1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <errno.h> 12 #include <stdint.h> 13 #include <string.h> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "lldb/Core/EmulateInstruction.h" 23 #include "lldb/Core/ModuleSpec.h" 24 #include "lldb/Host/Host.h" 25 #include "lldb/Host/HostProcess.h" 26 #include "lldb/Host/ProcessLaunchInfo.h" 27 #include "lldb/Host/PseudoTerminal.h" 28 #include "lldb/Host/ThreadLauncher.h" 29 #include "lldb/Host/common/NativeRegisterContext.h" 30 #include "lldb/Host/linux/Ptrace.h" 31 #include "lldb/Host/linux/Uio.h" 32 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 33 #include "lldb/Symbol/ObjectFile.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/Target.h" 36 #include "lldb/Utility/LLDBAssert.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/State.h" 39 #include "lldb/Utility/Status.h" 40 #include "lldb/Utility/StringExtractor.h" 41 #include "llvm/Support/Errno.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/Threading.h" 44 45 #include "NativeThreadLinux.h" 46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 47 #include "Plugins/Process/Utility/LinuxProcMaps.h" 48 #include "Procfs.h" 49 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 #include <sys/syscall.h> 53 #include <sys/types.h> 54 #include <sys/user.h> 55 #include <sys/wait.h> 56 57 // Support hardware breakpoints in case it has not been defined 58 #ifndef TRAP_HWBKPT 59 #define TRAP_HWBKPT 4 60 #endif 61 62 using namespace lldb; 63 using namespace lldb_private; 64 using namespace lldb_private::process_linux; 65 using namespace llvm; 66 67 // Private bits we only need internally. 68 69 static bool ProcessVmReadvSupported() { 70 static bool is_supported; 71 static llvm::once_flag flag; 72 73 llvm::call_once(flag, [] { 74 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 75 76 uint32_t source = 0x47424742; 77 uint32_t dest = 0; 78 79 struct iovec local, remote; 80 remote.iov_base = &source; 81 local.iov_base = &dest; 82 remote.iov_len = local.iov_len = sizeof source; 83 84 // We shall try if cross-process-memory reads work by attempting to read a 85 // value from our own process. 86 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 87 is_supported = (res == sizeof(source) && source == dest); 88 if (is_supported) 89 LLDB_LOG(log, 90 "Detected kernel support for process_vm_readv syscall. " 91 "Fast memory reads enabled."); 92 else 93 LLDB_LOG(log, 94 "syscall process_vm_readv failed (error: {0}). Fast memory " 95 "reads disabled.", 96 llvm::sys::StrError()); 97 }); 98 99 return is_supported; 100 } 101 102 namespace { 103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 104 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 105 if (!log) 106 return; 107 108 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 109 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 110 else 111 LLDB_LOG(log, "leaving STDIN as is"); 112 113 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 114 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 115 else 116 LLDB_LOG(log, "leaving STDOUT as is"); 117 118 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 119 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 120 else 121 LLDB_LOG(log, "leaving STDERR as is"); 122 123 int i = 0; 124 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 125 ++args, ++i) 126 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 127 } 128 129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 130 uint8_t *ptr = (uint8_t *)bytes; 131 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 132 for (uint32_t i = 0; i < loop_count; i++) { 133 s.Printf("[%x]", *ptr); 134 ptr++; 135 } 136 } 137 138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 139 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 140 if (!log) 141 return; 142 StreamString buf; 143 144 switch (req) { 145 case PTRACE_POKETEXT: { 146 DisplayBytes(buf, &data, 8); 147 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 148 break; 149 } 150 case PTRACE_POKEDATA: { 151 DisplayBytes(buf, &data, 8); 152 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 153 break; 154 } 155 case PTRACE_POKEUSER: { 156 DisplayBytes(buf, &data, 8); 157 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 158 break; 159 } 160 case PTRACE_SETREGS: { 161 DisplayBytes(buf, data, data_size); 162 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 163 break; 164 } 165 case PTRACE_SETFPREGS: { 166 DisplayBytes(buf, data, data_size); 167 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 168 break; 169 } 170 case PTRACE_SETSIGINFO: { 171 DisplayBytes(buf, data, sizeof(siginfo_t)); 172 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 173 break; 174 } 175 case PTRACE_SETREGSET: { 176 // Extract iov_base from data, which is a pointer to the struct iovec 177 DisplayBytes(buf, *(void **)data, data_size); 178 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 179 break; 180 } 181 default: {} 182 } 183 } 184 185 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 186 static_assert(sizeof(long) >= k_ptrace_word_size, 187 "Size of long must be larger than ptrace word size"); 188 } // end of anonymous namespace 189 190 // Simple helper function to ensure flags are enabled on the given file 191 // descriptor. 192 static Status EnsureFDFlags(int fd, int flags) { 193 Status error; 194 195 int status = fcntl(fd, F_GETFL); 196 if (status == -1) { 197 error.SetErrorToErrno(); 198 return error; 199 } 200 201 if (fcntl(fd, F_SETFL, status | flags) == -1) { 202 error.SetErrorToErrno(); 203 return error; 204 } 205 206 return error; 207 } 208 209 // Public Static Methods 210 211 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 212 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 213 NativeDelegate &native_delegate, 214 MainLoop &mainloop) const { 215 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 216 217 MaybeLogLaunchInfo(launch_info); 218 219 Status status; 220 ::pid_t pid = ProcessLauncherPosixFork() 221 .LaunchProcess(launch_info, status) 222 .GetProcessId(); 223 LLDB_LOG(log, "pid = {0:x}", pid); 224 if (status.Fail()) { 225 LLDB_LOG(log, "failed to launch process: {0}", status); 226 return status.ToError(); 227 } 228 229 // Wait for the child process to trap on its call to execve. 230 int wstatus; 231 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 232 assert(wpid == pid); 233 (void)wpid; 234 if (!WIFSTOPPED(wstatus)) { 235 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 236 WaitStatus::Decode(wstatus)); 237 return llvm::make_error<StringError>("Could not sync with inferior process", 238 llvm::inconvertibleErrorCode()); 239 } 240 LLDB_LOG(log, "inferior started, now in stopped state"); 241 242 ProcessInstanceInfo Info; 243 if (!Host::GetProcessInfo(pid, Info)) { 244 return llvm::make_error<StringError>("Cannot get process architecture", 245 llvm::inconvertibleErrorCode()); 246 } 247 248 // Set the architecture to the exe architecture. 249 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 250 Info.GetArchitecture().GetArchitectureName()); 251 252 status = SetDefaultPtraceOpts(pid); 253 if (status.Fail()) { 254 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 255 return status.ToError(); 256 } 257 258 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 259 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 260 Info.GetArchitecture(), mainloop, {pid})); 261 } 262 263 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 264 NativeProcessLinux::Factory::Attach( 265 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 266 MainLoop &mainloop) const { 267 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 268 LLDB_LOG(log, "pid = {0:x}", pid); 269 270 // Retrieve the architecture for the running process. 271 ProcessInstanceInfo Info; 272 if (!Host::GetProcessInfo(pid, Info)) { 273 return llvm::make_error<StringError>("Cannot get process architecture", 274 llvm::inconvertibleErrorCode()); 275 } 276 277 auto tids_or = NativeProcessLinux::Attach(pid); 278 if (!tids_or) 279 return tids_or.takeError(); 280 281 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 282 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 283 } 284 285 // Public Instance Methods 286 287 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 288 NativeDelegate &delegate, 289 const ArchSpec &arch, MainLoop &mainloop, 290 llvm::ArrayRef<::pid_t> tids) 291 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch) { 292 if (m_terminal_fd != -1) { 293 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 294 assert(status.Success()); 295 } 296 297 Status status; 298 m_sigchld_handle = mainloop.RegisterSignal( 299 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 300 assert(m_sigchld_handle && status.Success()); 301 302 for (const auto &tid : tids) { 303 NativeThreadLinux &thread = AddThread(tid); 304 thread.SetStoppedBySignal(SIGSTOP); 305 ThreadWasCreated(thread); 306 } 307 308 // Let our process instance know the thread has stopped. 