1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/ThreadLauncher.h" 33 #include "lldb/Host/common/NativeBreakpoint.h" 34 #include "lldb/Host/common/NativeRegisterContext.h" 35 #include "lldb/Host/linux/Ptrace.h" 36 #include "lldb/Host/linux/Uio.h" 37 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 38 #include "lldb/Symbol/ObjectFile.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/ProcessLaunchInfo.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Utility/Error.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/PseudoTerminal.h" 45 #include "lldb/Utility/StringExtractor.h" 46 47 #include "NativeThreadLinux.h" 48 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 49 #include "ProcFileReader.h" 50 #include "Procfs.h" 51 52 #include "llvm/Support/Threading.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 strerror(errno)); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE | 144 POSIX_LOG_VERBOSE)); 145 if (!log) 146 return; 147 StreamString buf; 148 149 switch (req) { 150 case PTRACE_POKETEXT: { 151 DisplayBytes(buf, &data, 8); 152 LLDB_LOG(log, "PTRACE_POKETEXT {0}", buf.GetData()); 153 break; 154 } 155 case PTRACE_POKEDATA: { 156 DisplayBytes(buf, &data, 8); 157 LLDB_LOG(log, "PTRACE_POKEDATA {0}", buf.GetData()); 158 break; 159 } 160 case PTRACE_POKEUSER: { 161 DisplayBytes(buf, &data, 8); 162 LLDB_LOG(log, "PTRACE_POKEUSER {0}", buf.GetData()); 163 break; 164 } 165 case PTRACE_SETREGS: { 166 DisplayBytes(buf, data, data_size); 167 LLDB_LOG(log, "PTRACE_SETREGS {0}", buf.GetData()); 168 break; 169 } 170 case PTRACE_SETFPREGS: { 171 DisplayBytes(buf, data, data_size); 172 LLDB_LOG(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 173 break; 174 } 175 case PTRACE_SETSIGINFO: { 176 DisplayBytes(buf, data, sizeof(siginfo_t)); 177 LLDB_LOG(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 178 break; 179 } 180 case PTRACE_SETREGSET: { 181 // Extract iov_base from data, which is a pointer to the struct IOVEC 182 DisplayBytes(buf, *(void **)data, data_size); 183 LLDB_LOG(log, "PTRACE_SETREGSET {0}", buf.GetData()); 184 break; 185 } 186 default: {} 187 } 188 } 189 190 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 191 static_assert(sizeof(long) >= k_ptrace_word_size, 192 "Size of long must be larger than ptrace word size"); 193 } // end of anonymous namespace 194 195 // Simple helper function to ensure flags are enabled on the given file 196 // descriptor. 197 static Error EnsureFDFlags(int fd, int flags) { 198 Error error; 199 200 int status = fcntl(fd, F_GETFL); 201 if (status == -1) { 202 error.SetErrorToErrno(); 203 return error; 204 } 205 206 if (fcntl(fd, F_SETFL, status | flags) == -1) { 207 error.SetErrorToErrno(); 208 return error; 209 } 210 211 return error; 212 } 213 214 // ----------------------------------------------------------------------------- 215 // Public Static Methods 216 // ----------------------------------------------------------------------------- 217 218 Error NativeProcessProtocol::Launch( 219 ProcessLaunchInfo &launch_info, 220 NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, 221 NativeProcessProtocolSP &native_process_sp) { 222 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 223 224 Error error; 225 226 // Verify the working directory is valid if one was specified. 227 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 228 if (working_dir && 229 (!working_dir.ResolvePath() || 230 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) { 231 error.SetErrorStringWithFormat("No such file or directory: %s", 232 working_dir.GetCString()); 233 return error; 234 } 235 236 // Create the NativeProcessLinux in launch mode. 237 native_process_sp.reset(new NativeProcessLinux()); 238 239 if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { 240 native_process_sp.reset(); 241 error.SetErrorStringWithFormat("failed to register the native delegate"); 242 return error; 243 } 244 245 error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp) 246 ->LaunchInferior(mainloop, launch_info); 247 248 if (error.Fail()) { 249 native_process_sp.reset(); 250 LLDB_LOG(log, "failed to launch process: {0}", error); 251 return error; 252 } 253 254 launch_info.SetProcessID(native_process_sp->GetID()); 255 256 return error; 257 } 258 259 Error NativeProcessProtocol::Attach( 260 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 261 MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { 262 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 263 LLDB_LOG(log, "pid = {0:x}", pid); 264 265 // Retrieve the architecture for the running process. 266 ArchSpec process_arch; 267 Error error = ResolveProcessArchitecture(pid, process_arch); 268 if (!error.Success()) 269 return error; 270 271 std::shared_ptr<NativeProcessLinux> native_process_linux_sp( 272 new NativeProcessLinux()); 273 274 if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { 275 error.SetErrorStringWithFormat("failed to register the native delegate"); 276 return error; 277 } 278 279 native_process_linux_sp->AttachToInferior(mainloop, pid, error); 280 if (!error.Success()) 281 return error; 282 283 native_process_sp = native_process_linux_sp; 284 return error; 285 } 286 287 // ----------------------------------------------------------------------------- 288 // Public Instance Methods 289 // ----------------------------------------------------------------------------- 290 291 NativeProcessLinux::NativeProcessLinux() 292 : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), 293 m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), 294 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {} 295 296 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, 297 Error &error) { 298 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 299 LLDB_LOG(log, "pid = {0:x}", pid); 300 301 m_sigchld_handle = mainloop.RegisterSignal( 302 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 303 if (!m_sigchld_handle) 304 return; 305 306 error = ResolveProcessArchitecture(pid, m_arch); 307 if (!error.Success()) 308 return; 309 310 // Set the architecture to the exe architecture. 311 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 312 m_arch.GetArchitectureName()); 313 m_pid = pid; 314 SetState(eStateAttaching); 315 316 Attach(pid, error); 317 } 318 319 Error NativeProcessLinux::LaunchInferior(MainLoop &mainloop, 320 ProcessLaunchInfo &launch_info) { 321 Error error; 322 m_sigchld_handle = mainloop.RegisterSignal( 323 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 324 if (!m_sigchld_handle) 325 return error; 326 327 SetState(eStateLaunching); 328 329 MaybeLogLaunchInfo(launch_info); 330 331 ::pid_t pid = 332 ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId(); 333 if (error.Fail()) 334 return error; 335 336 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 337 338 // Wait for the child process to trap on its call to execve. 339 ::pid_t wpid; 340 int status; 341 if ((wpid = waitpid(pid, &status, 0)) < 0) { 342 error.SetErrorToErrno(); 343 LLDB_LOG(log, "waitpid for inferior failed with %s", error); 344 345 // Mark the inferior as invalid. 346 // FIXME this could really use a new state - eStateLaunchFailure. For now, 347 // using eStateInvalid. 348 SetState(StateType::eStateInvalid); 349 350 return error; 351 } 352 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && 353 "Could not sync with inferior process."); 354 355 LLDB_LOG(log, "inferior started, now in stopped state"); 356 error = SetDefaultPtraceOpts(pid); 357 if (error.Fail()) { 358 LLDB_LOG(log, "failed to set default ptrace options: {0}", error); 359 360 // Mark the inferior as invalid. 361 // FIXME this could really use a new state - eStateLaunchFailure. For now, 362 // using eStateInvalid. 363 SetState(StateType::eStateInvalid); 364 365 return error; 366 } 367 368 // Release the master terminal descriptor and pass it off to the 369 // NativeProcessLinux instance. Similarly stash the inferior pid. 370 m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); 371 m_pid = pid; 372 launch_info.SetProcessID(pid); 373 374 if (m_terminal_fd != -1) { 375 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 376 if (error.Fail()) { 377 LLDB_LOG(log, 378 "inferior EnsureFDFlags failed for ensuring terminal " 379 "O_NONBLOCK setting: {0}", 380 error); 381 382 // Mark the inferior as invalid. 383 // FIXME this could really use a new state - eStateLaunchFailure. For 384 // now, using eStateInvalid. 385 SetState(StateType::eStateInvalid); 386 387 return error; 388 } 389 } 390 391 LLDB_LOG(log, "adding pid = {0}", pid); 392 ResolveProcessArchitecture(m_pid, m_arch); 393 NativeThreadLinuxSP thread_sp = AddThread(pid); 394 assert(thread_sp && "AddThread() returned a nullptr thread"); 395 thread_sp->SetStoppedBySignal(SIGSTOP); 396 ThreadWasCreated(*thread_sp); 397 398 // Let our process instance know the thread has stopped. 399 SetCurrentThreadID(thread_sp->GetID()); 400 SetState(StateType::eStateStopped); 401 402 if (error.Fail()) 403 LLDB_LOG(log, "inferior launching failed {0}", error); 404 return error; 405 } 406 407 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) { 408 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 409 410 // Use a map to keep track of the threads which we have attached/need to 411 // attach. 