1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <errno.h>
12 #include <stdint.h>
13 #include <string.h>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "lldb/Core/EmulateInstruction.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Host/HostProcess.h"
26 #include "lldb/Host/ProcessLaunchInfo.h"
27 #include "lldb/Host/PseudoTerminal.h"
28 #include "lldb/Host/ThreadLauncher.h"
29 #include "lldb/Host/common/NativeRegisterContext.h"
30 #include "lldb/Host/linux/Ptrace.h"
31 #include "lldb/Host/linux/Uio.h"
32 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
33 #include "lldb/Symbol/ObjectFile.h"
34 #include "lldb/Target/Process.h"
35 #include "lldb/Target/Target.h"
36 #include "lldb/Utility/LLDBAssert.h"
37 #include "lldb/Utility/RegisterValue.h"
38 #include "lldb/Utility/State.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StringExtractor.h"
41 #include "llvm/Support/Errno.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/Threading.h"
44 
45 #include "NativeThreadLinux.h"
46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
47 #include "Plugins/Process/Utility/LinuxProcMaps.h"
48 #include "Procfs.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 // Support hardware breakpoints in case it has not been defined
58 #ifndef TRAP_HWBKPT
59 #define TRAP_HWBKPT 4
60 #endif
61 
62 using namespace lldb;
63 using namespace lldb_private;
64 using namespace lldb_private::process_linux;
65 using namespace llvm;
66 
67 // Private bits we only need internally.
68 
69 static bool ProcessVmReadvSupported() {
70   static bool is_supported;
71   static llvm::once_flag flag;
72 
73   llvm::call_once(flag, [] {
74     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
75 
76     uint32_t source = 0x47424742;
77     uint32_t dest = 0;
78 
79     struct iovec local, remote;
80     remote.iov_base = &source;
81     local.iov_base = &dest;
82     remote.iov_len = local.iov_len = sizeof source;
83 
84     // We shall try if cross-process-memory reads work by attempting to read a
85     // value from our own process.
86     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
87     is_supported = (res == sizeof(source) && source == dest);
88     if (is_supported)
89       LLDB_LOG(log,
90                "Detected kernel support for process_vm_readv syscall. "
91                "Fast memory reads enabled.");
92     else
93       LLDB_LOG(log,
94                "syscall process_vm_readv failed (error: {0}). Fast memory "
95                "reads disabled.",
96                llvm::sys::StrError());
97   });
98 
99   return is_supported;
100 }
101 
102 namespace {
103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
104   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
105   if (!log)
106     return;
107 
108   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
109     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
110   else
111     LLDB_LOG(log, "leaving STDIN as is");
112 
113   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
114     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
115   else
116     LLDB_LOG(log, "leaving STDOUT as is");
117 
118   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
119     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
120   else
121     LLDB_LOG(log, "leaving STDERR as is");
122 
123   int i = 0;
124   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
125        ++args, ++i)
126     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
127 }
128 
129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
130   uint8_t *ptr = (uint8_t *)bytes;
131   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
132   for (uint32_t i = 0; i < loop_count; i++) {
133     s.Printf("[%x]", *ptr);
134     ptr++;
135   }
136 }
137 
138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
139   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
140   if (!log)
141     return;
142   StreamString buf;
143 
144   switch (req) {
145   case PTRACE_POKETEXT: {
146     DisplayBytes(buf, &data, 8);
147     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
148     break;
149   }
150   case PTRACE_POKEDATA: {
151     DisplayBytes(buf, &data, 8);
152     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
153     break;
154   }
155   case PTRACE_POKEUSER: {
156     DisplayBytes(buf, &data, 8);
157     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
158     break;
159   }
160   case PTRACE_SETREGS: {
161     DisplayBytes(buf, data, data_size);
162     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
163     break;
164   }
165   case PTRACE_SETFPREGS: {
166     DisplayBytes(buf, data, data_size);
167     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
168     break;
169   }
170   case PTRACE_SETSIGINFO: {
171     DisplayBytes(buf, data, sizeof(siginfo_t));
172     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
173     break;
174   }
175   case PTRACE_SETREGSET: {
176     // Extract iov_base from data, which is a pointer to the struct iovec
177     DisplayBytes(buf, *(void **)data, data_size);
178     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
179     break;
180   }
181   default: {}
182   }
183 }
184 
185 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
186 static_assert(sizeof(long) >= k_ptrace_word_size,
187               "Size of long must be larger than ptrace word size");
188 } // end of anonymous namespace
189 
190 // Simple helper function to ensure flags are enabled on the given file
191 // descriptor.
192 static Status EnsureFDFlags(int fd, int flags) {
193   Status error;
194 
195   int status = fcntl(fd, F_GETFL);
196   if (status == -1) {
197     error.SetErrorToErrno();
198     return error;
199   }
200 
201   if (fcntl(fd, F_SETFL, status | flags) == -1) {
202     error.SetErrorToErrno();
203     return error;
204   }
205 
206   return error;
207 }
208 
209 // Public Static Methods
210 
211 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
212 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
213                                     NativeDelegate &native_delegate,
214                                     MainLoop &mainloop) const {
215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
216 
217   MaybeLogLaunchInfo(launch_info);
218 
219   Status status;
220   ::pid_t pid = ProcessLauncherPosixFork()
221                     .LaunchProcess(launch_info, status)
222                     .GetProcessId();
223   LLDB_LOG(log, "pid = {0:x}", pid);
224   if (status.Fail()) {
225     LLDB_LOG(log, "failed to launch process: {0}", status);
226     return status.ToError();
227   }
228 
229   // Wait for the child process to trap on its call to execve.
230   int wstatus;
231   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
232   assert(wpid == pid);
233   (void)wpid;
234   if (!WIFSTOPPED(wstatus)) {
235     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
236              WaitStatus::Decode(wstatus));
237     return llvm::make_error<StringError>("Could not sync with inferior process",
238                                          llvm::inconvertibleErrorCode());
239   }
240   LLDB_LOG(log, "inferior started, now in stopped state");
241 
242   ProcessInstanceInfo Info;
243   if (!Host::GetProcessInfo(pid, Info)) {
244     return llvm::make_error<StringError>("Cannot get process architecture",
245                                          llvm::inconvertibleErrorCode());
246   }
247 
248   // Set the architecture to the exe architecture.
249   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
250            Info.GetArchitecture().GetArchitectureName());
251 
252   status = SetDefaultPtraceOpts(pid);
253   if (status.Fail()) {
254     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
255     return status.ToError();
256   }
257 
258   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
259       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
260       Info.GetArchitecture(), mainloop, {pid}));
261 }
262 
263 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
264 NativeProcessLinux::Factory::Attach(
265     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
266     MainLoop &mainloop) const {
267   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
268   LLDB_LOG(log, "pid = {0:x}", pid);
269 
270   // Retrieve the architecture for the running process.
271   ProcessInstanceInfo Info;
272   if (!Host::GetProcessInfo(pid, Info)) {
273     return llvm::make_error<StringError>("Cannot get process architecture",
274                                          llvm::inconvertibleErrorCode());
275   }
276 
277   auto tids_or = NativeProcessLinux::Attach(pid);
278   if (!tids_or)
279     return tids_or.takeError();
280 
281   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
282       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
283 }
284 
285 // Public Instance Methods
286 
287 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
288                                        NativeDelegate &delegate,
289                                        const ArchSpec &arch, MainLoop &mainloop,
290                                        llvm::ArrayRef<::pid_t> tids)
291     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch) {
292   if (m_terminal_fd != -1) {
293     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
294     assert(status.Success());
295   }
296 
297   Status status;
298   m_sigchld_handle = mainloop.RegisterSignal(
299       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
300   assert(m_sigchld_handle && status.Success());
301 
302   for (const auto &tid : tids) {
303     NativeThreadLinux &thread = AddThread(tid);
304     thread.SetStoppedBySignal(SIGSTOP);
305     ThreadWasCreated(thread);
306   }
307 
308   // Let our process instance know the thread has stopped.