309 SetCurrentThreadID(tids[0]); 310 SetState(StateType::eStateStopped, false); 311 312 // Proccess any signals we received before installing our handler 313 SigchldHandler(); 314 } 315 316 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 317 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 318 319 Status status; 320 // Use a map to keep track of the threads which we have attached/need to 321 // attach. 322 Host::TidMap tids_to_attach; 323 while (Host::FindProcessThreads(pid, tids_to_attach)) { 324 for (Host::TidMap::iterator it = tids_to_attach.begin(); 325 it != tids_to_attach.end();) { 326 if (it->second == false) { 327 lldb::tid_t tid = it->first; 328 329 // Attach to the requested process. 330 // An attach will cause the thread to stop with a SIGSTOP. 331 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 332 // No such thread. The thread may have exited. More error handling 333 // may be needed. 334 if (status.GetError() == ESRCH) { 335 it = tids_to_attach.erase(it); 336 continue; 337 } 338 return status.ToError(); 339 } 340 341 int wpid = 342 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 343 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 344 // this point we should have a thread stopped if waitpid succeeds. 345 if (wpid < 0) { 346 // No such thread. The thread may have exited. More error handling 347 // may be needed. 348 if (errno == ESRCH) { 349 it = tids_to_attach.erase(it); 350 continue; 351 } 352 return llvm::errorCodeToError( 353 std::error_code(errno, std::generic_category())); 354 } 355 356 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 357 return status.ToError(); 358 359 LLDB_LOG(log, "adding tid = {0}", tid); 360 it->second = true; 361 } 362 363 // move the loop forward 364 ++it; 365 } 366 } 367 368 size_t tid_count = tids_to_attach.size(); 369 if (tid_count == 0) 370 return llvm::make_error<StringError>("No such process", 371 llvm::inconvertibleErrorCode()); 372 373 std::vector<::pid_t> tids; 374 tids.reserve(tid_count); 375 for (const auto &p : tids_to_attach) 376 tids.push_back(p.first); 377 return std::move(tids); 378 } 379 380 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 381 long ptrace_opts = 0; 382 383 // Have the child raise an event on exit. This is used to keep the child in 384 // limbo until it is destroyed. 385 ptrace_opts |= PTRACE_O_TRACEEXIT; 386 387 // Have the tracer trace threads which spawn in the inferior process. 388 // TODO: if we want to support tracing the inferiors' child, add the 389 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 390 ptrace_opts |= PTRACE_O_TRACECLONE; 391 392 // Have the tracer notify us before execve returns (needed to disable legacy 393 // SIGTRAP generation) 394 ptrace_opts |= PTRACE_O_TRACEEXEC; 395 396 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 397 } 398 399 // Handles all waitpid events from the inferior process. 400 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 401 WaitStatus status) { 402 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 403 404 // Certain activities differ based on whether the pid is the tid of the main 405 // thread. 406 const bool is_main_thread = (pid == GetID()); 407 408 // Handle when the thread exits. 409 if (exited) { 410 LLDB_LOG(log, 411 "got exit status({0}) , tid = {1} ({2} main thread), process " 412 "state = {3}", 413 status, pid, is_main_thread ? "is" : "is not", GetState()); 414 415 // This is a thread that exited. Ensure we're not tracking it anymore. 416 StopTrackingThread(pid); 417 418 if (is_main_thread) { 419 // The main thread exited. We're done monitoring. Report to delegate. 420 SetExitStatus(status, true); 421 422 // Notify delegate that our process has exited. 423 SetState(StateType::eStateExited, true); 424 } 425 return; 426 } 427 428 siginfo_t info; 429 const auto info_err = GetSignalInfo(pid, &info); 430 auto thread_sp = GetThreadByID(pid); 431 432 if (!thread_sp) { 433 // Normally, the only situation when we cannot find the thread is if we 434 // have just received a new thread notification. This is indicated by 435 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 436 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 437 438 if (info_err.Fail()) { 439 LLDB_LOG(log, 440 "(tid {0}) GetSignalInfo failed ({1}). " 441 "Ingoring this notification.", 442 pid, info_err); 443 return; 444 } 445 446 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 447 info.si_pid); 448 449 NativeThreadLinux &thread = AddThread(pid); 450 451 // Resume the newly created thread. 452 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 453 ThreadWasCreated(thread); 454 return; 455 } 456 457 // Get details on the signal raised. 458 if (info_err.Success()) { 459 // We have retrieved the signal info. Dispatch appropriately. 460 if (info.si_signo == SIGTRAP) 461 MonitorSIGTRAP(info, *thread_sp); 462 else 463 MonitorSignal(info, *thread_sp, exited); 464 } else { 465 if (info_err.GetError() == EINVAL) { 466 // This is a group stop reception for this tid. We can reach here if we 467 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 468 // triggering the group-stop mechanism. Normally receiving these would 469 // stop the process, pending a SIGCONT. Simulating this state in a 470 // debugger is hard and is generally not needed (one use case is 471 // debugging background task being managed by a shell). For general use, 472 // it is sufficient to stop the process in a signal-delivery stop which 473 // happens before the group stop. This done by MonitorSignal and works 474 // correctly for all signals. 475 LLDB_LOG(log, 476 "received a group stop for pid {0} tid {1}. Transparent " 477 "handling of group stops not supported, resuming the " 478 "thread.", 479 GetID(), pid); 480 ResumeThread(*thread_sp, thread_sp->GetState(), 481 LLDB_INVALID_SIGNAL_NUMBER); 482 } else { 483 // ptrace(GETSIGINFO) failed (but not due to group-stop). 484 485 // A return value of ESRCH means the thread/process is no longer on the 486 // system, so it was killed somehow outside of our control. Either way, 487 // we can't do anything with it anymore. 488 489 // Stop tracking the metadata for the thread since it's entirely off the 490 // system now. 491 const bool thread_found = StopTrackingThread(pid); 492 493 LLDB_LOG(log, 494 "GetSignalInfo failed: {0}, tid = {1}, status = {2}, " 495 "status = {3}, main_thread = {4}, thread_found: {5}", 496 info_err, pid, status, status, is_main_thread, thread_found); 497 498 if (is_main_thread) { 499 // Notify the delegate - our process is not available but appears to 500 // have been killed outside our control. Is eStateExited the right 501 // exit state in this case? 502 SetExitStatus(status, true); 503 SetState(StateType::eStateExited, true); 504 } else { 505 // This thread was pulled out from underneath us. Anything to do here? 506 // Do we want to do an all stop? 507 LLDB_LOG(log, 508 "pid {0} tid {1} non-main thread exit occurred, didn't " 509 "tell delegate anything since thread disappeared out " 510 "from underneath us", 511 GetID(), pid); 512 } 513 } 514 } 515 } 516 517 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 518 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 519 520 if (GetThreadByID(tid)) { 521 // We are already tracking the thread - we got the event on the new thread 522 // (see MonitorSignal) before this one. We are done. 523 return; 524 } 525 526 // The thread is not tracked yet, let's wait for it to appear. 527 int status = -1; 528 LLDB_LOG(log, 529 "received thread creation event for tid {0}. tid not tracked " 530 "yet, waiting for thread to appear...", 531 tid); 532 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 533 // Since we are waiting on a specific tid, this must be the creation event. 534 // But let's do some checks just in case. 535 if (wait_pid != tid) { 536 LLDB_LOG(log, 537 "waiting for tid {0} failed. Assuming the thread has " 538 "disappeared in the meantime", 539 tid); 540 // The only way I know of this could happen is if the whole process was 541 // SIGKILLed in the mean time. In any case, we can't do anything about that 542 // now. 543 return; 544 } 545 if (WIFEXITED(status)) { 546 LLDB_LOG(log, 547 "waiting for tid {0} returned an 'exited' event. Not " 548 "tracking the thread.", 549 tid); 550 // Also a very improbable event. 