412 Host::TidMap tids_to_attach; 413 if (pid <= 1) { 414 error.SetErrorToGenericError(); 415 error.SetErrorString("Attaching to process 1 is not allowed."); 416 return -1; 417 } 418 419 while (Host::FindProcessThreads(pid, tids_to_attach)) { 420 for (Host::TidMap::iterator it = tids_to_attach.begin(); 421 it != tids_to_attach.end();) { 422 if (it->second == false) { 423 lldb::tid_t tid = it->first; 424 425 // Attach to the requested process. 426 // An attach will cause the thread to stop with a SIGSTOP. 427 error = PtraceWrapper(PTRACE_ATTACH, tid); 428 if (error.Fail()) { 429 // No such thread. The thread may have exited. 430 // More error handling may be needed. 431 if (error.GetError() == ESRCH) { 432 it = tids_to_attach.erase(it); 433 continue; 434 } else 435 return -1; 436 } 437 438 int status; 439 // Need to use __WALL otherwise we receive an error with errno=ECHLD 440 // At this point we should have a thread stopped if waitpid succeeds. 441 if ((status = waitpid(tid, NULL, __WALL)) < 0) { 442 // No such thread. The thread may have exited. 443 // More error handling may be needed. 444 if (errno == ESRCH) { 445 it = tids_to_attach.erase(it); 446 continue; 447 } else { 448 error.SetErrorToErrno(); 449 return -1; 450 } 451 } 452 453 error = SetDefaultPtraceOpts(tid); 454 if (error.Fail()) 455 return -1; 456 457 LLDB_LOG(log, "adding tid = {0}", tid); 458 it->second = true; 459 460 // Create the thread, mark it as stopped. 461 NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid))); 462 assert(thread_sp && "AddThread() returned a nullptr"); 463 464 // This will notify this is a new thread and tell the system it is 465 // stopped. 466 thread_sp->SetStoppedBySignal(SIGSTOP); 467 ThreadWasCreated(*thread_sp); 468 SetCurrentThreadID(thread_sp->GetID()); 469 } 470 471 // move the loop forward 472 ++it; 473 } 474 } 475 476 if (tids_to_attach.size() > 0) { 477 m_pid = pid; 478 // Let our process instance know the thread has stopped. 479 SetState(StateType::eStateStopped); 480 } else { 481 error.SetErrorToGenericError(); 482 error.SetErrorString("No such process."); 483 return -1; 484 } 485 486 return pid; 487 } 488 489 Error NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 490 long ptrace_opts = 0; 491 492 // Have the child raise an event on exit. This is used to keep the child in 493 // limbo until it is destroyed. 494 ptrace_opts |= PTRACE_O_TRACEEXIT; 495 496 // Have the tracer trace threads which spawn in the inferior process. 497 // TODO: if we want to support tracing the inferiors' child, add the 498 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 499 ptrace_opts |= PTRACE_O_TRACECLONE; 500 501 // Have the tracer notify us before execve returns 502 // (needed to disable legacy SIGTRAP generation) 503 ptrace_opts |= PTRACE_O_TRACEEXEC; 504 505 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 506 } 507 508 static ExitType convert_pid_status_to_exit_type(int status) { 509 if (WIFEXITED(status)) 510 return ExitType::eExitTypeExit; 511 else if (WIFSIGNALED(status)) 512 return ExitType::eExitTypeSignal; 513 else if (WIFSTOPPED(status)) 514 return ExitType::eExitTypeStop; 515 else { 516 // We don't know what this is. 517 return ExitType::eExitTypeInvalid; 518 } 519 } 520 521 static int convert_pid_status_to_return_code(int status) { 522 if (WIFEXITED(status)) 523 return WEXITSTATUS(status); 524 else if (WIFSIGNALED(status)) 525 return WTERMSIG(status); 526 else if (WIFSTOPPED(status)) 527 return WSTOPSIG(status); 528 else { 529 // We don't know what this is. 530 return ExitType::eExitTypeInvalid; 531 } 532 } 533 534 // Handles all waitpid events from the inferior process. 535 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 536 int signal, int status) { 537 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 538 539 // Certain activities differ based on whether the pid is the tid of the main 540 // thread. 541 const bool is_main_thread = (pid == GetID()); 542 543 // Handle when the thread exits. 544 if (exited) { 545 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 546 pid, is_main_thread ? "is" : "is not"); 547 548 // This is a thread that exited. Ensure we're not tracking it anymore. 549 const bool thread_found = StopTrackingThread(pid); 550 551 if (is_main_thread) { 552 // We only set the exit status and notify the delegate if we haven't 553 // already set the process 554 // state to an exited state. We normally should have received a SIGTRAP | 555 // (PTRACE_EVENT_EXIT << 8) 556 // for the main thread. 557 const bool already_notified = (GetState() == StateType::eStateExited) || 558 (GetState() == StateType::eStateCrashed); 559 if (!already_notified) { 560 LLDB_LOG( 561 log, 562 "tid = {0} handling main thread exit ({1}), expected exit state " 563 "already set but state was {2} instead, setting exit state now", 564 pid, 565 thread_found ? "stopped tracking thread metadata" 566 : "thread metadata not found", 567 GetState()); 568 // The main thread exited. We're done monitoring. Report to delegate. 569 SetExitStatus(convert_pid_status_to_exit_type(status), 570 convert_pid_status_to_return_code(status), nullptr, true); 571 572 // Notify delegate that our process has exited. 573 SetState(StateType::eStateExited, true); 574 } else 575 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 576 thread_found ? "stopped tracking thread metadata" 577 : "thread metadata not found"); 578 } else { 579 // Do we want to report to the delegate in this case? I think not. If 580 // this was an orderly thread exit, we would already have received the 581 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 582 // all-stop then. 583 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 584 thread_found ? "stopped tracking thread metadata" 585 : "thread metadata not found"); 586 } 587 return; 588 } 589 590 siginfo_t info; 591 const auto info_err = GetSignalInfo(pid, &info); 592 auto thread_sp = GetThreadByID(pid); 593 594 if (!thread_sp) { 595 // Normally, the only situation when we cannot find the thread is if we have 596 // just received a new thread notification. This is indicated by 597 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 598 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 599 600 if (info_err.Fail()) { 601 LLDB_LOG(log, 602 "(tid {0}) GetSignalInfo failed ({1}). " 603 "Ingoring this notification.", 604 pid, info_err); 605 return; 606 } 607 608 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 609 info.si_pid); 610 611 auto thread_sp = AddThread(pid); 612 // Resume the newly created thread. 613 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 614 ThreadWasCreated(*thread_sp); 615 return; 616 } 617 618 // Get details on the signal raised. 619 if (info_err.Success()) { 620 // We have retrieved the signal info. Dispatch appropriately. 621 if (info.si_signo == SIGTRAP) 622 MonitorSIGTRAP(info, *thread_sp); 623 else 624 MonitorSignal(info, *thread_sp, exited); 625 } else { 626 if (info_err.GetError() == EINVAL) { 627 // This is a group stop reception for this tid. 628 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 629 // into the tracee, triggering the group-stop mechanism. Normally 630 // receiving these would stop the process, pending a SIGCONT. Simulating 631 // this state in a debugger is hard and is generally not needed (one use 632 // case is debugging background task being managed by a shell). For 633 // general use, it is sufficient to stop the process in a signal-delivery 634 // stop which happens before the group stop. This done by MonitorSignal 635 // and works correctly for all signals. 636 LLDB_LOG(log, 637 "received a group stop for pid {0} tid {1}. Transparent " 638 "handling of group stops not supported, resuming the " 639 "thread.", 640 GetID(), pid); 641 ResumeThread(*thread_sp, thread_sp->GetState(), 642 LLDB_INVALID_SIGNAL_NUMBER); 643 } else { 644 // ptrace(GETSIGINFO) failed (but not due to group-stop). 645 646 // A return value of ESRCH means the thread/process is no longer on the 647 // system, so it was killed somehow outside of our control. Either way, 648 // we can't do anything with it anymore. 649 650 // Stop tracking the metadata for the thread since it's entirely off the 651 // system now. 652 const bool thread_found = StopTrackingThread(pid); 653 654 LLDB_LOG(log, 655 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 656 "status = {3}, main_thread = {4}, thread_found: {5}", 657 info_err, pid, signal, status, is_main_thread, thread_found); 658 659 if (is_main_thread) { 660 // Notify the delegate - our process is not available but appears to 661 // have been killed outside 662 // our control. Is eStateExited the right exit state in this case? 663 SetExitStatus(convert_pid_status_to_exit_type(status), 664 convert_pid_status_to_return_code(status), nullptr, true); 665 SetState(StateType::eStateExited, true); 666 } else { 667 // This thread was pulled out from underneath us. Anything to do here? 668 // Do we want to do an all stop? 669 LLDB_LOG(log, 670 "pid {0} tid {1} non-main thread exit occurred, didn't " 671 "tell delegate anything since thread disappeared out " 672 "from underneath us", 673 GetID(), pid); 674 } 675 } 676 } 677 } 678 679 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 680 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 681 682 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 683 684 if (new_thread_sp) { 685 // We are already tracking the thread - we got the event on the new thread 686 // (see 687 // MonitorSignal) before this one. We are done. 688 return; 689 } 690 691 // The thread is not tracked yet, let's wait for it to appear. 