1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 Status NativeProcessProtocol::Launch(
218     ProcessLaunchInfo &launch_info,
219     NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop,
220     NativeProcessProtocolSP &native_process_sp) {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   Status error;
224 
225   // Verify the working directory is valid if one was specified.
226   FileSpec working_dir{launch_info.GetWorkingDirectory()};
227   if (working_dir && (!working_dir.ResolvePath() ||
228                       !llvm::sys::fs::is_directory(working_dir.GetPath()))) {
229     error.SetErrorStringWithFormat("No such file or directory: %s",
230                                    working_dir.GetCString());
231     return error;
232   }
233 
234   // Create the NativeProcessLinux in launch mode.
235   native_process_sp.reset(new NativeProcessLinux());
236 
237   if (!native_process_sp->RegisterNativeDelegate(native_delegate)) {
238     native_process_sp.reset();
239     error.SetErrorStringWithFormat("failed to register the native delegate");
240     return error;
241   }
242 
243   error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)
244               ->LaunchInferior(mainloop, launch_info);
245 
246   if (error.Fail()) {
247     native_process_sp.reset();
248     LLDB_LOG(log, "failed to launch process: {0}", error);
249     return error;
250   }
251 
252   launch_info.SetProcessID(native_process_sp->GetID());
253 
254   return error;
255 }
256 
257 Status NativeProcessProtocol::Attach(
258     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
259     MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) {
260   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
261   LLDB_LOG(log, "pid = {0:x}", pid);
262 
263   // Retrieve the architecture for the running process.
264   ArchSpec process_arch;
265   Status error = ResolveProcessArchitecture(pid, process_arch);
266   if (!error.Success())
267     return error;
268 
269   std::shared_ptr<NativeProcessLinux> native_process_linux_sp(
270       new NativeProcessLinux());
271 
272   if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) {
273     error.SetErrorStringWithFormat("failed to register the native delegate");
274     return error;
275   }
276 
277   native_process_linux_sp->AttachToInferior(mainloop, pid, error);
278   if (!error.Success())
279     return error;
280 
281   native_process_sp = native_process_linux_sp;
282   return error;
283 }
284 
285 // -----------------------------------------------------------------------------
286 // Public Instance Methods
287 // -----------------------------------------------------------------------------
288 
289 NativeProcessLinux::NativeProcessLinux()
290     : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(),
291       m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(),
292       m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {}
293 
294 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid,
295                                           Status &error) {
296   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
297   LLDB_LOG(log, "pid = {0:x}", pid);
298 
299   m_sigchld_handle = mainloop.RegisterSignal(
300       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
301   if (!m_sigchld_handle)
302     return;
303 
304   error = ResolveProcessArchitecture(pid, m_arch);
305   if (!error.Success())
306     return;
307 
308   // Set the architecture to the exe architecture.
309   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
310            m_arch.GetArchitectureName());
311   m_pid = pid;
312   SetState(eStateAttaching);
313 
314   Attach(pid, error);
315 }
316 
317 Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop,
318                                           ProcessLaunchInfo &launch_info) {
319   Status error;
320   m_sigchld_handle = mainloop.RegisterSignal(
321       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
322   if (!m_sigchld_handle)
323     return error;
324 
325   SetState(eStateLaunching);
326 
327   MaybeLogLaunchInfo(launch_info);
328 
329   ::pid_t pid =
330       ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId();
331   if (error.Fail())
332     return error;
333 
334   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
335 
336   // Wait for the child process to trap on its call to execve.
337   ::pid_t wpid;
338   int status;
339   if ((wpid = waitpid(pid, &status, 0)) < 0) {
340     error.SetErrorToErrno();
341     LLDB_LOG(log, "waitpid for inferior failed with %s", error);
342 
343     // Mark the inferior as invalid.
344     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
345     // using eStateInvalid.
346     SetState(StateType::eStateInvalid);
347 
348     return error;
349   }
350   assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) &&
351          "Could not sync with inferior process.");
352 
353   LLDB_LOG(log, "inferior started, now in stopped state");
354   error = SetDefaultPtraceOpts(pid);
355   if (error.Fail()) {
356     LLDB_LOG(log, "failed to set default ptrace options: {0}", error);
357 
358     // Mark the inferior as invalid.
359     // FIXME this could really use a new state - eStateLaunchFailure.  For now,
360     // using eStateInvalid.
361     SetState(StateType::eStateInvalid);
362 
363     return error;
364   }
365 
366   // Release the master terminal descriptor and pass it off to the
367   // NativeProcessLinux instance.  Similarly stash the inferior pid.
368   m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
369   m_pid = pid;
370   launch_info.SetProcessID(pid);
371 
372   if (m_terminal_fd != -1) {
373     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
374     if (error.Fail()) {
375       LLDB_LOG(log,
376                "inferior EnsureFDFlags failed for ensuring terminal "
377                "O_NONBLOCK setting: {0}",
378                error);
379 
380       // Mark the inferior as invalid.
381       // FIXME this could really use a new state - eStateLaunchFailure.  For
382       // now, using eStateInvalid.
383       SetState(StateType::eStateInvalid);
384 
385       return error;
386     }
387   }
388 
389   LLDB_LOG(log, "adding pid = {0}", pid);
390   ResolveProcessArchitecture(m_pid, m_arch);
391   NativeThreadLinuxSP thread_sp = AddThread(pid);
392   assert(thread_sp && "AddThread() returned a nullptr thread");
393   thread_sp->SetStoppedBySignal(SIGSTOP);
394   ThreadWasCreated(*thread_sp);
395 
396   // Let our process instance know the thread has stopped.
397   SetCurrentThreadID(thread_sp->GetID());
398   SetState(StateType::eStateStopped);
399 
400   if (error.Fail())
401     LLDB_LOG(log, "inferior launching failed {0}", error);
402   return error;
403 }
404 
405 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) {
406   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
407 
408   // Use a map to keep track of the threads which we have attached/need to
409   // attach.
410   Host::TidMap tids_to_attach;
411   if (pid <= 1) {
412     error.SetErrorToGenericError();
413     error.SetErrorString("Attaching to process 1 is not allowed.");
414     return -1;
415   }
416 
417   while (Host::FindProcessThreads(pid, tids_to_attach)) {
418     for (Host::TidMap::iterator it = tids_to_attach.begin();
419          it != tids_to_attach.end();) {
420       if (it->second == false) {
421         lldb::tid_t tid = it->first;
422 
423         // Attach to the requested process.
424         // An attach will cause the thread to stop with a SIGSTOP.
425         error = PtraceWrapper(PTRACE_ATTACH, tid);
426         if (error.Fail()) {
427           // No such thread. The thread may have exited.
428           // More error handling may be needed.
429           if (error.GetError() == ESRCH) {
430             it = tids_to_attach.erase(it);
431             continue;
432           } else
433             return -1;
434         }
435 
436         int status;
437         // Need to use __WALL otherwise we receive an error with errno=ECHLD
438         // At this point we should have a thread stopped if waitpid succeeds.
439         if ((status = waitpid(tid, NULL, __WALL)) < 0) {
440           // No such thread. The thread may have exited.
441           // More error handling may be needed.
442           if (errno == ESRCH) {
443             it = tids_to_attach.erase(it);
444             continue;
445           } else {
446             error.SetErrorToErrno();
447             return -1;
448           }
449         }
450 
451         error = SetDefaultPtraceOpts(tid);
452         if (error.Fail())
453           return -1;
454 
455         LLDB_LOG(log, "adding tid = {0}", tid);
456         it->second = true;
457 
458         // Create the thread, mark it as stopped.
459         NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid)));
460         assert(thread_sp && "AddThread() returned a nullptr");
461 
462         // This will notify this is a new thread and tell the system it is
463         // stopped.
464         thread_sp->SetStoppedBySignal(SIGSTOP);
465         ThreadWasCreated(*thread_sp);
466         SetCurrentThreadID(thread_sp->GetID());
467       }
468 
469       // move the loop forward
470       ++it;
471     }
472   }
473 
474   if (tids_to_attach.size() > 0) {
475     m_pid = pid;
476     // Let our process instance know the thread has stopped.
