_arm_breakpoint_opcode; 1783 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1784 return Error(); 1785 default: 1786 assert(false && "Unrecognised trap opcode size hint!"); 1787 return Error("Unrecognised trap opcode size hint!"); 1788 } 1789 1790 case llvm::Triple::x86: 1791 case llvm::Triple::x86_64: 1792 trap_opcode_bytes = g_i386_opcode; 1793 actual_opcode_size = sizeof(g_i386_opcode); 1794 return Error(); 1795 1796 case llvm::Triple::mips: 1797 case llvm::Triple::mips64: 1798 trap_opcode_bytes = g_mips64_opcode; 1799 actual_opcode_size = sizeof(g_mips64_opcode); 1800 return Error(); 1801 1802 case llvm::Triple::mipsel: 1803 case llvm::Triple::mips64el: 1804 trap_opcode_bytes = g_mips64el_opcode; 1805 actual_opcode_size = sizeof(g_mips64el_opcode); 1806 return Error(); 1807 1808 case llvm::Triple::systemz: 1809 trap_opcode_bytes = g_s390x_opcode; 1810 actual_opcode_size = sizeof(g_s390x_opcode); 1811 return Error(); 1812 1813 default: 1814 assert(false && "CPU type not supported!"); 1815 return Error("CPU type not supported"); 1816 } 1817 } 1818 1819 #if 0 1820 ProcessMessage::CrashReason 1821 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1822 { 1823 ProcessMessage::CrashReason reason; 1824 assert(info->si_signo == SIGSEGV); 1825 1826 reason = ProcessMessage::eInvalidCrashReason; 1827 1828 switch (info->si_code) 1829 { 1830 default: 1831 assert(false && "unexpected si_code for SIGSEGV"); 1832 break; 1833 case SI_KERNEL: 1834 // Linux will occasionally send spurious SI_KERNEL codes. 1835 // (this is poorly documented in sigaction) 1836 // One way to get this is via unaligned SIMD loads. 1837 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1838 break; 1839 case SEGV_MAPERR: 1840 reason = ProcessMessage::eInvalidAddress; 1841 break; 1842 case SEGV_ACCERR: 1843 reason = ProcessMessage::ePrivilegedAddress; 1844 break; 1845 } 1846 1847 return reason; 1848 } 1849 #endif 1850 1851 #if 0 1852 ProcessMessage::CrashReason 1853 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1854 { 1855 ProcessMessage::CrashReason reason; 1856 assert(info->si_signo == SIGILL); 1857 1858 reason = ProcessMessage::eInvalidCrashReason; 1859 1860 switch (info->si_code) 1861 { 1862 default: 1863 assert(false && "unexpected si_code for SIGILL"); 1864 break; 1865 case ILL_ILLOPC: 1866 reason = ProcessMessage::eIllegalOpcode; 1867 break; 1868 case ILL_ILLOPN: 1869 reason = ProcessMessage::eIllegalOperand; 1870 break; 1871 case ILL_ILLADR: 1872 reason = ProcessMessage::eIllegalAddressingMode; 1873 break; 1874 case ILL_ILLTRP: 1875 reason = ProcessMessage::eIllegalTrap; 1876 break; 1877 case ILL_PRVOPC: 1878 reason = ProcessMessage::ePrivilegedOpcode; 1879 break; 1880 case ILL_PRVREG: 1881 reason = ProcessMessage::ePrivilegedRegister; 1882 break; 1883 case ILL_COPROC: 1884 reason = ProcessMessage::eCoprocessorError; 1885 break; 1886 case ILL_BADSTK: 1887 reason = ProcessMessage::eInternalStackError; 1888 break; 1889 } 1890 1891 return reason; 1892 } 1893 #endif 1894 1895 #if 0 1896 ProcessMessage::CrashReason 1897 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1898 { 1899 ProcessMessage::CrashReason reason; 1900 assert(info->si_signo == SIGFPE); 1901 1902 reason = ProcessMessage::eInvalidCrashReason; 1903 1904 switch (info->si_code) 1905 { 1906 default: 1907 assert(false && "unexpected si_code for SIGFPE"); 1908 break; 1909 case FPE_INTDIV: 1910 reason = ProcessMessage::eIntegerDivideByZero; 1911 break; 1912 case FPE_INTOVF: 1913 reason = ProcessMessage::eIntegerOverflow; 1914 break; 1915 case FPE_FLTDIV: 1916 reason = ProcessMessage::eFloatDivideByZero; 1917 break; 1918 case FPE_FLTOVF: 1919 reason = ProcessMessage::eFloatOverflow; 1920 break; 1921 case FPE_FLTUND: 1922 reason = ProcessMessage::eFloatUnderflow; 1923 break; 1924 case FPE_FLTRES: 1925 reason = ProcessMessage::eFloatInexactResult; 1926 break; 1927 case FPE_FLTINV: 1928 reason = ProcessMessage::eFloatInvalidOperation; 1929 break; 1930 case FPE_FLTSUB: 1931 reason = ProcessMessage::eFloatSubscriptRange; 1932 