1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <semaphore.h> 15 #include <string.h> 16 #include <stdint.h> 17 #include <unistd.h> 18 19 // C++ Includes 20 #include <fstream> 21 #include <mutex> 22 #include <sstream> 23 #include <string> 24 #include <unordered_map> 25 26 // Other libraries and framework includes 27 #include "lldb/Core/EmulateInstruction.h" 28 #include "lldb/Core/Error.h" 29 #include "lldb/Core/Module.h" 30 #include "lldb/Core/ModuleSpec.h" 31 #include "lldb/Core/RegisterValue.h" 32 #include "lldb/Core/State.h" 33 #include "lldb/Host/common/NativeBreakpoint.h" 34 #include "lldb/Host/common/NativeRegisterContext.h" 35 #include "lldb/Host/Host.h" 36 #include "lldb/Host/ThreadLauncher.h" 37 #include "lldb/Target/Platform.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/ProcessLaunchInfo.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Utility/LLDBAssert.h" 42 #include "lldb/Utility/PseudoTerminal.h" 43 #include "lldb/Utility/StringExtractor.h" 44 45 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 46 #include "NativeThreadLinux.h" 47 #include "ProcFileReader.h" 48 #include "Procfs.h" 49 50 // System includes - They have to be included after framework includes because they define some 51 // macros which collide with variable names in other modules 52 #include <linux/unistd.h> 53 #include <sys/socket.h> 54 55 #include <sys/syscall.h> 56 #include <sys/types.h> 57 #include <sys/user.h> 58 #include <sys/wait.h> 59 60 #include "lldb/Host/linux/Personality.h" 61 #include "lldb/Host/linux/Ptrace.h" 62 #include "lldb/Host/linux/Signalfd.h" 63 #include "lldb/Host/linux/Uio.h" 64 #include "lldb/Host/android/Android.h" 65 66 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 67 68 // Support hardware breakpoints in case it has not been defined 69 #ifndef TRAP_HWBKPT 70 #define TRAP_HWBKPT 4 71 #endif 72 73 using namespace lldb; 74 using namespace lldb_private; 75 using namespace lldb_private::process_linux; 76 using namespace llvm; 77 78 // Private bits we only need internally. 79 80 static bool ProcessVmReadvSupported() 81 { 82 static bool is_supported; 83 static std::once_flag flag; 84 85 std::call_once(flag, [] { 86 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 87 88 uint32_t source = 0x47424742; 89 uint32_t dest = 0; 90 91 struct iovec local, remote; 92 remote.iov_base = &source; 93 local.iov_base = &dest; 94 remote.iov_len = local.iov_len = sizeof source; 95 96 // We shall try if cross-process-memory reads work by attempting to read a value from our own process. 97 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 98 is_supported = (res == sizeof(source) && source == dest); 99 if (log) 100 { 101 if (is_supported) 102 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.", 103 __FUNCTION__); 104 else 105 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.", 106 __FUNCTION__, strerror(errno)); 107 } 108 }); 109 110 return is_supported; 111 } 112 113 namespace 114 { 115 Error 116 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 117 { 118 // Grab process info for the running process. 119 ProcessInstanceInfo process_info; 120 if (!platform.GetProcessInfo (pid, process_info)) 121 return Error("failed to get process info"); 122 123 // Resolve the executable module. 124 ModuleSP exe_module_sp; 125 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 126 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 127 Error error = platform.ResolveExecutable( 128 exe_module_spec, 129 exe_module_sp, 130 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 131 132 if (!error.Success ()) 133 return error; 134 135 // Check if we've got our architecture from the exe_module. 136 arch = exe_module_sp->GetArchitecture (); 137 if (arch.IsValid ()) 138 return Error(); 139 else 140 return Error("failed to retrieve a valid architecture from the exe module"); 141 } 142 143 void 144 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 145 { 146 uint8_t *ptr = (uint8_t *)bytes; 147 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 148 for(uint32_t i=0; i<loop_count; i++) 149 { 150 s.Printf ("[%x]", *ptr); 151 ptr++; 152 } 153 } 154 155 void 156 PtraceDisplayBytes(int &req, void *data, size_t data_size) 157 { 158 StreamString buf; 159 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 160 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 161 162 if (verbose_log) 163 { 164 switch(req) 165 { 166 case PTRACE_POKETEXT: 167 { 168 DisplayBytes(buf, &data, 8); 169 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 170 break; 171 } 172 case PTRACE_POKEDATA: 173 { 174 DisplayBytes(buf, &data, 8); 175 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 176 break; 177 } 178 case PTRACE_POKEUSER: 179 { 180 DisplayBytes(buf, &data, 8); 181 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 182 break; 183 } 184 case PTRACE_SETREGS: 185 { 186 DisplayBytes(buf, data, data_size); 187 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 188 break; 189 } 190 case PTRACE_SETFPREGS: 191 { 192 DisplayBytes(buf, data, data_size); 193 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 194 break; 195 } 196 case PTRACE_SETSIGINFO: 197 { 198 DisplayBytes(buf, data, sizeof(siginfo_t)); 199 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 200 break; 201 } 202 case PTRACE_SETREGSET: 203 { 204 // Extract iov_base from data, which is a pointer to the struct IOVEC 205 DisplayBytes(buf, *(void **)data, data_size); 206 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 207 break; 208 } 209 default: 210 { 211 } 212 } 213 } 214 } 215 216 //------------------------------------------------------------------------------ 217 // Static implementations of NativeProcessLinux::ReadMemory and 218 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 219 // functions without needed to go thru the thread funnel. 220 221 Error 222 DoReadMemory( 223 lldb::pid_t pid, 224 lldb::addr_t vm_addr, 225 void *buf, 226 size_t size, 227 size_t &bytes_read) 228 { 229 // ptrace word size is determined by the host, not the child 230 static const unsigned word_size = sizeof(void*); 231 unsigned char *dst = static_cast<unsigned char*>(buf); 232 size_t remainder; 233 long data; 234 235 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 236 if (log) 237 ProcessPOSIXLog::IncNestLevel(); 238 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 239 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 240 pid, word_size, (void*)vm_addr, buf, size); 241 242 assert(sizeof(data) >= word_size); 243 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 244 { 245 Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, &data); 246 if (error.Fail()) 247 { 248 if (log) 249 ProcessPOSIXLog::DecNestLevel(); 250 return error; 251 } 252 253 remainder = size - bytes_read; 254 remainder = remainder > word_size ? word_size : remainder; 255 256 // Copy the data into our buffer 257 for (unsigned i = 0; i < remainder; ++i) 258 dst[i] = ((data >> i*8) & 0xFF); 259 260 if (log && ProcessPOSIXLog::AtTopNestLevel() && 261 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 262 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 263 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 264 { 265 uintptr_t print_dst = 0; 266 // Format bytes from data by moving into print_dst for log output 267 for (unsigned i = 0; i < remainder; ++i) 268 print_dst |= (((data >> i*8) & 0xFF) << i*8); 269 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 270 (void*)vm_addr, print_dst, (unsigned long)data); 271 } 272 vm_addr += word_size; 273 dst += word_size; 274 } 275 276 if (log) 277 ProcessPOSIXLog::DecNestLevel(); 278 return Error(); 279 } 280 281 Error 282 DoWriteMemory( 283 lldb::pid_t pid, 284 lldb::addr_t vm_addr, 285 const void *buf, 286 size_t size, 287 size_t &bytes_written) 288 { 289 // ptrace word size is determined by the host, not the child 290 static const unsigned word_size = sizeof(void*); 291 const unsigned char *src = static_cast<const unsigned char*>(buf); 292 size_t remainder; 293 Error error; 294 295 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 296 if (log) 297 ProcessPOSIXLog::IncNestLevel(); 298 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 299 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 300 pid, word_size, (void*)vm_addr, buf, size); 301 302 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 303 { 304 remainder = size - bytes_written; 305 remainder = remainder > word_size ? word_size : remainder; 306 307 if (remainder == word_size) 308 { 309 unsigned long data = 0; 310 assert(sizeof(data) >= word_size); 311 for (unsigned i = 0; i < word_size; ++i) 312 data |= (unsigned long)src[i] << i*8; 313 314 if (log && ProcessPOSIXLog::AtTopNestLevel() && 315 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 316 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 317 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 318 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 319 (void*)vm_addr, *(const unsigned long*)src, data); 320 321 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data); 322 if (error.Fail()) 323 { 324 if (log) 325 ProcessPOSIXLog::DecNestLevel(); 326 return error; 327 } 328 } 329 else 330 { 331 unsigned char buff[8]; 332 size_t bytes_read; 333 error = DoReadMemory(pid, vm_addr, buff, word_size, bytes_read); 334 if (error.Fail()) 335 { 336 if (log) 337 ProcessPOSIXLog::DecNestLevel(); 338 return error; 339 } 340 341 memcpy(buff, src, remainder); 342 343 size_t bytes_written_rec; 344 error = DoWriteMemory(pid, vm_addr, buff, word_size, bytes_written_rec); 345 if (error.Fail()) 346 { 347 if (log) 348 ProcessPOSIXLog::DecNestLevel(); 349 return error; 350 } 351 352 if (log && ProcessPOSIXLog::AtTopNestLevel() && 353 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 354 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 355 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 356 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 357 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 358 } 359 360 vm_addr += word_size; 361 src += word_size; 362 } 363 if (log) 364 ProcessPOSIXLog::DecNestLevel(); 365 return error; 366 } 367 } // end of anonymous namespace 368 369 // Simple helper function to ensure flags are enabled on the given file 370 // descriptor. 371 static Error 372 EnsureFDFlags(int fd, int flags) 373 { 374 Error error; 375 376 int status = fcntl(fd, F_GETFL); 377 if (status == -1) 378 { 379 error.SetErrorToErrno(); 380 return error; 381 } 382 383 if (fcntl(fd, F_SETFL, status | flags) == -1) 384 { 385 error.SetErrorToErrno(); 386 return error; 387 } 388 389 return error; 390 } 391 392 // This class encapsulates the privileged thread which performs all ptrace and wait operations on 393 // the inferior. The thread consists of a main loop which waits for events and processes them 394 // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in 395 // the inferior process. Upon receiving this signal we do a waitpid to get more information 396 // and dispatch to NativeProcessLinux::MonitorCallback. 397 // - requests for ptrace operations: These initiated via the DoOperation method, which funnels 398 // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a 399 // pipe, and the completion of the operation is signalled over the semaphore. 400 // - thread exit event: this is signaled from the Monitor destructor by closing the write end 401 // of the command pipe. 402 class NativeProcessLinux::Monitor 403 { 404 private: 405 // The initial monitor operation (launch or attach). It returns a inferior process id. 406 std::unique_ptr<InitialOperation> m_initial_operation_up; 407 408 ::pid_t m_child_pid = -1; 409 NativeProcessLinux * m_native_process; 410 411 enum { READ, WRITE }; 412 int m_pipefd[2] = {-1, -1}; 413 int m_signal_fd = -1; 414 HostThread m_thread; 415 416 // current operation which must be executed on the priviliged thread 417 Mutex m_operation_mutex; 418 const Operation *m_operation = nullptr; 419 sem_t m_operation_sem; 420 Error m_operation_error; 421 422 unsigned m_operation_nesting_level = 0; 423 424 static constexpr char operation_command = 'o'; 425 static constexpr char begin_block_command = '{'; 426 static constexpr char end_block_command = '}'; 427 428 void 429 HandleSignals(); 430 431 void 432 HandleWait(); 433 434 // Returns true if the thread should exit. 435 bool 436 HandleCommands(); 437 438 void 439 MainLoop(); 440 441 static void * 442 RunMonitor(void *arg); 443 444 Error 445 WaitForAck(); 446 447 void 448 BeginOperationBlock() 449 { 450 write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command); 451 WaitForAck(); 452 } 453 454 void 455 EndOperationBlock() 456 { 457 write(m_pipefd[WRITE], &end_block_command, sizeof operation_command); 458 WaitForAck(); 459 } 460 461 public: 462 Monitor(const InitialOperation &initial_operation, 463 NativeProcessLinux *native_process) 464 : m_initial_operation_up(new InitialOperation(initial_operation)), 465 m_native_process(native_process) 466 { 467 sem_init(&m_operation_sem, 0, 0); 468 } 469 470 ~Monitor(); 471 472 Error 473 Initialize(); 474 475 void 476 Terminate(); 477 478 Error 479 DoOperation(const Operation &op); 480 481 class ScopedOperationLock { 482 Monitor &m_monitor; 483 484 public: 485 ScopedOperationLock(Monitor &monitor) 486 : m_monitor(monitor) 487 { m_monitor.BeginOperationBlock(); } 488 489 ~ScopedOperationLock() 490 { m_monitor.EndOperationBlock(); } 491 }; 492 }; 493 constexpr char NativeProcessLinux::Monitor::operation_command; 494 constexpr char NativeProcessLinux::Monitor::begin_block_command; 495 constexpr char NativeProcessLinux::Monitor::end_block_command; 496 497 Error 498 NativeProcessLinux::Monitor::Initialize() 499 { 500 Error error; 501 502 // We get a SIGCHLD every time something interesting happens with the inferior. We shall be 503 // listening for these signals over a signalfd file descriptors. This allows us to wait for 504 // multiple kinds of events with select. 