1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/Module.h"
29 #include "lldb/Core/ModuleSpec.h"
30 #include "lldb/Core/RegisterValue.h"
31 #include "lldb/Core/State.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/Host.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/ProcessLaunchInfo.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/PseudoTerminal.h"
42 #include "lldb/Utility/StringExtractor.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "NativeThreadLinux.h"
46 #include "ProcFileReader.h"
47 #include "Procfs.h"
48 
49 // System includes - They have to be included after framework includes because they define some
50 // macros which collide with variable names in other modules
51 #include <linux/unistd.h>
52 #include <sys/socket.h>
53 
54 #include <sys/syscall.h>
55 #include <sys/types.h>
56 #include <sys/user.h>
57 #include <sys/wait.h>
58 
59 #include "lldb/Host/linux/Personality.h"
60 #include "lldb/Host/linux/Ptrace.h"
61 #include "lldb/Host/linux/Signalfd.h"
62 #include "lldb/Host/linux/Uio.h"
63 #include "lldb/Host/android/Android.h"
64 
65 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
66 
67 // Support hardware breakpoints in case it has not been defined
68 #ifndef TRAP_HWBKPT
69   #define TRAP_HWBKPT 4
70 #endif
71 
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace lldb_private::process_linux;
75 using namespace llvm;
76 
77 // Private bits we only need internally.
78 
79 static bool ProcessVmReadvSupported()
80 {
81     static bool is_supported;
82     static std::once_flag flag;
83 
84     std::call_once(flag, [] {
85         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
86 
87         uint32_t source = 0x47424742;
88         uint32_t dest = 0;
89 
90         struct iovec local, remote;
91         remote.iov_base = &source;
92         local.iov_base = &dest;
93         remote.iov_len = local.iov_len = sizeof source;
94 
95         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
96         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
97         is_supported = (res == sizeof(source) && source == dest);
98         if (log)
99         {
100             if (is_supported)
101                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
102                         __FUNCTION__);
103             else
104                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
105                         __FUNCTION__, strerror(errno));
106         }
107     });
108 
109     return is_supported;
110 }
111 
112 namespace
113 {
114     Error
115     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
116     {
117         // Grab process info for the running process.
118         ProcessInstanceInfo process_info;
119         if (!platform.GetProcessInfo (pid, process_info))
120             return Error("failed to get process info");
121 
122         // Resolve the executable module.
123         ModuleSP exe_module_sp;
124         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
125         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
126         Error error = platform.ResolveExecutable(
127             exe_module_spec,
128             exe_module_sp,
129             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
130 
131         if (!error.Success ())
132             return error;
133 
134         // Check if we've got our architecture from the exe_module.
135         arch = exe_module_sp->GetArchitecture ();
136         if (arch.IsValid ())
137             return Error();
138         else
139             return Error("failed to retrieve a valid architecture from the exe module");
140     }
141 
142     void
143     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
144     {
145         uint8_t *ptr = (uint8_t *)bytes;
146         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
147         for(uint32_t i=0; i<loop_count; i++)
148         {
149             s.Printf ("[%x]", *ptr);
150             ptr++;
151         }
152     }
153 
154     void
155     PtraceDisplayBytes(int &req, void *data, size_t data_size)
156     {
157         StreamString buf;
158         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
159                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
160 
161         if (verbose_log)
162         {
163             switch(req)
164             {
165             case PTRACE_POKETEXT:
166             {
167                 DisplayBytes(buf, &data, 8);
168                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
169                 break;
170             }
171             case PTRACE_POKEDATA:
172             {
173                 DisplayBytes(buf, &data, 8);
174                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
175                 break;
176             }
177             case PTRACE_POKEUSER:
178             {
179                 DisplayBytes(buf, &data, 8);
180                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
181                 break;
182             }
183             case PTRACE_SETREGS:
184             {
185                 DisplayBytes(buf, data, data_size);
186                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
187                 break;
188             }
189             case PTRACE_SETFPREGS:
190             {
191                 DisplayBytes(buf, data, data_size);
192                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
193                 break;
194             }
195             case PTRACE_SETSIGINFO:
196             {
197                 DisplayBytes(buf, data, sizeof(siginfo_t));
198                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
199                 break;
200             }
201             case PTRACE_SETREGSET:
202             {
203                 // Extract iov_base from data, which is a pointer to the struct IOVEC
204                 DisplayBytes(buf, *(void **)data, data_size);
205                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
206                 break;
207             }
208             default:
209             {
210             }
211             }
212         }
213     }
214 
215     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
216     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
217 } // end of anonymous namespace
218 
219 // Simple helper function to ensure flags are enabled on the given file
220 // descriptor.
221 static Error
222 EnsureFDFlags(int fd, int flags)
223 {
224     Error error;
225 
226     int status = fcntl(fd, F_GETFL);
227     if (status == -1)
228     {
229         error.SetErrorToErrno();
230         return error;
231     }
232 
233     if (fcntl(fd, F_SETFL, status | flags) == -1)
234     {
235         error.SetErrorToErrno();
236         return error;
237     }
238 
239     return error;
240 }
241 
242 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
243                                        char const **argv,
244                                        char const **envp,
245                                        const FileSpec &stdin_file_spec,
246                                        const FileSpec &stdout_file_spec,
247                                        const FileSpec &stderr_file_spec,
248                                        const FileSpec &working_dir,
249                                        const ProcessLaunchInfo &launch_info)
250     : m_module(module),
251       m_argv(argv),
252       m_envp(envp),
253       m_stdin_file_spec(stdin_file_spec),
254       m_stdout_file_spec(stdout_file_spec),
255       m_stderr_file_spec(stderr_file_spec),
256       m_working_dir(working_dir),
257       m_launch_info(launch_info)
258 {
259 }
260 
261 NativeProcessLinux::LaunchArgs::~LaunchArgs()
262 { }
263 
264 // -----------------------------------------------------------------------------
265 // Public Static Methods
266 // -----------------------------------------------------------------------------
267 
268 Error
269 NativeProcessProtocol::Launch (
270     ProcessLaunchInfo &launch_info,
271     NativeProcessProtocol::NativeDelegate &native_delegate,
272     MainLoop &mainloop,
273     NativeProcessProtocolSP &native_process_sp)
274 {
275     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
276 
277     lldb::ModuleSP exe_module_sp;
278     PlatformSP platform_sp (Platform::GetHostPlatform ());
279     Error error = platform_sp->ResolveExecutable(
280             ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()),
281             exe_module_sp,
282             nullptr);
283 
284     if (! error.Success())
285         return error;
286 
287     // Verify the working directory is valid if one was specified.
288     FileSpec working_dir{launch_info.GetWorkingDirectory()};
289     if (working_dir &&
290             (!working_dir.ResolvePath() ||
291              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
292     {
293         error.SetErrorStringWithFormat ("No such file or directory: %s",
294                 working_dir.GetCString());
295         return error;
296     }
297 
298     const FileAction *file_action;
299 
300     // Default of empty will mean to use existing open file descriptors.
301     FileSpec stdin_file_spec{};
302     FileSpec stdout_file_spec{};
303     FileSpec stderr_file_spec{};
304 
305     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
306     if (file_action)
307         stdin_file_spec = file_action->GetFileSpec();
308 
309     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
310     if (file_action)
311         stdout_file_spec = file_action->GetFileSpec();
312 
313     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
314     if (file_action)
315         stderr_file_spec = file_action->GetFileSpec();
316 
317     if (log)
318     {
319         if (stdin_file_spec)
320             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
321                     __FUNCTION__, stdin_file_spec.GetCString());
322         else
323             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
324 
325         if (stdout_file_spec)
326             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
327                     __FUNCTION__, stdout_file_spec.GetCString());
328         else
329             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
330 
331         if (stderr_file_spec)
332             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
333                     __FUNCTION__, stderr_file_spec.GetCString());
334         else
335             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
336     }
337 
338     // Create the NativeProcessLinux in launch mode.
339     native_process_sp.reset (new NativeProcessLinux ());
340 
341     if (log)
342     {
343         int i = 0;
344         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
345         {
346             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
347             ++i;
348         }
349     }
350 
351     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
352     {
353         native_process_sp.reset ();
354         error.SetErrorStringWithFormat ("failed to register the native delegate");
355         return error;
356     }
357 
358     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
359             mainloop,
360             exe_module_sp.get(),
361             launch_info.GetArguments ().GetConstArgumentVector (),
362             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
363             stdin_file_spec,
364             stdout_file_spec,
365             stderr_file_spec,
366             working_dir,
367             launch_info,
368             error);
369 
370     if (error.Fail ())
371     {
372         native_process_sp.reset ();
373         if (log)
374             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
375         return error;
376     }
377 
378     launch_info.SetProcessID (native_process_sp->GetID ());
379 
380     return error;
381 }
382 
383 Error
384 NativeProcessProtocol::Attach (
385     lldb::pid_t pid,
386     NativeProcessProtocol::NativeDelegate &native_delegate,
387     MainLoop &mainloop,
388     NativeProcessProtocolSP &native_process_sp)
389 {
390     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
391     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
392         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
393 
394     // Grab the current platform architecture.  This should be Linux,
395     // since this code is only intended to run on a Linux host.
396     PlatformSP platform_sp (Platform::GetHostPlatform ());
397     if (!platform_sp)
398         return Error("failed to get a valid default platform");
399 
400     // Retrieve the architecture for the running process.
401     ArchSpec process_arch;
402     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
403     if (!error.Success ())
404         return error;
405 
406     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
407 
408     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
409     {
410         error.SetErrorStringWithFormat ("failed to register the native delegate");
411         return error;
412     }
413 
414     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
415     if (!error.Success ())
416         return error;
417 
418     native_process_sp = native_process_linux_sp;
419     return error;
420 }
421 
422 // -----------------------------------------------------------------------------
423 // Public Instance Methods
424 // -----------------------------------------------------------------------------
425 
426 NativeProcessLinux::NativeProcessLinux () :
427     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
428     m_arch (),
429     m_supports_mem_region (eLazyBoolCalculate),
430     m_mem_region_cache (),
431     m_mem_region_cache_mutex(),
432     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
433 {
434 }
435 
436 void
437 NativeProcessLinux::LaunchInferior (
438     MainLoop &mainloop,
439     Module *module,
440     const char *argv[],
441     const char *envp[],
442     const FileSpec &stdin_file_spec,
443     const FileSpec &stdout_file_spec,
444     const FileSpec &stderr_file_spec,
445     const FileSpec &working_dir,
446     const ProcessLaunchInfo &launch_info,
447     Error &error)
448 {
449     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
450             [this] (MainLoopBase &) { SigchldHandler(); }, error);
451     if (! m_sigchld_handle)
452         return;
453 
454     if (module)
455         m_arch = module->GetArchitecture ();
456 
457     SetState (eStateLaunching);
458 
459     std::unique_ptr<LaunchArgs> args(
460         new LaunchArgs(module, argv, envp,
461                        stdin_file_spec,
462                        stdout_file_spec,
463                        stderr_file_spec,
464                        working_dir,
465                        launch_info));
466 
467     Launch(args.get(), error);
468 }
469 
470 void
471 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
472 {
473     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
474     if (log)
475         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
476 
477     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
478             [this] (MainLoopBase &) { SigchldHandler(); }, error);
479     if (! m_sigchld_handle)
480         return;
481 
482     // We can use the Host for everything except the ResolveExecutable portion.