break; 1933 } 1934 1935 return reason; 1936 } 1937 #endif 1938 1939 #if 0 1940 ProcessMessage::CrashReason 1941 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1942 { 1943 ProcessMessage::CrashReason reason; 1944 assert(info->si_signo == SIGBUS); 1945 1946 reason = ProcessMessage::eInvalidCrashReason; 1947 1948 switch (info->si_code) 1949 { 1950 default: 1951 assert(false && "unexpected si_code for SIGBUS"); 1952 break; 1953 case BUS_ADRALN: 1954 reason = ProcessMessage::eIllegalAlignment; 1955 break; 1956 case BUS_ADRERR: 1957 reason = ProcessMessage::eIllegalAddress; 1958 break; 1959 case BUS_OBJERR: 1960 reason = ProcessMessage::eHardwareError; 1961 break; 1962 } 1963 1964 return reason; 1965 } 1966 #endif 1967 1968 Error NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1969 size_t &bytes_read) { 1970 if (ProcessVmReadvSupported()) { 1971 // The process_vm_readv path is about 50 times faster than ptrace api. We 1972 // want to use 1973 // this syscall if it is supported. 1974 1975 const ::pid_t pid = GetID(); 1976 1977 struct iovec local_iov, remote_iov; 1978 local_iov.iov_base = buf; 1979 local_iov.iov_len = size; 1980 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1981 remote_iov.iov_len = size; 1982 1983 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1984 const bool success = bytes_read == size; 1985 1986 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1987 LLDB_LOG(log, 1988 "using process_vm_readv to read {0} bytes from inferior " 1989 "address {1:x}: {2}", 1990 size, addr, success ? "Success" : strerror(errno)); 1991 1992 if (success) 1993 return Error(); 1994 // else the call failed for some reason, let's retry the read using ptrace 1995 // api. 1996 } 1997 1998 unsigned char *dst = static_cast<unsigned char *>(buf); 1999 size_t remainder; 2000 long data; 2001 2002 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2003 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2004 2005 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 2006 Error error = NativeProcessLinux::PtraceWrapper( 2007 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 2008 if (error.Fail()) 2009 return error; 2010 2011 remainder = size - bytes_read; 2012 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2013 2014 // Copy the data into our buffer 2015 memcpy(dst, &data, remainder); 2016 2017 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2018 addr += k_ptrace_word_size; 2019 dst += k_ptrace_word_size; 2020 } 2021 return Error(); 2022 } 2023 2024 Error NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 2025 size_t size, 2026 size_t &bytes_read) { 2027 Error error = ReadMemory(addr, buf, size, bytes_read); 2028 if (error.Fail()) 2029 return error; 2030 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2031 } 2032 2033 Error NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 2034 size_t size, size_t &bytes_written) { 2035 const unsigned char *src = static_cast<const unsigned char *>(buf); 2036 size_t remainder; 2037 Error error; 2038 2039 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2040 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2041 2042 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 2043 remainder = size - bytes_written; 2044 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2045 2046 if (remainder == k_ptrace_word_size) { 2047 unsigned long data = 0; 2048 memcpy(&data, src, k_ptrace_word_size); 2049 2050 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2051 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 2052 (void *)addr, (void *)data); 2053 if (error.Fail()) 2054 return error; 2055 } else { 2056 unsigned char buff[8]; 2057 size_t bytes_read; 2058 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2059 if (error.Fail()) 2060 return error; 2061 2062 memcpy(buff, src, remainder); 2063 2064 size_t bytes_written_rec; 2065 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2066 if (error.Fail()) 2067 return error; 2068 2069 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 2070 *(unsigned long *)buff); 2071 } 2072 2073 addr += k_ptrace_word_size; 2074 src += k_ptrace_word_size; 2075 } 2076 return error; 2077 } 2078 2079 Error NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 2080 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2081 } 2082 2083 Error NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 2084 unsigned long *message) { 2085 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2086 } 2087 2088 Error NativeProcessLinux::Detach(lldb::tid_t tid) { 2089 if (tid == LLDB_INVALID_THREAD_ID) 2090 return Error(); 2091 2092 return PtraceWrapper(PTRACE_DETACH, tid); 2093 } 2094 2095 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 2096 for (auto thread_sp : m_threads) { 2097 assert(thread_sp && "thread list should not contain NULL threads"); 2098 if (thread_sp->GetID() == thread_id) { 2099 // We have this thread. 2100 return true; 2101 } 2102 } 2103 2104 // We don't have this thread. 2105 return false; 2106 } 2107 2108 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 2109 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2110 LLDB_LOG(log, "tid: {0})", thread_id); 2111 2112 bool found = false; 2113 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 2114 if (*it && ((*it)->GetID() == thread_id)) { 2115 m_threads.erase(it); 2116 found = true; 2117 break; 2118 } 2119 } 2120 2121 SignalIfAllThreadsStopped(); 2122 return found; 2123 } 2124 2125 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2126 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2127 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2128 2129 assert(!HasThreadNoLock(thread_id) && 2130 "attempted to add a thread by id that already exists"); 2131 2132 // If this is the first thread, save it as the current thread 2133 if (m_threads.empty()) 2134 SetCurrentThreadID(thread_id); 2135 2136 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2137 m_threads.push_back(thread_sp); 2138 return thread_sp; 2139 } 2140 2141 Error NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2142 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2143 2144 Error error; 2145 2146 // Find out the size of a breakpoint (might depend on where we are in the 2147 // code). 2148 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2149 if (!context_sp) { 2150 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2151 LLDB_LOG(log, "failed: {0}", error); 2152 return error; 2153 } 2154 2155 uint32_t breakpoint_size = 0; 2156 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2157 if (error.Fail()) { 2158 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2159 return error; 2160 } else 2161 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2162 2163 // First try probing for a breakpoint at a software breakpoint location: PC - 2164 // breakpoint size. 2165 const lldb::addr_t initial_pc_addr = 2166 context_sp->GetPCfromBreakpointLocation(); 2167 lldb::addr_t breakpoint_addr = initial_pc_addr; 2168 if (breakpoint_size > 0) { 2169 // Do not allow breakpoint probe to wrap around. 2170 if (breakpoint_addr >= breakpoint_size) 2171 breakpoint_addr -= breakpoint_size; 2172 } 2173 2174 // Check if we stopped because of a breakpoint. 2175 NativeBreakpointSP breakpoint_sp; 2176 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2177 if (!error.Success() || !breakpoint_sp) { 2178 // We didn't find one at a software probe location. Nothing to do. 2179 LLDB_LOG(log, 2180 "pid {0} no lldb breakpoint found at current pc with " 2181 "adjustment: {1}", 2182 GetID(), breakpoint_addr); 2183 return Error(); 2184 } 2185 2186 // If the breakpoint is not a software breakpoint, nothing to do. 2187 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2188 LLDB_LOG( 2189 log, 2190 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2191 GetID(), breakpoint_addr); 2192 return Error(); 2193 } 2194 2195 // 2196 // We have a software breakpoint and need to adjust the PC. 2197 // 2198 2199 // Sanity check. 