477     SetState(StateType::eStateStopped);
478   } else {
479     error.SetErrorToGenericError();
480     error.SetErrorString("No such process.");
481     return -1;
482   }
483 
484   return pid;
485 }
486 
487 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
488   long ptrace_opts = 0;
489 
490   // Have the child raise an event on exit.  This is used to keep the child in
491   // limbo until it is destroyed.
492   ptrace_opts |= PTRACE_O_TRACEEXIT;
493 
494   // Have the tracer trace threads which spawn in the inferior process.
495   // TODO: if we want to support tracing the inferiors' child, add the
496   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
497   ptrace_opts |= PTRACE_O_TRACECLONE;
498 
499   // Have the tracer notify us before execve returns
500   // (needed to disable legacy SIGTRAP generation)
501   ptrace_opts |= PTRACE_O_TRACEEXEC;
502 
503   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
504 }
505 
506 // Handles all waitpid events from the inferior process.
507 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
508                                          WaitStatus status) {
509   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
510 
511   // Certain activities differ based on whether the pid is the tid of the main
512   // thread.
513   const bool is_main_thread = (pid == GetID());
514 
515   // Handle when the thread exits.
516   if (exited) {
517     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
518              pid, is_main_thread ? "is" : "is not");
519 
520     // This is a thread that exited.  Ensure we're not tracking it anymore.
521     const bool thread_found = StopTrackingThread(pid);
522 
523     if (is_main_thread) {
524       // We only set the exit status and notify the delegate if we haven't
525       // already set the process
526       // state to an exited state.  We normally should have received a SIGTRAP |
527       // (PTRACE_EVENT_EXIT << 8)
528       // for the main thread.
529       const bool already_notified = (GetState() == StateType::eStateExited) ||
530                                     (GetState() == StateType::eStateCrashed);
531       if (!already_notified) {
532         LLDB_LOG(
533             log,
534             "tid = {0} handling main thread exit ({1}), expected exit state "
535             "already set but state was {2} instead, setting exit state now",
536             pid,
537             thread_found ? "stopped tracking thread metadata"
538                          : "thread metadata not found",
539             GetState());
540         // The main thread exited.  We're done monitoring.  Report to delegate.
541         SetExitStatus(status, true);
542 
543         // Notify delegate that our process has exited.
544         SetState(StateType::eStateExited, true);
545       } else
546         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
547                  thread_found ? "stopped tracking thread metadata"
548                               : "thread metadata not found");
549     } else {
550       // Do we want to report to the delegate in this case?  I think not.  If
551       // this was an orderly thread exit, we would already have received the
552       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
553       // all-stop then.
554       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
555                thread_found ? "stopped tracking thread metadata"
556                             : "thread metadata not found");
557     }
558     return;
559   }
560 
561   siginfo_t info;
562   const auto info_err = GetSignalInfo(pid, &info);
563   auto thread_sp = GetThreadByID(pid);
564 
565   if (!thread_sp) {
566     // Normally, the only situation when we cannot find the thread is if we have
567     // just received a new thread notification. This is indicated by
568     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
569     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
570 
571     if (info_err.Fail()) {
572       LLDB_LOG(log,
573                "(tid {0}) GetSignalInfo failed ({1}). "
574                "Ingoring this notification.",
575                pid, info_err);
576       return;
577     }
578 
579     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
580              info.si_pid);
581 
582     auto thread_sp = AddThread(pid);
583     // Resume the newly created thread.
584     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
585     ThreadWasCreated(*thread_sp);
586     return;
587   }
588 
589   // Get details on the signal raised.
590   if (info_err.Success()) {
591     // We have retrieved the signal info.  Dispatch appropriately.
592     if (info.si_signo == SIGTRAP)
593       MonitorSIGTRAP(info, *thread_sp);
594     else
595       MonitorSignal(info, *thread_sp, exited);
596   } else {
597     if (info_err.GetError() == EINVAL) {
598       // This is a group stop reception for this tid.
599       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
600       // into the tracee, triggering the group-stop mechanism. Normally
601       // receiving these would stop the process, pending a SIGCONT. Simulating
602       // this state in a debugger is hard and is generally not needed (one use
603       // case is debugging background task being managed by a shell). For
604       // general use, it is sufficient to stop the process in a signal-delivery
605       // stop which happens before the group stop. This done by MonitorSignal
606       // and works correctly for all signals.
607       LLDB_LOG(log,
608                "received a group stop for pid {0} tid {1}. Transparent "
609                "handling of group stops not supported, resuming the "
610                "thread.",
611                GetID(), pid);
612       ResumeThread(*thread_sp, thread_sp->GetState(),
613                    LLDB_INVALID_SIGNAL_NUMBER);
614     } else {
615       // ptrace(GETSIGINFO) failed (but not due to group-stop).
616 
617       // A return value of ESRCH means the thread/process is no longer on the
618       // system, so it was killed somehow outside of our control.  Either way,
619       // we can't do anything with it anymore.
620 
621       // Stop tracking the metadata for the thread since it's entirely off the
622       // system now.
623       const bool thread_found = StopTrackingThread(pid);
624 
625       LLDB_LOG(log,
626                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
627                "status = {3}, main_thread = {4}, thread_found: {5}",
628                info_err, pid, signal, status, is_main_thread, thread_found);
629 
630       if (is_main_thread) {
631         // Notify the delegate - our process is not available but appears to
632         // have been killed outside
633         // our control.  Is eStateExited the right exit state in this case?
634         SetExitStatus(status, true);
635         SetState(StateType::eStateExited, true);
636       } else {
637         // This thread was pulled out from underneath us.  Anything to do here?
638         // Do we want to do an all stop?
639         LLDB_LOG(log,
640                  "pid {0} tid {1} non-main thread exit occurred, didn't "
641                  "tell delegate anything since thread disappeared out "
642                  "from underneath us",
643                  GetID(), pid);
644       }
645     }
646   }
647 }
648 
649 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
650   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
651 
652   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
653 
654   if (new_thread_sp) {
655     // We are already tracking the thread - we got the event on the new thread
656     // (see
657     // MonitorSignal) before this one. We are done.
658     return;
659   }
660 
661   // The thread is not tracked yet, let's wait for it to appear.
662   int status = -1;
663   ::pid_t wait_pid;
664   do {
665     LLDB_LOG(log,
666              "received thread creation event for tid {0}. tid not tracked "
667              "yet, waiting for thread to appear...",
668              tid);
669     wait_pid = waitpid(tid, &status, __WALL);
670   } while (wait_pid == -1 && errno == EINTR);
671   // Since we are waiting on a specific tid, this must be the creation event.
672   // But let's do some checks just in case.
673   if (wait_pid != tid) {
674     LLDB_LOG(log,
675              "waiting for tid {0} failed. Assuming the thread has "
676              "disappeared in the meantime",
677              tid);
678     // The only way I know of this could happen is if the whole process was
679     // SIGKILLed in the mean time. In any case, we can't do anything about that
680     // now.
681     return;
682   }
683   if (WIFEXITED(status)) {
684     LLDB_LOG(log,
685              "waiting for tid {0} returned an 'exited' event. Not "
686              "tracking the thread.",
687              tid);
688     // Also a very improbable event.
689     return;
690   }
691 
692   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
693   new_thread_sp = AddThread(tid);
694   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
695   ThreadWasCreated(*new_thread_sp);
696 }
697 
698 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
699                                         NativeThreadLinux &thread) {
700   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
701   const bool is_main_thread = (thread.GetID() == GetID());
702 
703   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
704 
705   switch (info.si_code) {
706   // TODO: these two cases are required if we want to support tracing of the
707   // inferiors' children.  We'd need this to debug a monitor.
708   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
709   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
710 
711   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
712     // This is the notification on the parent thread which informs us of new
713     // thread
714     // creation.
715     // We don't want to do anything with the parent thread so we just resume it.
716     // In case we
717     // want to implement "break on thread creation" functionality, we would need
718     // to stop
719     // here.
720 
721     unsigned long event_message = 0;
722     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
723       LLDB_LOG(log,
724                "pid {0} received thread creation event but "
725                "GetEventMessage failed so we don't know the new tid",
726                thread.GetID());
727     } else
728       WaitForNewThread(event_message);
729 
730     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
731     break;
732   }
733 
734   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
735     NativeThreadLinuxSP main_thread_sp;
736     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
737 
738     // Exec clears any pending notifications.
739     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
740 
741     // Remove all but the main thread here.  Linux fork creates a new process
742     // which only copies the main thread.
