1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 // C++ Includes
22 #include <fstream>
23 #include <sstream>
24 #include <string>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/Debugger.h"
28 #include "lldb/Core/EmulateInstruction.h"
29 #include "lldb/Core/Error.h"
30 #include "lldb/Core/Module.h"
31 #include "lldb/Core/ModuleSpec.h"
32 #include "lldb/Core/RegisterValue.h"
33 #include "lldb/Core/Scalar.h"
34 #include "lldb/Core/State.h"
35 #include "lldb/Host/common/NativeBreakpoint.h"
36 #include "lldb/Host/common/NativeRegisterContext.h"
37 #include "lldb/Host/Host.h"
38 #include "lldb/Host/HostInfo.h"
39 #include "lldb/Host/HostNativeThread.h"
40 #include "lldb/Host/ThreadLauncher.h"
41 #include "lldb/Symbol/ObjectFile.h"
42 #include "lldb/Target/Process.h"
43 #include "lldb/Target/ProcessLaunchInfo.h"
44 #include "lldb/Utility/LLDBAssert.h"
45 #include "lldb/Utility/PseudoTerminal.h"
46 
47 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
48 #include "Plugins/Process/Utility/LinuxSignals.h"
49 #include "Utility/StringExtractor.h"
50 #include "NativeThreadLinux.h"
51 #include "ProcFileReader.h"
52 #include "Procfs.h"
53 
54 // System includes - They have to be included after framework includes because they define some
55 // macros which collide with variable names in other modules
56 #include <linux/unistd.h>
57 #include <sys/socket.h>
58 
59 #include <sys/types.h>
60 #include <sys/uio.h>
61 #include <sys/user.h>
62 #include <sys/wait.h>
63 
64 #if defined (__arm64__) || defined (__aarch64__)
65 // NT_PRSTATUS and NT_FPREGSET definition
66 #include <elf.h>
67 #endif
68 
69 #include "lldb/Host/linux/Personality.h"
70 #include "lldb/Host/linux/Ptrace.h"
71 #include "lldb/Host/linux/Signalfd.h"
72 #include "lldb/Host/android/Android.h"
73 
74 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
75 
76 // Support hardware breakpoints in case it has not been defined
77 #ifndef TRAP_HWBKPT
78   #define TRAP_HWBKPT 4
79 #endif
80 
81 // We disable the tracing of ptrace calls for integration builds to
82 // avoid the additional indirection and checks.
83 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
84 #define PTRACE(req, pid, addr, data, data_size, error) \
85     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
86 #else
87 #define PTRACE(req, pid, addr, data, data_size, error) \
88     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
89 #endif
90 
91 using namespace lldb;
92 using namespace lldb_private;
93 using namespace lldb_private::process_linux;
94 using namespace llvm;
95 
96 // Private bits we only need internally.
97 namespace
98 {
99     const UnixSignals&
100     GetUnixSignals ()
101     {
102         static process_linux::LinuxSignals signals;
103         return signals;
104     }
105 
106     Error
107     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
108     {
109         // Grab process info for the running process.
110         ProcessInstanceInfo process_info;
111         if (!platform.GetProcessInfo (pid, process_info))
112             return Error("failed to get process info");
113 
114         // Resolve the executable module.
115         ModuleSP exe_module_sp;
116         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
117         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
118         Error error = platform.ResolveExecutable(
119             exe_module_spec,
120             exe_module_sp,
121             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
122 
123         if (!error.Success ())
124             return error;
125 
126         // Check if we've got our architecture from the exe_module.
127         arch = exe_module_sp->GetArchitecture ();
128         if (arch.IsValid ())
129             return Error();
130         else
131             return Error("failed to retrieve a valid architecture from the exe module");
132     }
133 
134     void
135     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
136     {
137         uint8_t *ptr = (uint8_t *)bytes;
138         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
139         for(uint32_t i=0; i<loop_count; i++)
140         {
141             s.Printf ("[%x]", *ptr);
142             ptr++;
143         }
144     }
145 
146     void
147     PtraceDisplayBytes(int &req, void *data, size_t data_size)
148     {
149         StreamString buf;
150         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
151                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
152 
153         if (verbose_log)
154         {
155             switch(req)
156             {
157             case PTRACE_POKETEXT:
158             {
159                 DisplayBytes(buf, &data, 8);
160                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
161                 break;
162             }
163             case PTRACE_POKEDATA:
164             {
165                 DisplayBytes(buf, &data, 8);
166                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
167                 break;
168             }
169             case PTRACE_POKEUSER:
170             {
171                 DisplayBytes(buf, &data, 8);
172                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
173                 break;
174             }
175             case PTRACE_SETREGS:
176             {
177                 DisplayBytes(buf, data, data_size);
178                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
179                 break;
180             }
181             case PTRACE_SETFPREGS:
182             {
183                 DisplayBytes(buf, data, data_size);
184                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
185                 break;
186             }
187             case PTRACE_SETSIGINFO:
188             {
189                 DisplayBytes(buf, data, sizeof(siginfo_t));
190                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
191                 break;
192             }
193             case PTRACE_SETREGSET:
194             {
195                 // Extract iov_base from data, which is a pointer to the struct IOVEC
196                 DisplayBytes(buf, *(void **)data, data_size);
197                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
198                 break;
199             }
200             default:
201             {
202             }
203             }
204         }
205     }
206 
207     // Wrapper for ptrace to catch errors and log calls.
208     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
209     long
210     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
211                   const char* reqName, const char* file, int line)
212     {
213         long int result;
214 
215         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
216 
217         PtraceDisplayBytes(req, data, data_size);
218 
219         error.Clear();
220         errno = 0;
221         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
222             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
223         else
224             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
225 
226         if (result == -1)
227             error.SetErrorToErrno();
228 
229         if (log)
230             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
231                     reqName, pid, addr, data, data_size, result, file, line);
232 
233         PtraceDisplayBytes(req, data, data_size);
234 
235         if (log && error.GetError() != 0)
236         {
237             const char* str;
238             switch (error.GetError())
239             {
240             case ESRCH:  str = "ESRCH"; break;
241             case EINVAL: str = "EINVAL"; break;
242             case EBUSY:  str = "EBUSY"; break;
243             case EPERM:  str = "EPERM"; break;
244             default:     str = error.AsCString();
245             }
246             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
247         }
248 
249         return result;
250     }
251 
252 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
253     // Wrapper for ptrace when logging is not required.
254     // Sets errno to 0 prior to calling ptrace.
255     long
256     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
257     {
258         long result = 0;
259 
260         error.Clear();
261         errno = 0;
262         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
263             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
264         else
265             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
266 
267         if (result == -1)
268             error.SetErrorToErrno();
269         return result;
270     }
271 #endif
272 
273     //------------------------------------------------------------------------------
274     // Static implementations of NativeProcessLinux::ReadMemory and
275     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
276     // functions without needed to go thru the thread funnel.
277 
278     size_t
279     DoReadMemory(
280         lldb::pid_t pid,
281         lldb::addr_t vm_addr,
282         void *buf,
283         size_t size,
284         Error &error)
285     {
286         // ptrace word size is determined by the host, not the child
287         static const unsigned word_size = sizeof(void*);
288         unsigned char *dst = static_cast<unsigned char*>(buf);
289         size_t bytes_read;
290         size_t remainder;
291         long data;
292 
293         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
294         if (log)
295             ProcessPOSIXLog::IncNestLevel();
296         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
297             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
298                     pid, word_size, (void*)vm_addr, buf, size);
299 
300         assert(sizeof(data) >= word_size);
301         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
302         {
303             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
304             if (error.Fail())
305             {
306                 if (log)
307                     ProcessPOSIXLog::DecNestLevel();
308                 return bytes_read;
309             }
310 
311             remainder = size - bytes_read;
312             remainder = remainder > word_size ? word_size : remainder;
313 
314             // Copy the data into our buffer
315             for (unsigned i = 0; i < remainder; ++i)
316                 dst[i] = ((data >> i*8) & 0xFF);
317 
318             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
319                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
320                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
321                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
322             {
323                 uintptr_t print_dst = 0;
324                 // Format bytes from data by moving into print_dst for log output
325                 for (unsigned i = 0; i < remainder; ++i)
326                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
327                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
328                         (void*)vm_addr, print_dst, (unsigned long)data);
329             }
330 
331             vm_addr += word_size;
332             dst += word_size;
333         }
334 
335         if (log)
336             ProcessPOSIXLog::DecNestLevel();
337         return bytes_read;
338     }
339 
340     size_t
341     DoWriteMemory(
342         lldb::pid_t pid,
343         lldb::addr_t vm_addr,
344         const void *buf,
345         size_t size,
346         Error &error)
347     {
348         // ptrace word size is determined by the host, not the child
349         static const unsigned word_size = sizeof(void*);
350         const unsigned char *src = static_cast<const unsigned char*>(buf);
351         size_t bytes_written = 0;
352         size_t remainder;
353 
354         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
355         if (log)
356             ProcessPOSIXLog::IncNestLevel();
357         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
358             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
359                     pid, word_size, (void*)vm_addr, buf, size);
360 
361         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
362         {
363             remainder = size - bytes_written;
364             remainder = remainder > word_size ? word_size : remainder;
365 
366             if (remainder == word_size)
367             {
368                 unsigned long data = 0;
369                 assert(sizeof(data) >= word_size);
370                 for (unsigned i = 0; i < word_size; ++i)
371                     data |= (unsigned long)src[i] << i*8;
372 
373                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
374                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
375                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
376                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
377                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
378                             (void*)vm_addr, *(const unsigned long*)src, data);
379 
380                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
381                 {
382                     if (log)
383                         ProcessPOSIXLog::DecNestLevel();
384                     return bytes_written;
385                 }
386             }
387             else
388             {
389                 unsigned char buff[8];
390                 if (DoReadMemory(pid, vm_addr,
391                                 buff, word_size, error) != word_size)
392                 {
393                     if (log)
394                         ProcessPOSIXLog::DecNestLevel();
395                     return bytes_written;
396                 }
397 
398                 memcpy(buff, src, remainder);
399 
400                 if (DoWriteMemory(pid, vm_addr,
401                                 buff, word_size, error) != word_size)
402                 {
403                     if (log)
404                         ProcessPOSIXLog::DecNestLevel();
405                     return bytes_written;
406                 }
407 
408                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
409                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
410                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
411                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
412                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
413                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
414             }
415 
416             vm_addr += word_size;
417             src += word_size;
418         }
419         if (log)
420             ProcessPOSIXLog::DecNestLevel();
421         return bytes_written;
422     }
423 
424     //------------------------------------------------------------------------------
425     /// @class Operation
426     /// @brief Represents a NativeProcessLinux operation.
427     ///
428     /// Under Linux, it is not possible to ptrace() from any other thread but the
429     /// one that spawned or attached to the process from the start.  Therefore, when
430     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
431     /// process the operation must be "funneled" to a specific thread to perform the
432     /// task.  The Operation class provides an abstract base for all services the
433     /// NativeProcessLinux must perform via the single virtual function Execute, thus
434     /// encapsulating the code that needs to run in the privileged context.
435     class Operation
436     {
437     public:
438         Operation () : m_error() { }
439 
440         virtual
441         ~Operation() {}
442 
443         virtual void
444         Execute (NativeProcessLinux *process) = 0;
445 
446         const Error &
447         GetError () const { return m_error; }
448 
449     protected:
450         Error m_error;
451     };
452 
453     //------------------------------------------------------------------------------
454     /// @class ReadOperation
455     /// @brief Implements NativeProcessLinux::ReadMemory.
456     class ReadOperation : public Operation
457     {
458     public:
459         ReadOperation(
460             lldb::addr_t addr,
461             void *buff,
462             size_t size,
463             size_t &result) :
464             Operation (),
465             m_addr (addr),
466             m_buff (buff),
467             m_size (size),
468             m_result (result)
469             {
470             }
471 
472         void Execute (NativeProcessLinux *process) override;
473 
474     private:
475         lldb::addr_t m_addr;
476         void *m_buff;
477         size_t m_size;
478         size_t &m_result;
479     };
480 
481     void
482     ReadOperation::Execute (NativeProcessLinux *process)
483     {
484         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
485     }
486 
487     //------------------------------------------------------------------------------
488     /// @class WriteOperation
489     /// @brief Implements NativeProcessLinux::WriteMemory.