2200 if (breakpoint_size == 0) { 2201 // Nothing to do! How did we get here? 2202 LLDB_LOG(log, 2203 "pid {0} breakpoint found at {1:x}, it is software, but the " 2204 "size is zero, nothing to do (unexpected)", 2205 GetID(), breakpoint_addr); 2206 return Error(); 2207 } 2208 2209 // Change the program counter. 2210 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2211 thread.GetID(), initial_pc_addr, breakpoint_addr); 2212 2213 error = context_sp->SetPC(breakpoint_addr); 2214 if (error.Fail()) { 2215 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2216 thread.GetID(), error); 2217 return error; 2218 } 2219 2220 return error; 2221 } 2222 2223 Error NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2224 FileSpec &file_spec) { 2225 Error error = PopulateMemoryRegionCache(); 2226 if (error.Fail()) 2227 return error; 2228 2229 FileSpec module_file_spec(module_path, true); 2230 2231 file_spec.Clear(); 2232 for (const auto &it : m_mem_region_cache) { 2233 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2234 file_spec = it.second; 2235 return Error(); 2236 } 2237 } 2238 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2239 module_file_spec.GetFilename().AsCString(), GetID()); 2240 } 2241 2242 Error NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2243 lldb::addr_t &load_addr) { 2244 load_addr = LLDB_INVALID_ADDRESS; 2245 Error error = PopulateMemoryRegionCache(); 2246 if (error.Fail()) 2247 return error; 2248 2249 FileSpec file(file_name, false); 2250 for (const auto &it : m_mem_region_cache) { 2251 if (it.second == file) { 2252 load_addr = it.first.GetRange().GetRangeBase(); 2253 return Error(); 2254 } 2255 } 2256 return Error("No load address found for specified file."); 2257 } 2258 2259 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2260 return std::static_pointer_cast<NativeThreadLinux>( 2261 NativeProcessProtocol::GetThreadByID(tid)); 2262 } 2263 2264 Error NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2265 lldb::StateType state, int signo) { 2266 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2267 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2268 2269 // Before we do the resume below, first check if we have a pending 2270 // stop notification that is currently waiting for 2271 // all threads to stop. This is potentially a buggy situation since 2272 // we're ostensibly waiting for threads to stop before we send out the 2273 // pending notification, and here we are resuming one before we send 2274 // out the pending stop notification. 2275 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2276 LLDB_LOG(log, 2277 "about to resume tid {0} per explicit request but we have a " 2278 "pending stop notification (tid {1}) that is actively " 2279 "waiting for this thread to stop. Valid sequence of events?", 2280 thread.GetID(), m_pending_notification_tid); 2281 } 2282 2283 // Request a resume. We expect this to be synchronous and the system 2284 // to reflect it is running after this completes. 2285 switch (state) { 2286 case eStateRunning: { 2287 const auto resume_result = thread.Resume(signo); 2288 if (resume_result.Success()) 2289 SetState(eStateRunning, true); 2290 return resume_result; 2291 } 2292 case eStateStepping: { 2293 const auto step_result = thread.SingleStep(signo); 2294 if (step_result.Success()) 2295 SetState(eStateRunning, true); 2296 return step_result; 2297 } 2298 default: 2299 LLDB_LOG(log, "Unhandled state {0}.", state); 2300 llvm_unreachable("Unhandled state for resume"); 2301 } 2302 } 2303 2304 //===----------------------------------------------------------------------===// 2305 2306 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2307 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2308 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2309 triggering_tid); 2310 2311 m_pending_notification_tid = triggering_tid; 2312 2313 // Request a stop for all the thread stops that need to be stopped 2314 // and are not already known to be stopped. 