551 return; 552 } 553 554 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 555 NativeThreadLinux &new_thread = AddThread(tid); 556 557 ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 558 ThreadWasCreated(new_thread); 559 } 560 561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 562 NativeThreadLinux &thread) { 563 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 564 const bool is_main_thread = (thread.GetID() == GetID()); 565 566 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 567 568 switch (info.si_code) { 569 // TODO: these two cases are required if we want to support tracing of the 570 // inferiors' children. We'd need this to debug a monitor. case (SIGTRAP | 571 // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 572 573 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 574 // This is the notification on the parent thread which informs us of new 575 // thread creation. We don't want to do anything with the parent thread so 576 // we just resume it. In case we want to implement "break on thread 577 // creation" functionality, we would need to stop here. 578 579 unsigned long event_message = 0; 580 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 581 LLDB_LOG(log, 582 "pid {0} received thread creation event but " 583 "GetEventMessage failed so we don't know the new tid", 584 thread.GetID()); 585 } else 586 WaitForNewThread(event_message); 587 588 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 589 break; 590 } 591 592 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 593 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 594 595 // Exec clears any pending notifications. 596 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 597 598 // Remove all but the main thread here. Linux fork creates a new process 599 // which only copies the main thread. 600 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 601 602 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 603 return t->GetID() != GetID(); 604 }); 605 assert(m_threads.size() == 1); 606 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 607 608 SetCurrentThreadID(main_thread->GetID()); 609 main_thread->SetStoppedByExec(); 610 611 // Tell coordinator about about the "new" (since exec) stopped main thread. 612 ThreadWasCreated(*main_thread); 613 614 // Let our delegate know we have just exec'd. 615 NotifyDidExec(); 616 617 // Let the process know we're stopped. 618 StopRunningThreads(main_thread->GetID()); 619 620 break; 621 } 622 623 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 624 // The inferior process or one of its threads is about to exit. We don't 625 // want to do anything with the thread so we just resume it. In case we 626 // want to implement "break on thread exit" functionality, we would need to 627 // stop here. 628 629 unsigned long data = 0; 630 if (GetEventMessage(thread.GetID(), &data).Fail()) 631 data = -1; 632 633 LLDB_LOG(log, 634 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 635 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 636 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 637 is_main_thread); 638 639 640 StateType state = thread.GetState(); 641 if (!StateIsRunningState(state)) { 642 // Due to a kernel bug, we may sometimes get this stop after the inferior 643 // gets a SIGKILL. This confuses our state tracking logic in 644 // ResumeThread(), since normally, we should not be receiving any ptrace 645 // events while the inferior is stopped. This makes sure that the 646 // inferior is resumed and exits normally. 647 state = eStateRunning; 648 } 649 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 650 651 break; 652 } 653 654 case 0: 655 case TRAP_TRACE: // We receive this on single stepping. 656 case TRAP_HWBKPT: // We receive this on watchpoint hit 657 { 658 // If a watchpoint was hit, report it 659 uint32_t wp_index; 660 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 661 wp_index, (uintptr_t)info.si_addr); 662 if (error.Fail()) 663 LLDB_LOG(log, 664 "received error while checking for watchpoint hits, pid = " 665 "{0}, error = {1}", 666 thread.GetID(), error); 667 if (wp_index != LLDB_INVALID_INDEX32) { 668 MonitorWatchpoint(thread, wp_index); 669 break; 670 } 671 672 // If a breakpoint was hit, report it 673 uint32_t bp_index; 674 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 675 bp_index, (uintptr_t)info.si_addr); 676 if (error.Fail()) 677 LLDB_LOG(log, "received error while checking for hardware " 678 "breakpoint hits, pid = {0}, error = {1}", 679 thread.GetID(), error); 680 if (bp_index != LLDB_INVALID_INDEX32) { 681 MonitorBreakpoint(thread); 682 break; 683 } 684 685 // Otherwise, report step over 686 MonitorTrace(thread); 687 break; 688 } 689 690 case SI_KERNEL: 691 #if defined __mips__ 692 // For mips there is no special signal for watchpoint So we check for 693 // watchpoint in kernel trap 694 { 695 // If a watchpoint was hit, report it 696 uint32_t wp_index; 697 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 698 wp_index, LLDB_INVALID_ADDRESS); 699 if (error.Fail()) 700 LLDB_LOG(log, 701 "received error while checking for watchpoint hits, pid = " 702 "{0}, error = {1}", 703 thread.GetID(), error); 704 if (wp_index != LLDB_INVALID_INDEX32) { 705 MonitorWatchpoint(thread, wp_index); 706 break; 707 } 708 } 709 // NO BREAK 710 #endif 711 case TRAP_BRKPT: 712 MonitorBreakpoint(thread); 713 break; 714 715 case SIGTRAP: 716 case (SIGTRAP | 0x80): 717 LLDB_LOG( 718 log, 719 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 720 info.si_code, GetID(), thread.GetID()); 721 722 // Ignore these signals until we know more about them. 723 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 724 break; 725 726 default: 727 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 728 info.si_code, GetID(), thread.GetID()); 729 MonitorSignal(info, thread, false); 730 break; 731 } 732 } 733 734 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 735 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 736 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 737 738 // This thread is currently stopped. 739 thread.SetStoppedByTrace(); 740 741 StopRunningThreads(thread.GetID()); 742 } 743 744 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 745 Log *log( 746 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 747 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 748 749 // Mark the thread as stopped at breakpoint. 750 thread.SetStoppedByBreakpoint(); 751 FixupBreakpointPCAsNeeded(thread); 752 753 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 754 m_threads_stepping_with_breakpoint.end()) 755 thread.SetStoppedByTrace(); 756 757 StopRunningThreads(thread.GetID()); 758 } 759 760 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 761 uint32_t wp_index) { 762 Log *log( 763 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 764 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 765 thread.GetID(), wp_index); 766 767 // Mark the thread as stopped at watchpoint. The address is at 768 // (lldb::addr_t)info->si_addr if we need it. 769 thread.SetStoppedByWatchpoint(wp_index); 770 771 // We need to tell all other running threads before we notify the delegate 772 // about this stop. 773 StopRunningThreads(thread.GetID()); 774 } 775 776 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 777 NativeThreadLinux &thread, bool exited) { 778 const int signo = info.si_signo; 779 const bool is_from_llgs = info.si_pid == getpid(); 780 781 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 782 783 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 784 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 785 // or raise(3). Similarly for tgkill(2) on Linux. 786 // 787 // IOW, user generated signals never generate what we consider to be a 788 // "crash". 789 // 790 // Similarly, ACK signals generated by this monitor. 791 792 // Handle the signal. 793 LLDB_LOG(log, 794 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 795 "waitpid pid = {4})", 796 Host::GetSignalAsCString(signo), signo, info.si_code, 797 thread.GetID()); 798 799 // Check for thread stop notification. 