505 sigset_t signals; 506 sigemptyset(&signals); 507 sigaddset(&signals, SIGCHLD); 508 m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); 509 if (m_signal_fd < 0) 510 { 511 return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", 512 __FUNCTION__, strerror(errno)); 513 514 } 515 516 if (pipe2(m_pipefd, O_CLOEXEC) == -1) 517 { 518 error.SetErrorToErrno(); 519 return error; 520 } 521 522 if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { 523 return error; 524 } 525 526 static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; 527 m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); 528 if (!m_thread.IsJoinable()) 529 return Error("Failed to create monitor thread for NativeProcessLinux."); 530 531 // Wait for initial operation to complete. 532 return WaitForAck(); 533 } 534 535 Error 536 NativeProcessLinux::Monitor::DoOperation(const Operation &op) 537 { 538 if (m_thread.EqualsThread(pthread_self())) { 539 // If we're on the Monitor thread, we can simply execute the operation. 540 return op(); 541 } 542 543 // Otherwise we need to pass the operation to the Monitor thread so it can handle it. 544 Mutex::Locker lock(m_operation_mutex); 545 546 m_operation = &op; 547 548 // notify the thread that an operation is ready to be processed 549 write(m_pipefd[WRITE], &operation_command, sizeof operation_command); 550 551 return WaitForAck(); 552 } 553 554 void 555 NativeProcessLinux::Monitor::Terminate() 556 { 557 if (m_pipefd[WRITE] >= 0) 558 { 559 close(m_pipefd[WRITE]); 560 m_pipefd[WRITE] = -1; 561 } 562 if (m_thread.IsJoinable()) 563 m_thread.Join(nullptr); 564 } 565 566 NativeProcessLinux::Monitor::~Monitor() 567 { 568 Terminate(); 569 if (m_pipefd[READ] >= 0) 570 close(m_pipefd[READ]); 571 if (m_signal_fd >= 0) 572 close(m_signal_fd); 573 sem_destroy(&m_operation_sem); 574 } 575 576 void 577 NativeProcessLinux::Monitor::HandleSignals() 578 { 579 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 580 581 // We don't really care about the content of the SIGCHLD siginfo structure, as we will get 582 // all the information from waitpid(). We just need to read all the signals so that we can 583 // sleep next time we reach select(). 584 while (true) 585 { 586 signalfd_siginfo info; 587 ssize_t size = read(m_signal_fd, &info, sizeof info); 588 if (size == -1) 589 { 590 if (errno == EAGAIN || errno == EWOULDBLOCK) 591 break; // We are done. 592 if (errno == EINTR) 593 continue; 594 if (log) 595 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", 596 __FUNCTION__, strerror(errno)); 597 break; 598 } 599 if (size != sizeof info) 600 { 601 // We got incomplete information structure. This should not happen, let's just log 602 // that. 603 if (log) 604 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " 605 "structure size is %zd, read returned %zd bytes", 606 __FUNCTION__, sizeof info, size); 607 break; 608 } 609 if (log) 610 log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, 611 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); 612 } 613 } 614 615 void 616 NativeProcessLinux::Monitor::HandleWait() 617 { 618 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 619 // Process all pending waitpid notifications. 620 while (true) 621 { 622 int status = -1; 623 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 624 625 if (wait_pid == 0) 626 break; // We are done. 627 628 if (wait_pid == -1) 629 { 630 if (errno == EINTR) 631 continue; 632 633 if (log) 634 log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s", 635 __FUNCTION__, strerror(errno)); 636 break; 637 } 638 639 bool exited = false; 640 int signal = 0; 641 int exit_status = 0; 642 const char *status_cstr = NULL; 643 if (WIFSTOPPED(status)) 644 { 645 signal = WSTOPSIG(status); 646 status_cstr = "STOPPED"; 647 } 648 else if (WIFEXITED(status)) 649 { 650 exit_status = WEXITSTATUS(status); 651 status_cstr = "EXITED"; 652 exited = true; 653 } 654 else if (WIFSIGNALED(status)) 655 { 656 signal = WTERMSIG(status); 657 status_cstr = "SIGNALED"; 658 if (wait_pid == m_child_pid) { 659 exited = true; 660 exit_status = -1; 661 } 662 } 663 else 664 status_cstr = "(\?\?\?)"; 665 666 if (log) 667 log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)" 668 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 669 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status); 670 671 m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); 672 } 673 } 674 675 bool 676 NativeProcessLinux::Monitor::HandleCommands() 677 { 678 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 679 680 while (true) 681 { 682 char command = 0; 683 ssize_t size = read(m_pipefd[READ], &command, sizeof command); 684 if (size == -1) 685 { 686 if (errno == EAGAIN || errno == EWOULDBLOCK) 687 return false; 688 if (errno == EINTR) 689 continue; 690 if (log) 691 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); 692 return true; 693 } 694 if (size == 0) // end of file - write end closed 695 { 696 if (log) 697 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); 698 assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected"); 699 return true; // We are done. 700 } 701 702 switch (command) 703 { 704 case operation_command: 705 m_operation_error = (*m_operation)(); 706 break; 707 case begin_block_command: 708 ++m_operation_nesting_level; 709 break; 710 case end_block_command: 711 assert(m_operation_nesting_level > 0); 712 --m_operation_nesting_level; 713 break; 714 default: 715 if (log) 716 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", 717 __FUNCTION__, command); 718 } 719 720 // notify calling thread that the command has been processed 721 sem_post(&m_operation_sem); 722 } 723 } 724 725 void 726 NativeProcessLinux::Monitor::MainLoop() 727 { 728 ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); 729 m_initial_operation_up.reset(); 730 m_child_pid = child_pid; 731 sem_post(&m_operation_sem); 732 733 while (true) 734 { 735 fd_set fds; 736 FD_ZERO(&fds); 737 // Only process waitpid events if we are outside of an operation block. Any pending 738 // events will be processed after we leave the block. 739 if (m_operation_nesting_level == 0) 740 FD_SET(m_signal_fd, &fds); 741 FD_SET(m_pipefd[READ], &fds); 742 743 int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; 744 int r = select(max_fd, &fds, nullptr, nullptr, nullptr); 745 if (r < 0) 746 { 747 if (errno == EINTR) 748 continue; 749 750 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 751 if (log) 752 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", 753 __FUNCTION__, strerror(errno)); 754 return; 755 } 756 757 if (FD_ISSET(m_pipefd[READ], &fds)) 758 { 759 if (HandleCommands()) 760 return; 761 } 762 763 if (FD_ISSET(m_signal_fd, &fds)) 764 { 765 HandleSignals(); 766 HandleWait(); 767 } 768 } 769 } 770 771 Error 772 NativeProcessLinux::Monitor::WaitForAck() 773 { 774 Error error; 775 while (sem_wait(&m_operation_sem) != 0) 776 { 777 if (errno == EINTR) 778 continue; 779 780 error.SetErrorToErrno(); 781 return error; 782 } 783 784 return m_operation_error; 785 } 786 787 void * 788 NativeProcessLinux::Monitor::RunMonitor(void *arg) 789 { 790 static_cast<Monitor *>(arg)->MainLoop(); 791 return nullptr; 792 } 793 794 795 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 796 char const **argv, 797 char const **envp, 798 const FileSpec &stdin_file_spec, 799 const FileSpec &stdout_file_spec, 800 const FileSpec &stderr_file_spec, 801 const FileSpec &working_dir, 802 const ProcessLaunchInfo &launch_info) 803 : m_module(module), 804 m_argv(argv), 805 m_envp(envp), 806 m_stdin_file_spec(stdin_file_spec), 807 m_stdout_file_spec(stdout_file_spec), 808 m_stderr_file_spec(stderr_file_spec), 809 m_working_dir(working_dir), 810 m_launch_info(launch_info) 811 { 812 } 813 814 NativeProcessLinux::LaunchArgs::~LaunchArgs() 815 { } 816 817 // ----------------------------------------------------------------------------- 818 // Public Static Methods 819 // ----------------------------------------------------------------------------- 820 821 Error 822 NativeProcessProtocol::Launch ( 823 ProcessLaunchInfo &launch_info, 824 NativeProcessProtocol::NativeDelegate &native_delegate, 825 NativeProcessProtocolSP &native_process_sp) 826 { 827 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 828 829 lldb::ModuleSP exe_module_sp; 830 PlatformSP platform_sp (Platform::GetHostPlatform ()); 831 Error error = platform_sp->ResolveExecutable( 832 ModuleSpec(launch_info.GetExecutableFile(), launch_info.GetArchitecture()), 833 exe_module_sp, 834 nullptr); 835 836 if (! error.Success()) 837 return error; 838 839 // Verify the working directory is valid if one was specified. 840 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 841 if (working_dir && 842 (!working_dir.ResolvePath() || 843 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) 844 { 845 error.SetErrorStringWithFormat ("No such file or directory: %s", 846 working_dir.GetCString()); 847 return error; 848 } 849 850 const FileAction *file_action; 851 852 // Default of empty will mean to use existing open file descriptors. 853 FileSpec stdin_file_spec{}; 854 FileSpec stdout_file_spec{}; 855 FileSpec stderr_file_spec{}; 856 857 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 858 if (file_action) 859 stdin_file_spec = file_action->GetFileSpec(); 860 861 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 862 if (file_action) 863 stdout_file_spec = file_action->GetFileSpec(); 864 865 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 866 if (file_action) 867 stderr_file_spec = file_action->GetFileSpec(); 868 869 if (log) 870 { 871 if (stdin_file_spec) 872 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", 873 __FUNCTION__, stdin_file_spec.GetCString()); 874 else 875 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 876 877 if (stdout_file_spec) 878 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", 879 __FUNCTION__, stdout_file_spec.GetCString()); 880 else 881 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 882 883 if (stderr_file_spec) 884 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", 885 __FUNCTION__, stderr_file_spec.GetCString()); 886 else 887 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 888 } 889 890 // Create the NativeProcessLinux in launch mode. 891 native_process_sp.reset (new NativeProcessLinux ()); 892 893 if (log) 894 { 895 int i = 0; 896 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 897 { 898 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 899 ++i; 900 } 901 } 902 903 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 904 { 905 native_process_sp.reset (); 906 error.SetErrorStringWithFormat ("failed to register the native delegate"); 907 return error; 908 } 909 910 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 911 exe_module_sp.get(), 912 launch_info.GetArguments ().GetConstArgumentVector (), 913 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 914 stdin_file_spec, 915 stdout_file_spec, 916 stderr_file_spec, 917 working_dir, 918 launch_info, 919 error); 920 921 if (error.Fail ()) 922 { 923 native_process_sp.reset (); 924 if (log) 925 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 926 return error; 927 } 928 929 launch_info.SetProcessID (native_process_sp->GetID ()); 930 931 return error; 932 } 933 934 Error 935 NativeProcessProtocol::Attach ( 936 lldb::pid_t pid, 937 NativeProcessProtocol::NativeDelegate &native_delegate, 938 NativeProcessProtocolSP &native_process_sp) 939 { 940 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 941 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 942 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 943 944 // Grab the current platform architecture. This should be Linux, 945 // since this code is only intended to run on a Linux host. 946 PlatformSP platform_sp (Platform::GetHostPlatform ()); 947 if (!platform_sp) 948 return Error("failed to get a valid default platform"); 949 950 // Retrieve the architecture for the running process. 951 ArchSpec process_arch; 952 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 953 if (!error.Success ()) 954 return error; 955 956 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 957 958 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 959 { 960 error.SetErrorStringWithFormat ("failed to register the native delegate"); 961 return error; 962 } 963 964 native_process_linux_sp->AttachToInferior (pid, error); 965 if (!error.Success ()) 966 return error; 967 968 native_process_sp = native_process_linux_sp; 969 return error; 970 } 971 972 // ----------------------------------------------------------------------------- 973 // Public Instance Methods 974 // ----------------------------------------------------------------------------- 975 976 NativeProcessLinux::NativeProcessLinux () : 977 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 978 m_arch (), 979 m_supports_mem_region (eLazyBoolCalculate), 980 m_mem_region_cache (), 981 m_mem_region_cache_mutex () 982 { 983 } 984 985 //------------------------------------------------------------------------------ 986 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. 987 // Refer to Monitor and Operation classes to see why this is necessary. 