309   SetCurrentThreadID(tids[0]);
310   SetState(StateType::eStateStopped, false);
311 
312   // Proccess any signals we received before installing our handler
313   SigchldHandler();
314 }
315 
316 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
317   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
318 
319   Status status;
320   // Use a map to keep track of the threads which we have attached/need to
321   // attach.
322   Host::TidMap tids_to_attach;
323   while (Host::FindProcessThreads(pid, tids_to_attach)) {
324     for (Host::TidMap::iterator it = tids_to_attach.begin();
325          it != tids_to_attach.end();) {
326       if (it->second == false) {
327         lldb::tid_t tid = it->first;
328 
329         // Attach to the requested process.
330         // An attach will cause the thread to stop with a SIGSTOP.
331         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
332           // No such thread. The thread may have exited. More error handling
333           // may be needed.
334           if (status.GetError() == ESRCH) {
335             it = tids_to_attach.erase(it);
336             continue;
337           }
338           return status.ToError();
339         }
340 
341         int wpid =
342             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
343         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
344         // this point we should have a thread stopped if waitpid succeeds.
345         if (wpid < 0) {
346           // No such thread. The thread may have exited. More error handling
347           // may be needed.
348           if (errno == ESRCH) {
349             it = tids_to_attach.erase(it);
350             continue;
351           }
352           return llvm::errorCodeToError(
353               std::error_code(errno, std::generic_category()));
354         }
355 
356         if ((status = SetDefaultPtraceOpts(tid)).Fail())
357           return status.ToError();
358 
359         LLDB_LOG(log, "adding tid = {0}", tid);
360         it->second = true;
361       }
362 
363       // move the loop forward
364       ++it;
365     }
366   }
367 
368   size_t tid_count = tids_to_attach.size();
369   if (tid_count == 0)
370     return llvm::make_error<StringError>("No such process",
371                                          llvm::inconvertibleErrorCode());
372 
373   std::vector<::pid_t> tids;
374   tids.reserve(tid_count);
375   for (const auto &p : tids_to_attach)
376     tids.push_back(p.first);
377   return std::move(tids);
378 }
379 
380 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
381   long ptrace_opts = 0;
382 
383   // Have the child raise an event on exit.  This is used to keep the child in
384   // limbo until it is destroyed.
385   ptrace_opts |= PTRACE_O_TRACEEXIT;
386 
387   // Have the tracer trace threads which spawn in the inferior process.
388   // TODO: if we want to support tracing the inferiors' child, add the
389   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
390   ptrace_opts |= PTRACE_O_TRACECLONE;
391 
392   // Have the tracer notify us before execve returns (needed to disable legacy
393   // SIGTRAP generation)
394   ptrace_opts |= PTRACE_O_TRACEEXEC;
395 
396   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
397 }
398 
399 // Handles all waitpid events from the inferior process.
400 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
401                                          WaitStatus status) {
402   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
403 
404   // Certain activities differ based on whether the pid is the tid of the main
405   // thread.
406   const bool is_main_thread = (pid == GetID());
407 
408   // Handle when the thread exits.
409   if (exited) {
410     LLDB_LOG(log,
411              "got exit status({0}) , tid = {1} ({2} main thread), process "
412              "state = {3}",
413              status, pid, is_main_thread ? "is" : "is not", GetState());
414 
415     // This is a thread that exited.  Ensure we're not tracking it anymore.
416     StopTrackingThread(pid);
417 
418     if (is_main_thread) {
419       // The main thread exited.  We're done monitoring.  Report to delegate.
420       SetExitStatus(status, true);
421 
422       // Notify delegate that our process has exited.
423       SetState(StateType::eStateExited, true);
424     }
425     return;
426   }
427 
428   siginfo_t info;
429   const auto info_err = GetSignalInfo(pid, &info);
430   auto thread_sp = GetThreadByID(pid);
431 
432   if (!thread_sp) {
433     // Normally, the only situation when we cannot find the thread is if we
434     // have just received a new thread notification. This is indicated by
435     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
436     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
437 
438     if (info_err.Fail()) {
439       LLDB_LOG(log,
440                "(tid {0}) GetSignalInfo failed ({1}). "
441                "Ingoring this notification.",
442                pid, info_err);
443       return;
444     }
445 
446     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
447              info.si_pid);
448 
449     NativeThreadLinux &thread = AddThread(pid);
450 
451     // Resume the newly created thread.
452     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
453     ThreadWasCreated(thread);
454     return;
455   }
456 
457   // Get details on the signal raised.
458   if (info_err.Success()) {
459     // We have retrieved the signal info.  Dispatch appropriately.
460     if (info.si_signo == SIGTRAP)
461       MonitorSIGTRAP(info, *thread_sp);
462     else
463       MonitorSignal(info, *thread_sp, exited);
464   } else {
465     if (info_err.GetError() == EINVAL) {
466       // This is a group stop reception for this tid. We can reach here if we
467       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
468       // triggering the group-stop mechanism. Normally receiving these would
469       // stop the process, pending a SIGCONT. Simulating this state in a
470       // debugger is hard and is generally not needed (one use case is
471       // debugging background task being managed by a shell). For general use,
472       // it is sufficient to stop the process in a signal-delivery stop which
473       // happens before the group stop. This done by MonitorSignal and works
474       // correctly for all signals.
475       LLDB_LOG(log,
476                "received a group stop for pid {0} tid {1}. Transparent "
477                "handling of group stops not supported, resuming the "
478                "thread.",
479                GetID(), pid);
480       ResumeThread(*thread_sp, thread_sp->GetState(),
481                    LLDB_INVALID_SIGNAL_NUMBER);
482     } else {
483       // ptrace(GETSIGINFO) failed (but not due to group-stop).
484 
485       // A return value of ESRCH means the thread/process is no longer on the
486       // system, so it was killed somehow outside of our control.  Either way,
487       // we can't do anything with it anymore.
488 
489       // Stop tracking the metadata for the thread since it's entirely off the
490       // system now.
491       const bool thread_found = StopTrackingThread(pid);
492 
493       LLDB_LOG(log,
494                "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
495                "status = {3}, main_thread = {4}, thread_found: {5}",
496                info_err, pid, status, status, is_main_thread, thread_found);
497 
498       if (is_main_thread) {
499         // Notify the delegate - our process is not available but appears to
500         // have been killed outside our control.  Is eStateExited the right
501         // exit state in this case?
502         SetExitStatus(status, true);
503         SetState(StateType::eStateExited, true);
504       } else {
505         // This thread was pulled out from underneath us.  Anything to do here?
506         // Do we want to do an all stop?
507         LLDB_LOG(log,
508                  "pid {0} tid {1} non-main thread exit occurred, didn't "
509                  "tell delegate anything since thread disappeared out "
510                  "from underneath us",
511                  GetID(), pid);
512       }
513     }
514   }
515 }
516 
517 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
518   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
519 
520   if (GetThreadByID(tid)) {
521     // We are already tracking the thread - we got the event on the new thread
522     // (see MonitorSignal) before this one. We are done.
523     return;
524   }
525 
526   // The thread is not tracked yet, let's wait for it to appear.
527   int status = -1;
528   LLDB_LOG(log,
529            "received thread creation event for tid {0}. tid not tracked "
530            "yet, waiting for thread to appear...",
531            tid);
532   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
533   // Since we are waiting on a specific tid, this must be the creation event.