800 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 801 // This is a tgkill()-based stop. 802 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 803 804 // Check that we're not already marked with a stop reason. Note this thread 805 // really shouldn't already be marked as stopped - if we were, that would 806 // imply that the kernel signaled us with the thread stopping which we 807 // handled and marked as stopped, and that, without an intervening resume, 808 // we received another stop. It is more likely that we are missing the 809 // marking of a run state somewhere if we find that the thread was marked 810 // as stopped. 811 const StateType thread_state = thread.GetState(); 812 if (!StateIsStoppedState(thread_state, false)) { 813 // An inferior thread has stopped because of a SIGSTOP we have sent it. 814 // Generally, these are not important stops and we don't want to report 815 // them as they are just used to stop other threads when one thread (the 816 // one with the *real* stop reason) hits a breakpoint (watchpoint, 817 // etc...). However, in the case of an asynchronous Interrupt(), this 818 // *is* the real stop reason, so we leave the signal intact if this is 819 // the thread that was chosen as the triggering thread. 820 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 821 if (m_pending_notification_tid == thread.GetID()) 822 thread.SetStoppedBySignal(SIGSTOP, &info); 823 else 824 thread.SetStoppedWithNoReason(); 825 826 SetCurrentThreadID(thread.GetID()); 827 SignalIfAllThreadsStopped(); 828 } else { 829 // We can end up here if stop was initiated by LLGS but by this time a 830 // thread stop has occurred - maybe initiated by another event. 831 Status error = ResumeThread(thread, thread.GetState(), 0); 832 if (error.Fail()) 833 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 834 error); 835 } 836 } else { 837 LLDB_LOG(log, 838 "pid {0} tid {1}, thread was already marked as a stopped " 839 "state (state={2}), leaving stop signal as is", 840 GetID(), thread.GetID(), thread_state); 841 SignalIfAllThreadsStopped(); 842 } 843 844 // Done handling. 845 return; 846 } 847 848 // Check if debugger should stop at this signal or just ignore it and resume 849 // the inferior. 850 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 851 ResumeThread(thread, thread.GetState(), signo); 852 return; 853 } 854 855 // This thread is stopped. 856 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 857 thread.SetStoppedBySignal(signo, &info); 858 859 // Send a stop to the debugger after we get all other threads to stop. 860 StopRunningThreads(thread.GetID()); 861 } 862 863 namespace { 864 865 struct EmulatorBaton { 866 NativeProcessLinux &m_process; 867 NativeRegisterContext &m_reg_context; 868 869 // eRegisterKindDWARF -> RegsiterValue 870 std::unordered_map<uint32_t, RegisterValue> m_register_values; 871 872 EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext ®_context) 873 : m_process(process), m_reg_context(reg_context) {} 874 }; 875 876 } // anonymous namespace 877 878 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 879 const EmulateInstruction::Context &context, 880 lldb::addr_t addr, void *dst, size_t length) { 881 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 882 883 size_t bytes_read; 884 emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read); 885 return bytes_read; 886 } 887 888 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 889 const RegisterInfo *reg_info, 890 RegisterValue ®_value) { 891 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 892 893 auto it = emulator_baton->m_register_values.find( 894 reg_info->kinds[eRegisterKindDWARF]); 895 if (it != emulator_baton->m_register_values.end()) { 896 reg_value = it->second; 897 return true; 898 } 899 900 // The emulator only fill in the dwarf regsiter numbers (and in some case the 901 // generic register numbers). Get the full register info from the register 902 // context based on the dwarf register numbers. 903 const RegisterInfo *full_reg_info = 904 emulator_baton->m_reg_context.GetRegisterInfo( 905 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 906 907 Status error = 908 emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value); 909 if (error.Success()) 910 return true; 911 912 return false; 913 } 914 915 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 916 const EmulateInstruction::Context &context, 917 const RegisterInfo *reg_info, 918 const RegisterValue ®_value) { 919 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 920 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 921 reg_value; 922 return true; 923 } 924 925 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 926 const EmulateInstruction::Context &context, 927 lldb::addr_t addr, const void *dst, 928 size_t length) { 929 return length; 930 } 931 932 static lldb::addr_t ReadFlags(NativeRegisterContext ®siter_context) { 933 const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo( 934 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 935 return regsiter_context.ReadRegisterAsUnsigned(flags_info, 936 LLDB_INVALID_ADDRESS); 937 } 938 939 Status 940 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 941 Status error; 942 NativeRegisterContext& register_context = thread.GetRegisterContext(); 943 944 std::unique_ptr<EmulateInstruction> emulator_up( 945 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 946 nullptr)); 947 948 if (emulator_up == nullptr) 949 return Status("Instruction emulator not found!"); 950 951 EmulatorBaton baton(*this, register_context); 952 emulator_up->SetBaton(&baton); 953 emulator_up->SetReadMemCallback(&ReadMemoryCallback); 954 emulator_up->SetReadRegCallback(&ReadRegisterCallback); 955 emulator_up->SetWriteMemCallback(&WriteMemoryCallback); 956 emulator_up->SetWriteRegCallback(&WriteRegisterCallback); 957 958 if (!emulator_up->ReadInstruction()) 959 return Status("Read instruction failed!"); 960 961 bool emulation_result = 962 emulator_up->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 963 964 const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo( 965 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 966 const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo( 967 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 968 969 auto pc_it = 970 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 971 auto flags_it = 972 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 973 974 lldb::addr_t next_pc; 975 lldb::addr_t next_flags; 976 if (emulation_result) { 977 assert(pc_it != baton.m_register_values.end() && 978 "Emulation was successfull but PC wasn't updated"); 979 next_pc = pc_it->second.GetAsUInt64(); 980 981 if (flags_it != baton.m_register_values.end()) 982 next_flags = flags_it->second.GetAsUInt64(); 983 else 984 next_flags = ReadFlags(register_context); 985 } else if (pc_it == baton.m_register_values.end()) { 986 // Emulate instruction failed and it haven't changed PC. Advance PC with 987 // the size of the current opcode because the emulation of all 988 // PC modifying instruction should be successful. The failure most 989 // likely caused by a not supported instruction which don't modify PC. 990 next_pc = register_context.GetPC() + emulator_up->GetOpcode().GetByteSize(); 991 next_flags = ReadFlags(register_context); 992 } else { 993 // The instruction emulation failed after it modified the PC. It is an 994 // unknown error where we can't continue because the next instruction is 995 // modifying the PC but we don't know how. 996 return Status("Instruction emulation failed unexpectedly."); 997 } 998 999 if (m_arch.GetMachine() == llvm::Triple::arm) { 1000 if (next_flags & 0x20) { 1001 // Thumb mode 1002 error = SetSoftwareBreakpoint(next_pc, 2); 1003 } else { 1004 // Arm mode 1005 error = SetSoftwareBreakpoint(next_pc, 4); 1006 } 1007 } else if (m_arch.IsMIPS() || m_arch.GetTriple().isPPC64()) 1008 error = SetSoftwareBreakpoint(next_pc, 4); 1009 else { 1010 // No size hint is given for the next breakpoint 1011 error = SetSoftwareBreakpoint(next_pc, 0); 1012 } 1013 1014 // If setting the breakpoint fails because next_pc is out of the address 1015 // space, ignore it and let the debugee segfault. 