743     LLDB_LOG(log, "exec received, stop tracking all but main thread");
744 
745     for (auto thread_sp : m_threads) {
746       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
747       if (is_main_thread) {
748         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
749         LLDB_LOG(log, "found main thread with tid {0}, keeping",
750                  main_thread_sp->GetID());
751       } else {
752         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
753                  thread_sp->GetID());
754       }
755     }
756 
757     m_threads.clear();
758 
759     if (main_thread_sp) {
760       m_threads.push_back(main_thread_sp);
761       SetCurrentThreadID(main_thread_sp->GetID());
762       main_thread_sp->SetStoppedByExec();
763     } else {
764       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
765       LLDB_LOG(log,
766                "pid {0} no main thread found, discarded all threads, "
767                "we're in a no-thread state!",
768                GetID());
769     }
770 
771     // Tell coordinator about about the "new" (since exec) stopped main thread.
772     ThreadWasCreated(*main_thread_sp);
773 
774     // Let our delegate know we have just exec'd.
775     NotifyDidExec();
776 
777     // If we have a main thread, indicate we are stopped.
778     assert(main_thread_sp && "exec called during ptraced process but no main "
779                              "thread metadata tracked");
780 
781     // Let the process know we're stopped.
782     StopRunningThreads(main_thread_sp->GetID());
783 
784     break;
785   }
786 
787   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
788     // The inferior process or one of its threads is about to exit.
789     // We don't want to do anything with the thread so we just resume it. In
790     // case we
791     // want to implement "break on thread exit" functionality, we would need to
792     // stop
793     // here.
794 
795     unsigned long data = 0;
796     if (GetEventMessage(thread.GetID(), &data).Fail())
797       data = -1;
798 
799     LLDB_LOG(log,
800              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
801              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
802              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
803              is_main_thread);
804 
805     if (is_main_thread)
806       SetExitStatus(WaitStatus::Decode(data), true);
807 
808     StateType state = thread.GetState();
809     if (!StateIsRunningState(state)) {
810       // Due to a kernel bug, we may sometimes get this stop after the inferior
811       // gets a
812       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
813       // since normally,
814       // we should not be receiving any ptrace events while the inferior is
815       // stopped. This
816       // makes sure that the inferior is resumed and exits normally.
817       state = eStateRunning;
818     }
819     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
820 
821     break;
822   }
823 
824   case 0:
825   case TRAP_TRACE:  // We receive this on single stepping.
826   case TRAP_HWBKPT: // We receive this on watchpoint hit
827   {
828     // If a watchpoint was hit, report it
829     uint32_t wp_index;
830     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
831         wp_index, (uintptr_t)info.si_addr);
832     if (error.Fail())
833       LLDB_LOG(log,
834                "received error while checking for watchpoint hits, pid = "
835                "{0}, error = {1}",
836                thread.GetID(), error);
837     if (wp_index != LLDB_INVALID_INDEX32) {
838       MonitorWatchpoint(thread, wp_index);
839       break;
840     }
841 
842     // If a breakpoint was hit, report it
843     uint32_t bp_index;
844     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
845         bp_index, (uintptr_t)info.si_addr);
846     if (error.Fail())
847       LLDB_LOG(log, "received error while checking for hardware "
848                     "breakpoint hits, pid = {0}, error = {1}",
849                thread.GetID(), error);
850     if (bp_index != LLDB_INVALID_INDEX32) {
851       MonitorBreakpoint(thread);
852       break;
853     }
854 
855     // Otherwise, report step over
856     MonitorTrace(thread);
857     break;
858   }
859 
860   case SI_KERNEL:
861 #if defined __mips__
862     // For mips there is no special signal for watchpoint
863     // So we check for watchpoint in kernel trap
864     {
865       // If a watchpoint was hit, report it
866       uint32_t wp_index;
867       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
868           wp_index, LLDB_INVALID_ADDRESS);
869       if (error.Fail())
870         LLDB_LOG(log,
871                  "received error while checking for watchpoint hits, pid = "
872                  "{0}, error = {1}",
873                  thread.GetID(), error);
874       if (wp_index != LLDB_INVALID_INDEX32) {
875         MonitorWatchpoint(thread, wp_index);
876         break;
877       }
878     }
879 // NO BREAK
880 #endif
881   case TRAP_BRKPT:
882     MonitorBreakpoint(thread);
883     break;
884 
885   case SIGTRAP:
886   case (SIGTRAP | 0x80):
887     LLDB_LOG(
888         log,
889         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
890         info.si_code, GetID(), thread.GetID());
891 
892     // Ignore these signals until we know more about them.
893     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
894     break;
895 
896   default:
897     LLDB_LOG(
898         log,
899         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
900         info.si_code, GetID(), thread.GetID());
901     llvm_unreachable("Unexpected SIGTRAP code!");
902     break;
903   }
904 }
905 
906 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
907   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
908   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
909 
910   // This thread is currently stopped.
911   thread.SetStoppedByTrace();
912 
913   StopRunningThreads(thread.GetID());
914 }
915 
916 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
917   Log *log(
918       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
919   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
920 
921   // Mark the thread as stopped at breakpoint.
922   thread.SetStoppedByBreakpoint();
923   Status error = FixupBreakpointPCAsNeeded(thread);
924   if (error.Fail())
925     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
926 
927   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
928       m_threads_stepping_with_breakpoint.end())
929     thread.SetStoppedByTrace();
930 
931   StopRunningThreads(thread.GetID());
932 }
933 
934 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
935                                            uint32_t wp_index) {
936   Log *log(
937       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
938   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
939            thread.GetID(), wp_index);
940 
941   // Mark the thread as stopped at watchpoint.
942   // The address is at (lldb::addr_t)info->si_addr if we need it.
943   thread.SetStoppedByWatchpoint(wp_index);
944 
945   // We need to tell all other running threads before we notify the delegate
946   // about this stop.
947   StopRunningThreads(thread.GetID());
948 }
949 
950 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
951                                        NativeThreadLinux &thread, bool exited) {
952   const int signo = info.si_signo;
953   const bool is_from_llgs = info.si_pid == getpid();
954 
955   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
956 
957   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
958   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
959   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
960   //
961   // IOW, user generated signals never generate what we consider to be a
962   // "crash".
963   //
964   // Similarly, ACK signals generated by this monitor.
965 
966   // Handle the signal.
967   LLDB_LOG(log,
968            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
969            "waitpid pid = {4})",
970            Host::GetSignalAsCString(signo), signo, info.si_code,
971            thread.GetID());
972 
973   // Check for thread stop notification.
974   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
975     // This is a tgkill()-based stop.
976     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
977 
978     // Check that we're not already marked with a stop reason.
979     // Note this thread really shouldn't already be marked as stopped - if we
980     // were, that would imply that the kernel signaled us with the thread
981     // stopping which we handled and marked as stopped, and that, without an
982     // intervening resume, we received another stop.  It is more likely that we
983     // are missing the marking of a run state somewhere if we find that the
984     // thread was marked as stopped.
985     const StateType thread_state = thread.GetState();
986     if (!StateIsStoppedState(thread_state, false)) {
987       // An inferior thread has stopped because of a SIGSTOP we have sent it.
988       // Generally, these are not important stops and we don't want to report
989       // them as they are just used to stop other threads when one thread (the
990       // one with the *real* stop reason) hits a breakpoint (watchpoint,
991       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
992       // the real stop reason, so we leave the signal intact if this is the
993       // thread that was chosen as the triggering thread.
994       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
995         if (m_pending_notification_tid == thread.GetID())
996           thread.SetStoppedBySignal(SIGSTOP, &info);
997         else
998           thread.SetStoppedWithNoReason();
999 
1000         SetCurrentThreadID(thread.GetID());
1001         SignalIfAllThreadsStopped();
1002       } else {
1003         // We can end up here if stop was initiated by LLGS but by this time a
1004         // thread stop has occurred - maybe initiated by another event.
1005         Status error = ResumeThread(thread, thread.GetState(), 0);
1006         if (error.Fail())
1007           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
1008                    error);
1009       }
1010     } else {
1011       LLDB_LOG(log,
1012                "pid {0} tid {1}, thread was already marked as a stopped "
1013                "state (state={2}), leaving stop signal as is",
1014                GetID(), thread.GetID(), thread_state);
1015       SignalIfAllThreadsStopped();
1016     }
1017 
1018     // Done handling.