988 //------------------------------------------------------------------------------ 989 void 990 NativeProcessLinux::LaunchInferior ( 991 Module *module, 992 const char *argv[], 993 const char *envp[], 994 const FileSpec &stdin_file_spec, 995 const FileSpec &stdout_file_spec, 996 const FileSpec &stderr_file_spec, 997 const FileSpec &working_dir, 998 const ProcessLaunchInfo &launch_info, 999 Error &error) 1000 { 1001 if (module) 1002 m_arch = module->GetArchitecture (); 1003 1004 SetState (eStateLaunching); 1005 1006 std::unique_ptr<LaunchArgs> args( 1007 new LaunchArgs(module, argv, envp, 1008 stdin_file_spec, 1009 stdout_file_spec, 1010 stderr_file_spec, 1011 working_dir, 1012 launch_info)); 1013 1014 StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); 1015 if (!error.Success ()) 1016 return; 1017 } 1018 1019 void 1020 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) 1021 { 1022 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1023 if (log) 1024 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1025 1026 // We can use the Host for everything except the ResolveExecutable portion. 1027 PlatformSP platform_sp = Platform::GetHostPlatform (); 1028 if (!platform_sp) 1029 { 1030 if (log) 1031 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1032 error.SetErrorString ("no default platform available"); 1033 return; 1034 } 1035 1036 // Gather info about the process. 1037 ProcessInstanceInfo process_info; 1038 if (!platform_sp->GetProcessInfo (pid, process_info)) 1039 { 1040 if (log) 1041 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1042 error.SetErrorString ("failed to get process info"); 1043 return; 1044 } 1045 1046 // Resolve the executable module 1047 ModuleSP exe_module_sp; 1048 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1049 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1050 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1051 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1052 if (!error.Success()) 1053 return; 1054 1055 // Set the architecture to the exe architecture. 1056 m_arch = exe_module_sp->GetArchitecture(); 1057 if (log) 1058 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1059 1060 m_pid = pid; 1061 SetState(eStateAttaching); 1062 1063 StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); 1064 if (!error.Success ()) 1065 return; 1066 } 1067 1068 void 1069 NativeProcessLinux::Terminate () 1070 { 1071 m_monitor_up->Terminate(); 1072 } 1073 1074 ::pid_t 1075 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 1076 { 1077 assert (args && "null args"); 1078 1079 const char **argv = args->m_argv; 1080 const char **envp = args->m_envp; 1081 const FileSpec working_dir = args->m_working_dir; 1082 1083 lldb_utility::PseudoTerminal terminal; 1084 const size_t err_len = 1024; 1085 char err_str[err_len]; 1086 lldb::pid_t pid; 1087 NativeThreadProtocolSP thread_sp; 1088 1089 lldb::ThreadSP inferior; 1090 1091 // Propagate the environment if one is not supplied. 1092 if (envp == NULL || envp[0] == NULL) 1093 envp = const_cast<const char **>(environ); 1094 1095 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1096 { 1097 error.SetErrorToGenericError(); 1098 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 1099 return -1; 1100 } 1101 1102 // Recognized child exit status codes. 1103 enum { 1104 ePtraceFailed = 1, 1105 eDupStdinFailed, 1106 eDupStdoutFailed, 1107 eDupStderrFailed, 1108 eChdirFailed, 1109 eExecFailed, 1110 eSetGidFailed 1111 }; 1112 1113 // Child process. 1114 if (pid == 0) 1115 { 1116 // FIXME consider opening a pipe between parent/child and have this forked child 1117 // send log info to parent re: launch status, in place of the log lines removed here. 1118 1119 // Start tracing this child that is about to exec. 1120 error = PtraceWrapper(PTRACE_TRACEME, 0); 1121 if (error.Fail()) 1122 exit(ePtraceFailed); 1123 1124 // terminal has already dupped the tty descriptors to stdin/out/err. 1125 // This closes original fd from which they were copied (and avoids 1126 // leaking descriptors to the debugged process. 1127 terminal.CloseSlaveFileDescriptor(); 1128 1129 // Do not inherit setgid powers. 1130 if (setgid(getgid()) != 0) 1131 exit(eSetGidFailed); 1132 1133 // Attempt to have our own process group. 1134 if (setpgid(0, 0) != 0) 1135 { 1136 // FIXME log that this failed. This is common. 1137 // Don't allow this to prevent an inferior exec. 1138 } 1139 1140 // Dup file descriptors if needed. 1141 if (args->m_stdin_file_spec) 1142 if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY)) 1143 exit(eDupStdinFailed); 1144 1145 if (args->m_stdout_file_spec) 1146 if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1147 exit(eDupStdoutFailed); 1148 1149 if (args->m_stderr_file_spec) 1150 if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1151 exit(eDupStderrFailed); 1152 1153 // Close everything besides stdin, stdout, and stderr that has no file 1154 // action to avoid leaking 1155 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 1156 if (!args->m_launch_info.GetFileActionForFD(fd)) 1157 close(fd); 1158 1159 // Change working directory 1160 if (working_dir && 0 != ::chdir(working_dir.GetCString())) 1161 exit(eChdirFailed); 1162 1163 // Disable ASLR if requested. 1164 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1165 { 1166 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1167 if (old_personality == -1) 1168 { 1169 // Can't retrieve Linux personality. Cannot disable ASLR. 1170 } 1171 else 1172 { 1173 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1174 if (new_personality == -1) 1175 { 1176 // Disabling ASLR failed. 1177 } 1178 else 1179 { 1180 // Disabling ASLR succeeded. 1181 } 1182 } 1183 } 1184 1185 // Execute. We should never return... 1186 execve(argv[0], 1187 const_cast<char *const *>(argv), 1188 const_cast<char *const *>(envp)); 1189 1190 // ...unless exec fails. In which case we definitely need to end the child here. 1191 exit(eExecFailed); 1192 } 1193 1194 // 1195 // This is the parent code here. 1196 // 1197 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1198 1199 // Wait for the child process to trap on its call to execve. 1200 ::pid_t wpid; 1201 int status; 1202 if ((wpid = waitpid(pid, &status, 0)) < 0) 1203 { 1204 error.SetErrorToErrno(); 1205 if (log) 1206 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 1207 __FUNCTION__, error.AsCString ()); 1208 1209 // Mark the inferior as invalid. 1210 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1211 SetState (StateType::eStateInvalid); 1212 1213 return -1; 1214 } 1215 else if (WIFEXITED(status)) 1216 { 1217 // open, dup or execve likely failed for some reason. 1218 error.SetErrorToGenericError(); 1219 switch (WEXITSTATUS(status)) 1220 { 1221 case ePtraceFailed: 1222 error.SetErrorString("Child ptrace failed."); 1223 break; 1224 case eDupStdinFailed: 1225 error.SetErrorString("Child open stdin failed."); 1226 break; 1227 case eDupStdoutFailed: 1228 error.SetErrorString("Child open stdout failed."); 1229 break; 1230 case eDupStderrFailed: 1231 error.SetErrorString("Child open stderr failed."); 1232 break; 1233 case eChdirFailed: 1234 error.SetErrorString("Child failed to set working directory."); 1235 break; 1236 case eExecFailed: 1237 error.SetErrorString("Child exec failed."); 1238 break; 1239 case eSetGidFailed: 1240 error.SetErrorString("Child setgid failed."); 1241 break; 1242 default: 1243 error.SetErrorString("Child returned unknown exit status."); 1244 break; 1245 } 1246 1247 if (log) 1248 { 1249 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1250 __FUNCTION__, 1251 WEXITSTATUS(status)); 1252 } 1253 1254 // Mark the inferior as invalid. 1255 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1256 SetState (StateType::eStateInvalid); 1257 1258 return -1; 1259 } 1260 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1261 "Could not sync with inferior process."); 1262 1263 if (log) 1264 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1265 1266 error = SetDefaultPtraceOpts(pid); 1267 if (error.Fail()) 1268 { 1269 if (log) 1270 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1271 __FUNCTION__, error.AsCString ()); 1272 1273 // Mark the inferior as invalid. 1274 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1275 SetState (StateType::eStateInvalid); 1276 1277 return -1; 1278 } 1279 1280 // Release the master terminal descriptor and pass it off to the 1281 // NativeProcessLinux instance. Similarly stash the inferior pid. 1282 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1283 m_pid = pid; 1284 1285 // Set the terminal fd to be in non blocking mode (it simplifies the 1286 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1287 // descriptor to read from). 1288 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 1289 if (error.Fail()) 1290 { 1291 if (log) 1292 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1293 __FUNCTION__, error.AsCString ()); 1294 1295 // Mark the inferior as invalid. 1296 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1297 SetState (StateType::eStateInvalid); 1298 1299 return -1; 1300 } 1301 1302 if (log) 1303 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1304 1305 thread_sp = AddThread (pid); 1306 assert (thread_sp && "AddThread() returned a nullptr thread"); 1307 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1308 ThreadWasCreated(pid); 1309 1310 // Let our process instance know the thread has stopped. 1311 SetCurrentThreadID (thread_sp->GetID ()); 1312 SetState (StateType::eStateStopped); 1313 1314 if (log) 1315 { 1316 if (error.Success ()) 1317 { 1318 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1319 } 1320 else 1321 { 1322 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1323 __FUNCTION__, error.AsCString ()); 1324 return -1; 1325 } 1326 } 1327 return pid; 1328 } 1329 1330 ::pid_t 1331 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 1332 { 1333 lldb::ThreadSP inferior; 1334 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1335 1336 // Use a map to keep track of the threads which we have attached/need to attach. 1337 Host::TidMap tids_to_attach; 1338 if (pid <= 1) 1339 { 1340 error.SetErrorToGenericError(); 1341 error.SetErrorString("Attaching to process 1 is not allowed."); 1342 return -1; 1343 } 1344 1345 while (Host::FindProcessThreads(pid, tids_to_attach)) 1346 { 1347 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1348 it != tids_to_attach.end();) 1349 { 1350 if (it->second == false) 1351 { 1352 lldb::tid_t tid = it->first; 1353 1354 // Attach to the requested process. 1355 // An attach will cause the thread to stop with a SIGSTOP. 1356 error = PtraceWrapper(PTRACE_ATTACH, tid); 1357 if (error.Fail()) 1358 { 1359 // No such thread. The thread may have exited. 1360 // More error handling may be needed. 1361 if (error.GetError() == ESRCH) 1362 { 1363 it = tids_to_attach.erase(it); 1364 continue; 1365 } 1366 else 1367 return -1; 1368 } 1369 1370 int status; 1371 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1372 // At this point we should have a thread stopped if waitpid succeeds. 1373 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1374 { 1375 // No such thread. The thread may have exited. 1376 // More error handling may be needed. 1377 if (errno == ESRCH) 1378 { 1379 it = tids_to_attach.erase(it); 1380 continue; 1381 } 1382 else 1383 { 1384 error.SetErrorToErrno(); 1385 return -1; 1386 } 1387 } 1388 1389 error = SetDefaultPtraceOpts(tid); 1390 if (error.Fail()) 1391 return -1; 1392 1393 if (log) 1394 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1395 1396 it->second = true; 1397 1398 // Create the thread, mark it as stopped. 1399 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid))); 1400 assert (thread_sp && "AddThread() returned a nullptr"); 1401 1402 // This will notify this is a new thread and tell the system it is stopped. 1403 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1404 ThreadWasCreated(tid); 1405 SetCurrentThreadID (thread_sp->GetID ()); 1406 } 1407 1408 // move the loop forward 1409 ++it; 1410 } 1411 } 1412 1413 if (tids_to_attach.size() > 0) 1414 { 1415 m_pid = pid; 1416 // Let our process instance know the thread has stopped. 1417 SetState (StateType::eStateStopped); 1418 } 1419 else 1420 { 1421 error.SetErrorToGenericError(); 1422 error.SetErrorString("No such process."); 1423 return -1; 1424 } 1425 1426 return pid; 1427 } 1428 1429 Error 1430 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1431 { 1432 long ptrace_opts = 0; 1433 1434 // Have the child raise an event on exit. This is used to keep the child in 1435 // limbo until it is destroyed. 1436 ptrace_opts |= PTRACE_O_TRACEEXIT; 1437 1438 // Have the tracer trace threads which spawn in the inferior process. 1439 // TODO: if we want to support tracing the inferiors' child, add the 1440 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1441 ptrace_opts |= PTRACE_O_TRACECLONE; 1442 1443 // Have the tracer notify us before execve returns 1444 // (needed to disable legacy SIGTRAP generation) 1445 ptrace_opts |= PTRACE_O_TRACEEXEC; 1446 1447 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts); 1448 } 1449 1450 static ExitType convert_pid_status_to_exit_type (int status) 1451 { 1452 if (WIFEXITED (status)) 1453 return ExitType::eExitTypeExit; 1454 else if (WIFSIGNALED (status)) 1455 return ExitType::eExitTypeSignal; 1456 else if (WIFSTOPPED (status)) 1457 return ExitType::eExitTypeStop; 1458 else 1459 { 1460 // We don't know what this is. 1461 return ExitType::eExitTypeInvalid; 1462 } 1463 } 1464 1465 static int convert_pid_status_to_return_code (int status) 1466 { 1467 if (WIFEXITED (status)) 1468 return WEXITSTATUS (status); 1469 else if (WIFSIGNALED (status)) 1470 return WTERMSIG (status); 1471 else if (WIFSTOPPED (status)) 1472 return WSTOPSIG (status); 1473 else 1474 { 1475 // We don't know what this is. 1476 return ExitType::eExitTypeInvalid; 1477 } 1478 } 1479 1480 // Handles all waitpid events from the inferior process. 