490     class WriteOperation : public Operation
491     {
492     public:
493         WriteOperation(
494             lldb::addr_t addr,
495             const void *buff,
496             size_t size,
497             size_t &result) :
498             Operation (),
499             m_addr (addr),
500             m_buff (buff),
501             m_size (size),
502             m_result (result)
503             {
504             }
505 
506         void Execute (NativeProcessLinux *process) override;
507 
508     private:
509         lldb::addr_t m_addr;
510         const void *m_buff;
511         size_t m_size;
512         size_t &m_result;
513     };
514 
515     void
516     WriteOperation::Execute(NativeProcessLinux *process)
517     {
518         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
519     }
520 
521     //------------------------------------------------------------------------------
522     /// @class ReadRegOperation
523     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
524     class ReadRegOperation : public Operation
525     {
526     public:
527         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
528                 RegisterValue &value)
529             : m_tid(tid),
530               m_offset(static_cast<uintptr_t> (offset)),
531               m_reg_name(reg_name),
532               m_value(value)
533             { }
534 
535         void Execute(NativeProcessLinux *monitor) override;
536 
537     private:
538         lldb::tid_t m_tid;
539         uintptr_t m_offset;
540         const char *m_reg_name;
541         RegisterValue &m_value;
542     };
543 
544     void
545     ReadRegOperation::Execute(NativeProcessLinux *monitor)
546     {
547 #if defined (__arm64__) || defined (__aarch64__)
548         if (m_offset > sizeof(struct user_pt_regs))
549         {
550             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
551             if (offset > sizeof(struct user_fpsimd_state))
552             {
553                 m_error.SetErrorString("invalid offset value");
554                 return;
555             }
556             elf_fpregset_t regs;
557             int regset = NT_FPREGSET;
558             struct iovec ioVec;
559 
560             ioVec.iov_base = &regs;
561             ioVec.iov_len = sizeof regs;
562             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
563             if (m_error.Success())
564             {
565                 ArchSpec arch;
566                 if (monitor->GetArchitecture(arch))
567                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
568                 else
569                     m_error.SetErrorString("failed to get architecture");
570             }
571         }
572         else
573         {
574             elf_gregset_t regs;
575             int regset = NT_PRSTATUS;
576             struct iovec ioVec;
577 
578             ioVec.iov_base = &regs;
579             ioVec.iov_len = sizeof regs;
580             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
581             if (m_error.Success())
582             {
583                 ArchSpec arch;
584                 if (monitor->GetArchitecture(arch))
585                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
586                 else
587                     m_error.SetErrorString("failed to get architecture");
588             }
589         }
590 #elif defined (__mips__)
591         elf_gregset_t regs;
592         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
593         if (m_error.Success())
594         {
595             lldb_private::ArchSpec arch;
596             if (monitor->GetArchitecture(arch))
597                 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
598             else
599                 m_error.SetErrorString("failed to get architecture");
600         }
601 #else
602         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
603 
604         lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error));
605         if (m_error.Success())
606             m_value = data;
607 
608         if (log)
609             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
610                     m_reg_name, data);
611 #endif
612     }
613 
614     //------------------------------------------------------------------------------
615     /// @class WriteRegOperation
616     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
617     class WriteRegOperation : public Operation
618     {
619     public:
620         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
621                 const RegisterValue &value)
622             : m_tid(tid),
623               m_offset(offset),
624               m_reg_name(reg_name),
625               m_value(value)
626             { }
627 
628         void Execute(NativeProcessLinux *monitor) override;
629 
630     private:
631         lldb::tid_t m_tid;
632         uintptr_t m_offset;
633         const char *m_reg_name;
634         const RegisterValue &m_value;
635     };
636 
637     void
638     WriteRegOperation::Execute(NativeProcessLinux *monitor)
639     {
640 #if defined (__arm64__) || defined (__aarch64__)
641         if (m_offset > sizeof(struct user_pt_regs))
642         {
643             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
644             if (offset > sizeof(struct user_fpsimd_state))
645             {
646                 m_error.SetErrorString("invalid offset value");
647                 return;
648             }
649             elf_fpregset_t regs;
650             int regset = NT_FPREGSET;
651             struct iovec ioVec;
652 
653             ioVec.iov_base = &regs;
654             ioVec.iov_len = sizeof regs;
655             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
656             if (m_error.Success())
657             {
658                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
659                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
660             }
661         }
662         else
663         {
664             elf_gregset_t regs;
665             int regset = NT_PRSTATUS;
666             struct iovec ioVec;
667 
668             ioVec.iov_base = &regs;
669             ioVec.iov_len = sizeof regs;
670             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
671             if (m_error.Success())
672             {
673                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
674                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
675             }
676         }
677 #elif defined (__mips__)
678         elf_gregset_t regs;
679         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
680         if (m_error.Success())
681         {
682             ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
683             PTRACE(PTRACE_SETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
684         }
685 #else
686         void* buf;
687         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
688 
689         buf = (void*) m_value.GetAsUInt64();
690 
691         if (log)
692             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
693         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
694 #endif
695     }
696 
697     //------------------------------------------------------------------------------
698     /// @class ReadGPROperation
699     /// @brief Implements NativeProcessLinux::ReadGPR.
700     class ReadGPROperation : public Operation
701     {
702     public:
703         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
704             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
705             { }
706 
707         void Execute(NativeProcessLinux *monitor) override;
708 
709     private:
710         lldb::tid_t m_tid;
711         void *m_buf;
712         size_t m_buf_size;
713     };
714 
715     void
716     ReadGPROperation::Execute(NativeProcessLinux *monitor)
717     {
718 #if defined (__arm64__) || defined (__aarch64__)
719         int regset = NT_PRSTATUS;
720         struct iovec ioVec;
721 
722         ioVec.iov_base = m_buf;
723         ioVec.iov_len = m_buf_size;
724         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
725 #else
726         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
727 #endif
728     }
729 
730     //------------------------------------------------------------------------------
731     /// @class ReadFPROperation
732     /// @brief Implements NativeProcessLinux::ReadFPR.
733     class ReadFPROperation : public Operation
734     {
735     public:
736         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
737             : m_tid(tid),
738               m_buf(buf),
739               m_buf_size(buf_size)
740             { }
741 
742         void Execute(NativeProcessLinux *monitor) override;
743 
744     private:
745         lldb::tid_t m_tid;
746         void *m_buf;
747         size_t m_buf_size;
748     };
749 
750     void
751     ReadFPROperation::Execute(NativeProcessLinux *monitor)
752     {
753 #if defined (__arm64__) || defined (__aarch64__)
754         int regset = NT_FPREGSET;
755         struct iovec ioVec;
756 
757         ioVec.iov_base = m_buf;
758         ioVec.iov_len = m_buf_size;
759         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
760 #else
761         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
762 #endif
763     }
764 
765     //------------------------------------------------------------------------------
766     /// @class ReadDBGROperation
767     /// @brief Implements NativeProcessLinux::ReadHardwareDebugInfo.
768     class ReadDBGROperation : public Operation
769     {
770     public:
771         ReadDBGROperation(lldb::tid_t tid, unsigned int &count_wp, unsigned int &count_bp)
772             : m_tid(tid),
773               m_count_wp(count_wp),
774               m_count_bp(count_bp)
775             { }
776 
777         void Execute(NativeProcessLinux *monitor) override;
778 
779     private:
780         lldb::tid_t m_tid;
781         unsigned int &m_count_wp;
782         unsigned int &m_count_bp;
783     };
784 
785     void
786     ReadDBGROperation::Execute(NativeProcessLinux *monitor)
787     {
788 #if defined (__arm64__) || defined (__aarch64__)
789        int regset = NT_ARM_HW_WATCH;
790        struct iovec ioVec;
791        struct user_hwdebug_state dreg_state;
792 
793        ioVec.iov_base = &dreg_state;
794        ioVec.iov_len = sizeof (dreg_state);
795 
796        PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, ioVec.iov_len, m_error);
797 
798        m_count_wp = dreg_state.dbg_info & 0xff;
799        regset = NT_ARM_HW_BREAK;
800 
801        PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, ioVec.iov_len, m_error);
802        m_count_bp = dreg_state.dbg_info & 0xff;
803 #endif
804     }
805 
806 
807     //------------------------------------------------------------------------------
808     /// @class ReadRegisterSetOperation
809     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
810     class ReadRegisterSetOperation : public Operation
811     {
812     public:
813         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
814             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
815             { }
816 
817         void Execute(NativeProcessLinux *monitor) override;
818 
819     private:
820         lldb::tid_t m_tid;
821         void *m_buf;
822         size_t m_buf_size;
823         const unsigned int m_regset;
824     };
825 
826     void
827     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
828     {
829         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
830     }
831 
832     //------------------------------------------------------------------------------
833     /// @class WriteGPROperation
834     /// @brief Implements NativeProcessLinux::WriteGPR.
835     class WriteGPROperation : public Operation
836     {
837     public:
838         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
839             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
840             { }
841 
842         void Execute(NativeProcessLinux *monitor) override;
843 
844     private:
845         lldb::tid_t m_tid;
846         void *m_buf;
847         size_t m_buf_size;
848     };
849 
850     void
851     WriteGPROperation::Execute(NativeProcessLinux *monitor)
852     {
853 #if defined (__arm64__) || defined (__aarch64__)
854         int regset = NT_PRSTATUS;
855         struct iovec ioVec;
856 
857         ioVec.iov_base = m_buf;
858         ioVec.iov_len = m_buf_size;
859         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
860 #else
861         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
862 #endif
863     }
864 
865     //------------------------------------------------------------------------------
866     /// @class WriteFPROperation
867     /// @brief Implements NativeProcessLinux::WriteFPR.
868     class WriteFPROperation : public Operation
869     {
870     public:
871         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
872             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
873             { }
874 
875         void Execute(NativeProcessLinux *monitor) override;
876 
877     private:
878         lldb::tid_t m_tid;
879         void *m_buf;
880         size_t m_buf_size;
881     };
882 
883     void
884     WriteFPROperation::Execute(NativeProcessLinux *monitor)
885     {
886 #if defined (__arm64__) || defined (__aarch64__)
887         int regset = NT_FPREGSET;
888         struct iovec ioVec;
889 
890         ioVec.iov_base = m_buf;
891         ioVec.iov_len = m_buf_size;
892         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
893 #else
894         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
895 #endif
896     }
897 
898     //------------------------------------------------------------------------------
899     /// @class WriteDBGROperation
900     /// @brief Implements NativeProcessLinux::WriteHardwareDebugRegs.
901     class WriteDBGROperation : public Operation
902     {
903     public:
904         WriteDBGROperation(lldb::tid_t tid, lldb::addr_t *addr_buf,
905                            uint32_t *cntrl_buf, int type, int count)
906             : m_tid(tid),
907               m_address(addr_buf),
908               m_control(cntrl_buf),
909               m_type(type),
910               m_count(count)
911             { }
912 
913         void Execute(NativeProcessLinux *monitor) override;
914 
915     private:
916         lldb::tid_t m_tid;
917         lldb::addr_t * m_address;
918         uint32_t * m_control;
919         int m_type;
920         int m_count;
921     };
922 
923     void
924     WriteDBGROperation::Execute(NativeProcessLinux *monitor)
925     {
926 #if defined (__arm64__) || defined (__aarch64__)
927         struct iovec ioVec;
928         struct user_hwdebug_state dreg_state;
929 
930         memset (&dreg_state, 0, sizeof (dreg_state));
931         ioVec.iov_base = &dreg_state;
932         ioVec.iov_len = sizeof (dreg_state);
933 
934         if (m_type == 0)
935             m_type = NT_ARM_HW_WATCH;
936         else
937             m_type = NT_ARM_HW_BREAK;
938 
939         for (int i = 0; i < m_count; i++)
940         {
941             dreg_state.dbg_regs[i].addr = m_address[i];
942             dreg_state.dbg_regs[i].ctrl = m_control[i];
943         }
944 
945         PTRACE(PTRACE_SETREGSET, m_tid, &m_type, &ioVec, ioVec.iov_len, m_error);
946 #endif
947     }
948 
949 
950     //------------------------------------------------------------------------------
951     /// @class WriteRegisterSetOperation
952     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
953     class WriteRegisterSetOperation : public Operation
954     {
955     public:
956         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
957             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
958             { }
959 
960         void Execute(NativeProcessLinux *monitor) override;
961 
962     private:
963         lldb::tid_t m_tid;
964         void *m_buf;
965         size_t m_buf_size;
966         const unsigned int m_regset;
967     };
968 
969     void
970     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
971     {
972         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
973     }
974 
975     //------------------------------------------------------------------------------
976     /// @class ResumeOperation
977     /// @brief Implements NativeProcessLinux::Resume.
978     class ResumeOperation : public Operation
979     {
980     public:
981         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
982             m_tid(tid), m_signo(signo) { }
983 
984         void Execute(NativeProcessLinux *monitor) override;
985 
986     private:
987         lldb::tid_t m_tid;
988         uint32_t m_signo;
989     };
990 
991     void
992     ResumeOperation::Execute(NativeProcessLinux *monitor)
993     {
994         intptr_t data = 0;
995 
996         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
997             data = m_signo;
998 
999         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
1000         if (m_error.Fail())
1001         {
1002             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1003 
1004             if (log)
1005                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
1006         }
1007     }
1008 
1009     //------------------------------------------------------------------------------
1010     /// @class SingleStepOperation
1011     /// @brief Implements NativeProcessLinux::SingleStep.
1012     class SingleStepOperation : public Operation
1013     {
1014     public:
1015         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
1016             : m_tid(tid), m_signo(signo) { }
1017 
1018         void Execute(NativeProcessLinux *monitor) override;
1019 
1020     private:
1021         lldb::tid_t m_tid;
1022         uint32_t m_signo;
1023     };
1024 
1025     void
1026     SingleStepOperation::Execute(NativeProcessLinux *monitor)
1027     {
1028         intptr_t data = 0;
1029 
1030         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
1031             data = m_signo;
1032 
1033         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
1034     }
1035 
1036     //------------------------------------------------------------------------------
1037     /// @class SiginfoOperation
1038     /// @brief Implements NativeProcessLinux::GetSignalInfo.
1039     class SiginfoOperation : public Operation
1040     {
1041     public:
1042         SiginfoOperation(lldb::tid_t tid, void *info)
1043             : m_tid(tid), m_info(info) { }
1044 
1045         void Execute(NativeProcessLinux *monitor) override;
1046 
1047     private:
1048         lldb::tid_t m_tid;
1049         void *m_info;
1050     };
1051 
1052     void
1053     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1054     {
1055         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1056     }
1057 
1058     //------------------------------------------------------------------------------
1059     /// @class EventMessageOperation
1060     /// @brief Implements NativeProcessLinux::GetEventMessage.
1061     class EventMessageOperation : public Operation
1062     {
1063     public:
1064         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1065             : m_tid(tid), m_message(message) { }
1066 
1067         void Execute(NativeProcessLinux *monitor) override;
1068 
1069     private:
1070         lldb::tid_t m_tid;
1071         unsigned long *m_message;
1072     };
1073 
1074     void
1075     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1076     {
1077         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1078     }
1079 
1080     class DetachOperation : public Operation
1081     {
1082     public:
1083         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1084 
1085         void Execute(NativeProcessLinux *monitor) override;
1086 
1087     private:
1088         lldb::tid_t m_tid;
1089     };
1090 
1091     void
1092     DetachOperation::Execute(NativeProcessLinux *monitor)
1093     {
1094         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1095     }
1096 } // end of anonymous namespace
1097 
1098 // Simple helper function to ensure flags are enabled on the given file
1099 // descriptor.
1100 static Error
1101 EnsureFDFlags(int fd, int flags)
1102 {
1103     Error error;
1104 
1105     int status = fcntl(fd, F_GETFL);
1106     if (status == -1)
1107     {
1108         error.SetErrorToErrno();
1109         return error;
1110     }
1111 
1112     if (fcntl(fd, F_SETFL, status | flags) == -1)
1113     {
1114         error.SetErrorToErrno();
1115         return error;
1116     }
1117 
1118     return error;
1119 }
1120 
1121 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
1122 // the inferior. The thread consists of a main loop which waits for events and processes them
1123 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
1124 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
1125 //     and dispatch to NativeProcessLinux::MonitorCallback.
1126 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
1127 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
1128 //     pipe, and the completion of the operation is signalled over the semaphore.
1129 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
1130 //     of the command pipe.
1131 class NativeProcessLinux::Monitor
1132 {
1133 private:
1134     // The initial monitor operation (launch or attach). It returns a inferior process id.