534   // But let's do some checks just in case.
535   if (wait_pid != tid) {
536     LLDB_LOG(log,
537              "waiting for tid {0} failed. Assuming the thread has "
538              "disappeared in the meantime",
539              tid);
540     // The only way I know of this could happen is if the whole process was
541     // SIGKILLed in the mean time. In any case, we can't do anything about that
542     // now.
543     return;
544   }
545   if (WIFEXITED(status)) {
546     LLDB_LOG(log,
547              "waiting for tid {0} returned an 'exited' event. Not "
548              "tracking the thread.",
549              tid);
550     // Also a very improbable event.
551     return;
552   }
553 
554   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
555   NativeThreadLinux &new_thread = AddThread(tid);
556 
557   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
558   ThreadWasCreated(new_thread);
559 }
560 
561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
562                                         NativeThreadLinux &thread) {
563   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
564   const bool is_main_thread = (thread.GetID() == GetID());
565 
566   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
567 
568   switch (info.si_code) {
569   // TODO: these two cases are required if we want to support tracing of the
570   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
571   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
572 
573   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
574     // This is the notification on the parent thread which informs us of new
575     // thread creation. We don't want to do anything with the parent thread so
576     // we just resume it. In case we want to implement "break on thread
577     // creation" functionality, we would need to stop here.
578 
579     unsigned long event_message = 0;
580     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
581       LLDB_LOG(log,
582                "pid {0} received thread creation event but "
583                "GetEventMessage failed so we don't know the new tid",
584                thread.GetID());
585     } else
586       WaitForNewThread(event_message);
587 
588     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
589     break;
590   }
591 
592   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
593     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
594 
595     // Exec clears any pending notifications.
596     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
597 
598     // Remove all but the main thread here.  Linux fork creates a new process
599     // which only copies the main thread.
600     LLDB_LOG(log, "exec received, stop tracking all but main thread");
601 
602     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
603       return t->GetID() != GetID();
604     });
605     assert(m_threads.size() == 1);
606     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
607 
608     SetCurrentThreadID(main_thread->GetID());
609     main_thread->SetStoppedByExec();
610 
611     // Tell coordinator about about the "new" (since exec) stopped main thread.
612     ThreadWasCreated(*main_thread);
613 
614     // Let our delegate know we have just exec'd.
615     NotifyDidExec();
616 
617     // Let the process know we're stopped.
618     StopRunningThreads(main_thread->GetID());
619 
620     break;
621   }
622 
623   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
624     // The inferior process or one of its threads is about to exit. We don't
625     // want to do anything with the thread so we just resume it. In case we
626     // want to implement "break on thread exit" functionality, we would need to
627     // stop here.
628 
629     unsigned long data = 0;
630     if (GetEventMessage(thread.GetID(), &data).Fail())
631       data = -1;
632 
633     LLDB_LOG(log,
634              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
635              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
636              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
637              is_main_thread);
638 
639 
640     StateType state = thread.GetState();
641     if (!StateIsRunningState(state)) {
642       // Due to a kernel bug, we may sometimes get this stop after the inferior
643       // gets a SIGKILL. This confuses our state tracking logic in
644       // ResumeThread(), since normally, we should not be receiving any ptrace
645       // events while the inferior is stopped. This makes sure that the
646       // inferior is resumed and exits normally.
647       state = eStateRunning;
648     }
649     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
650 
651     break;
652   }
653 
654   case 0:
655   case TRAP_TRACE:  // We receive this on single stepping.
656   case TRAP_HWBKPT: // We receive this on watchpoint hit
657   {
658     // If a watchpoint was hit, report it
659     uint32_t wp_index;
660     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
661         wp_index, (uintptr_t)info.si_addr);
662     if (error.Fail())
663       LLDB_LOG(log,
664                "received error while checking for watchpoint hits, pid = "
665                "{0}, error = {1}",
666                thread.GetID(), error);
667     if (wp_index != LLDB_INVALID_INDEX32) {
668       MonitorWatchpoint(thread, wp_index);
669       break;
670     }
671 
672     // If a breakpoint was hit, report it
673     uint32_t bp_index;
674     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
675         bp_index, (uintptr_t)info.si_addr);
676     if (error.Fail())
677       LLDB_LOG(log, "received error while checking for hardware "
678                     "breakpoint hits, pid = {0}, error = {1}",
679                thread.GetID(), error);
680     if (bp_index != LLDB_INVALID_INDEX32) {
681       MonitorBreakpoint(thread);
682       break;
683     }
684 
685     // Otherwise, report step over
686     MonitorTrace(thread);
687     break;
688   }
689 
690   case SI_KERNEL:
691 #if defined __mips__
692     // For mips there is no special signal for watchpoint So we check for
693     // watchpoint in kernel trap
694     {
695       // If a watchpoint was hit, report it
696       uint32_t wp_index;
697       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
698           wp_index, LLDB_INVALID_ADDRESS);
699       if (error.Fail())
700         LLDB_LOG(log,
701                  "received error while checking for watchpoint hits, pid = "
702                  "{0}, error = {1}",
703                  thread.GetID(), error);
704       if (wp_index != LLDB_INVALID_INDEX32) {
705         MonitorWatchpoint(thread, wp_index);
706         break;
707       }
708     }
709 // NO BREAK
710 #endif
711   case TRAP_BRKPT:
712     MonitorBreakpoint(thread);
713     break;
714 
715   case SIGTRAP:
716   case (SIGTRAP | 0x80):
717     LLDB_LOG(
718         log,
719         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
720         info.si_code, GetID(), thread.GetID());
721 
722     // Ignore these signals until we know more about them.
723     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
724     break;
725 
726   default:
727     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
728              info.si_code, GetID(), thread.GetID());
729     MonitorSignal(info, thread, false);
730     break;
731   }
732 }
733 
734 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
735   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
736   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
737 
738   // This thread is currently stopped.
739   thread.SetStoppedByTrace();
740 
741   StopRunningThreads(thread.GetID());
742 }
743 
744 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
745   Log *log(
746       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
747   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
748 
749   // Mark the thread as stopped at breakpoint.
750   thread.SetStoppedByBreakpoint();
751   FixupBreakpointPCAsNeeded(thread);
752 
753   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
754       m_threads_stepping_with_breakpoint.end())
755     thread.SetStoppedByTrace();
756 
757   StopRunningThreads(thread.GetID());
758 }
759 
760 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
761                                            uint32_t wp_index) {
762   Log *log(
763       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
764   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
765            thread.GetID(), wp_index);
766 
767   // Mark the thread as stopped at watchpoint. The address is at
768   // (lldb::addr_t)info->si_addr if we need it.
769   thread.SetStoppedByWatchpoint(wp_index);
770 
771   // We need to tell all other running threads before we notify the delegate
772   // about this stop.
773   StopRunningThreads(thread.GetID());
774 }
775 
776 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
777                                        NativeThreadLinux &thread, bool exited) {
778   const int signo = info.si_signo;
779   const bool is_from_llgs = info.si_pid == getpid();
780 
781   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
782 
783   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
784   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
785   // or raise(3).  Similarly for tgkill(2) on Linux.
786   //
787   // IOW, user generated signals never generate what we consider to be a
788   // "crash".
789   //
790   // Similarly, ACK signals generated by this monitor.
791 
792   // Handle the signal.
793   LLDB_LOG(log,
794            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
795            "waitpid pid = {4})",
796            Host::GetSignalAsCString(signo), signo, info.si_code,
797            thread.GetID());
798 
799   // Check for thread stop notification.
800   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
801     // This is a tgkill()-based stop.