1019     return;
1020   }
1021 
1022   // Check if debugger should stop at this signal or just ignore it
1023   // and resume the inferior.
1024   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
1025      ResumeThread(thread, thread.GetState(), signo);
1026      return;
1027   }
1028 
1029   // This thread is stopped.
1030   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
1031   thread.SetStoppedBySignal(signo, &info);
1032 
1033   // Send a stop to the debugger after we get all other threads to stop.
1034   StopRunningThreads(thread.GetID());
1035 }
1036 
1037 namespace {
1038 
1039 struct EmulatorBaton {
1040   NativeProcessLinux *m_process;
1041   NativeRegisterContext *m_reg_context;
1042 
1043   // eRegisterKindDWARF -> RegsiterValue
1044   std::unordered_map<uint32_t, RegisterValue> m_register_values;
1045 
1046   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
1047       : m_process(process), m_reg_context(reg_context) {}
1048 };
1049 
1050 } // anonymous namespace
1051 
1052 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
1053                                  const EmulateInstruction::Context &context,
1054                                  lldb::addr_t addr, void *dst, size_t length) {
1055   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1056 
1057   size_t bytes_read;
1058   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1059   return bytes_read;
1060 }
1061 
1062 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
1063                                  const RegisterInfo *reg_info,
1064                                  RegisterValue &reg_value) {
1065   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1066 
1067   auto it = emulator_baton->m_register_values.find(
1068       reg_info->kinds[eRegisterKindDWARF]);
1069   if (it != emulator_baton->m_register_values.end()) {
1070     reg_value = it->second;
1071     return true;
1072   }
1073 
1074   // The emulator only fill in the dwarf regsiter numbers (and in some case
1075   // the generic register numbers). Get the full register info from the
1076   // register context based on the dwarf register numbers.
1077   const RegisterInfo *full_reg_info =
1078       emulator_baton->m_reg_context->GetRegisterInfo(
1079           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1080 
1081   Status error =
1082       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1083   if (error.Success())
1084     return true;
1085 
1086   return false;
1087 }
1088 
1089 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
1090                                   const EmulateInstruction::Context &context,
1091                                   const RegisterInfo *reg_info,
1092                                   const RegisterValue &reg_value) {
1093   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
1094   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
1095       reg_value;
1096   return true;
1097 }
1098 
1099 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
1100                                   const EmulateInstruction::Context &context,
1101                                   lldb::addr_t addr, const void *dst,
1102                                   size_t length) {
1103   return length;
1104 }
1105 
1106 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1107   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1108       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1109   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1110                                                   LLDB_INVALID_ADDRESS);
1111 }
1112 
1113 Status
1114 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
1115   Status error;
1116   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1117 
1118   std::unique_ptr<EmulateInstruction> emulator_ap(
1119       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1120                                      nullptr));
1121 
1122   if (emulator_ap == nullptr)
1123     return Status("Instruction emulator not found!");
1124 
1125   EmulatorBaton baton(this, register_context_sp.get());
1126   emulator_ap->SetBaton(&baton);
1127   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1128   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1129   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1130   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1131 
1132   if (!emulator_ap->ReadInstruction())
1133     return Status("Read instruction failed!");
1134 
1135   bool emulation_result =
1136       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1137 
1138   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1139       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1140   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1141       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1142 
1143   auto pc_it =
1144       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1145   auto flags_it =
1146       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1147 
1148   lldb::addr_t next_pc;
1149   lldb::addr_t next_flags;
1150   if (emulation_result) {
1151     assert(pc_it != baton.m_register_values.end() &&
1152            "Emulation was successfull but PC wasn't updated");
1153     next_pc = pc_it->second.GetAsUInt64();
1154 
1155     if (flags_it != baton.m_register_values.end())
1156       next_flags = flags_it->second.GetAsUInt64();
1157     else
1158       next_flags = ReadFlags(register_context_sp.get());
1159   } else if (pc_it == baton.m_register_values.end()) {
1160     // Emulate instruction failed and it haven't changed PC. Advance PC
1161     // with the size of the current opcode because the emulation of all
1162     // PC modifying instruction should be successful. The failure most
1163     // likely caused by a not supported instruction which don't modify PC.
1164     next_pc =
1165         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1166     next_flags = ReadFlags(register_context_sp.get());
1167   } else {
1168     // The instruction emulation failed after it modified the PC. It is an
1169     // unknown error where we can't continue because the next instruction is
1170     // modifying the PC but we don't  know how.
1171     return Status("Instruction emulation failed unexpectedly.");
1172   }
1173 
1174   if (m_arch.GetMachine() == llvm::Triple::arm) {
1175     if (next_flags & 0x20) {
1176       // Thumb mode
1177       error = SetSoftwareBreakpoint(next_pc, 2);
1178     } else {
1179       // Arm mode
1180       error = SetSoftwareBreakpoint(next_pc, 4);
1181     }
1182   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1183              m_arch.GetMachine() == llvm::Triple::mips64el ||
1184              m_arch.GetMachine() == llvm::Triple::mips ||
1185              m_arch.GetMachine() == llvm::Triple::mipsel)
1186     error = SetSoftwareBreakpoint(next_pc, 4);
1187   else {
1188     // No size hint is given for the next breakpoint
1189     error = SetSoftwareBreakpoint(next_pc, 0);
1190   }
1191 
1192   // If setting the breakpoint fails because next_pc is out of
1193   // the address space, ignore it and let the debugee segfault.
1194   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1195     return Status();
1196   } else if (error.Fail())
1197     return error;
1198 
1199   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1200 
1201   return Status();
1202 }
1203 
1204 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1205   if (m_arch.GetMachine() == llvm::Triple::arm ||
1206       m_arch.GetMachine() == llvm::Triple::mips64 ||
1207       m_arch.GetMachine() == llvm::Triple::mips64el ||
1208       m_arch.GetMachine() == llvm::Triple::mips ||
1209       m_arch.GetMachine() == llvm::Triple::mipsel)
1210     return false;
1211   return true;
1212 }
1213 
1214 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1216   LLDB_LOG(log, "pid {0}", GetID());
1217 
1218   bool software_single_step = !SupportHardwareSingleStepping();
1219 
1220   if (software_single_step) {
1221     for (auto thread_sp : m_threads) {
1222       assert(thread_sp && "thread list should not contain NULL threads");
1223 
1224       const ResumeAction *const action =
1225           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1226       if (action == nullptr)
1227         continue;
1228 
1229       if (action->state == eStateStepping) {
1230         Status error = SetupSoftwareSingleStepping(
1231             static_cast<NativeThreadLinux &>(*thread_sp));
1232         if (error.Fail())
1233           return error;
1234       }
1235     }
1236   }
1237 
1238   for (auto thread_sp : m_threads) {
1239     assert(thread_sp && "thread list should not contain NULL threads");
1240 
1241     const ResumeAction *const action =
1242         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1243 
1244     if (action == nullptr) {
1245       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1246                thread_sp->GetID());
1247       continue;
1248     }
1249 
1250     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1251              action->state, GetID(), thread_sp->GetID());
1252 
1253     switch (action->state) {
1254     case eStateRunning:
1255     case eStateStepping: {
1256       // Run the thread, possibly feeding it the signal.
1257       const int signo = action->signal;
1258       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1259                    signo);
1260       break;
1261     }
1262 
1263     case eStateSuspended:
1264     case eStateStopped:
1265       llvm_unreachable("Unexpected state");
1266 
1267     default:
1268       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1269                     "for pid %" PRIu64 ", tid %" PRIu64,
1270                     __FUNCTION__, StateAsCString(action->state), GetID(),
1271                     thread_sp->GetID());
1272     }
1273   }
1274 
1275   return Status();
1276 }
1277 
1278 Status NativeProcessLinux::Halt() {
1279   Status error;
1280 
1281   if (kill(GetID(), SIGSTOP) != 0)
1282     error.SetErrorToErrno();
1283 
1284   return error;
1285 }
1286 
1287 Status NativeProcessLinux::Detach() {
1288   Status error;
1289 
1290   // Stop monitoring the inferior.
1291   m_sigchld_handle.reset();
1292 
1293   // Tell ptrace to detach from the process.