1135     std::unique_ptr<InitialOperation> m_initial_operation_up;
1136 
1137     ::pid_t                           m_child_pid = -1;
1138     NativeProcessLinux              * m_native_process;
1139 
1140     enum { READ, WRITE };
1141     int        m_pipefd[2] = {-1, -1};
1142     int        m_signal_fd = -1;
1143     HostThread m_thread;
1144 
1145     // current operation which must be executed on the priviliged thread
1146     Mutex      m_operation_mutex;
1147     Operation *m_operation = nullptr;
1148     sem_t      m_operation_sem;
1149     Error      m_operation_error;
1150 
1151     unsigned   m_operation_nesting_level = 0;
1152 
1153     static constexpr char operation_command   = 'o';
1154     static constexpr char begin_block_command = '{';
1155     static constexpr char end_block_command   = '}';
1156 
1157     void
1158     HandleSignals();
1159 
1160     void
1161     HandleWait();
1162 
1163     // Returns true if the thread should exit.
1164     bool
1165     HandleCommands();
1166 
1167     void
1168     MainLoop();
1169 
1170     static void *
1171     RunMonitor(void *arg);
1172 
1173     Error
1174     WaitForAck();
1175 
1176     void
1177     BeginOperationBlock()
1178     {
1179         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
1180         WaitForAck();
1181     }
1182 
1183     void
1184     EndOperationBlock()
1185     {
1186         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
1187         WaitForAck();
1188     }
1189 
1190 public:
1191     Monitor(const InitialOperation &initial_operation,
1192             NativeProcessLinux *native_process)
1193         : m_initial_operation_up(new InitialOperation(initial_operation)),
1194           m_native_process(native_process)
1195     {
1196         sem_init(&m_operation_sem, 0, 0);
1197     }
1198 
1199     ~Monitor();
1200 
1201     Error
1202     Initialize();
1203 
1204     void
1205     Terminate();
1206 
1207     void
1208     DoOperation(Operation *op);
1209 
1210     class ScopedOperationLock {
1211         Monitor &m_monitor;
1212 
1213     public:
1214         ScopedOperationLock(Monitor &monitor)
1215             : m_monitor(monitor)
1216         { m_monitor.BeginOperationBlock(); }
1217 
1218         ~ScopedOperationLock()
1219         { m_monitor.EndOperationBlock(); }
1220     };
1221 };
1222 constexpr char NativeProcessLinux::Monitor::operation_command;
1223 constexpr char NativeProcessLinux::Monitor::begin_block_command;
1224 constexpr char NativeProcessLinux::Monitor::end_block_command;
1225 
1226 Error
1227 NativeProcessLinux::Monitor::Initialize()
1228 {
1229     Error error;
1230 
1231     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
1232     // listening for these signals over a signalfd file descriptors. This allows us to wait for
1233     // multiple kinds of events with select.
1234     sigset_t signals;
1235     sigemptyset(&signals);
1236     sigaddset(&signals, SIGCHLD);
1237     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
1238     if (m_signal_fd < 0)
1239     {
1240         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
1241                     __FUNCTION__, strerror(errno));
1242 
1243     }
1244 
1245     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
1246     {
1247         error.SetErrorToErrno();
1248         return error;
1249     }
1250 
1251     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
1252         return error;
1253     }
1254 
1255     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
1256     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
1257     if (!m_thread.IsJoinable())
1258         return Error("Failed to create monitor thread for NativeProcessLinux.");
1259 
1260     // Wait for initial operation to complete.
1261     return WaitForAck();
1262 }
1263 
1264 void
1265 NativeProcessLinux::Monitor::DoOperation(Operation *op)
1266 {
1267     if (m_thread.EqualsThread(pthread_self())) {
1268         // If we're on the Monitor thread, we can simply execute the operation.
1269         op->Execute(m_native_process);
1270         return;
1271     }
1272 
1273     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
1274     Mutex::Locker lock(m_operation_mutex);
1275 
1276     m_operation = op;
1277 
1278     // notify the thread that an operation is ready to be processed
1279     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
1280 
1281     WaitForAck();
1282 }
1283 
1284 void
1285 NativeProcessLinux::Monitor::Terminate()
1286 {
1287     if (m_pipefd[WRITE] >= 0)
1288     {
1289         close(m_pipefd[WRITE]);
1290         m_pipefd[WRITE] = -1;
1291     }
1292     if (m_thread.IsJoinable())
1293         m_thread.Join(nullptr);
1294 }
1295 
1296 NativeProcessLinux::Monitor::~Monitor()
1297 {
1298     Terminate();
1299     if (m_pipefd[READ] >= 0)
1300         close(m_pipefd[READ]);
1301     if (m_signal_fd >= 0)
1302         close(m_signal_fd);
1303     sem_destroy(&m_operation_sem);
1304 }
1305 
1306 void
1307 NativeProcessLinux::Monitor::HandleSignals()
1308 {
1309     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1310 
1311     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
1312     // all the information from waitpid(). We just need to read all the signals so that we can
1313     // sleep next time we reach select().
1314     while (true)
1315     {
1316         signalfd_siginfo info;
1317         ssize_t size = read(m_signal_fd, &info, sizeof info);
1318         if (size == -1)
1319         {
1320             if (errno == EAGAIN || errno == EWOULDBLOCK)
1321                 break; // We are done.
1322             if (errno == EINTR)
1323                 continue;
1324             if (log)
1325                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
1326                         __FUNCTION__, strerror(errno));
1327             break;
1328         }
1329         if (size != sizeof info)
1330         {
1331             // We got incomplete information structure. This should not happen, let's just log
1332             // that.
1333             if (log)
1334                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
1335                         "structure size is %zd, read returned %zd bytes",
1336                         __FUNCTION__, sizeof info, size);
1337             break;
1338         }
1339         if (log)
1340             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
1341                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
1342     }
1343 }
1344 
1345 void
1346 NativeProcessLinux::Monitor::HandleWait()
1347 {
1348     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1349     // Process all pending waitpid notifications.
1350     while (true)
1351     {
1352         int status = -1;
1353         ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG);
1354 
1355         if (wait_pid == 0)
1356             break; // We are done.
1357 
1358         if (wait_pid == -1)
1359         {
1360             if (errno == EINTR)
1361                 continue;
1362 
1363             if (log)
1364               log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s",
1365                       __FUNCTION__, m_child_pid, strerror(errno));
1366             break;
1367         }
1368 
1369         bool exited = false;
1370         int signal = 0;
1371         int exit_status = 0;
1372         const char *status_cstr = NULL;
1373         if (WIFSTOPPED(status))
1374         {
1375             signal = WSTOPSIG(status);
1376             status_cstr = "STOPPED";
1377         }
1378         else if (WIFEXITED(status))
1379         {
1380             exit_status = WEXITSTATUS(status);
1381             status_cstr = "EXITED";
1382             exited = true;
1383         }
1384         else if (WIFSIGNALED(status))
1385         {
1386             signal = WTERMSIG(status);
1387             status_cstr = "SIGNALED";
1388             if (wait_pid == abs(m_child_pid)) {
1389                 exited = true;
1390                 exit_status = -1;
1391             }
1392         }
1393         else
1394             status_cstr = "(\?\?\?)";
1395 
1396         if (log)
1397             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)"
1398                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
1399                 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status);
1400 
1401         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
1402     }
1403 }
1404 
1405 bool
1406 NativeProcessLinux::Monitor::HandleCommands()
1407 {
1408     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1409 
1410     while (true)
1411     {
1412         char command = 0;
1413         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
1414         if (size == -1)
1415         {
1416             if (errno == EAGAIN || errno == EWOULDBLOCK)
1417                 return false;
1418             if (errno == EINTR)
1419                 continue;
1420             if (log)
1421                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
1422             return true;
1423         }
1424         if (size == 0) // end of file - write end closed
1425         {
1426             if (log)
1427                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
1428             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
1429             return true; // We are done.
1430         }
1431 
1432         switch (command)
1433         {
1434         case operation_command:
1435             m_operation->Execute(m_native_process);
1436             break;
1437         case begin_block_command:
1438             ++m_operation_nesting_level;
1439             break;
1440         case end_block_command:
1441             assert(m_operation_nesting_level > 0);
1442             --m_operation_nesting_level;
1443             break;
1444         default:
1445             if (log)
1446                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
1447                         __FUNCTION__, command);
1448         }
1449 
1450         // notify calling thread that the command has been processed
1451         sem_post(&m_operation_sem);
1452     }
1453 }
1454 
1455 void
1456 NativeProcessLinux::Monitor::MainLoop()
1457 {
1458     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
1459     m_initial_operation_up.reset();
1460     m_child_pid = -getpgid(child_pid),
1461     sem_post(&m_operation_sem);
1462 
1463     while (true)
1464     {
1465         fd_set fds;
1466         FD_ZERO(&fds);
1467         // Only process waitpid events if we are outside of an operation block. Any pending
1468         // events will be processed after we leave the block.
1469         if (m_operation_nesting_level == 0)
1470             FD_SET(m_signal_fd, &fds);
1471         FD_SET(m_pipefd[READ], &fds);
1472 
1473         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
1474         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
1475         if (r < 0)
1476         {
1477             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1478             if (log)
1479                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
1480                         __FUNCTION__, strerror(errno));
1481             return;
1482         }
1483 
1484         if (FD_ISSET(m_pipefd[READ], &fds))
1485         {
1486             if (HandleCommands())
1487                 return;
1488         }
1489 
1490         if (FD_ISSET(m_signal_fd, &fds))
1491         {
1492             HandleSignals();
1493             HandleWait();
1494         }
1495     }
1496 }
1497 
1498 Error
1499 NativeProcessLinux::Monitor::WaitForAck()
1500 {
1501     Error error;
1502     while (sem_wait(&m_operation_sem) != 0)
1503     {
1504         if (errno == EINTR)
1505             continue;
1506 
1507         error.SetErrorToErrno();
1508         return error;
1509     }
1510 
1511     return m_operation_error;
1512 }
1513 
1514 void *
1515 NativeProcessLinux::Monitor::RunMonitor(void *arg)
1516 {
1517     static_cast<Monitor *>(arg)->MainLoop();
1518     return nullptr;
1519 }
1520 
1521 
1522 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
1523                                        char const **argv,
1524                                        char const **envp,
1525                                        const std::string &stdin_path,
1526                                        const std::string &stdout_path,
1527                                        const std::string &stderr_path,
1528                                        const char *working_dir,
1529                                        const ProcessLaunchInfo &launch_info)
1530     : m_module(module),
1531       m_argv(argv),
1532       m_envp(envp),
1533       m_stdin_path(stdin_path),
1534       m_stdout_path(stdout_path),
1535       m_stderr_path(stderr_path),
1536       m_working_dir(working_dir),
1537       m_launch_info(launch_info)
1538 {
1539 }
1540 
1541 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1542 { }
1543 
1544 // -----------------------------------------------------------------------------
1545 // Public Static Methods
1546 // -----------------------------------------------------------------------------
1547 
1548 Error
1549 NativeProcessLinux::LaunchProcess (
1550     Module *exe_module,
1551     ProcessLaunchInfo &launch_info,
1552     NativeProcessProtocol::NativeDelegate &native_delegate,
1553     NativeProcessProtocolSP &native_process_sp)
1554 {
1555     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1556 
1557     Error error;
1558 
1559     // Verify the working directory is valid if one was specified.
1560     const char* working_dir = launch_info.GetWorkingDirectory ();
1561     if (working_dir)
1562     {
1563       FileSpec working_dir_fs (working_dir, true);
1564       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1565       {
1566           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1567           return error;
1568       }
1569     }
1570 
1571     const FileAction *file_action;
1572 
1573     // Default of NULL will mean to use existing open file descriptors.
1574     std::string stdin_path;
1575     std::string stdout_path;
1576     std::string stderr_path;
1577 
1578     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1579     if (file_action)
1580         stdin_path = file_action->GetPath ();
1581 
1582     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1583     if (file_action)
1584         stdout_path = file_action->GetPath ();
1585 
1586     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1587     if (file_action)
1588         stderr_path = file_action->GetPath ();
1589 
1590     if (log)
1591     {
1592         if (!stdin_path.empty ())
1593             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1594         else
1595             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1596 
1597         if (!stdout_path.empty ())
1598             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1599         else
1600             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1601 
1602         if (!stderr_path.empty ())
1603             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1604         else
1605             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1606     }
1607 
1608     // Create the NativeProcessLinux in launch mode.
1609     native_process_sp.reset (new NativeProcessLinux ());
1610 
1611     if (log)
1612     {
1613         int i = 0;
1614         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1615         {
1616             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1617             ++i;
1618         }
1619     }
1620 
1621     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1622     {
1623         native_process_sp.reset ();
1624         error.SetErrorStringWithFormat ("failed to register the native delegate");
1625         return error;
1626     }
1627 
1628     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1629             exe_module,
1630             launch_info.GetArguments ().GetConstArgumentVector (),
1631             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1632             stdin_path,
1633             stdout_path,
1634             stderr_path,
1635             working_dir,
1636             launch_info,
1637             error);
1638 
1639     if (error.Fail ())
1640     {
1641         native_process_sp.reset ();
1642         if (log)
1643             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1644         return error;
1645     }
1646 
1647     launch_info.SetProcessID (native_process_sp->GetID ());
1648 
1649     return error;
1650 }
1651 
1652 Error
1653 NativeProcessLinux::AttachToProcess (
1654     lldb::pid_t pid,
1655     NativeProcessProtocol::NativeDelegate &native_delegate,
1656     NativeProcessProtocolSP &native_process_sp)
1657 {
1658     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1659     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1660         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1661 
1662     // Grab the current platform architecture.  This should be Linux,
1663     // since this code is only intended to run on a Linux host.
1664     PlatformSP platform_sp (Platform::GetHostPlatform ());
1665     if (!platform_sp)
1666         return Error("failed to get a valid default platform");
1667 
1668     // Retrieve the architecture for the running process.