483     PlatformSP platform_sp = Platform::GetHostPlatform ();
484     if (!platform_sp)
485     {
486         if (log)
487             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
488         error.SetErrorString ("no default platform available");
489         return;
490     }
491 
492     // Gather info about the process.
493     ProcessInstanceInfo process_info;
494     if (!platform_sp->GetProcessInfo (pid, process_info))
495     {
496         if (log)
497             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
498         error.SetErrorString ("failed to get process info");
499         return;
500     }
501 
502     // Resolve the executable module
503     ModuleSP exe_module_sp;
504     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
505     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
506     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
507                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
508     if (!error.Success())
509         return;
510 
511     // Set the architecture to the exe architecture.
512     m_arch = exe_module_sp->GetArchitecture();
513     if (log)
514         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
515 
516     m_pid = pid;
517     SetState(eStateAttaching);
518 
519     Attach(pid, error);
520 }
521 
522 ::pid_t
523 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
524 {
525     assert (args && "null args");
526 
527     const char **argv = args->m_argv;
528     const char **envp = args->m_envp;
529     const FileSpec working_dir = args->m_working_dir;
530 
531     lldb_utility::PseudoTerminal terminal;
532     const size_t err_len = 1024;
533     char err_str[err_len];
534     lldb::pid_t pid;
535 
536     // Propagate the environment if one is not supplied.
537     if (envp == NULL || envp[0] == NULL)
538         envp = const_cast<const char **>(environ);
539 
540     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
541     {
542         error.SetErrorToGenericError();
543         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
544         return -1;
545     }
546 
547     // Recognized child exit status codes.
548     enum {
549         ePtraceFailed = 1,
550         eDupStdinFailed,
551         eDupStdoutFailed,
552         eDupStderrFailed,
553         eChdirFailed,
554         eExecFailed,
555         eSetGidFailed,
556         eSetSigMaskFailed
557     };
558 
559     // Child process.
560     if (pid == 0)
561     {
562         // First, make sure we disable all logging. If we are logging to stdout, our logs can be
563         // mistaken for inferior output.
564         Log::DisableAllLogChannels(nullptr);
565         // FIXME consider opening a pipe between parent/child and have this forked child
566         // send log info to parent re: launch status.
567 
568         // Start tracing this child that is about to exec.
569         error = PtraceWrapper(PTRACE_TRACEME, 0);
570         if (error.Fail())
571             exit(ePtraceFailed);
572 
573         // terminal has already dupped the tty descriptors to stdin/out/err.
574         // This closes original fd from which they were copied (and avoids
575         // leaking descriptors to the debugged process.
576         terminal.CloseSlaveFileDescriptor();
577 
578         // Do not inherit setgid powers.
579         if (setgid(getgid()) != 0)
580             exit(eSetGidFailed);
581 
582         // Attempt to have our own process group.
583         if (setpgid(0, 0) != 0)
584         {
585             // FIXME log that this failed. This is common.
586             // Don't allow this to prevent an inferior exec.
587         }
588 
589         // Dup file descriptors if needed.
590         if (args->m_stdin_file_spec)
591             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
592                 exit(eDupStdinFailed);
593 
594         if (args->m_stdout_file_spec)
595             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
596                 exit(eDupStdoutFailed);
597 
598         if (args->m_stderr_file_spec)
599             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
600                 exit(eDupStderrFailed);
601 
602         // Close everything besides stdin, stdout, and stderr that has no file
603         // action to avoid leaking
604         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
605             if (!args->m_launch_info.GetFileActionForFD(fd))
606                 close(fd);
607 
608         // Change working directory
609         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
610               exit(eChdirFailed);
611 
612         // Disable ASLR if requested.
613         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
614         {
615             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
616             if (old_personality == -1)
617             {
618                 // Can't retrieve Linux personality.  Cannot disable ASLR.
619             }
620             else
621             {
622                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
623                 if (new_personality == -1)
624                 {
625                     // Disabling ASLR failed.
626                 }
627                 else
628                 {
629                     // Disabling ASLR succeeded.
630                 }
631             }
632         }
633 
634         // Clear the signal mask to prevent the child from being affected by
635         // any masking done by the parent.
636         sigset_t set;
637         if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
638             exit(eSetSigMaskFailed);
639 
640         // Execute.  We should never return...
641         execve(argv[0],
642                const_cast<char *const *>(argv),
643                const_cast<char *const *>(envp));
644 
645         // ...unless exec fails.  In which case we definitely need to end the child here.
646         exit(eExecFailed);
647     }
648 
649     //
650     // This is the parent code here.
651     //
652     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
653 
654     // Wait for the child process to trap on its call to execve.
655     ::pid_t wpid;
656     int status;
657     if ((wpid = waitpid(pid, &status, 0)) < 0)
658     {
659         error.SetErrorToErrno();
660         if (log)
661             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
662                     __FUNCTION__, error.AsCString ());
663 
664         // Mark the inferior as invalid.
665         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
666         SetState (StateType::eStateInvalid);
667 
668         return -1;
669     }
670     else if (WIFEXITED(status))
671     {
672         // open, dup or execve likely failed for some reason.
673         error.SetErrorToGenericError();
674         switch (WEXITSTATUS(status))
675         {
676             case ePtraceFailed:
677                 error.SetErrorString("Child ptrace failed.");
678                 break;
679             case eDupStdinFailed:
680                 error.SetErrorString("Child open stdin failed.");
681                 break;
682             case eDupStdoutFailed:
683                 error.SetErrorString("Child open stdout failed.");
684                 break;
685             case eDupStderrFailed:
686                 error.SetErrorString("Child open stderr failed.");
687                 break;
688             case eChdirFailed:
689                 error.SetErrorString("Child failed to set working directory.");
690                 break;
691             case eExecFailed:
692                 error.SetErrorString("Child exec failed.");
693                 break;
694             case eSetGidFailed:
695                 error.SetErrorString("Child setgid failed.");
696                 break;
697             case eSetSigMaskFailed:
698                 error.SetErrorString("Child failed to set signal mask.");
699                 break;
700             default:
701                 error.SetErrorString("Child returned unknown exit status.");
702                 break;
703         }
704 
705         if (log)
706         {
707             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
708                     __FUNCTION__,
709                     WEXITSTATUS(status));
710         }
711 
712         // Mark the inferior as invalid.
713         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
714         SetState (StateType::eStateInvalid);
715 
716         return -1;
717     }
718     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
719            "Could not sync with inferior process.");
720 
721     if (log)
722         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
723 
724     error = SetDefaultPtraceOpts(pid);
725     if (error.Fail())
726     {
727         if (log)
728             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
729                     __FUNCTION__, error.AsCString ());
730 
731         // Mark the inferior as invalid.
732         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
733         SetState (StateType::eStateInvalid);
734 
735         return -1;
736     }
737 
738     // Release the master terminal descriptor and pass it off to the
739     // NativeProcessLinux instance.  Similarly stash the inferior pid.
740     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
741     m_pid = pid;
742 
743     // Set the terminal fd to be in non blocking mode (it simplifies the
744     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
745     // descriptor to read from).
746     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
747     if (error.Fail())
748     {
749         if (log)
750             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
751                     __FUNCTION__, error.AsCString ());
752 
753         // Mark the inferior as invalid.
754         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
755         SetState (StateType::eStateInvalid);
756 
757         return -1;
758     }
759 
760     if (log)
761         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
762 
763     NativeThreadLinuxSP thread_sp = AddThread(pid);
764     assert (thread_sp && "AddThread() returned a nullptr thread");
765     thread_sp->SetStoppedBySignal(SIGSTOP);
766     ThreadWasCreated(*thread_sp);
767 
768     // Let our process instance know the thread has stopped.
769     SetCurrentThreadID (thread_sp->GetID ());
770     SetState (StateType::eStateStopped);
771 
772     if (log)
773     {
774         if (error.Success ())
775         {
776             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
777         }
778         else
779         {
780             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
781                 __FUNCTION__, error.AsCString ());
782             return -1;
783         }
784     }
785     return pid;
786 }
787 
788 ::pid_t
789 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
790 {
791     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
792 
793     // Use a map to keep track of the threads which we have attached/need to attach.
794     Host::TidMap tids_to_attach;
795     if (pid <= 1)
796     {
797         error.SetErrorToGenericError();
798         error.SetErrorString("Attaching to process 1 is not allowed.");
799         return -1;
800     }
801 
802     while (Host::FindProcessThreads(pid, tids_to_attach))
803     {
804         for (Host::TidMap::iterator it = tids_to_attach.begin();
805              it != tids_to_attach.end();)
806         {
807             if (it->second == false)
808             {
809                 lldb::tid_t tid = it->first;
810 
811                 // Attach to the requested process.
812                 // An attach will cause the thread to stop with a SIGSTOP.
813                 error = PtraceWrapper(PTRACE_ATTACH, tid);
814                 if (error.Fail())
815                 {
816                     // No such thread. The thread may have exited.
817                     // More error handling may be needed.
818                     if (error.GetError() == ESRCH)
819                     {
820                         it = tids_to_attach.erase(it);
821                         continue;
822                     }
823                     else
824                         return -1;
825                 }
826 
827                 int status;
828                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
829                 // At this point we should have a thread stopped if waitpid succeeds.
830                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
831                 {
832                     // No such thread. The thread may have exited.
833                     // More error handling may be needed.