802     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
803 
804     // Check that we're not already marked with a stop reason. Note this thread
805     // really shouldn't already be marked as stopped - if we were, that would
806     // imply that the kernel signaled us with the thread stopping which we
807     // handled and marked as stopped, and that, without an intervening resume,
808     // we received another stop.  It is more likely that we are missing the
809     // marking of a run state somewhere if we find that the thread was marked
810     // as stopped.
811     const StateType thread_state = thread.GetState();
812     if (!StateIsStoppedState(thread_state, false)) {
813       // An inferior thread has stopped because of a SIGSTOP we have sent it.
814       // Generally, these are not important stops and we don't want to report
815       // them as they are just used to stop other threads when one thread (the
816       // one with the *real* stop reason) hits a breakpoint (watchpoint,
817       // etc...). However, in the case of an asynchronous Interrupt(), this
818       // *is* the real stop reason, so we leave the signal intact if this is
819       // the thread that was chosen as the triggering thread.
820       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
821         if (m_pending_notification_tid == thread.GetID())
822           thread.SetStoppedBySignal(SIGSTOP, &info);
823         else
824           thread.SetStoppedWithNoReason();
825 
826         SetCurrentThreadID(thread.GetID());
827         SignalIfAllThreadsStopped();
828       } else {
829         // We can end up here if stop was initiated by LLGS but by this time a
830         // thread stop has occurred - maybe initiated by another event.
831         Status error = ResumeThread(thread, thread.GetState(), 0);
832         if (error.Fail())
833           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
834                    error);
835       }
836     } else {
837       LLDB_LOG(log,
838                "pid {0} tid {1}, thread was already marked as a stopped "
839                "state (state={2}), leaving stop signal as is",
840                GetID(), thread.GetID(), thread_state);
841       SignalIfAllThreadsStopped();
842     }
843 
844     // Done handling.
845     return;
846   }
847 
848   // Check if debugger should stop at this signal or just ignore it and resume
849   // the inferior.
850   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
851      ResumeThread(thread, thread.GetState(), signo);
852      return;
853   }
854 
855   // This thread is stopped.
856   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
857   thread.SetStoppedBySignal(signo, &info);
858 
859   // Send a stop to the debugger after we get all other threads to stop.
860   StopRunningThreads(thread.GetID());
861 }
862 
863 namespace {
864 
865 struct EmulatorBaton {
866   NativeProcessLinux &m_process;
867   NativeRegisterContext &m_reg_context;
868 
869   // eRegisterKindDWARF -> RegsiterValue
870   std::unordered_map<uint32_t, RegisterValue> m_register_values;
871 
872   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
873       : m_process(process), m_reg_context(reg_context) {}
874 };
875 
876 } // anonymous namespace
877 
878 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
879                                  const EmulateInstruction::Context &context,
880                                  lldb::addr_t addr, void *dst, size_t length) {
881   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
882 
883   size_t bytes_read;
884   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
885   return bytes_read;
886 }
887 
888 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
889                                  const RegisterInfo *reg_info,
890                                  RegisterValue &reg_value) {
891   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
892 
893   auto it = emulator_baton->m_register_values.find(
894       reg_info->kinds[eRegisterKindDWARF]);
895   if (it != emulator_baton->m_register_values.end()) {
896     reg_value = it->second;
897     return true;
898   }
899 
900   // The emulator only fill in the dwarf regsiter numbers (and in some case the
901   // generic register numbers). Get the full register info from the register
902   // context based on the dwarf register numbers.
903   const RegisterInfo *full_reg_info =
904       emulator_baton->m_reg_context.GetRegisterInfo(
905           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
906 
907   Status error =
908       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
909   if (error.Success())
910     return true;
911 
912   return false;
913 }
914 
915 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
916                                   const EmulateInstruction::Context &context,
917                                   const RegisterInfo *reg_info,
918                                   const RegisterValue &reg_value) {
919   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
920   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
921       reg_value;
922   return true;
923 }
924 
925 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
926                                   const EmulateInstruction::Context &context,
927                                   lldb::addr_t addr, const void *dst,
928                                   size_t length) {
929   return length;
930 }
931 
932 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
933   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
934       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
935   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
936                                                  LLDB_INVALID_ADDRESS);
937 }
938 
939 Status
940 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
941   Status error;
942   NativeRegisterContext& register_context = thread.GetRegisterContext();
943 
944   std::unique_ptr<EmulateInstruction> emulator_up(
945       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
946                                      nullptr));
947 
948   if (emulator_up == nullptr)
949     return Status("Instruction emulator not found!");
950 
951   EmulatorBaton baton(*this, register_context);
952   emulator_up->SetBaton(&baton);
953   emulator_up->SetReadMemCallback(&ReadMemoryCallback);
954   emulator_up->SetReadRegCallback(&ReadRegisterCallback);
955   emulator_up->SetWriteMemCallback(&WriteMemoryCallback);
956   emulator_up->SetWriteRegCallback(&WriteRegisterCallback);
957 
958   if (!emulator_up->ReadInstruction())
959     return Status("Read instruction failed!");
960 
961   bool emulation_result =
962       emulator_up->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
963 
964   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
965       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
966   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
967       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
968 
969   auto pc_it =
970       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
971   auto flags_it =
972       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
973 
974   lldb::addr_t next_pc;
975   lldb::addr_t next_flags;
976   if (emulation_result) {
977     assert(pc_it != baton.m_register_values.end() &&
978            "Emulation was successfull but PC wasn't updated");
979     next_pc = pc_it->second.GetAsUInt64();
980 
981     if (flags_it != baton.m_register_values.end())
982       next_flags = flags_it->second.GetAsUInt64();
983     else
984       next_flags = ReadFlags(register_context);
985   } else if (pc_it == baton.m_register_values.end()) {
986     // Emulate instruction failed and it haven't changed PC. Advance PC with
987     // the size of the current opcode because the emulation of all
988     // PC modifying instruction should be successful. The failure most
989     // likely caused by a not supported instruction which don't modify PC.
990     next_pc = register_context.GetPC() + emulator_up->GetOpcode().GetByteSize();
991     next_flags = ReadFlags(register_context);
992   } else {
993     // The instruction emulation failed after it modified the PC. It is an
994     // unknown error where we can't continue because the next instruction is
995     // modifying the PC but we don't  know how.
996     return Status("Instruction emulation failed unexpectedly.");
997   }
998 
999   if (m_arch.GetMachine() == llvm::Triple::arm) {
1000     if (next_flags & 0x20) {
1001       // Thumb mode
1002       error = SetSoftwareBreakpoint(next_pc, 2);
1003     } else {
1004       // Arm mode
1005       error = SetSoftwareBreakpoint(next_pc, 4);
1006     }
1007   } else if (m_arch.IsMIPS() || m_arch.GetTriple().isPPC64())
1008     error = SetSoftwareBreakpoint(next_pc, 4);
1009   else {
1010     // No size hint is given for the next breakpoint
1011     error = SetSoftwareBreakpoint(next_pc, 0);
1012   }
1013 
1014   // If setting the breakpoint fails because next_pc is out of the address
1015   // space, ignore it and let the debugee segfault.
