1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 21 // C++ Includes 22 #include <fstream> 23 #include <string> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/Debugger.h" 27 #include "lldb/Core/EmulateInstruction.h" 28 #include "lldb/Core/Error.h" 29 #include "lldb/Core/Module.h" 30 #include "lldb/Core/ModuleSpec.h" 31 #include "lldb/Core/RegisterValue.h" 32 #include "lldb/Core/Scalar.h" 33 #include "lldb/Core/State.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/Host.h" 37 #include "lldb/Host/HostInfo.h" 38 #include "lldb/Host/HostNativeThread.h" 39 #include "lldb/Host/ThreadLauncher.h" 40 #include "lldb/Symbol/ObjectFile.h" 41 #include "lldb/Target/Process.h" 42 #include "lldb/Target/ProcessLaunchInfo.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/PseudoTerminal.h" 45 46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 47 #include "Plugins/Process/Utility/LinuxSignals.h" 48 #include "Utility/StringExtractor.h" 49 #include "NativeThreadLinux.h" 50 #include "ProcFileReader.h" 51 #include "Procfs.h" 52 #include "ThreadStateCoordinator.h" 53 54 // System includes - They have to be included after framework includes because they define some 55 // macros which collide with variable names in other modules 56 #include <linux/unistd.h> 57 #include <sys/personality.h> 58 #include <sys/ptrace.h> 59 #include <sys/socket.h> 60 #include <sys/signalfd.h> 61 #include <sys/syscall.h> 62 #include <sys/types.h> 63 #include <sys/uio.h> 64 #include <sys/user.h> 65 #include <sys/wait.h> 66 67 #if defined (__arm64__) || defined (__aarch64__) 68 // NT_PRSTATUS and NT_FPREGSET definition 69 #include <elf.h> 70 #endif 71 72 #ifdef __ANDROID__ 73 #define __ptrace_request int 74 #define PT_DETACH PTRACE_DETACH 75 #endif 76 77 #define DEBUG_PTRACE_MAXBYTES 20 78 79 // Support ptrace extensions even when compiled without required kernel support 80 #ifndef PT_GETREGS 81 #ifndef PTRACE_GETREGS 82 #define PTRACE_GETREGS 12 83 #endif 84 #endif 85 #ifndef PT_SETREGS 86 #ifndef PTRACE_SETREGS 87 #define PTRACE_SETREGS 13 88 #endif 89 #endif 90 #ifndef PT_GETFPREGS 91 #ifndef PTRACE_GETFPREGS 92 #define PTRACE_GETFPREGS 14 93 #endif 94 #endif 95 #ifndef PT_SETFPREGS 96 #ifndef PTRACE_SETFPREGS 97 #define PTRACE_SETFPREGS 15 98 #endif 99 #endif 100 #ifndef PTRACE_GETREGSET 101 #define PTRACE_GETREGSET 0x4204 102 #endif 103 #ifndef PTRACE_SETREGSET 104 #define PTRACE_SETREGSET 0x4205 105 #endif 106 #ifndef PTRACE_GET_THREAD_AREA 107 #define PTRACE_GET_THREAD_AREA 25 108 #endif 109 #ifndef PTRACE_ARCH_PRCTL 110 #define PTRACE_ARCH_PRCTL 30 111 #endif 112 #ifndef ARCH_GET_FS 113 #define ARCH_SET_GS 0x1001 114 #define ARCH_SET_FS 0x1002 115 #define ARCH_GET_FS 0x1003 116 #define ARCH_GET_GS 0x1004 117 #endif 118 119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 120 121 // Support hardware breakpoints in case it has not been defined 122 #ifndef TRAP_HWBKPT 123 #define TRAP_HWBKPT 4 124 #endif 125 126 // Try to define a macro to encapsulate the tgkill syscall 127 // fall back on kill() if tgkill isn't available 128 #define tgkill(pid, tid, sig) \ 129 syscall(SYS_tgkill, static_cast<::pid_t>(pid), static_cast<::pid_t>(tid), sig) 130 131 // We disable the tracing of ptrace calls for integration builds to 132 // avoid the additional indirection and checks. 133 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 134 #define PTRACE(req, pid, addr, data, data_size, error) \ 135 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__) 136 #else 137 #define PTRACE(req, pid, addr, data, data_size, error) \ 138 PtraceWrapper((req), (pid), (addr), (data), (data_size), (error)) 139 #endif 140 141 using namespace lldb; 142 using namespace lldb_private; 143 using namespace lldb_private::process_linux; 144 using namespace llvm; 145 146 // Private bits we only need internally. 147 namespace 148 { 149 const UnixSignals& 150 GetUnixSignals () 151 { 152 static process_linux::LinuxSignals signals; 153 return signals; 154 } 155 156 ThreadStateCoordinator::LogFunction 157 GetThreadLoggerFunction () 158 { 159 return [](const char *format, va_list args) 160 { 161 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 162 if (log) 163 log->VAPrintf (format, args); 164 }; 165 } 166 167 void 168 CoordinatorErrorHandler (const std::string &error_message) 169 { 170 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 171 if (log) 172 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ()); 173 assert (false && "ThreadStateCoordinator error reported"); 174 } 175 176 Error 177 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 178 { 179 // Grab process info for the running process. 180 ProcessInstanceInfo process_info; 181 if (!platform.GetProcessInfo (pid, process_info)) 182 return Error("failed to get process info"); 183 184 // Resolve the executable module. 185 ModuleSP exe_module_sp; 186 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 187 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 188 Error error = platform.ResolveExecutable( 189 exe_module_spec, 190 exe_module_sp, 191 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 192 193 if (!error.Success ()) 194 return error; 195 196 // Check if we've got our architecture from the exe_module. 197 arch = exe_module_sp->GetArchitecture (); 198 if (arch.IsValid ()) 199 return Error(); 200 else 201 return Error("failed to retrieve a valid architecture from the exe module"); 202 } 203 204 void 205 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 206 { 207 uint8_t *ptr = (uint8_t *)bytes; 208 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 209 for(uint32_t i=0; i<loop_count; i++) 210 { 211 s.Printf ("[%x]", *ptr); 212 ptr++; 213 } 214 } 215 216 void 217 PtraceDisplayBytes(int &req, void *data, size_t data_size) 218 { 219 StreamString buf; 220 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 221 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 222 223 if (verbose_log) 224 { 225 switch(req) 226 { 227 case PTRACE_POKETEXT: 228 { 229 DisplayBytes(buf, &data, 8); 230 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 231 break; 232 } 233 case PTRACE_POKEDATA: 234 { 235 DisplayBytes(buf, &data, 8); 236 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 237 break; 238 } 239 case PTRACE_POKEUSER: 240 { 241 DisplayBytes(buf, &data, 8); 242 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 243 break; 244 } 245 case PTRACE_SETREGS: 246 { 247 DisplayBytes(buf, data, data_size); 248 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 249 break; 250 } 251 case PTRACE_SETFPREGS: 252 { 253 DisplayBytes(buf, data, data_size); 254 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 255 break; 256 } 257 case PTRACE_SETSIGINFO: 258 { 259 DisplayBytes(buf, data, sizeof(siginfo_t)); 260 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 261 break; 262 } 263 case PTRACE_SETREGSET: 264 { 265 // Extract iov_base from data, which is a pointer to the struct IOVEC 266 DisplayBytes(buf, *(void **)data, data_size); 267 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 268 break; 269 } 270 default: 271 { 272 } 273 } 274 } 275 } 276 277 // Wrapper for ptrace to catch errors and log calls. 278 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 279 long 280 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error, 281 const char* reqName, const char* file, int line) 282 { 283 long int result; 284 285 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 286 287 PtraceDisplayBytes(req, data, data_size); 288 289 error.Clear(); 290 errno = 0; 291 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 292 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 293 else 294 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 295 296 if (result == -1) 297 error.SetErrorToErrno(); 298 299 if (log) 300 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 301 reqName, pid, addr, data, data_size, result, file, line); 302 303 PtraceDisplayBytes(req, data, data_size); 304 305 if (log && error.GetError() != 0) 306 { 307 const char* str; 308 switch (error.GetError()) 309 { 310 case ESRCH: str = "ESRCH"; break; 311 case EINVAL: str = "EINVAL"; break; 312 case EBUSY: str = "EBUSY"; break; 313 case EPERM: str = "EPERM"; break; 314 default: str = error.AsCString(); 315 } 316 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 317 } 318 319 return result; 320 } 321 322 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 323 // Wrapper for ptrace when logging is not required. 324 // Sets errno to 0 prior to calling ptrace. 325 long 326 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error) 327 { 328 long result = 0; 329 330 error.Clear(); 331 errno = 0; 332 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 333 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 334 else 335 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 336 337 if (result == -1) 338 error.SetErrorToErrno(); 339 return result; 340 } 341 #endif 342 343 //------------------------------------------------------------------------------ 344 // Static implementations of NativeProcessLinux::ReadMemory and 345 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 346 // functions without needed to go thru the thread funnel. 347 348 lldb::addr_t 349 DoReadMemory ( 350 lldb::pid_t pid, 351 lldb::addr_t vm_addr, 352 void *buf, 353 lldb::addr_t size, 354 Error &error) 355 { 356 // ptrace word size is determined by the host, not the child 357 static const unsigned word_size = sizeof(void*); 358 unsigned char *dst = static_cast<unsigned char*>(buf); 359 lldb::addr_t bytes_read; 360 lldb::addr_t remainder; 361 long data; 362 363 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 364 if (log) 365 ProcessPOSIXLog::IncNestLevel(); 366 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 367 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 368 pid, word_size, (void*)vm_addr, buf, size); 369 370 assert(sizeof(data) >= word_size); 371 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 372 { 373 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error); 374 if (error.Fail()) 375 { 376 if (log) 377 ProcessPOSIXLog::DecNestLevel(); 378 return bytes_read; 379 } 380 381 remainder = size - bytes_read; 382 remainder = remainder > word_size ? word_size : remainder; 383 384 // Copy the data into our buffer 385 for (unsigned i = 0; i < remainder; ++i) 386 dst[i] = ((data >> i*8) & 0xFF); 387 388 if (log && ProcessPOSIXLog::AtTopNestLevel() && 389 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 390 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 391 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 392 { 393 uintptr_t print_dst = 0; 394 // Format bytes from data by moving into print_dst for log output 395 for (unsigned i = 0; i < remainder; ++i) 396 print_dst |= (((data >> i*8) & 0xFF) << i*8); 397 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 398 (void*)vm_addr, print_dst, (unsigned long)data); 399 } 400 401 vm_addr += word_size; 402 dst += word_size; 403 } 404 405 if (log) 406 ProcessPOSIXLog::DecNestLevel(); 407 return bytes_read; 408 } 409 410 lldb::addr_t 411 DoWriteMemory( 412 lldb::pid_t pid, 413 lldb::addr_t vm_addr, 414 const void *buf, 415 lldb::addr_t size, 416 Error &error) 417 { 418 // ptrace word size is determined by the host, not the child 419 static const unsigned word_size = sizeof(void*); 420 const unsigned char *src = static_cast<const unsigned char*>(buf); 421 lldb::addr_t bytes_written = 0; 422 lldb::addr_t remainder; 423 424 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 425 if (log) 426 ProcessPOSIXLog::IncNestLevel(); 427 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 428 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 429 pid, word_size, (void*)vm_addr, buf, size); 430 431 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 432 { 433 remainder = size - bytes_written; 434 remainder = remainder > word_size ? word_size : remainder; 435 436 if (remainder == word_size) 437 { 438 unsigned long data = 0; 439 assert(sizeof(data) >= word_size); 440 for (unsigned i = 0; i < word_size; ++i) 441 data |= (unsigned long)src[i] << i*8; 442 443 if (log && ProcessPOSIXLog::AtTopNestLevel() && 444 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 445 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 446 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 447 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 448 (void*)vm_addr, *(const unsigned long*)src, data); 449 450 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error)) 451 { 452 if (log) 453 ProcessPOSIXLog::DecNestLevel(); 454 return bytes_written; 455 } 456 } 457 else 458 { 459 unsigned char buff[8]; 460 if (DoReadMemory(pid, vm_addr, 461 buff, word_size, error) != word_size) 462 { 463 if (log) 464 ProcessPOSIXLog::DecNestLevel(); 465 return bytes_written; 466 } 467 468 memcpy(buff, src, remainder); 469 470 if (DoWriteMemory(pid, vm_addr, 471 buff, word_size, error) != word_size) 472 { 473 if (log) 474 ProcessPOSIXLog::DecNestLevel(); 475 return bytes_written; 476 } 477 478 if (log && ProcessPOSIXLog::AtTopNestLevel() && 479 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 480 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 481 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 482 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 483 (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff); 484 } 485 486 vm_addr += word_size; 487 src += word_size; 488 } 489 if (log) 490 ProcessPOSIXLog::DecNestLevel(); 491 return bytes_written; 492 } 493 494 //------------------------------------------------------------------------------ 495 /// @class Operation 496 /// @brief Represents a NativeProcessLinux operation. 497 /// 498 /// Under Linux, it is not possible to ptrace() from any other thread but the 499 /// one that spawned or attached to the process from the start. Therefore, when 500 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 501 /// process the operation must be "funneled" to a specific thread to perform the 502 /// task. The Operation class provides an abstract base for all services the 503 /// NativeProcessLinux must perform via the single virtual function Execute, thus 504 /// encapsulating the code that needs to run in the privileged context. 505 class Operation 506 { 507 public: 508 Operation () : m_error() { } 509 510 virtual 511 ~Operation() {} 512 513 virtual void 514 Execute (NativeProcessLinux *process) = 0; 515 516 const Error & 517 GetError () const { return m_error; } 518 519 protected: 520 Error m_error; 521 }; 522 523 //------------------------------------------------------------------------------ 524 /// @class ReadOperation 525 /// @brief Implements NativeProcessLinux::ReadMemory. 526 class ReadOperation : public Operation 527 { 528 public: 529 ReadOperation ( 530 lldb::addr_t addr, 531 void *buff, 532 lldb::addr_t size, 533 lldb::addr_t &result) : 534 Operation (), 535 m_addr (addr), 536 m_buff (buff), 537 m_size (size), 538 m_result (result) 539 { 540 } 541 542 void Execute (NativeProcessLinux *process) override; 543 544 private: 545 lldb::addr_t m_addr; 546 void *m_buff; 547 lldb::addr_t m_size; 548 lldb::addr_t &m_result; 549 }; 550 551 void 552 ReadOperation::Execute (NativeProcessLinux *process) 553 { 554 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 555 } 556 557 //------------------------------------------------------------------------------ 558 /// @class WriteOperation 559 /// @brief Implements NativeProcessLinux::WriteMemory. 