834                     if (errno == ESRCH)
835                     {
836                         it = tids_to_attach.erase(it);
837                         continue;
838                     }
839                     else
840                     {
841                         error.SetErrorToErrno();
842                         return -1;
843                     }
844                 }
845 
846                 error = SetDefaultPtraceOpts(tid);
847                 if (error.Fail())
848                     return -1;
849 
850                 if (log)
851                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
852 
853                 it->second = true;
854 
855                 // Create the thread, mark it as stopped.
856                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
857                 assert (thread_sp && "AddThread() returned a nullptr");
858 
859                 // This will notify this is a new thread and tell the system it is stopped.
860                 thread_sp->SetStoppedBySignal(SIGSTOP);
861                 ThreadWasCreated(*thread_sp);
862                 SetCurrentThreadID (thread_sp->GetID ());
863             }
864 
865             // move the loop forward
866             ++it;
867         }
868     }
869 
870     if (tids_to_attach.size() > 0)
871     {
872         m_pid = pid;
873         // Let our process instance know the thread has stopped.
874         SetState (StateType::eStateStopped);
875     }
876     else
877     {
878         error.SetErrorToGenericError();
879         error.SetErrorString("No such process.");
880         return -1;
881     }
882 
883     return pid;
884 }
885 
886 Error
887 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
888 {
889     long ptrace_opts = 0;
890 
891     // Have the child raise an event on exit.  This is used to keep the child in
892     // limbo until it is destroyed.
893     ptrace_opts |= PTRACE_O_TRACEEXIT;
894 
895     // Have the tracer trace threads which spawn in the inferior process.
896     // TODO: if we want to support tracing the inferiors' child, add the
897     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
898     ptrace_opts |= PTRACE_O_TRACECLONE;
899 
900     // Have the tracer notify us before execve returns
901     // (needed to disable legacy SIGTRAP generation)
902     ptrace_opts |= PTRACE_O_TRACEEXEC;
903 
904     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
905 }
906 
907 static ExitType convert_pid_status_to_exit_type (int status)
908 {
909     if (WIFEXITED (status))
910         return ExitType::eExitTypeExit;
911     else if (WIFSIGNALED (status))
912         return ExitType::eExitTypeSignal;
913     else if (WIFSTOPPED (status))
914         return ExitType::eExitTypeStop;
915     else
916     {
917         // We don't know what this is.
918         return ExitType::eExitTypeInvalid;
919     }
920 }
921 
922 static int convert_pid_status_to_return_code (int status)
923 {
924     if (WIFEXITED (status))
925         return WEXITSTATUS (status);
926     else if (WIFSIGNALED (status))
927         return WTERMSIG (status);
928     else if (WIFSTOPPED (status))
929         return WSTOPSIG (status);
930     else
931     {
932         // We don't know what this is.
933         return ExitType::eExitTypeInvalid;
934     }
935 }
936 
937 // Handles all waitpid events from the inferior process.
938 void
939 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
940                                     bool exited,
941                                     int signal,
942                                     int status)
943 {
944     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
945 
946     // Certain activities differ based on whether the pid is the tid of the main thread.
947     const bool is_main_thread = (pid == GetID ());
948 
949     // Handle when the thread exits.
950     if (exited)
951     {
952         if (log)
953             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
954 
955         // This is a thread that exited.  Ensure we're not tracking it anymore.
956         const bool thread_found = StopTrackingThread (pid);
957 
958         if (is_main_thread)
959         {
960             // We only set the exit status and notify the delegate if we haven't already set the process
961             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
962             // for the main thread.
963             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
964             if (!already_notified)
965             {
966                 if (log)
967                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
968                 // The main thread exited.  We're done monitoring.  Report to delegate.
969                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
970 
971                 // Notify delegate that our process has exited.
972                 SetState (StateType::eStateExited, true);
973             }
974             else
975             {
976                 if (log)
977                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
978             }
979         }
980         else
981         {
982             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
983             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
984             // and we would have done an all-stop then.
985             if (log)
986                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
987         }
988         return;
989     }
990 
991     // Get details on the signal raised.
992     siginfo_t info;
993     const auto err = GetSignalInfo(pid, &info);
994     if (err.Success())
995     {
996         // We have retrieved the signal info.  Dispatch appropriately.
997         if (info.si_signo == SIGTRAP)
998             MonitorSIGTRAP(&info, pid);
999         else
1000             MonitorSignal(&info, pid, exited);
1001     }
1002     else
1003     {
1004         if (err.GetError() == EINVAL)
1005         {
1006             // This is a group stop reception for this tid.
1007             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1008             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1009             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1010             // generally not needed (one use case is debugging background task being managed by a
1011             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1012             // stop which happens before the group stop. This done by MonitorSignal and works
1013             // correctly for all signals.
1014             if (log)
1015                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1016             Resume(pid, signal);
1017         }
1018         else
1019         {
1020             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1021 
1022             // A return value of ESRCH means the thread/process is no longer on the system,
1023             // so it was killed somehow outside of our control.  Either way, we can't do anything
1024             // with it anymore.
1025 
1026             // Stop tracking the metadata for the thread since it's entirely off the system now.
1027             const bool thread_found = StopTrackingThread (pid);
1028 
1029             if (log)
1030                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1031                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1032 
1033             if (is_main_thread)
1034             {
1035                 // Notify the delegate - our process is not available but appears to have been killed outside
1036                 // our control.  Is eStateExited the right exit state in this case?
1037                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1038                 SetState (StateType::eStateExited, true);
1039             }
1040             else
1041             {
1042                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1043                 if (log)
1044                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1045             }
1046         }
1047     }
1048 }
1049 
1050 void
1051 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1052 {
1053     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1054 
1055     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
1056 
1057     if (new_thread_sp)
1058     {
1059         // We are already tracking the thread - we got the event on the new thread (see
1060         // MonitorSignal) before this one. We are done.
1061         return;
1062     }
1063 
1064     // The thread is not tracked yet, let's wait for it to appear.
1065     int status = -1;
1066     ::pid_t wait_pid;
1067     do
1068     {
1069         if (log)
1070             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1071         wait_pid = waitpid(tid, &status, __WALL);
1072     }
1073     while (wait_pid == -1 && errno == EINTR);
1074     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1075     // some checks just in case.
1076     if (wait_pid != tid) {
1077         if (log)
1078             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1079         // The only way I know of this could happen is if the whole process was
1080         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1081         return;
1082     }
1083     if (WIFEXITED(status))
1084     {
1085         if (log)
1086             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1087         // Also a very improbable event.
1088         return;
1089     }
1090 
1091     siginfo_t info;
1092     Error error = GetSignalInfo(tid, &info);
1093     if (error.Fail())
1094     {
1095         if (log)
1096             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1097         return;
1098     }
1099 
1100     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1101     {
1102         // We should be getting a thread creation signal here, but we received something
1103         // else. There isn't much we can do about it now, so we will just log that. Since the
1104         // thread is alive and we are receiving events from it, we shall pretend that it was
1105         // created properly.
1106         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1107     }
1108 
1109     if (log)
1110         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1111                  __FUNCTION__, GetID (), tid);
1112 
1113     new_thread_sp = AddThread(tid);
1114     ResumeThread(new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1115     ThreadWasCreated(*new_thread_sp);
1116 }
1117 
1118 void
1119 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1120 {
1121     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1122     const bool is_main_thread = (pid == GetID ());
1123 
1124     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1125     if (!info)
1126         return;
1127 
1128     Mutex::Locker locker (m_threads_mutex);
1129 
1130     // See if we can find a thread for this signal.
1131     NativeThreadLinuxSP thread_sp = GetThreadByID(pid);
1132     if (!thread_sp)
1133     {
1134         if (log)
1135             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1136     }
1137 
1138     switch (info->si_code)
1139     {
1140     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1141     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1142     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1143 
1144     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1145     {
1146         // This is the notification on the parent thread which informs us of new thread
1147         // creation.
1148         // We don't want to do anything with the parent thread so we just resume it. In case we
1149         // want to implement "break on thread creation" functionality, we would need to stop
1150         // here.
1151 
1152         unsigned long event_message = 0;
1153         if (GetEventMessage (pid, &event_message).Fail())
1154         {
1155             if (log)
1156                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1157         } else
1158             WaitForNewThread(event_message);
1159 
1160         ResumeThread(thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1161         break;
1162     }
1163 
1164     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1165     {
1166         NativeThreadLinuxSP main_thread_sp;
1167         if (log)
1168             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1169 
1170         // Exec clears any pending notifications.
1171         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1172 
1173         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1174         if (log)
1175             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1176 
1177         for (auto thread_sp : m_threads)
1178         {
1179             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1180             if (is_main_thread)
1181             {
1182                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
1183                 if (log)
1184                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1185             }
1186             else
1187             {
1188                 if (log)
1189                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1190             }
1191         }
1192 
1193         m_threads.clear ();
1194 
1195         if (main_thread_sp)
1196         {
1197             m_threads.push_back (main_thread_sp);
1198             SetCurrentThreadID (main_thread_sp->GetID ());
1199             main_thread_sp->SetStoppedByExec();
1200         }
1201         else
1202         {
1203             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1204             if (log)
1205                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1206         }
1207 
1208         // Tell coordinator about about the "new" (since exec) stopped main thread.
1209         ThreadWasCreated(*main_thread_sp);
1210 
1211         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1212         // Consider a handler that can execute when that happens.
1213         // Let our delegate know we have just exec'd.
1214         NotifyDidExec ();
1215 
1216         // If we have a main thread, indicate we are stopped.
1217         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1218 
1219         // Let the process know we're stopped.
1220         StopRunningThreads (pid);
1221 
1222         break;
1223     }
1224 
1225     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1226     {
1227         // The inferior process or one of its threads is about to exit.
1228         // We don't want to do anything with the thread so we just resume it. In case we
1229         // want to implement "break on thread exit" functionality, we would need to stop
1230         // here.
1231 
1232         unsigned long data = 0;
1233         if (GetEventMessage(pid, &data).Fail())
1234             data = -1;
1235 
1236         if (log)
1237         {
1238             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1239                          __FUNCTION__,
1240                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1241                          pid,
1242                     is_main_thread ? "is main thread" : "not main thread");
1243         }
1244 
1245         if (is_main_thread)
1246         {
1247             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1248         }
1249 
1250         ResumeThread(thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1251 
1252         break;
1253     }
1254 
1255     case 0:
1256     case TRAP_TRACE:  // We receive this on single stepping.