1016   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1017     return Status();
1018   } else if (error.Fail())
1019     return error;
1020 
1021   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1022 
1023   return Status();
1024 }
1025 
1026 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1027   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
1028     return false;
1029   return true;
1030 }
1031 
1032 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1033   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1034   LLDB_LOG(log, "pid {0}", GetID());
1035 
1036   bool software_single_step = !SupportHardwareSingleStepping();
1037 
1038   if (software_single_step) {
1039     for (const auto &thread : m_threads) {
1040       assert(thread && "thread list should not contain NULL threads");
1041 
1042       const ResumeAction *const action =
1043           resume_actions.GetActionForThread(thread->GetID(), true);
1044       if (action == nullptr)
1045         continue;
1046 
1047       if (action->state == eStateStepping) {
1048         Status error = SetupSoftwareSingleStepping(
1049             static_cast<NativeThreadLinux &>(*thread));
1050         if (error.Fail())
1051           return error;
1052       }
1053     }
1054   }
1055 
1056   for (const auto &thread : m_threads) {
1057     assert(thread && "thread list should not contain NULL threads");
1058 
1059     const ResumeAction *const action =
1060         resume_actions.GetActionForThread(thread->GetID(), true);
1061 
1062     if (action == nullptr) {
1063       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1064                thread->GetID());
1065       // Make sure we reset the stop reason for all the threads.
1066       static_cast<NativeThreadLinux &>(*thread).ResetStopReason();
1067       continue;
1068     }
1069 
1070     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1071              action->state, GetID(), thread->GetID());
1072 
1073     switch (action->state) {
1074     case eStateRunning:
1075     case eStateStepping: {
1076       // Run the thread, possibly feeding it the signal.
1077       const int signo = action->signal;
1078       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1079                    signo);
1080       break;
1081     }
1082 
1083     case eStateSuspended:
1084     case eStateStopped:
1085       llvm_unreachable("Unexpected state");
1086 
1087     default:
1088       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1089                     "for pid %" PRIu64 ", tid %" PRIu64,
1090                     __FUNCTION__, StateAsCString(action->state), GetID(),
1091                     thread->GetID());
1092     }
1093   }
1094 
1095   return Status();
1096 }
1097 
1098 Status NativeProcessLinux::Halt() {
1099   Status error;
1100 
1101   if (kill(GetID(), SIGSTOP) != 0)
1102     error.SetErrorToErrno();
1103 
1104   return error;
1105 }
1106 
1107 Status NativeProcessLinux::Detach() {
1108   Status error;
1109 
1110   // Stop monitoring the inferior.
1111   m_sigchld_handle.reset();
1112 
1113   // Tell ptrace to detach from the process.
1114   if (GetID() == LLDB_INVALID_PROCESS_ID)
1115     return error;
1116 
1117   for (const auto &thread : m_threads) {
1118     Status e = Detach(thread->GetID());
1119     if (e.Fail())
1120       error =
1121           e; // Save the error, but still attempt to detach from other threads.
1122   }
1123 
1124   m_processor_trace_monitor.clear();
1125   m_pt_proces_trace_id = LLDB_INVALID_UID;
1126 
1127   return error;
1128 }
1129 
1130 Status NativeProcessLinux::Signal(int signo) {
1131   Status error;
1132 
1133   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1134   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1135            Host::GetSignalAsCString(signo), GetID());
1136 
1137   if (kill(GetID(), signo))
1138     error.SetErrorToErrno();
1139 
1140   return error;
1141 }
1142 
1143 Status NativeProcessLinux::Interrupt() {
1144   // Pick a running thread (or if none, a not-dead stopped thread) as the
1145   // chosen thread that will be the stop-reason thread.
1146   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1147 
1148   NativeThreadProtocol *running_thread = nullptr;
1149   NativeThreadProtocol *stopped_thread = nullptr;
1150 
1151   LLDB_LOG(log, "selecting running thread for interrupt target");
1152   for (const auto &thread : m_threads) {
1153     // If we have a running or stepping thread, we'll call that the target of
1154     // the interrupt.
1155     const auto thread_state = thread->GetState();
1156     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1157       running_thread = thread.get();
1158       break;
1159     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1160       // Remember the first non-dead stopped thread.  We'll use that as a
1161       // backup if there are no running threads.
1162       stopped_thread = thread.get();
1163     }
1164   }
1165 
1166   if (!running_thread && !stopped_thread) {
1167     Status error("found no running/stepping or live stopped threads as target "
1168                  "for interrupt");
1169     LLDB_LOG(log, "skipping due to error: {0}", error);
1170 
1171     return error;
1172   }
1173 
1174   NativeThreadProtocol *deferred_signal_thread =
1175       running_thread ? running_thread : stopped_thread;
1176 
1177   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1178            running_thread ? "running" : "stopped",
1179            deferred_signal_thread->GetID());
1180 
1181   StopRunningThreads(deferred_signal_thread->GetID());
1182 
1183   return Status();
1184 }
1185 
1186 Status NativeProcessLinux::Kill() {
1187   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1188   LLDB_LOG(log, "pid {0}", GetID());
1189 
1190   Status error;
1191 
1192   switch (m_state) {
1193   case StateType::eStateInvalid:
1194   case StateType::eStateExited:
1195   case StateType::eStateCrashed:
1196   case StateType::eStateDetached:
1197   case StateType::eStateUnloaded:
1198     // Nothing to do - the process is already dead.
1199     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1200              m_state);
1201     return error;
1202 
1203   case StateType::eStateConnected:
1204   case StateType::eStateAttaching:
1205   case StateType::eStateLaunching:
1206   case StateType::eStateStopped:
1207   case StateType::eStateRunning:
1208   case StateType::eStateStepping:
1209   case StateType::eStateSuspended:
1210     // We can try to kill a process in these states.
1211     break;
1212   }
1213 
1214   if (kill(GetID(), SIGKILL) != 0) {
1215     error.SetErrorToErrno();
1216     return error;
1217   }
1218 
1219   return error;
1220 }
1221 
1222 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1223                                                MemoryRegionInfo &range_info) {
1224   // FIXME review that the final memory region returned extends to the end of
1225   // the virtual address space,
1226   // with no perms if it is not mapped.
1227 
1228   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1229   // proc maps entries are in ascending order.
1230   // FIXME assert if we find differently.
1231 
1232   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1233     // We're done.
1234     return Status("unsupported");
1235   }
1236 
1237   Status error = PopulateMemoryRegionCache();
1238   if (error.Fail()) {
1239     return error;
1240   }
1241 
1242   lldb::addr_t prev_base_address = 0;
1243 
1244   // FIXME start by finding the last region that is <= target address using
1245   // binary search.  Data is sorted.
1246   // There can be a ton of regions on pthreads apps with lots of threads.
1247   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1248        ++it) {
1249     MemoryRegionInfo &proc_entry_info = it->first;
1250 
1251     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1252     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1253            "descending /proc/pid/maps entries detected, unexpected");
1254     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1255     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1256 
1257     // If the target address comes before this entry, indicate distance to next
1258     // region.
1259     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1260       range_info.GetRange().SetRangeBase(load_addr);
1261       range_info.GetRange().SetByteSize(
1262           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1263       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1264       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1265       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1266       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1267 
1268       return error;
1269     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1270       // The target address is within the memory region we're processing here.
1271       range_info = proc_entry_info;
1272       return error;
1273     }
1274 
1275     // The target memory address comes somewhere after the region we just
1276     // parsed.
1277   }
1278 
1279   // If we made it here, we didn't find an entry that contained the given
1280   // address. Return the load_addr as start and the amount of bytes betwwen
1281   // load address and the end of the memory as size.
1282   range_info.GetRange().SetRangeBase(load_addr);
1283   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1284   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1285   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1286   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1287   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1288   return error;
1289 }
1290 
1291 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1292   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1293 
1294   // If our cache is empty, pull the latest.  There should always be at least
1295   // one memory region if memory region handling is supported.