560 class WriteOperation : public Operation 561 { 562 public: 563 WriteOperation ( 564 lldb::addr_t addr, 565 const void *buff, 566 lldb::addr_t size, 567 lldb::addr_t &result) : 568 Operation (), 569 m_addr (addr), 570 m_buff (buff), 571 m_size (size), 572 m_result (result) 573 { 574 } 575 576 void Execute (NativeProcessLinux *process) override; 577 578 private: 579 lldb::addr_t m_addr; 580 const void *m_buff; 581 lldb::addr_t m_size; 582 lldb::addr_t &m_result; 583 }; 584 585 void 586 WriteOperation::Execute(NativeProcessLinux *process) 587 { 588 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 589 } 590 591 //------------------------------------------------------------------------------ 592 /// @class ReadRegOperation 593 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 594 class ReadRegOperation : public Operation 595 { 596 public: 597 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 598 RegisterValue &value) 599 : m_tid(tid), 600 m_offset(static_cast<uintptr_t> (offset)), 601 m_reg_name(reg_name), 602 m_value(value) 603 { } 604 605 void Execute(NativeProcessLinux *monitor) override; 606 607 private: 608 lldb::tid_t m_tid; 609 uintptr_t m_offset; 610 const char *m_reg_name; 611 RegisterValue &m_value; 612 }; 613 614 void 615 ReadRegOperation::Execute(NativeProcessLinux *monitor) 616 { 617 #if defined (__arm64__) || defined (__aarch64__) 618 if (m_offset > sizeof(struct user_pt_regs)) 619 { 620 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 621 if (offset > sizeof(struct user_fpsimd_state)) 622 { 623 m_error.SetErrorString("invalid offset value"); 624 return; 625 } 626 elf_fpregset_t regs; 627 int regset = NT_FPREGSET; 628 struct iovec ioVec; 629 630 ioVec.iov_base = ®s; 631 ioVec.iov_len = sizeof regs; 632 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 633 if (m_error.Success()) 634 { 635 ArchSpec arch; 636 if (monitor->GetArchitecture(arch)) 637 m_value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, arch.GetByteOrder()); 638 else 639 m_error.SetErrorString("failed to get architecture"); 640 } 641 } 642 else 643 { 644 elf_gregset_t regs; 645 int regset = NT_PRSTATUS; 646 struct iovec ioVec; 647 648 ioVec.iov_base = ®s; 649 ioVec.iov_len = sizeof regs; 650 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 651 if (m_error.Success()) 652 { 653 ArchSpec arch; 654 if (monitor->GetArchitecture(arch)) 655 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 656 else 657 m_error.SetErrorString("failed to get architecture"); 658 } 659 } 660 #elif defined (__mips__) 661 elf_gregset_t regs; 662 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 663 if (m_error.Success()) 664 { 665 lldb_private::ArchSpec arch; 666 if (monitor->GetArchitecture(arch)) 667 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder()); 668 else 669 m_error.SetErrorString("failed to get architecture"); 670 } 671 #else 672 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 673 674 lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error)); 675 if (m_error.Success()) 676 m_value = data; 677 678 if (log) 679 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 680 m_reg_name, data); 681 #endif 682 } 683 684 //------------------------------------------------------------------------------ 685 /// @class WriteRegOperation 686 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 687 class WriteRegOperation : public Operation 688 { 689 public: 690 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 691 const RegisterValue &value) 692 : m_tid(tid), 693 m_offset(offset), 694 m_reg_name(reg_name), 695 m_value(value) 696 { } 697 698 void Execute(NativeProcessLinux *monitor) override; 699 700 private: 701 lldb::tid_t m_tid; 702 uintptr_t m_offset; 703 const char *m_reg_name; 704 const RegisterValue &m_value; 705 }; 706 707 void 708 WriteRegOperation::Execute(NativeProcessLinux *monitor) 709 { 710 #if defined (__arm64__) || defined (__aarch64__) 711 if (m_offset > sizeof(struct user_pt_regs)) 712 { 713 uintptr_t offset = m_offset - sizeof(struct user_pt_regs); 714 if (offset > sizeof(struct user_fpsimd_state)) 715 { 716 m_error.SetErrorString("invalid offset value"); 717 return; 718 } 719 elf_fpregset_t regs; 720 int regset = NT_FPREGSET; 721 struct iovec ioVec; 722 723 ioVec.iov_base = ®s; 724 ioVec.iov_len = sizeof regs; 725 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 726 if (m_error.Success()) 727 { 728 ::memcpy((void *)(((unsigned char *)(®s)) + offset), m_value.GetBytes(), 16); 729 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 730 } 731 } 732 else 733 { 734 elf_gregset_t regs; 735 int regset = NT_PRSTATUS; 736 struct iovec ioVec; 737 738 ioVec.iov_base = ®s; 739 ioVec.iov_len = sizeof regs; 740 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 741 if (m_error.Success()) 742 { 743 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 744 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, sizeof regs, m_error); 745 } 746 } 747 #elif defined (__mips__) 748 elf_gregset_t regs; 749 PTRACE(PTRACE_GETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 750 if (m_error.Success()) 751 { 752 ::memcpy((void *)(((unsigned char *)(®s)) + m_offset), m_value.GetBytes(), 8); 753 PTRACE(PTRACE_SETREGS, m_tid, NULL, ®s, sizeof regs, m_error); 754 } 755 #else 756 void* buf; 757 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 758 759 buf = (void*) m_value.GetAsUInt64(); 760 761 if (log) 762 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 763 PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error); 764 #endif 765 } 766 767 //------------------------------------------------------------------------------ 768 /// @class ReadGPROperation 769 /// @brief Implements NativeProcessLinux::ReadGPR. 770 class ReadGPROperation : public Operation 771 { 772 public: 773 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 774 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 775 { } 776 777 void Execute(NativeProcessLinux *monitor) override; 778 779 private: 780 lldb::tid_t m_tid; 781 void *m_buf; 782 size_t m_buf_size; 783 }; 784 785 void 786 ReadGPROperation::Execute(NativeProcessLinux *monitor) 787 { 788 #if defined (__arm64__) || defined (__aarch64__) 789 int regset = NT_PRSTATUS; 790 struct iovec ioVec; 791 792 ioVec.iov_base = m_buf; 793 ioVec.iov_len = m_buf_size; 794 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 795 #else 796 PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 797 #endif 798 } 799 800 //------------------------------------------------------------------------------ 801 /// @class ReadFPROperation 802 /// @brief Implements NativeProcessLinux::ReadFPR. 803 class ReadFPROperation : public Operation 804 { 805 public: 806 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 807 : m_tid(tid), 808 m_buf(buf), 809 m_buf_size(buf_size) 810 { } 811 812 void Execute(NativeProcessLinux *monitor) override; 813 814 private: 815 lldb::tid_t m_tid; 816 void *m_buf; 817 size_t m_buf_size; 818 }; 819 820 void 821 ReadFPROperation::Execute(NativeProcessLinux *monitor) 822 { 823 #if defined (__arm64__) || defined (__aarch64__) 824 int regset = NT_FPREGSET; 825 struct iovec ioVec; 826 827 ioVec.iov_base = m_buf; 828 ioVec.iov_len = m_buf_size; 829 PTRACE(PTRACE_GETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 830 #else 831 PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error); 832 #endif 833 } 834 835 //------------------------------------------------------------------------------ 836 /// @class ReadRegisterSetOperation 837 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 838 class ReadRegisterSetOperation : public Operation 839 { 840 public: 841 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 842 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 843 { } 844 845 void Execute(NativeProcessLinux *monitor) override; 846 847 private: 848 lldb::tid_t m_tid; 849 void *m_buf; 850 size_t m_buf_size; 851 const unsigned int m_regset; 852 }; 853 854 void 855 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 856 { 857 PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 858 } 859 860 //------------------------------------------------------------------------------ 861 /// @class WriteGPROperation 862 /// @brief Implements NativeProcessLinux::WriteGPR. 863 class WriteGPROperation : public Operation 864 { 865 public: 866 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 867 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 868 { } 869 870 void Execute(NativeProcessLinux *monitor) override; 871 872 private: 873 lldb::tid_t m_tid; 874 void *m_buf; 875 size_t m_buf_size; 876 }; 877 878 void 879 WriteGPROperation::Execute(NativeProcessLinux *monitor) 880 { 881 #if defined (__arm64__) || defined (__aarch64__) 882 int regset = NT_PRSTATUS; 883 struct iovec ioVec; 884 885 ioVec.iov_base = m_buf; 886 ioVec.iov_len = m_buf_size; 887 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 888 #else 889 PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 890 #endif 891 } 892 893 //------------------------------------------------------------------------------ 894 /// @class WriteFPROperation 895 /// @brief Implements NativeProcessLinux::WriteFPR. 896 class WriteFPROperation : public Operation 897 { 898 public: 899 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size) 900 : m_tid(tid), m_buf(buf), m_buf_size(buf_size) 901 { } 902 903 void Execute(NativeProcessLinux *monitor) override; 904 905 private: 906 lldb::tid_t m_tid; 907 void *m_buf; 908 size_t m_buf_size; 909 }; 910 911 void 912 WriteFPROperation::Execute(NativeProcessLinux *monitor) 913 { 914 #if defined (__arm64__) || defined (__aarch64__) 915 int regset = NT_FPREGSET; 916 struct iovec ioVec; 917 918 ioVec.iov_base = m_buf; 919 ioVec.iov_len = m_buf_size; 920 PTRACE(PTRACE_SETREGSET, m_tid, ®set, &ioVec, m_buf_size, m_error); 921 #else 922 PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error); 923 #endif 924 } 925 926 //------------------------------------------------------------------------------ 927 /// @class WriteRegisterSetOperation 928 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 929 class WriteRegisterSetOperation : public Operation 930 { 931 public: 932 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 933 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset) 934 { } 935 936 void Execute(NativeProcessLinux *monitor) override; 937 938 private: 939 lldb::tid_t m_tid; 940 void *m_buf; 941 size_t m_buf_size; 942 const unsigned int m_regset; 943 }; 944 945 void 946 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 947 { 948 PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error); 949 } 950 951 //------------------------------------------------------------------------------ 952 /// @class ResumeOperation 953 /// @brief Implements NativeProcessLinux::Resume. 954 class ResumeOperation : public Operation 955 { 956 public: 957 ResumeOperation(lldb::tid_t tid, uint32_t signo) : 958 m_tid(tid), m_signo(signo) { } 959 960 void Execute(NativeProcessLinux *monitor) override; 961 962 private: 963 lldb::tid_t m_tid; 964 uint32_t m_signo; 965 }; 966 967 void 968 ResumeOperation::Execute(NativeProcessLinux *monitor) 969 { 970 intptr_t data = 0; 971 972 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 973 data = m_signo; 974 975 PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error); 976 if (m_error.Fail()) 977 { 978 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 979 980 if (log) 981 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, m_error.AsCString()); 982 } 983 } 984 985 //------------------------------------------------------------------------------ 986 /// @class SingleStepOperation 987 /// @brief Implements NativeProcessLinux::SingleStep. 988 class SingleStepOperation : public Operation 989 { 990 public: 991 SingleStepOperation(lldb::tid_t tid, uint32_t signo) 992 : m_tid(tid), m_signo(signo) { } 993 994 void Execute(NativeProcessLinux *monitor) override; 995 996 private: 997 lldb::tid_t m_tid; 998 uint32_t m_signo; 999 }; 1000 1001 void 1002 SingleStepOperation::Execute(NativeProcessLinux *monitor) 1003 { 1004 intptr_t data = 0; 1005 1006 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 1007 data = m_signo; 1008 1009 PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error); 1010 } 1011 1012 //------------------------------------------------------------------------------ 1013 /// @class SiginfoOperation 1014 /// @brief Implements NativeProcessLinux::GetSignalInfo. 1015 class SiginfoOperation : public Operation 1016 { 1017 public: 1018 SiginfoOperation(lldb::tid_t tid, void *info) 1019 : m_tid(tid), m_info(info) { } 1020 1021 void Execute(NativeProcessLinux *monitor) override; 1022 1023 private: 1024 lldb::tid_t m_tid; 1025 void *m_info; 1026 }; 1027 1028 void 1029 SiginfoOperation::Execute(NativeProcessLinux *monitor) 1030 { 1031 PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error); 1032 } 1033 1034 //------------------------------------------------------------------------------ 1035 /// @class EventMessageOperation 1036 /// @brief Implements NativeProcessLinux::GetEventMessage. 1037 class EventMessageOperation : public Operation 1038 { 1039 public: 1040 EventMessageOperation(lldb::tid_t tid, unsigned long *message) 1041 : m_tid(tid), m_message(message) { } 1042 1043 void Execute(NativeProcessLinux *monitor) override; 1044 1045 private: 1046 lldb::tid_t m_tid; 1047 unsigned long *m_message; 1048 }; 1049 1050 void 1051 EventMessageOperation::Execute(NativeProcessLinux *monitor) 1052 { 1053 PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error); 1054 } 1055 1056 class DetachOperation : public Operation 1057 { 1058 public: 1059 DetachOperation(lldb::tid_t tid) : m_tid(tid) { } 1060 1061 void Execute(NativeProcessLinux *monitor) override; 1062 1063 private: 1064 lldb::tid_t m_tid; 1065 }; 1066 1067 void 1068 DetachOperation::Execute(NativeProcessLinux *monitor) 1069 { 1070 PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error); 1071 } 1072 1073 } // end of anonymous namespace 1074 1075 // Simple helper function to ensure flags are enabled on the given file 1076 // descriptor. 1077 static Error 1078 EnsureFDFlags(int fd, int flags) 1079 { 1080 Error error; 1081 1082 int status = fcntl(fd, F_GETFL); 1083 if (status == -1) 1084 { 1085 error.SetErrorToErrno(); 1086 return error; 1087 } 1088 1089 if (fcntl(fd, F_SETFL, status | flags) == -1) 1090 { 1091 error.SetErrorToErrno(); 1092 return error; 1093 } 1094 1095 return error; 1096 } 1097 1098 // This class encapsulates the privileged thread which performs all ptrace and wait operations on 1099 // the inferior. The thread consists of a main loop which waits for events and processes them 1100 // - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in 1101 // the inferior process. Upon receiving this signal we do a waitpid to get more information 1102 // and dispatch to NativeProcessLinux::MonitorCallback. 1103 // - requests for ptrace operations: These initiated via the DoOperation method, which funnels 1104 // them to the Monitor thread via m_operation member. The Monitor thread is signaled over a 1105 // pipe, and the completion of the operation is signalled over the semaphore. 