1257     case TRAP_HWBKPT: // We receive this on watchpoint hit
1258         if (thread_sp)
1259         {
1260             // If a watchpoint was hit, report it
1261             uint32_t wp_index;
1262             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1263             if (error.Fail() && log)
1264                 log->Printf("NativeProcessLinux::%s() "
1265                             "received error while checking for watchpoint hits, "
1266                             "pid = %" PRIu64 " error = %s",
1267                             __FUNCTION__, pid, error.AsCString());
1268             if (wp_index != LLDB_INVALID_INDEX32)
1269             {
1270                 MonitorWatchpoint(*thread_sp, wp_index);
1271                 break;
1272             }
1273         }
1274         // Otherwise, report step over
1275         MonitorTrace(pid, thread_sp);
1276         break;
1277 
1278     case SI_KERNEL:
1279 #if defined __mips__
1280         // For mips there is no special signal for watchpoint
1281         // So we check for watchpoint in kernel trap
1282         if (thread_sp)
1283         {
1284             // If a watchpoint was hit, report it
1285             uint32_t wp_index;
1286             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1287             if (error.Fail() && log)
1288                 log->Printf("NativeProcessLinux::%s() "
1289                             "received error while checking for watchpoint hits, "
1290                             "pid = %" PRIu64 " error = %s",
1291                             __FUNCTION__, pid, error.AsCString());
1292             if (wp_index != LLDB_INVALID_INDEX32)
1293             {
1294                 MonitorWatchpoint(*thread_sp, wp_index);
1295                 break;
1296             }
1297         }
1298         // NO BREAK
1299 #endif
1300     case TRAP_BRKPT:
1301         MonitorBreakpoint(pid, thread_sp);
1302         break;
1303 
1304     case SIGTRAP:
1305     case (SIGTRAP | 0x80):
1306         if (log)
1307             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
1308 
1309         // Ignore these signals until we know more about them.
1310         ResumeThread(thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1311         break;
1312 
1313     default:
1314         assert(false && "Unexpected SIGTRAP code!");
1315         if (log)
1316             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1317                     __FUNCTION__, GetID (), pid, info->si_code);
1318         break;
1319 
1320     }
1321 }
1322 
1323 void
1324 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, const NativeThreadLinuxSP &thread_sp)
1325 {
1326     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1327     if (log)
1328         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1329                 __FUNCTION__, pid);
1330 
1331     // This thread is currently stopped.
1332     if (thread_sp)
1333         thread_sp->SetStoppedByTrace();
1334 
1335     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
1336     // This would have already happened at the time the Resume() with step operation was signaled.
1337     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
1338     // once all running threads have checked in as stopped.
1339     SetCurrentThreadID(pid);
1340     // Tell the process we have a stop (from software breakpoint).
1341     StopRunningThreads(pid);
1342 }
1343 
1344 void
1345 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, const NativeThreadLinuxSP &thread_sp)
1346 {
1347     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1348     if (log)
1349         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1350                 __FUNCTION__, pid);
1351 
1352     // Mark the thread as stopped at breakpoint.
1353     if (thread_sp)
1354     {
1355         thread_sp->SetStoppedByBreakpoint();
1356         Error error = FixupBreakpointPCAsNeeded(thread_sp);
1357         if (error.Fail())
1358             if (log)
1359                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1360                         __FUNCTION__, pid, error.AsCString());
1361 
1362         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
1363             thread_sp->SetStoppedByTrace();
1364     }
1365     else
1366         if (log)
1367             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
1368                     "warning, cannot process software breakpoint since no thread metadata",
1369                     __FUNCTION__, pid);
1370 
1371 
1372     // We need to tell all other running threads before we notify the delegate about this stop.
1373     StopRunningThreads(pid);
1374 }
1375 
1376 void
1377 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1378 {
1379     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1380     if (log)
1381         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1382                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1383                     __FUNCTION__, thread.GetID(), wp_index);
1384 
1385     // Mark the thread as stopped at watchpoint.
1386     // The address is at (lldb::addr_t)info->si_addr if we need it.
1387     thread.SetStoppedByWatchpoint(wp_index);
1388 
1389     // We need to tell all other running threads before we notify the delegate about this stop.
1390     StopRunningThreads(thread.GetID());
1391 }
1392 
1393 void
1394 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
1395 {
1396     assert (info && "null info");
1397     if (!info)
1398         return;
1399 
1400     const int signo = info->si_signo;
1401     const bool is_from_llgs = info->si_pid == getpid ();
1402 
1403     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1404 
1405     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1406     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1407     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1408     //
1409     // IOW, user generated signals never generate what we consider to be a
1410     // "crash".
1411     //
1412     // Similarly, ACK signals generated by this monitor.
1413 
1414     Mutex::Locker locker (m_threads_mutex);
1415 
1416     // See if we can find a thread for this signal.
1417     NativeThreadLinuxSP thread_sp = GetThreadByID(pid);
1418     if (!thread_sp)
1419     {
1420         if (log)
1421             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1422     }
1423 
1424     // Handle the signal.
1425     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
1426     {
1427         if (log)
1428             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1429                             __FUNCTION__,
1430                             Host::GetSignalAsCString(signo),
1431                             signo,
1432                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1433                             info->si_pid,
1434                             is_from_llgs ? "from llgs" : "not from llgs",
1435                             pid);
1436     }
1437 
1438     // Check for new thread notification.
1439     if ((info->si_pid == 0) && (info->si_code == SI_USER))
1440     {
1441         // A new thread creation is being signaled. This is one of two parts that come in
1442         // a non-deterministic order. This code handles the case where the new thread event comes
1443         // before the event on the parent thread. For the opposite case see code in
1444         // MonitorSIGTRAP.
1445         if (log)
1446             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
1447                      __FUNCTION__, GetID (), pid);
1448 
1449         thread_sp = AddThread(pid);
1450         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
1451         // We can now resume the newly created thread.
1452         ResumeThread(thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1453         ThreadWasCreated(*thread_sp);
1454         // Done handling.
1455         return;
1456     }
1457 
1458     // Check for thread stop notification.
1459     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
1460     {
1461         // This is a tgkill()-based stop.
1462         if (thread_sp)
1463         {
1464             if (log)
1465                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1466                              __FUNCTION__,
1467                              GetID (),
1468                              pid);
1469 
1470             // Check that we're not already marked with a stop reason.
1471             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1472             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1473             // and that, without an intervening resume, we received another stop.  It is more likely
1474             // that we are missing the marking of a run state somewhere if we find that the thread was
1475             // marked as stopped.
1476             const StateType thread_state = thread_sp->GetState();
1477             if (!StateIsStoppedState (thread_state, false))
1478             {
1479                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
1480                 // Generally, these are not important stops and we don't want to report them as
1481                 // they are just used to stop other threads when one thread (the one with the
1482                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1483                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1484                 // leave the signal intact if this is the thread that was chosen as the
1485                 // triggering thread.
1486                 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1487                 {
1488                     if (m_pending_notification_tid == pid)
1489                         thread_sp->SetStoppedBySignal(SIGSTOP, info);
1490                     else
1491                         thread_sp->SetStoppedWithNoReason();
1492 
1493                     SetCurrentThreadID (thread_sp->GetID ());
1494                     SignalIfAllThreadsStopped();
1495                 }
1496                 else
1497                 {
1498                     // We can end up here if stop was initiated by LLGS but by this time a
1499                     // thread stop has occurred - maybe initiated by another event.
1500                     Error error = ResumeThread(thread_sp, thread_sp->GetState(), 0);
1501                     if (error.Fail() && log)
1502                     {
1503                         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1504                                 __FUNCTION__, thread_sp->GetID(), error.AsCString());
1505                     }
1506                 }
1507             }
1508             else
1509             {
1510                 if (log)
1511                 {
1512                     // Retrieve the signal name if the thread was stopped by a signal.
1513                     int stop_signo = 0;
1514                     const bool stopped_by_signal = thread_sp->IsStopped(&stop_signo);
1515                     const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1516                     if (!signal_name)
1517                         signal_name = "<no-signal-name>";
1518 
1519                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1520                                  __FUNCTION__,
1521                                  GetID (),
1522                                  thread_sp->GetID(),
1523                                  StateAsCString (thread_state),
1524                                  stop_signo,
1525                                  signal_name);
1526                 }
1527                 SignalIfAllThreadsStopped();
1528             }
1529         }
1530 
1531         // Done handling.
1532         return;
1533     }
1534 
1535     if (log)
1536         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1537 
1538     // This thread is stopped.
1539     if (thread_sp)
1540         thread_sp->SetStoppedBySignal(signo, info);
1541 
1542     // Send a stop to the debugger after we get all other threads to stop.
1543     StopRunningThreads (pid);
1544 }
1545 
1546 namespace {
1547 
1548 struct EmulatorBaton
1549 {
1550     NativeProcessLinux* m_process;
1551     NativeRegisterContext* m_reg_context;
1552 
1553     // eRegisterKindDWARF -> RegsiterValue
1554     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1555 
1556     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1557             m_process(process), m_reg_context(reg_context) {}
1558 };
1559 
1560 } // anonymous namespace
1561 
1562 static size_t
1563 ReadMemoryCallback (EmulateInstruction *instruction,
1564                     void *baton,
1565                     const EmulateInstruction::Context &context,
1566                     lldb::addr_t addr,
1567                     void *dst,
1568                     size_t length)
1569 {
1570     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1571 
1572     size_t bytes_read;
1573     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1574     return bytes_read;
1575 }
1576 
1577 static bool
1578 ReadRegisterCallback (EmulateInstruction *instruction,
1579                       void *baton,
1580                       const RegisterInfo *reg_info,
1581                       RegisterValue &reg_value)
1582 {
1583     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1584 
1585     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1586     if (it != emulator_baton->m_register_values.end())
1587     {
1588         reg_value = it->second;
1589         return true;
1590     }
1591 
1592     // The emulator only fill in the dwarf regsiter numbers (and in some case
1593     // the generic register numbers). Get the full register info from the
1594     // register context based on the dwarf register numbers.