1481 void 1482 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 1483 bool exited, 1484 int signal, 1485 int status) 1486 { 1487 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1488 1489 // Certain activities differ based on whether the pid is the tid of the main thread. 1490 const bool is_main_thread = (pid == GetID ()); 1491 1492 // Handle when the thread exits. 1493 if (exited) 1494 { 1495 if (log) 1496 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 1497 1498 // This is a thread that exited. Ensure we're not tracking it anymore. 1499 const bool thread_found = StopTrackingThread (pid); 1500 1501 if (is_main_thread) 1502 { 1503 // We only set the exit status and notify the delegate if we haven't already set the process 1504 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1505 // for the main thread. 1506 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 1507 if (!already_notified) 1508 { 1509 if (log) 1510 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 1511 // The main thread exited. We're done monitoring. Report to delegate. 1512 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1513 1514 // Notify delegate that our process has exited. 1515 SetState (StateType::eStateExited, true); 1516 } 1517 else 1518 { 1519 if (log) 1520 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1521 } 1522 } 1523 else 1524 { 1525 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1526 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1527 // and we would have done an all-stop then. 1528 if (log) 1529 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1530 } 1531 return; 1532 } 1533 1534 // Get details on the signal raised. 1535 siginfo_t info; 1536 const auto err = GetSignalInfo(pid, &info); 1537 if (err.Success()) 1538 { 1539 // We have retrieved the signal info. Dispatch appropriately. 1540 if (info.si_signo == SIGTRAP) 1541 MonitorSIGTRAP(&info, pid); 1542 else 1543 MonitorSignal(&info, pid, exited); 1544 } 1545 else 1546 { 1547 if (err.GetError() == EINVAL) 1548 { 1549 // This is a group stop reception for this tid. 1550 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the 1551 // tracee, triggering the group-stop mechanism. Normally receiving these would stop 1552 // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is 1553 // generally not needed (one use case is debugging background task being managed by a 1554 // shell). For general use, it is sufficient to stop the process in a signal-delivery 1555 // stop which happens before the group stop. This done by MonitorSignal and works 1556 // correctly for all signals. 1557 if (log) 1558 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid); 1559 Resume(pid, signal); 1560 } 1561 else 1562 { 1563 // ptrace(GETSIGINFO) failed (but not due to group-stop). 1564 1565 // A return value of ESRCH means the thread/process is no longer on the system, 1566 // so it was killed somehow outside of our control. Either way, we can't do anything 1567 // with it anymore. 1568 1569 // Stop tracking the metadata for the thread since it's entirely off the system now. 1570 const bool thread_found = StopTrackingThread (pid); 1571 1572 if (log) 1573 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 1574 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 1575 1576 if (is_main_thread) 1577 { 1578 // Notify the delegate - our process is not available but appears to have been killed outside 1579 // our control. Is eStateExited the right exit state in this case? 1580 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1581 SetState (StateType::eStateExited, true); 1582 } 1583 else 1584 { 1585 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 1586 if (log) 1587 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 1588 } 1589 } 1590 } 1591 } 1592 1593 void 1594 NativeProcessLinux::WaitForNewThread(::pid_t tid) 1595 { 1596 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1597 1598 NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid); 1599 1600 if (new_thread_sp) 1601 { 1602 // We are already tracking the thread - we got the event on the new thread (see 1603 // MonitorSignal) before this one. We are done. 1604 return; 1605 } 1606 1607 // The thread is not tracked yet, let's wait for it to appear. 1608 int status = -1; 1609 ::pid_t wait_pid; 1610 do 1611 { 1612 if (log) 1613 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 1614 wait_pid = waitpid(tid, &status, __WALL); 1615 } 1616 while (wait_pid == -1 && errno == EINTR); 1617 // Since we are waiting on a specific tid, this must be the creation event. But let's do 1618 // some checks just in case. 1619 if (wait_pid != tid) { 1620 if (log) 1621 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 1622 // The only way I know of this could happen is if the whole process was 1623 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 1624 return; 1625 } 1626 if (WIFEXITED(status)) 1627 { 1628 if (log) 1629 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 1630 // Also a very improbable event. 1631 return; 1632 } 1633 1634 siginfo_t info; 1635 Error error = GetSignalInfo(tid, &info); 1636 if (error.Fail()) 1637 { 1638 if (log) 1639 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 1640 return; 1641 } 1642 1643 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 1644 { 1645 // We should be getting a thread creation signal here, but we received something 1646 // else. There isn't much we can do about it now, so we will just log that. Since the 1647 // thread is alive and we are receiving events from it, we shall pretend that it was 1648 // created properly. 1649 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 1650 } 1651 1652 if (log) 1653 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 1654 __FUNCTION__, GetID (), tid); 1655 1656 new_thread_sp = AddThread(tid); 1657 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning (); 1658 Resume (tid, LLDB_INVALID_SIGNAL_NUMBER); 1659 ThreadWasCreated(tid); 1660 } 1661 1662 void 1663 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 1664 { 1665 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1666 const bool is_main_thread = (pid == GetID ()); 1667 1668 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 1669 if (!info) 1670 return; 1671 1672 Mutex::Locker locker (m_threads_mutex); 1673 1674 // See if we can find a thread for this signal. 1675 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 1676 if (!thread_sp) 1677 { 1678 if (log) 1679 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 1680 } 1681 1682 switch (info->si_code) 1683 { 1684 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 1685 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 1686 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 1687 1688 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 1689 { 1690 // This is the notification on the parent thread which informs us of new thread 1691 // creation. 1692 // We don't want to do anything with the parent thread so we just resume it. In case we 1693 // want to implement "break on thread creation" functionality, we would need to stop 1694 // here. 1695 1696 unsigned long event_message = 0; 1697 if (GetEventMessage (pid, &event_message).Fail()) 1698 { 1699 if (log) 1700 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 1701 } else 1702 WaitForNewThread(event_message); 1703 1704 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 1705 break; 1706 } 1707 1708 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 1709 { 1710 NativeThreadProtocolSP main_thread_sp; 1711 if (log) 1712 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 1713 1714 // Exec clears any pending notifications. 1715 m_pending_notification_up.reset (); 1716 1717 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 1718 if (log) 1719 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 1720 1721 for (auto thread_sp : m_threads) 1722 { 1723 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 1724 if (is_main_thread) 1725 { 1726 main_thread_sp = thread_sp; 1727 if (log) 1728 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 1729 } 1730 else 1731 { 1732 // Tell thread coordinator this thread is dead. 1733 if (log) 1734 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 1735 } 1736 } 1737 1738 m_threads.clear (); 1739 1740 if (main_thread_sp) 1741 { 1742 m_threads.push_back (main_thread_sp); 1743 SetCurrentThreadID (main_thread_sp->GetID ()); 1744 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 1745 } 1746 else 1747 { 1748 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 1749 if (log) 1750 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 1751 } 1752 1753 // Tell coordinator about about the "new" (since exec) stopped main thread. 1754 const lldb::tid_t main_thread_tid = GetID (); 1755 ThreadWasCreated(main_thread_tid); 1756 1757 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 1758 // Consider a handler that can execute when that happens. 1759 // Let our delegate know we have just exec'd. 1760 NotifyDidExec (); 1761 1762 // If we have a main thread, indicate we are stopped. 1763 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 1764 1765 // Let the process know we're stopped. 1766 StopRunningThreads (pid); 1767 1768 break; 1769 } 1770 1771 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 1772 { 1773 // The inferior process or one of its threads is about to exit. 1774 // We don't want to do anything with the thread so we just resume it. In case we 1775 // want to implement "break on thread exit" functionality, we would need to stop 1776 // here. 1777 1778 unsigned long data = 0; 1779 if (GetEventMessage(pid, &data).Fail()) 1780 data = -1; 1781 1782 if (log) 1783 { 1784 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 1785 __FUNCTION__, 1786 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 1787 pid, 1788 is_main_thread ? "is main thread" : "not main thread"); 1789 } 1790 1791 if (is_main_thread) 1792 { 1793 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 1794 } 1795 1796 Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); 1797 1798 break; 1799 } 1800 1801 case 0: 1802 case TRAP_TRACE: // We receive this on single stepping. 1803 case TRAP_HWBKPT: // We receive this on watchpoint hit 1804 if (thread_sp) 1805 { 1806 // If a watchpoint was hit, report it 1807 uint32_t wp_index; 1808 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr); 1809 if (error.Fail() && log) 1810 log->Printf("NativeProcessLinux::%s() " 1811 "received error while checking for watchpoint hits, " 1812 "pid = %" PRIu64 " error = %s", 1813 __FUNCTION__, pid, error.AsCString()); 1814 if (wp_index != LLDB_INVALID_INDEX32) 1815 { 1816 MonitorWatchpoint(pid, thread_sp, wp_index); 1817 break; 1818 } 1819 } 1820 // Otherwise, report step over 1821 MonitorTrace(pid, thread_sp); 1822 break; 1823 1824 case SI_KERNEL: 1825 #if defined __mips__ 1826 // For mips there is no special signal for watchpoint 1827 // So we check for watchpoint in kernel trap 1828 if (thread_sp) 1829 { 1830 // If a watchpoint was hit, report it 1831 uint32_t wp_index; 1832 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS); 1833 if (error.Fail() && log) 1834 log->Printf("NativeProcessLinux::%s() " 1835 "received error while checking for watchpoint hits, " 1836 "pid = %" PRIu64 " error = %s", 1837 __FUNCTION__, pid, error.AsCString()); 1838 if (wp_index != LLDB_INVALID_INDEX32) 1839 { 1840 MonitorWatchpoint(pid, thread_sp, wp_index); 1841 break; 1842 } 1843 } 1844 // NO BREAK 1845 #endif 1846 case TRAP_BRKPT: 1847 MonitorBreakpoint(pid, thread_sp); 1848 break; 1849 1850 case SIGTRAP: 1851 case (SIGTRAP | 0x80): 1852 if (log) 1853 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 1854 1855 // Ignore these signals until we know more about them. 1856 Resume(pid, LLDB_INVALID_SIGNAL_NUMBER); 1857 break; 1858 1859 default: 1860 assert(false && "Unexpected SIGTRAP code!"); 1861 if (log) 1862 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", 1863 __FUNCTION__, GetID (), pid, info->si_code); 1864 break; 1865 1866 } 1867 } 1868 1869 void 1870 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 1871 { 1872 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1873 if (log) 1874 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 1875 __FUNCTION__, pid); 1876 1877 if (thread_sp) 1878 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 1879 1880 // This thread is currently stopped. 1881 ThreadDidStop(pid, false); 1882 1883 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 1884 // This would have already happened at the time the Resume() with step operation was signaled. 1885 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 1886 // once all running threads have checked in as stopped. 1887 SetCurrentThreadID(pid); 1888 // Tell the process we have a stop (from software breakpoint). 1889 StopRunningThreads(pid); 1890 } 1891 1892 void 1893 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 1894 { 1895 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1896 if (log) 1897 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 1898 __FUNCTION__, pid); 1899 1900 // This thread is currently stopped. 1901 ThreadDidStop(pid, false); 1902 1903 // Mark the thread as stopped at breakpoint. 