1296   if (!m_mem_region_cache.empty()) {
1297     LLDB_LOG(log, "reusing {0} cached memory region entries",
1298              m_mem_region_cache.size());
1299     return Status();
1300   }
1301 
1302   auto BufferOrError = getProcFile(GetID(), "maps");
1303   if (!BufferOrError) {
1304     m_supports_mem_region = LazyBool::eLazyBoolNo;
1305     return BufferOrError.getError();
1306   }
1307   Status Result;
1308   ParseLinuxMapRegions(BufferOrError.get()->getBuffer(),
1309                        [&](const MemoryRegionInfo &Info, const Status &ST) {
1310                          if (ST.Success()) {
1311                            FileSpec file_spec(Info.GetName().GetCString());
1312                            FileSystem::Instance().Resolve(file_spec);
1313                            m_mem_region_cache.emplace_back(Info, file_spec);
1314                            return true;
1315                          } else {
1316                            m_supports_mem_region = LazyBool::eLazyBoolNo;
1317                            LLDB_LOG(log, "failed to parse proc maps: {0}", ST);
1318                            Result = ST;
1319                            return false;
1320                          }
1321                        });
1322   if (Result.Fail())
1323     return Result;
1324 
1325   if (m_mem_region_cache.empty()) {
1326     // No entries after attempting to read them.  This shouldn't happen if
1327     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1328     // procfs.
1329     m_supports_mem_region = LazyBool::eLazyBoolNo;
1330     LLDB_LOG(log,
1331              "failed to find any procfs maps entries, assuming no support "
1332              "for memory region metadata retrieval");
1333     return Status("not supported");
1334   }
1335 
1336   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1337            m_mem_region_cache.size(), GetID());
1338 
1339   // We support memory retrieval, remember that.
1340   m_supports_mem_region = LazyBool::eLazyBoolYes;
1341   return Status();
1342 }
1343 
1344 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1345   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1346   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1347   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1348            m_mem_region_cache.size());
1349   m_mem_region_cache.clear();
1350 }
1351 
1352 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1353                                           lldb::addr_t &addr) {
1354 // FIXME implementing this requires the equivalent of
1355 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans
1356 // working with Native*Protocol.
1357 #if 1
1358   return Status("not implemented yet");
1359 #else
1360   addr = LLDB_INVALID_ADDRESS;
1361 
1362   unsigned prot = 0;
1363   if (permissions & lldb::ePermissionsReadable)
1364     prot |= eMmapProtRead;
1365   if (permissions & lldb::ePermissionsWritable)
1366     prot |= eMmapProtWrite;
1367   if (permissions & lldb::ePermissionsExecutable)
1368     prot |= eMmapProtExec;
1369 
1370   // TODO implement this directly in NativeProcessLinux
1371   // (and lift to NativeProcessPOSIX if/when that class is refactored out).
1372   if (InferiorCallMmap(this, addr, 0, size, prot,
1373                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1374     m_addr_to_mmap_size[addr] = size;
1375     return Status();
1376   } else {
1377     addr = LLDB_INVALID_ADDRESS;
1378     return Status("unable to allocate %" PRIu64
1379                   " bytes of memory with permissions %s",
1380                   size, GetPermissionsAsCString(permissions));
1381   }
1382 #endif
1383 }
1384 
1385 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1386   // FIXME see comments in AllocateMemory - required lower-level
1387   // bits not in place yet (ThreadPlans)
1388   return Status("not implemented");
1389 }
1390 
1391 size_t NativeProcessLinux::UpdateThreads() {
1392   // The NativeProcessLinux monitoring threads are always up to date with
1393   // respect to thread state and they keep the thread list populated properly.
1394   // All this method needs to do is return the thread count.
1395   return m_threads.size();
1396 }
1397 
1398 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1399                                          bool hardware) {
1400   if (hardware)
1401     return SetHardwareBreakpoint(addr, size);
1402   else
1403     return SetSoftwareBreakpoint(addr, size);
1404 }
1405 
1406 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1407   if (hardware)
1408     return RemoveHardwareBreakpoint(addr);
1409   else
1410     return NativeProcessProtocol::RemoveBreakpoint(addr);
1411 }
1412 
1413 llvm::Expected<llvm::ArrayRef<uint8_t>>
1414 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1415   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1416   // linux kernel does otherwise.
1417   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1418   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1419 
1420   switch (GetArchitecture().GetMachine()) {
1421   case llvm::Triple::arm:
1422     switch (size_hint) {
1423     case 2:
1424       return llvm::makeArrayRef(g_thumb_opcode);
1425     case 4:
1426       return llvm::makeArrayRef(g_arm_opcode);
1427     default:
1428       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1429                                      "Unrecognised trap opcode size hint!");
1430     }
1431   default:
1432     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1433   }
1434 }
1435 
1436 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1437                                       size_t &bytes_read) {
1438   if (ProcessVmReadvSupported()) {
1439     // The process_vm_readv path is about 50 times faster than ptrace api. We
1440     // want to use this syscall if it is supported.
1441 
1442     const ::pid_t pid = GetID();
1443 
1444     struct iovec local_iov, remote_iov;
1445     local_iov.iov_base = buf;
1446     local_iov.iov_len = size;
1447     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1448     remote_iov.iov_len = size;
1449 
1450     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1451     const bool success = bytes_read == size;
1452 
1453     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1454     LLDB_LOG(log,
1455              "using process_vm_readv to read {0} bytes from inferior "
1456              "address {1:x}: {2}",
1457              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1458 
1459     if (success)
1460       return Status();
1461     // else the call failed for some reason, let's retry the read using ptrace
1462     // api.
1463   }
1464 
1465   unsigned char *dst = static_cast<unsigned char *>(buf);
1466   size_t remainder;
1467   long data;
1468 
1469   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1470   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1471 
1472   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1473     Status error = NativeProcessLinux::PtraceWrapper(
1474         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1475     if (error.Fail())
1476       return error;
1477 
1478     remainder = size - bytes_read;
1479     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1480 
1481     // Copy the data into our buffer
1482     memcpy(dst, &data, remainder);
1483 
1484     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1485     addr += k_ptrace_word_size;
1486     dst += k_ptrace_word_size;
1487   }
1488   return Status();
1489 }
1490 
1491 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1492                                        size_t size, size_t &bytes_written) {
1493   const unsigned char *src = static_cast<const unsigned char *>(buf);
1494   size_t remainder;
1495   Status error;
1496 
1497   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1498   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1499 
1500   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1501     remainder = size - bytes_written;
1502     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1503 
1504     if (remainder == k_ptrace_word_size) {
1505       unsigned long data = 0;
1506       memcpy(&data, src, k_ptrace_word_size);
1507 
1508       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1509       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1510                                                 (void *)addr, (void *)data);
1511       if (error.Fail())
1512         return error;
1513     } else {
1514       unsigned char buff[8];
1515       size_t bytes_read;
1516       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1517       if (error.Fail())
1518         return error;
1519 
1520       memcpy(buff, src, remainder);
1521 
1522       size_t bytes_written_rec;
1523       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1524       if (error.Fail())
1525         return error;
1526 
1527       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1528                *(unsigned long *)buff);
1529     }
1530 
1531     addr += k_ptrace_word_size;
1532     src += k_ptrace_word_size;
1533   }
1534   return error;
1535 }
1536 
1537 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1538   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1539 }
1540 
1541 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1542                                            unsigned long *message) {
1543   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1544 }
1545 
1546 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1547   if (tid == LLDB_INVALID_THREAD_ID)
1548     return Status();
1549 
1550   return PtraceWrapper(PTRACE_DETACH, tid);
1551 }
1552 
1553 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1554   for (const auto &thread : m_threads) {
1555     assert(thread && "thread list should not contain NULL threads");
1556     if (thread->GetID() == thread_id) {
1557       // We have this thread.
1558       return true;
1559     }
1560   }
1561 
1562   // We don't have this thread.