1595     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1596             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1597 
1598     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1599     if (error.Success())
1600         return true;
1601 
1602     return false;
1603 }
1604 
1605 static bool
1606 WriteRegisterCallback (EmulateInstruction *instruction,
1607                        void *baton,
1608                        const EmulateInstruction::Context &context,
1609                        const RegisterInfo *reg_info,
1610                        const RegisterValue &reg_value)
1611 {
1612     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1613     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1614     return true;
1615 }
1616 
1617 static size_t
1618 WriteMemoryCallback (EmulateInstruction *instruction,
1619                      void *baton,
1620                      const EmulateInstruction::Context &context,
1621                      lldb::addr_t addr,
1622                      const void *dst,
1623                      size_t length)
1624 {
1625     return length;
1626 }
1627 
1628 static lldb::addr_t
1629 ReadFlags (NativeRegisterContext* regsiter_context)
1630 {
1631     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1632             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1633     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1634 }
1635 
1636 Error
1637 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
1638 {
1639     Error error;
1640     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
1641 
1642     std::unique_ptr<EmulateInstruction> emulator_ap(
1643         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1644 
1645     if (emulator_ap == nullptr)
1646         return Error("Instruction emulator not found!");
1647 
1648     EmulatorBaton baton(this, register_context_sp.get());
1649     emulator_ap->SetBaton(&baton);
1650     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1651     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1652     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1653     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1654 
1655     if (!emulator_ap->ReadInstruction())
1656         return Error("Read instruction failed!");
1657 
1658     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1659 
1660     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1661     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1662 
1663     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1664     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1665 
1666     lldb::addr_t next_pc;
1667     lldb::addr_t next_flags;
1668     if (emulation_result)
1669     {
1670         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1671         next_pc = pc_it->second.GetAsUInt64();
1672 
1673         if (flags_it != baton.m_register_values.end())
1674             next_flags = flags_it->second.GetAsUInt64();
1675         else
1676             next_flags = ReadFlags (register_context_sp.get());
1677     }
1678     else if (pc_it == baton.m_register_values.end())
1679     {
1680         // Emulate instruction failed and it haven't changed PC. Advance PC
1681         // with the size of the current opcode because the emulation of all
1682         // PC modifying instruction should be successful. The failure most
1683         // likely caused by a not supported instruction which don't modify PC.
1684         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1685         next_flags = ReadFlags (register_context_sp.get());
1686     }
1687     else
1688     {
1689         // The instruction emulation failed after it modified the PC. It is an
1690         // unknown error where we can't continue because the next instruction is
1691         // modifying the PC but we don't  know how.
1692         return Error ("Instruction emulation failed unexpectedly.");
1693     }
1694 
1695     if (m_arch.GetMachine() == llvm::Triple::arm)
1696     {
1697         if (next_flags & 0x20)
1698         {
1699             // Thumb mode
1700             error = SetSoftwareBreakpoint(next_pc, 2);
1701         }
1702         else
1703         {
1704             // Arm mode
1705             error = SetSoftwareBreakpoint(next_pc, 4);
1706         }
1707     }
1708     else if (m_arch.GetMachine() == llvm::Triple::mips64
1709             || m_arch.GetMachine() == llvm::Triple::mips64el
1710             || m_arch.GetMachine() == llvm::Triple::mips
1711             || m_arch.GetMachine() == llvm::Triple::mipsel)
1712         error = SetSoftwareBreakpoint(next_pc, 4);
1713     else
1714     {
1715         // No size hint is given for the next breakpoint
1716         error = SetSoftwareBreakpoint(next_pc, 0);
1717     }
1718 
1719     if (error.Fail())
1720         return error;
1721 
1722     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
1723 
1724     return Error();
1725 }
1726 
1727 bool
1728 NativeProcessLinux::SupportHardwareSingleStepping() const
1729 {
1730     if (m_arch.GetMachine() == llvm::Triple::arm
1731         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1732         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1733         return false;
1734     return true;
1735 }
1736 
1737 Error
1738 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1739 {
1740     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1741     if (log)
1742         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1743 
1744     bool software_single_step = !SupportHardwareSingleStepping();
1745 
1746     Mutex::Locker locker (m_threads_mutex);
1747 
1748     if (software_single_step)
1749     {
1750         for (auto thread_sp : m_threads)
1751         {
1752             assert (thread_sp && "thread list should not contain NULL threads");
1753 
1754             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1755             if (action == nullptr)
1756                 continue;
1757 
1758             if (action->state == eStateStepping)
1759             {
1760                 Error error = SetupSoftwareSingleStepping(thread_sp);
1761                 if (error.Fail())
1762                     return error;
1763             }
1764         }
1765     }
1766 
1767     for (auto thread_sp : m_threads)
1768     {
1769         assert (thread_sp && "thread list should not contain NULL threads");
1770 
1771         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1772 
1773         if (action == nullptr)
1774         {
1775             if (log)
1776                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1777                     __FUNCTION__, GetID (), thread_sp->GetID ());
1778             continue;
1779         }
1780 
1781         if (log)
1782         {
1783             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1784                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1785         }
1786 
1787         switch (action->state)
1788         {
1789         case eStateRunning:
1790         case eStateStepping:
1791         {
1792             // Run the thread, possibly feeding it the signal.
1793             const int signo = action->signal;
1794             ResumeThread(std::static_pointer_cast<NativeThreadLinux>(thread_sp), action->state, signo);
1795             break;
1796         }
1797 
1798         case eStateSuspended:
1799         case eStateStopped:
1800             lldbassert(0 && "Unexpected state");
1801 
1802         default:
1803             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1804                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1805         }
1806     }
1807 
1808     return Error();
1809 }
1810 
1811 Error
1812 NativeProcessLinux::Halt ()
1813 {
1814     Error error;
1815 
1816     if (kill (GetID (), SIGSTOP) != 0)
1817         error.SetErrorToErrno ();
1818 
1819     return error;
1820 }
1821 
1822 Error
1823 NativeProcessLinux::Detach ()
1824 {
1825     Error error;
1826 
1827     // Tell ptrace to detach from the process.
1828     if (GetID () != LLDB_INVALID_PROCESS_ID)
1829         error = Detach (GetID ());
1830 
1831     // Stop monitoring the inferior.
1832     m_sigchld_handle.reset();
1833 
1834     // No error.
1835     return error;
1836 }
1837 
1838 Error
1839 NativeProcessLinux::Signal (int signo)
1840 {
1841     Error error;
1842 
1843     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1844     if (log)
1845         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1846                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1847 
1848     if (kill(GetID(), signo))
1849         error.SetErrorToErrno();
1850 
1851     return error;
1852 }
1853 
1854 Error
1855 NativeProcessLinux::Interrupt ()
1856 {
1857     // Pick a running thread (or if none, a not-dead stopped thread) as
1858     // the chosen thread that will be the stop-reason thread.
1859     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1860 
1861     NativeThreadProtocolSP running_thread_sp;
1862     NativeThreadProtocolSP stopped_thread_sp;
1863 
1864     if (log)
1865         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1866 
1867     Mutex::Locker locker (m_threads_mutex);
1868 
1869     for (auto thread_sp : m_threads)
1870     {
1871         // The thread shouldn't be null but lets just cover that here.
1872         if (!thread_sp)
1873             continue;
1874 
1875         // If we have a running or stepping thread, we'll call that the
1876         // target of the interrupt.
1877         const auto thread_state = thread_sp->GetState ();
1878         if (thread_state == eStateRunning ||
1879             thread_state == eStateStepping)
1880         {
1881             running_thread_sp = thread_sp;
1882             break;
1883         }
1884         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1885         {
1886             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1887             stopped_thread_sp = thread_sp;
1888         }
1889     }
1890 
1891     if (!running_thread_sp && !stopped_thread_sp)
1892     {
1893         Error error("found no running/stepping or live stopped threads as target for interrupt");
1894         if (log)
1895             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1896 
1897         return error;
1898     }
1899 
1900     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1901 
1902     if (log)
1903         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1904                      __FUNCTION__,
1905                      GetID (),
1906                      running_thread_sp ? "running" : "stopped",
1907                      deferred_signal_thread_sp->GetID ());
1908 
1909     StopRunningThreads(deferred_signal_thread_sp->GetID());
1910 
1911     return Error();
1912 }
1913 
1914 Error
1915 NativeProcessLinux::Kill ()
1916 {
1917     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1918     if (log)
1919         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1920 
1921     Error error;
1922 
1923     switch (m_state)
1924     {
1925         case StateType::eStateInvalid:
1926         case StateType::eStateExited:
1927         case StateType::eStateCrashed:
1928         case StateType::eStateDetached:
1929         case StateType::eStateUnloaded:
1930             // Nothing to do - the process is already dead.
1931             if (log)
1932                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1933             return error;
1934 
1935         case StateType::eStateConnected:
1936         case StateType::eStateAttaching:
1937         case StateType::eStateLaunching:
1938         case StateType::eStateStopped:
1939         case StateType::eStateRunning:
1940         case StateType::eStateStepping:
1941         case StateType::eStateSuspended:
1942             // We can try to kill a process in these states.
1943             break;
1944     }
1945 
1946     if (kill (GetID (), SIGKILL) != 0)
1947     {
1948         error.SetErrorToErrno ();
1949         return error;
1950     }
1951 
1952     return error;
1953 }
1954 
1955 static Error
1956 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1957 {
1958     memory_region_info.Clear();
1959 
1960     StringExtractor line_extractor (maps_line.c_str ());
1961 
1962     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1963     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1964 
1965     // Parse out the starting address
1966     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1967 
1968     // Parse out hyphen separating start and end address from range.
1969     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1970         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1971 
1972     // Parse out the ending address
1973     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1974 
1975     // Parse out the space after the address.
1976     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1977         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1978 
1979     // Save the range.
1980     memory_region_info.GetRange ().SetRangeBase (start_address);
1981     memory_region_info.GetRange ().SetRangeEnd (end_address);
1982 
1983     // Parse out each permission entry.
1984     if (line_extractor.GetBytesLeft () < 4)
1985         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1986 
1987     // Handle read permission.
1988     const char read_perm_char = line_extractor.GetChar ();
1989     if (read_perm_char == 'r')
1990         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1991     else
1992     {
1993         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
1994         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1995     }
1996 
1997     // Handle write permission.
1998     const char write_perm_char = line_extractor.GetChar ();
1999     if (write_perm_char == 'w')
2000         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2001     else
2002     {
2003         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2004         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2005     }
2006 
2007     // Handle execute permission.
2008     const char exec_perm_char = line_extractor.GetChar ();
2009     if (exec_perm_char == 'x')
2010         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2011     else
2012     {
2013         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2014         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2015     }
2016 
2017     return Error ();
2018 }
2019 
2020 Error
2021 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2022 {
2023     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2024     // with no perms if it is not mapped.
2025 
2026     // Use an approach that reads memory regions from /proc/{pid}/maps.
2027     // Assume proc maps entries are in ascending order.
2028     // FIXME assert if we find differently.