1904 if (thread_sp) 1905 { 1906 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint(); 1907 Error error = FixupBreakpointPCAsNeeded(thread_sp); 1908 if (error.Fail()) 1909 if (log) 1910 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 1911 __FUNCTION__, pid, error.AsCString()); 1912 1913 if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end()) 1914 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 1915 } 1916 else 1917 if (log) 1918 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " 1919 "warning, cannot process software breakpoint since no thread metadata", 1920 __FUNCTION__, pid); 1921 1922 1923 // We need to tell all other running threads before we notify the delegate about this stop. 1924 StopRunningThreads(pid); 1925 } 1926 1927 void 1928 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) 1929 { 1930 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 1931 if (log) 1932 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 1933 "pid = %" PRIu64 ", wp_index = %" PRIu32, 1934 __FUNCTION__, pid, wp_index); 1935 1936 // This thread is currently stopped. 1937 ThreadDidStop(pid, false); 1938 1939 // Mark the thread as stopped at watchpoint. 1940 // The address is at (lldb::addr_t)info->si_addr if we need it. 1941 lldbassert(thread_sp && "thread_sp cannot be NULL"); 1942 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index); 1943 1944 // We need to tell all other running threads before we notify the delegate about this stop. 1945 StopRunningThreads(pid); 1946 } 1947 1948 void 1949 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 1950 { 1951 assert (info && "null info"); 1952 if (!info) 1953 return; 1954 1955 const int signo = info->si_signo; 1956 const bool is_from_llgs = info->si_pid == getpid (); 1957 1958 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1959 1960 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 1961 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 1962 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 1963 // 1964 // IOW, user generated signals never generate what we consider to be a 1965 // "crash". 1966 // 1967 // Similarly, ACK signals generated by this monitor. 1968 1969 Mutex::Locker locker (m_threads_mutex); 1970 1971 // See if we can find a thread for this signal. 1972 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 1973 if (!thread_sp) 1974 { 1975 if (log) 1976 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 1977 } 1978 1979 // Handle the signal. 1980 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 1981 { 1982 if (log) 1983 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 1984 __FUNCTION__, 1985 Host::GetSignalAsCString(signo), 1986 signo, 1987 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 1988 info->si_pid, 1989 is_from_llgs ? "from llgs" : "not from llgs", 1990 pid); 1991 } 1992 1993 // Check for new thread notification. 1994 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 1995 { 1996 // A new thread creation is being signaled. This is one of two parts that come in 1997 // a non-deterministic order. This code handles the case where the new thread event comes 1998 // before the event on the parent thread. For the opposite case see code in 1999 // MonitorSIGTRAP. 2000 if (log) 2001 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2002 __FUNCTION__, GetID (), pid); 2003 2004 thread_sp = AddThread(pid); 2005 assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread"); 2006 // We can now resume the newly created thread. 2007 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2008 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2009 ThreadWasCreated(pid); 2010 // Done handling. 2011 return; 2012 } 2013 2014 // Check for thread stop notification. 2015 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2016 { 2017 // This is a tgkill()-based stop. 2018 if (thread_sp) 2019 { 2020 if (log) 2021 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2022 __FUNCTION__, 2023 GetID (), 2024 pid); 2025 2026 // Check that we're not already marked with a stop reason. 2027 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2028 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2029 // and that, without an intervening resume, we received another stop. It is more likely 2030 // that we are missing the marking of a run state somewhere if we find that the thread was 2031 // marked as stopped. 2032 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2033 assert (linux_thread_sp && "linux_thread_sp is null!"); 2034 2035 const StateType thread_state = linux_thread_sp->GetState (); 2036 if (!StateIsStoppedState (thread_state, false)) 2037 { 2038 // An inferior thread has stopped because of a SIGSTOP we have sent it. 2039 // Generally, these are not important stops and we don't want to report them as 2040 // they are just used to stop other threads when one thread (the one with the 2041 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the 2042 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we 2043 // leave the signal intact if this is the thread that was chosen as the 2044 // triggering thread. 2045 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid) 2046 linux_thread_sp->SetStoppedBySignal(SIGSTOP, info); 2047 else 2048 linux_thread_sp->SetStoppedBySignal(0); 2049 2050 SetCurrentThreadID (thread_sp->GetID ()); 2051 ThreadDidStop (thread_sp->GetID (), true); 2052 } 2053 else 2054 { 2055 if (log) 2056 { 2057 // Retrieve the signal name if the thread was stopped by a signal. 2058 int stop_signo = 0; 2059 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2060 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>"; 2061 if (!signal_name) 2062 signal_name = "<no-signal-name>"; 2063 2064 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2065 __FUNCTION__, 2066 GetID (), 2067 linux_thread_sp->GetID (), 2068 StateAsCString (thread_state), 2069 stop_signo, 2070 signal_name); 2071 } 2072 ThreadDidStop (thread_sp->GetID (), false); 2073 } 2074 } 2075 2076 // Done handling. 2077 return; 2078 } 2079 2080 if (log) 2081 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo)); 2082 2083 // This thread is stopped. 2084 ThreadDidStop (pid, false); 2085 2086 if (thread_sp) 2087 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info); 2088 2089 // Send a stop to the debugger after we get all other threads to stop. 2090 StopRunningThreads (pid); 2091 } 2092 2093 namespace { 2094 2095 struct EmulatorBaton 2096 { 2097 NativeProcessLinux* m_process; 2098 NativeRegisterContext* m_reg_context; 2099 2100 // eRegisterKindDWARF -> RegsiterValue 2101 std::unordered_map<uint32_t, RegisterValue> m_register_values; 2102 2103 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 2104 m_process(process), m_reg_context(reg_context) {} 2105 }; 2106 2107 } // anonymous namespace 2108 2109 static size_t 2110 ReadMemoryCallback (EmulateInstruction *instruction, 2111 void *baton, 2112 const EmulateInstruction::Context &context, 2113 lldb::addr_t addr, 2114 void *dst, 2115 size_t length) 2116 { 2117 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2118 2119 size_t bytes_read; 2120 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 2121 return bytes_read; 2122 } 2123 2124 static bool 2125 ReadRegisterCallback (EmulateInstruction *instruction, 2126 void *baton, 2127 const RegisterInfo *reg_info, 2128 RegisterValue ®_value) 2129 { 2130 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2131 2132 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 2133 if (it != emulator_baton->m_register_values.end()) 2134 { 2135 reg_value = it->second; 2136 return true; 2137 } 2138 2139 // The emulator only fill in the dwarf regsiter numbers (and in some case 2140 // the generic register numbers). Get the full register info from the 2141 // register context based on the dwarf register numbers. 2142 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 2143 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 2144 2145 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 2146 if (error.Success()) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 static bool 2153 WriteRegisterCallback (EmulateInstruction *instruction, 2154 void *baton, 2155 const EmulateInstruction::Context &context, 2156 const RegisterInfo *reg_info, 2157 const RegisterValue ®_value) 2158 { 2159 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2160 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 2161 return true; 2162 } 2163 2164 static size_t 2165 WriteMemoryCallback (EmulateInstruction *instruction, 2166 void *baton, 2167 const EmulateInstruction::Context &context, 2168 lldb::addr_t addr, 2169 const void *dst, 2170 size_t length) 2171 { 2172 return length; 2173 } 2174 2175 static lldb::addr_t 2176 ReadFlags (NativeRegisterContext* regsiter_context) 2177 { 2178 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 2179 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2180 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 2181 } 2182 2183 Error 2184 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp) 2185 { 2186 Error error; 2187 NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext(); 2188 2189 std::unique_ptr<EmulateInstruction> emulator_ap( 2190 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 2191 2192 if (emulator_ap == nullptr) 2193 return Error("Instruction emulator not found!"); 2194 2195 EmulatorBaton baton(this, register_context_sp.get()); 2196 emulator_ap->SetBaton(&baton); 2197 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 2198 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 2199 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 2200 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 2201 2202 if (!emulator_ap->ReadInstruction()) 2203 return Error("Read instruction failed!"); 2204 2205 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 2206 2207 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 2208 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2209 2210 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 2211 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 2212 2213 lldb::addr_t next_pc; 2214 lldb::addr_t next_flags; 2215 if (emulation_result) 2216 { 2217 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 2218 next_pc = pc_it->second.GetAsUInt64(); 2219 2220 if (flags_it != baton.m_register_values.end()) 2221 next_flags = flags_it->second.GetAsUInt64(); 2222 else 2223 next_flags = ReadFlags (register_context_sp.get()); 2224 } 2225 else if (pc_it == baton.m_register_values.end()) 2226 { 2227 // Emulate instruction failed and it haven't changed PC. Advance PC 2228 // with the size of the current opcode because the emulation of all 2229 // PC modifying instruction should be successful. The failure most 2230 // likely caused by a not supported instruction which don't modify PC. 2231 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 2232 next_flags = ReadFlags (register_context_sp.get()); 2233 } 2234 else 2235 { 2236 // The instruction emulation failed after it modified the PC. It is an 2237 // unknown error where we can't continue because the next instruction is 2238 // modifying the PC but we don't know how. 2239 return Error ("Instruction emulation failed unexpectedly."); 2240 } 2241 2242 if (m_arch.GetMachine() == llvm::Triple::arm) 2243 { 2244 if (next_flags & 0x20) 2245 { 2246 // Thumb mode 2247 error = SetSoftwareBreakpoint(next_pc, 2); 2248 } 2249 else 2250 { 2251 // Arm mode 2252 error = SetSoftwareBreakpoint(next_pc, 4); 2253 } 2254 } 2255 else if (m_arch.GetMachine() == llvm::Triple::mips64 2256 || m_arch.GetMachine() == llvm::Triple::mips64el 2257 || m_arch.GetMachine() == llvm::Triple::mips 2258 || m_arch.GetMachine() == llvm::Triple::mipsel) 2259 error = SetSoftwareBreakpoint(next_pc, 4); 2260 else 2261 { 2262 // No size hint is given for the next breakpoint 2263 error = SetSoftwareBreakpoint(next_pc, 0); 2264 } 2265 2266 if (error.Fail()) 2267 return error; 2268 2269 m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc}); 2270 2271 return Error(); 2272 } 2273 2274 bool 2275 NativeProcessLinux::SupportHardwareSingleStepping() const 2276 { 2277 if (m_arch.GetMachine() == llvm::Triple::arm 2278 || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el 2279 || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) 2280 return false; 2281 return true; 2282 } 2283 2284 Error 2285 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2286 { 2287 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2288 if (log) 2289 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2290 2291 bool software_single_step = !SupportHardwareSingleStepping(); 2292 2293 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 2294 Mutex::Locker locker (m_threads_mutex); 2295 2296 if (software_single_step) 2297 { 2298 for (auto thread_sp : m_threads) 2299 { 2300 assert (thread_sp && "thread list should not contain NULL threads"); 2301 2302 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2303 if (action == nullptr) 2304 continue; 2305 2306 if (action->state == eStateStepping) 2307 { 2308 Error error = SetupSoftwareSingleStepping(thread_sp); 2309 if (error.Fail()) 2310 return error; 2311 } 2312 } 2313 } 2314 2315 for (auto thread_sp : m_threads) 2316 { 2317 assert (thread_sp && "thread list should not contain NULL threads"); 2318 2319 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2320 2321 if (action == nullptr) 2322 { 2323 if (log) 2324 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 2325 __FUNCTION__, GetID (), thread_sp->GetID ()); 2326 continue; 2327 } 2328 2329 if (log) 2330 { 2331 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2332 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2333 } 2334 2335 switch (action->state) 2336 { 2337 case eStateRunning: 2338 { 2339 // Run the thread, possibly feeding it the signal. 2340 const int signo = action->signal; 2341 ResumeThread(thread_sp->GetID (), 2342 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2343 { 2344 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2345 // Pass this signal number on to the inferior to handle. 