1294   if (GetID() == LLDB_INVALID_PROCESS_ID)
1295     return error;
1296 
1297   for (auto thread_sp : m_threads) {
1298     Status e = Detach(thread_sp->GetID());
1299     if (e.Fail())
1300       error =
1301           e; // Save the error, but still attempt to detach from other threads.
1302   }
1303 
1304   return error;
1305 }
1306 
1307 Status NativeProcessLinux::Signal(int signo) {
1308   Status error;
1309 
1310   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1311   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1312            Host::GetSignalAsCString(signo), GetID());
1313 
1314   if (kill(GetID(), signo))
1315     error.SetErrorToErrno();
1316 
1317   return error;
1318 }
1319 
1320 Status NativeProcessLinux::Interrupt() {
1321   // Pick a running thread (or if none, a not-dead stopped thread) as
1322   // the chosen thread that will be the stop-reason thread.
1323   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1324 
1325   NativeThreadProtocolSP running_thread_sp;
1326   NativeThreadProtocolSP stopped_thread_sp;
1327 
1328   LLDB_LOG(log, "selecting running thread for interrupt target");
1329   for (auto thread_sp : m_threads) {
1330     // The thread shouldn't be null but lets just cover that here.
1331     if (!thread_sp)
1332       continue;
1333 
1334     // If we have a running or stepping thread, we'll call that the
1335     // target of the interrupt.
1336     const auto thread_state = thread_sp->GetState();
1337     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1338       running_thread_sp = thread_sp;
1339       break;
1340     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1341       // Remember the first non-dead stopped thread.  We'll use that as a backup
1342       // if there are no running threads.
1343       stopped_thread_sp = thread_sp;
1344     }
1345   }
1346 
1347   if (!running_thread_sp && !stopped_thread_sp) {
1348     Status error("found no running/stepping or live stopped threads as target "
1349                  "for interrupt");
1350     LLDB_LOG(log, "skipping due to error: {0}", error);
1351 
1352     return error;
1353   }
1354 
1355   NativeThreadProtocolSP deferred_signal_thread_sp =
1356       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1357 
1358   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1359            running_thread_sp ? "running" : "stopped",
1360            deferred_signal_thread_sp->GetID());
1361 
1362   StopRunningThreads(deferred_signal_thread_sp->GetID());
1363 
1364   return Status();
1365 }
1366 
1367 Status NativeProcessLinux::Kill() {
1368   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1369   LLDB_LOG(log, "pid {0}", GetID());
1370 
1371   Status error;
1372 
1373   switch (m_state) {
1374   case StateType::eStateInvalid:
1375   case StateType::eStateExited:
1376   case StateType::eStateCrashed:
1377   case StateType::eStateDetached:
1378   case StateType::eStateUnloaded:
1379     // Nothing to do - the process is already dead.
1380     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1381              m_state);
1382     return error;
1383 
1384   case StateType::eStateConnected:
1385   case StateType::eStateAttaching:
1386   case StateType::eStateLaunching:
1387   case StateType::eStateStopped:
1388   case StateType::eStateRunning:
1389   case StateType::eStateStepping:
1390   case StateType::eStateSuspended:
1391     // We can try to kill a process in these states.
1392     break;
1393   }
1394 
1395   if (kill(GetID(), SIGKILL) != 0) {
1396     error.SetErrorToErrno();
1397     return error;
1398   }
1399 
1400   return error;
1401 }
1402 
1403 static Status
1404 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1405                                       MemoryRegionInfo &memory_region_info) {
1406   memory_region_info.Clear();
1407 
1408   StringExtractor line_extractor(maps_line);
1409 
1410   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1411   // pathname
1412   // perms: rwxp   (letter is present if set, '-' if not, final character is
1413   // p=private, s=shared).
1414 
1415   // Parse out the starting address
1416   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1417 
1418   // Parse out hyphen separating start and end address from range.
1419   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1420     return Status(
1421         "malformed /proc/{pid}/maps entry, missing dash between address range");
1422 
1423   // Parse out the ending address
1424   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1425 
1426   // Parse out the space after the address.
1427   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1428     return Status(
1429         "malformed /proc/{pid}/maps entry, missing space after range");
1430 
1431   // Save the range.
1432   memory_region_info.GetRange().SetRangeBase(start_address);
1433   memory_region_info.GetRange().SetRangeEnd(end_address);
1434 
1435   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1436   // process.
1437   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1438 
1439   // Parse out each permission entry.
1440   if (line_extractor.GetBytesLeft() < 4)
1441     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1442                   "permissions");
1443 
1444   // Handle read permission.
1445   const char read_perm_char = line_extractor.GetChar();
1446   if (read_perm_char == 'r')
1447     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1448   else if (read_perm_char == '-')
1449     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1450   else
1451     return Status("unexpected /proc/{pid}/maps read permission char");
1452 
1453   // Handle write permission.
1454   const char write_perm_char = line_extractor.GetChar();
1455   if (write_perm_char == 'w')
1456     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1457   else if (write_perm_char == '-')
1458     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1459   else
1460     return Status("unexpected /proc/{pid}/maps write permission char");
1461 
1462   // Handle execute permission.
1463   const char exec_perm_char = line_extractor.GetChar();
1464   if (exec_perm_char == 'x')
1465     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1466   else if (exec_perm_char == '-')
1467     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1468   else
1469     return Status("unexpected /proc/{pid}/maps exec permission char");
1470 
1471   line_extractor.GetChar();              // Read the private bit
1472   line_extractor.SkipSpaces();           // Skip the separator
1473   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1474   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1475   line_extractor.GetChar();              // Read the device id separator
1476   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1477   line_extractor.SkipSpaces();           // Skip the separator
1478   line_extractor.GetU64(0, 10);          // Read the inode number
1479 
1480   line_extractor.SkipSpaces();
1481   const char *name = line_extractor.Peek();
1482   if (name)
1483     memory_region_info.SetName(name);
1484 
1485   return Status();
1486 }
1487 
1488 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1489                                                MemoryRegionInfo &range_info) {
1490   // FIXME review that the final memory region returned extends to the end of
1491   // the virtual address space,
1492   // with no perms if it is not mapped.
1493 
1494   // Use an approach that reads memory regions from /proc/{pid}/maps.
1495   // Assume proc maps entries are in ascending order.
1496   // FIXME assert if we find differently.
1497 
1498   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1499     // We're done.
1500     return Status("unsupported");
1501   }
1502 
1503   Status error = PopulateMemoryRegionCache();
1504   if (error.Fail()) {
1505     return error;
1506   }
1507 
1508   lldb::addr_t prev_base_address = 0;
1509 
1510   // FIXME start by finding the last region that is <= target address using
1511   // binary search.  Data is sorted.
1512   // There can be a ton of regions on pthreads apps with lots of threads.
1513   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1514        ++it) {
1515     MemoryRegionInfo &proc_entry_info = it->first;
1516 
1517     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1518     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1519            "descending /proc/pid/maps entries detected, unexpected");
1520     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1521     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1522 
1523     // If the target address comes before this entry, indicate distance to next
1524     // region.
1525     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1526       range_info.GetRange().SetRangeBase(load_addr);
1527       range_info.GetRange().SetByteSize(
1528           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1529       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1530       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1531       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1532       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1533 
1534       return error;
1535     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1536       // The target address is within the memory region we're processing here.
1537       range_info = proc_entry_info;
1538       return error;
1539     }
1540 
1541     // The target memory address comes somewhere after the region we just
1542     // parsed.
1543   }
1544 
1545   // If we made it here, we didn't find an entry that contained the given
1546   // address. Return the
1547   // load_addr as start and the amount of bytes betwwen load address and the end
1548   // of the memory as
1549   // size.
1550   range_info.GetRange().SetRangeBase(load_addr);
1551   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1552   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1553   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1554   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1555   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1556   return error;
1557 }
1558 
1559 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1560   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1561 
1562   // If our cache is empty, pull the latest.  There should always be at least
1563   // one memory region if memory region handling is supported.