1106 // - thread exit event: this is signaled from the Monitor destructor by closing the write end 1107 // of the command pipe. 1108 class NativeProcessLinux::Monitor { 1109 private: 1110 // The initial monitor operation (launch or attach). It returns a inferior process id. 1111 std::unique_ptr<InitialOperation> m_initial_operation_up; 1112 1113 ::pid_t m_child_pid = -1; 1114 NativeProcessLinux * m_native_process; 1115 1116 enum { READ, WRITE }; 1117 int m_pipefd[2] = {-1, -1}; 1118 int m_signal_fd = -1; 1119 HostThread m_thread; 1120 1121 // current operation which must be executed on the priviliged thread 1122 Mutex m_operation_mutex; 1123 Operation *m_operation = nullptr; 1124 sem_t m_operation_sem; 1125 Error m_operation_error; 1126 1127 static constexpr char operation_command = 'o'; 1128 1129 void 1130 HandleSignals(); 1131 1132 void 1133 HandleWait(); 1134 1135 // Returns true if the thread should exit. 1136 bool 1137 HandleCommands(); 1138 1139 void 1140 MainLoop(); 1141 1142 static void * 1143 RunMonitor(void *arg); 1144 1145 Error 1146 WaitForOperation(); 1147 public: 1148 Monitor(const InitialOperation &initial_operation, 1149 NativeProcessLinux *native_process) 1150 : m_initial_operation_up(new InitialOperation(initial_operation)), 1151 m_native_process(native_process) 1152 { 1153 sem_init(&m_operation_sem, 0, 0); 1154 } 1155 1156 ~Monitor(); 1157 1158 Error 1159 Initialize(); 1160 1161 void 1162 DoOperation(Operation *op); 1163 }; 1164 constexpr char NativeProcessLinux::Monitor::operation_command; 1165 1166 Error 1167 NativeProcessLinux::Monitor::Initialize() 1168 { 1169 Error error; 1170 1171 // We get a SIGCHLD every time something interesting happens with the inferior. We shall be 1172 // listening for these signals over a signalfd file descriptors. This allows us to wait for 1173 // multiple kinds of events with select. 1174 sigset_t signals; 1175 sigemptyset(&signals); 1176 sigaddset(&signals, SIGCHLD); 1177 m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC); 1178 if (m_signal_fd < 0) 1179 { 1180 return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s", 1181 __FUNCTION__, strerror(errno)); 1182 1183 } 1184 1185 if (pipe2(m_pipefd, O_CLOEXEC) == -1) 1186 { 1187 error.SetErrorToErrno(); 1188 return error; 1189 } 1190 1191 if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) { 1192 return error; 1193 } 1194 1195 static const char g_thread_name[] = "lldb.process.nativelinux.monitor"; 1196 m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr); 1197 if (!m_thread.IsJoinable()) 1198 return Error("Failed to create monitor thread for NativeProcessLinux."); 1199 1200 // Wait for initial operation to complete. 1201 return WaitForOperation(); 1202 } 1203 1204 void 1205 NativeProcessLinux::Monitor::DoOperation(Operation *op) 1206 { 1207 if (m_thread.EqualsThread(pthread_self())) { 1208 // If we're on the Monitor thread, we can simply execute the operation. 1209 op->Execute(m_native_process); 1210 return; 1211 } 1212 1213 // Otherwise we need to pass the operation to the Monitor thread so it can handle it. 1214 Mutex::Locker lock(m_operation_mutex); 1215 1216 m_operation = op; 1217 1218 // notify the thread that an operation is ready to be processed 1219 write(m_pipefd[WRITE], &operation_command, sizeof operation_command); 1220 1221 WaitForOperation(); 1222 } 1223 1224 NativeProcessLinux::Monitor::~Monitor() 1225 { 1226 if (m_pipefd[WRITE] >= 0) 1227 close(m_pipefd[WRITE]); 1228 if (m_thread.IsJoinable()) 1229 m_thread.Join(nullptr); 1230 if (m_pipefd[READ] >= 0) 1231 close(m_pipefd[READ]); 1232 if (m_signal_fd >= 0) 1233 close(m_signal_fd); 1234 sem_destroy(&m_operation_sem); 1235 } 1236 1237 void 1238 NativeProcessLinux::Monitor::HandleSignals() 1239 { 1240 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1241 1242 // We don't really care about the content of the SIGCHLD siginfo structure, as we will get 1243 // all the information from waitpid(). We just need to read all the signals so that we can 1244 // sleep next time we reach select(). 1245 while (true) 1246 { 1247 signalfd_siginfo info; 1248 ssize_t size = read(m_signal_fd, &info, sizeof info); 1249 if (size == -1) 1250 { 1251 if (errno == EAGAIN || errno == EWOULDBLOCK) 1252 break; // We are done. 1253 if (errno == EINTR) 1254 continue; 1255 if (log) 1256 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s", 1257 __FUNCTION__, strerror(errno)); 1258 break; 1259 } 1260 if (size != sizeof info) 1261 { 1262 // We got incomplete information structure. This should not happen, let's just log 1263 // that. 1264 if (log) 1265 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: " 1266 "structure size is %zd, read returned %zd bytes", 1267 __FUNCTION__, sizeof info, size); 1268 break; 1269 } 1270 if (log) 1271 log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__, 1272 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo); 1273 } 1274 } 1275 1276 void 1277 NativeProcessLinux::Monitor::HandleWait() 1278 { 1279 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1280 // Process all pending waitpid notifications. 1281 while (true) 1282 { 1283 int status = -1; 1284 ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG); 1285 1286 if (wait_pid == 0) 1287 break; // We are done. 1288 1289 if (wait_pid == -1) 1290 { 1291 if (errno == EINTR) 1292 continue; 1293 1294 if (log) 1295 log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s", 1296 __FUNCTION__, m_child_pid, strerror(errno)); 1297 break; 1298 } 1299 1300 bool exited = false; 1301 int signal = 0; 1302 int exit_status = 0; 1303 const char *status_cstr = NULL; 1304 if (WIFSTOPPED(status)) 1305 { 1306 signal = WSTOPSIG(status); 1307 status_cstr = "STOPPED"; 1308 } 1309 else if (WIFEXITED(status)) 1310 { 1311 exit_status = WEXITSTATUS(status); 1312 status_cstr = "EXITED"; 1313 exited = true; 1314 } 1315 else if (WIFSIGNALED(status)) 1316 { 1317 signal = WTERMSIG(status); 1318 status_cstr = "SIGNALED"; 1319 if (wait_pid == abs(m_child_pid)) { 1320 exited = true; 1321 exit_status = -1; 1322 } 1323 } 1324 else 1325 status_cstr = "(\?\?\?)"; 1326 1327 if (log) 1328 log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)" 1329 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 1330 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status); 1331 1332 m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status); 1333 } 1334 } 1335 1336 bool 1337 NativeProcessLinux::Monitor::HandleCommands() 1338 { 1339 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1340 1341 while (true) 1342 { 1343 char command = 0; 1344 ssize_t size = read(m_pipefd[READ], &command, sizeof command); 1345 if (size == -1) 1346 { 1347 if (errno == EAGAIN || errno == EWOULDBLOCK) 1348 return false; 1349 if (errno == EINTR) 1350 continue; 1351 if (log) 1352 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno)); 1353 return true; 1354 } 1355 if (size == 0) // end of file - write end closed 1356 { 1357 if (log) 1358 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__); 1359 return true; // We are done. 1360 } 1361 1362 switch (command) 1363 { 1364 case operation_command: 1365 m_operation->Execute(m_native_process); 1366 1367 // notify calling thread that operation is complete 1368 sem_post(&m_operation_sem); 1369 break; 1370 default: 1371 if (log) 1372 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'", 1373 __FUNCTION__, command); 1374 } 1375 } 1376 } 1377 1378 void 1379 NativeProcessLinux::Monitor::MainLoop() 1380 { 1381 ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error); 1382 m_initial_operation_up.reset(); 1383 m_child_pid = -getpgid(child_pid), 1384 sem_post(&m_operation_sem); 1385 1386 while (true) 1387 { 1388 fd_set fds; 1389 FD_ZERO(&fds); 1390 FD_SET(m_signal_fd, &fds); 1391 FD_SET(m_pipefd[READ], &fds); 1392 1393 int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1; 1394 int r = select(max_fd, &fds, nullptr, nullptr, nullptr); 1395 if (r < 0) 1396 { 1397 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1398 if (log) 1399 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s", 1400 __FUNCTION__, strerror(errno)); 1401 return; 1402 } 1403 1404 if (FD_ISSET(m_pipefd[READ], &fds)) 1405 { 1406 if (HandleCommands()) 1407 return; 1408 } 1409 1410 if (FD_ISSET(m_signal_fd, &fds)) 1411 { 1412 HandleSignals(); 1413 HandleWait(); 1414 } 1415 } 1416 } 1417 1418 Error 1419 NativeProcessLinux::Monitor::WaitForOperation() 1420 { 1421 Error error; 1422 while (sem_wait(&m_operation_sem) != 0) 1423 { 1424 if (errno == EINTR) 1425 continue; 1426 1427 error.SetErrorToErrno(); 1428 return error; 1429 } 1430 1431 return m_operation_error; 1432 } 1433 1434 void * 1435 NativeProcessLinux::Monitor::RunMonitor(void *arg) 1436 { 1437 static_cast<Monitor *>(arg)->MainLoop(); 1438 return nullptr; 1439 } 1440 1441 1442 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module, 1443 char const **argv, 1444 char const **envp, 1445 const std::string &stdin_path, 1446 const std::string &stdout_path, 1447 const std::string &stderr_path, 1448 const char *working_dir, 1449 const ProcessLaunchInfo &launch_info) 1450 : m_module(module), 1451 m_argv(argv), 1452 m_envp(envp), 1453 m_stdin_path(stdin_path), 1454 m_stdout_path(stdout_path), 1455 m_stderr_path(stderr_path), 1456 m_working_dir(working_dir), 1457 m_launch_info(launch_info) 1458 { 1459 } 1460 1461 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1462 { } 1463 1464 // ----------------------------------------------------------------------------- 1465 // Public Static Methods 1466 // ----------------------------------------------------------------------------- 1467 1468 Error 1469 NativeProcessLinux::LaunchProcess ( 1470 Module *exe_module, 1471 ProcessLaunchInfo &launch_info, 1472 NativeProcessProtocol::NativeDelegate &native_delegate, 1473 NativeProcessProtocolSP &native_process_sp) 1474 { 1475 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1476 1477 Error error; 1478 1479 // Verify the working directory is valid if one was specified. 1480 const char* working_dir = launch_info.GetWorkingDirectory (); 1481 if (working_dir) 1482 { 1483 FileSpec working_dir_fs (working_dir, true); 1484 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1485 { 1486 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1487 return error; 1488 } 1489 } 1490 1491 const FileAction *file_action; 1492 1493 // Default of NULL will mean to use existing open file descriptors. 1494 std::string stdin_path; 1495 std::string stdout_path; 1496 std::string stderr_path; 1497 1498 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1499 if (file_action) 1500 stdin_path = file_action->GetPath (); 1501 1502 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1503 if (file_action) 1504 stdout_path = file_action->GetPath (); 1505 1506 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1507 if (file_action) 1508 stderr_path = file_action->GetPath (); 1509 1510 if (log) 1511 { 1512 if (!stdin_path.empty ()) 1513 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ()); 1514 else 1515 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 1516 1517 if (!stdout_path.empty ()) 1518 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ()); 1519 else 1520 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 1521 1522 if (!stderr_path.empty ()) 1523 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ()); 1524 else 1525 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 1526 } 1527 1528 // Create the NativeProcessLinux in launch mode. 1529 native_process_sp.reset (new NativeProcessLinux ()); 1530 1531 if (log) 1532 { 1533 int i = 0; 1534 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1535 { 1536 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1537 ++i; 1538 } 1539 } 1540 1541 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1542 { 1543 native_process_sp.reset (); 1544 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1545 return error; 1546 } 1547 1548 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 1549 exe_module, 1550 launch_info.GetArguments ().GetConstArgumentVector (), 1551 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1552 stdin_path, 1553 stdout_path, 1554 stderr_path, 1555 working_dir, 1556 launch_info, 1557 error); 1558 1559 if (error.Fail ()) 1560 { 1561 native_process_sp.reset (); 1562 if (log) 1563 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1564 return error; 1565 } 1566 1567 launch_info.SetProcessID (native_process_sp->GetID ()); 1568 1569 return error; 1570 } 1571 1572 Error 1573 NativeProcessLinux::AttachToProcess ( 1574 lldb::pid_t pid, 1575 NativeProcessProtocol::NativeDelegate &native_delegate, 1576 NativeProcessProtocolSP &native_process_sp) 1577 { 1578 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1579 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1580 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1581 1582 // Grab the current platform architecture. This should be Linux, 1583 // since this code is only intended to run on a Linux host. 1584 PlatformSP platform_sp (Platform::GetHostPlatform ()); 1585 if (!platform_sp) 1586 return Error("failed to get a valid default platform"); 1587 1588 // Retrieve the architecture for the running process. 1589 ArchSpec process_arch; 1590 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1591 if (!error.Success ()) 1592 return error; 1593 1594 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 1595 1596 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 1597 { 1598 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1599 return error; 1600 } 1601 1602 native_process_linux_sp->AttachToInferior (pid, error); 1603 if (!error.Success ()) 1604 return error; 1605 1606 native_process_sp = native_process_linux_sp; 1607 return error; 1608 } 1609 1610 // ----------------------------------------------------------------------------- 1611 // Public Instance Methods 1612 // ----------------------------------------------------------------------------- 1613 1614 NativeProcessLinux::NativeProcessLinux () : 1615 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1616 m_arch (), 1617 m_supports_mem_region (eLazyBoolCalculate), 1618 m_mem_region_cache (), 1619 m_mem_region_cache_mutex (), 1620 m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())), 1621 m_coordinator_thread () 1622 { 1623 } 1624 1625 //------------------------------------------------------------------------------ 1626 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process. 1627 // Refer to Monitor and Operation classes to see why this is necessary. 1628 //------------------------------------------------------------------------------ 1629 void 1630 NativeProcessLinux::LaunchInferior ( 1631 Module *module, 1632 const char *argv[], 1633 const char *envp[], 1634 const std::string &stdin_path, 1635 const std::string &stdout_path, 1636 const std::string &stderr_path, 1637 const char *working_dir, 1638 const ProcessLaunchInfo &launch_info, 1639 Error &error) 1640 { 1641 if (module) 1642 m_arch = module->GetArchitecture (); 1643 1644 SetState (eStateLaunching); 1645 1646 std::unique_ptr<LaunchArgs> args( 1647 new LaunchArgs( 1648 module, argv, envp, 1649 stdin_path, stdout_path, stderr_path, 1650 working_dir, launch_info)); 1651 1652 StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error); 1653 if (!error.Success ()) 1654 return; 1655 1656 error = StartCoordinatorThread (); 1657 if (!error.Success ()) 1658 return; 1659 } 1660 1661 void 1662 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error) 1663 { 1664 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1665 if (log) 1666 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1667 1668 // We can use the Host for everything except the ResolveExecutable portion. 1669 PlatformSP platform_sp = Platform::GetHostPlatform (); 1670 if (!platform_sp) 1671 { 1672 if (log) 1673 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1674 error.SetErrorString ("no default platform available"); 1675 return; 1676 } 1677 1678 // Gather info about the process. 1679 ProcessInstanceInfo process_info; 1680 if (!platform_sp->GetProcessInfo (pid, process_info)) 1681 { 1682 if (log) 1683 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid); 1684 error.SetErrorString ("failed to get process info"); 1685 return; 1686 } 1687 1688 // Resolve the executable module 1689 ModuleSP exe_module_sp; 1690 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1691 ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture()); 1692 error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp, 1693 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1694 if (!error.Success()) 1695 return; 1696 1697 // Set the architecture to the exe architecture. 