692 int status = -1; 693 ::pid_t wait_pid; 694 do { 695 LLDB_LOG(log, 696 "received thread creation event for tid {0}. tid not tracked " 697 "yet, waiting for thread to appear...", 698 tid); 699 wait_pid = waitpid(tid, &status, __WALL); 700 } while (wait_pid == -1 && errno == EINTR); 701 // Since we are waiting on a specific tid, this must be the creation event. 702 // But let's do some checks just in case. 703 if (wait_pid != tid) { 704 LLDB_LOG(log, 705 "waiting for tid {0} failed. Assuming the thread has " 706 "disappeared in the meantime", 707 tid); 708 // The only way I know of this could happen is if the whole process was 709 // SIGKILLed in the mean time. In any case, we can't do anything about that 710 // now. 711 return; 712 } 713 if (WIFEXITED(status)) { 714 LLDB_LOG(log, 715 "waiting for tid {0} returned an 'exited' event. Not " 716 "tracking the thread.", 717 tid); 718 // Also a very improbable event. 719 return; 720 } 721 722 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 723 new_thread_sp = AddThread(tid); 724 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 725 ThreadWasCreated(*new_thread_sp); 726 } 727 728 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 729 NativeThreadLinux &thread) { 730 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 731 const bool is_main_thread = (thread.GetID() == GetID()); 732 733 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 734 735 switch (info.si_code) { 736 // TODO: these two cases are required if we want to support tracing of the 737 // inferiors' children. We'd need this to debug a monitor. 738 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 739 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 740 741 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 742 // This is the notification on the parent thread which informs us of new 743 // thread 744 // creation. 745 // We don't want to do anything with the parent thread so we just resume it. 746 // In case we 747 // want to implement "break on thread creation" functionality, we would need 748 // to stop 749 // here. 750 751 unsigned long event_message = 0; 752 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 753 LLDB_LOG(log, 754 "pid {0} received thread creation event but " 755 "GetEventMessage failed so we don't know the new tid", 756 thread.GetID()); 757 } else 758 WaitForNewThread(event_message); 759 760 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 761 break; 762 } 763 764 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 765 NativeThreadLinuxSP main_thread_sp; 766 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 767 768 // Exec clears any pending notifications. 769 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 770 771 // Remove all but the main thread here. Linux fork creates a new process 772 // which only copies the main thread. 773 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 774 775 for (auto thread_sp : m_threads) { 776 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 777 if (is_main_thread) { 778 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 779 LLDB_LOG(log, "found main thread with tid {0}, keeping", 780 main_thread_sp->GetID()); 781 } else { 782 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 783 thread_sp->GetID()); 784 } 785 } 786 787 m_threads.clear(); 788 789 if (main_thread_sp) { 790 m_threads.push_back(main_thread_sp); 791 SetCurrentThreadID(main_thread_sp->GetID()); 792 main_thread_sp->SetStoppedByExec(); 793 } else { 794 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 795 LLDB_LOG(log, 796 "pid {0} no main thread found, discarded all threads, " 797 "we're in a no-thread state!", 798 GetID()); 799 } 800 801 // Tell coordinator about about the "new" (since exec) stopped main thread. 802 ThreadWasCreated(*main_thread_sp); 803 804 // Let our delegate know we have just exec'd. 805 NotifyDidExec(); 806 807 // If we have a main thread, indicate we are stopped. 808 assert(main_thread_sp && "exec called during ptraced process but no main " 809 "thread metadata tracked"); 810 811 // Let the process know we're stopped. 812 StopRunningThreads(main_thread_sp->GetID()); 813 814 break; 815 } 816 817 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 818 // The inferior process or one of its threads is about to exit. 819 // We don't want to do anything with the thread so we just resume it. In 820 // case we 821 // want to implement "break on thread exit" functionality, we would need to 822 // stop 823 // here. 824 825 unsigned long data = 0; 826 if (GetEventMessage(thread.GetID(), &data).Fail()) 827 data = -1; 828 829 LLDB_LOG(log, 830 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 831 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 832 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 833 is_main_thread); 834 835 if (is_main_thread) { 836 SetExitStatus(convert_pid_status_to_exit_type(data), 837 convert_pid_status_to_return_code(data), nullptr, true); 838 } 839 840 StateType state = thread.GetState(); 841 if (!StateIsRunningState(state)) { 842 // Due to a kernel bug, we may sometimes get this stop after the inferior 843 // gets a 844 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 845 // since normally, 846 // we should not be receiving any ptrace events while the inferior is 847 // stopped. This 848 // makes sure that the inferior is resumed and exits normally. 849 state = eStateRunning; 850 } 851 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 852 853 break; 854 } 855 856 case 0: 857 case TRAP_TRACE: // We receive this on single stepping. 858 case TRAP_HWBKPT: // We receive this on watchpoint hit 859 { 860 // If a watchpoint was hit, report it 861 uint32_t wp_index; 862 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex( 863 wp_index, (uintptr_t)info.si_addr); 864 if (error.Fail()) 865 LLDB_LOG(log, 866 "received error while checking for watchpoint hits, pid = " 867 "{0}, error = {1}", 868 thread.GetID(), error); 869 if (wp_index != LLDB_INVALID_INDEX32) { 870 MonitorWatchpoint(thread, wp_index); 871 break; 872 } 873 874 // Otherwise, report step over 875 MonitorTrace(thread); 876 break; 877 } 878 879 case SI_KERNEL: 880 #if defined __mips__ 881 // For mips there is no special signal for watchpoint 882 // So we check for watchpoint in kernel trap 883 { 884 // If a watchpoint was hit, report it 885 uint32_t wp_index; 886 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex( 887 wp_index, LLDB_INVALID_ADDRESS); 888 if (error.Fail()) 889 LLDB_LOG(log, 890 "received error while checking for watchpoint hits, pid = " 891 "{0}, error = {1}", 892 thread.GetID(), error); 893 if (wp_index != LLDB_INVALID_INDEX32) { 894 MonitorWatchpoint(thread, wp_index); 895 break; 896 } 897 } 898 // NO BREAK 899 #endif 900 case TRAP_BRKPT: 901 MonitorBreakpoint(thread); 902 break; 903 904 case SIGTRAP: 905 case (SIGTRAP | 0x80): 906 LLDB_LOG( 907 log, 908 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 909 info.si_code, GetID(), thread.GetID()); 910 911 // Ignore these signals until we know more about them. 912 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 913 break; 914 915 default: 916 LLDB_LOG( 917 log, 918 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 919 info.si_code, GetID(), thread.GetID()); 920 llvm_unreachable("Unexpected SIGTRAP code!"); 921 break; 922 } 923 } 924 925 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 926 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 927 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 928 929 // This thread is currently stopped. 930 thread.SetStoppedByTrace(); 931 932 StopRunningThreads(thread.GetID()); 933 } 934 935 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 936 Log *log( 937 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 938 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 939 940 // Mark the thread as stopped at breakpoint. 941 thread.SetStoppedByBreakpoint(); 942 Error error = FixupBreakpointPCAsNeeded(thread); 943 if (error.Fail()) 944 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 945 946 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 947 m_threads_stepping_with_breakpoint.end()) 948 thread.SetStoppedByTrace(); 949 950 StopRunningThreads(thread.GetID()); 951 } 952 953 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 954 uint32_t wp_index) { 955 Log *log( 956 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 957 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 958 thread.GetID(), wp_index); 959 960 // Mark the thread as stopped at watchpoint. 961 // The address is at (lldb::addr_t)info->si_addr if we need it. 962 thread.SetStoppedByWatchpoint(wp_index); 963 964 // We need to tell all other running threads before we notify the delegate 965 // about this stop. 966 StopRunningThreads(thread.GetID()); 967 } 968 969 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 970 NativeThreadLinux &thread, bool exited) { 971 const int signo = info.si_signo; 972 const bool is_from_llgs = info.si_pid == getpid(); 973 974 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 975 976 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 977 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 978 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 979 // 980 // IOW, user generated signals never generate what we consider to be a 981 // "crash". 982 // 983 // Similarly, ACK signals generated by this monitor. 984 985 // Handle the signal. 