1564   if (!m_mem_region_cache.empty()) {
1565     LLDB_LOG(log, "reusing {0} cached memory region entries",
1566              m_mem_region_cache.size());
1567     return Status();
1568   }
1569 
1570   auto BufferOrError = getProcFile(GetID(), "maps");
1571   if (!BufferOrError) {
1572     m_supports_mem_region = LazyBool::eLazyBoolNo;
1573     return BufferOrError.getError();
1574   }
1575   StringRef Rest = BufferOrError.get()->getBuffer();
1576   while (! Rest.empty()) {
1577     StringRef Line;
1578     std::tie(Line, Rest) = Rest.split('\n');
1579     MemoryRegionInfo info;
1580     const Status parse_error =
1581         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1582     if (parse_error.Fail()) {
1583       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1584                parse_error);
1585       m_supports_mem_region = LazyBool::eLazyBoolNo;
1586       return parse_error;
1587     }
1588     m_mem_region_cache.emplace_back(
1589         info, FileSpec(info.GetName().GetCString(), true));
1590   }
1591 
1592   if (m_mem_region_cache.empty()) {
1593     // No entries after attempting to read them.  This shouldn't happen if
1594     // /proc/{pid}/maps is supported. Assume we don't support map entries
1595     // via procfs.
1596     m_supports_mem_region = LazyBool::eLazyBoolNo;
1597     LLDB_LOG(log,
1598              "failed to find any procfs maps entries, assuming no support "
1599              "for memory region metadata retrieval");
1600     return Status("not supported");
1601   }
1602 
1603   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1604            m_mem_region_cache.size(), GetID());
1605 
1606   // We support memory retrieval, remember that.
1607   m_supports_mem_region = LazyBool::eLazyBoolYes;
1608   return Status();
1609 }
1610 
1611 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1612   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1613   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1614   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1615            m_mem_region_cache.size());
1616   m_mem_region_cache.clear();
1617 }
1618 
1619 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1620                                           lldb::addr_t &addr) {
1621 // FIXME implementing this requires the equivalent of
1622 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1623 // functional ThreadPlans working with Native*Protocol.
1624 #if 1
1625   return Status("not implemented yet");
1626 #else
1627   addr = LLDB_INVALID_ADDRESS;
1628 
1629   unsigned prot = 0;
1630   if (permissions & lldb::ePermissionsReadable)
1631     prot |= eMmapProtRead;
1632   if (permissions & lldb::ePermissionsWritable)
1633     prot |= eMmapProtWrite;
1634   if (permissions & lldb::ePermissionsExecutable)
1635     prot |= eMmapProtExec;
1636 
1637   // TODO implement this directly in NativeProcessLinux
1638   // (and lift to NativeProcessPOSIX if/when that class is
1639   // refactored out).
1640   if (InferiorCallMmap(this, addr, 0, size, prot,
1641                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1642     m_addr_to_mmap_size[addr] = size;
1643     return Status();
1644   } else {
1645     addr = LLDB_INVALID_ADDRESS;
1646     return Status("unable to allocate %" PRIu64
1647                   " bytes of memory with permissions %s",
1648                   size, GetPermissionsAsCString(permissions));
1649   }
1650 #endif
1651 }
1652 
1653 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1654   // FIXME see comments in AllocateMemory - required lower-level
1655   // bits not in place yet (ThreadPlans)
1656   return Status("not implemented");
1657 }
1658 
1659 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1660   // punt on this for now
1661   return LLDB_INVALID_ADDRESS;
1662 }
1663 
1664 size_t NativeProcessLinux::UpdateThreads() {
1665   // The NativeProcessLinux monitoring threads are always up to date
1666   // with respect to thread state and they keep the thread list
1667   // populated properly. All this method needs to do is return the
1668   // thread count.
1669   return m_threads.size();
1670 }
1671 
1672 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1673   arch = m_arch;
1674   return true;
1675 }
1676 
1677 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1678     uint32_t &actual_opcode_size) {
1679   // FIXME put this behind a breakpoint protocol class that can be
1680   // set per architecture.  Need ARM, MIPS support here.
1681   static const uint8_t g_i386_opcode[] = {0xCC};
1682   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1683 
1684   switch (m_arch.GetMachine()) {
1685   case llvm::Triple::x86:
1686   case llvm::Triple::x86_64:
1687     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1688     return Status();
1689 
1690   case llvm::Triple::systemz:
1691     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1692     return Status();
1693 
1694   case llvm::Triple::arm:
1695   case llvm::Triple::aarch64:
1696   case llvm::Triple::mips64:
1697   case llvm::Triple::mips64el:
1698   case llvm::Triple::mips:
1699   case llvm::Triple::mipsel:
1700     // On these architectures the PC don't get updated for breakpoint hits
1701     actual_opcode_size = 0;
1702     return Status();
1703 
1704   default:
1705     assert(false && "CPU type not supported!");
1706     return Status("CPU type not supported");
1707   }
1708 }
1709 
1710 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1711                                          bool hardware) {
1712   if (hardware)
1713     return SetHardwareBreakpoint(addr, size);
1714   else
1715     return SetSoftwareBreakpoint(addr, size);
1716 }
1717 
1718 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1719   if (hardware)
1720     return RemoveHardwareBreakpoint(addr);
1721   else
1722     return NativeProcessProtocol::RemoveBreakpoint(addr);
1723 }
1724 
1725 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1726     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1727     const uint8_t *&trap_opcode_bytes) {
1728   // FIXME put this behind a breakpoint protocol class that can be set per
1729   // architecture.  Need MIPS support here.
1730   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1731   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1732   // linux kernel does otherwise.
1733   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1734   static const uint8_t g_i386_opcode[] = {0xCC};
1735   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1736   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1737   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1738   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1739 
1740   switch (m_arch.GetMachine()) {
1741   case llvm::Triple::aarch64:
1742     trap_opcode_bytes = g_aarch64_opcode;
1743     actual_opcode_size = sizeof(g_aarch64_opcode);
1744     return Status();
1745 
1746   case llvm::Triple::arm:
1747     switch (trap_opcode_size_hint) {
1748     case 2:
1749       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1750       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1751       return Status();
1752     case 4:
1753       trap_opcode_bytes = g_arm_breakpoint_opcode;
1754       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1755       return Status();
1756     default:
1757       assert(false && "Unrecognised trap opcode size hint!");
1758       return Status("Unrecognised trap opcode size hint!");
1759     }
1760 
1761   case llvm::Triple::x86:
1762   case llvm::Triple::x86_64:
1763     trap_opcode_bytes = g_i386_opcode;
1764     actual_opcode_size = sizeof(g_i386_opcode);
1765     return Status();
1766 
1767   case llvm::Triple::mips:
1768   case llvm::Triple::mips64:
1769     trap_opcode_bytes = g_mips64_opcode;
1770     actual_opcode_size = sizeof(g_mips64_opcode);
1771     return Status();
1772 
1773   case llvm::Triple::mipsel:
1774   case llvm::Triple::mips64el:
1775     trap_opcode_bytes = g_mips64el_opcode;
1776     actual_opcode_size = sizeof(g_mips64el_opcode);
1777     return Status();
1778 
1779   case llvm::Triple::systemz:
1780     trap_opcode_bytes = g_s390x_opcode;
1781     actual_opcode_size = sizeof(g_s390x_opcode);
1782     return Status();
1783 
1784   default:
1785     assert(false && "CPU type not supported!");
1786     return Status("CPU type not supported");
1787   }
1788 }
1789 
1790 #if 0
1791 ProcessMessage::CrashReason
1792 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1793 {
1794     ProcessMessage::CrashReason reason;
1795     assert(info->si_signo == SIGSEGV);
1796 
1797     reason = ProcessMessage::eInvalidCrashReason;
1798 
1799     switch (info->si_code)
1800     {
1801     default:
1802         assert(false && "unexpected si_code for SIGSEGV");
1803         break;
1804     case SI_KERNEL:
1805         // Linux will occasionally send spurious SI_KERNEL codes.
1806         // (this is poorly documented in sigaction)
1807         // One way to get this is via unaligned SIMD loads.