1698 m_arch = exe_module_sp->GetArchitecture(); 1699 if (log) 1700 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1701 1702 m_pid = pid; 1703 SetState(eStateAttaching); 1704 1705 StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error); 1706 if (!error.Success ()) 1707 return; 1708 1709 error = StartCoordinatorThread (); 1710 if (!error.Success ()) 1711 return; 1712 } 1713 1714 void 1715 NativeProcessLinux::Terminate () 1716 { 1717 StopMonitor(); 1718 } 1719 1720 ::pid_t 1721 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 1722 { 1723 assert (args && "null args"); 1724 1725 const char **argv = args->m_argv; 1726 const char **envp = args->m_envp; 1727 const char *working_dir = args->m_working_dir; 1728 1729 lldb_utility::PseudoTerminal terminal; 1730 const size_t err_len = 1024; 1731 char err_str[err_len]; 1732 lldb::pid_t pid; 1733 NativeThreadProtocolSP thread_sp; 1734 1735 lldb::ThreadSP inferior; 1736 1737 // Propagate the environment if one is not supplied. 1738 if (envp == NULL || envp[0] == NULL) 1739 envp = const_cast<const char **>(environ); 1740 1741 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1742 { 1743 error.SetErrorToGenericError(); 1744 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 1745 return -1; 1746 } 1747 1748 // Recognized child exit status codes. 1749 enum { 1750 ePtraceFailed = 1, 1751 eDupStdinFailed, 1752 eDupStdoutFailed, 1753 eDupStderrFailed, 1754 eChdirFailed, 1755 eExecFailed, 1756 eSetGidFailed 1757 }; 1758 1759 // Child process. 1760 if (pid == 0) 1761 { 1762 // FIXME consider opening a pipe between parent/child and have this forked child 1763 // send log info to parent re: launch status, in place of the log lines removed here. 1764 1765 // Start tracing this child that is about to exec. 1766 PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error); 1767 if (error.Fail()) 1768 exit(ePtraceFailed); 1769 1770 // terminal has already dupped the tty descriptors to stdin/out/err. 1771 // This closes original fd from which they were copied (and avoids 1772 // leaking descriptors to the debugged process. 1773 terminal.CloseSlaveFileDescriptor(); 1774 1775 // Do not inherit setgid powers. 1776 if (setgid(getgid()) != 0) 1777 exit(eSetGidFailed); 1778 1779 // Attempt to have our own process group. 1780 if (setpgid(0, 0) != 0) 1781 { 1782 // FIXME log that this failed. This is common. 1783 // Don't allow this to prevent an inferior exec. 1784 } 1785 1786 // Dup file descriptors if needed. 1787 if (!args->m_stdin_path.empty ()) 1788 if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY)) 1789 exit(eDupStdinFailed); 1790 1791 if (!args->m_stdout_path.empty ()) 1792 if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1793 exit(eDupStdoutFailed); 1794 1795 if (!args->m_stderr_path.empty ()) 1796 if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 1797 exit(eDupStderrFailed); 1798 1799 // Close everything besides stdin, stdout, and stderr that has no file 1800 // action to avoid leaking 1801 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 1802 if (!args->m_launch_info.GetFileActionForFD(fd)) 1803 close(fd); 1804 1805 // Change working directory 1806 if (working_dir != NULL && working_dir[0]) 1807 if (0 != ::chdir(working_dir)) 1808 exit(eChdirFailed); 1809 1810 // Disable ASLR if requested. 1811 if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR)) 1812 { 1813 const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 1814 if (old_personality == -1) 1815 { 1816 // Can't retrieve Linux personality. Cannot disable ASLR. 1817 } 1818 else 1819 { 1820 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality); 1821 if (new_personality == -1) 1822 { 1823 // Disabling ASLR failed. 1824 } 1825 else 1826 { 1827 // Disabling ASLR succeeded. 1828 } 1829 } 1830 } 1831 1832 // Execute. We should never return... 1833 execve(argv[0], 1834 const_cast<char *const *>(argv), 1835 const_cast<char *const *>(envp)); 1836 1837 // ...unless exec fails. In which case we definitely need to end the child here. 1838 exit(eExecFailed); 1839 } 1840 1841 // 1842 // This is the parent code here. 1843 // 1844 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1845 1846 // Wait for the child process to trap on its call to execve. 1847 ::pid_t wpid; 1848 int status; 1849 if ((wpid = waitpid(pid, &status, 0)) < 0) 1850 { 1851 error.SetErrorToErrno(); 1852 if (log) 1853 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 1854 __FUNCTION__, error.AsCString ()); 1855 1856 // Mark the inferior as invalid. 1857 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1858 SetState (StateType::eStateInvalid); 1859 1860 return -1; 1861 } 1862 else if (WIFEXITED(status)) 1863 { 1864 // open, dup or execve likely failed for some reason. 1865 error.SetErrorToGenericError(); 1866 switch (WEXITSTATUS(status)) 1867 { 1868 case ePtraceFailed: 1869 error.SetErrorString("Child ptrace failed."); 1870 break; 1871 case eDupStdinFailed: 1872 error.SetErrorString("Child open stdin failed."); 1873 break; 1874 case eDupStdoutFailed: 1875 error.SetErrorString("Child open stdout failed."); 1876 break; 1877 case eDupStderrFailed: 1878 error.SetErrorString("Child open stderr failed."); 1879 break; 1880 case eChdirFailed: 1881 error.SetErrorString("Child failed to set working directory."); 1882 break; 1883 case eExecFailed: 1884 error.SetErrorString("Child exec failed."); 1885 break; 1886 case eSetGidFailed: 1887 error.SetErrorString("Child setgid failed."); 1888 break; 1889 default: 1890 error.SetErrorString("Child returned unknown exit status."); 1891 break; 1892 } 1893 1894 if (log) 1895 { 1896 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1897 __FUNCTION__, 1898 WEXITSTATUS(status)); 1899 } 1900 1901 // Mark the inferior as invalid. 1902 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1903 SetState (StateType::eStateInvalid); 1904 1905 return -1; 1906 } 1907 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1908 "Could not sync with inferior process."); 1909 1910 if (log) 1911 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1912 1913 error = SetDefaultPtraceOpts(pid); 1914 if (error.Fail()) 1915 { 1916 if (log) 1917 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1918 __FUNCTION__, error.AsCString ()); 1919 1920 // Mark the inferior as invalid. 1921 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1922 SetState (StateType::eStateInvalid); 1923 1924 return -1; 1925 } 1926 1927 // Release the master terminal descriptor and pass it off to the 1928 // NativeProcessLinux instance. Similarly stash the inferior pid. 1929 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1930 m_pid = pid; 1931 1932 // Set the terminal fd to be in non blocking mode (it simplifies the 1933 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1934 // descriptor to read from). 1935 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 1936 if (error.Fail()) 1937 { 1938 if (log) 1939 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1940 __FUNCTION__, error.AsCString ()); 1941 1942 // Mark the inferior as invalid. 1943 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1944 SetState (StateType::eStateInvalid); 1945 1946 return -1; 1947 } 1948 1949 if (log) 1950 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1951 1952 thread_sp = AddThread (pid); 1953 assert (thread_sp && "AddThread() returned a nullptr thread"); 1954 NotifyThreadCreateStopped (pid); 1955 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 1956 1957 // Let our process instance know the thread has stopped. 1958 SetCurrentThreadID (thread_sp->GetID ()); 1959 SetState (StateType::eStateStopped); 1960 1961 if (log) 1962 { 1963 if (error.Success ()) 1964 { 1965 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1966 } 1967 else 1968 { 1969 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1970 __FUNCTION__, error.AsCString ()); 1971 return -1; 1972 } 1973 } 1974 return pid; 1975 } 1976 1977 ::pid_t 1978 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 1979 { 1980 lldb::ThreadSP inferior; 1981 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1982 1983 // Use a map to keep track of the threads which we have attached/need to attach. 1984 Host::TidMap tids_to_attach; 1985 if (pid <= 1) 1986 { 1987 error.SetErrorToGenericError(); 1988 error.SetErrorString("Attaching to process 1 is not allowed."); 1989 return -1; 1990 } 1991 1992 while (Host::FindProcessThreads(pid, tids_to_attach)) 1993 { 1994 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1995 it != tids_to_attach.end();) 1996 { 1997 if (it->second == false) 1998 { 1999 lldb::tid_t tid = it->first; 2000 2001 // Attach to the requested process. 2002 // An attach will cause the thread to stop with a SIGSTOP. 2003 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error); 2004 if (error.Fail()) 2005 { 2006 // No such thread. The thread may have exited. 2007 // More error handling may be needed. 2008 if (error.GetError() == ESRCH) 2009 { 2010 it = tids_to_attach.erase(it); 2011 continue; 2012 } 2013 else 2014 return -1; 2015 } 2016 2017 int status; 2018 // Need to use __WALL otherwise we receive an error with errno=ECHLD 2019 // At this point we should have a thread stopped if waitpid succeeds. 2020 if ((status = waitpid(tid, NULL, __WALL)) < 0) 2021 { 2022 // No such thread. The thread may have exited. 2023 // More error handling may be needed. 2024 if (errno == ESRCH) 2025 { 2026 it = tids_to_attach.erase(it); 2027 continue; 2028 } 2029 else 2030 { 2031 error.SetErrorToErrno(); 2032 return -1; 2033 } 2034 } 2035 2036 error = SetDefaultPtraceOpts(tid); 2037 if (error.Fail()) 2038 return -1; 2039 2040 if (log) 2041 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 2042 2043 it->second = true; 2044 2045 // Create the thread, mark it as stopped. 2046 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid))); 2047 assert (thread_sp && "AddThread() returned a nullptr"); 2048 2049 // This will notify this is a new thread and tell the system it is stopped. 2050 NotifyThreadCreateStopped (tid); 2051 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP); 2052 SetCurrentThreadID (thread_sp->GetID ()); 2053 } 2054 2055 // move the loop forward 2056 ++it; 2057 } 2058 } 2059 2060 if (tids_to_attach.size() > 0) 2061 { 2062 m_pid = pid; 2063 // Let our process instance know the thread has stopped. 2064 SetState (StateType::eStateStopped); 2065 } 2066 else 2067 { 2068 error.SetErrorToGenericError(); 2069 error.SetErrorString("No such process."); 2070 return -1; 2071 } 2072 2073 return pid; 2074 } 2075 2076 Error 2077 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 2078 { 2079 long ptrace_opts = 0; 2080 2081 // Have the child raise an event on exit. This is used to keep the child in 2082 // limbo until it is destroyed. 2083 ptrace_opts |= PTRACE_O_TRACEEXIT; 2084 2085 // Have the tracer trace threads which spawn in the inferior process. 2086 // TODO: if we want to support tracing the inferiors' child, add the 2087 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 2088 ptrace_opts |= PTRACE_O_TRACECLONE; 2089 2090 // Have the tracer notify us before execve returns 2091 // (needed to disable legacy SIGTRAP generation) 2092 ptrace_opts |= PTRACE_O_TRACEEXEC; 2093 2094 Error error; 2095 PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error); 2096 return error; 2097 } 2098 2099 static ExitType convert_pid_status_to_exit_type (int status) 2100 { 2101 if (WIFEXITED (status)) 2102 return ExitType::eExitTypeExit; 2103 else if (WIFSIGNALED (status)) 2104 return ExitType::eExitTypeSignal; 2105 else if (WIFSTOPPED (status)) 2106 return ExitType::eExitTypeStop; 2107 else 2108 { 2109 // We don't know what this is. 2110 return ExitType::eExitTypeInvalid; 2111 } 2112 } 2113 2114 static int convert_pid_status_to_return_code (int status) 2115 { 2116 if (WIFEXITED (status)) 2117 return WEXITSTATUS (status); 2118 else if (WIFSIGNALED (status)) 2119 return WTERMSIG (status); 2120 else if (WIFSTOPPED (status)) 2121 return WSTOPSIG (status); 2122 else 2123 { 2124 // We don't know what this is. 2125 return ExitType::eExitTypeInvalid; 2126 } 2127 } 2128 2129 // Handles all waitpid events from the inferior process. 2130 void 2131 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 2132 bool exited, 2133 int signal, 2134 int status) 2135 { 2136 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 2137 2138 // Certain activities differ based on whether the pid is the tid of the main thread. 2139 const bool is_main_thread = (pid == GetID ()); 2140 2141 // Handle when the thread exits. 2142 if (exited) 2143 { 2144 if (log) 2145 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 2146 2147 // This is a thread that exited. Ensure we're not tracking it anymore. 2148 const bool thread_found = StopTrackingThread (pid); 2149 2150 // Make sure the thread state coordinator knows about this. 2151 NotifyThreadDeath (pid); 2152 2153 if (is_main_thread) 2154 { 2155 // We only set the exit status and notify the delegate if we haven't already set the process 2156 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 2157 // for the main thread. 2158 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 2159 if (!already_notified) 2160 { 2161 if (log) 2162 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 2163 // The main thread exited. We're done monitoring. Report to delegate. 2164 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2165 2166 // Notify delegate that our process has exited. 2167 SetState (StateType::eStateExited, true); 2168 } 2169 else 2170 { 2171 if (log) 2172 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2173 } 2174 } 2175 else 2176 { 2177 // Do we want to report to the delegate in this case? I think not. If this was an orderly 2178 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 2179 // and we would have done an all-stop then. 2180 if (log) 2181 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 2182 } 2183 return; 2184 } 2185 2186 // Get details on the signal raised. 2187 siginfo_t info; 2188 const auto err = GetSignalInfo(pid, &info); 2189 if (err.Success()) 2190 { 2191 // We have retrieved the signal info. Dispatch appropriately. 2192 if (info.si_signo == SIGTRAP) 2193 MonitorSIGTRAP(&info, pid); 2194 else 2195 MonitorSignal(&info, pid, exited); 2196 } 2197 else 2198 { 2199 if (err.GetError() == EINVAL) 2200 { 2201 // This is a group stop reception for this tid. 2202 if (log) 2203 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid); 2204 NotifyThreadStop (pid); 2205 } 2206 else 2207 { 2208 // ptrace(GETSIGINFO) failed (but not due to group-stop). 2209 2210 // A return value of ESRCH means the thread/process is no longer on the system, 2211 // so it was killed somehow outside of our control. Either way, we can't do anything 2212 // with it anymore. 2213 2214 // Stop tracking the metadata for the thread since it's entirely off the system now. 2215 const bool thread_found = StopTrackingThread (pid); 2216 2217 // Make sure the thread state coordinator knows about this. 2218 NotifyThreadDeath (pid); 2219 2220 if (log) 2221 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 2222 __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 2223 2224 if (is_main_thread) 2225 { 2226 // Notify the delegate - our process is not available but appears to have been killed outside 2227 // our control. Is eStateExited the right exit state in this case? 2228 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 2229 SetState (StateType::eStateExited, true); 2230 } 2231 else 2232 { 2233 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 2234 if (log) 2235 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 2236 } 2237 } 2238 } 2239 } 2240 2241 void 2242 NativeProcessLinux::WaitForNewThread(::pid_t tid) 2243 { 2244 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2245 2246 NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid); 2247 2248 if (new_thread_sp) 2249 { 2250 // We are already tracking the thread - we got the event on the new thread (see 2251 // MonitorSignal) before this one. We are done. 2252 return; 2253 } 2254 2255 // The thread is not tracked yet, let's wait for it to appear. 