1563   return false;
1564 }
1565 
1566 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1567   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1568   LLDB_LOG(log, "tid: {0})", thread_id);
1569 
1570   bool found = false;
1571   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1572     if (*it && ((*it)->GetID() == thread_id)) {
1573       m_threads.erase(it);
1574       found = true;
1575       break;
1576     }
1577   }
1578 
1579   if (found)
1580     StopTracingForThread(thread_id);
1581   SignalIfAllThreadsStopped();
1582   return found;
1583 }
1584 
1585 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1586   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1587   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1588 
1589   assert(!HasThreadNoLock(thread_id) &&
1590          "attempted to add a thread by id that already exists");
1591 
1592   // If this is the first thread, save it as the current thread
1593   if (m_threads.empty())
1594     SetCurrentThreadID(thread_id);
1595 
1596   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1597 
1598   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1599     auto traceMonitor = ProcessorTraceMonitor::Create(
1600         GetID(), thread_id, m_pt_process_trace_config, true);
1601     if (traceMonitor) {
1602       m_pt_traced_thread_group.insert(thread_id);
1603       m_processor_trace_monitor.insert(
1604           std::make_pair(thread_id, std::move(*traceMonitor)));
1605     } else {
1606       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1607       Status error(traceMonitor.takeError());
1608       LLDB_LOG(log, "error {0}", error);
1609     }
1610   }
1611 
1612   return static_cast<NativeThreadLinux &>(*m_threads.back());
1613 }
1614 
1615 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1616                                                    FileSpec &file_spec) {
1617   Status error = PopulateMemoryRegionCache();
1618   if (error.Fail())
1619     return error;
1620 
1621   FileSpec module_file_spec(module_path);
1622   FileSystem::Instance().Resolve(module_file_spec);
1623 
1624   file_spec.Clear();
1625   for (const auto &it : m_mem_region_cache) {
1626     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1627       file_spec = it.second;
1628       return Status();
1629     }
1630   }
1631   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1632                 module_file_spec.GetFilename().AsCString(), GetID());
1633 }
1634 
1635 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1636                                               lldb::addr_t &load_addr) {
1637   load_addr = LLDB_INVALID_ADDRESS;
1638   Status error = PopulateMemoryRegionCache();
1639   if (error.Fail())
1640     return error;
1641 
1642   FileSpec file(file_name);
1643   for (const auto &it : m_mem_region_cache) {
1644     if (it.second == file) {
1645       load_addr = it.first.GetRange().GetRangeBase();
1646       return Status();
1647     }
1648   }
1649   return Status("No load address found for specified file.");
1650 }
1651 
1652 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1653   return static_cast<NativeThreadLinux *>(
1654       NativeProcessProtocol::GetThreadByID(tid));
1655 }
1656 
1657 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1658                                         lldb::StateType state, int signo) {
1659   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1660   LLDB_LOG(log, "tid: {0}", thread.GetID());
1661 
1662   // Before we do the resume below, first check if we have a pending stop
1663   // notification that is currently waiting for all threads to stop.  This is
1664   // potentially a buggy situation since we're ostensibly waiting for threads
1665   // to stop before we send out the pending notification, and here we are
1666   // resuming one before we send out the pending stop notification.
1667   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1668     LLDB_LOG(log,
1669              "about to resume tid {0} per explicit request but we have a "
1670              "pending stop notification (tid {1}) that is actively "
1671              "waiting for this thread to stop. Valid sequence of events?",
1672              thread.GetID(), m_pending_notification_tid);
1673   }
1674 
1675   // Request a resume.  We expect this to be synchronous and the system to
1676   // reflect it is running after this completes.
1677   switch (state) {
1678   case eStateRunning: {
1679     const auto resume_result = thread.Resume(signo);
1680     if (resume_result.Success())
1681       SetState(eStateRunning, true);
1682     return resume_result;
1683   }
1684   case eStateStepping: {
1685     const auto step_result = thread.SingleStep(signo);
1686     if (step_result.Success())
1687       SetState(eStateRunning, true);
1688     return step_result;
1689   }
1690   default:
1691     LLDB_LOG(log, "Unhandled state {0}.", state);
1692     llvm_unreachable("Unhandled state for resume");
1693   }
1694 }
1695 
1696 //===----------------------------------------------------------------------===//
1697 
1698 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1699   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1700   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1701            triggering_tid);
1702 
1703   m_pending_notification_tid = triggering_tid;
1704 
1705   // Request a stop for all the thread stops that need to be stopped and are
1706   // not already known to be stopped.
1707   for (const auto &thread : m_threads) {
1708     if (StateIsRunningState(thread->GetState()))
1709       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1710   }
1711 
1712   SignalIfAllThreadsStopped();
1713   LLDB_LOG(log, "event processing done");
1714 }
1715 
1716 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1717   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1718     return; // No pending notification. Nothing to do.
1719 
1720   for (const auto &thread_sp : m_threads) {
1721     if (StateIsRunningState(thread_sp->GetState()))
1722       return; // Some threads are still running. Don't signal yet.
1723   }
1724 
1725   // We have a pending notification and all threads have stopped.
1726   Log *log(
1727       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1728 
1729   // Clear any temporary breakpoints we used to implement software single
1730   // stepping.
1731   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1732     Status error = RemoveBreakpoint(thread_info.second);
1733     if (error.Fail())
1734       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1735                thread_info.first, error);
1736   }
1737   m_threads_stepping_with_breakpoint.clear();
1738 
1739   // Notify the delegate about the stop
1740   SetCurrentThreadID(m_pending_notification_tid);
1741   SetState(StateType::eStateStopped, true);
1742   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1743 }
1744 
1745 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1746   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1747   LLDB_LOG(log, "tid: {0}", thread.GetID());
1748 
1749   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1750       StateIsRunningState(thread.GetState())) {
1751     // We will need to wait for this new thread to stop as well before firing
1752     // the notification.
1753     thread.RequestStop();
1754   }
1755 }
1756 
1757 void NativeProcessLinux::SigchldHandler() {
1758   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1759   // Process all pending waitpid notifications.
1760   while (true) {
1761     int status = -1;
1762     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1763                                           __WALL | __WNOTHREAD | WNOHANG);
1764 
1765     if (wait_pid == 0)
1766       break; // We are done.