1669     ArchSpec process_arch;
1670     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1671     if (!error.Success ())
1672         return error;
1673 
1674     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1675 
1676     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1677     {
1678         error.SetErrorStringWithFormat ("failed to register the native delegate");
1679         return error;
1680     }
1681 
1682     native_process_linux_sp->AttachToInferior (pid, error);
1683     if (!error.Success ())
1684         return error;
1685 
1686     native_process_sp = native_process_linux_sp;
1687     return error;
1688 }
1689 
1690 // -----------------------------------------------------------------------------
1691 // Public Instance Methods
1692 // -----------------------------------------------------------------------------
1693 
1694 NativeProcessLinux::NativeProcessLinux () :
1695     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1696     m_arch (),
1697     m_supports_mem_region (eLazyBoolCalculate),
1698     m_mem_region_cache (),
1699     m_mem_region_cache_mutex ()
1700 {
1701 }
1702 
1703 //------------------------------------------------------------------------------
1704 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1705 // Refer to Monitor and Operation classes to see why this is necessary.
1706 //------------------------------------------------------------------------------
1707 void
1708 NativeProcessLinux::LaunchInferior (
1709     Module *module,
1710     const char *argv[],
1711     const char *envp[],
1712     const std::string &stdin_path,
1713     const std::string &stdout_path,
1714     const std::string &stderr_path,
1715     const char *working_dir,
1716     const ProcessLaunchInfo &launch_info,
1717     Error &error)
1718 {
1719     if (module)
1720         m_arch = module->GetArchitecture ();
1721 
1722     SetState (eStateLaunching);
1723 
1724     std::unique_ptr<LaunchArgs> args(
1725         new LaunchArgs(
1726             module, argv, envp,
1727             stdin_path, stdout_path, stderr_path,
1728             working_dir, launch_info));
1729 
1730     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1731     if (!error.Success ())
1732         return;
1733 }
1734 
1735 void
1736 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1737 {
1738     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1739     if (log)
1740         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1741 
1742     // We can use the Host for everything except the ResolveExecutable portion.
1743     PlatformSP platform_sp = Platform::GetHostPlatform ();
1744     if (!platform_sp)
1745     {
1746         if (log)
1747             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1748         error.SetErrorString ("no default platform available");
1749         return;
1750     }
1751 
1752     // Gather info about the process.
1753     ProcessInstanceInfo process_info;
1754     if (!platform_sp->GetProcessInfo (pid, process_info))
1755     {
1756         if (log)
1757             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1758         error.SetErrorString ("failed to get process info");
1759         return;
1760     }
1761 
1762     // Resolve the executable module
1763     ModuleSP exe_module_sp;
1764     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1765     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1766     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1767                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1768     if (!error.Success())
1769         return;
1770 
1771     // Set the architecture to the exe architecture.
1772     m_arch = exe_module_sp->GetArchitecture();
1773     if (log)
1774         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1775 
1776     m_pid = pid;
1777     SetState(eStateAttaching);
1778 
1779     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1780     if (!error.Success ())
1781         return;
1782 }
1783 
1784 void
1785 NativeProcessLinux::Terminate ()
1786 {
1787     m_monitor_up->Terminate();
1788 }
1789 
1790 ::pid_t
1791 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1792 {
1793     assert (args && "null args");
1794 
1795     const char **argv = args->m_argv;
1796     const char **envp = args->m_envp;
1797     const char *working_dir = args->m_working_dir;
1798 
1799     lldb_utility::PseudoTerminal terminal;
1800     const size_t err_len = 1024;
1801     char err_str[err_len];
1802     lldb::pid_t pid;
1803     NativeThreadProtocolSP thread_sp;
1804 
1805     lldb::ThreadSP inferior;
1806 
1807     // Propagate the environment if one is not supplied.
1808     if (envp == NULL || envp[0] == NULL)
1809         envp = const_cast<const char **>(environ);
1810 
1811     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1812     {
1813         error.SetErrorToGenericError();
1814         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1815         return -1;
1816     }
1817 
1818     // Recognized child exit status codes.
1819     enum {
1820         ePtraceFailed = 1,
1821         eDupStdinFailed,
1822         eDupStdoutFailed,
1823         eDupStderrFailed,
1824         eChdirFailed,
1825         eExecFailed,
1826         eSetGidFailed
1827     };
1828 
1829     // Child process.
1830     if (pid == 0)
1831     {
1832         // FIXME consider opening a pipe between parent/child and have this forked child
1833         // send log info to parent re: launch status, in place of the log lines removed here.
1834 
1835         // Start tracing this child that is about to exec.
1836         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1837         if (error.Fail())
1838             exit(ePtraceFailed);
1839 
1840         // terminal has already dupped the tty descriptors to stdin/out/err.
1841         // This closes original fd from which they were copied (and avoids
1842         // leaking descriptors to the debugged process.
1843         terminal.CloseSlaveFileDescriptor();
1844 
1845         // Do not inherit setgid powers.
1846         if (setgid(getgid()) != 0)
1847             exit(eSetGidFailed);
1848 
1849         // Attempt to have our own process group.
1850         if (setpgid(0, 0) != 0)
1851         {
1852             // FIXME log that this failed. This is common.
1853             // Don't allow this to prevent an inferior exec.
1854         }
1855 
1856         // Dup file descriptors if needed.
1857         if (!args->m_stdin_path.empty ())
1858             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1859                 exit(eDupStdinFailed);
1860 
1861         if (!args->m_stdout_path.empty ())
1862             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1863                 exit(eDupStdoutFailed);
1864 
1865         if (!args->m_stderr_path.empty ())
1866             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1867                 exit(eDupStderrFailed);
1868 
1869         // Close everything besides stdin, stdout, and stderr that has no file
1870         // action to avoid leaking
1871         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1872             if (!args->m_launch_info.GetFileActionForFD(fd))
1873                 close(fd);
1874 
1875         // Change working directory
1876         if (working_dir != NULL && working_dir[0])
1877           if (0 != ::chdir(working_dir))
1878               exit(eChdirFailed);
1879 
1880         // Disable ASLR if requested.
1881         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1882         {
1883             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1884             if (old_personality == -1)
1885             {
1886                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1887             }
1888             else
1889             {
1890                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1891                 if (new_personality == -1)
1892                 {
1893                     // Disabling ASLR failed.
1894                 }
1895                 else
1896                 {
1897                     // Disabling ASLR succeeded.
1898                 }
1899             }
1900         }
1901 
1902         // Execute.  We should never return...
1903         execve(argv[0],
1904                const_cast<char *const *>(argv),
1905                const_cast<char *const *>(envp));
1906 
1907         // ...unless exec fails.  In which case we definitely need to end the child here.
1908         exit(eExecFailed);
1909     }
1910 
1911     //
1912     // This is the parent code here.
1913     //
1914     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1915 
1916     // Wait for the child process to trap on its call to execve.
1917     ::pid_t wpid;
1918     int status;
1919     if ((wpid = waitpid(pid, &status, 0)) < 0)
1920     {
1921         error.SetErrorToErrno();
1922         if (log)
1923             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1924                     __FUNCTION__, error.AsCString ());
1925 
1926         // Mark the inferior as invalid.
1927         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1928         SetState (StateType::eStateInvalid);
1929 
1930         return -1;
1931     }
1932     else if (WIFEXITED(status))
1933     {
1934         // open, dup or execve likely failed for some reason.
1935         error.SetErrorToGenericError();
1936         switch (WEXITSTATUS(status))
1937         {
1938             case ePtraceFailed:
1939                 error.SetErrorString("Child ptrace failed.");
1940                 break;
1941             case eDupStdinFailed:
1942                 error.SetErrorString("Child open stdin failed.");
1943                 break;
1944             case eDupStdoutFailed:
1945                 error.SetErrorString("Child open stdout failed.");
1946                 break;
1947             case eDupStderrFailed:
1948                 error.SetErrorString("Child open stderr failed.");
1949                 break;
1950             case eChdirFailed:
1951                 error.SetErrorString("Child failed to set working directory.");
1952                 break;
1953             case eExecFailed:
1954                 error.SetErrorString("Child exec failed.");
1955                 break;
1956             case eSetGidFailed:
1957                 error.SetErrorString("Child setgid failed.");
1958                 break;
1959             default:
1960                 error.SetErrorString("Child returned unknown exit status.");
1961                 break;
1962         }
1963 
1964         if (log)
1965         {
1966             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1967                     __FUNCTION__,
1968                     WEXITSTATUS(status));
1969         }
1970 
1971         // Mark the inferior as invalid.
1972         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1973         SetState (StateType::eStateInvalid);
1974 
1975         return -1;
1976     }
1977     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1978            "Could not sync with inferior process.");
1979 
1980     if (log)
1981         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1982 
1983     error = SetDefaultPtraceOpts(pid);
1984     if (error.Fail())
1985     {
1986         if (log)
1987             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1988                     __FUNCTION__, error.AsCString ());
1989 
1990         // Mark the inferior as invalid.
1991         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1992         SetState (StateType::eStateInvalid);
1993 
1994         return -1;
1995     }
1996 
1997     // Release the master terminal descriptor and pass it off to the
1998     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1999     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
2000     m_pid = pid;
2001 
2002     // Set the terminal fd to be in non blocking mode (it simplifies the
2003     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
2004     // descriptor to read from).
2005     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
2006     if (error.Fail())
2007     {
2008         if (log)
2009             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
2010                     __FUNCTION__, error.AsCString ());
2011 
2012         // Mark the inferior as invalid.
2013         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
2014         SetState (StateType::eStateInvalid);
2015 
2016         return -1;
2017     }
2018 
2019     if (log)
2020         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
2021 
2022     thread_sp = AddThread (pid);
2023     assert (thread_sp && "AddThread() returned a nullptr thread");
2024     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2025     ThreadWasCreated(pid);
2026 
2027     // Let our process instance know the thread has stopped.
2028     SetCurrentThreadID (thread_sp->GetID ());
2029     SetState (StateType::eStateStopped);
2030 
2031     if (log)
2032     {
2033         if (error.Success ())
2034         {
2035             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
2036         }
2037         else
2038         {
2039             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
2040                 __FUNCTION__, error.AsCString ());
2041             return -1;
2042         }
2043     }
2044     return pid;
2045 }
2046 
2047 ::pid_t
2048 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
2049 {
2050     lldb::ThreadSP inferior;
2051     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2052 
2053     // Use a map to keep track of the threads which we have attached/need to attach.
2054     Host::TidMap tids_to_attach;
2055     if (pid <= 1)
2056     {
2057         error.SetErrorToGenericError();
2058         error.SetErrorString("Attaching to process 1 is not allowed.");
2059         return -1;
2060     }
2061 
2062     while (Host::FindProcessThreads(pid, tids_to_attach))
2063     {
2064         for (Host::TidMap::iterator it = tids_to_attach.begin();
2065              it != tids_to_attach.end();)
2066         {
2067             if (it->second == false)
2068             {
2069                 lldb::tid_t tid = it->first;
2070 
2071                 // Attach to the requested process.
2072                 // An attach will cause the thread to stop with a SIGSTOP.
2073                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
2074                 if (error.Fail())
2075                 {
2076                     // No such thread. The thread may have exited.
2077                     // More error handling may be needed.
2078                     if (error.GetError() == ESRCH)
2079                     {
2080                         it = tids_to_attach.erase(it);
2081                         continue;
2082                     }
2083                     else
2084                         return -1;
2085                 }
2086 
2087                 int status;
2088                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
2089                 // At this point we should have a thread stopped if waitpid succeeds.
2090                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
2091                 {
2092                     // No such thread. The thread may have exited.
2093                     // More error handling may be needed.
2094                     if (errno == ESRCH)
2095                     {
2096                         it = tids_to_attach.erase(it);
2097                         continue;
2098                     }
2099                     else
2100                     {
2101                         error.SetErrorToErrno();
2102                         return -1;
2103                     }
2104                 }
2105 
2106                 error = SetDefaultPtraceOpts(tid);
2107                 if (error.Fail())
2108                     return -1;
2109 
2110                 if (log)
2111                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
2112 
2113                 it->second = true;
2114 
2115                 // Create the thread, mark it as stopped.
2116                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
2117                 assert (thread_sp && "AddThread() returned a nullptr");
2118 
2119                 // This will notify this is a new thread and tell the system it is stopped.
2120                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2121                 ThreadWasCreated(tid);
2122                 SetCurrentThreadID (thread_sp->GetID ());
2123             }
2124 
2125             // move the loop forward
2126             ++it;
2127         }
2128     }
2129 
2130     if (tids_to_attach.size() > 0)
2131     {
2132         m_pid = pid;
2133         // Let our process instance know the thread has stopped.
2134         SetState (StateType::eStateStopped);
2135     }
2136     else
2137     {
2138         error.SetErrorToGenericError();
2139         error.SetErrorString("No such process.");
2140         return -1;
2141     }
2142 
2143     return pid;
2144 }
2145 
2146 Error
2147 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
2148 {
2149     long ptrace_opts = 0;
2150 
2151     // Have the child raise an event on exit.  This is used to keep the child in
2152     // limbo until it is destroyed.
2153     ptrace_opts |= PTRACE_O_TRACEEXIT;
2154 
2155     // Have the tracer trace threads which spawn in the inferior process.
2156     // TODO: if we want to support tracing the inferiors' child, add the
2157     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
2158     ptrace_opts |= PTRACE_O_TRACECLONE;
2159 
2160     // Have the tracer notify us before execve returns
2161     // (needed to disable legacy SIGTRAP generation)
2162     ptrace_opts |= PTRACE_O_TRACEEXEC;
2163 
2164     Error error;
2165     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
2166     return error;
2167 }
2168 
2169 static ExitType convert_pid_status_to_exit_type (int status)
2170 {
2171     if (WIFEXITED (status))
2172         return ExitType::eExitTypeExit;
2173     else if (WIFSIGNALED (status))
2174         return ExitType::eExitTypeSignal;
2175     else if (WIFSTOPPED (status))
2176         return ExitType::eExitTypeStop;
2177     else
2178     {
2179         // We don't know what this is.
2180         return ExitType::eExitTypeInvalid;
2181     }
2182 }
2183 
2184 static int convert_pid_status_to_return_code (int status)
2185 {
2186     if (WIFEXITED (status))
2187         return WEXITSTATUS (status);
2188     else if (WIFSIGNALED (status))
2189         return WTERMSIG (status);
2190     else if (WIFSTOPPED (status))
2191         return WSTOPSIG (status);
2192     else
2193     {
2194         // We don't know what this is.
2195         return ExitType::eExitTypeInvalid;
2196     }
2197 }
2198 
2199 // Handles all waitpid events from the inferior process.
2200 void
2201 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
2202                                     bool exited,
2203                                     int signal,
2204                                     int status)
2205 {
2206     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
2207 
2208     // Certain activities differ based on whether the pid is the tid of the main thread.