2256 int status = -1; 2257 ::pid_t wait_pid; 2258 do 2259 { 2260 if (log) 2261 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 2262 wait_pid = waitpid(tid, &status, __WALL); 2263 } 2264 while (wait_pid == -1 && errno == EINTR); 2265 // Since we are waiting on a specific tid, this must be the creation event. But let's do 2266 // some checks just in case. 2267 if (wait_pid != tid) { 2268 if (log) 2269 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 2270 // The only way I know of this could happen is if the whole process was 2271 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 2272 return; 2273 } 2274 if (WIFEXITED(status)) 2275 { 2276 if (log) 2277 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 2278 // Also a very improbable event. 2279 return; 2280 } 2281 2282 siginfo_t info; 2283 Error error = GetSignalInfo(tid, &info); 2284 if (error.Fail()) 2285 { 2286 if (log) 2287 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 2288 return; 2289 } 2290 2291 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 2292 { 2293 // We should be getting a thread creation signal here, but we received something 2294 // else. There isn't much we can do about it now, so we will just log that. Since the 2295 // thread is alive and we are receiving events from it, we shall pretend that it was 2296 // created properly. 2297 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 2298 } 2299 2300 if (log) 2301 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 2302 __FUNCTION__, GetID (), tid); 2303 2304 new_thread_sp = AddThread(tid); 2305 std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning (); 2306 Resume (tid, LLDB_INVALID_SIGNAL_NUMBER); 2307 m_coordinator_up->NotifyThreadCreate (tid, false, CoordinatorErrorHandler); 2308 } 2309 2310 void 2311 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 2312 { 2313 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2314 const bool is_main_thread = (pid == GetID ()); 2315 2316 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 2317 if (!info) 2318 return; 2319 2320 Mutex::Locker locker (m_threads_mutex); 2321 2322 // See if we can find a thread for this signal. 2323 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2324 if (!thread_sp) 2325 { 2326 if (log) 2327 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2328 } 2329 2330 switch (info->si_code) 2331 { 2332 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 2333 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 2334 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 2335 2336 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 2337 { 2338 // This is the notification on the parent thread which informs us of new thread 2339 // creation. 2340 // We don't want to do anything with the parent thread so we just resume it. In case we 2341 // want to implement "break on thread creation" functionality, we would need to stop 2342 // here. 2343 2344 unsigned long event_message = 0; 2345 if (GetEventMessage (pid, &event_message).Fail()) 2346 { 2347 if (log) 2348 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid); 2349 } else 2350 WaitForNewThread(event_message); 2351 2352 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2353 break; 2354 } 2355 2356 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 2357 { 2358 NativeThreadProtocolSP main_thread_sp; 2359 if (log) 2360 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 2361 2362 // The thread state coordinator needs to reset due to the exec. 2363 m_coordinator_up->ResetForExec (); 2364 2365 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. Mutexes are in undefined state. 2366 if (log) 2367 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 2368 2369 for (auto thread_sp : m_threads) 2370 { 2371 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 2372 if (is_main_thread) 2373 { 2374 main_thread_sp = thread_sp; 2375 if (log) 2376 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 2377 } 2378 else 2379 { 2380 // Tell thread coordinator this thread is dead. 2381 if (log) 2382 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 2383 } 2384 } 2385 2386 m_threads.clear (); 2387 2388 if (main_thread_sp) 2389 { 2390 m_threads.push_back (main_thread_sp); 2391 SetCurrentThreadID (main_thread_sp->GetID ()); 2392 std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec (); 2393 } 2394 else 2395 { 2396 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 2397 if (log) 2398 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 2399 } 2400 2401 // Tell coordinator about about the "new" (since exec) stopped main thread. 2402 const lldb::tid_t main_thread_tid = GetID (); 2403 NotifyThreadCreateStopped (main_thread_tid); 2404 2405 // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed. 2406 // Consider a handler that can execute when that happens. 2407 // Let our delegate know we have just exec'd. 2408 NotifyDidExec (); 2409 2410 // If we have a main thread, indicate we are stopped. 2411 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 2412 2413 // Let the process know we're stopped. 2414 CallAfterRunningThreadsStop (pid, 2415 [=] (lldb::tid_t signaling_tid) 2416 { 2417 SetState (StateType::eStateStopped, true); 2418 }); 2419 2420 break; 2421 } 2422 2423 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 2424 { 2425 // The inferior process or one of its threads is about to exit. 2426 2427 // This thread is currently stopped. It's not actually dead yet, just about to be. 2428 NotifyThreadStop (pid); 2429 2430 unsigned long data = 0; 2431 if (GetEventMessage(pid, &data).Fail()) 2432 data = -1; 2433 2434 if (log) 2435 { 2436 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2437 __FUNCTION__, 2438 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2439 pid, 2440 is_main_thread ? "is main thread" : "not main thread"); 2441 } 2442 2443 if (is_main_thread) 2444 { 2445 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2446 } 2447 2448 const int signo = static_cast<int> (data); 2449 m_coordinator_up->RequestThreadResume (pid, 2450 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2451 { 2452 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2453 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2454 }, 2455 CoordinatorErrorHandler); 2456 2457 break; 2458 } 2459 2460 case 0: 2461 case TRAP_TRACE: // We receive this on single stepping. 2462 case TRAP_HWBKPT: // We receive this on watchpoint hit 2463 if (thread_sp) 2464 { 2465 // If a watchpoint was hit, report it 2466 uint32_t wp_index; 2467 Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index); 2468 if (error.Fail() && log) 2469 log->Printf("NativeProcessLinux::%s() " 2470 "received error while checking for watchpoint hits, " 2471 "pid = %" PRIu64 " error = %s", 2472 __FUNCTION__, pid, error.AsCString()); 2473 if (wp_index != LLDB_INVALID_INDEX32) 2474 { 2475 MonitorWatchpoint(pid, thread_sp, wp_index); 2476 break; 2477 } 2478 } 2479 // Otherwise, report step over 2480 MonitorTrace(pid, thread_sp); 2481 break; 2482 2483 case SI_KERNEL: 2484 case TRAP_BRKPT: 2485 MonitorBreakpoint(pid, thread_sp); 2486 break; 2487 2488 case SIGTRAP: 2489 case (SIGTRAP | 0x80): 2490 if (log) 2491 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid); 2492 2493 // This thread is currently stopped. 2494 NotifyThreadStop (pid); 2495 if (thread_sp) 2496 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP); 2497 2498 2499 // Ignore these signals until we know more about them. 2500 m_coordinator_up->RequestThreadResume (pid, 2501 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2502 { 2503 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2504 return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER); 2505 }, 2506 CoordinatorErrorHandler); 2507 break; 2508 2509 default: 2510 assert(false && "Unexpected SIGTRAP code!"); 2511 if (log) 2512 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2513 break; 2514 2515 } 2516 } 2517 2518 void 2519 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2520 { 2521 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2522 if (log) 2523 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 2524 __FUNCTION__, pid); 2525 2526 if (thread_sp) 2527 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2528 2529 // This thread is currently stopped. 2530 NotifyThreadStop(pid); 2531 2532 // Here we don't have to request the rest of the threads to stop or request a deferred stop. 2533 // This would have already happened at the time the Resume() with step operation was signaled. 2534 // At this point, we just need to say we stopped, and the deferred notifcation will fire off 2535 // once all running threads have checked in as stopped. 2536 SetCurrentThreadID(pid); 2537 // Tell the process we have a stop (from software breakpoint). 2538 CallAfterRunningThreadsStop(pid, 2539 [=](lldb::tid_t signaling_tid) 2540 { 2541 SetState(StateType::eStateStopped, true); 2542 }); 2543 } 2544 2545 void 2546 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp) 2547 { 2548 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2549 if (log) 2550 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 2551 __FUNCTION__, pid); 2552 2553 // This thread is currently stopped. 2554 NotifyThreadStop(pid); 2555 2556 // Mark the thread as stopped at breakpoint. 2557 if (thread_sp) 2558 { 2559 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint(); 2560 Error error = FixupBreakpointPCAsNeeded(thread_sp); 2561 if (error.Fail()) 2562 if (log) 2563 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 2564 __FUNCTION__, pid, error.AsCString()); 2565 2566 auto it = m_threads_stepping_with_breakpoint.find(pid); 2567 if (it != m_threads_stepping_with_breakpoint.end()) 2568 { 2569 Error error = RemoveBreakpoint (it->second); 2570 if (error.Fail()) 2571 if (log) 2572 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 2573 __FUNCTION__, pid, error.AsCString()); 2574 2575 m_threads_stepping_with_breakpoint.erase(it); 2576 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace(); 2577 } 2578 } 2579 else 2580 if (log) 2581 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 ": " 2582 "warning, cannot process software breakpoint since no thread metadata", 2583 __FUNCTION__, pid); 2584 2585 2586 // We need to tell all other running threads before we notify the delegate about this stop. 2587 CallAfterRunningThreadsStop(pid, 2588 [=](lldb::tid_t deferred_notification_tid) 2589 { 2590 SetCurrentThreadID(deferred_notification_tid); 2591 // Tell the process we have a stop (from software breakpoint). 2592 SetState(StateType::eStateStopped, true); 2593 }); 2594 } 2595 2596 void 2597 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index) 2598 { 2599 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 2600 if (log) 2601 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 2602 "pid = %" PRIu64 ", wp_index = %" PRIu32, 2603 __FUNCTION__, pid, wp_index); 2604 2605 // This thread is currently stopped. 2606 NotifyThreadStop(pid); 2607 2608 // Mark the thread as stopped at watchpoint. 2609 // The address is at (lldb::addr_t)info->si_addr if we need it. 2610 lldbassert(thread_sp && "thread_sp cannot be NULL"); 2611 std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index); 2612 2613 // We need to tell all other running threads before we notify the delegate about this stop. 2614 CallAfterRunningThreadsStop(pid, 2615 [=](lldb::tid_t deferred_notification_tid) 2616 { 2617 SetCurrentThreadID(deferred_notification_tid); 2618 // Tell the process we have a stop (from watchpoint). 2619 SetState(StateType::eStateStopped, true); 2620 }); 2621 } 2622 2623 void 2624 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2625 { 2626 assert (info && "null info"); 2627 if (!info) 2628 return; 2629 2630 const int signo = info->si_signo; 2631 const bool is_from_llgs = info->si_pid == getpid (); 2632 2633 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2634 2635 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2636 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2637 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2638 // 2639 // IOW, user generated signals never generate what we consider to be a 2640 // "crash". 2641 // 2642 // Similarly, ACK signals generated by this monitor. 2643 2644 Mutex::Locker locker (m_threads_mutex); 2645 2646 // See if we can find a thread for this signal. 2647 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2648 if (!thread_sp) 2649 { 2650 if (log) 2651 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2652 } 2653 2654 // Handle the signal. 2655 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2656 { 2657 if (log) 2658 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2659 __FUNCTION__, 2660 GetUnixSignals ().GetSignalAsCString (signo), 2661 signo, 2662 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2663 info->si_pid, 2664 is_from_llgs ? "from llgs" : "not from llgs", 2665 pid); 2666 } 2667 2668 // Check for new thread notification. 2669 if ((info->si_pid == 0) && (info->si_code == SI_USER)) 2670 { 2671 // A new thread creation is being signaled. This is one of two parts that come in 2672 // a non-deterministic order. This code handles the case where the new thread event comes 2673 // before the event on the parent thread. For the opposite case see code in 2674 // MonitorSIGTRAP. 2675 if (log) 2676 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2677 __FUNCTION__, GetID (), pid); 2678 2679 thread_sp = AddThread(pid); 2680 assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread"); 2681 // We can now resume the newly created thread. 2682 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2683 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2684 m_coordinator_up->NotifyThreadCreate (pid, false, CoordinatorErrorHandler); 2685 // Done handling. 2686 return; 2687 } 2688 2689 // Check for thread stop notification. 2690 if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP)) 2691 { 2692 // This is a tgkill()-based stop. 2693 if (thread_sp) 2694 { 2695 if (log) 2696 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 2697 __FUNCTION__, 2698 GetID (), 2699 pid); 2700 2701 // Check that we're not already marked with a stop reason. 2702 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 2703 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 2704 // and that, without an intervening resume, we received another stop. It is more likely 2705 // that we are missing the marking of a run state somewhere if we find that the thread was 2706 // marked as stopped. 2707 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 2708 assert (linux_thread_sp && "linux_thread_sp is null!"); 2709 2710 const StateType thread_state = linux_thread_sp->GetState (); 2711 if (!StateIsStoppedState (thread_state, false)) 2712 { 2713 // An inferior thread just stopped, but was not the primary cause of the process stop. 2714 // Instead, something else (like a breakpoint or step) caused the stop. Mark the 2715 // stop signal as 0 to let lldb know this isn't the important stop. 2716 linux_thread_sp->SetStoppedBySignal (0); 2717 SetCurrentThreadID (thread_sp->GetID ()); 2718 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler); 2719 } 2720 else 2721 { 2722 if (log) 2723 { 2724 // Retrieve the signal name if the thread was stopped by a signal. 