2346 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2347 if (resume_result.Success()) 2348 SetState(eStateRunning, true); 2349 return resume_result; 2350 }, 2351 false); 2352 break; 2353 } 2354 2355 case eStateStepping: 2356 { 2357 // Request the step. 2358 const int signo = action->signal; 2359 ResumeThread(thread_sp->GetID (), 2360 [=](lldb::tid_t tid_to_step, bool supress_signal) 2361 { 2362 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 2363 2364 Error step_result; 2365 if (software_single_step) 2366 step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2367 else 2368 step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 2369 2370 assert (step_result.Success() && "SingleStep() failed"); 2371 if (step_result.Success()) 2372 SetState(eStateStepping, true); 2373 return step_result; 2374 }, 2375 false); 2376 break; 2377 } 2378 2379 case eStateSuspended: 2380 case eStateStopped: 2381 lldbassert(0 && "Unexpected state"); 2382 2383 default: 2384 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2385 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2386 } 2387 } 2388 2389 return Error(); 2390 } 2391 2392 Error 2393 NativeProcessLinux::Halt () 2394 { 2395 Error error; 2396 2397 if (kill (GetID (), SIGSTOP) != 0) 2398 error.SetErrorToErrno (); 2399 2400 return error; 2401 } 2402 2403 Error 2404 NativeProcessLinux::Detach () 2405 { 2406 Error error; 2407 2408 // Tell ptrace to detach from the process. 2409 if (GetID () != LLDB_INVALID_PROCESS_ID) 2410 error = Detach (GetID ()); 2411 2412 // Stop monitoring the inferior. 2413 m_monitor_up->Terminate(); 2414 2415 // No error. 2416 return error; 2417 } 2418 2419 Error 2420 NativeProcessLinux::Signal (int signo) 2421 { 2422 Error error; 2423 2424 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2425 if (log) 2426 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2427 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID()); 2428 2429 if (kill(GetID(), signo)) 2430 error.SetErrorToErrno(); 2431 2432 return error; 2433 } 2434 2435 Error 2436 NativeProcessLinux::Interrupt () 2437 { 2438 // Pick a running thread (or if none, a not-dead stopped thread) as 2439 // the chosen thread that will be the stop-reason thread. 2440 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2441 2442 NativeThreadProtocolSP running_thread_sp; 2443 NativeThreadProtocolSP stopped_thread_sp; 2444 2445 if (log) 2446 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 2447 2448 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 2449 Mutex::Locker locker (m_threads_mutex); 2450 2451 for (auto thread_sp : m_threads) 2452 { 2453 // The thread shouldn't be null but lets just cover that here. 2454 if (!thread_sp) 2455 continue; 2456 2457 // If we have a running or stepping thread, we'll call that the 2458 // target of the interrupt. 2459 const auto thread_state = thread_sp->GetState (); 2460 if (thread_state == eStateRunning || 2461 thread_state == eStateStepping) 2462 { 2463 running_thread_sp = thread_sp; 2464 break; 2465 } 2466 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 2467 { 2468 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 2469 stopped_thread_sp = thread_sp; 2470 } 2471 } 2472 2473 if (!running_thread_sp && !stopped_thread_sp) 2474 { 2475 Error error("found no running/stepping or live stopped threads as target for interrupt"); 2476 if (log) 2477 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 2478 2479 return error; 2480 } 2481 2482 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 2483 2484 if (log) 2485 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 2486 __FUNCTION__, 2487 GetID (), 2488 running_thread_sp ? "running" : "stopped", 2489 deferred_signal_thread_sp->GetID ()); 2490 2491 StopRunningThreads(deferred_signal_thread_sp->GetID()); 2492 2493 return Error(); 2494 } 2495 2496 Error 2497 NativeProcessLinux::Kill () 2498 { 2499 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2500 if (log) 2501 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2502 2503 Error error; 2504 2505 switch (m_state) 2506 { 2507 case StateType::eStateInvalid: 2508 case StateType::eStateExited: 2509 case StateType::eStateCrashed: 2510 case StateType::eStateDetached: 2511 case StateType::eStateUnloaded: 2512 // Nothing to do - the process is already dead. 2513 if (log) 2514 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2515 return error; 2516 2517 case StateType::eStateConnected: 2518 case StateType::eStateAttaching: 2519 case StateType::eStateLaunching: 2520 case StateType::eStateStopped: 2521 case StateType::eStateRunning: 2522 case StateType::eStateStepping: 2523 case StateType::eStateSuspended: 2524 // We can try to kill a process in these states. 2525 break; 2526 } 2527 2528 if (kill (GetID (), SIGKILL) != 0) 2529 { 2530 error.SetErrorToErrno (); 2531 return error; 2532 } 2533 2534 return error; 2535 } 2536 2537 static Error 2538 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2539 { 2540 memory_region_info.Clear(); 2541 2542 StringExtractor line_extractor (maps_line.c_str ()); 2543 2544 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2545 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2546 2547 // Parse out the starting address 2548 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2549 2550 // Parse out hyphen separating start and end address from range. 2551 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2552 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2553 2554 // Parse out the ending address 2555 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2556 2557 // Parse out the space after the address. 2558 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2559 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2560 2561 // Save the range. 2562 memory_region_info.GetRange ().SetRangeBase (start_address); 2563 memory_region_info.GetRange ().SetRangeEnd (end_address); 2564 2565 // Parse out each permission entry. 2566 if (line_extractor.GetBytesLeft () < 4) 2567 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2568 2569 // Handle read permission. 2570 const char read_perm_char = line_extractor.GetChar (); 2571 if (read_perm_char == 'r') 2572 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2573 else 2574 { 2575 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2576 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2577 } 2578 2579 // Handle write permission. 2580 const char write_perm_char = line_extractor.GetChar (); 2581 if (write_perm_char == 'w') 2582 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2583 else 2584 { 2585 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2586 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2587 } 2588 2589 // Handle execute permission. 2590 const char exec_perm_char = line_extractor.GetChar (); 2591 if (exec_perm_char == 'x') 2592 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2593 else 2594 { 2595 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2596 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2597 } 2598 2599 return Error (); 2600 } 2601 2602 Error 2603 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2604 { 2605 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2606 // with no perms if it is not mapped. 2607 2608 // Use an approach that reads memory regions from /proc/{pid}/maps. 2609 // Assume proc maps entries are in ascending order. 2610 // FIXME assert if we find differently. 2611 Mutex::Locker locker (m_mem_region_cache_mutex); 2612 2613 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2614 Error error; 2615 2616 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2617 { 2618 // We're done. 2619 error.SetErrorString ("unsupported"); 2620 return error; 2621 } 2622 2623 // If our cache is empty, pull the latest. There should always be at least one memory region 2624 // if memory region handling is supported. 2625 if (m_mem_region_cache.empty ()) 2626 { 2627 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2628 [&] (const std::string &line) -> bool 2629 { 2630 MemoryRegionInfo info; 2631 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2632 if (parse_error.Success ()) 2633 { 2634 m_mem_region_cache.push_back (info); 2635 return true; 2636 } 2637 else 2638 { 2639 if (log) 2640 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2641 return false; 2642 } 2643 }); 2644 2645 // If we had an error, we'll mark unsupported. 2646 if (error.Fail ()) 2647 { 2648 m_supports_mem_region = LazyBool::eLazyBoolNo; 2649 return error; 2650 } 2651 else if (m_mem_region_cache.empty ()) 2652 { 2653 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2654 // is supported. Assume we don't support map entries via procfs. 2655 if (log) 2656 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2657 m_supports_mem_region = LazyBool::eLazyBoolNo; 2658 error.SetErrorString ("not supported"); 2659 return error; 2660 } 2661 2662 if (log) 2663 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2664 2665 // We support memory retrieval, remember that. 2666 m_supports_mem_region = LazyBool::eLazyBoolYes; 2667 } 2668 else 2669 { 2670 if (log) 2671 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2672 } 2673 2674 lldb::addr_t prev_base_address = 0; 2675 2676 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2677 // There can be a ton of regions on pthreads apps with lots of threads. 2678 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2679 { 2680 MemoryRegionInfo &proc_entry_info = *it; 2681 2682 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2683 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2684 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2685 2686 // If the target address comes before this entry, indicate distance to next region. 2687 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2688 { 2689 range_info.GetRange ().SetRangeBase (load_addr); 2690 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2691 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2692 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2693 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2694 2695 return error; 2696 } 2697 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2698 { 2699 // The target address is within the memory region we're processing here. 2700 range_info = proc_entry_info; 2701 return error; 2702 } 2703 2704 // The target memory address comes somewhere after the region we just parsed. 2705 } 2706 2707 // If we made it here, we didn't find an entry that contained the given address. Return the 2708 // load_addr as start and the amount of bytes betwwen load address and the end of the memory as 2709 // size. 2710 range_info.GetRange ().SetRangeBase (load_addr); 2711 switch (m_arch.GetAddressByteSize()) 2712 { 2713 case 4: 2714 range_info.GetRange ().SetByteSize (0x100000000ull - load_addr); 2715 break; 2716 case 8: 2717 range_info.GetRange ().SetByteSize (0ull - load_addr); 2718 break; 2719 default: 2720 assert(false && "Unrecognized data byte size"); 2721 break; 2722 } 2723 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2724 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2725 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2726 return error; 2727 } 2728 2729 void 2730 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 2731 { 2732 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2733 if (log) 2734 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 2735 2736 { 2737 Mutex::Locker locker (m_mem_region_cache_mutex); 2738 if (log) 2739 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2740 m_mem_region_cache.clear (); 2741 } 2742 } 2743 2744 Error 2745 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) 2746 { 2747 // FIXME implementing this requires the equivalent of 2748 // InferiorCallPOSIX::InferiorCallMmap, which depends on 2749 // functional ThreadPlans working with Native*Protocol. 2750 #if 1 2751 return Error ("not implemented yet"); 2752 #else 2753 addr = LLDB_INVALID_ADDRESS; 2754 2755 unsigned prot = 0; 2756 if (permissions & lldb::ePermissionsReadable) 2757 prot |= eMmapProtRead; 2758 if (permissions & lldb::ePermissionsWritable) 2759 prot |= eMmapProtWrite; 2760 if (permissions & lldb::ePermissionsExecutable) 2761 prot |= eMmapProtExec; 2762 2763 // TODO implement this directly in NativeProcessLinux 2764 // (and lift to NativeProcessPOSIX if/when that class is 2765 // refactored out). 2766 if (InferiorCallMmap(this, addr, 0, size, prot, 2767 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 2768 m_addr_to_mmap_size[addr] = size; 2769 return Error (); 2770 } else { 2771 addr = LLDB_INVALID_ADDRESS; 2772 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 2773 } 2774 #endif 2775 } 2776 2777 Error 2778 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 2779 { 2780 // FIXME see comments in AllocateMemory - required lower-level 2781 // bits not in place yet (ThreadPlans) 2782 return Error ("not implemented"); 2783 } 2784 2785 lldb::addr_t 2786 NativeProcessLinux::GetSharedLibraryInfoAddress () 2787 { 2788 #if 1 2789 // punt on this for now 2790 return LLDB_INVALID_ADDRESS; 2791 #else 2792 // Return the image info address for the exe module 2793 #if 1 2794 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2795 2796 ModuleSP module_sp; 2797 Error error = GetExeModuleSP (module_sp); 2798 if (error.Fail ()) 2799 { 2800 if (log) 2801 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 2802 return LLDB_INVALID_ADDRESS; 2803 } 2804 2805 if (module_sp == nullptr) 2806 { 2807 if (log) 2808 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 2809 return LLDB_INVALID_ADDRESS; 2810 } 2811 2812 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 2813 if (object_file_sp == nullptr) 2814 { 2815 if (log) 2816 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 2817 return LLDB_INVALID_ADDRESS; 2818 } 2819 2820 return obj_file_sp->GetImageInfoAddress(); 2821 #else 2822 Target *target = &GetTarget(); 2823 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 2824 Address addr = obj_file->GetImageInfoAddress(target); 2825 2826 if (addr.IsValid()) 2827 return addr.GetLoadAddress(target); 2828 return LLDB_INVALID_ADDRESS; 2829 #endif 2830 #endif // punt on this for now 2831 } 2832 2833 size_t 2834 NativeProcessLinux::UpdateThreads () 2835 { 2836 // The NativeProcessLinux monitoring threads are always up to date 2837 // with respect to thread state and they keep the thread list 2838 // populated properly. All this method needs to do is return the 2839 // thread count. 