1767 
1768     if (wait_pid == -1) {
1769       Status error(errno, eErrorTypePOSIX);
1770       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1771       break;
1772     }
1773 
1774     WaitStatus wait_status = WaitStatus::Decode(status);
1775     bool exited = wait_status.type == WaitStatus::Exit ||
1776                   (wait_status.type == WaitStatus::Signal &&
1777                    wait_pid == static_cast<::pid_t>(GetID()));
1778 
1779     LLDB_LOG(
1780         log,
1781         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1782         wait_pid, wait_status, exited);
1783 
1784     MonitorCallback(wait_pid, exited, wait_status);
1785   }
1786 }
1787 
1788 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1789 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1790 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1791                                          void *data, size_t data_size,
1792                                          long *result) {
1793   Status error;
1794   long int ret;
1795 
1796   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1797 
1798   PtraceDisplayBytes(req, data, data_size);
1799 
1800   errno = 0;
1801   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1802     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1803                  *(unsigned int *)addr, data);
1804   else
1805     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1806                  addr, data);
1807 
1808   if (ret == -1)
1809     error.SetErrorToErrno();
1810 
1811   if (result)
1812     *result = ret;
1813 
1814   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1815            data_size, ret);
1816 
1817   PtraceDisplayBytes(req, data, data_size);
1818 
1819   if (error.Fail())
1820     LLDB_LOG(log, "ptrace() failed: {0}", error);
1821 
1822   return error;
1823 }
1824 
1825 llvm::Expected<ProcessorTraceMonitor &>
1826 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
1827                                                  lldb::tid_t thread) {
1828   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1829   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
1830     LLDB_LOG(log, "thread not specified: {0}", traceid);
1831     return Status("tracing not active thread not specified").ToError();
1832   }
1833 
1834   for (auto& iter : m_processor_trace_monitor) {
1835     if (traceid == iter.second->GetTraceID() &&
1836         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
1837       return *(iter.second);
1838   }
1839 
1840   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1841   return Status("tracing not active for this thread").ToError();
1842 }
1843 
1844 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
1845                                        lldb::tid_t thread,
1846                                        llvm::MutableArrayRef<uint8_t> &buffer,
1847                                        size_t offset) {
1848   TraceOptions trace_options;
1849   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1850   Status error;
1851 
1852   LLDB_LOG(log, "traceid {0}", traceid);
1853 
1854   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1855   if (!perf_monitor) {
1856     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1857     buffer = buffer.slice(buffer.size());
1858     error = perf_monitor.takeError();
1859     return error;
1860   }
1861   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
1862 }
1863 
1864 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
1865                                    llvm::MutableArrayRef<uint8_t> &buffer,
1866                                    size_t offset) {
1867   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1868   Status error;
1869 
1870   LLDB_LOG(log, "traceid {0}", traceid);
1871 
1872   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1873   if (!perf_monitor) {
1874     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1875     buffer = buffer.slice(buffer.size());
1876     error = perf_monitor.takeError();
1877     return error;
1878   }
1879   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
1880 }
1881 
1882 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
1883                                           TraceOptions &config) {
1884   Status error;
1885   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
1886       m_pt_proces_trace_id == traceid) {
1887     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
1888       error.SetErrorString("tracing not active for this process");
1889       return error;
1890     }
1891     config = m_pt_process_trace_config;
1892   } else {
1893     auto perf_monitor =
1894         LookupProcessorTraceInstance(traceid, config.getThreadID());
1895     if (!perf_monitor) {
1896       error = perf_monitor.takeError();
1897       return error;
1898     }
1899     error = (*perf_monitor).GetTraceConfig(config);
1900   }
1901   return error;
1902 }
1903 
1904 lldb::user_id_t
1905 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
1906                                            Status &error) {
1907 
1908   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1909   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1910     return LLDB_INVALID_UID;
1911 
1912   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1913     error.SetErrorString("tracing already active on this process");
1914     return m_pt_proces_trace_id;
1915   }
1916 
1917   for (const auto &thread_sp : m_threads) {
1918     if (auto traceInstance = ProcessorTraceMonitor::Create(
1919             GetID(), thread_sp->GetID(), config, true)) {
1920       m_pt_traced_thread_group.insert(thread_sp->GetID());
1921       m_processor_trace_monitor.insert(
1922           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
1923     }
1924   }
1925 
1926   m_pt_process_trace_config = config;
1927   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
1928 
1929   // Trace on Complete process will have traceid of 0
1930   m_pt_proces_trace_id = 0;
1931 
1932   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
1933   return m_pt_proces_trace_id;
1934 }
1935 
1936 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
1937                                                Status &error) {
1938   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1939     return NativeProcessProtocol::StartTrace(config, error);
1940 
1941   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1942 
1943   lldb::tid_t threadid = config.getThreadID();
1944 
1945   if (threadid == LLDB_INVALID_THREAD_ID)
1946     return StartTraceGroup(config, error);
1947 
1948   auto thread_sp = GetThreadByID(threadid);
1949   if (!thread_sp) {
1950     // Thread not tracked by lldb so don't trace.
1951     error.SetErrorString("invalid thread id");
1952     return LLDB_INVALID_UID;
1953   }
1954 
1955   const auto &iter = m_processor_trace_monitor.find(threadid);
1956   if (iter != m_processor_trace_monitor.end()) {
1957     LLDB_LOG(log, "Thread already being traced");
1958     error.SetErrorString("tracing already active on this thread");
1959     return LLDB_INVALID_UID;
1960   }
1961 
1962   auto traceMonitor =
1963       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
1964   if (!traceMonitor) {
1965     error = traceMonitor.takeError();
1966     LLDB_LOG(log, "error {0}", error);
1967     return LLDB_INVALID_UID;
1968   }
1969   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
1970   m_processor_trace_monitor.insert(
1971       std::make_pair(threadid, std::move(*traceMonitor)));
1972   return ret_trace_id;
1973 }
1974 
1975 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
1976   Status error;
1977   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1978   LLDB_LOG(log, "Thread {0}", thread);
1979 
1980   const auto& iter = m_processor_trace_monitor.find(thread);
1981   if (iter == m_processor_trace_monitor.end()) {
1982     error.SetErrorString("tracing not active for this thread");
1983     return error;
1984   }
1985 
1986   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
1987     // traceid maps to the whole process so we have to erase it from the thread
1988     // group.
1989     LLDB_LOG(log, "traceid maps to process");
1990     m_pt_traced_thread_group.erase(thread);
1991   }
1992   m_processor_trace_monitor.erase(iter);
1993 
1994   return error;
1995 }
1996 
1997 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
1998                                      lldb::tid_t thread) {
1999   Status error;
2000 
2001   TraceOptions trace_options;
2002   trace_options.setThreadID(thread);
2003   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2004 
2005   if (error.Fail())
2006     return error;
2007 
2008   switch (trace_options.getType()) {
2009   case lldb::TraceType::eTraceTypeProcessorTrace:
2010     if (traceid == m_pt_proces_trace_id &&
2011         thread == LLDB_INVALID_THREAD_ID)
2012       StopProcessorTracingOnProcess();
2013     else
2014       error = StopProcessorTracingOnThread(traceid, thread);
2015     break;
2016   default:
2017     error.SetErrorString("trace not supported");
2018     break;
2019   }
2020 
2021   return error;
2022 }
2023 
2024 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2025   for (auto thread_id_iter : m_pt_traced_thread_group)
2026     m_processor_trace_monitor.erase(thread_id_iter);
2027   m_pt_traced_thread_group.clear();
2028   m_pt_proces_trace_id = LLDB_INVALID_UID;
2029 }
2030 
2031 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2032                                                         lldb::tid_t thread) {
2033   Status error;
2034   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2035 
2036   if (thread == LLDB_INVALID_THREAD_ID) {
2037     for (auto& iter : m_processor_trace_monitor) {
2038       if (iter.second->GetTraceID() == traceid) {
2039         // Stopping a trace instance for an individual thread hence there will
2040         // only be one traceid that can match.
2041         m_processor_trace_monitor.erase(iter.first);
2042         return error;
2043       }
2044       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2045     }
2046 
2047     LLDB_LOG(log, "Invalid TraceID");
2048     error.SetErrorString("invalid trace id");
2049     return error;
2050   }
2051 
2052   // thread is specified so we can use find function on the map.
2053   const auto& iter = m_processor_trace_monitor.find(thread);
2054   if (iter == m_processor_trace_monitor.end()) {
2055     // thread not found in our map.
2056     LLDB_LOG(log, "thread not being traced");
2057     error.SetErrorString("tracing not active for this thread");
2058     return error;
2059   }
2060   if (iter->second->GetTraceID() != traceid) {
2061     // traceid did not match so it has to be invalid.
2062     LLDB_LOG(log, "Invalid TraceID");
2063     error.SetErrorString("invalid trace id");
2064     return error;
2065   }
2066 
2067   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2068 
2069   if (traceid == m_pt_proces_trace_id) {
2070     // traceid maps to the whole process so we have to erase it from the thread
2071     // group.
2072     LLDB_LOG(log, "traceid maps to process");
2073     m_pt_traced_thread_group.erase(thread);
2074   }
2075   m_processor_trace_monitor.erase(iter);
2076 
2077   return error;
2078 }
2079