2725 int stop_signo = 0; 2726 const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo); 2727 const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>"; 2728 if (!signal_name) 2729 signal_name = "<no-signal-name>"; 2730 2731 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 2732 __FUNCTION__, 2733 GetID (), 2734 linux_thread_sp->GetID (), 2735 StateAsCString (thread_state), 2736 stop_signo, 2737 signal_name); 2738 } 2739 // Tell the thread state coordinator about the stop. 2740 NotifyThreadStop (thread_sp->GetID ()); 2741 } 2742 } 2743 2744 // Done handling. 2745 return; 2746 } 2747 2748 if (log) 2749 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2750 2751 // This thread is stopped. 2752 NotifyThreadStop (pid); 2753 2754 switch (signo) 2755 { 2756 case SIGSTOP: 2757 { 2758 if (log) 2759 { 2760 if (is_from_llgs) 2761 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid); 2762 else 2763 log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid); 2764 } 2765 2766 // Resume this thread to get the group-stop mechanism to fire off the true group stops. 2767 // This thread will get stopped again as part of the group-stop completion. 2768 m_coordinator_up->RequestThreadResume (pid, 2769 [=](lldb::tid_t tid_to_resume, bool supress_signal) 2770 { 2771 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 2772 // Pass this signal number on to the inferior to handle. 2773 return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo); 2774 }, 2775 CoordinatorErrorHandler); 2776 } 2777 break; 2778 case SIGSEGV: 2779 case SIGILL: 2780 case SIGFPE: 2781 case SIGBUS: 2782 if (thread_sp) 2783 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info); 2784 break; 2785 default: 2786 // This is just a pre-signal-delivery notification of the incoming signal. 2787 if (thread_sp) 2788 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo); 2789 2790 break; 2791 } 2792 2793 // Send a stop to the debugger after we get all other threads to stop. 2794 CallAfterRunningThreadsStop (pid, 2795 [=] (lldb::tid_t signaling_tid) 2796 { 2797 SetCurrentThreadID (signaling_tid); 2798 SetState (StateType::eStateStopped, true); 2799 }); 2800 } 2801 2802 namespace { 2803 2804 struct EmulatorBaton 2805 { 2806 NativeProcessLinux* m_process; 2807 NativeRegisterContext* m_reg_context; 2808 2809 // eRegisterKindDWARF -> RegsiterValue 2810 std::unordered_map<uint32_t, RegisterValue> m_register_values; 2811 2812 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 2813 m_process(process), m_reg_context(reg_context) {} 2814 }; 2815 2816 } // anonymous namespace 2817 2818 static size_t 2819 ReadMemoryCallback (EmulateInstruction *instruction, 2820 void *baton, 2821 const EmulateInstruction::Context &context, 2822 lldb::addr_t addr, 2823 void *dst, 2824 size_t length) 2825 { 2826 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2827 2828 lldb::addr_t bytes_read; 2829 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 2830 return bytes_read; 2831 } 2832 2833 static bool 2834 ReadRegisterCallback (EmulateInstruction *instruction, 2835 void *baton, 2836 const RegisterInfo *reg_info, 2837 RegisterValue ®_value) 2838 { 2839 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2840 2841 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 2842 if (it != emulator_baton->m_register_values.end()) 2843 { 2844 reg_value = it->second; 2845 return true; 2846 } 2847 2848 // The emulator only fill in the dwarf regsiter numbers (and in some case 2849 // the generic register numbers). Get the full register info from the 2850 // register context based on the dwarf register numbers. 2851 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 2852 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 2853 2854 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 2855 if (error.Success()) 2856 { 2857 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 2858 return true; 2859 } 2860 return false; 2861 } 2862 2863 static bool 2864 WriteRegisterCallback (EmulateInstruction *instruction, 2865 void *baton, 2866 const EmulateInstruction::Context &context, 2867 const RegisterInfo *reg_info, 2868 const RegisterValue ®_value) 2869 { 2870 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 2871 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 2872 return true; 2873 } 2874 2875 static size_t 2876 WriteMemoryCallback (EmulateInstruction *instruction, 2877 void *baton, 2878 const EmulateInstruction::Context &context, 2879 lldb::addr_t addr, 2880 const void *dst, 2881 size_t length) 2882 { 2883 return length; 2884 } 2885 2886 static lldb::addr_t 2887 ReadFlags (NativeRegisterContext* regsiter_context) 2888 { 2889 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 2890 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2891 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 2892 } 2893 2894 Error 2895 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp) 2896 { 2897 Error error; 2898 NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext(); 2899 2900 std::unique_ptr<EmulateInstruction> emulator_ap( 2901 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 2902 2903 if (emulator_ap == nullptr) 2904 return Error("Instruction emulator not found!"); 2905 2906 EmulatorBaton baton(this, register_context_sp.get()); 2907 emulator_ap->SetBaton(&baton); 2908 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 2909 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 2910 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 2911 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 2912 2913 if (!emulator_ap->ReadInstruction()) 2914 return Error("Read instruction failed!"); 2915 2916 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 2917 2918 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 2919 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 2920 2921 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 2922 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 2923 2924 lldb::addr_t next_pc; 2925 lldb::addr_t next_flags; 2926 if (emulation_result) 2927 { 2928 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 2929 next_pc = pc_it->second.GetAsUInt64(); 2930 2931 if (flags_it != baton.m_register_values.end()) 2932 next_flags = flags_it->second.GetAsUInt64(); 2933 else 2934 next_flags = ReadFlags (register_context_sp.get()); 2935 } 2936 else if (pc_it == baton.m_register_values.end()) 2937 { 2938 // Emulate instruction failed and it haven't changed PC. Advance PC 2939 // with the size of the current opcode because the emulation of all 2940 // PC modifying instruction should be successful. The failure most 2941 // likely caused by a not supported instruction which don't modify PC. 2942 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 2943 next_flags = ReadFlags (register_context_sp.get()); 2944 } 2945 else 2946 { 2947 // The instruction emulation failed after it modified the PC. It is an 2948 // unknown error where we can't continue because the next instruction is 2949 // modifying the PC but we don't know how. 2950 return Error ("Instruction emulation failed unexpectedly."); 2951 } 2952 2953 if (m_arch.GetMachine() == llvm::Triple::arm) 2954 { 2955 if (next_flags & 0x20) 2956 { 2957 // Thumb mode 2958 error = SetSoftwareBreakpoint(next_pc, 2); 2959 } 2960 else 2961 { 2962 // Arm mode 2963 error = SetSoftwareBreakpoint(next_pc, 4); 2964 } 2965 } 2966 else 2967 { 2968 // No size hint is given for the next breakpoint 2969 error = SetSoftwareBreakpoint(next_pc, 0); 2970 } 2971 2972 if (error.Fail()) 2973 return error; 2974 2975 m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc}); 2976 2977 return Error(); 2978 } 2979 2980 bool 2981 NativeProcessLinux::SupportHardwareSingleStepping() const 2982 { 2983 return m_arch.GetMachine() != llvm::Triple::arm; 2984 } 2985 2986 Error 2987 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2988 { 2989 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2990 if (log) 2991 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2992 2993 lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID; 2994 lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID; 2995 int deferred_signo = 0; 2996 NativeThreadProtocolSP deferred_signal_thread_sp; 2997 bool stepping = false; 2998 bool software_single_step = !SupportHardwareSingleStepping(); 2999 3000 Mutex::Locker locker (m_threads_mutex); 3001 3002 if (software_single_step) 3003 { 3004 for (auto thread_sp : m_threads) 3005 { 3006 assert (thread_sp && "thread list should not contain NULL threads"); 3007 3008 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 3009 if (action == nullptr) 3010 continue; 3011 3012 if (action->state == eStateStepping) 3013 { 3014 Error error = SetupSoftwareSingleStepping(thread_sp); 3015 if (error.Fail()) 3016 return error; 3017 } 3018 } 3019 } 3020 3021 for (auto thread_sp : m_threads) 3022 { 3023 assert (thread_sp && "thread list should not contain NULL threads"); 3024 3025 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 3026 3027 if (action == nullptr) 3028 { 3029 if (log) 3030 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 3031 __FUNCTION__, GetID (), thread_sp->GetID ()); 3032 continue; 3033 } 3034 3035 if (log) 3036 { 3037 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 3038 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 3039 } 3040 3041 switch (action->state) 3042 { 3043 case eStateRunning: 3044 { 3045 // Run the thread, possibly feeding it the signal. 3046 const int signo = action->signal; 3047 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (), 3048 [=](lldb::tid_t tid_to_resume, bool supress_signal) 3049 { 3050 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning (); 3051 // Pass this signal number on to the inferior to handle. 3052 const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 3053 if (resume_result.Success()) 3054 SetState(eStateRunning, true); 3055 return resume_result; 3056 }, 3057 CoordinatorErrorHandler); 3058 break; 3059 } 3060 3061 case eStateStepping: 3062 { 3063 // Request the step. 3064 const int signo = action->signal; 3065 m_coordinator_up->RequestThreadResume (thread_sp->GetID (), 3066 [=](lldb::tid_t tid_to_step, bool supress_signal) 3067 { 3068 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping (); 3069 3070 Error step_result; 3071 if (software_single_step) 3072 step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 3073 else 3074 step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER); 3075 3076 assert (step_result.Success() && "SingleStep() failed"); 3077 if (step_result.Success()) 3078 SetState(eStateStepping, true); 3079 return step_result; 3080 }, 3081 CoordinatorErrorHandler); 3082 stepping = true; 3083 break; 3084 } 3085 3086 case eStateSuspended: 3087 case eStateStopped: 3088 // if we haven't chosen a deferred signal tid yet, use this one. 3089 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID) 3090 { 3091 deferred_signal_tid = thread_sp->GetID (); 3092 deferred_signal_thread_sp = thread_sp; 3093 deferred_signo = SIGSTOP; 3094 } 3095 break; 3096 3097 default: 3098 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 3099 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 3100 } 3101 } 3102 3103 // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal 3104 // after all other running threads have stopped. 3105 // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal. 3106 if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping) 3107 { 3108 CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid, 3109 deferred_signal_skip_tid, 3110 [=](lldb::tid_t deferred_notification_tid) 3111 { 3112 // Set the signal thread to the current thread. 3113 SetCurrentThreadID (deferred_notification_tid); 3114 3115 // Set the thread state as stopped by the deferred signo. 3116 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (deferred_signo); 3117 3118 // Tell the process delegate that the process is in a stopped state. 3119 SetState (StateType::eStateStopped, true); 3120 }); 3121 } 3122 3123 return Error(); 3124 } 3125 3126 Error 3127 NativeProcessLinux::Halt () 3128 { 3129 Error error; 3130 3131 if (kill (GetID (), SIGSTOP) != 0) 3132 error.SetErrorToErrno (); 3133 3134 return error; 3135 } 3136 3137 Error 3138 NativeProcessLinux::Detach () 3139 { 3140 Error error; 3141 3142 // Tell ptrace to detach from the process. 3143 if (GetID () != LLDB_INVALID_PROCESS_ID) 3144 error = Detach (GetID ()); 3145 3146 // Stop monitoring the inferior. 3147 StopMonitor (); 3148 3149 // No error. 3150 return error; 3151 } 3152 3153 Error 3154 NativeProcessLinux::Signal (int signo) 3155 { 3156 Error error; 3157 3158 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3159 if (log) 3160 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 3161 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 3162 3163 if (kill(GetID(), signo)) 3164 error.SetErrorToErrno(); 3165 3166 return error; 3167 } 3168 3169 Error 3170 NativeProcessLinux::Interrupt () 3171 { 3172 // Pick a running thread (or if none, a not-dead stopped thread) as 3173 // the chosen thread that will be the stop-reason thread. 3174 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3175 3176 NativeThreadProtocolSP running_thread_sp; 3177 NativeThreadProtocolSP stopped_thread_sp; 3178 3179 if (log) 3180 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 3181 3182 Mutex::Locker locker (m_threads_mutex); 3183 3184 for (auto thread_sp : m_threads) 3185 { 3186 // The thread shouldn't be null but lets just cover that here. 3187 if (!thread_sp) 3188 continue; 3189 3190 // If we have a running or stepping thread, we'll call that the 3191 // target of the interrupt. 3192 const auto thread_state = thread_sp->GetState (); 3193 if (thread_state == eStateRunning || 3194 thread_state == eStateStepping) 3195 { 3196 running_thread_sp = thread_sp; 3197 break; 3198 } 3199 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 3200 { 3201 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 3202 stopped_thread_sp = thread_sp; 3203 } 3204 } 3205 3206 if (!running_thread_sp && !stopped_thread_sp) 3207 { 3208 Error error("found no running/stepping or live stopped threads as target for interrupt"); 3209 if (log) 3210 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 3211 3212 return error; 3213 } 3214 3215 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 3216 3217 if (log) 3218 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 3219 __FUNCTION__, 3220 GetID (), 3221 running_thread_sp ? "running" : "stopped", 3222 deferred_signal_thread_sp->GetID ()); 3223 3224 CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (), 3225 [=](lldb::tid_t deferred_notification_tid) 3226 { 3227 // Set the signal thread to the current thread. 3228 SetCurrentThreadID (deferred_notification_tid); 3229 3230 // Set the thread state as stopped by the deferred signo. 3231 std::static_pointer_cast<NativeThreadLinux> (deferred_signal_thread_sp)->SetStoppedBySignal (SIGSTOP); 3232 3233 // Tell the process delegate that the process is in a stopped state. 