2209     const bool is_main_thread = (pid == GetID ());
2210 
2211     // Handle when the thread exits.
2212     if (exited)
2213     {
2214         if (log)
2215             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
2216 
2217         // This is a thread that exited.  Ensure we're not tracking it anymore.
2218         const bool thread_found = StopTrackingThread (pid);
2219 
2220         if (is_main_thread)
2221         {
2222             // We only set the exit status and notify the delegate if we haven't already set the process
2223             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
2224             // for the main thread.
2225             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
2226             if (!already_notified)
2227             {
2228                 if (log)
2229                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
2230                 // The main thread exited.  We're done monitoring.  Report to delegate.
2231                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2232 
2233                 // Notify delegate that our process has exited.
2234                 SetState (StateType::eStateExited, true);
2235             }
2236             else
2237             {
2238                 if (log)
2239                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2240             }
2241         }
2242         else
2243         {
2244             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
2245             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
2246             // and we would have done an all-stop then.
2247             if (log)
2248                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2249         }
2250         return;
2251     }
2252 
2253     // Get details on the signal raised.
2254     siginfo_t info;
2255     const auto err = GetSignalInfo(pid, &info);
2256     if (err.Success())
2257     {
2258         // We have retrieved the signal info.  Dispatch appropriately.
2259         if (info.si_signo == SIGTRAP)
2260             MonitorSIGTRAP(&info, pid);
2261         else
2262             MonitorSignal(&info, pid, exited);
2263     }
2264     else
2265     {
2266         if (err.GetError() == EINVAL)
2267         {
2268             // This is a group stop reception for this tid.
2269             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
2270             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
2271             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
2272             // generally not needed (one use case is debugging background task being managed by a
2273             // shell). For general use, it is sufficient to stop the process in a signal-delivery
2274             // stop which happens before the group stop. This done by MonitorSignal and works
2275             // correctly for all signals.
2276             if (log)
2277                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
2278             Resume(pid, signal);
2279         }
2280         else
2281         {
2282             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2283 
2284             // A return value of ESRCH means the thread/process is no longer on the system,
2285             // so it was killed somehow outside of our control.  Either way, we can't do anything
2286             // with it anymore.
2287 
2288             // Stop tracking the metadata for the thread since it's entirely off the system now.
2289             const bool thread_found = StopTrackingThread (pid);
2290 
2291             if (log)
2292                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2293                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2294 
2295             if (is_main_thread)
2296             {
2297                 // Notify the delegate - our process is not available but appears to have been killed outside
2298                 // our control.  Is eStateExited the right exit state in this case?
2299                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2300                 SetState (StateType::eStateExited, true);
2301             }
2302             else
2303             {
2304                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2305                 if (log)
2306                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
2307             }
2308         }
2309     }
2310 }
2311 
2312 void
2313 NativeProcessLinux::WaitForNewThread(::pid_t tid)
2314 {
2315     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2316 
2317     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
2318 
2319     if (new_thread_sp)
2320     {
2321         // We are already tracking the thread - we got the event on the new thread (see
2322         // MonitorSignal) before this one. We are done.
2323         return;
2324     }
2325 
2326     // The thread is not tracked yet, let's wait for it to appear.
2327     int status = -1;
2328     ::pid_t wait_pid;
2329     do
2330     {
2331         if (log)
2332             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
2333         wait_pid = waitpid(tid, &status, __WALL);
2334     }
2335     while (wait_pid == -1 && errno == EINTR);
2336     // Since we are waiting on a specific tid, this must be the creation event. But let's do
2337     // some checks just in case.
2338     if (wait_pid != tid) {
2339         if (log)
2340             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
2341         // The only way I know of this could happen is if the whole process was
2342         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
2343         return;
2344     }
2345     if (WIFEXITED(status))
2346     {
2347         if (log)
2348             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
2349         // Also a very improbable event.
2350         return;
2351     }
2352 
2353     siginfo_t info;
2354     Error error = GetSignalInfo(tid, &info);
2355     if (error.Fail())
2356     {
2357         if (log)
2358             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
2359         return;
2360     }
2361 
2362     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
2363     {
2364         // We should be getting a thread creation signal here, but we received something
2365         // else. There isn't much we can do about it now, so we will just log that. Since the
2366         // thread is alive and we are receiving events from it, we shall pretend that it was
2367         // created properly.
2368         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
2369     }
2370 
2371     if (log)
2372         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
2373                  __FUNCTION__, GetID (), tid);
2374 
2375     new_thread_sp = AddThread(tid);
2376     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
2377     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
2378     ThreadWasCreated(tid);
2379 }
2380 
2381 void
2382 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2383 {
2384     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2385     const bool is_main_thread = (pid == GetID ());
2386 
2387     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2388     if (!info)
2389         return;
2390 
2391     Mutex::Locker locker (m_threads_mutex);
2392 
2393     // See if we can find a thread for this signal.
2394     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2395     if (!thread_sp)
2396     {
2397         if (log)
2398             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2399     }
2400 
2401     switch (info->si_code)
2402     {
2403     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2404     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2405     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2406 
2407     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2408     {
2409         // This is the notification on the parent thread which informs us of new thread
2410         // creation.
2411         // We don't want to do anything with the parent thread so we just resume it. In case we
2412         // want to implement "break on thread creation" functionality, we would need to stop
2413         // here.
2414 
2415         unsigned long event_message = 0;
2416         if (GetEventMessage (pid, &event_message).Fail())
2417         {
2418             if (log)
2419                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2420         } else
2421             WaitForNewThread(event_message);
2422 
2423         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2424         break;
2425     }
2426 
2427     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2428     {
2429         NativeThreadProtocolSP main_thread_sp;
2430         if (log)
2431             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2432 
2433         // Exec clears any pending notifications.
2434         m_pending_notification_up.reset ();
2435 
2436         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2437         if (log)
2438             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2439 
2440         for (auto thread_sp : m_threads)
2441         {
2442             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2443             if (is_main_thread)
2444             {
2445                 main_thread_sp = thread_sp;
2446                 if (log)
2447                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2448             }
2449             else
2450             {
2451                 // Tell thread coordinator this thread is dead.
2452                 if (log)
2453                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2454             }
2455         }
2456 
2457         m_threads.clear ();
2458 
2459         if (main_thread_sp)
2460         {
2461             m_threads.push_back (main_thread_sp);
2462             SetCurrentThreadID (main_thread_sp->GetID ());
2463             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
2464         }
2465         else
2466         {
2467             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2468             if (log)
2469                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2470         }
2471 
2472         // Tell coordinator about about the "new" (since exec) stopped main thread.
2473         const lldb::tid_t main_thread_tid = GetID ();
2474         ThreadWasCreated(main_thread_tid);
2475 
2476         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2477         // Consider a handler that can execute when that happens.
2478         // Let our delegate know we have just exec'd.
2479         NotifyDidExec ();
2480 
2481         // If we have a main thread, indicate we are stopped.
2482         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2483 
2484         // Let the process know we're stopped.
2485         StopRunningThreads (pid);
2486 
2487         break;
2488     }
2489 
2490     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2491     {
2492         // The inferior process or one of its threads is about to exit.
2493         // We don't want to do anything with the thread so we just resume it. In case we
2494         // want to implement "break on thread exit" functionality, we would need to stop
2495         // here.
2496 
2497         unsigned long data = 0;
2498         if (GetEventMessage(pid, &data).Fail())
2499             data = -1;
2500 
2501         if (log)
2502         {
2503             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2504                          __FUNCTION__,
2505                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2506                          pid,
2507                     is_main_thread ? "is main thread" : "not main thread");
2508         }
2509 
2510         if (is_main_thread)
2511         {
2512             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2513         }
2514 
2515         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
2516 
2517         break;
2518     }
2519 
2520     case 0:
2521     case TRAP_TRACE:  // We receive this on single stepping.
2522     case TRAP_HWBKPT: // We receive this on watchpoint hit
2523         if (thread_sp)
2524         {
2525             // If a watchpoint was hit, report it
2526             uint32_t wp_index;
2527             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
2528             if (error.Fail() && log)
2529                 log->Printf("NativeProcessLinux::%s() "
2530                             "received error while checking for watchpoint hits, "
2531                             "pid = %" PRIu64 " error = %s",
2532                             __FUNCTION__, pid, error.AsCString());
2533             if (wp_index != LLDB_INVALID_INDEX32)
2534             {
2535                 MonitorWatchpoint(pid, thread_sp, wp_index);
2536                 break;
2537             }
2538         }
2539         // Otherwise, report step over
2540         MonitorTrace(pid, thread_sp);
2541         break;
2542 
2543     case SI_KERNEL:
2544     case TRAP_BRKPT:
2545         MonitorBreakpoint(pid, thread_sp);
2546         break;
2547 
2548     case SIGTRAP:
2549     case (SIGTRAP | 0x80):
2550         if (log)
2551             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2552 
2553         // Ignore these signals until we know more about them.
2554         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
2555         break;
2556 
2557     default:
2558         assert(false && "Unexpected SIGTRAP code!");
2559         if (log)
2560             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
2561                     __FUNCTION__, GetID (), pid, info->si_code);
2562         break;
2563 
2564     }
2565 }
2566 
2567 void
2568 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2569 {
2570     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2571     if (log)
2572         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2573                 __FUNCTION__, pid);
2574 
2575     if (thread_sp)
2576         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2577 
2578     // This thread is currently stopped.
2579     ThreadDidStop(pid, false);
2580 
2581     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2582     // This would have already happened at the time the Resume() with step operation was signaled.
2583     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2584     // once all running threads have checked in as stopped.
2585     SetCurrentThreadID(pid);
2586     // Tell the process we have a stop (from software breakpoint).
2587     StopRunningThreads(pid);
2588 }
2589 
2590 void
2591 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2592 {
2593     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2594     if (log)
2595         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2596                 __FUNCTION__, pid);
2597 
2598     // This thread is currently stopped.
2599     ThreadDidStop(pid, false);
2600 
2601     // Mark the thread as stopped at breakpoint.
2602     if (thread_sp)
2603     {
2604         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2605         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2606         if (error.Fail())
2607             if (log)
2608                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2609                         __FUNCTION__, pid, error.AsCString());
2610 
2611         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
2612             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2613     }
2614     else
2615         if (log)
2616             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2617                     "warning, cannot process software breakpoint since no thread metadata",
2618                     __FUNCTION__, pid);
2619 
2620 
2621     // We need to tell all other running threads before we notify the delegate about this stop.
2622     StopRunningThreads(pid);
2623 }
2624 
2625 void
2626 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2627 {
2628     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2629     if (log)
2630         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2631                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2632                     __FUNCTION__, pid, wp_index);
2633 
2634     // This thread is currently stopped.
2635     ThreadDidStop(pid, false);
2636 
2637     // Mark the thread as stopped at watchpoint.
2638     // The address is at (lldb::addr_t)info->si_addr if we need it.
2639     lldbassert(thread_sp && "thread_sp cannot be NULL");
2640     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2641 
2642     // We need to tell all other running threads before we notify the delegate about this stop.
2643     StopRunningThreads(pid);
2644 }
2645 
2646 void
2647 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2648 {
2649     assert (info && "null info");
2650     if (!info)
2651         return;
2652 
2653     const int signo = info->si_signo;
2654     const bool is_from_llgs = info->si_pid == getpid ();
2655 
2656     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2657 
2658     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2659     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2660     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2661     //
2662     // IOW, user generated signals never generate what we consider to be a
2663     // "crash".
2664     //
2665     // Similarly, ACK signals generated by this monitor.
2666 
2667     Mutex::Locker locker (m_threads_mutex);
2668 
2669     // See if we can find a thread for this signal.
2670     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2671     if (!thread_sp)
2672     {
2673         if (log)
2674             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2675     }
2676 
2677     // Handle the signal.
2678     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2679     {
2680         if (log)
2681             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2682                             __FUNCTION__,
2683                             GetUnixSignals ().GetSignalAsCString (signo),
2684                             signo,
2685                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2686                             info->si_pid,
2687                             is_from_llgs ? "from llgs" : "not from llgs",
2688                             pid);
2689     }
2690 
2691     // Check for new thread notification.
2692     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2693     {
2694         // A new thread creation is being signaled. This is one of two parts that come in
2695         // a non-deterministic order. This code handles the case where the new thread event comes
2696         // before the event on the parent thread. For the opposite case see code in
2697         // MonitorSIGTRAP.
2698         if (log)
2699             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2700                      __FUNCTION__, GetID (), pid);
2701 
2702         thread_sp = AddThread(pid);
2703         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2704         // We can now resume the newly created thread.
2705         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2706         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2707         ThreadWasCreated(pid);
2708         // Done handling.
2709         return;
2710     }
2711 
2712     // Check for thread stop notification.
2713     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2714     {
2715         // This is a tgkill()-based stop.
2716         if (thread_sp)
2717         {
2718             if (log)
2719                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2720                              __FUNCTION__,
2721                              GetID (),
2722                              pid);
2723 
2724             // Check that we're not already marked with a stop reason.
2725             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2726             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2727             // and that, without an intervening resume, we received another stop.  It is more likely
2728             // that we are missing the marking of a run state somewhere if we find that the thread was
2729             // marked as stopped.
2730             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2731             assert (linux_thread_sp && "linux_thread_sp is null!");
2732 
2733             const StateType thread_state = linux_thread_sp->GetState ();
2734             if (!StateIsStoppedState (thread_state, false))
2735             {
2736                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2737                 // Generally, these are not important stops and we don't want to report them as
2738                 // they are just used to stop other threads when one thread (the one with the
2739                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2740                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2741                 // leave the signal intact if this is the thread that was chosen as the
2742                 // triggering thread.
2743                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2744                     linux_thread_sp->SetStoppedBySignal(SIGSTOP);
2745                 else
2746                     linux_thread_sp->SetStoppedBySignal(0);
2747 
2748                 SetCurrentThreadID (thread_sp->GetID ());
2749                 ThreadDidStop (thread_sp->GetID (), true);
2750             }
2751             else
2752             {
2753                 if (log)
2754                 {
2755                     // Retrieve the signal name if the thread was stopped by a signal.
2756                     int stop_signo = 0;
2757                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2758                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2759                     if (!signal_name)
2760                         signal_name = "<no-signal-name>";
2761 
2762                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2763                                  __FUNCTION__,
2764                                  GetID (),
2765                                  linux_thread_sp->GetID (),
2766                                  StateAsCString (thread_state),
2767                                  stop_signo,
2768                                  signal_name);
2769                 }
2770                 ThreadDidStop (thread_sp->GetID (), false);
2771             }
2772         }
2773 
2774         // Done handling.