1808         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1809         break;
1810     case SEGV_MAPERR:
1811         reason = ProcessMessage::eInvalidAddress;
1812         break;
1813     case SEGV_ACCERR:
1814         reason = ProcessMessage::ePrivilegedAddress;
1815         break;
1816     }
1817 
1818     return reason;
1819 }
1820 #endif
1821 
1822 #if 0
1823 ProcessMessage::CrashReason
1824 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1825 {
1826     ProcessMessage::CrashReason reason;
1827     assert(info->si_signo == SIGILL);
1828 
1829     reason = ProcessMessage::eInvalidCrashReason;
1830 
1831     switch (info->si_code)
1832     {
1833     default:
1834         assert(false && "unexpected si_code for SIGILL");
1835         break;
1836     case ILL_ILLOPC:
1837         reason = ProcessMessage::eIllegalOpcode;
1838         break;
1839     case ILL_ILLOPN:
1840         reason = ProcessMessage::eIllegalOperand;
1841         break;
1842     case ILL_ILLADR:
1843         reason = ProcessMessage::eIllegalAddressingMode;
1844         break;
1845     case ILL_ILLTRP:
1846         reason = ProcessMessage::eIllegalTrap;
1847         break;
1848     case ILL_PRVOPC:
1849         reason = ProcessMessage::ePrivilegedOpcode;
1850         break;
1851     case ILL_PRVREG:
1852         reason = ProcessMessage::ePrivilegedRegister;
1853         break;
1854     case ILL_COPROC:
1855         reason = ProcessMessage::eCoprocessorError;
1856         break;
1857     case ILL_BADSTK:
1858         reason = ProcessMessage::eInternalStackError;
1859         break;
1860     }
1861 
1862     return reason;
1863 }
1864 #endif
1865 
1866 #if 0
1867 ProcessMessage::CrashReason
1868 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1869 {
1870     ProcessMessage::CrashReason reason;
1871     assert(info->si_signo == SIGFPE);
1872 
1873     reason = ProcessMessage::eInvalidCrashReason;
1874 
1875     switch (info->si_code)
1876     {
1877     default:
1878         assert(false && "unexpected si_code for SIGFPE");
1879         break;
1880     case FPE_INTDIV:
1881         reason = ProcessMessage::eIntegerDivideByZero;
1882         break;
1883     case FPE_INTOVF:
1884         reason = ProcessMessage::eIntegerOverflow;
1885         break;
1886     case FPE_FLTDIV:
1887         reason = ProcessMessage::eFloatDivideByZero;
1888         break;
1889     case FPE_FLTOVF:
1890         reason = ProcessMessage::eFloatOverflow;
1891         break;
1892     case FPE_FLTUND:
1893         reason = ProcessMessage::eFloatUnderflow;
1894         break;
1895     case FPE_FLTRES:
1896         reason = ProcessMessage::eFloatInexactResult;
1897         break;
1898     case FPE_FLTINV:
1899         reason = ProcessMessage::eFloatInvalidOperation;
1900         break;
1901     case FPE_FLTSUB:
1902         reason = ProcessMessage::eFloatSubscriptRange;
1903         break;
1904     }
1905 
1906     return reason;
1907 }
1908 #endif
1909 
1910 #if 0
1911 ProcessMessage::CrashReason
1912 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1913 {
1914     ProcessMessage::CrashReason reason;
1915     assert(info->si_signo == SIGBUS);
1916 
1917     reason = ProcessMessage::eInvalidCrashReason;
1918 
1919     switch (info->si_code)
1920     {
1921     default:
1922         assert(false && "unexpected si_code for SIGBUS");
1923         break;
1924     case BUS_ADRALN:
1925         reason = ProcessMessage::eIllegalAlignment;
1926         break;
1927     case BUS_ADRERR:
1928         reason = ProcessMessage::eIllegalAddress;
1929         break;
1930     case BUS_OBJERR:
1931         reason = ProcessMessage::eHardwareError;
1932         break;
1933     }
1934 
1935     return reason;
1936 }
1937 #endif
1938 
1939 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1940                                       size_t &bytes_read) {
1941   if (ProcessVmReadvSupported()) {
1942     // The process_vm_readv path is about 50 times faster than ptrace api. We
1943     // want to use
1944     // this syscall if it is supported.
1945 
1946     const ::pid_t pid = GetID();
1947 
1948     struct iovec local_iov, remote_iov;
1949     local_iov.iov_base = buf;
1950     local_iov.iov_len = size;
1951     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1952     remote_iov.iov_len = size;
1953 
1954     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1955     const bool success = bytes_read == size;
1956 
1957     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1958     LLDB_LOG(log,
1959              "using process_vm_readv to read {0} bytes from inferior "
1960              "address {1:x}: {2}",
1961              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1962 
1963     if (success)
1964       return Status();
1965     // else the call failed for some reason, let's retry the read using ptrace
1966     // api.
1967   }
1968 
1969   unsigned char *dst = static_cast<unsigned char *>(buf);
1970   size_t remainder;
1971   long data;
1972 
1973   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1974   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1975 
1976   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1977     Status error = NativeProcessLinux::PtraceWrapper(
1978         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1979     if (error.Fail())
1980       return error;
1981 
1982     remainder = size - bytes_read;
1983     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1984 
1985     // Copy the data into our buffer
1986     memcpy(dst, &data, remainder);
1987 
1988     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1989     addr += k_ptrace_word_size;
1990     dst += k_ptrace_word_size;
1991   }
1992   return Status();
1993 }
1994 
1995 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1996                                                  size_t size,
1997                                                  size_t &bytes_read) {
1998   Status error = ReadMemory(addr, buf, size, bytes_read);
1999   if (error.Fail())
2000     return error;
2001   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2002 }
2003 
2004 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
2005                                        size_t size, size_t &bytes_written) {
2006   const unsigned char *src = static_cast<const unsigned char *>(buf);
2007   size_t remainder;
2008   Status error;
2009 
2010   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
2011   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
2012 
2013   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
2014     remainder = size - bytes_written;
2015     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2016 
2017     if (remainder == k_ptrace_word_size) {
2018       unsigned long data = 0;
2019       memcpy(&data, src, k_ptrace_word_size);
2020 
2021       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
2022       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
2023                                                 (void *)addr, (void *)data);
2024       if (error.Fail())
2025         return error;
2026     } else {
2027       unsigned char buff[8];
2028       size_t bytes_read;
2029       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2030       if (error.Fail())
2031         return error;
2032 
2033       memcpy(buff, src, remainder);
2034 
2035       size_t bytes_written_rec;
2036       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2037       if (error.Fail())
2038         return error;
2039 
2040       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
2041                *(unsigned long *)buff);
2042     }
2043 
2044     addr += k_ptrace_word_size;
2045     src += k_ptrace_word_size;
2046   }
2047   return error;
2048 }
2049 
2050 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
2051   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2052 }
2053 
2054 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
2055                                            unsigned long *message) {
2056   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2057 }
2058 
2059 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
2060   if (tid == LLDB_INVALID_THREAD_ID)
2061     return Status();
2062 
2063   return PtraceWrapper(PTRACE_DETACH, tid);
2064 }
2065 
2066 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
2067   for (auto thread_sp : m_threads) {
2068     assert(thread_sp && "thread list should not contain NULL threads");
2069     if (thread_sp->GetID() == thread_id) {
2070       // We have this thread.
2071       return true;
2072     }
2073   }
2074 
2075   // We don't have this thread.
2076   return false;
2077 }
2078 
2079 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
2080   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2081   LLDB_LOG(log, "tid: {0})", thread_id);
2082 
2083   bool found = false;
2084   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
2085     if (*it && ((*it)->GetID() == thread_id)) {
2086       m_threads.erase(it);
2087       found = true;
2088       break;
2089     }
2090   }
2091 
2092   SignalIfAllThreadsStopped();
2093   return found;
2094 }
2095 
2096 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
2097   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
2098   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2099 
2100   assert(!HasThreadNoLock(thread_id) &&
2101          "attempted to add a thread by id that already exists");
2102 
2103   // If this is the first thread, save it as the current thread
2104   if (m_threads.empty())
2105     SetCurrentThreadID(thread_id);
2106 
2107   auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2108   m_threads.push_back(thread_sp);
2109   return thread_sp;
2110 }
2111 
2112 Status
2113 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2114   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2115 
2116   Status error;
2117 
2118   // Find out the size of a breakpoint (might depend on where we are in the
2119   // code).
2120   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2121   if (!context_sp) {
2122     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2123     LLDB_LOG(log, "failed: {0}", error);
2124     return error;
2125   }
2126 
2127   uint32_t breakpoint_size = 0;
2128   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2129   if (error.Fail()) {
2130     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2131     return error;
2132   } else
2133     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2134 
2135   // First try probing for a breakpoint at a software breakpoint location: PC -
2136   // breakpoint size.