3234 SetState (StateType::eStateStopped, true); 3235 }); 3236 return Error(); 3237 } 3238 3239 Error 3240 NativeProcessLinux::Kill () 3241 { 3242 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3243 if (log) 3244 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 3245 3246 Error error; 3247 3248 switch (m_state) 3249 { 3250 case StateType::eStateInvalid: 3251 case StateType::eStateExited: 3252 case StateType::eStateCrashed: 3253 case StateType::eStateDetached: 3254 case StateType::eStateUnloaded: 3255 // Nothing to do - the process is already dead. 3256 if (log) 3257 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 3258 return error; 3259 3260 case StateType::eStateConnected: 3261 case StateType::eStateAttaching: 3262 case StateType::eStateLaunching: 3263 case StateType::eStateStopped: 3264 case StateType::eStateRunning: 3265 case StateType::eStateStepping: 3266 case StateType::eStateSuspended: 3267 // We can try to kill a process in these states. 3268 break; 3269 } 3270 3271 if (kill (GetID (), SIGKILL) != 0) 3272 { 3273 error.SetErrorToErrno (); 3274 return error; 3275 } 3276 3277 return error; 3278 } 3279 3280 static Error 3281 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 3282 { 3283 memory_region_info.Clear(); 3284 3285 StringExtractor line_extractor (maps_line.c_str ()); 3286 3287 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 3288 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 3289 3290 // Parse out the starting address 3291 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 3292 3293 // Parse out hyphen separating start and end address from range. 3294 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 3295 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 3296 3297 // Parse out the ending address 3298 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 3299 3300 // Parse out the space after the address. 3301 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 3302 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 3303 3304 // Save the range. 3305 memory_region_info.GetRange ().SetRangeBase (start_address); 3306 memory_region_info.GetRange ().SetRangeEnd (end_address); 3307 3308 // Parse out each permission entry. 3309 if (line_extractor.GetBytesLeft () < 4) 3310 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 3311 3312 // Handle read permission. 3313 const char read_perm_char = line_extractor.GetChar (); 3314 if (read_perm_char == 'r') 3315 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 3316 else 3317 { 3318 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 3319 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3320 } 3321 3322 // Handle write permission. 3323 const char write_perm_char = line_extractor.GetChar (); 3324 if (write_perm_char == 'w') 3325 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 3326 else 3327 { 3328 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 3329 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3330 } 3331 3332 // Handle execute permission. 3333 const char exec_perm_char = line_extractor.GetChar (); 3334 if (exec_perm_char == 'x') 3335 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 3336 else 3337 { 3338 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 3339 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3340 } 3341 3342 return Error (); 3343 } 3344 3345 Error 3346 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 3347 { 3348 // FIXME review that the final memory region returned extends to the end of the virtual address space, 3349 // with no perms if it is not mapped. 3350 3351 // Use an approach that reads memory regions from /proc/{pid}/maps. 3352 // Assume proc maps entries are in ascending order. 3353 // FIXME assert if we find differently. 3354 Mutex::Locker locker (m_mem_region_cache_mutex); 3355 3356 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3357 Error error; 3358 3359 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 3360 { 3361 // We're done. 3362 error.SetErrorString ("unsupported"); 3363 return error; 3364 } 3365 3366 // If our cache is empty, pull the latest. There should always be at least one memory region 3367 // if memory region handling is supported. 3368 if (m_mem_region_cache.empty ()) 3369 { 3370 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 3371 [&] (const std::string &line) -> bool 3372 { 3373 MemoryRegionInfo info; 3374 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 3375 if (parse_error.Success ()) 3376 { 3377 m_mem_region_cache.push_back (info); 3378 return true; 3379 } 3380 else 3381 { 3382 if (log) 3383 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 3384 return false; 3385 } 3386 }); 3387 3388 // If we had an error, we'll mark unsupported. 3389 if (error.Fail ()) 3390 { 3391 m_supports_mem_region = LazyBool::eLazyBoolNo; 3392 return error; 3393 } 3394 else if (m_mem_region_cache.empty ()) 3395 { 3396 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 3397 // is supported. Assume we don't support map entries via procfs. 3398 if (log) 3399 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 3400 m_supports_mem_region = LazyBool::eLazyBoolNo; 3401 error.SetErrorString ("not supported"); 3402 return error; 3403 } 3404 3405 if (log) 3406 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 3407 3408 // We support memory retrieval, remember that. 3409 m_supports_mem_region = LazyBool::eLazyBoolYes; 3410 } 3411 else 3412 { 3413 if (log) 3414 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3415 } 3416 3417 lldb::addr_t prev_base_address = 0; 3418 3419 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 3420 // There can be a ton of regions on pthreads apps with lots of threads. 3421 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 3422 { 3423 MemoryRegionInfo &proc_entry_info = *it; 3424 3425 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 3426 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 3427 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 3428 3429 // If the target address comes before this entry, indicate distance to next region. 3430 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 3431 { 3432 range_info.GetRange ().SetRangeBase (load_addr); 3433 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 3434 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 3435 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 3436 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 3437 3438 return error; 3439 } 3440 else if (proc_entry_info.GetRange ().Contains (load_addr)) 3441 { 3442 // The target address is within the memory region we're processing here. 3443 range_info = proc_entry_info; 3444 return error; 3445 } 3446 3447 // The target memory address comes somewhere after the region we just parsed. 3448 } 3449 3450 // If we made it here, we didn't find an entry that contained the given address. 3451 error.SetErrorString ("address comes after final region"); 3452 3453 if (log) 3454 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 3455 3456 return error; 3457 } 3458 3459 void 3460 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 3461 { 3462 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3463 if (log) 3464 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 3465 3466 { 3467 Mutex::Locker locker (m_mem_region_cache_mutex); 3468 if (log) 3469 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 3470 m_mem_region_cache.clear (); 3471 } 3472 } 3473 3474 Error 3475 NativeProcessLinux::AllocateMemory ( 3476 lldb::addr_t size, 3477 uint32_t permissions, 3478 lldb::addr_t &addr) 3479 { 3480 // FIXME implementing this requires the equivalent of 3481 // InferiorCallPOSIX::InferiorCallMmap, which depends on 3482 // functional ThreadPlans working with Native*Protocol. 3483 #if 1 3484 return Error ("not implemented yet"); 3485 #else 3486 addr = LLDB_INVALID_ADDRESS; 3487 3488 unsigned prot = 0; 3489 if (permissions & lldb::ePermissionsReadable) 3490 prot |= eMmapProtRead; 3491 if (permissions & lldb::ePermissionsWritable) 3492 prot |= eMmapProtWrite; 3493 if (permissions & lldb::ePermissionsExecutable) 3494 prot |= eMmapProtExec; 3495 3496 // TODO implement this directly in NativeProcessLinux 3497 // (and lift to NativeProcessPOSIX if/when that class is 3498 // refactored out). 3499 if (InferiorCallMmap(this, addr, 0, size, prot, 3500 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 3501 m_addr_to_mmap_size[addr] = size; 3502 return Error (); 3503 } else { 3504 addr = LLDB_INVALID_ADDRESS; 3505 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 3506 } 3507 #endif 3508 } 3509 3510 Error 3511 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 3512 { 3513 // FIXME see comments in AllocateMemory - required lower-level 3514 // bits not in place yet (ThreadPlans) 3515 return Error ("not implemented"); 3516 } 3517 3518 lldb::addr_t 3519 NativeProcessLinux::GetSharedLibraryInfoAddress () 3520 { 3521 #if 1 3522 // punt on this for now 3523 return LLDB_INVALID_ADDRESS; 3524 #else 3525 // Return the image info address for the exe module 3526 #if 1 3527 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3528 3529 ModuleSP module_sp; 3530 Error error = GetExeModuleSP (module_sp); 3531 if (error.Fail ()) 3532 { 3533 if (log) 3534 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 3535 return LLDB_INVALID_ADDRESS; 3536 } 3537 3538 if (module_sp == nullptr) 3539 { 3540 if (log) 3541 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 3542 return LLDB_INVALID_ADDRESS; 3543 } 3544 3545 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 3546 if (object_file_sp == nullptr) 3547 { 3548 if (log) 3549 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 3550 return LLDB_INVALID_ADDRESS; 3551 } 3552 3553 return obj_file_sp->GetImageInfoAddress(); 3554 #else 3555 Target *target = &GetTarget(); 3556 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 3557 Address addr = obj_file->GetImageInfoAddress(target); 3558 3559 if (addr.IsValid()) 3560 return addr.GetLoadAddress(target); 3561 return LLDB_INVALID_ADDRESS; 3562 #endif 3563 #endif // punt on this for now 3564 } 3565 3566 size_t 3567 NativeProcessLinux::UpdateThreads () 3568 { 3569 // The NativeProcessLinux monitoring threads are always up to date 3570 // with respect to thread state and they keep the thread list 3571 // populated properly. All this method needs to do is return the 3572 // thread count. 3573 Mutex::Locker locker (m_threads_mutex); 3574 return m_threads.size (); 3575 } 3576 3577 bool 3578 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 3579 { 3580 arch = m_arch; 3581 return true; 3582 } 3583 3584 Error 3585 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 3586 { 3587 // FIXME put this behind a breakpoint protocol class that can be 3588 // set per architecture. Need ARM, MIPS support here. 3589 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3590 static const uint8_t g_i386_opcode [] = { 0xCC }; 3591 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3592 3593 switch (m_arch.GetMachine ()) 3594 { 3595 case llvm::Triple::aarch64: 3596 actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode)); 3597 return Error (); 3598 3599 case llvm::Triple::arm: 3600 actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits 3601 return Error (); 3602 3603 case llvm::Triple::x86: 3604 case llvm::Triple::x86_64: 3605 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 3606 return Error (); 3607 3608 case llvm::Triple::mips64: 3609 case llvm::Triple::mips64el: 3610 actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode)); 3611 return Error (); 3612 3613 default: 3614 assert(false && "CPU type not supported!"); 3615 return Error ("CPU type not supported"); 3616 } 3617 } 3618 3619 Error 3620 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 3621 { 3622 if (hardware) 3623 return Error ("NativeProcessLinux does not support hardware breakpoints"); 3624 else 3625 return SetSoftwareBreakpoint (addr, size); 3626 } 3627 3628 Error 3629 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 3630 size_t &actual_opcode_size, 3631 const uint8_t *&trap_opcode_bytes) 3632 { 3633 // FIXME put this behind a breakpoint protocol class that can be set per 3634 // architecture. Need MIPS support here. 3635 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 3636 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 3637 // linux kernel does otherwise. 3638 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 3639 static const uint8_t g_i386_opcode [] = { 0xCC }; 3640 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 3641 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 3642 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 3643 3644 switch (m_arch.GetMachine ()) 3645 { 3646 case llvm::Triple::aarch64: 3647 trap_opcode_bytes = g_aarch64_opcode; 3648 actual_opcode_size = sizeof(g_aarch64_opcode); 3649 return Error (); 3650 3651 case llvm::Triple::arm: 3652 switch (trap_opcode_size_hint) 3653 { 3654 case 2: 3655 trap_opcode_bytes = g_thumb_breakpoint_opcode; 3656 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 3657 return Error (); 3658 case 4: 3659 trap_opcode_bytes = g_arm_breakpoint_opcode; 3660 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 3661 return Error (); 3662 default: 3663 assert(false && "Unrecognised trap opcode size hint!"); 3664 return Error ("Unrecognised trap opcode size hint!"); 3665 } 3666 3667 case llvm::Triple::x86: 3668 case llvm::Triple::x86_64: 3669 trap_opcode_bytes = g_i386_opcode; 3670 actual_opcode_size = sizeof(g_i386_opcode); 3671 return Error (); 3672 3673 case llvm::Triple::mips64: 3674 trap_opcode_bytes = g_mips64_opcode; 3675 actual_opcode_size = sizeof(g_mips64_opcode); 3676 return Error (); 3677 3678 case llvm::Triple::mips64el: 3679 trap_opcode_bytes = g_mips64el_opcode; 3680 actual_opcode_size = sizeof(g_mips64el_opcode); 3681 return Error (); 3682 3683 default: 3684 assert(false && "CPU type not supported!"); 3685 return Error ("CPU type not supported"); 3686 } 3687 } 3688 3689 #if 0 3690 ProcessMessage::CrashReason 3691 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 3692 { 3693 ProcessMessage::CrashReason reason; 3694 assert(info->si_signo == SIGSEGV); 3695 3696 reason = ProcessMessage::eInvalidCrashReason; 3697 3698 switch (info->si_code) 3699 { 3700 default: 3701 assert(false && "unexpected si_code for SIGSEGV"); 3702 break; 3703 case SI_KERNEL: 3704 // Linux will occasionally send spurious SI_KERNEL codes. 3705 // (this is poorly documented in sigaction) 3706 // One way to get this is via unaligned SIMD loads. 