1016 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1017 return Status(); 1018 } else if (error.Fail()) 1019 return error; 1020 1021 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1022 1023 return Status(); 1024 } 1025 1026 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1027 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 1028 return false; 1029 return true; 1030 } 1031 1032 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1033 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1034 LLDB_LOG(log, "pid {0}", GetID()); 1035 1036 bool software_single_step = !SupportHardwareSingleStepping(); 1037 1038 if (software_single_step) { 1039 for (const auto &thread : m_threads) { 1040 assert(thread && "thread list should not contain NULL threads"); 1041 1042 const ResumeAction *const action = 1043 resume_actions.GetActionForThread(thread->GetID(), true); 1044 if (action == nullptr) 1045 continue; 1046 1047 if (action->state == eStateStepping) { 1048 Status error = SetupSoftwareSingleStepping( 1049 static_cast<NativeThreadLinux &>(*thread)); 1050 if (error.Fail()) 1051 return error; 1052 } 1053 } 1054 } 1055 1056 for (const auto &thread : m_threads) { 1057 assert(thread && "thread list should not contain NULL threads"); 1058 1059 const ResumeAction *const action = 1060 resume_actions.GetActionForThread(thread->GetID(), true); 1061 1062 if (action == nullptr) { 1063 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1064 thread->GetID()); 1065 // Make sure we reset the stop reason for all the threads. 1066 static_cast<NativeThreadLinux &>(*thread).ResetStopReason(); 1067 continue; 1068 } 1069 1070 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1071 action->state, GetID(), thread->GetID()); 1072 1073 switch (action->state) { 1074 case eStateRunning: 1075 case eStateStepping: { 1076 // Run the thread, possibly feeding it the signal. 1077 const int signo = action->signal; 1078 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 1079 signo); 1080 break; 1081 } 1082 1083 case eStateSuspended: 1084 case eStateStopped: 1085 llvm_unreachable("Unexpected state"); 1086 1087 default: 1088 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1089 "for pid %" PRIu64 ", tid %" PRIu64, 1090 __FUNCTION__, StateAsCString(action->state), GetID(), 1091 thread->GetID()); 1092 } 1093 } 1094 1095 return Status(); 1096 } 1097 1098 Status NativeProcessLinux::Halt() { 1099 Status error; 1100 1101 if (kill(GetID(), SIGSTOP) != 0) 1102 error.SetErrorToErrno(); 1103 1104 return error; 1105 } 1106 1107 Status NativeProcessLinux::Detach() { 1108 Status error; 1109 1110 // Stop monitoring the inferior. 1111 m_sigchld_handle.reset(); 1112 1113 // Tell ptrace to detach from the process. 1114 if (GetID() == LLDB_INVALID_PROCESS_ID) 1115 return error; 1116 1117 for (const auto &thread : m_threads) { 1118 Status e = Detach(thread->GetID()); 1119 if (e.Fail()) 1120 error = 1121 e; // Save the error, but still attempt to detach from other threads. 1122 } 1123 1124 m_processor_trace_monitor.clear(); 1125 m_pt_proces_trace_id = LLDB_INVALID_UID; 1126 1127 return error; 1128 } 1129 1130 Status NativeProcessLinux::Signal(int signo) { 1131 Status error; 1132 1133 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1134 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1135 Host::GetSignalAsCString(signo), GetID()); 1136 1137 if (kill(GetID(), signo)) 1138 error.SetErrorToErrno(); 1139 1140 return error; 1141 } 1142 1143 Status NativeProcessLinux::Interrupt() { 1144 // Pick a running thread (or if none, a not-dead stopped thread) as the 1145 // chosen thread that will be the stop-reason thread. 1146 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1147 1148 NativeThreadProtocol *running_thread = nullptr; 1149 NativeThreadProtocol *stopped_thread = nullptr; 1150 1151 LLDB_LOG(log, "selecting running thread for interrupt target"); 1152 for (const auto &thread : m_threads) { 1153 // If we have a running or stepping thread, we'll call that the target of 1154 // the interrupt. 1155 const auto thread_state = thread->GetState(); 1156 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1157 running_thread = thread.get(); 1158 break; 1159 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1160 // Remember the first non-dead stopped thread. We'll use that as a 1161 // backup if there are no running threads. 1162 stopped_thread = thread.get(); 1163 } 1164 } 1165 1166 if (!running_thread && !stopped_thread) { 1167 Status error("found no running/stepping or live stopped threads as target " 1168 "for interrupt"); 1169 LLDB_LOG(log, "skipping due to error: {0}", error); 1170 1171 return error; 1172 } 1173 1174 NativeThreadProtocol *deferred_signal_thread = 1175 running_thread ? running_thread : stopped_thread; 1176 1177 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1178 running_thread ? "running" : "stopped", 1179 deferred_signal_thread->GetID()); 1180 1181 StopRunningThreads(deferred_signal_thread->GetID()); 1182 1183 return Status(); 1184 } 1185 1186 Status NativeProcessLinux::Kill() { 1187 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1188 LLDB_LOG(log, "pid {0}", GetID()); 1189 1190 Status error; 1191 1192 switch (m_state) { 1193 case StateType::eStateInvalid: 1194 case StateType::eStateExited: 1195 case StateType::eStateCrashed: 1196 case StateType::eStateDetached: 1197 case StateType::eStateUnloaded: 1198 // Nothing to do - the process is already dead. 1199 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1200 m_state); 1201 return error; 1202 1203 case StateType::eStateConnected: 1204 case StateType::eStateAttaching: 1205 case StateType::eStateLaunching: 1206 case StateType::eStateStopped: 1207 case StateType::eStateRunning: 1208 case StateType::eStateStepping: 1209 case StateType::eStateSuspended: 1210 // We can try to kill a process in these states. 1211 break; 1212 } 1213 1214 if (kill(GetID(), SIGKILL) != 0) { 1215 error.SetErrorToErrno(); 1216 return error; 1217 } 1218 1219 return error; 1220 } 1221 1222 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1223 MemoryRegionInfo &range_info) { 1224 // FIXME review that the final memory region returned extends to the end of 1225 // the virtual address space, 1226 // with no perms if it is not mapped. 1227 1228 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1229 // proc maps entries are in ascending order. 1230 // FIXME assert if we find differently. 1231 1232 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1233 // We're done. 1234 return Status("unsupported"); 1235 } 1236 1237 Status error = PopulateMemoryRegionCache(); 1238 if (error.Fail()) { 1239 return error; 1240 } 1241 1242 lldb::addr_t prev_base_address = 0; 1243 1244 // FIXME start by finding the last region that is <= target address using 1245 // binary search. Data is sorted. 1246 // There can be a ton of regions on pthreads apps with lots of threads. 1247 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1248 ++it) { 1249 MemoryRegionInfo &proc_entry_info = it->first; 1250 1251 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1252 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1253 "descending /proc/pid/maps entries detected, unexpected"); 1254 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1255 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1256 1257 // If the target address comes before this entry, indicate distance to next 1258 // region. 1259 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1260 range_info.GetRange().SetRangeBase(load_addr); 1261 range_info.GetRange().SetByteSize( 1262 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1263 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1264 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1265 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1266 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1267 1268 return error; 1269 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1270 // The target address is within the memory region we're processing here. 1271 range_info = proc_entry_info; 1272 return error; 1273 } 1274 1275 // The target memory address comes somewhere after the region we just 1276 // parsed. 1277 } 1278 1279 // If we made it here, we didn't find an entry that contained the given 1280 // address. Return the load_addr as start and the amount of bytes betwwen 1281 // load address and the end of the memory as size. 1282 range_info.GetRange().SetRangeBase(load_addr); 1283 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1284 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1285 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1286 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1287 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1288 return error; 1289 } 1290 1291 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1292 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1293 1294 // If our cache is empty, pull the latest. There should always be at least 1295 // one memory region if memory region handling is supported. 