2840 Mutex::Locker locker (m_threads_mutex); 2841 return m_threads.size (); 2842 } 2843 2844 bool 2845 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 2846 { 2847 arch = m_arch; 2848 return true; 2849 } 2850 2851 Error 2852 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 2853 { 2854 // FIXME put this behind a breakpoint protocol class that can be 2855 // set per architecture. Need ARM, MIPS support here. 2856 static const uint8_t g_i386_opcode [] = { 0xCC }; 2857 2858 switch (m_arch.GetMachine ()) 2859 { 2860 case llvm::Triple::x86: 2861 case llvm::Triple::x86_64: 2862 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 2863 return Error (); 2864 2865 case llvm::Triple::arm: 2866 case llvm::Triple::aarch64: 2867 case llvm::Triple::mips64: 2868 case llvm::Triple::mips64el: 2869 case llvm::Triple::mips: 2870 case llvm::Triple::mipsel: 2871 // On these architectures the PC don't get updated for breakpoint hits 2872 actual_opcode_size = 0; 2873 return Error (); 2874 2875 default: 2876 assert(false && "CPU type not supported!"); 2877 return Error ("CPU type not supported"); 2878 } 2879 } 2880 2881 Error 2882 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 2883 { 2884 if (hardware) 2885 return Error ("NativeProcessLinux does not support hardware breakpoints"); 2886 else 2887 return SetSoftwareBreakpoint (addr, size); 2888 } 2889 2890 Error 2891 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 2892 size_t &actual_opcode_size, 2893 const uint8_t *&trap_opcode_bytes) 2894 { 2895 // FIXME put this behind a breakpoint protocol class that can be set per 2896 // architecture. Need MIPS support here. 2897 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 2898 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 2899 // linux kernel does otherwise. 2900 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 2901 static const uint8_t g_i386_opcode [] = { 0xCC }; 2902 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 2903 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 2904 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 2905 2906 switch (m_arch.GetMachine ()) 2907 { 2908 case llvm::Triple::aarch64: 2909 trap_opcode_bytes = g_aarch64_opcode; 2910 actual_opcode_size = sizeof(g_aarch64_opcode); 2911 return Error (); 2912 2913 case llvm::Triple::arm: 2914 switch (trap_opcode_size_hint) 2915 { 2916 case 2: 2917 trap_opcode_bytes = g_thumb_breakpoint_opcode; 2918 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 2919 return Error (); 2920 case 4: 2921 trap_opcode_bytes = g_arm_breakpoint_opcode; 2922 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 2923 return Error (); 2924 default: 2925 assert(false && "Unrecognised trap opcode size hint!"); 2926 return Error ("Unrecognised trap opcode size hint!"); 2927 } 2928 2929 case llvm::Triple::x86: 2930 case llvm::Triple::x86_64: 2931 trap_opcode_bytes = g_i386_opcode; 2932 actual_opcode_size = sizeof(g_i386_opcode); 2933 return Error (); 2934 2935 case llvm::Triple::mips: 2936 case llvm::Triple::mips64: 2937 trap_opcode_bytes = g_mips64_opcode; 2938 actual_opcode_size = sizeof(g_mips64_opcode); 2939 return Error (); 2940 2941 case llvm::Triple::mipsel: 2942 case llvm::Triple::mips64el: 2943 trap_opcode_bytes = g_mips64el_opcode; 2944 actual_opcode_size = sizeof(g_mips64el_opcode); 2945 return Error (); 2946 2947 default: 2948 assert(false && "CPU type not supported!"); 2949 return Error ("CPU type not supported"); 2950 } 2951 } 2952 2953 #if 0 2954 ProcessMessage::CrashReason 2955 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 2956 { 2957 ProcessMessage::CrashReason reason; 2958 assert(info->si_signo == SIGSEGV); 2959 2960 reason = ProcessMessage::eInvalidCrashReason; 2961 2962 switch (info->si_code) 2963 { 2964 default: 2965 assert(false && "unexpected si_code for SIGSEGV"); 2966 break; 2967 case SI_KERNEL: 2968 // Linux will occasionally send spurious SI_KERNEL codes. 2969 // (this is poorly documented in sigaction) 2970 // One way to get this is via unaligned SIMD loads. 2971 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 2972 break; 2973 case SEGV_MAPERR: 2974 reason = ProcessMessage::eInvalidAddress; 2975 break; 2976 case SEGV_ACCERR: 2977 reason = ProcessMessage::ePrivilegedAddress; 2978 break; 2979 } 2980 2981 return reason; 2982 } 2983 #endif 2984 2985 2986 #if 0 2987 ProcessMessage::CrashReason 2988 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 2989 { 2990 ProcessMessage::CrashReason reason; 2991 assert(info->si_signo == SIGILL); 2992 2993 reason = ProcessMessage::eInvalidCrashReason; 2994 2995 switch (info->si_code) 2996 { 2997 default: 2998 assert(false && "unexpected si_code for SIGILL"); 2999 break; 3000 case ILL_ILLOPC: 3001 reason = ProcessMessage::eIllegalOpcode; 3002 break; 3003 case ILL_ILLOPN: 3004 reason = ProcessMessage::eIllegalOperand; 3005 break; 3006 case ILL_ILLADR: 3007 reason = ProcessMessage::eIllegalAddressingMode; 3008 break; 3009 case ILL_ILLTRP: 3010 reason = ProcessMessage::eIllegalTrap; 3011 break; 3012 case ILL_PRVOPC: 3013 reason = ProcessMessage::ePrivilegedOpcode; 3014 break; 3015 case ILL_PRVREG: 3016 reason = ProcessMessage::ePrivilegedRegister; 3017 break; 3018 case ILL_COPROC: 3019 reason = ProcessMessage::eCoprocessorError; 3020 break; 3021 case ILL_BADSTK: 3022 reason = ProcessMessage::eInternalStackError; 3023 break; 3024 } 3025 3026 return reason; 3027 } 3028 #endif 3029 3030 #if 0 3031 ProcessMessage::CrashReason 3032 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3033 { 3034 ProcessMessage::CrashReason reason; 3035 assert(info->si_signo == SIGFPE); 3036 3037 reason = ProcessMessage::eInvalidCrashReason; 3038 3039 switch (info->si_code) 3040 { 3041 default: 3042 assert(false && "unexpected si_code for SIGFPE"); 3043 break; 3044 case FPE_INTDIV: 3045 reason = ProcessMessage::eIntegerDivideByZero; 3046 break; 3047 case FPE_INTOVF: 3048 reason = ProcessMessage::eIntegerOverflow; 3049 break; 3050 case FPE_FLTDIV: 3051 reason = ProcessMessage::eFloatDivideByZero; 3052 break; 3053 case FPE_FLTOVF: 3054 reason = ProcessMessage::eFloatOverflow; 3055 break; 3056 case FPE_FLTUND: 3057 reason = ProcessMessage::eFloatUnderflow; 3058 break; 3059 case FPE_FLTRES: 3060 reason = ProcessMessage::eFloatInexactResult; 3061 break; 3062 case FPE_FLTINV: 3063 reason = ProcessMessage::eFloatInvalidOperation; 3064 break; 3065 case FPE_FLTSUB: 3066 reason = ProcessMessage::eFloatSubscriptRange; 3067 break; 3068 } 3069 3070 return reason; 3071 } 3072 #endif 3073 3074 #if 0 3075 ProcessMessage::CrashReason 3076 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3077 { 3078 ProcessMessage::CrashReason reason; 3079 assert(info->si_signo == SIGBUS); 3080 3081 reason = ProcessMessage::eInvalidCrashReason; 3082 3083 switch (info->si_code) 3084 { 3085 default: 3086 assert(false && "unexpected si_code for SIGBUS"); 3087 break; 3088 case BUS_ADRALN: 3089 reason = ProcessMessage::eIllegalAlignment; 3090 break; 3091 case BUS_ADRERR: 3092 reason = ProcessMessage::eIllegalAddress; 3093 break; 3094 case BUS_OBJERR: 3095 reason = ProcessMessage::eHardwareError; 3096 break; 3097 } 3098 3099 return reason; 3100 } 3101 #endif 3102 3103 Error 3104 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware) 3105 { 3106 // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor 3107 // for it. 3108 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3109 return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware); 3110 } 3111 3112 Error 3113 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr) 3114 { 3115 // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor 3116 // for it. 3117 Monitor::ScopedOperationLock monitor_lock(*m_monitor_up); 3118 return NativeProcessProtocol::RemoveWatchpoint(addr); 3119 } 3120 3121 Error 3122 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3123 { 3124 if (ProcessVmReadvSupported()) { 3125 // The process_vm_readv path is about 50 times faster than ptrace api. We want to use 3126 // this syscall if it is supported. 3127 3128 const ::pid_t pid = GetID(); 3129 3130 struct iovec local_iov, remote_iov; 3131 local_iov.iov_base = buf; 3132 local_iov.iov_len = size; 3133 remote_iov.iov_base = reinterpret_cast<void *>(addr); 3134 remote_iov.iov_len = size; 3135 3136 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 3137 const bool success = bytes_read == size; 3138 3139 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3140 if (log) 3141 log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s", 3142 __FUNCTION__, size, addr, success ? "Success" : strerror(errno)); 3143 3144 if (success) 3145 return Error(); 3146 // else 3147 // the call failed for some reason, let's retry the read using ptrace api. 3148 } 3149 3150 return DoOperation([&] { return DoReadMemory(GetID(), addr, buf, size, bytes_read); }); 3151 } 3152 3153 Error 3154 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 3155 { 3156 Error error = ReadMemory(addr, buf, size, bytes_read); 3157 if (error.Fail()) return error; 3158 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 3159 } 3160 3161 Error 3162 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) 3163 { 3164 return DoOperation([&] { return DoWriteMemory(GetID(), addr, buf, size, bytes_written); }); 3165 } 3166 3167 Error 3168 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3169 { 3170 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3171 3172 if (log) 3173 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3174 Host::GetSignalAsCString(signo)); 3175 3176 3177 3178 intptr_t data = 0; 3179 3180 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 3181 data = signo; 3182 3183 Error error = DoOperation([&] { return PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data); }); 3184 3185 if (log) 3186 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false"); 3187 return error; 3188 } 3189 3190 Error 3191 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3192 { 3193 intptr_t data = 0; 3194 3195 if (signo != LLDB_INVALID_SIGNAL_NUMBER) 3196 data = signo; 3197 3198 return DoOperation([&] { return PtraceWrapper(PTRACE_SINGLESTEP, tid, nullptr, (void*)data); }); 3199 } 3200 3201 Error 3202 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3203 { 3204 return DoOperation([&] { return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); }); 3205 } 3206 3207 Error 3208 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3209 { 3210 return DoOperation([&] { return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); }); 3211 } 3212 3213 Error 3214 NativeProcessLinux::Detach(lldb::tid_t tid) 3215 { 3216 if (tid == LLDB_INVALID_THREAD_ID) 3217 return Error(); 3218 3219 return DoOperation([&] { return PtraceWrapper(PTRACE_DETACH, tid); }); 3220 } 3221 3222 bool 3223 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags) 3224 { 3225 int target_fd = open(file_spec.GetCString(), flags, 0666); 3226 3227 if (target_fd == -1) 3228 return false; 3229 3230 if (dup2(target_fd, fd) == -1) 3231 return false; 3232 3233 return (close(target_fd) == -1) ? false : true; 3234 } 3235 3236 void 3237 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) 3238 { 3239 m_monitor_up.reset(new Monitor(initial_operation, this)); 3240 error = m_monitor_up->Initialize(); 3241 if (error.Fail()) { 3242 m_monitor_up.reset(); 3243 } 3244 } 3245 3246 bool 3247 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3248 { 3249 for (auto thread_sp : m_threads) 3250 { 3251 assert (thread_sp && "thread list should not contain NULL threads"); 3252 if (thread_sp->GetID () == thread_id) 3253 { 3254 // We have this thread. 3255 return true; 3256 } 3257 } 3258 3259 // We don't have this thread. 3260 return false; 3261 } 3262 3263 NativeThreadProtocolSP 3264 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3265 { 3266 // CONSIDER organize threads by map - we can do better than linear. 3267 for (auto thread_sp : m_threads) 3268 { 3269 if (thread_sp->GetID () == thread_id) 3270 return thread_sp; 3271 } 3272 3273 // We don't have this thread. 3274 return NativeThreadProtocolSP (); 3275 } 3276 3277 bool 3278 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3279 { 3280 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3281 3282 if (log) 3283 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); 3284 3285 bool found = false; 3286 3287 Mutex::Locker locker (m_threads_mutex); 3288 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3289 { 3290 if (*it && ((*it)->GetID () == thread_id)) 3291 { 3292 m_threads.erase (it); 3293 found = true; 3294 break; 3295 } 3296 } 3297 3298 // If we have a pending notification, remove this from the set. 3299 if (m_pending_notification_up) 3300 { 3301 m_pending_notification_up->wait_for_stop_tids.erase(thread_id); 3302 SignalIfAllThreadsStopped(); 3303 } 3304 3305 return found; 3306 } 3307 3308 NativeThreadProtocolSP 3309 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3310 { 3311 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3312 3313 Mutex::Locker locker (m_threads_mutex); 3314 3315 if (log) 3316 { 3317 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3318 __FUNCTION__, 3319 GetID (), 3320 thread_id); 3321 } 3322 3323 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3324 3325 // If this is the first thread, save it as the current thread 3326 if (m_threads.empty ()) 3327 SetCurrentThreadID (thread_id); 3328 3329 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3330 m_threads.push_back (thread_sp); 3331 3332 return thread_sp; 3333 } 3334 3335 Error 3336 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3337 { 3338 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 3339 3340 Error error; 3341 3342 // Get a linux thread pointer. 