2029     Mutex::Locker locker (m_mem_region_cache_mutex);
2030 
2031     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2032     Error error;
2033 
2034     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2035     {
2036         // We're done.
2037         error.SetErrorString ("unsupported");
2038         return error;
2039     }
2040 
2041     // If our cache is empty, pull the latest.  There should always be at least one memory region
2042     // if memory region handling is supported.
2043     if (m_mem_region_cache.empty ())
2044     {
2045         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2046              [&] (const std::string &line) -> bool
2047              {
2048                  MemoryRegionInfo info;
2049                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2050                  if (parse_error.Success ())
2051                  {
2052                      m_mem_region_cache.push_back (info);
2053                      return true;
2054                  }
2055                  else
2056                  {
2057                      if (log)
2058                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2059                      return false;
2060                  }
2061              });
2062 
2063         // If we had an error, we'll mark unsupported.
2064         if (error.Fail ())
2065         {
2066             m_supports_mem_region = LazyBool::eLazyBoolNo;
2067             return error;
2068         }
2069         else if (m_mem_region_cache.empty ())
2070         {
2071             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2072             // is supported.  Assume we don't support map entries via procfs.
2073             if (log)
2074                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2075             m_supports_mem_region = LazyBool::eLazyBoolNo;
2076             error.SetErrorString ("not supported");
2077             return error;
2078         }
2079 
2080         if (log)
2081             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2082 
2083         // We support memory retrieval, remember that.
2084         m_supports_mem_region = LazyBool::eLazyBoolYes;
2085     }
2086     else
2087     {
2088         if (log)
2089             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2090     }
2091 
2092     lldb::addr_t prev_base_address = 0;
2093 
2094     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2095     // There can be a ton of regions on pthreads apps with lots of threads.
2096     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2097     {
2098         MemoryRegionInfo &proc_entry_info = *it;
2099 
2100         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2101         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2102         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2103 
2104         // If the target address comes before this entry, indicate distance to next region.
2105         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2106         {
2107             range_info.GetRange ().SetRangeBase (load_addr);
2108             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2109             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2110             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2111             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2112 
2113             return error;
2114         }
2115         else if (proc_entry_info.GetRange ().Contains (load_addr))
2116         {
2117             // The target address is within the memory region we're processing here.
2118             range_info = proc_entry_info;
2119             return error;
2120         }
2121 
2122         // The target memory address comes somewhere after the region we just parsed.
2123     }
2124 
2125     // If we made it here, we didn't find an entry that contained the given address. Return the
2126     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2127     // size.
2128     range_info.GetRange ().SetRangeBase (load_addr);
2129     switch (m_arch.GetAddressByteSize())
2130     {
2131         case 4:
2132             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2133             break;
2134         case 8:
2135             range_info.GetRange ().SetByteSize (0ull - load_addr);
2136             break;
2137         default:
2138             assert(false && "Unrecognized data byte size");
2139             break;
2140     }
2141     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2142     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2143     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2144     return error;
2145 }
2146 
2147 void
2148 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2149 {
2150     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2151     if (log)
2152         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2153 
2154     {
2155         Mutex::Locker locker (m_mem_region_cache_mutex);
2156         if (log)
2157             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2158         m_mem_region_cache.clear ();
2159     }
2160 }
2161 
2162 Error
2163 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2164 {
2165     // FIXME implementing this requires the equivalent of
2166     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2167     // functional ThreadPlans working with Native*Protocol.
2168 #if 1
2169     return Error ("not implemented yet");
2170 #else
2171     addr = LLDB_INVALID_ADDRESS;
2172 
2173     unsigned prot = 0;
2174     if (permissions & lldb::ePermissionsReadable)
2175         prot |= eMmapProtRead;
2176     if (permissions & lldb::ePermissionsWritable)
2177         prot |= eMmapProtWrite;
2178     if (permissions & lldb::ePermissionsExecutable)
2179         prot |= eMmapProtExec;
2180 
2181     // TODO implement this directly in NativeProcessLinux
2182     // (and lift to NativeProcessPOSIX if/when that class is
2183     // refactored out).
2184     if (InferiorCallMmap(this, addr, 0, size, prot,
2185                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2186         m_addr_to_mmap_size[addr] = size;
2187         return Error ();
2188     } else {
2189         addr = LLDB_INVALID_ADDRESS;
2190         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2191     }
2192 #endif
2193 }
2194 
2195 Error
2196 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2197 {
2198     // FIXME see comments in AllocateMemory - required lower-level
2199     // bits not in place yet (ThreadPlans)
2200     return Error ("not implemented");
2201 }
2202 
2203 lldb::addr_t
2204 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2205 {
2206 #if 1
2207     // punt on this for now
2208     return LLDB_INVALID_ADDRESS;
2209 #else
2210     // Return the image info address for the exe module
2211 #if 1
2212     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2213 
2214     ModuleSP module_sp;
2215     Error error = GetExeModuleSP (module_sp);
2216     if (error.Fail ())
2217     {
2218          if (log)
2219             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2220         return LLDB_INVALID_ADDRESS;
2221     }
2222 
2223     if (module_sp == nullptr)
2224     {
2225          if (log)
2226             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2227          return LLDB_INVALID_ADDRESS;
2228     }
2229 
2230     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2231     if (object_file_sp == nullptr)
2232     {
2233          if (log)
2234             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2235          return LLDB_INVALID_ADDRESS;
2236     }
2237 
2238     return obj_file_sp->GetImageInfoAddress();
2239 #else
2240     Target *target = &GetTarget();
2241     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2242     Address addr = obj_file->GetImageInfoAddress(target);
2243 
2244     if (addr.IsValid())
2245         return addr.GetLoadAddress(target);
2246     return LLDB_INVALID_ADDRESS;
2247 #endif
2248 #endif // punt on this for now
2249 }
2250 
2251 size_t
2252 NativeProcessLinux::UpdateThreads ()
2253 {
2254     // The NativeProcessLinux monitoring threads are always up to date
2255     // with respect to thread state and they keep the thread list
2256     // populated properly. All this method needs to do is return the
2257     // thread count.
2258     Mutex::Locker locker (m_threads_mutex);
2259     return m_threads.size ();
2260 }
2261 
2262 bool
2263 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2264 {
2265     arch = m_arch;
2266     return true;
2267 }
2268 
2269 Error
2270 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2271 {
2272     // FIXME put this behind a breakpoint protocol class that can be
2273     // set per architecture.  Need ARM, MIPS support here.
2274     static const uint8_t g_i386_opcode [] = { 0xCC };
2275 
2276     switch (m_arch.GetMachine ())
2277     {
2278         case llvm::Triple::x86:
2279         case llvm::Triple::x86_64:
2280             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2281             return Error ();
2282 
2283         case llvm::Triple::arm:
2284         case llvm::Triple::aarch64:
2285         case llvm::Triple::mips64:
2286         case llvm::Triple::mips64el:
2287         case llvm::Triple::mips:
2288         case llvm::Triple::mipsel:
2289             // On these architectures the PC don't get updated for breakpoint hits
2290             actual_opcode_size = 0;
2291             return Error ();
2292 
2293         default:
2294             assert(false && "CPU type not supported!");
2295             return Error ("CPU type not supported");
2296     }
2297 }
2298 
2299 Error
2300 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2301 {
2302     if (hardware)
2303         return Error ("NativeProcessLinux does not support hardware breakpoints");
2304     else
2305         return SetSoftwareBreakpoint (addr, size);
2306 }
2307 
2308 Error
2309 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2310                                                      size_t &actual_opcode_size,
2311                                                      const uint8_t *&trap_opcode_bytes)
2312 {
2313     // FIXME put this behind a breakpoint protocol class that can be set per
2314     // architecture.  Need MIPS support here.
2315     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2316     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2317     // linux kernel does otherwise.
2318     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2319     static const uint8_t g_i386_opcode [] = { 0xCC };
2320     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2321     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2322     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2323 
2324     switch (m_arch.GetMachine ())
2325     {
2326     case llvm::Triple::aarch64:
2327         trap_opcode_bytes = g_aarch64_opcode;
2328         actual_opcode_size = sizeof(g_aarch64_opcode);
2329         return Error ();
2330 
2331     case llvm::Triple::arm:
2332         switch (trap_opcode_size_hint)
2333         {
2334         case 2:
2335             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2336             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2337             return Error ();
2338         case 4:
2339             trap_opcode_bytes = g_arm_breakpoint_opcode;
2340             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2341             return Error ();
2342         default:
2343             assert(false && "Unrecognised trap opcode size hint!");
2344             return Error ("Unrecognised trap opcode size hint!");
2345         }
2346 
2347     case llvm::Triple::x86:
2348     case llvm::Triple::x86_64:
2349         trap_opcode_bytes = g_i386_opcode;
2350         actual_opcode_size = sizeof(g_i386_opcode);
2351         return Error ();
2352 
2353     case llvm::Triple::mips:
2354     case llvm::Triple::mips64:
2355         trap_opcode_bytes = g_mips64_opcode;
2356         actual_opcode_size = sizeof(g_mips64_opcode);
2357         return Error ();
2358 
2359     case llvm::Triple::mipsel:
2360     case llvm::Triple::mips64el:
2361         trap_opcode_bytes = g_mips64el_opcode;
2362         actual_opcode_size = sizeof(g_mips64el_opcode);
2363         return Error ();
2364 
2365     default:
2366         assert(false && "CPU type not supported!");
2367         return Error ("CPU type not supported");
2368     }
2369 }
2370 
2371 #if 0
2372 ProcessMessage::CrashReason
2373 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2374 {
2375     ProcessMessage::CrashReason reason;
2376     assert(info->si_signo == SIGSEGV);
2377 
2378     reason = ProcessMessage::eInvalidCrashReason;
2379 
2380     switch (info->si_code)
2381     {
2382     default:
2383         assert(false && "unexpected si_code for SIGSEGV");
2384         break;
2385     case SI_KERNEL:
2386         // Linux will occasionally send spurious SI_KERNEL codes.
2387         // (this is poorly documented in sigaction)
2388         // One way to get this is via unaligned SIMD loads.