2775         return;
2776     }
2777 
2778     if (log)
2779         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2780 
2781     // This thread is stopped.
2782     ThreadDidStop (pid, false);
2783 
2784     switch (signo)
2785     {
2786     case SIGSEGV:
2787     case SIGILL:
2788     case SIGFPE:
2789     case SIGBUS:
2790         if (thread_sp)
2791             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info);
2792         break;
2793     default:
2794         // This is just a pre-signal-delivery notification of the incoming signal.
2795         if (thread_sp)
2796             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo);
2797 
2798         break;
2799     }
2800 
2801     // Send a stop to the debugger after we get all other threads to stop.
2802     StopRunningThreads (pid);
2803 }
2804 
2805 namespace {
2806 
2807 struct EmulatorBaton
2808 {
2809     NativeProcessLinux* m_process;
2810     NativeRegisterContext* m_reg_context;
2811 
2812     // eRegisterKindDWARF -> RegsiterValue
2813     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2814 
2815     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2816             m_process(process), m_reg_context(reg_context) {}
2817 };
2818 
2819 } // anonymous namespace
2820 
2821 static size_t
2822 ReadMemoryCallback (EmulateInstruction *instruction,
2823                     void *baton,
2824                     const EmulateInstruction::Context &context,
2825                     lldb::addr_t addr,
2826                     void *dst,
2827                     size_t length)
2828 {
2829     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2830 
2831     size_t bytes_read;
2832     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2833     return bytes_read;
2834 }
2835 
2836 static bool
2837 ReadRegisterCallback (EmulateInstruction *instruction,
2838                       void *baton,
2839                       const RegisterInfo *reg_info,
2840                       RegisterValue &reg_value)
2841 {
2842     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2843 
2844     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2845     if (it != emulator_baton->m_register_values.end())
2846     {
2847         reg_value = it->second;
2848         return true;
2849     }
2850 
2851     // The emulator only fill in the dwarf regsiter numbers (and in some case
2852     // the generic register numbers). Get the full register info from the
2853     // register context based on the dwarf register numbers.
2854     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2855             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2856 
2857     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2858     if (error.Success())
2859         return true;
2860 
2861     return false;
2862 }
2863 
2864 static bool
2865 WriteRegisterCallback (EmulateInstruction *instruction,
2866                        void *baton,
2867                        const EmulateInstruction::Context &context,
2868                        const RegisterInfo *reg_info,
2869                        const RegisterValue &reg_value)
2870 {
2871     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2872     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2873     return true;
2874 }
2875 
2876 static size_t
2877 WriteMemoryCallback (EmulateInstruction *instruction,
2878                      void *baton,
2879                      const EmulateInstruction::Context &context,
2880                      lldb::addr_t addr,
2881                      const void *dst,
2882                      size_t length)
2883 {
2884     return length;
2885 }
2886 
2887 static lldb::addr_t
2888 ReadFlags (NativeRegisterContext* regsiter_context)
2889 {
2890     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2891             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2892     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2893 }
2894 
2895 Error
2896 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2897 {
2898     Error error;
2899     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2900 
2901     std::unique_ptr<EmulateInstruction> emulator_ap(
2902         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2903 
2904     if (emulator_ap == nullptr)
2905         return Error("Instruction emulator not found!");
2906 
2907     EmulatorBaton baton(this, register_context_sp.get());
2908     emulator_ap->SetBaton(&baton);
2909     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2910     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2911     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2912     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2913 
2914     if (!emulator_ap->ReadInstruction())
2915         return Error("Read instruction failed!");
2916 
2917     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2918 
2919     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2920     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2921 
2922     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2923     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2924 
2925     lldb::addr_t next_pc;
2926     lldb::addr_t next_flags;
2927     if (emulation_result)
2928     {
2929         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2930         next_pc = pc_it->second.GetAsUInt64();
2931 
2932         if (flags_it != baton.m_register_values.end())
2933             next_flags = flags_it->second.GetAsUInt64();
2934         else
2935             next_flags = ReadFlags (register_context_sp.get());
2936     }
2937     else if (pc_it == baton.m_register_values.end())
2938     {
2939         // Emulate instruction failed and it haven't changed PC. Advance PC
2940         // with the size of the current opcode because the emulation of all
2941         // PC modifying instruction should be successful. The failure most
2942         // likely caused by a not supported instruction which don't modify PC.
2943         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2944         next_flags = ReadFlags (register_context_sp.get());
2945     }
2946     else
2947     {
2948         // The instruction emulation failed after it modified the PC. It is an
2949         // unknown error where we can't continue because the next instruction is
2950         // modifying the PC but we don't  know how.
2951         return Error ("Instruction emulation failed unexpectedly.");
2952     }
2953 
2954     if (m_arch.GetMachine() == llvm::Triple::arm)
2955     {
2956         if (next_flags & 0x20)
2957         {
2958             // Thumb mode
2959             error = SetSoftwareBreakpoint(next_pc, 2);
2960         }
2961         else
2962         {
2963             // Arm mode
2964             error = SetSoftwareBreakpoint(next_pc, 4);
2965         }
2966     }
2967     else if (m_arch.GetMachine() == llvm::Triple::mips64
2968             || m_arch.GetMachine() == llvm::Triple::mips64el)
2969         error = SetSoftwareBreakpoint(next_pc, 4);
2970     else
2971     {
2972         // No size hint is given for the next breakpoint
2973         error = SetSoftwareBreakpoint(next_pc, 0);
2974     }
2975 
2976     if (error.Fail())
2977         return error;
2978 
2979     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2980 
2981     return Error();
2982 }
2983 
2984 bool
2985 NativeProcessLinux::SupportHardwareSingleStepping() const
2986 {
2987     if (m_arch.GetMachine() == llvm::Triple::arm
2988         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2989         return false;
2990     return true;
2991 }
2992 
2993 Error
2994 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2995 {
2996     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2997     if (log)
2998         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2999 
3000     bool software_single_step = !SupportHardwareSingleStepping();
3001 
3002     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3003     Mutex::Locker locker (m_threads_mutex);
3004 
3005     if (software_single_step)
3006     {
3007         for (auto thread_sp : m_threads)
3008         {
3009             assert (thread_sp && "thread list should not contain NULL threads");
3010 
3011             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
3012             if (action == nullptr)
3013                 continue;
3014 
3015             if (action->state == eStateStepping)
3016             {
3017                 Error error = SetupSoftwareSingleStepping(thread_sp);
3018                 if (error.Fail())
3019                     return error;
3020             }
3021         }
3022     }
3023 
3024     for (auto thread_sp : m_threads)
3025     {
3026         assert (thread_sp && "thread list should not contain NULL threads");
3027 
3028         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
3029 
3030         if (action == nullptr)
3031         {
3032             if (log)
3033                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
3034                     __FUNCTION__, GetID (), thread_sp->GetID ());
3035             continue;
3036         }
3037 
3038         if (log)
3039         {
3040             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
3041                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3042         }
3043 
3044         switch (action->state)
3045         {
3046         case eStateRunning:
3047         {
3048             // Run the thread, possibly feeding it the signal.
3049             const int signo = action->signal;
3050             ResumeThread(thread_sp->GetID (),
3051                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
3052                     {
3053                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
3054                         // Pass this signal number on to the inferior to handle.
3055                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3056                         if (resume_result.Success())
3057                             SetState(eStateRunning, true);
3058                         return resume_result;
3059                     },
3060                     false);
3061             break;
3062         }
3063 
3064         case eStateStepping:
3065         {
3066             // Request the step.
3067             const int signo = action->signal;
3068             ResumeThread(thread_sp->GetID (),
3069                     [=](lldb::tid_t tid_to_step, bool supress_signal)
3070                     {
3071                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
3072 
3073                         Error step_result;
3074                         if (software_single_step)
3075                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3076                         else
3077                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3078 
3079                         assert (step_result.Success() && "SingleStep() failed");
3080                         if (step_result.Success())
3081                             SetState(eStateStepping, true);
3082                         return step_result;
3083                     },
3084                     false);
3085             break;
3086         }
3087 
3088         case eStateSuspended:
3089         case eStateStopped:
3090             lldbassert(0 && "Unexpected state");
3091 
3092         default:
3093             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
3094                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3095         }
3096     }
3097 
3098     return Error();
3099 }
3100 
3101 Error
3102 NativeProcessLinux::Halt ()
3103 {
3104     Error error;
3105 
3106     if (kill (GetID (), SIGSTOP) != 0)
3107         error.SetErrorToErrno ();
3108 
3109     return error;
3110 }
3111 
3112 Error
3113 NativeProcessLinux::Detach ()
3114 {
3115     Error error;
3116 
3117     // Tell ptrace to detach from the process.
3118     if (GetID () != LLDB_INVALID_PROCESS_ID)
3119         error = Detach (GetID ());
3120 
3121     // Stop monitoring the inferior.
3122     m_monitor_up->Terminate();
3123 
3124     // No error.
3125     return error;
3126 }
3127 
3128 Error
3129 NativeProcessLinux::Signal (int signo)
3130 {
3131     Error error;
3132 
3133     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3134     if (log)
3135         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
3136                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
3137 
3138     if (kill(GetID(), signo))
3139         error.SetErrorToErrno();
3140 
3141     return error;
3142 }
3143 
3144 Error
3145 NativeProcessLinux::Interrupt ()
3146 {
3147     // Pick a running thread (or if none, a not-dead stopped thread) as
3148     // the chosen thread that will be the stop-reason thread.
3149     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3150 
3151     NativeThreadProtocolSP running_thread_sp;
3152     NativeThreadProtocolSP stopped_thread_sp;
3153 
3154     if (log)
3155         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
3156 
3157     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3158     Mutex::Locker locker (m_threads_mutex);
3159 
3160     for (auto thread_sp : m_threads)
3161     {
3162         // The thread shouldn't be null but lets just cover that here.
3163         if (!thread_sp)
3164             continue;
3165 
3166         // If we have a running or stepping thread, we'll call that the
3167         // target of the interrupt.
3168         const auto thread_state = thread_sp->GetState ();
3169         if (thread_state == eStateRunning ||
3170             thread_state == eStateStepping)
3171         {
3172             running_thread_sp = thread_sp;
3173             break;
3174         }
3175         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
3176         {
3177             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
3178             stopped_thread_sp = thread_sp;
3179         }
3180     }
3181 
3182     if (!running_thread_sp && !stopped_thread_sp)
3183     {
3184         Error error("found no running/stepping or live stopped threads as target for interrupt");
3185         if (log)
3186             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
3187 
3188         return error;
3189     }
3190 
3191     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
3192 
3193     if (log)
3194         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
3195                      __FUNCTION__,
3196                      GetID (),
3197                      running_thread_sp ? "running" : "stopped",
3198                      deferred_signal_thread_sp->GetID ());
3199 
3200     StopRunningThreads(deferred_signal_thread_sp->GetID());
3201 
3202     return Error();
3203 }
3204 
3205 Error
3206 NativeProcessLinux::Kill ()
3207 {
3208     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3209     if (log)
3210         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
3211 
3212     Error error;
3213 
3214     switch (m_state)
3215     {
3216         case StateType::eStateInvalid:
3217         case StateType::eStateExited:
3218         case StateType::eStateCrashed:
3219         case StateType::eStateDetached:
3220         case StateType::eStateUnloaded:
3221             // Nothing to do - the process is already dead.
3222             if (log)
3223                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
3224             return error;
3225 
3226         case StateType::eStateConnected:
3227         case StateType::eStateAttaching:
3228         case StateType::eStateLaunching:
3229         case StateType::eStateStopped:
3230         case StateType::eStateRunning:
3231         case StateType::eStateStepping:
3232         case StateType::eStateSuspended:
3233             // We can try to kill a process in these states.
3234             break;
3235     }
3236 
3237     if (kill (GetID (), SIGKILL) != 0)
3238     {
3239         error.SetErrorToErrno ();
3240         return error;
3241     }
3242 
3243     return error;
3244 }
3245 
3246 static Error
3247 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
3248 {
3249     memory_region_info.Clear();
3250 
3251     StringExtractor line_extractor (maps_line.c_str ());
3252 
3253     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
3254     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
3255 
3256     // Parse out the starting address
3257     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
3258 
3259     // Parse out hyphen separating start and end address from range.
3260     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
3261         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
3262 
3263     // Parse out the ending address
3264     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
3265 
3266     // Parse out the space after the address.
3267     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
3268         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
3269 
3270     // Save the range.
3271     memory_region_info.GetRange ().SetRangeBase (start_address);
3272     memory_region_info.GetRange ().SetRangeEnd (end_address);
3273 
3274     // Parse out each permission entry.
3275     if (line_extractor.GetBytesLeft () < 4)
3276         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
3277 
3278     // Handle read permission.
3279     const char read_perm_char = line_extractor.GetChar ();
3280     if (read_perm_char == 'r')
3281         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
3282     else
3283     {
3284         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
3285         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3286     }
3287 
3288     // Handle write permission.
3289     const char write_perm_char = line_extractor.GetChar ();
3290     if (write_perm_char == 'w')
3291         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
3292     else
3293     {
3294         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
3295         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3296     }
3297 
3298     // Handle execute permission.
3299     const char exec_perm_char = line_extractor.GetChar ();
3300     if (exec_perm_char == 'x')
3301         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
3302     else
3303     {
3304         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
3305         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3306     }
3307 
3308     return Error ();
3309 }
3310 
3311 Error
3312 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
3313 {
3314     // FIXME review that the final memory region returned extends to the end of the virtual address space,
3315     // with no perms if it is not mapped.
3316 
3317     // Use an approach that reads memory regions from /proc/{pid}/maps.
3318     // Assume proc maps entries are in ascending order.
3319     // FIXME assert if we find differently.
3320     Mutex::Locker locker (m_mem_region_cache_mutex);
3321 
3322     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3323     Error error;
3324 
3325     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
3326     {
3327         // We're done.
3328         error.SetErrorString ("unsupported");
3329         return error;
3330     }
3331 
3332     // If our cache is empty, pull the latest.  There should always be at least one memory region
3333     // if memory region handling is supported.