1296 if (!m_mem_region_cache.empty()) { 1297 LLDB_LOG(log, "reusing {0} cached memory region entries", 1298 m_mem_region_cache.size()); 1299 return Status(); 1300 } 1301 1302 auto BufferOrError = getProcFile(GetID(), "maps"); 1303 if (!BufferOrError) { 1304 m_supports_mem_region = LazyBool::eLazyBoolNo; 1305 return BufferOrError.getError(); 1306 } 1307 Status Result; 1308 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), 1309 [&](const MemoryRegionInfo &Info, const Status &ST) { 1310 if (ST.Success()) { 1311 FileSpec file_spec(Info.GetName().GetCString()); 1312 FileSystem::Instance().Resolve(file_spec); 1313 m_mem_region_cache.emplace_back(Info, file_spec); 1314 return true; 1315 } else { 1316 m_supports_mem_region = LazyBool::eLazyBoolNo; 1317 LLDB_LOG(log, "failed to parse proc maps: {0}", ST); 1318 Result = ST; 1319 return false; 1320 } 1321 }); 1322 if (Result.Fail()) 1323 return Result; 1324 1325 if (m_mem_region_cache.empty()) { 1326 // No entries after attempting to read them. This shouldn't happen if 1327 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1328 // procfs. 1329 m_supports_mem_region = LazyBool::eLazyBoolNo; 1330 LLDB_LOG(log, 1331 "failed to find any procfs maps entries, assuming no support " 1332 "for memory region metadata retrieval"); 1333 return Status("not supported"); 1334 } 1335 1336 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1337 m_mem_region_cache.size(), GetID()); 1338 1339 // We support memory retrieval, remember that. 1340 m_supports_mem_region = LazyBool::eLazyBoolYes; 1341 return Status(); 1342 } 1343 1344 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1345 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1346 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1347 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1348 m_mem_region_cache.size()); 1349 m_mem_region_cache.clear(); 1350 } 1351 1352 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1353 lldb::addr_t &addr) { 1354 // FIXME implementing this requires the equivalent of 1355 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans 1356 // working with Native*Protocol. 1357 #if 1 1358 return Status("not implemented yet"); 1359 #else 1360 addr = LLDB_INVALID_ADDRESS; 1361 1362 unsigned prot = 0; 1363 if (permissions & lldb::ePermissionsReadable) 1364 prot |= eMmapProtRead; 1365 if (permissions & lldb::ePermissionsWritable) 1366 prot |= eMmapProtWrite; 1367 if (permissions & lldb::ePermissionsExecutable) 1368 prot |= eMmapProtExec; 1369 1370 // TODO implement this directly in NativeProcessLinux 1371 // (and lift to NativeProcessPOSIX if/when that class is refactored out). 1372 if (InferiorCallMmap(this, addr, 0, size, prot, 1373 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1374 m_addr_to_mmap_size[addr] = size; 1375 return Status(); 1376 } else { 1377 addr = LLDB_INVALID_ADDRESS; 1378 return Status("unable to allocate %" PRIu64 1379 " bytes of memory with permissions %s", 1380 size, GetPermissionsAsCString(permissions)); 1381 } 1382 #endif 1383 } 1384 1385 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1386 // FIXME see comments in AllocateMemory - required lower-level 1387 // bits not in place yet (ThreadPlans) 1388 return Status("not implemented"); 1389 } 1390 1391 size_t NativeProcessLinux::UpdateThreads() { 1392 // The NativeProcessLinux monitoring threads are always up to date with 1393 // respect to thread state and they keep the thread list populated properly. 1394 // All this method needs to do is return the thread count. 1395 return m_threads.size(); 1396 } 1397 1398 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1399 bool hardware) { 1400 if (hardware) 1401 return SetHardwareBreakpoint(addr, size); 1402 else 1403 return SetSoftwareBreakpoint(addr, size); 1404 } 1405 1406 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1407 if (hardware) 1408 return RemoveHardwareBreakpoint(addr); 1409 else 1410 return NativeProcessProtocol::RemoveBreakpoint(addr); 1411 } 1412 1413 llvm::Expected<llvm::ArrayRef<uint8_t>> 1414 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1415 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1416 // linux kernel does otherwise. 1417 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1418 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1419 1420 switch (GetArchitecture().GetMachine()) { 1421 case llvm::Triple::arm: 1422 switch (size_hint) { 1423 case 2: 1424 return llvm::makeArrayRef(g_thumb_opcode); 1425 case 4: 1426 return llvm::makeArrayRef(g_arm_opcode); 1427 default: 1428 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1429 "Unrecognised trap opcode size hint!"); 1430 } 1431 default: 1432 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1433 } 1434 } 1435 1436 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1437 size_t &bytes_read) { 1438 if (ProcessVmReadvSupported()) { 1439 // The process_vm_readv path is about 50 times faster than ptrace api. We 1440 // want to use this syscall if it is supported. 1441 1442 const ::pid_t pid = GetID(); 1443 1444 struct iovec local_iov, remote_iov; 1445 local_iov.iov_base = buf; 1446 local_iov.iov_len = size; 1447 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1448 remote_iov.iov_len = size; 1449 1450 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1451 const bool success = bytes_read == size; 1452 1453 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1454 LLDB_LOG(log, 1455 "using process_vm_readv to read {0} bytes from inferior " 1456 "address {1:x}: {2}", 1457 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1458 1459 if (success) 1460 return Status(); 1461 // else the call failed for some reason, let's retry the read using ptrace 1462 // api. 1463 } 1464 1465 unsigned char *dst = static_cast<unsigned char *>(buf); 1466 size_t remainder; 1467 long data; 1468 1469 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1470 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1471 1472 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1473 Status error = NativeProcessLinux::PtraceWrapper( 1474 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1475 if (error.Fail()) 1476 return error; 1477 1478 remainder = size - bytes_read; 1479 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1480 1481 // Copy the data into our buffer 1482 memcpy(dst, &data, remainder); 1483 1484 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1485 addr += k_ptrace_word_size; 1486 dst += k_ptrace_word_size; 1487 } 1488 return Status(); 1489 } 1490 1491 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1492 size_t size, size_t &bytes_written) { 1493 const unsigned char *src = static_cast<const unsigned char *>(buf); 1494 size_t remainder; 1495 Status error; 1496 1497 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1498 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1499 1500 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1501 remainder = size - bytes_written; 1502 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1503 1504 if (remainder == k_ptrace_word_size) { 1505 unsigned long data = 0; 1506 memcpy(&data, src, k_ptrace_word_size); 1507 1508 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1509 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1510 (void *)addr, (void *)data); 1511 if (error.Fail()) 1512 return error; 1513 } else { 1514 unsigned char buff[8]; 1515 size_t bytes_read; 1516 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1517 if (error.Fail()) 1518 return error; 1519 1520 memcpy(buff, src, remainder); 1521 1522 size_t bytes_written_rec; 1523 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1524 if (error.Fail()) 1525 return error; 1526 1527 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1528 *(unsigned long *)buff); 1529 } 1530 1531 addr += k_ptrace_word_size; 1532 src += k_ptrace_word_size; 1533 } 1534 return error; 1535 } 1536 1537 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1538 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1539 } 1540 1541 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1542 unsigned long *message) { 1543 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1544 } 1545 1546 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1547 if (tid == LLDB_INVALID_THREAD_ID) 1548 return Status(); 1549 1550 return PtraceWrapper(PTRACE_DETACH, tid); 1551 } 1552 1553 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1554 for (const auto &thread : m_threads) { 1555 assert(thread && "thread list should not contain NULL threads"); 1556 if (thread->GetID() == thread_id) { 1557 // We have this thread. 