986 LLDB_LOG(log, 987 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 988 "waitpid pid = {4})", 989 Host::GetSignalAsCString(signo), signo, info.si_code, 990 thread.GetID()); 991 992 // Check for thread stop notification. 993 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 994 // This is a tgkill()-based stop. 995 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 996 997 // Check that we're not already marked with a stop reason. 998 // Note this thread really shouldn't already be marked as stopped - if we 999 // were, that would imply that the kernel signaled us with the thread 1000 // stopping which we handled and marked as stopped, and that, without an 1001 // intervening resume, we received another stop. It is more likely that we 1002 // are missing the marking of a run state somewhere if we find that the 1003 // thread was marked as stopped. 1004 const StateType thread_state = thread.GetState(); 1005 if (!StateIsStoppedState(thread_state, false)) { 1006 // An inferior thread has stopped because of a SIGSTOP we have sent it. 1007 // Generally, these are not important stops and we don't want to report 1008 // them as they are just used to stop other threads when one thread (the 1009 // one with the *real* stop reason) hits a breakpoint (watchpoint, 1010 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 1011 // the real stop reason, so we leave the signal intact if this is the 1012 // thread that was chosen as the triggering thread. 1013 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1014 if (m_pending_notification_tid == thread.GetID()) 1015 thread.SetStoppedBySignal(SIGSTOP, &info); 1016 else 1017 thread.SetStoppedWithNoReason(); 1018 1019 SetCurrentThreadID(thread.GetID()); 1020 SignalIfAllThreadsStopped(); 1021 } else { 1022 // We can end up here if stop was initiated by LLGS but by this time a 1023 // thread stop has occurred - maybe initiated by another event. 1024 Error error = ResumeThread(thread, thread.GetState(), 0); 1025 if (error.Fail()) 1026 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 1027 error); 1028 } 1029 } else { 1030 LLDB_LOG(log, 1031 "pid {0} tid {1}, thread was already marked as a stopped " 1032 "state (state={2}), leaving stop signal as is", 1033 GetID(), thread.GetID(), thread_state); 1034 SignalIfAllThreadsStopped(); 1035 } 1036 1037 // Done handling. 1038 return; 1039 } 1040 1041 // This thread is stopped. 1042 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 1043 thread.SetStoppedBySignal(signo, &info); 1044 1045 // Send a stop to the debugger after we get all other threads to stop. 1046 StopRunningThreads(thread.GetID()); 1047 } 1048 1049 namespace { 1050 1051 struct EmulatorBaton { 1052 NativeProcessLinux *m_process; 1053 NativeRegisterContext *m_reg_context; 1054 1055 // eRegisterKindDWARF -> RegsiterValue 1056 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1057 1058 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 1059 : m_process(process), m_reg_context(reg_context) {} 1060 }; 1061 1062 } // anonymous namespace 1063 1064 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 1065 const EmulateInstruction::Context &context, 1066 lldb::addr_t addr, void *dst, size_t length) { 1067 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1068 1069 size_t bytes_read; 1070 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1071 return bytes_read; 1072 } 1073 1074 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 1075 const RegisterInfo *reg_info, 1076 RegisterValue ®_value) { 1077 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1078 1079 auto it = emulator_baton->m_register_values.find( 1080 reg_info->kinds[eRegisterKindDWARF]); 1081 if (it != emulator_baton->m_register_values.end()) { 1082 reg_value = it->second; 1083 return true; 1084 } 1085 1086 // The emulator only fill in the dwarf regsiter numbers (and in some case 1087 // the generic register numbers). Get the full register info from the 1088 // register context based on the dwarf register numbers. 1089 const RegisterInfo *full_reg_info = 1090 emulator_baton->m_reg_context->GetRegisterInfo( 1091 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1092 1093 Error error = 1094 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1095 if (error.Success()) 1096 return true; 1097 1098 return false; 1099 } 1100 1101 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 1102 const EmulateInstruction::Context &context, 1103 const RegisterInfo *reg_info, 1104 const RegisterValue ®_value) { 1105 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1106 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 1107 reg_value; 1108 return true; 1109 } 1110 1111 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1112 const EmulateInstruction::Context &context, 1113 lldb::addr_t addr, const void *dst, 1114 size_t length) { 1115 return length; 1116 } 1117 1118 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1119 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1120 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1121 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1122 LLDB_INVALID_ADDRESS); 1123 } 1124 1125 Error NativeProcessLinux::SetupSoftwareSingleStepping( 1126 NativeThreadLinux &thread) { 1127 Error error; 1128 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1129 1130 std::unique_ptr<EmulateInstruction> emulator_ap( 1131 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1132 nullptr)); 1133 1134 if (emulator_ap == nullptr) 1135 return Error("Instruction emulator not found!"); 1136 1137 EmulatorBaton baton(this, register_context_sp.get()); 1138 emulator_ap->SetBaton(&baton); 1139 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1140 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1141 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1142 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1143 1144 if (!emulator_ap->ReadInstruction()) 1145 return Error("Read instruction failed!"); 1146 1147 bool emulation_result = 1148 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1149 1150 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1151 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1152 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1153 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1154 1155 auto pc_it = 1156 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1157 auto flags_it = 1158 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1159 1160 lldb::addr_t next_pc; 1161 lldb::addr_t next_flags; 1162 if (emulation_result) { 1163 assert(pc_it != baton.m_register_values.end() && 1164 "Emulation was successfull but PC wasn't updated"); 1165 next_pc = pc_it->second.GetAsUInt64(); 1166 1167 if (flags_it != baton.m_register_values.end()) 1168 next_flags = flags_it->second.GetAsUInt64(); 1169 else 1170 next_flags = ReadFlags(register_context_sp.get()); 1171 } else if (pc_it == baton.m_register_values.end()) { 1172 // Emulate instruction failed and it haven't changed PC. Advance PC 1173 // with the size of the current opcode because the emulation of all 1174 // PC modifying instruction should be successful. The failure most 1175 // likely caused by a not supported instruction which don't modify PC. 1176 next_pc = 1177 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1178 next_flags = ReadFlags(register_context_sp.get()); 1179 } else { 1180 // The instruction emulation failed after it modified the PC. It is an 1181 // unknown error where we can't continue because the next instruction is 1182 // modifying the PC but we don't know how. 1183 return Error("Instruction emulation failed unexpectedly."); 1184 } 1185 1186 if (m_arch.GetMachine() == llvm::Triple::arm) { 1187 if (next_flags & 0x20) { 1188 // Thumb mode 1189 error = SetSoftwareBreakpoint(next_pc, 2); 1190 } else { 1191 // Arm mode 1192 error = SetSoftwareBreakpoint(next_pc, 4); 1193 } 1194 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1195 m_arch.GetMachine() == llvm::Triple::mips64el || 1196 m_arch.GetMachine() == llvm::Triple::mips || 1197 m_arch.GetMachine() == llvm::Triple::mipsel) 1198 error = SetSoftwareBreakpoint(next_pc, 4); 1199 else { 1200 // No size hint is given for the next breakpoint 1201 error = SetSoftwareBreakpoint(next_pc, 0); 1202 } 1203 1204 // If setting the breakpoint fails because next_pc is out of 1205 // the address space, ignore it and let the debugee segfault. 1206 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1207 return Error(); 1208 } else if (error.Fail()) 1209 return error; 1210 1211 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1212 1213 return Error(); 1214 } 1215 1216 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1217 if (m_arch.GetMachine() == llvm::Triple::arm || 1218 m_arch.GetMachine() == llvm::Triple::mips64 || 1219 m_arch.GetMachine() == llvm::Triple::mips64el || 1220 m_arch.GetMachine() == llvm::Triple::mips || 1221 m_arch.GetMachine() == llvm::Triple::mipsel) 1222 return false; 1223 return true; 1224 } 1225 1226 Error NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1227 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1228 LLDB_LOG(log, "pid {0}", GetID()); 1229 1230 bool software_single_step = !SupportHardwareSingleStepping(); 1231 1232 if (software_single_step) { 1233 for (auto thread_sp : m_threads) { 1234 assert(thread_sp && "thread list should not contain NULL threads"); 1235 1236 const ResumeAction *const action = 1237 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1238 if (action == nullptr) 1239 continue; 1240 1241 if (action->state == eStateStepping) { 1242 Error error = SetupSoftwareSingleStepping( 1243 static_cast<NativeThreadLinux &>(*thread_sp)); 1244 if (error.Fail()) 1245 return error; 1246 } 1247 } 1248 } 1249 1250 for (auto thread_sp : m_threads) { 1251 assert(thread_sp && "thread list should not contain NULL threads"); 1252 1253 const ResumeAction *const action = 1254 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1255 1256 if (action == nullptr) { 1257 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1258 thread_sp->GetID()); 1259 continue; 1260 } 1261 1262 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1263 action->state, GetID(), thread_sp->GetID()); 1264 1265 switch (action->state) { 1266 case eStateRunning: 1267 case eStateStepping: { 1268 // Run the thread, possibly feeding it the signal. 