2315 for (const auto &thread_sp : m_threads) { 2316 if (StateIsRunningState(thread_sp->GetState())) 2317 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2318 } 2319 2320 SignalIfAllThreadsStopped(); 2321 LLDB_LOG(log, "event processing done"); 2322 } 2323 2324 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2325 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2326 return; // No pending notification. Nothing to do. 2327 2328 for (const auto &thread_sp : m_threads) { 2329 if (StateIsRunningState(thread_sp->GetState())) 2330 return; // Some threads are still running. Don't signal yet. 2331 } 2332 2333 // We have a pending notification and all threads have stopped. 2334 Log *log( 2335 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2336 2337 // Clear any temporary breakpoints we used to implement software single 2338 // stepping. 2339 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2340 Error error = RemoveBreakpoint(thread_info.second); 2341 if (error.Fail()) 2342 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2343 thread_info.first, error); 2344 } 2345 m_threads_stepping_with_breakpoint.clear(); 2346 2347 // Notify the delegate about the stop 2348 SetCurrentThreadID(m_pending_notification_tid); 2349 SetState(StateType::eStateStopped, true); 2350 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2351 } 2352 2353 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2354 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2355 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2356 2357 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2358 StateIsRunningState(thread.GetState())) { 2359 // We will need to wait for this new thread to stop as well before firing 2360 // the 2361 // notification. 2362 thread.RequestStop(); 2363 } 2364 } 2365 2366 void NativeProcessLinux::SigchldHandler() { 2367 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2368 // Process all pending waitpid notifications. 2369 while (true) { 2370 int status = -1; 2371 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2372 2373 if (wait_pid == 0) 2374 break; // We are done. 2375 2376 if (wait_pid == -1) { 2377 if (errno == EINTR) 2378 continue; 2379 2380 Error error(errno, eErrorTypePOSIX); 2381 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2382 break; 2383 } 2384 2385 bool exited = false; 2386 int signal = 0; 2387 int exit_status = 0; 2388 const char *status_cstr = nullptr; 2389 if (WIFSTOPPED(status)) { 2390 signal = WSTOPSIG(status); 2391 status_cstr = "STOPPED"; 2392 } else if (WIFEXITED(status)) { 2393 exit_status = WEXITSTATUS(status); 2394 status_cstr = "EXITED"; 2395 exited = true; 2396 } else if (WIFSIGNALED(status)) { 2397 signal = WTERMSIG(status); 2398 status_cstr = "SIGNALED"; 2399 if (wait_pid == static_cast<::pid_t>(GetID())) { 2400 exited = true; 2401 exit_status = -1; 2402 } 2403 } else 2404 status_cstr = "(\?\?\?)"; 2405 2406 LLDB_LOG(log, 2407 "waitpid (-1, &status, _) => pid = {0}, status = {1:x} " 2408 "({2}), signal = {3}, exit_state = {4}", 2409 wait_pid, status, status_cstr, signal, exit_status); 2410 2411 MonitorCallback(wait_pid, exited, signal, exit_status); 2412 } 2413 } 2414 2415 // Wrapper for ptrace to catch errors and log calls. 2416 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2417 // for PTRACE_PEEK*) 2418 Error NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2419 void *data, size_t data_size, 2420 long *result) { 2421 Error error; 2422 long int ret; 2423 2424 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2425 2426 PtraceDisplayBytes(req, data, data_size); 2427 2428 errno = 0; 2429 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2430 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2431 *(unsigned int *)addr, data); 2432 else 2433 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2434 addr, data); 2435 2436 if (ret == -1) 2437 error.SetErrorToErrno(); 2438 2439 if (result) 2440 *result = ret; 2441 2442 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2443 data_size, ret); 2444 2445 PtraceDisplayBytes(req, data, data_size); 2446 2447 if (error.Fail()) 2448 LLDB_LOG(log, "ptrace() failed: {0}", error); 2449 2450 return error; 2451 } 2452