1558 return true; 1559 } 1560 } 1561 1562 // We don't have this thread. 1563 return false; 1564 } 1565 1566 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1567 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1568 LLDB_LOG(log, "tid: {0})", thread_id); 1569 1570 bool found = false; 1571 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1572 if (*it && ((*it)->GetID() == thread_id)) { 1573 m_threads.erase(it); 1574 found = true; 1575 break; 1576 } 1577 } 1578 1579 if (found) 1580 StopTracingForThread(thread_id); 1581 SignalIfAllThreadsStopped(); 1582 return found; 1583 } 1584 1585 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 1586 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1587 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1588 1589 assert(!HasThreadNoLock(thread_id) && 1590 "attempted to add a thread by id that already exists"); 1591 1592 // If this is the first thread, save it as the current thread 1593 if (m_threads.empty()) 1594 SetCurrentThreadID(thread_id); 1595 1596 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1597 1598 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1599 auto traceMonitor = ProcessorTraceMonitor::Create( 1600 GetID(), thread_id, m_pt_process_trace_config, true); 1601 if (traceMonitor) { 1602 m_pt_traced_thread_group.insert(thread_id); 1603 m_processor_trace_monitor.insert( 1604 std::make_pair(thread_id, std::move(*traceMonitor))); 1605 } else { 1606 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 1607 Status error(traceMonitor.takeError()); 1608 LLDB_LOG(log, "error {0}", error); 1609 } 1610 } 1611 1612 return static_cast<NativeThreadLinux &>(*m_threads.back()); 1613 } 1614 1615 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1616 FileSpec &file_spec) { 1617 Status error = PopulateMemoryRegionCache(); 1618 if (error.Fail()) 1619 return error; 1620 1621 FileSpec module_file_spec(module_path); 1622 FileSystem::Instance().Resolve(module_file_spec); 1623 1624 file_spec.Clear(); 1625 for (const auto &it : m_mem_region_cache) { 1626 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1627 file_spec = it.second; 1628 return Status(); 1629 } 1630 } 1631 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1632 module_file_spec.GetFilename().AsCString(), GetID()); 1633 } 1634 1635 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1636 lldb::addr_t &load_addr) { 1637 load_addr = LLDB_INVALID_ADDRESS; 1638 Status error = PopulateMemoryRegionCache(); 1639 if (error.Fail()) 1640 return error; 1641 1642 FileSpec file(file_name); 1643 for (const auto &it : m_mem_region_cache) { 1644 if (it.second == file) { 1645 load_addr = it.first.GetRange().GetRangeBase(); 1646 return Status(); 1647 } 1648 } 1649 return Status("No load address found for specified file."); 1650 } 1651 1652 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1653 return static_cast<NativeThreadLinux *>( 1654 NativeProcessProtocol::GetThreadByID(tid)); 1655 } 1656 1657 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1658 lldb::StateType state, int signo) { 1659 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1660 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1661 1662 // Before we do the resume below, first check if we have a pending stop 1663 // notification that is currently waiting for all threads to stop. This is 1664 // potentially a buggy situation since we're ostensibly waiting for threads 1665 // to stop before we send out the pending notification, and here we are 1666 // resuming one before we send out the pending stop notification. 1667 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1668 LLDB_LOG(log, 1669 "about to resume tid {0} per explicit request but we have a " 1670 "pending stop notification (tid {1}) that is actively " 1671 "waiting for this thread to stop. Valid sequence of events?", 1672 thread.GetID(), m_pending_notification_tid); 1673 } 1674 1675 // Request a resume. We expect this to be synchronous and the system to 1676 // reflect it is running after this completes. 1677 switch (state) { 1678 case eStateRunning: { 1679 const auto resume_result = thread.Resume(signo); 1680 if (resume_result.Success()) 1681 SetState(eStateRunning, true); 1682 return resume_result; 1683 } 1684 case eStateStepping: { 1685 const auto step_result = thread.SingleStep(signo); 1686 if (step_result.Success()) 1687 SetState(eStateRunning, true); 1688 return step_result; 1689 } 1690 default: 1691 LLDB_LOG(log, "Unhandled state {0}.", state); 1692 llvm_unreachable("Unhandled state for resume"); 1693 } 1694 } 1695 1696 //===----------------------------------------------------------------------===// 1697 1698 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1699 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1700 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1701 triggering_tid); 1702 1703 m_pending_notification_tid = triggering_tid; 1704 1705 // Request a stop for all the thread stops that need to be stopped and are 1706 // not already known to be stopped. 1707 for (const auto &thread : m_threads) { 1708 if (StateIsRunningState(thread->GetState())) 1709 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1710 } 1711 1712 SignalIfAllThreadsStopped(); 1713 LLDB_LOG(log, "event processing done"); 1714 } 1715 1716 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1717 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1718 return; // No pending notification. Nothing to do. 1719 1720 for (const auto &thread_sp : m_threads) { 1721 if (StateIsRunningState(thread_sp->GetState())) 1722 return; // Some threads are still running. Don't signal yet. 1723 } 1724 1725 // We have a pending notification and all threads have stopped. 1726 Log *log( 1727 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1728 1729 // Clear any temporary breakpoints we used to implement software single 1730 // stepping. 1731 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1732 Status error = RemoveBreakpoint(thread_info.second); 1733 if (error.Fail()) 1734 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1735 thread_info.first, error); 1736 } 1737 m_threads_stepping_with_breakpoint.clear(); 1738 1739 // Notify the delegate about the stop 1740 SetCurrentThreadID(m_pending_notification_tid); 1741 SetState(StateType::eStateStopped, true); 1742 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1743 } 1744 1745 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1746 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1747 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1748 1749 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1750 StateIsRunningState(thread.GetState())) { 1751 // We will need to wait for this new thread to stop as well before firing 1752 // the notification. 1753 thread.RequestStop(); 1754 } 1755 } 1756 1757 void NativeProcessLinux::SigchldHandler() { 1758 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1759 // Process all pending waitpid notifications. 1760 while (true) { 1761 int status = -1; 1762 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 1763 __WALL | __WNOTHREAD | WNOHANG); 1764 1765 if (wait_pid == 0) 1766 break; // We are done. 1767 1768 if (wait_pid == -1) { 1769 Status error(errno, eErrorTypePOSIX); 1770 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 1771 break; 1772 } 1773 1774 WaitStatus wait_status = WaitStatus::Decode(status); 1775 bool exited = wait_status.type == WaitStatus::Exit || 1776 (wait_status.type == WaitStatus::Signal && 1777 wait_pid == static_cast<::pid_t>(GetID())); 1778 1779 LLDB_LOG( 1780 log, 1781 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 1782 wait_pid, wait_status, exited); 1783 1784 MonitorCallback(wait_pid, exited, wait_status); 1785 } 1786 } 1787 1788 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1789 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1790 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1791 void *data, size_t data_size, 1792 long *result) { 1793 Status error; 1794 long int ret; 1795 1796 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1797 1798 PtraceDisplayBytes(req, data, data_size); 1799 1800 errno = 0; 1801 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1802 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1803 *(unsigned int *)addr, data); 1804 else 1805 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1806 addr, data); 1807 1808 if (ret == -1) 1809 error.SetErrorToErrno(); 1810 1811 if (result) 1812 *result = ret; 1813 1814 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1815 data_size, ret); 1816 1817 