1269 const int signo = action->signal; 1270 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1271 signo); 1272 break; 1273 } 1274 1275 case eStateSuspended: 1276 case eStateStopped: 1277 llvm_unreachable("Unexpected state"); 1278 1279 default: 1280 return Error("NativeProcessLinux::%s (): unexpected state %s specified " 1281 "for pid %" PRIu64 ", tid %" PRIu64, 1282 __FUNCTION__, StateAsCString(action->state), GetID(), 1283 thread_sp->GetID()); 1284 } 1285 } 1286 1287 return Error(); 1288 } 1289 1290 Error NativeProcessLinux::Halt() { 1291 Error error; 1292 1293 if (kill(GetID(), SIGSTOP) != 0) 1294 error.SetErrorToErrno(); 1295 1296 return error; 1297 } 1298 1299 Error NativeProcessLinux::Detach() { 1300 Error error; 1301 1302 // Stop monitoring the inferior. 1303 m_sigchld_handle.reset(); 1304 1305 // Tell ptrace to detach from the process. 1306 if (GetID() == LLDB_INVALID_PROCESS_ID) 1307 return error; 1308 1309 for (auto thread_sp : m_threads) { 1310 Error e = Detach(thread_sp->GetID()); 1311 if (e.Fail()) 1312 error = 1313 e; // Save the error, but still attempt to detach from other threads. 1314 } 1315 1316 return error; 1317 } 1318 1319 Error NativeProcessLinux::Signal(int signo) { 1320 Error error; 1321 1322 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1323 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1324 Host::GetSignalAsCString(signo), GetID()); 1325 1326 if (kill(GetID(), signo)) 1327 error.SetErrorToErrno(); 1328 1329 return error; 1330 } 1331 1332 Error NativeProcessLinux::Interrupt() { 1333 // Pick a running thread (or if none, a not-dead stopped thread) as 1334 // the chosen thread that will be the stop-reason thread. 1335 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1336 1337 NativeThreadProtocolSP running_thread_sp; 1338 NativeThreadProtocolSP stopped_thread_sp; 1339 1340 LLDB_LOG(log, "selecting running thread for interrupt target"); 1341 for (auto thread_sp : m_threads) { 1342 // The thread shouldn't be null but lets just cover that here. 1343 if (!thread_sp) 1344 continue; 1345 1346 // If we have a running or stepping thread, we'll call that the 1347 // target of the interrupt. 1348 const auto thread_state = thread_sp->GetState(); 1349 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1350 running_thread_sp = thread_sp; 1351 break; 1352 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1353 // Remember the first non-dead stopped thread. We'll use that as a backup 1354 // if there are no running threads. 1355 stopped_thread_sp = thread_sp; 1356 } 1357 } 1358 1359 if (!running_thread_sp && !stopped_thread_sp) { 1360 Error error("found no running/stepping or live stopped threads as target " 1361 "for interrupt"); 1362 LLDB_LOG(log, "skipping due to error: {0}", error); 1363 1364 return error; 1365 } 1366 1367 NativeThreadProtocolSP deferred_signal_thread_sp = 1368 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1369 1370 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1371 running_thread_sp ? "running" : "stopped", 1372 deferred_signal_thread_sp->GetID()); 1373 1374 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1375 1376 return Error(); 1377 } 1378 1379 Error NativeProcessLinux::Kill() { 1380 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1381 LLDB_LOG(log, "pid {0}", GetID()); 1382 1383 Error error; 1384 1385 switch (m_state) { 1386 case StateType::eStateInvalid: 1387 case StateType::eStateExited: 1388 case StateType::eStateCrashed: 1389 case StateType::eStateDetached: 1390 case StateType::eStateUnloaded: 1391 // Nothing to do - the process is already dead. 1392 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1393 m_state); 1394 return error; 1395 1396 case StateType::eStateConnected: 1397 case StateType::eStateAttaching: 1398 case StateType::eStateLaunching: 1399 case StateType::eStateStopped: 1400 case StateType::eStateRunning: 1401 case StateType::eStateStepping: 1402 case StateType::eStateSuspended: 1403 // We can try to kill a process in these states. 1404 break; 1405 } 1406 1407 if (kill(GetID(), SIGKILL) != 0) { 1408 error.SetErrorToErrno(); 1409 return error; 1410 } 1411 1412 return error; 1413 } 1414 1415 static Error 1416 ParseMemoryRegionInfoFromProcMapsLine(const std::string &maps_line, 1417 MemoryRegionInfo &memory_region_info) { 1418 memory_region_info.Clear(); 1419 1420 StringExtractor line_extractor(maps_line.c_str()); 1421 1422 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1423 // pathname 1424 // perms: rwxp (letter is present if set, '-' if not, final character is 1425 // p=private, s=shared). 1426 1427 // Parse out the starting address 1428 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1429 1430 // Parse out hyphen separating start and end address from range. 1431 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1432 return Error( 1433 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1434 1435 // Parse out the ending address 1436 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1437 1438 // Parse out the space after the address. 1439 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1440 return Error("malformed /proc/{pid}/maps entry, missing space after range"); 1441 1442 // Save the range. 1443 memory_region_info.GetRange().SetRangeBase(start_address); 1444 memory_region_info.GetRange().SetRangeEnd(end_address); 1445 1446 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1447 // process. 1448 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1449 1450 // Parse out each permission entry. 1451 if (line_extractor.GetBytesLeft() < 4) 1452 return Error("malformed /proc/{pid}/maps entry, missing some portion of " 1453 "permissions"); 1454 1455 // Handle read permission. 1456 const char read_perm_char = line_extractor.GetChar(); 1457 if (read_perm_char == 'r') 1458 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1459 else if (read_perm_char == '-') 1460 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1461 else 1462 return Error("unexpected /proc/{pid}/maps read permission char"); 1463 1464 // Handle write permission. 1465 const char write_perm_char = line_extractor.GetChar(); 1466 if (write_perm_char == 'w') 1467 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1468 else if (write_perm_char == '-') 1469 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1470 else 1471 return Error("unexpected /proc/{pid}/maps write permission char"); 1472 1473 // Handle execute permission. 1474 const char exec_perm_char = line_extractor.GetChar(); 1475 if (exec_perm_char == 'x') 1476 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1477 else if (exec_perm_char == '-') 1478 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1479 else 1480 return Error("unexpected /proc/{pid}/maps exec permission char"); 1481 1482 line_extractor.GetChar(); // Read the private bit 1483 line_extractor.SkipSpaces(); // Skip the separator 1484 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1485 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1486 line_extractor.GetChar(); // Read the device id separator 1487 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1488 line_extractor.SkipSpaces(); // Skip the separator 1489 line_extractor.GetU64(0, 10); // Read the inode number 1490 1491 line_extractor.SkipSpaces(); 1492 const char *name = line_extractor.Peek(); 1493 if (name) 1494 memory_region_info.SetName(name); 1495 1496 return Error(); 1497 } 1498 1499 Error NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1500 MemoryRegionInfo &range_info) { 1501 // FIXME review that the final memory region returned extends to the end of 1502 // the virtual address space, 1503 // with no perms if it is not mapped. 1504 1505 // Use an approach that reads memory regions from /proc/{pid}/maps. 1506 // Assume proc maps entries are in ascending order. 1507 // FIXME assert if we find differently. 1508 1509 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1510 // We're done. 1511 return Error("unsupported"); 1512 } 1513 1514 Error error = PopulateMemoryRegionCache(); 1515 if (error.Fail()) { 1516 return error; 1517 } 1518 1519 lldb::addr_t prev_base_address = 0; 1520 1521 // FIXME start by finding the last region that is <= target address using 1522 // binary search. Data is sorted. 1523 // There can be a ton of regions on pthreads apps with lots of threads. 1524 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1525 ++it) { 1526 MemoryRegionInfo &proc_entry_info = it->first; 1527 1528 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1529 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1530 "descending /proc/pid/maps entries detected, unexpected"); 1531 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1532 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1533 1534 // If the target address comes before this entry, indicate distance to next 1535 // region. 