3334     if (m_mem_region_cache.empty ())
3335     {
3336         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3337              [&] (const std::string &line) -> bool
3338              {
3339                  MemoryRegionInfo info;
3340                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
3341                  if (parse_error.Success ())
3342                  {
3343                      m_mem_region_cache.push_back (info);
3344                      return true;
3345                  }
3346                  else
3347                  {
3348                      if (log)
3349                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
3350                      return false;
3351                  }
3352              });
3353 
3354         // If we had an error, we'll mark unsupported.
3355         if (error.Fail ())
3356         {
3357             m_supports_mem_region = LazyBool::eLazyBoolNo;
3358             return error;
3359         }
3360         else if (m_mem_region_cache.empty ())
3361         {
3362             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
3363             // is supported.  Assume we don't support map entries via procfs.
3364             if (log)
3365                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
3366             m_supports_mem_region = LazyBool::eLazyBoolNo;
3367             error.SetErrorString ("not supported");
3368             return error;
3369         }
3370 
3371         if (log)
3372             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
3373 
3374         // We support memory retrieval, remember that.
3375         m_supports_mem_region = LazyBool::eLazyBoolYes;
3376     }
3377     else
3378     {
3379         if (log)
3380             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3381     }
3382 
3383     lldb::addr_t prev_base_address = 0;
3384 
3385     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
3386     // There can be a ton of regions on pthreads apps with lots of threads.
3387     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
3388     {
3389         MemoryRegionInfo &proc_entry_info = *it;
3390 
3391         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
3392         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
3393         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
3394 
3395         // If the target address comes before this entry, indicate distance to next region.
3396         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
3397         {
3398             range_info.GetRange ().SetRangeBase (load_addr);
3399             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
3400             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3401             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3402             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3403 
3404             return error;
3405         }
3406         else if (proc_entry_info.GetRange ().Contains (load_addr))
3407         {
3408             // The target address is within the memory region we're processing here.
3409             range_info = proc_entry_info;
3410             return error;
3411         }
3412 
3413         // The target memory address comes somewhere after the region we just parsed.
3414     }
3415 
3416     // If we made it here, we didn't find an entry that contained the given address.
3417     error.SetErrorString ("address comes after final region");
3418 
3419     if (log)
3420         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3421 
3422     return error;
3423 }
3424 
3425 void
3426 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3427 {
3428     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3429     if (log)
3430         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3431 
3432     {
3433         Mutex::Locker locker (m_mem_region_cache_mutex);
3434         if (log)
3435             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3436         m_mem_region_cache.clear ();
3437     }
3438 }
3439 
3440 Error
3441 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
3442 {
3443     // FIXME implementing this requires the equivalent of
3444     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3445     // functional ThreadPlans working with Native*Protocol.
3446 #if 1
3447     return Error ("not implemented yet");
3448 #else
3449     addr = LLDB_INVALID_ADDRESS;
3450 
3451     unsigned prot = 0;
3452     if (permissions & lldb::ePermissionsReadable)
3453         prot |= eMmapProtRead;
3454     if (permissions & lldb::ePermissionsWritable)
3455         prot |= eMmapProtWrite;
3456     if (permissions & lldb::ePermissionsExecutable)
3457         prot |= eMmapProtExec;
3458 
3459     // TODO implement this directly in NativeProcessLinux
3460     // (and lift to NativeProcessPOSIX if/when that class is
3461     // refactored out).
3462     if (InferiorCallMmap(this, addr, 0, size, prot,
3463                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3464         m_addr_to_mmap_size[addr] = size;
3465         return Error ();
3466     } else {
3467         addr = LLDB_INVALID_ADDRESS;
3468         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3469     }
3470 #endif
3471 }
3472 
3473 Error
3474 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3475 {
3476     // FIXME see comments in AllocateMemory - required lower-level
3477     // bits not in place yet (ThreadPlans)
3478     return Error ("not implemented");
3479 }
3480 
3481 lldb::addr_t
3482 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3483 {
3484 #if 1
3485     // punt on this for now
3486     return LLDB_INVALID_ADDRESS;
3487 #else
3488     // Return the image info address for the exe module
3489 #if 1
3490     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3491 
3492     ModuleSP module_sp;
3493     Error error = GetExeModuleSP (module_sp);
3494     if (error.Fail ())
3495     {
3496          if (log)
3497             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3498         return LLDB_INVALID_ADDRESS;
3499     }
3500 
3501     if (module_sp == nullptr)
3502     {
3503          if (log)
3504             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3505          return LLDB_INVALID_ADDRESS;
3506     }
3507 
3508     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3509     if (object_file_sp == nullptr)
3510     {
3511          if (log)
3512             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3513          return LLDB_INVALID_ADDRESS;
3514     }
3515 
3516     return obj_file_sp->GetImageInfoAddress();
3517 #else
3518     Target *target = &GetTarget();
3519     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3520     Address addr = obj_file->GetImageInfoAddress(target);
3521 
3522     if (addr.IsValid())
3523         return addr.GetLoadAddress(target);
3524     return LLDB_INVALID_ADDRESS;
3525 #endif
3526 #endif // punt on this for now
3527 }
3528 
3529 size_t
3530 NativeProcessLinux::UpdateThreads ()
3531 {
3532     // The NativeProcessLinux monitoring threads are always up to date
3533     // with respect to thread state and they keep the thread list
3534     // populated properly. All this method needs to do is return the
3535     // thread count.
3536     Mutex::Locker locker (m_threads_mutex);
3537     return m_threads.size ();
3538 }
3539 
3540 bool
3541 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3542 {
3543     arch = m_arch;
3544     return true;
3545 }
3546 
3547 Error
3548 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3549 {
3550     // FIXME put this behind a breakpoint protocol class that can be
3551     // set per architecture.  Need ARM, MIPS support here.
3552     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3553     static const uint8_t g_i386_opcode [] = { 0xCC };
3554     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3555 
3556     switch (m_arch.GetMachine ())
3557     {
3558         case llvm::Triple::aarch64:
3559             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3560             return Error ();
3561 
3562         case llvm::Triple::arm:
3563             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3564             return Error ();
3565 
3566         case llvm::Triple::x86:
3567         case llvm::Triple::x86_64:
3568             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3569             return Error ();
3570 
3571         case llvm::Triple::mips64:
3572         case llvm::Triple::mips64el:
3573             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3574             return Error ();
3575 
3576         default:
3577             assert(false && "CPU type not supported!");
3578             return Error ("CPU type not supported");
3579     }
3580 }
3581 
3582 Error
3583 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3584 {
3585     if (hardware)
3586         return Error ("NativeProcessLinux does not support hardware breakpoints");
3587     else
3588         return SetSoftwareBreakpoint (addr, size);
3589 }
3590 
3591 Error
3592 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3593                                                      size_t &actual_opcode_size,
3594                                                      const uint8_t *&trap_opcode_bytes)
3595 {
3596     // FIXME put this behind a breakpoint protocol class that can be set per
3597     // architecture.  Need MIPS support here.
3598     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3599     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3600     // linux kernel does otherwise.
3601     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3602     static const uint8_t g_i386_opcode [] = { 0xCC };
3603     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3604     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3605     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3606 
3607     switch (m_arch.GetMachine ())
3608     {
3609     case llvm::Triple::aarch64:
3610         trap_opcode_bytes = g_aarch64_opcode;
3611         actual_opcode_size = sizeof(g_aarch64_opcode);
3612         return Error ();
3613 
3614     case llvm::Triple::arm:
3615         switch (trap_opcode_size_hint)
3616         {
3617         case 2:
3618             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3619             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3620             return Error ();
3621         case 4:
3622             trap_opcode_bytes = g_arm_breakpoint_opcode;
3623             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3624             return Error ();
3625         default:
3626             assert(false && "Unrecognised trap opcode size hint!");
3627             return Error ("Unrecognised trap opcode size hint!");
3628         }
3629 
3630     case llvm::Triple::x86:
3631     case llvm::Triple::x86_64:
3632         trap_opcode_bytes = g_i386_opcode;
3633         actual_opcode_size = sizeof(g_i386_opcode);
3634         return Error ();
3635 
3636     case llvm::Triple::mips64:
3637         trap_opcode_bytes = g_mips64_opcode;
3638         actual_opcode_size = sizeof(g_mips64_opcode);
3639         return Error ();
3640 
3641     case llvm::Triple::mips64el:
3642         trap_opcode_bytes = g_mips64el_opcode;
3643         actual_opcode_size = sizeof(g_mips64el_opcode);
3644         return Error ();
3645 
3646     default:
3647         assert(false && "CPU type not supported!");
3648         return Error ("CPU type not supported");
3649     }
3650 }
3651 
3652 #if 0
3653 ProcessMessage::CrashReason
3654 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3655 {
3656     ProcessMessage::CrashReason reason;
3657     assert(info->si_signo == SIGSEGV);
3658 
3659     reason = ProcessMessage::eInvalidCrashReason;
3660 
3661     switch (info->si_code)
3662     {
3663     default:
3664         assert(false && "unexpected si_code for SIGSEGV");
3665         break;
3666     case SI_KERNEL:
3667         // Linux will occasionally send spurious SI_KERNEL codes.
3668         // (this is poorly documented in sigaction)
3669         // One way to get this is via unaligned SIMD loads.
3670         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3671         break;
3672     case SEGV_MAPERR:
3673         reason = ProcessMessage::eInvalidAddress;
3674         break;
3675     case SEGV_ACCERR:
3676         reason = ProcessMessage::ePrivilegedAddress;
3677         break;
3678     }
3679 
3680     return reason;
3681 }
3682 #endif
3683 
3684 
3685 #if 0
3686 ProcessMessage::CrashReason
3687 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3688 {
3689     ProcessMessage::CrashReason reason;
3690     assert(info->si_signo == SIGILL);
3691 
3692     reason = ProcessMessage::eInvalidCrashReason;
3693 
3694     switch (info->si_code)
3695     {
3696     default:
3697         assert(false && "unexpected si_code for SIGILL");
3698         break;
3699     case ILL_ILLOPC:
3700         reason = ProcessMessage::eIllegalOpcode;
3701         break;
3702     case ILL_ILLOPN:
3703         reason = ProcessMessage::eIllegalOperand;
3704         break;
3705     case ILL_ILLADR:
3706         reason = ProcessMessage::eIllegalAddressingMode;
3707         break;
3708     case ILL_ILLTRP:
3709         reason = ProcessMessage::eIllegalTrap;
3710         break;
3711     case ILL_PRVOPC:
3712         reason = ProcessMessage::ePrivilegedOpcode;
3713         break;
3714     case ILL_PRVREG:
3715         reason = ProcessMessage::ePrivilegedRegister;
3716         break;
3717     case ILL_COPROC:
3718         reason = ProcessMessage::eCoprocessorError;
3719         break;
3720     case ILL_BADSTK:
3721         reason = ProcessMessage::eInternalStackError;
3722         break;
3723     }
3724 
3725     return reason;
3726 }
3727 #endif
3728 
3729 #if 0
3730 ProcessMessage::CrashReason
3731 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3732 {
3733     ProcessMessage::CrashReason reason;
3734     assert(info->si_signo == SIGFPE);
3735 
3736     reason = ProcessMessage::eInvalidCrashReason;
3737 
3738     switch (info->si_code)
3739     {
3740     default:
3741         assert(false && "unexpected si_code for SIGFPE");
3742         break;
3743     case FPE_INTDIV:
3744         reason = ProcessMessage::eIntegerDivideByZero;
3745         break;
3746     case FPE_INTOVF:
3747         reason = ProcessMessage::eIntegerOverflow;
3748         break;
3749     case FPE_FLTDIV:
3750         reason = ProcessMessage::eFloatDivideByZero;
3751         break;
3752     case FPE_FLTOVF:
3753         reason = ProcessMessage::eFloatOverflow;
3754         break;
3755     case FPE_FLTUND:
3756         reason = ProcessMessage::eFloatUnderflow;
3757         break;
3758     case FPE_FLTRES:
3759         reason = ProcessMessage::eFloatInexactResult;
3760         break;
3761     case FPE_FLTINV:
3762         reason = ProcessMessage::eFloatInvalidOperation;
3763         break;
3764     case FPE_FLTSUB:
3765         reason = ProcessMessage::eFloatSubscriptRange;
3766         break;
3767     }
3768 
3769     return reason;
3770 }
3771 #endif
3772 
3773 #if 0
3774 ProcessMessage::CrashReason
3775 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3776 {
3777     ProcessMessage::CrashReason reason;
3778     assert(info->si_signo == SIGBUS);
3779 
3780     reason = ProcessMessage::eInvalidCrashReason;
3781 
3782     switch (info->si_code)
3783     {
3784     default:
3785         assert(false && "unexpected si_code for SIGBUS");
3786         break;
3787     case BUS_ADRALN:
3788         reason = ProcessMessage::eIllegalAlignment;
3789         break;
3790     case BUS_ADRERR:
3791         reason = ProcessMessage::eIllegalAddress;
3792         break;
3793     case BUS_OBJERR:
3794         reason = ProcessMessage::eHardwareError;
3795         break;
3796     }
3797 
3798     return reason;
3799 }
3800 #endif
3801 
3802 Error
3803 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3804 {
3805     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3806     // for it.
3807     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3808     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3809 }
3810 
3811 Error
3812 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3813 {
3814     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3815     // for it.