3707 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 3708 break; 3709 case SEGV_MAPERR: 3710 reason = ProcessMessage::eInvalidAddress; 3711 break; 3712 case SEGV_ACCERR: 3713 reason = ProcessMessage::ePrivilegedAddress; 3714 break; 3715 } 3716 3717 return reason; 3718 } 3719 #endif 3720 3721 3722 #if 0 3723 ProcessMessage::CrashReason 3724 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 3725 { 3726 ProcessMessage::CrashReason reason; 3727 assert(info->si_signo == SIGILL); 3728 3729 reason = ProcessMessage::eInvalidCrashReason; 3730 3731 switch (info->si_code) 3732 { 3733 default: 3734 assert(false && "unexpected si_code for SIGILL"); 3735 break; 3736 case ILL_ILLOPC: 3737 reason = ProcessMessage::eIllegalOpcode; 3738 break; 3739 case ILL_ILLOPN: 3740 reason = ProcessMessage::eIllegalOperand; 3741 break; 3742 case ILL_ILLADR: 3743 reason = ProcessMessage::eIllegalAddressingMode; 3744 break; 3745 case ILL_ILLTRP: 3746 reason = ProcessMessage::eIllegalTrap; 3747 break; 3748 case ILL_PRVOPC: 3749 reason = ProcessMessage::ePrivilegedOpcode; 3750 break; 3751 case ILL_PRVREG: 3752 reason = ProcessMessage::ePrivilegedRegister; 3753 break; 3754 case ILL_COPROC: 3755 reason = ProcessMessage::eCoprocessorError; 3756 break; 3757 case ILL_BADSTK: 3758 reason = ProcessMessage::eInternalStackError; 3759 break; 3760 } 3761 3762 return reason; 3763 } 3764 #endif 3765 3766 #if 0 3767 ProcessMessage::CrashReason 3768 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 3769 { 3770 ProcessMessage::CrashReason reason; 3771 assert(info->si_signo == SIGFPE); 3772 3773 reason = ProcessMessage::eInvalidCrashReason; 3774 3775 switch (info->si_code) 3776 { 3777 default: 3778 assert(false && "unexpected si_code for SIGFPE"); 3779 break; 3780 case FPE_INTDIV: 3781 reason = ProcessMessage::eIntegerDivideByZero; 3782 break; 3783 case FPE_INTOVF: 3784 reason = ProcessMessage::eIntegerOverflow; 3785 break; 3786 case FPE_FLTDIV: 3787 reason = ProcessMessage::eFloatDivideByZero; 3788 break; 3789 case FPE_FLTOVF: 3790 reason = ProcessMessage::eFloatOverflow; 3791 break; 3792 case FPE_FLTUND: 3793 reason = ProcessMessage::eFloatUnderflow; 3794 break; 3795 case FPE_FLTRES: 3796 reason = ProcessMessage::eFloatInexactResult; 3797 break; 3798 case FPE_FLTINV: 3799 reason = ProcessMessage::eFloatInvalidOperation; 3800 break; 3801 case FPE_FLTSUB: 3802 reason = ProcessMessage::eFloatSubscriptRange; 3803 break; 3804 } 3805 3806 return reason; 3807 } 3808 #endif 3809 3810 #if 0 3811 ProcessMessage::CrashReason 3812 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 3813 { 3814 ProcessMessage::CrashReason reason; 3815 assert(info->si_signo == SIGBUS); 3816 3817 reason = ProcessMessage::eInvalidCrashReason; 3818 3819 switch (info->si_code) 3820 { 3821 default: 3822 assert(false && "unexpected si_code for SIGBUS"); 3823 break; 3824 case BUS_ADRALN: 3825 reason = ProcessMessage::eIllegalAlignment; 3826 break; 3827 case BUS_ADRERR: 3828 reason = ProcessMessage::eIllegalAddress; 3829 break; 3830 case BUS_OBJERR: 3831 reason = ProcessMessage::eHardwareError; 3832 break; 3833 } 3834 3835 return reason; 3836 } 3837 #endif 3838 3839 Error 3840 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3841 { 3842 ReadOperation op(addr, buf, size, bytes_read); 3843 m_monitor_up->DoOperation(&op); 3844 return op.GetError (); 3845 } 3846 3847 Error 3848 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3849 { 3850 WriteOperation op(addr, buf, size, bytes_written); 3851 m_monitor_up->DoOperation(&op); 3852 return op.GetError (); 3853 } 3854 3855 Error 3856 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3857 uint32_t size, RegisterValue &value) 3858 { 3859 ReadRegOperation op(tid, offset, reg_name, value); 3860 m_monitor_up->DoOperation(&op); 3861 return op.GetError(); 3862 } 3863 3864 Error 3865 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3866 const char* reg_name, const RegisterValue &value) 3867 { 3868 WriteRegOperation op(tid, offset, reg_name, value); 3869 m_monitor_up->DoOperation(&op); 3870 return op.GetError(); 3871 } 3872 3873 Error 3874 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3875 { 3876 ReadGPROperation op(tid, buf, buf_size); 3877 m_monitor_up->DoOperation(&op); 3878 return op.GetError(); 3879 } 3880 3881 Error 3882 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3883 { 3884 ReadFPROperation op(tid, buf, buf_size); 3885 m_monitor_up->DoOperation(&op); 3886 return op.GetError(); 3887 } 3888 3889 Error 3890 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3891 { 3892 ReadRegisterSetOperation op(tid, buf, buf_size, regset); 3893 m_monitor_up->DoOperation(&op); 3894 return op.GetError(); 3895 } 3896 3897 Error 3898 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3899 { 3900 WriteGPROperation op(tid, buf, buf_size); 3901 m_monitor_up->DoOperation(&op); 3902 return op.GetError(); 3903 } 3904 3905 Error 3906 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3907 { 3908 WriteFPROperation op(tid, buf, buf_size); 3909 m_monitor_up->DoOperation(&op); 3910 return op.GetError(); 3911 } 3912 3913 Error 3914 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3915 { 3916 WriteRegisterSetOperation op(tid, buf, buf_size, regset); 3917 m_monitor_up->DoOperation(&op); 3918 return op.GetError(); 3919 } 3920 3921 Error 3922 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3923 { 3924 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3925 3926 if (log) 3927 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3928 GetUnixSignals().GetSignalAsCString (signo)); 3929 ResumeOperation op (tid, signo); 3930 m_monitor_up->DoOperation (&op); 3931 if (log) 3932 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false"); 3933 return op.GetError(); 3934 } 3935 3936 Error 3937 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3938 { 3939 SingleStepOperation op(tid, signo); 3940 m_monitor_up->DoOperation(&op); 3941 return op.GetError(); 3942 } 3943 3944 Error 3945 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 3946 { 3947 SiginfoOperation op(tid, siginfo); 3948 m_monitor_up->DoOperation(&op); 3949 return op.GetError(); 3950 } 3951 3952 Error 3953 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3954 { 3955 EventMessageOperation op(tid, message); 3956 m_monitor_up->DoOperation(&op); 3957 return op.GetError(); 3958 } 3959 3960 Error 3961 NativeProcessLinux::Detach(lldb::tid_t tid) 3962 { 3963 if (tid == LLDB_INVALID_THREAD_ID) 3964 return Error(); 3965 3966 DetachOperation op(tid); 3967 m_monitor_up->DoOperation(&op); 3968 return op.GetError(); 3969 } 3970 3971 bool 3972 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3973 { 3974 int target_fd = open(path, flags, 0666); 3975 3976 if (target_fd == -1) 3977 return false; 3978 3979 if (dup2(target_fd, fd) == -1) 3980 return false; 3981 3982 return (close(target_fd) == -1) ? false : true; 3983 } 3984 3985 void 3986 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error) 3987 { 3988 m_monitor_up.reset(new Monitor(initial_operation, this)); 3989 error = m_monitor_up->Initialize(); 3990 if (error.Fail()) { 3991 m_monitor_up.reset(); 3992 } 3993 } 3994 3995 void 3996 NativeProcessLinux::StopMonitor() 3997 { 3998 StopCoordinatorThread (); 3999 m_monitor_up.reset(); 4000 } 4001 4002 Error 4003 NativeProcessLinux::StartCoordinatorThread () 4004 { 4005 Error error; 4006 static const char *g_thread_name = "lldb.process.linux.ts_coordinator"; 4007 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4008 4009 // Skip if thread is already running 4010 if (m_coordinator_thread.IsJoinable()) 4011 { 4012 error.SetErrorString ("ThreadStateCoordinator's run loop is already running"); 4013 if (log) 4014 log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ()); 4015 return error; 4016 } 4017 4018 // Enable verbose logging if lldb thread logging is enabled. 4019 m_coordinator_up->LogEnableEventProcessing (log != nullptr); 4020 4021 if (log) 4022 log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ()); 4023 m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error); 4024 return error; 4025 } 4026 4027 void * 4028 NativeProcessLinux::CoordinatorThread (void *arg) 4029 { 4030 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4031 4032 NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg); 4033 assert (process && "null process passed to CoordinatorThread"); 4034 if (!process) 4035 { 4036 if (log) 4037 log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__); 4038 return nullptr; 4039 } 4040 4041 // Run the thread state coordinator loop until it is done. This call uses 4042 // efficient waiting for an event to be ready. 4043 while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue) 4044 { 4045 } 4046 4047 if (log) 4048 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ()); 4049 4050 return nullptr; 4051 } 4052 4053 void 4054 NativeProcessLinux::StopCoordinatorThread() 4055 { 4056 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4057 if (log) 4058 log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ()); 4059 4060 // Tell the coordinator we're done. This will cause the coordinator 4061 // run loop thread to exit when the processing queue hits this message. 4062 m_coordinator_up->StopCoordinator (); 4063 m_coordinator_thread.Join (nullptr); 4064 } 4065 4066 bool 4067 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 4068 { 4069 for (auto thread_sp : m_threads) 4070 { 4071 assert (thread_sp && "thread list should not contain NULL threads"); 4072 if (thread_sp->GetID () == thread_id) 4073 { 4074 // We have this thread. 4075 return true; 4076 } 4077 } 4078 4079 // We don't have this thread. 4080 return false; 4081 } 4082 4083 NativeThreadProtocolSP 4084 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 4085 { 4086 // CONSIDER organize threads by map - we can do better than linear. 4087 for (auto thread_sp : m_threads) 4088 { 4089 if (thread_sp->GetID () == thread_id) 4090 return thread_sp; 4091 } 4092 4093 // We don't have this thread. 4094 return NativeThreadProtocolSP (); 4095 } 4096 4097 bool 4098 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 4099 { 4100 Mutex::Locker locker (m_threads_mutex); 4101 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 4102 { 4103 if (*it && ((*it)->GetID () == thread_id)) 4104 { 4105 m_threads.erase (it); 4106 return true; 4107 } 4108 } 4109 4110 // Didn't find it. 4111 return false; 4112 } 4113 4114 NativeThreadProtocolSP 4115 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 4116 { 4117 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4118 4119 Mutex::Locker locker (m_threads_mutex); 4120 4121 if (log) 4122 { 4123 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 4124 __FUNCTION__, 4125 GetID (), 4126 thread_id); 4127 } 4128 4129 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 4130 4131 // If this is the first thread, save it as the current thread 4132 if (m_threads.empty ()) 4133 SetCurrentThreadID (thread_id); 4134 4135 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 4136 m_threads.push_back (thread_sp); 4137 4138 return thread_sp; 4139 } 4140 4141 Error 4142 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 4143 { 4144 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 4145 4146 Error error; 4147 4148 // Get a linux thread pointer. 4149 if (!thread_sp) 4150 { 4151 error.SetErrorString ("null thread_sp"); 4152 if (log) 4153 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4154 return error; 4155 } 4156 std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp); 4157 4158 // Find out the size of a breakpoint (might depend on where we are in the code). 4159 NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext (); 4160 if (!context_sp) 4161 { 4162 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 4163 if (log) 4164 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 4165 return error; 4166 } 4167 4168 uint32_t breakpoint_size = 0; 4169 error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size); 4170 if (error.Fail ()) 4171 { 4172 if (log) 4173 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 4174 return error; 4175 } 4176 else 4177 { 4178 if (log) 4179 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 4180 } 4181 4182 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 4183 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 4184 lldb::addr_t breakpoint_addr = initial_pc_addr; 4185 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 4186 { 4187 // Do not allow breakpoint probe to wrap around. 4188 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 4189 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 4190 } 4191 4192 // Check if we stopped because of a breakpoint. 4193 NativeBreakpointSP breakpoint_sp; 4194 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 4195 if (!error.Success () || !breakpoint_sp) 4196 { 4197 // We didn't find one at a software probe location. Nothing to do. 4198 if (log) 4199 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 4200 return Error (); 4201 } 4202 4203 // If the breakpoint is not a software breakpoint, nothing to do. 4204 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 4205 { 4206 if (log) 4207 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 4208 return Error (); 4209 } 4210 4211 // 4212 // We have a software breakpoint and need to adjust the PC. 4213 // 4214 4215 // Sanity check. 4216 if (breakpoint_size == 0) 4217 { 4218 // Nothing to do! How did we get here? 4219 if (log) 4220 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 4221 return Error (); 4222 } 4223 4224 // Change the program counter. 4225 if (log) 4226 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr); 4227 4228 error = context_sp->SetPC (breakpoint_addr); 4229 if (error.Fail ()) 4230 { 4231 if (log) 4232 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ()); 4233 return error; 4234 } 4235 4236 return error; 4237 } 4238 4239 void 4240 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid) 4241 { 4242 const bool is_stopped = true; 4243 m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler); 4244 } 4245 4246 void 4247 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid) 4248 { 4249 m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler); 4250 } 4251 4252 void 4253 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid) 4254 { 4255 m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler); 4256 } 4257 4258 void 4259 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid, 4260 const std::function<void (lldb::tid_t tid)> &call_after_function) 4261 { 4262 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4263 if (log) 4264 log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid); 4265 4266 const lldb::pid_t pid = GetID (); 4267 m_coordinator_up->CallAfterRunningThreadsStop (tid, 4268 [=](lldb::tid_t request_stop_tid) 4269 { 4270 return RequestThreadStop(pid, request_stop_tid); 4271 }, 4272 call_after_function, 4273 CoordinatorErrorHandler); 4274 } 4275 4276 void 4277 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid, 4278 lldb::tid_t skip_stop_request_tid, 4279 const std::function<void (lldb::tid_t tid)> &call_after_function) 4280 { 4281 Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4282 if (log) 4283 log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid); 4284 4285 const lldb::pid_t pid = GetID (); 4286 m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid, 4287 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (), 4288 [=](lldb::tid_t request_stop_tid) 4289 { 4290 return RequestThreadStop(pid, request_stop_tid); 4291 }, 4292 call_after_function, 4293 CoordinatorErrorHandler); 4294 } 4295 4296 Error 4297 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid) 4298 { 4299 Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 4300 if (log) 4301 log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid); 4302 4303 Error err; 4304 errno = 0; 4305 if (::tgkill (pid, tid, SIGSTOP) != 0) 4306 { 4307 err.SetErrorToErrno (); 4308 if (log) 4309 log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ()); 4310 } 4311 4312 return err; 4313 } 4314 4315 Error 4316 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 4317 { 4318 char maps_file_name[32]; 4319 snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID()); 4320 4321 FileSpec maps_file_spec(maps_file_name, false); 4322 if (!maps_file_spec.Exists()) { 4323 file_spec.Clear(); 4324 return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID()); 4325 } 4326 4327 FileSpec module_file_spec(module_path, true); 4328 4329 std::ifstream maps_file(maps_file_name); 4330 std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>()); 4331 StringRef maps_data(maps_data_str.c_str()); 4332 4333 while (!maps_data.empty()) 4334 { 4335 StringRef maps_row; 4336 std::tie(maps_row, maps_data) = maps_data.split('\n'); 4337 4338 SmallVector<StringRef, 16> maps_columns; 4339 maps_row.split(maps_columns, StringRef(" "), -1, false); 4340 4341 if (maps_columns.size() >= 6) 4342 { 4343 file_spec.SetFile(maps_columns[5].str().c_str(), false); 4344 if (file_spec.GetFilename() == module_file_spec.GetFilename()) 4345 return Error(); 4346 } 4347 } 4348 4349 file_spec.Clear(); 4350 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 4351 module_file_spec.GetFilename().AsCString(), GetID()); 4352 } 4353