1536 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1537 range_info.GetRange().SetRangeBase(load_addr); 1538 range_info.GetRange().SetByteSize( 1539 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1540 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1541 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1542 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1543 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1544 1545 return error; 1546 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1547 // The target address is within the memory region we're processing here. 1548 range_info = proc_entry_info; 1549 return error; 1550 } 1551 1552 // The target memory address comes somewhere after the region we just 1553 // parsed. 1554 } 1555 1556 // If we made it here, we didn't find an entry that contained the given 1557 // address. Return the 1558 // load_addr as start and the amount of bytes betwwen load address and the end 1559 // of the memory as 1560 // size. 1561 range_info.GetRange().SetRangeBase(load_addr); 1562 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1563 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1564 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1565 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1566 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1567 return error; 1568 } 1569 1570 Error NativeProcessLinux::PopulateMemoryRegionCache() { 1571 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1572 1573 // If our cache is empty, pull the latest. There should always be at least 1574 // one memory region if memory region handling is supported. 1575 if (!m_mem_region_cache.empty()) { 1576 LLDB_LOG(log, "reusing {0} cached memory region entries", 1577 m_mem_region_cache.size()); 1578 return Error(); 1579 } 1580 1581 Error error = ProcFileReader::ProcessLineByLine( 1582 GetID(), "maps", [&](const std::string &line) -> bool { 1583 MemoryRegionInfo info; 1584 const Error parse_error = 1585 ParseMemoryRegionInfoFromProcMapsLine(line, info); 1586 if (parse_error.Success()) { 1587 m_mem_region_cache.emplace_back( 1588 info, FileSpec(info.GetName().GetCString(), true)); 1589 return true; 1590 } else { 1591 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", line, 1592 parse_error); 1593 return false; 1594 } 1595 }); 1596 1597 // If we had an error, we'll mark unsupported. 1598 if (error.Fail()) { 1599 m_supports_mem_region = LazyBool::eLazyBoolNo; 1600 return error; 1601 } else if (m_mem_region_cache.empty()) { 1602 // No entries after attempting to read them. This shouldn't happen if 1603 // /proc/{pid}/maps is supported. Assume we don't support map entries 1604 // via procfs. 1605 LLDB_LOG(log, 1606 "failed to find any procfs maps entries, assuming no support " 1607 "for memory region metadata retrieval"); 1608 m_supports_mem_region = LazyBool::eLazyBoolNo; 1609 error.SetErrorString("not supported"); 1610 return error; 1611 } 1612 1613 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1614 m_mem_region_cache.size(), GetID()); 1615 1616 // We support memory retrieval, remember that. 1617 m_supports_mem_region = LazyBool::eLazyBoolYes; 1618 return Error(); 1619 } 1620 1621 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1622 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1623 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1624 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1625 m_mem_region_cache.size()); 1626 m_mem_region_cache.clear(); 1627 } 1628 1629 Error NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1630 lldb::addr_t &addr) { 1631 // FIXME implementing this requires the equivalent of 1632 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1633 // functional ThreadPlans working with Native*Protocol. 1634 #if 1 1635 return Error("not implemented yet"); 1636 #else 1637 addr = LLDB_INVALID_ADDRESS; 1638 1639 unsigned prot = 0; 1640 if (permissions & lldb::ePermissionsReadable) 1641 prot |= eMmapProtRead; 1642 if (permissions & lldb::ePermissionsWritable) 1643 prot |= eMmapProtWrite; 1644 if (permissions & lldb::ePermissionsExecutable) 1645 prot |= eMmapProtExec; 1646 1647 // TODO implement this directly in NativeProcessLinux 1648 // (and lift to NativeProcessPOSIX if/when that class is 1649 // refactored out). 1650 if (InferiorCallMmap(this, addr, 0, size, prot, 1651 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1652 m_addr_to_mmap_size[addr] = size; 1653 return Error(); 1654 } else { 1655 addr = LLDB_INVALID_ADDRESS; 1656 return Error("unable to allocate %" PRIu64 1657 " bytes of memory with permissions %s", 1658 size, GetPermissionsAsCString(permissions)); 1659 } 1660 #endif 1661 } 1662 1663 Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1664 // FIXME see comments in AllocateMemory - required lower-level 1665 // bits not in place yet (ThreadPlans) 1666 return Error("not implemented"); 1667 } 1668 1669 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1670 // punt on this for now 1671 return LLDB_INVALID_ADDRESS; 1672 } 1673 1674 size_t NativeProcessLinux::UpdateThreads() { 1675 // The NativeProcessLinux monitoring threads are always up to date 1676 // with respect to thread state and they keep the thread list 1677 // populated properly. All this method needs to do is return the 1678 // thread count. 1679 return m_threads.size(); 1680 } 1681 1682 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1683 arch = m_arch; 1684 return true; 1685 } 1686 1687 Error NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1688 uint32_t &actual_opcode_size) { 1689 // FIXME put this behind a breakpoint protocol class that can be 1690 // set per architecture. Need ARM, MIPS support here. 1691 static const uint8_t g_i386_opcode[] = {0xCC}; 1692 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1693 1694 switch (m_arch.GetMachine()) { 1695 case llvm::Triple::x86: 1696 case llvm::Triple::x86_64: 1697 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1698 return Error(); 1699 1700 case llvm::Triple::systemz: 1701 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1702 return Error(); 1703 1704 case llvm::Triple::arm: 1705 case llvm::Triple::aarch64: 1706 case llvm::Triple::mips64: 1707 case llvm::Triple::mips64el: 1708 case llvm::Triple::mips: 1709 case llvm::Triple::mipsel: 1710 // On these architectures the PC don't get updated for breakpoint hits 1711 actual_opcode_size = 0; 1712 return Error(); 1713 1714 default: 1715 assert(false && "CPU type not supported!"); 1716 return Error("CPU type not supported"); 1717 } 1718 } 1719 1720 Error NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1721 bool hardware) { 1722 if (hardware) 1723 return Error("NativeProcessLinux does not support hardware breakpoints"); 1724 else 1725 return SetSoftwareBreakpoint(addr, size); 1726 } 1727 1728 Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1729 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1730 const uint8_t *&trap_opcode_bytes) { 1731 // FIXME put this behind a breakpoint protocol class that can be set per 1732 // architecture. Need MIPS support here. 1733 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1734 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1735 // linux kernel does otherwise. 1736 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1737 static const uint8_t g_i386_opcode[] = {0xCC}; 1738 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1739 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1740 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1741 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1742 1743 switch (m_arch.GetMachine()) { 1744 case llvm::Triple::aarch64: 1745 trap_opcode_bytes = g_aarch64_opcode; 1746 actual_opcode_size = sizeof(g_aarch64_opcode); 1747 return Error(); 1748 1749 case llvm::Triple::arm: 1750 switch (trap_opcode_size_hint) { 1751 case 2: 1752 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1753 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1754 return Error(); 1755 case 4: 1756 trap_opcode_bytes = g_arm_breakpoint_opcode; 1757 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1758 return Error(); 1759 default: 1760 assert(false && "Unrecognised trap opcode size hint!"); 1761 return Error("Unrecognised trap opcode size hint!"); 1762 } 1763 1764 case llvm::Triple::x86: 1765 case llvm::Triple::x86_64: 1766 trap_opcode_bytes = g_i386_opcode; 1767 actual_opcode_size = sizeof(g_i386_opcode); 1768 return Error(); 1769 1770 case llvm::Triple::mips: 1771 case llvm::Triple::mips64: 1772 trap_opcode_bytes = g_mips64_opcode; 1773 actual_opcode_size = sizeof(g_mips64_opcode); 1774 return Error(); 1775 1776 case llvm::Triple::mipsel: 1777 case llvm::Triple::mips64el: 1778 trap_opcode_bytes = g_mips64el_opcode; 1779 actual_opcode_size = sizeof(g_mips64el_opcode); 1780 return Error(); 1781 1782 case llvm::Triple::systemz: 1783 trap_opcode_bytes = g_s390x_opcode; 1784 actual_opcode_size = sizeof(g_s390x_opcode); 1785 return Error(); 1786 1787 default: 1788 assert(false && "CPU type not supported!"); 1789 return Error("CPU type not supported"); 1790 } 1791 } 1792 1793 #if 0 1794 ProcessMessage::CrashReason 1795 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1796 { 1797 ProcessMessage::CrashReason reason; 1798 assert(info->si_signo == SIGSEGV); 1799 1800 reason = ProcessMessage::eInvalidCrashReason; 1801 1802 switch (info->si_code) 1803 { 1804 default: 1805 assert(false && "unexpected si_code for SIGSEGV"); 1806 break; 1807 case SI_KERNEL: 1808 // Linux will occasionally send spurious SI_KERNEL codes. 