3343 if (!thread_sp) 3344 { 3345 error.SetErrorString ("null thread_sp"); 3346 if (log) 3347 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3348 return error; 3349 } 3350 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 3351 3352 // Find out the size of a breakpoint (might depend on where we are in the code). 3353 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 3354 if (!context_sp) 3355 { 3356 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3357 if (log) 3358 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3359 return error; 3360 } 3361 3362 uint32_t breakpoint_size = 0; 3363 error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); 3364 if (error.Fail ()) 3365 { 3366 if (log) 3367 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3368 return error; 3369 } 3370 else 3371 { 3372 if (log) 3373 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3374 } 3375 3376 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3377 const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation (); 3378 lldb::addr_t breakpoint_addr = initial_pc_addr; 3379 if (breakpoint_size > 0) 3380 { 3381 // Do not allow breakpoint probe to wrap around. 3382 if (breakpoint_addr >= breakpoint_size) 3383 breakpoint_addr -= breakpoint_size; 3384 } 3385 3386 // Check if we stopped because of a breakpoint. 3387 NativeBreakpointSP breakpoint_sp; 3388 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3389 if (!error.Success () || !breakpoint_sp) 3390 { 3391 // We didn't find one at a software probe location. Nothing to do. 3392 if (log) 3393 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3394 return Error (); 3395 } 3396 3397 // If the breakpoint is not a software breakpoint, nothing to do. 3398 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3399 { 3400 if (log) 3401 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3402 return Error (); 3403 } 3404 3405 // 3406 // We have a software breakpoint and need to adjust the PC. 3407 // 3408 3409 // Sanity check. 3410 if (breakpoint_size == 0) 3411 { 3412 // Nothing to do! How did we get here? 3413 if (log) 3414 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3415 return Error (); 3416 } 3417 3418 // Change the program counter. 3419 if (log) 3420 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 3421 3422 error = context_sp->SetPC (breakpoint_addr); 3423 if (error.Fail ()) 3424 { 3425 if (log) 3426 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 3427 return error; 3428 } 3429 3430 return error; 3431 } 3432 3433 Error 3434 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 3435 { 3436 char maps_file_name[32]; 3437 snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); 3438 3439 FileSpec maps_file_spec(maps_file_name, false); 3440 if (!maps_file_spec.Exists()) { 3441 file_spec.Clear(); 3442 return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); 3443 } 3444 3445 FileSpec module_file_spec(module_path, true); 3446 3447 std::ifstream maps_file(maps_file_name); 3448 std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>()); 3449 StringRef maps_data(maps_data_str.c_str()); 3450 3451 while (!maps_data.empty()) 3452 { 3453 StringRef maps_row; 3454 std::tie(maps_row, maps_data) = maps_data.split('\n'); 3455 3456 SmallVector<StringRef, 16> maps_columns; 3457 maps_row.split(maps_columns, StringRef(" "), -1, false); 3458 3459 if (maps_columns.size() >= 6) 3460 { 3461 file_spec.SetFile(maps_columns[5].str().c_str(), false); 3462 if (file_spec.GetFilename() == module_file_spec.GetFilename()) 3463 return Error(); 3464 } 3465 } 3466 3467 file_spec.Clear(); 3468 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 3469 module_file_spec.GetFilename().AsCString(), GetID()); 3470 } 3471 3472 Error 3473 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr) 3474 { 3475 load_addr = LLDB_INVALID_ADDRESS; 3476 Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3477 [&] (const std::string &line) -> bool 3478 { 3479 StringRef maps_row(line); 3480 3481 SmallVector<StringRef, 16> maps_columns; 3482 maps_row.split(maps_columns, StringRef(" "), -1, false); 3483 3484 if (maps_columns.size() < 6) 3485 { 3486 // Return true to continue reading the proc file 3487 return true; 3488 } 3489 3490 if (maps_columns[5] == file_name) 3491 { 3492 StringExtractor addr_extractor(maps_columns[0].str().c_str()); 3493 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); 3494 3495 // Return false to stop reading the proc file further 3496 return false; 3497 } 3498 3499 // Return true to continue reading the proc file 3500 return true; 3501 }); 3502 return error; 3503 } 3504 3505 Error 3506 NativeProcessLinux::ResumeThread( 3507 lldb::tid_t tid, 3508 NativeThreadLinux::ResumeThreadFunction request_thread_resume_function, 3509 bool error_when_already_running) 3510 { 3511 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3512 3513 if (log) 3514 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)", 3515 __FUNCTION__, tid, error_when_already_running?"true":"false"); 3516 3517 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3518 lldbassert(thread_sp != nullptr); 3519 3520 auto& context = thread_sp->GetThreadContext(); 3521 // Tell the thread to resume if we don't already think it is running. 3522 const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true); 3523 3524 lldbassert(!(error_when_already_running && !is_stopped)); 3525 3526 if (!is_stopped) 3527 { 3528 // It's not an error, just a log, if the error_when_already_running flag is not set. 3529 // This covers cases where, for instance, we're just trying to resume all threads 3530 // from the user side. 3531 if (log) 3532 log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running", 3533 __FUNCTION__, 3534 tid); 3535 return Error(); 3536 } 3537 3538 // Before we do the resume below, first check if we have a pending 3539 // stop notification that is currently waiting for 3540 // this thread to stop. This is potentially a buggy situation since 3541 // we're ostensibly waiting for threads to stop before we send out the 3542 // pending notification, and here we are resuming one before we send 3543 // out the pending stop notification. 3544 if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0) 3545 { 3546 log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid); 3547 } 3548 3549 // Request a resume. We expect this to be synchronous and the system 3550 // to reflect it is running after this completes. 3551 const auto error = request_thread_resume_function (tid, false); 3552 if (error.Success()) 3553 context.request_resume_function = request_thread_resume_function; 3554 else if (log) 3555 { 3556 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 3557 __FUNCTION__, tid, error.AsCString ()); 3558 } 3559 3560 return error; 3561 } 3562 3563 //===----------------------------------------------------------------------===// 3564 3565 void 3566 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) 3567 { 3568 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3569 3570 if (log) 3571 { 3572 log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", 3573 __FUNCTION__, triggering_tid); 3574 } 3575 3576 DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid))); 3577 3578 if (log) 3579 { 3580 log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); 3581 } 3582 } 3583 3584 void 3585 NativeProcessLinux::SignalIfAllThreadsStopped() 3586 { 3587 if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ()) 3588 { 3589 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 3590 3591 // Clear any temporary breakpoints we used to implement software single stepping. 3592 for (const auto &thread_info: m_threads_stepping_with_breakpoint) 3593 { 3594 Error error = RemoveBreakpoint (thread_info.second); 3595 if (error.Fail()) 3596 if (log) 3597 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 3598 __FUNCTION__, thread_info.first, error.AsCString()); 3599 } 3600 m_threads_stepping_with_breakpoint.clear(); 3601 3602 // Notify the delegate about the stop 3603 SetCurrentThreadID(m_pending_notification_up->triggering_tid); 3604 SetState(StateType::eStateStopped, true); 3605 m_pending_notification_up.reset(); 3606 } 3607 } 3608 3609 void 3610 NativeProcessLinux::RequestStopOnAllRunningThreads() 3611 { 3612 // Request a stop for all the thread stops that need to be stopped 3613 // and are not already known to be stopped. Keep a list of all the 3614 // threads from which we still need to hear a stop reply. 3615 3616 ThreadIDSet sent_tids; 3617 for (const auto &thread_sp: m_threads) 3618 { 3619 // We only care about running threads 3620 if (StateIsStoppedState(thread_sp->GetState(), true)) 3621 continue; 3622 3623 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 3624 sent_tids.insert (thread_sp->GetID()); 3625 } 3626 3627 // Set the wait list to the set of tids for which we requested stops. 3628 m_pending_notification_up->wait_for_stop_tids.swap (sent_tids); 3629 } 3630 3631 3632 Error 3633 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs) 3634 { 3635 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3636 3637 if (log) 3638 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)", 3639 __FUNCTION__, tid, initiated_by_llgs?"":"not "); 3640 3641 // Ensure we know about the thread. 3642 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3643 lldbassert(thread_sp != nullptr); 3644 3645 // Update the global list of known thread states. This one is definitely stopped. 3646 auto& context = thread_sp->GetThreadContext(); 3647 const auto stop_was_requested = context.stop_requested; 3648 context.stop_requested = false; 3649 3650 // If we have a pending notification, remove this from the set. 3651 if (m_pending_notification_up) 3652 { 3653 m_pending_notification_up->wait_for_stop_tids.erase(tid); 3654 SignalIfAllThreadsStopped(); 3655 } 3656 3657 Error error; 3658 if (initiated_by_llgs && context.request_resume_function && !stop_was_requested) 3659 { 3660 // We can end up here if stop was initiated by LLGS but by this time a 3661 // thread stop has occurred - maybe initiated by another event. 3662 if (log) 3663 log->Printf("Resuming thread %" PRIu64 " since stop wasn't requested", tid); 3664 error = context.request_resume_function (tid, true); 3665 if (error.Fail() && log) 3666 { 3667 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 3668 __FUNCTION__, tid, error.AsCString ()); 3669 } 3670 } 3671 return error; 3672 } 3673 3674 void 3675 NativeProcessLinux::DoStopThreads(PendingNotificationUP &¬ification_up) 3676 { 3677 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3678 if (m_pending_notification_up && log) 3679 { 3680 // Yikes - we've already got a pending signal notification in progress. 3681 // Log this info. We lose the pending notification here. 3682 log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64, 3683 __FUNCTION__, 3684 m_pending_notification_up->triggering_tid, 3685 notification_up->triggering_tid); 3686 } 3687 m_pending_notification_up = std::move(notification_up); 3688 3689 RequestStopOnAllRunningThreads(); 3690 3691 SignalIfAllThreadsStopped(); 3692 } 3693 3694 void 3695 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid) 3696 { 3697 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 3698 3699 if (log) 3700 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid); 3701 3702 auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid)); 3703 lldbassert(thread_sp != nullptr); 3704 3705 if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState())) 3706 { 3707 // We will need to wait for this new thread to stop as well before firing the 3708 // notification. 3709 m_pending_notification_up->wait_for_stop_tids.insert(tid); 3710 thread_sp->RequestStop(); 3711 } 3712 } 3713 3714 Error 3715 NativeProcessLinux::DoOperation(const Operation &op) 3716 { 3717 return m_monitor_up->DoOperation(op); 3718 } 3719 3720 // Wrapper for ptrace to catch errors and log calls. 3721 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 3722 Error 3723 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result) 3724 { 3725 Error error; 3726 long int ret; 3727 3728 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 3729 3730 PtraceDisplayBytes(req, data, data_size); 3731 3732 errno = 0; 3733 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 3734 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 3735 else 3736 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 3737 3738 if (ret == -1) 3739 error.SetErrorToErrno(); 3740 3741 if (result) 3742 *result = ret; 3743 3744 if (log) 3745 log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret); 3746 3747 PtraceDisplayBytes(req, data, data_size); 3748 3749 if (log && error.GetError() != 0) 3750 { 3751 const char* str; 3752 switch (error.GetError()) 3753 { 3754 case ESRCH: str = "ESRCH"; break; 3755 case EINVAL: str = "EINVAL"; break; 3756 case EBUSY: str = "EBUSY"; break; 3757 case EPERM: str = "EPERM"; break; 3758 default: str = error.AsCString(); 3759 } 3760 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 3761 } 3762 3763 return error; 3764 } 3765