2389         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2390         break;
2391     case SEGV_MAPERR:
2392         reason = ProcessMessage::eInvalidAddress;
2393         break;
2394     case SEGV_ACCERR:
2395         reason = ProcessMessage::ePrivilegedAddress;
2396         break;
2397     }
2398 
2399     return reason;
2400 }
2401 #endif
2402 
2403 
2404 #if 0
2405 ProcessMessage::CrashReason
2406 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2407 {
2408     ProcessMessage::CrashReason reason;
2409     assert(info->si_signo == SIGILL);
2410 
2411     reason = ProcessMessage::eInvalidCrashReason;
2412 
2413     switch (info->si_code)
2414     {
2415     default:
2416         assert(false && "unexpected si_code for SIGILL");
2417         break;
2418     case ILL_ILLOPC:
2419         reason = ProcessMessage::eIllegalOpcode;
2420         break;
2421     case ILL_ILLOPN:
2422         reason = ProcessMessage::eIllegalOperand;
2423         break;
2424     case ILL_ILLADR:
2425         reason = ProcessMessage::eIllegalAddressingMode;
2426         break;
2427     case ILL_ILLTRP:
2428         reason = ProcessMessage::eIllegalTrap;
2429         break;
2430     case ILL_PRVOPC:
2431         reason = ProcessMessage::ePrivilegedOpcode;
2432         break;
2433     case ILL_PRVREG:
2434         reason = ProcessMessage::ePrivilegedRegister;
2435         break;
2436     case ILL_COPROC:
2437         reason = ProcessMessage::eCoprocessorError;
2438         break;
2439     case ILL_BADSTK:
2440         reason = ProcessMessage::eInternalStackError;
2441         break;
2442     }
2443 
2444     return reason;
2445 }
2446 #endif
2447 
2448 #if 0
2449 ProcessMessage::CrashReason
2450 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2451 {
2452     ProcessMessage::CrashReason reason;
2453     assert(info->si_signo == SIGFPE);
2454 
2455     reason = ProcessMessage::eInvalidCrashReason;
2456 
2457     switch (info->si_code)
2458     {
2459     default:
2460         assert(false && "unexpected si_code for SIGFPE");
2461         break;
2462     case FPE_INTDIV:
2463         reason = ProcessMessage::eIntegerDivideByZero;
2464         break;
2465     case FPE_INTOVF:
2466         reason = ProcessMessage::eIntegerOverflow;
2467         break;
2468     case FPE_FLTDIV:
2469         reason = ProcessMessage::eFloatDivideByZero;
2470         break;
2471     case FPE_FLTOVF:
2472         reason = ProcessMessage::eFloatOverflow;
2473         break;
2474     case FPE_FLTUND:
2475         reason = ProcessMessage::eFloatUnderflow;
2476         break;
2477     case FPE_FLTRES:
2478         reason = ProcessMessage::eFloatInexactResult;
2479         break;
2480     case FPE_FLTINV:
2481         reason = ProcessMessage::eFloatInvalidOperation;
2482         break;
2483     case FPE_FLTSUB:
2484         reason = ProcessMessage::eFloatSubscriptRange;
2485         break;
2486     }
2487 
2488     return reason;
2489 }
2490 #endif
2491 
2492 #if 0
2493 ProcessMessage::CrashReason
2494 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2495 {
2496     ProcessMessage::CrashReason reason;
2497     assert(info->si_signo == SIGBUS);
2498 
2499     reason = ProcessMessage::eInvalidCrashReason;
2500 
2501     switch (info->si_code)
2502     {
2503     default:
2504         assert(false && "unexpected si_code for SIGBUS");
2505         break;
2506     case BUS_ADRALN:
2507         reason = ProcessMessage::eIllegalAlignment;
2508         break;
2509     case BUS_ADRERR:
2510         reason = ProcessMessage::eIllegalAddress;
2511         break;
2512     case BUS_OBJERR:
2513         reason = ProcessMessage::eHardwareError;
2514         break;
2515     }
2516 
2517     return reason;
2518 }
2519 #endif
2520 
2521 Error
2522 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2523 {
2524     if (ProcessVmReadvSupported()) {
2525         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2526         // this syscall if it is supported.
2527 
2528         const ::pid_t pid = GetID();
2529 
2530         struct iovec local_iov, remote_iov;
2531         local_iov.iov_base = buf;
2532         local_iov.iov_len = size;
2533         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2534         remote_iov.iov_len = size;
2535 
2536         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2537         const bool success = bytes_read == size;
2538 
2539         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2540         if (log)
2541             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2542                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2543 
2544         if (success)
2545             return Error();
2546         // else
2547         //     the call failed for some reason, let's retry the read using ptrace api.
2548     }
2549 
2550     unsigned char *dst = static_cast<unsigned char*>(buf);
2551     size_t remainder;
2552     long data;
2553 
2554     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2555     if (log)
2556         ProcessPOSIXLog::IncNestLevel();
2557     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2558         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2559 
2560     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2561     {
2562         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2563         if (error.Fail())
2564         {
2565             if (log)
2566                 ProcessPOSIXLog::DecNestLevel();
2567             return error;
2568         }
2569 
2570         remainder = size - bytes_read;
2571         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2572 
2573         // Copy the data into our buffer
2574         for (unsigned i = 0; i < remainder; ++i)
2575             dst[i] = ((data >> i*8) & 0xFF);
2576 
2577         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2578                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2579                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2580                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2581         {
2582             uintptr_t print_dst = 0;
2583             // Format bytes from data by moving into print_dst for log output
2584             for (unsigned i = 0; i < remainder; ++i)
2585                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2586             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2587                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2588         }
2589         addr += k_ptrace_word_size;
2590         dst += k_ptrace_word_size;
2591     }
2592 
2593     if (log)
2594         ProcessPOSIXLog::DecNestLevel();
2595     return Error();
2596 }
2597 
2598 Error
2599 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2600 {
2601     Error error = ReadMemory(addr, buf, size, bytes_read);
2602     if (error.Fail()) return error;
2603     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2604 }
2605 
2606 Error
2607 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2608 {
2609     const unsigned char *src = static_cast<const unsigned char*>(buf);
2610     size_t remainder;
2611     Error error;
2612 
2613     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2614     if (log)
2615         ProcessPOSIXLog::IncNestLevel();
2616     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2617         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2618 
2619     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2620     {
2621         remainder = size - bytes_written;
2622         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2623 
2624         if (remainder == k_ptrace_word_size)
2625         {
2626             unsigned long data = 0;
2627             for (unsigned i = 0; i < k_ptrace_word_size; ++i)
2628                 data |= (unsigned long)src[i] << i*8;
2629 
2630             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2631                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2632                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2633                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2634                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2635                         (void*)addr, *(const unsigned long*)src, data);
2636 
2637             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2638             if (error.Fail())
2639             {
2640                 if (log)
2641                     ProcessPOSIXLog::DecNestLevel();
2642                 return error;
2643             }
2644         }
2645         else
2646         {
2647             unsigned char buff[8];
2648             size_t bytes_read;
2649             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2650             if (error.Fail())
2651             {
2652                 if (log)
2653                     ProcessPOSIXLog::DecNestLevel();
2654                 return error;
2655             }
2656 
2657             memcpy(buff, src, remainder);
2658 
2659             size_t bytes_written_rec;
2660             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2661             if (error.Fail())
2662             {
2663                 if (log)
2664                     ProcessPOSIXLog::DecNestLevel();
2665                 return error;
2666             }
2667 
2668             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2669                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2670                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2671                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2672                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2673                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2674         }
2675 
2676         addr += k_ptrace_word_size;
2677         src += k_ptrace_word_size;
2678     }
2679     if (log)
2680         ProcessPOSIXLog::DecNestLevel();
2681     return error;
2682 }
2683 
2684 Error
2685 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
2686 {
2687     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2688 
2689     if (log)
2690         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
2691                                  Host::GetSignalAsCString(signo));
2692 
2693 
2694 
2695     intptr_t data = 0;
2696 
2697     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2698         data = signo;
2699 
2700     Error error = PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data);
2701 
2702     if (log)
2703         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false");
2704     return error;
2705 }
2706 
2707 Error
2708 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
2709 {
2710     intptr_t data = 0;
2711 
2712     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
2713         data = signo;
2714 
2715     // If hardware single-stepping is not supported, we just do a continue. The breakpoint on the
2716     // next instruction has been setup in NativeProcessLinux::Resume.
2717     return PtraceWrapper(SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT,
2718             tid, nullptr, (void*)data);
2719 }
2720 
2721 Error
2722 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2723 {
2724     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2725 }
2726 
2727 Error
2728 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2729 {
2730     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2731 }
2732 
2733 Error
2734 NativeProcessLinux::Detach(lldb::tid_t tid)
2735 {
2736     if (tid == LLDB_INVALID_THREAD_ID)
2737         return Error();
2738 
2739     return PtraceWrapper(PTRACE_DETACH, tid);
2740 }
2741 
2742 bool
2743 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
2744 {
2745     int target_fd = open(file_spec.GetCString(), flags, 0666);
2746 
2747     if (target_fd == -1)
2748         return false;
2749 
2750     if (dup2(target_fd, fd) == -1)
2751         return false;
2752 
2753     return (close(target_fd) == -1) ? false : true;
2754 }
2755 
2756 bool
2757 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2758 {
2759     for (auto thread_sp : m_threads)
2760     {
2761         assert (thread_sp && "thread list should not contain NULL threads");
2762         if (thread_sp->GetID () == thread_id)
2763         {
2764             // We have this thread.
2765             return true;
2766         }
2767     }
2768 
2769     // We don't have this thread.
2770     return false;
2771 }
2772 
2773 NativeThreadProtocolSP
2774 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
2775 {
2776     // CONSIDER organize threads by map - we can do better than linear.
2777     for (auto thread_sp : m_threads)
2778     {
2779         if (thread_sp->GetID () == thread_id)
2780             return thread_sp;
2781     }
2782 
2783     // We don't have this thread.
2784     return NativeThreadProtocolSP ();
2785 }
2786 
2787 bool
2788 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2789 {
2790     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2791 
2792     if (log)
2793         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2794 
2795     bool found = false;
2796 
2797     Mutex::Locker locker (m_threads_mutex);
2798     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2799     {
2800         if (*it && ((*it)->GetID () == thread_id))
2801         {
2802             m_threads.erase (it);
2803             found = true;
2804             break;
2805         }
2806     }
2807 
2808     SignalIfAllThreadsStopped();
2809 
2810     return found;
2811 }
2812 
2813 NativeThreadLinuxSP
2814 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2815 {
2816     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2817 
2818     Mutex::Locker locker (m_threads_mutex);
2819 
2820     if (log)
2821     {
2822         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2823                 __FUNCTION__,
2824                 GetID (),
2825                 thread_id);
2826     }
2827 
2828     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2829 
2830     // If this is the first thread, save it as the current thread
2831     if (m_threads.empty ())
2832         SetCurrentThreadID (thread_id);
2833 
2834     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2835     m_threads.push_back (thread_sp);
2836     return thread_sp;
2837 }
2838 
2839 Error
2840 NativeProcessLinux::FixupBreakpointPCAsNeeded(const NativeThreadLinuxSP &thread_sp)
2841 {
2842     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2843 
2844     Error error;
2845 
2846     if (!thread_sp)
2847     {
2848         error.SetErrorString ("null thread_sp");
2849         if (log)
2850             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2851         return error;
2852     }
2853 
2854     // Find out the size of a breakpoint (might depend on where we are in the code).