1809 // (this is poorly documented in sigaction) 1810 // One way to get this is via unaligned SIMD loads. 1811 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1812 break; 1813 case SEGV_MAPERR: 1814 reason = ProcessMessage::eInvalidAddress; 1815 break; 1816 case SEGV_ACCERR: 1817 reason = ProcessMessage::ePrivilegedAddress; 1818 break; 1819 } 1820 1821 return reason; 1822 } 1823 #endif 1824 1825 #if 0 1826 ProcessMessage::CrashReason 1827 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1828 { 1829 ProcessMessage::CrashReason reason; 1830 assert(info->si_signo == SIGILL); 1831 1832 reason = ProcessMessage::eInvalidCrashReason; 1833 1834 switch (info->si_code) 1835 { 1836 default: 1837 assert(false && "unexpected si_code for SIGILL"); 1838 break; 1839 case ILL_ILLOPC: 1840 reason = ProcessMessage::eIllegalOpcode; 1841 break; 1842 case ILL_ILLOPN: 1843 reason = ProcessMessage::eIllegalOperand; 1844 break; 1845 case ILL_ILLADR: 1846 reason = ProcessMessage::eIllegalAddressingMode; 1847 break; 1848 case ILL_ILLTRP: 1849 reason = ProcessMessage::eIllegalTrap; 1850 break; 1851 case ILL_PRVOPC: 1852 reason = ProcessMessage::ePrivilegedOpcode; 1853 break; 1854 case ILL_PRVREG: 1855 reason = ProcessMessage::ePrivilegedRegister; 1856 break; 1857 case ILL_COPROC: 1858 reason = ProcessMessage::eCoprocessorError; 1859 break; 1860 case ILL_BADSTK: 1861 reason = ProcessMessage::eInternalStackError; 1862 break; 1863 } 1864 1865 return reason; 1866 } 1867 #endif 1868 1869 #if 0 1870 ProcessMessage::CrashReason 1871 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1872 { 1873 ProcessMessage::CrashReason reason; 1874 assert(info->si_signo == SIGFPE); 1875 1876 reason = ProcessMessage::eInvalidCrashReason; 1877 1878 switch (info->si_code) 1879 { 1880 default: 1881 assert(false && "unexpected si_code for SIGFPE"); 1882 break; 1883 case FPE_INTDIV: 1884 reason = ProcessMessage::eIntegerDivideByZero; 1885 break; 1886 case FPE_INTOVF: 1887 reason = ProcessMessage::eIntegerOverflow; 1888 break; 1889 case FPE_FLTDIV: 1890 reason = ProcessMessage::eFloatDivideByZero; 1891 break; 1892 case FPE_FLTOVF: 1893 reason = ProcessMessage::eFloatOverflow; 1894 break; 1895 case FPE_FLTUND: 1896 reason = ProcessMessage::eFloatUnderflow; 1897 break; 1898 case FPE_FLTRES: 1899 reason = ProcessMessage::eFloatInexactResult; 1900 break; 1901 case FPE_FLTINV: 1902 reason = ProcessMessage::eFloatInvalidOperation; 1903 break; 1904 case FPE_FLTSUB: 1905 reason = ProcessMessage::eFloatSubscriptRange; 1906 break; 1907 } 1908 1909 return reason; 1910 } 1911 #endif 1912 1913 #if 0 1914 ProcessMessage::CrashReason 1915 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1916 { 1917 ProcessMessage::CrashReason reason; 1918 assert(info->si_signo == SIGBUS); 1919 1920 reason = ProcessMessage::eInvalidCrashReason; 1921 1922 switch (info->si_code) 1923 { 1924 default: 1925 assert(false && "unexpected si_code for SIGBUS"); 1926 break; 1927 case BUS_ADRALN: 1928 reason = ProcessMessage::eIllegalAlignment; 1929 break; 1930 case BUS_ADRERR: 1931 reason = ProcessMessage::eIllegalAddress; 1932 break; 1933 case BUS_OBJERR: 1934 reason = ProcessMessage::eHardwareError; 1935 break; 1936 } 1937 1938 return reason; 1939 } 1940 #endif 1941 1942 Error NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1943 size_t &bytes_read) { 1944 if (ProcessVmReadvSupported()) { 1945 // The process_vm_readv path is about 50 times faster than ptrace api. We 1946 // want to use 1947 // this syscall if it is supported. 1948 1949 const ::pid_t pid = GetID(); 1950 1951 struct iovec local_iov, remote_iov; 1952 local_iov.iov_base = buf; 1953 local_iov.iov_len = size; 1954 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1955 remote_iov.iov_len = size; 1956 1957 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1958 const bool success = bytes_read == size; 1959 1960 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1961 LLDB_LOG(log, 1962 "using process_vm_readv to read {0} bytes from inferior " 1963 "address {1:x}: {2}", 1964 size, addr, success ? "Success" : strerror(errno)); 1965 1966 if (success) 1967 return Error(); 1968 // else the call failed for some reason, let's retry the read using ptrace 1969 // api. 1970 } 1971 1972 unsigned char *dst = static_cast<unsigned char *>(buf); 1973 size_t remainder; 1974 long data; 1975 1976 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1977 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1978 1979 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1980 Error error = NativeProcessLinux::PtraceWrapper( 1981 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1982 if (error.Fail()) 1983 return error; 1984 1985 remainder = size - bytes_read; 1986 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1987 1988 // Copy the data into our buffer 1989 memcpy(dst, &data, remainder); 1990 1991 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1992 addr += k_ptrace_word_size; 1993 dst += k_ptrace_word_size; 1994 } 1995 return Error(); 1996 } 1997 1998 Error NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1999 size_t size, 2000 size_t &bytes_read) { 2001 Error error = ReadMemory(addr, buf, size, bytes_read); 2002 if (error.Fail()) 2003 return error; 2004 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2005 } 2006 2007 Error NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 2008 size_t size, size_t &bytes_written) { 2009 const unsigned char *src = static_cast<const unsigned char *>(buf); 2010 size_t remainder; 2011 Error error; 2012 2013 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2014 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2015 2016 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 2017 remainder = size - bytes_written; 2018 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2019 2020 if (remainder == k_ptrace_word_size) { 2021 unsigned long data = 0; 2022 memcpy(&data, src, k_ptrace_word_size); 2023 2024 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2025 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 2026 (void *)addr, (void *)data); 2027 if (error.Fail()) 2028 return error; 2029 } else { 2030 unsigned char buff[8]; 2031 size_t bytes_read; 2032 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2033 if (error.Fail()) 2034 return error; 2035 2036 memcpy(buff, src, remainder); 2037 2038 size_t bytes_written_rec; 2039 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2040 if (error.Fail()) 2041 return error; 2042 2043 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 2044 *(unsigned long *)buff); 2045 } 2046 2047 addr += k_ptrace_word_size; 2048 src += k_ptrace_word_size; 2049 } 2050 return error; 2051 } 2052 2053 Error NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 2054 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2055 } 2056 2057 Error NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 2058 unsigned long *message) { 2059 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2060 } 2061 2062 Error NativeProcessLinux::Detach(lldb::tid_t tid) { 2063 if (tid == LLDB_INVALID_THREAD_ID) 2064 return Error(); 2065 2066 return PtraceWrapper(PTRACE_DETACH, tid); 2067 } 2068 2069 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 2070 for (auto thread_sp : m_threads) { 2071 assert(thread_sp && "thread list should not contain NULL threads"); 2072 if (thread_sp->GetID() == thread_id) { 2073 // We have this thread. 2074 return true; 2075 } 2076 } 2077 2078 // We don't have this thread. 2079 return false; 2080 } 2081 2082 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 2083 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2084 LLDB_LOG(log, "tid: {0})", thread_id); 2085 2086 bool found = false; 2087 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 2088 if (*it && ((*it)->GetID() == thread_id)) { 2089 m_threads.erase(it); 2090 found = true; 2091 break; 2092 } 2093 } 2094 2095 SignalIfAllThreadsStopped(); 2096 return found; 2097 } 2098 2099 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2100 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2101 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2102 2103 assert(!HasThreadNoLock(thread_id) && 2104 "attempted to add a thread by id that already exists"); 2105 2106 // If this is the first thread, save it as the current thread 2107 if (m_threads.empty()) 2108 SetCurrentThreadID(thread_id); 2109 2110 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2111 m_threads.push_back(thread_sp); 2112 return thread_sp; 2113 } 2114 2115 Error NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2116 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2117 2118 Error error; 2119 2120 // Find out the size of a breakpoint (might depend on where we are in the 2121 // code). 2122 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2123 if (!context_sp) { 2124 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2125 LLDB_LOG(log, "failed: {0}", error); 2126 return error; 2127 } 2128 2129 uint32_t breakpoint_size = 0; 2130 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2131 if (error.Fail()) { 2132 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2133 return error; 2134 } else 2135 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2136 2137 // First try probing for a breakpoint at a software breakpoint location: PC - 2138 // breakpoint size. 2139 const lldb::addr_t initial_pc_addr = 2140 context_sp->GetPCfromBreakpointLocation(); 2141 lldb::addr_t breakpoint_addr = initial_pc_addr; 2142 if (breakpoint_size > 0) { 2143 // Do not allow breakpoint probe to wrap around. 