3816     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3817     return NativeProcessProtocol::RemoveWatchpoint(addr);
3818 }
3819 
3820 Error
3821 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3822 {
3823     ReadOperation op(addr, buf, size, bytes_read);
3824     m_monitor_up->DoOperation(&op);
3825     return op.GetError ();
3826 }
3827 
3828 Error
3829 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3830 {
3831     Error error = ReadMemory(addr, buf, size, bytes_read);
3832     if (error.Fail()) return error;
3833     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3834 }
3835 
3836 Error
3837 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3838 {
3839     WriteOperation op(addr, buf, size, bytes_written);
3840     m_monitor_up->DoOperation(&op);
3841     return op.GetError ();
3842 }
3843 
3844 Error
3845 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3846                                       uint32_t size, RegisterValue &value)
3847 {
3848     ReadRegOperation op(tid, offset, reg_name, value);
3849     m_monitor_up->DoOperation(&op);
3850     return op.GetError();
3851 }
3852 
3853 Error
3854 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3855                                    const char* reg_name, const RegisterValue &value)
3856 {
3857     WriteRegOperation op(tid, offset, reg_name, value);
3858     m_monitor_up->DoOperation(&op);
3859     return op.GetError();
3860 }
3861 
3862 Error
3863 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3864 {
3865     ReadGPROperation op(tid, buf, buf_size);
3866     m_monitor_up->DoOperation(&op);
3867     return op.GetError();
3868 }
3869 
3870 Error
3871 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3872 {
3873     ReadFPROperation op(tid, buf, buf_size);
3874     m_monitor_up->DoOperation(&op);
3875     return op.GetError();
3876 }
3877 
3878 Error
3879 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3880 {
3881     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3882     m_monitor_up->DoOperation(&op);
3883     return op.GetError();
3884 }
3885 
3886 Error
3887 NativeProcessLinux::ReadHardwareDebugInfo (lldb::tid_t tid, unsigned int &watch_count , unsigned int &break_count)
3888 {
3889     ReadDBGROperation op(tid, watch_count, break_count);
3890     m_monitor_up->DoOperation(&op);
3891     return op.GetError();
3892 }
3893 
3894 Error
3895 NativeProcessLinux::WriteHardwareDebugRegs (lldb::tid_t tid, lldb::addr_t *addr_buf, uint32_t *cntrl_buf, int type, int count)
3896 {
3897     WriteDBGROperation op(tid, addr_buf, cntrl_buf, type, count);
3898     m_monitor_up->DoOperation(&op);
3899     return op.GetError();
3900 }
3901 
3902 Error
3903 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3904 {
3905     WriteGPROperation op(tid, buf, buf_size);
3906     m_monitor_up->DoOperation(&op);
3907     return op.GetError();
3908 }
3909 
3910 Error
3911 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3912 {
3913     WriteFPROperation op(tid, buf, buf_size);
3914     m_monitor_up->DoOperation(&op);
3915     return op.GetError();
3916 }
3917 
3918 Error
3919 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3920 {
3921     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3922     m_monitor_up->DoOperation(&op);
3923     return op.GetError();
3924 }
3925 
3926 Error
3927 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3928 {
3929     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3930 
3931     if (log)
3932         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3933                                  GetUnixSignals().GetSignalAsCString (signo));
3934     ResumeOperation op (tid, signo);
3935     m_monitor_up->DoOperation (&op);
3936     if (log)
3937         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3938     return op.GetError();
3939 }
3940 
3941 Error
3942 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3943 {
3944     SingleStepOperation op(tid, signo);
3945     m_monitor_up->DoOperation(&op);
3946     return op.GetError();
3947 }
3948 
3949 Error
3950 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3951 {
3952     SiginfoOperation op(tid, siginfo);
3953     m_monitor_up->DoOperation(&op);
3954     return op.GetError();
3955 }
3956 
3957 Error
3958 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3959 {
3960     EventMessageOperation op(tid, message);
3961     m_monitor_up->DoOperation(&op);
3962     return op.GetError();
3963 }
3964 
3965 Error
3966 NativeProcessLinux::Detach(lldb::tid_t tid)
3967 {
3968     if (tid == LLDB_INVALID_THREAD_ID)
3969         return Error();
3970 
3971     DetachOperation op(tid);
3972     m_monitor_up->DoOperation(&op);
3973     return op.GetError();
3974 }
3975 
3976 bool
3977 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3978 {
3979     int target_fd = open(path, flags, 0666);
3980 
3981     if (target_fd == -1)
3982         return false;
3983 
3984     if (dup2(target_fd, fd) == -1)
3985         return false;
3986 
3987     return (close(target_fd) == -1) ? false : true;
3988 }
3989 
3990 void
3991 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3992 {
3993     m_monitor_up.reset(new Monitor(initial_operation, this));
3994     error = m_monitor_up->Initialize();
3995     if (error.Fail()) {
3996         m_monitor_up.reset();
3997     }
3998 }
3999 
4000 bool
4001 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
4002 {
4003     for (auto thread_sp : m_threads)
4004     {
4005         assert (thread_sp && "thread list should not contain NULL threads");
4006         if (thread_sp->GetID () == thread_id)
4007         {
4008             // We have this thread.
4009             return true;
4010         }
4011     }
4012 
4013     // We don't have this thread.
4014     return false;
4015 }
4016 
4017 NativeThreadProtocolSP
4018 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
4019 {
4020     // CONSIDER organize threads by map - we can do better than linear.
4021     for (auto thread_sp : m_threads)
4022     {
4023         if (thread_sp->GetID () == thread_id)
4024             return thread_sp;
4025     }
4026 
4027     // We don't have this thread.
4028     return NativeThreadProtocolSP ();
4029 }
4030 
4031 bool
4032 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
4033 {
4034     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4035 
4036     if (log)
4037         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
4038 
4039     bool found = false;
4040 
4041     Mutex::Locker locker (m_threads_mutex);
4042     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
4043     {
4044         if (*it && ((*it)->GetID () == thread_id))
4045         {
4046             m_threads.erase (it);
4047             found = true;
4048             break;
4049         }
4050     }
4051 
4052     // If we have a pending notification, remove this from the set.
4053     if (m_pending_notification_up)
4054     {
4055         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
4056         SignalIfAllThreadsStopped();
4057     }
4058 
4059     return found;
4060 }
4061 
4062 NativeThreadProtocolSP
4063 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
4064 {
4065     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4066 
4067     Mutex::Locker locker (m_threads_mutex);
4068 
4069     if (log)
4070     {
4071         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
4072                 __FUNCTION__,
4073                 GetID (),
4074                 thread_id);
4075     }
4076 
4077     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
4078 
4079     // If this is the first thread, save it as the current thread
4080     if (m_threads.empty ())
4081         SetCurrentThreadID (thread_id);
4082 
4083     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
4084     m_threads.push_back (thread_sp);
4085 
4086     return thread_sp;
4087 }
4088 
4089 Error
4090 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
4091 {
4092     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
4093 
4094     Error error;
4095 
4096     // Get a linux thread pointer.
4097     if (!thread_sp)
4098     {
4099         error.SetErrorString ("null thread_sp");
4100         if (log)
4101             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4102         return error;
4103     }
4104     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
4105 
4106     // Find out the size of a breakpoint (might depend on where we are in the code).
4107     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
4108     if (!context_sp)
4109     {
4110         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
4111         if (log)
4112             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4113         return error;
4114     }
4115 
4116     uint32_t breakpoint_size = 0;
4117     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
4118     if (error.Fail ())
4119     {
4120         if (log)
4121             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
4122         return error;
4123     }
4124     else
4125     {
4126         if (log)
4127             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
4128     }
4129 
4130     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
4131     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
4132     lldb::addr_t breakpoint_addr = initial_pc_addr;
4133     if (breakpoint_size > 0)
4134     {
4135         // Do not allow breakpoint probe to wrap around.
4136         if (breakpoint_addr >= breakpoint_size)
4137             breakpoint_addr -= breakpoint_size;
4138     }
4139 
4140     // Check if we stopped because of a breakpoint.
4141     NativeBreakpointSP breakpoint_sp;
4142     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
4143     if (!error.Success () || !breakpoint_sp)
4144     {
4145         // We didn't find one at a software probe location.  Nothing to do.
4146         if (log)
4147             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
4148         return Error ();
4149     }
4150 
4151     // If the breakpoint is not a software breakpoint, nothing to do.
4152     if (!breakpoint_sp->IsSoftwareBreakpoint ())
4153     {
4154         if (log)
4155             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
4156         return Error ();
4157     }
4158 
4159     //
4160     // We have a software breakpoint and need to adjust the PC.
4161     //
4162 
4163     // Sanity check.
4164     if (breakpoint_size == 0)
4165     {
4166         // Nothing to do!  How did we get here?
4167         if (log)
4168             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
4169         return Error ();
4170     }
4171 
4172     // Change the program counter.
4173     if (log)
4174         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
4175 
4176     error = context_sp->SetPC (breakpoint_addr);
4177     if (error.Fail ())
4178     {
4179         if (log)
4180             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
4181         return error;
4182     }
4183 
4184     return error;
4185 }
4186 
4187 Error
4188 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
4189 {
4190     char maps_file_name[32];
4191     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
4192 
4193     FileSpec maps_file_spec(maps_file_name, false);
4194     if (!maps_file_spec.Exists()) {
4195         file_spec.Clear();
4196         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
4197     }
4198 
4199     FileSpec module_file_spec(module_path, true);
4200 
4201     std::ifstream maps_file(maps_file_name);
4202     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
4203     StringRef maps_data(maps_data_str.c_str());
4204 
4205     while (!maps_data.empty())
4206     {
4207         StringRef maps_row;
4208         std::tie(maps_row, maps_data) = maps_data.split('\n');
4209 
4210         SmallVector<StringRef, 16> maps_columns;
4211         maps_row.split(maps_columns, StringRef(" "), -1, false);
4212 
4213         if (maps_columns.size() >= 6)
4214         {
4215             file_spec.SetFile(maps_columns[5].str().c_str(), false);
4216             if (file_spec.GetFilename() == module_file_spec.GetFilename())
4217                 return Error();
4218         }
4219     }
4220 
4221     file_spec.Clear();
4222     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
4223                  module_file_spec.GetFilename().AsCString(), GetID());
4224 }
4225 
4226 Error
4227 NativeProcessLinux::ResumeThread(
4228         lldb::tid_t tid,
4229         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
4230         bool error_when_already_running)
4231 {
4232     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4233 
4234     if (log)
4235         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
4236                 __FUNCTION__, tid, error_when_already_running?"true":"false");
4237 
4238     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
4239     lldbassert(thread_sp != nullptr);
4240 
4241     auto& context = thread_sp->GetThreadContext();
4242     // Tell the thread to resume if we don't already think it is running.
4243     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
4244 
4245     lldbassert(!(error_when_already_running && !is_stopped));
4246 
4247     if (!is_stopped)
4248     {
4249         // It's not an error, just a log, if the error_when_already_running flag is not set.
4250         // This covers cases where, for instance, we're just trying to resume all threads
4251         // from the user side.
4252         if (log)
4253             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
4254                     __FUNCTION__,
4255                     tid);
4256         return Error();
4257     }
4258 
4259     // Before we do the resume below, first check if we have a pending
4260     // stop notification that is currently waiting for
4261     // this thread to stop.  This is potentially a buggy situation since
4262     // we're ostensibly waiting for threads to stop before we send out the
4263     // pending notification, and here we are resuming one before we send
4264     // out the pending stop notification.
4265     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
4266     {
4267         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
4268     }
4269 
4270     // Request a resume.  We expect this to be synchronous and the system
4271     // to reflect it is running after this completes.
4272     const auto error = request_thread_resume_function (tid, false);
4273     if (error.Success())
4274         context.request_resume_function = request_thread_resume_function;
4275     else if (log)
4276     {
4277         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4278                          __FUNCTION__, tid, error.AsCString ());
4279     }
4280 
4281     return error;
4282 }
4283 
4284 //===----------------------------------------------------------------------===//
4285 
4286 void
4287 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
4288 {
4289     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4290 
4291     if (log)
4292     {
4293         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
4294                 __FUNCTION__, triggering_tid);
4295     }
4296 
4297     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
4298 
4299     if (log)
4300     {
4301         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4302     }
4303 }
4304 
4305 void
4306 NativeProcessLinux::SignalIfAllThreadsStopped()
4307 {
4308     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
4309     {
4310         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
4311 
4312         // Clear any temporary breakpoints we used to implement software single stepping.
4313         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
4314         {
4315             Error error = RemoveBreakpoint (thread_info.second);
4316             if (error.Fail())
4317                 if (log)
4318                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
4319                             __FUNCTION__, thread_info.first, error.AsCString());
4320         }
4321         m_threads_stepping_with_breakpoint.clear();
4322 
4323         // Notify the delegate about the stop
4324         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
4325         SetState(StateType::eStateStopped, true);
4326         m_pending_notification_up.reset();
4327     }
4328 }
4329 
4330 void
4331 NativeProcessLinux::RequestStopOnAllRunningThreads()
4332 {
4333     // Request a stop for all the thread stops that need to be stopped
4334     // and are not already known to be stopped.  Keep a list of all the
4335     // threads from which we still need to hear a stop reply.
4336 
4337     ThreadIDSet sent_tids;
4338     for (const auto &thread_sp: m_threads)
4339     {
4340         // We only care about running threads
4341         if (StateIsStoppedState(thread_sp->GetState(), true))
4342             continue;
4343 
4344         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
4345         sent_tids.insert (thread_sp->GetID());
4346     }
4347 
4348     // Set the wait list to the set of tids for which we requested stops.
4349     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
4350 }
4351 
4352 
4353 Error
4354 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
4355 {
4356     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4357 
4358     if (log)
4359         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
4360                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
4361 
4362     // Ensure we know about the thread.
4363     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
4364     lldbassert(thread_sp != nullptr);
4365 
4366     // Update the global list of known thread states.  This one is definitely stopped.
4367     auto& context = thread_sp->GetThreadContext();
4368     const auto stop_was_requested = context.stop_requested;
4369     context.stop_requested = false;
4370 
4371     // If we have a pending notification, remove this from the set.
4372     if (m_pending_notification_up)
4373     {
4374         m_pending_notification_up->wait_for_stop_tids.erase(tid);
4375         SignalIfAllThreadsStopped();
4376     }
4377 
4378     Error error;
4379     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
4380     {
4381         // We can end up here if stop was initiated by LLGS but by this time a
4382         // thread stop has occurred - maybe initiated by another event.
4383         if (log)
4384             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
4385         error = context.request_resume_function (tid, true);
4386         if (error.Fail() && log)
4387         {
4388                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4389                         __FUNCTION__, tid, error.AsCString ());
4390         }
4391     }
4392     return error;
4393 }
4394 
4395 void
4396 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
4397 {
4398     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4399     if (m_pending_notification_up && log)
4400     {
4401         // Yikes - we've already got a pending signal notification in progress.
4402         // Log this info.  We lose the pending notification here.
4403         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
4404                    __FUNCTION__,
4405                    m_pending_notification_up->triggering_tid,
4406                    notification_up->triggering_tid);
4407     }
4408     m_pending_notification_up = std::move(notification_up);
4409 
4410     RequestStopOnAllRunningThreads();
4411 
4412     SignalIfAllThreadsStopped();
4413 }
4414 
4415 void
4416 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
4417 {
4418     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4419 
4420     if (log)
4421         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
4422 
4423     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
4424     lldbassert(thread_sp != nullptr);
4425 
4426     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
4427     {
4428         // We will need to wait for this new thread to stop as well before firing the
4429         // notification.
4430         m_pending_notification_up->wait_for_stop_tids.insert(tid);
4431         thread_sp->RequestStop();
4432     }
4433 }
4434