PtraceDisplayBytes(req, data, data_size); 1818 1819 if (error.Fail()) 1820 LLDB_LOG(log, "ptrace() failed: {0}", error); 1821 1822 return error; 1823 } 1824 1825 llvm::Expected<ProcessorTraceMonitor &> 1826 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 1827 lldb::tid_t thread) { 1828 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1829 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 1830 LLDB_LOG(log, "thread not specified: {0}", traceid); 1831 return Status("tracing not active thread not specified").ToError(); 1832 } 1833 1834 for (auto& iter : m_processor_trace_monitor) { 1835 if (traceid == iter.second->GetTraceID() && 1836 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 1837 return *(iter.second); 1838 } 1839 1840 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1841 return Status("tracing not active for this thread").ToError(); 1842 } 1843 1844 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 1845 lldb::tid_t thread, 1846 llvm::MutableArrayRef<uint8_t> &buffer, 1847 size_t offset) { 1848 TraceOptions trace_options; 1849 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1850 Status error; 1851 1852 LLDB_LOG(log, "traceid {0}", traceid); 1853 1854 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1855 if (!perf_monitor) { 1856 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1857 buffer = buffer.slice(buffer.size()); 1858 error = perf_monitor.takeError(); 1859 return error; 1860 } 1861 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 1862 } 1863 1864 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 1865 llvm::MutableArrayRef<uint8_t> &buffer, 1866 size_t offset) { 1867 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1868 Status error; 1869 1870 LLDB_LOG(log, "traceid {0}", traceid); 1871 1872 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 1873 if (!perf_monitor) { 1874 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 1875 buffer = buffer.slice(buffer.size()); 1876 error = perf_monitor.takeError(); 1877 return error; 1878 } 1879 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 1880 } 1881 1882 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 1883 TraceOptions &config) { 1884 Status error; 1885 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 1886 m_pt_proces_trace_id == traceid) { 1887 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 1888 error.SetErrorString("tracing not active for this process"); 1889 return error; 1890 } 1891 config = m_pt_process_trace_config; 1892 } else { 1893 auto perf_monitor = 1894 LookupProcessorTraceInstance(traceid, config.getThreadID()); 1895 if (!perf_monitor) { 1896 error = perf_monitor.takeError(); 1897 return error; 1898 } 1899 error = (*perf_monitor).GetTraceConfig(config); 1900 } 1901 return error; 1902 } 1903 1904 lldb::user_id_t 1905 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 1906 Status &error) { 1907 1908 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1909 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 1910 return LLDB_INVALID_UID; 1911 1912 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 1913 error.SetErrorString("tracing already active on this process"); 1914 return m_pt_proces_trace_id; 1915 } 1916 1917 for (const auto &thread_sp : m_threads) { 1918 if (auto traceInstance = ProcessorTraceMonitor::Create( 1919 GetID(), thread_sp->GetID(), config, true)) { 1920 m_pt_traced_thread_group.insert(thread_sp->GetID()); 1921 m_processor_trace_monitor.insert( 1922 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 1923 } 1924 } 1925 1926 m_pt_process_trace_config = config; 1927 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 1928 1929 // Trace on Complete process will have traceid of 0 1930 m_pt_proces_trace_id = 0; 1931 1932 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 1933 return m_pt_proces_trace_id; 1934 } 1935 1936 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 1937 Status &error) { 1938 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 1939 return NativeProcessProtocol::StartTrace(config, error); 1940 1941 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1942 1943 lldb::tid_t threadid = config.getThreadID(); 1944 1945 if (threadid == LLDB_INVALID_THREAD_ID) 1946 return StartTraceGroup(config, error); 1947 1948 auto thread_sp = GetThreadByID(threadid); 1949 if (!thread_sp) { 1950 // Thread not tracked by lldb so don't trace. 1951 error.SetErrorString("invalid thread id"); 1952 return LLDB_INVALID_UID; 1953 } 1954 1955 const auto &iter = m_processor_trace_monitor.find(threadid); 1956 if (iter != m_processor_trace_monitor.end()) { 1957 LLDB_LOG(log, "Thread already being traced"); 1958 error.SetErrorString("tracing already active on this thread"); 1959 return LLDB_INVALID_UID; 1960 } 1961 1962 auto traceMonitor = 1963 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 1964 if (!traceMonitor) { 1965 error = traceMonitor.takeError(); 1966 LLDB_LOG(log, "error {0}", error); 1967 return LLDB_INVALID_UID; 1968 } 1969 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 1970 m_processor_trace_monitor.insert( 1971 std::make_pair(threadid, std::move(*traceMonitor))); 1972 return ret_trace_id; 1973 } 1974 1975 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 1976 Status error; 1977 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1978 LLDB_LOG(log, "Thread {0}", thread); 1979 1980 const auto& iter = m_processor_trace_monitor.find(thread); 1981 if (iter == m_processor_trace_monitor.end()) { 1982 error.SetErrorString("tracing not active for this thread"); 1983 return error; 1984 } 1985 1986 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 1987 // traceid maps to the whole process so we have to erase it from the thread 1988 // group. 1989 LLDB_LOG(log, "traceid maps to process"); 1990 m_pt_traced_thread_group.erase(thread); 1991 } 1992 m_processor_trace_monitor.erase(iter); 1993 1994 return error; 1995 } 1996 1997 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 1998 lldb::tid_t thread) { 1999 Status error; 2000 2001 TraceOptions trace_options; 2002 trace_options.setThreadID(thread); 2003 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2004 2005 if (error.Fail()) 2006 return error; 2007 2008 switch (trace_options.getType()) { 2009 case lldb::TraceType::eTraceTypeProcessorTrace: 2010 if (traceid == m_pt_proces_trace_id && 2011 thread == LLDB_INVALID_THREAD_ID) 2012 StopProcessorTracingOnProcess(); 2013 else 2014 error = StopProcessorTracingOnThread(traceid, thread); 2015 break; 2016 default: 2017 error.SetErrorString("trace not supported"); 2018 break; 2019 } 2020 2021 return error; 2022 } 2023 2024 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2025 for (auto thread_id_iter : m_pt_traced_thread_group) 2026 m_processor_trace_monitor.erase(thread_id_iter); 2027 m_pt_traced_thread_group.clear(); 2028 m_pt_proces_trace_id = LLDB_INVALID_UID; 2029 } 2030 2031 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2032 lldb::tid_t thread) { 2033 Status error; 2034 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2035 2036 if (thread == LLDB_INVALID_THREAD_ID) { 2037 for (auto& iter : m_processor_trace_monitor) { 2038 if (iter.second->GetTraceID() == traceid) { 2039 // Stopping a trace instance for an individual thread hence there will 2040 // only be one traceid that can match. 2041 m_processor_trace_monitor.erase(iter.first); 2042 return error; 2043 } 2044 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2045 } 2046 2047 LLDB_LOG(log, "Invalid TraceID"); 2048 error.SetErrorString("invalid trace id"); 2049 return error; 2050 } 2051 2052 // thread is specified so we can use find function on the map. 2053 const auto& iter = m_processor_trace_monitor.find(thread); 2054 if (iter == m_processor_trace_monitor.end()) { 2055 // thread not found in our map. 2056 LLDB_LOG(log, "thread not being traced"); 2057 error.SetErrorString("tracing not active for this thread"); 2058 return error; 2059 } 2060 if (iter->second->GetTraceID() != traceid) { 2061 // traceid did not match so it has to be invalid. 2062 LLDB_LOG(log, "Invalid TraceID"); 2063 error.SetErrorString("invalid trace id"); 2064 return error; 2065 } 2066 2067 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2068 2069 if (traceid == m_pt_proces_trace_id) { 2070 // traceid maps to the whole process so we have to erase it from the thread 2071 // group. 2072 LLDB_LOG(log, "traceid maps to process"); 2073 m_pt_traced_thread_group.erase(thread); 2074 } 2075 m_processor_trace_monitor.erase(iter); 2076 2077 return error; 2078 } 2079