2144 if (breakpoint_addr >= breakpoint_size) 2145 breakpoint_addr -= breakpoint_size; 2146 } 2147 2148 // Check if we stopped because of a breakpoint. 2149 NativeBreakpointSP breakpoint_sp; 2150 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2151 if (!error.Success() || !breakpoint_sp) { 2152 // We didn't find one at a software probe location. Nothing to do. 2153 LLDB_LOG(log, 2154 "pid {0} no lldb breakpoint found at current pc with " 2155 "adjustment: {1}", 2156 GetID(), breakpoint_addr); 2157 return Error(); 2158 } 2159 2160 // If the breakpoint is not a software breakpoint, nothing to do. 2161 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2162 LLDB_LOG( 2163 log, 2164 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2165 GetID(), breakpoint_addr); 2166 return Error(); 2167 } 2168 2169 // 2170 // We have a software breakpoint and need to adjust the PC. 2171 // 2172 2173 // Sanity check. 2174 if (breakpoint_size == 0) { 2175 // Nothing to do! How did we get here? 2176 LLDB_LOG(log, 2177 "pid {0} breakpoint found at {1:x}, it is software, but the " 2178 "size is zero, nothing to do (unexpected)", 2179 GetID(), breakpoint_addr); 2180 return Error(); 2181 } 2182 2183 // Change the program counter. 2184 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2185 thread.GetID(), initial_pc_addr, breakpoint_addr); 2186 2187 error = context_sp->SetPC(breakpoint_addr); 2188 if (error.Fail()) { 2189 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2190 thread.GetID(), error); 2191 return error; 2192 } 2193 2194 return error; 2195 } 2196 2197 Error NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2198 FileSpec &file_spec) { 2199 Error error = PopulateMemoryRegionCache(); 2200 if (error.Fail()) 2201 return error; 2202 2203 FileSpec module_file_spec(module_path, true); 2204 2205 file_spec.Clear(); 2206 for (const auto &it : m_mem_region_cache) { 2207 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2208 file_spec = it.second; 2209 return Error(); 2210 } 2211 } 2212 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2213 module_file_spec.GetFilename().AsCString(), GetID()); 2214 } 2215 2216 Error NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2217 lldb::addr_t &load_addr) { 2218 load_addr = LLDB_INVALID_ADDRESS; 2219 Error error = PopulateMemoryRegionCache(); 2220 if (error.Fail()) 2221 return error; 2222 2223 FileSpec file(file_name, false); 2224 for (const auto &it : m_mem_region_cache) { 2225 if (it.second == file) { 2226 load_addr = it.first.GetRange().GetRangeBase(); 2227 return Error(); 2228 } 2229 } 2230 return Error("No load address found for specified file."); 2231 } 2232 2233 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2234 return std::static_pointer_cast<NativeThreadLinux>( 2235 NativeProcessProtocol::GetThreadByID(tid)); 2236 } 2237 2238 Error NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2239 lldb::StateType state, int signo) { 2240 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2241 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2242 2243 // Before we do the resume below, first check if we have a pending 2244 // stop notification that is currently waiting for 2245 // all threads to stop. This is potentially a buggy situation since 2246 // we're ostensibly waiting for threads to stop before we send out the 2247 // pending notification, and here we are resuming one before we send 2248 // out the pending stop notification. 2249 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2250 LLDB_LOG(log, 2251 "about to resume tid {0} per explicit request but we have a " 2252 "pending stop notification (tid {1}) that is actively " 2253 "waiting for this thread to stop. Valid sequence of events?", 2254 thread.GetID(), m_pending_notification_tid); 2255 } 2256 2257 // Request a resume. We expect this to be synchronous and the system 2258 // to reflect it is running after this completes. 2259 switch (state) { 2260 case eStateRunning: { 2261 const auto resume_result = thread.Resume(signo); 2262 if (resume_result.Success()) 2263 SetState(eStateRunning, true); 2264 return resume_result; 2265 } 2266 case eStateStepping: { 2267 const auto step_result = thread.SingleStep(signo); 2268 if (step_result.Success()) 2269 SetState(eStateRunning, true); 2270 return step_result; 2271 } 2272 default: 2273 LLDB_LOG(log, "Unhandled state {0}.", state); 2274 llvm_unreachable("Unhandled state for resume"); 2275 } 2276 } 2277 2278 //===----------------------------------------------------------------------===// 2279 2280 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2281 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2282 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2283 triggering_tid); 2284 2285 m_pending_notification_tid = triggering_tid; 2286 2287 // Request a stop for all the thread stops that need to be stopped 2288 // and are not already known to be stopped. 2289 for (const auto &thread_sp : m_threads) { 2290 if (StateIsRunningState(thread_sp->GetState())) 2291 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2292 } 2293 2294 SignalIfAllThreadsStopped(); 2295 LLDB_LOG(log, "event processing done"); 2296 } 2297 2298 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2299 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2300 return; // No pending notification. Nothing to do. 2301 2302 for (const auto &thread_sp : m_threads) { 2303 if (StateIsRunningState(thread_sp->GetState())) 2304 return; // Some threads are still running. Don't signal yet. 2305 } 2306 2307 // We have a pending notification and all threads have stopped. 2308 Log *log( 2309 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2310 2311 // Clear any temporary breakpoints we used to implement software single 2312 // stepping. 2313 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2314 Error error = RemoveBreakpoint(thread_info.second); 2315 if (error.Fail()) 2316 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2317 thread_info.first, error); 2318 } 2319 m_threads_stepping_with_breakpoint.clear(); 2320 2321 // Notify the delegate about the stop 2322 SetCurrentThreadID(m_pending_notification_tid); 2323 SetState(StateType::eStateStopped, true); 2324 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2325 } 2326 2327 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2328 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2329 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2330 2331 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2332 StateIsRunningState(thread.GetState())) { 2333 // We will need to wait for this new thread to stop as well before firing 2334 // the 2335 // notification. 2336 thread.RequestStop(); 2337 } 2338 } 2339 2340 void NativeProcessLinux::SigchldHandler() { 2341 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2342 // Process all pending waitpid notifications. 2343 while (true) { 2344 int status = -1; 2345 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2346 2347 if (wait_pid == 0) 2348 break; // We are done. 2349 2350 if (wait_pid == -1) { 2351 if (errno == EINTR) 2352 continue; 2353 2354 Error error(errno, eErrorTypePOSIX); 2355 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2356 break; 2357 } 2358 2359 bool exited = false; 2360 int signal = 0; 2361 int exit_status = 0; 2362 const char *status_cstr = nullptr; 2363 if (WIFSTOPPED(status)) { 2364 signal = WSTOPSIG(status); 2365 status_cstr = "STOPPED"; 2366 } else if (WIFEXITED(status)) { 2367 exit_status = WEXITSTATUS(status); 2368 status_cstr = "EXITED"; 2369 exited = true; 2370 } else if (WIFSIGNALED(status)) { 2371 signal = WTERMSIG(status); 2372 status_cstr = "SIGNALED"; 2373 if (wait_pid == static_cast<::pid_t>(GetID())) { 2374 exited = true; 2375 exit_status = -1; 2376 } 2377 } else 2378 status_cstr = "(\?\?\?)"; 2379 2380 LLDB_LOG(log, 2381 "waitpid (-1, &status, _) => pid = {0}, status = {1:x} " 2382 "({2}), signal = {3}, exit_state = {4}", 2383 wait_pid, status, status_cstr, signal, exit_status); 2384 2385 MonitorCallback(wait_pid, exited, signal, exit_status); 2386 } 2387 } 2388 2389 // Wrapper for ptrace to catch errors and log calls. 2390 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2391 // for PTRACE_PEEK*) 2392 Error NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2393 void *data, size_t data_size, 2394 long *result) { 2395 Error error; 2396 long int ret; 2397 2398 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2399 2400 PtraceDisplayBytes(req, data, data_size); 2401 2402 errno = 0; 2403 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2404 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2405 *(unsigned int *)addr, data); 2406 else 2407 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2408 addr, data); 2409 2410 if (ret == -1) 2411 error.SetErrorToErrno(); 2412 2413 if (result) 2414 *result = ret; 2415 2416 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4}, {5})={6:x}", req, pid, addr, 2417 data, data_size, ret); 2418 2419 PtraceDisplayBytes(req, data, data_size); 2420 2421 if (error.Fail()) 2422 LLDB_LOG(log, "ptrace() failed: {0}", error); 2423 2424 return error; 2425 } 2426