2855     NativeRegisterContextSP context_sp = thread_sp->GetRegisterContext();
2856     if (!context_sp)
2857     {
2858         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2859         if (log)
2860             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2861         return error;
2862     }
2863 
2864     uint32_t breakpoint_size = 0;
2865     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
2866     if (error.Fail ())
2867     {
2868         if (log)
2869             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2870         return error;
2871     }
2872     else
2873     {
2874         if (log)
2875             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2876     }
2877 
2878     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2879     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2880     lldb::addr_t breakpoint_addr = initial_pc_addr;
2881     if (breakpoint_size > 0)
2882     {
2883         // Do not allow breakpoint probe to wrap around.
2884         if (breakpoint_addr >= breakpoint_size)
2885             breakpoint_addr -= breakpoint_size;
2886     }
2887 
2888     // Check if we stopped because of a breakpoint.
2889     NativeBreakpointSP breakpoint_sp;
2890     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2891     if (!error.Success () || !breakpoint_sp)
2892     {
2893         // We didn't find one at a software probe location.  Nothing to do.
2894         if (log)
2895             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2896         return Error ();
2897     }
2898 
2899     // If the breakpoint is not a software breakpoint, nothing to do.
2900     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2901     {
2902         if (log)
2903             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2904         return Error ();
2905     }
2906 
2907     //
2908     // We have a software breakpoint and need to adjust the PC.
2909     //
2910 
2911     // Sanity check.
2912     if (breakpoint_size == 0)
2913     {
2914         // Nothing to do!  How did we get here?
2915         if (log)
2916             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2917         return Error ();
2918     }
2919 
2920     // Change the program counter.
2921     if (log)
2922         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread_sp->GetID(), initial_pc_addr, breakpoint_addr);
2923 
2924     error = context_sp->SetPC (breakpoint_addr);
2925     if (error.Fail ())
2926     {
2927         if (log)
2928             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread_sp->GetID(), error.AsCString ());
2929         return error;
2930     }
2931 
2932     return error;
2933 }
2934 
2935 Error
2936 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2937 {
2938     FileSpec module_file_spec(module_path, true);
2939 
2940     bool found = false;
2941     file_spec.Clear();
2942     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2943         [&] (const std::string &line)
2944         {
2945             SmallVector<StringRef, 16> columns;
2946             StringRef(line).split(columns, " ", -1, false);
2947             if (columns.size() < 6)
2948                 return true; // continue searching
2949 
2950             FileSpec this_file_spec(columns[5].str().c_str(), false);
2951             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2952                 return true; // continue searching
2953 
2954             file_spec = this_file_spec;
2955             found = true;
2956             return false; // we are done
2957         });
2958 
2959     if (! found)
2960         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2961                 module_file_spec.GetFilename().AsCString(), GetID());
2962 
2963     return Error();
2964 }
2965 
2966 Error
2967 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2968 {
2969     load_addr = LLDB_INVALID_ADDRESS;
2970     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2971         [&] (const std::string &line) -> bool
2972         {
2973             StringRef maps_row(line);
2974 
2975             SmallVector<StringRef, 16> maps_columns;
2976             maps_row.split(maps_columns, StringRef(" "), -1, false);
2977 
2978             if (maps_columns.size() < 6)
2979             {
2980                 // Return true to continue reading the proc file
2981                 return true;
2982             }
2983 
2984             if (maps_columns[5] == file_name)
2985             {
2986                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2987                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2988 
2989                 // Return false to stop reading the proc file further
2990                 return false;
2991             }
2992 
2993             // Return true to continue reading the proc file
2994             return true;
2995         });
2996     return error;
2997 }
2998 
2999 NativeThreadLinuxSP
3000 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
3001 {
3002     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
3003 }
3004 
3005 Error
3006 NativeProcessLinux::ResumeThread(const NativeThreadLinuxSP &thread_sp, lldb::StateType state, int signo)
3007 {
3008     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3009 
3010     if (log)
3011         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
3012                 __FUNCTION__, thread_sp->GetID());
3013 
3014     // Before we do the resume below, first check if we have a pending
3015     // stop notification that is currently waiting for
3016     // all threads to stop.  This is potentially a buggy situation since
3017     // we're ostensibly waiting for threads to stop before we send out the
3018     // pending notification, and here we are resuming one before we send
3019     // out the pending stop notification.
3020     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
3021     {
3022         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread_sp->GetID(), m_pending_notification_tid);
3023     }
3024 
3025     // Request a resume.  We expect this to be synchronous and the system
3026     // to reflect it is running after this completes.
3027     switch (state)
3028     {
3029     case eStateRunning:
3030     {
3031         thread_sp->SetRunning();
3032         const auto resume_result = Resume(thread_sp->GetID(), signo);
3033         if (resume_result.Success())
3034             SetState(eStateRunning, true);
3035         return resume_result;
3036     }
3037     case eStateStepping:
3038     {
3039         thread_sp->SetStepping();
3040         const auto step_result = SingleStep(thread_sp->GetID(), signo);
3041         if (step_result.Success())
3042             SetState(eStateRunning, true);
3043         return step_result;
3044     }
3045     default:
3046         if (log)
3047             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
3048                     __FUNCTION__, StateAsCString(state));
3049         llvm_unreachable("Unhandled state for resume");
3050     }
3051 }
3052 
3053 //===----------------------------------------------------------------------===//
3054 
3055 void
3056 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3057 {
3058     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3059 
3060     if (log)
3061     {
3062         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3063                 __FUNCTION__, triggering_tid);
3064     }
3065 
3066     m_pending_notification_tid = triggering_tid;
3067 
3068     // Request a stop for all the thread stops that need to be stopped
3069     // and are not already known to be stopped.
3070     for (const auto &thread_sp: m_threads)
3071     {
3072         if (StateIsRunningState(thread_sp->GetState()))
3073             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3074     }
3075 
3076     SignalIfAllThreadsStopped();
3077 
3078     if (log)
3079     {
3080         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3081     }
3082 }
3083 
3084 void
3085 NativeProcessLinux::SignalIfAllThreadsStopped()
3086 {
3087     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
3088         return; // No pending notification. Nothing to do.
3089 
3090     for (const auto &thread_sp: m_threads)
3091     {
3092         if (StateIsRunningState(thread_sp->GetState()))
3093             return; // Some threads are still running. Don't signal yet.
3094     }
3095 
3096     // We have a pending notification and all threads have stopped.
3097     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3098 
3099     // Clear any temporary breakpoints we used to implement software single stepping.
3100     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3101     {
3102         Error error = RemoveBreakpoint (thread_info.second);
3103         if (error.Fail())
3104             if (log)
3105                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3106                         __FUNCTION__, thread_info.first, error.AsCString());
3107     }
3108     m_threads_stepping_with_breakpoint.clear();
3109 
3110     // Notify the delegate about the stop
3111     SetCurrentThreadID(m_pending_notification_tid);
3112     SetState(StateType::eStateStopped, true);
3113     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
3114 }
3115 
3116 void
3117 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
3118 {
3119     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3120 
3121     if (log)
3122         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
3123 
3124     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
3125     {
3126         // We will need to wait for this new thread to stop as well before firing the
3127         // notification.
3128         thread.RequestStop();
3129     }
3130 }
3131 
3132 void
3133 NativeProcessLinux::SigchldHandler()
3134 {
3135     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3136     // Process all pending waitpid notifications.
3137     while (true)
3138     {
3139         int status = -1;
3140         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
3141 
3142         if (wait_pid == 0)
3143             break; // We are done.
3144 
3145         if (wait_pid == -1)
3146         {
3147             if (errno == EINTR)
3148                 continue;
3149 
3150             Error error(errno, eErrorTypePOSIX);
3151             if (log)
3152                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
3153                         __FUNCTION__, error.AsCString());
3154             break;
3155         }
3156 
3157         bool exited = false;
3158         int signal = 0;
3159         int exit_status = 0;
3160         const char *status_cstr = nullptr;
3161         if (WIFSTOPPED(status))
3162         {
3163             signal = WSTOPSIG(status);
3164             status_cstr = "STOPPED";
3165         }
3166         else if (WIFEXITED(status))
3167         {
3168             exit_status = WEXITSTATUS(status);
3169             status_cstr = "EXITED";
3170             exited = true;
3171         }
3172         else if (WIFSIGNALED(status))
3173         {
3174             signal = WTERMSIG(status);
3175             status_cstr = "SIGNALED";
3176             if (wait_pid == static_cast< ::pid_t>(GetID())) {
3177                 exited = true;
3178                 exit_status = -1;
3179             }
3180         }
3181         else
3182             status_cstr = "(\?\?\?)";
3183 
3184         if (log)
3185             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
3186                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
3187                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
3188 
3189         MonitorCallback (wait_pid, exited, signal, exit_status);
3190     }
3191 }
3192 
3193 // Wrapper for ptrace to catch errors and log calls.
3194 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3195 Error
3196 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3197 {
3198     Error error;
3199     long int ret;
3200 
3201     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3202 
3203     PtraceDisplayBytes(req, data, data_size);
3204 
3205     errno = 0;
3206     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3207         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3208     else
3209         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3210 
3211     if (ret == -1)
3212         error.SetErrorToErrno();
3213 
3214     if (result)
3215         *result = ret;
3216 
3217     if (log)
3218         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3219 
3220     PtraceDisplayBytes(req, data, data_size);
3221 
3222     if (log && error.GetError() != 0)
3223     {
3224         const char* str;
3225         switch (error.GetError())
3226         {
3227         case ESRCH:  str = "ESRCH"; break;
3228         case EINVAL: str = "EINVAL"; break;
3229         case EBUSY:  str = "EBUSY"; break;
3230         case EPERM:  str = "EPERM"; break;
3231         default:     str = error.AsCString();
3232         }
3233         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3234     }
3235 
3236     return error;
3237 }
3238