2137   const lldb::addr_t initial_pc_addr =
2138       context_sp->GetPCfromBreakpointLocation();
2139   lldb::addr_t breakpoint_addr = initial_pc_addr;
2140   if (breakpoint_size > 0) {
2141     // Do not allow breakpoint probe to wrap around.
2142     if (breakpoint_addr >= breakpoint_size)
2143       breakpoint_addr -= breakpoint_size;
2144   }
2145 
2146   // Check if we stopped because of a breakpoint.
2147   NativeBreakpointSP breakpoint_sp;
2148   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2149   if (!error.Success() || !breakpoint_sp) {
2150     // We didn't find one at a software probe location.  Nothing to do.
2151     LLDB_LOG(log,
2152              "pid {0} no lldb breakpoint found at current pc with "
2153              "adjustment: {1}",
2154              GetID(), breakpoint_addr);
2155     return Status();
2156   }
2157 
2158   // If the breakpoint is not a software breakpoint, nothing to do.
2159   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2160     LLDB_LOG(
2161         log,
2162         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2163         GetID(), breakpoint_addr);
2164     return Status();
2165   }
2166 
2167   //
2168   // We have a software breakpoint and need to adjust the PC.
2169   //
2170 
2171   // Sanity check.
2172   if (breakpoint_size == 0) {
2173     // Nothing to do!  How did we get here?
2174     LLDB_LOG(log,
2175              "pid {0} breakpoint found at {1:x}, it is software, but the "
2176              "size is zero, nothing to do (unexpected)",
2177              GetID(), breakpoint_addr);
2178     return Status();
2179   }
2180 
2181   // Change the program counter.
2182   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2183            thread.GetID(), initial_pc_addr, breakpoint_addr);
2184 
2185   error = context_sp->SetPC(breakpoint_addr);
2186   if (error.Fail()) {
2187     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2188              thread.GetID(), error);
2189     return error;
2190   }
2191 
2192   return error;
2193 }
2194 
2195 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2196                                                    FileSpec &file_spec) {
2197   Status error = PopulateMemoryRegionCache();
2198   if (error.Fail())
2199     return error;
2200 
2201   FileSpec module_file_spec(module_path, true);
2202 
2203   file_spec.Clear();
2204   for (const auto &it : m_mem_region_cache) {
2205     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2206       file_spec = it.second;
2207       return Status();
2208     }
2209   }
2210   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2211                 module_file_spec.GetFilename().AsCString(), GetID());
2212 }
2213 
2214 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2215                                               lldb::addr_t &load_addr) {
2216   load_addr = LLDB_INVALID_ADDRESS;
2217   Status error = PopulateMemoryRegionCache();
2218   if (error.Fail())
2219     return error;
2220 
2221   FileSpec file(file_name, false);
2222   for (const auto &it : m_mem_region_cache) {
2223     if (it.second == file) {
2224       load_addr = it.first.GetRange().GetRangeBase();
2225       return Status();
2226     }
2227   }
2228   return Status("No load address found for specified file.");
2229 }
2230 
2231 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2232   return std::static_pointer_cast<NativeThreadLinux>(
2233       NativeProcessProtocol::GetThreadByID(tid));
2234 }
2235 
2236 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2237                                         lldb::StateType state, int signo) {
2238   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2239   LLDB_LOG(log, "tid: {0}", thread.GetID());
2240 
2241   // Before we do the resume below, first check if we have a pending
2242   // stop notification that is currently waiting for
2243   // all threads to stop.  This is potentially a buggy situation since
2244   // we're ostensibly waiting for threads to stop before we send out the
2245   // pending notification, and here we are resuming one before we send
2246   // out the pending stop notification.
2247   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2248     LLDB_LOG(log,
2249              "about to resume tid {0} per explicit request but we have a "
2250              "pending stop notification (tid {1}) that is actively "
2251              "waiting for this thread to stop. Valid sequence of events?",
2252              thread.GetID(), m_pending_notification_tid);
2253   }
2254 
2255   // Request a resume.  We expect this to be synchronous and the system
2256   // to reflect it is running after this completes.
2257   switch (state) {
2258   case eStateRunning: {
2259     const auto resume_result = thread.Resume(signo);
2260     if (resume_result.Success())
2261       SetState(eStateRunning, true);
2262     return resume_result;
2263   }
2264   case eStateStepping: {
2265     const auto step_result = thread.SingleStep(signo);
2266     if (step_result.Success())
2267       SetState(eStateRunning, true);
2268     return step_result;
2269   }
2270   default:
2271     LLDB_LOG(log, "Unhandled state {0}.", state);
2272     llvm_unreachable("Unhandled state for resume");
2273   }
2274 }
2275 
2276 //===----------------------------------------------------------------------===//
2277 
2278 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2279   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2280   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2281            triggering_tid);
2282 
2283   m_pending_notification_tid = triggering_tid;
2284 
2285   // Request a stop for all the thread stops that need to be stopped
2286   // and are not already known to be stopped.
2287   for (const auto &thread_sp : m_threads) {
2288     if (StateIsRunningState(thread_sp->GetState()))
2289       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2290   }
2291 
2292   SignalIfAllThreadsStopped();
2293   LLDB_LOG(log, "event processing done");
2294 }
2295 
2296 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2297   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2298     return; // No pending notification. Nothing to do.
2299 
2300   for (const auto &thread_sp : m_threads) {
2301     if (StateIsRunningState(thread_sp->GetState()))
2302       return; // Some threads are still running. Don't signal yet.
2303   }
2304 
2305   // We have a pending notification and all threads have stopped.
2306   Log *log(
2307       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2308 
2309   // Clear any temporary breakpoints we used to implement software single
2310   // stepping.
2311   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2312     Status error = RemoveBreakpoint(thread_info.second);
2313     if (error.Fail())
2314       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2315                thread_info.first, error);
2316   }
2317   m_threads_stepping_with_breakpoint.clear();
2318 
2319   // Notify the delegate about the stop
2320   SetCurrentThreadID(m_pending_notification_tid);
2321   SetState(StateType::eStateStopped, true);
2322   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2323 }
2324 
2325 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2326   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2327   LLDB_LOG(log, "tid: {0}", thread.GetID());
2328 
2329   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2330       StateIsRunningState(thread.GetState())) {
2331     // We will need to wait for this new thread to stop as well before firing
2332     // the
2333     // notification.
2334     thread.RequestStop();
2335   }
2336 }
2337 
2338 void NativeProcessLinux::SigchldHandler() {
2339   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2340   // Process all pending waitpid notifications.
2341   while (true) {
2342     int status = -1;
2343     ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2344 
2345     if (wait_pid == 0)
2346       break; // We are done.
2347 
2348     if (wait_pid == -1) {
2349       if (errno == EINTR)
2350         continue;
2351 
2352       Status error(errno, eErrorTypePOSIX);
2353       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2354       break;
2355     }
2356 
2357     WaitStatus wait_status = WaitStatus::Decode(status);
2358     bool exited = wait_status.type == WaitStatus::Exit ||
2359                   (wait_status.type == WaitStatus::Signal &&
2360                    wait_pid == static_cast<::pid_t>(GetID()));
2361 
2362     LLDB_LOG(
2363         log,
2364         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2365         wait_pid, wait_status, exited);
2366 
2367     MonitorCallback(wait_pid, exited, wait_status);
2368   }
2369 }
2370 
2371 // Wrapper for ptrace to catch errors and log calls.
2372 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2373 // for PTRACE_PEEK*)
2374 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2375                                          void *data, size_t data_size,
2376                                          long *result) {
2377   Status error;
2378   long int ret;
2379 
2380   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2381 
2382   PtraceDisplayBytes(req, data, data_size);
2383 
2384   errno = 0;
2385   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2386     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2387                  *(unsigned int *)addr, data);
2388   else
2389     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2390                  addr, data);
2391 
2392   if (ret == -1)
2393     error.SetErrorToErrno();
2394 
2395   if (result)
2396     *result = ret;
2397 
2398   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2399            data_size, ret);
2400 
2401   PtraceDisplayBytes(req, data, data_size);
2402 
2403   if (error.Fail())
2404     LLDB_LOG(log, "ptrace() failed: {0}", error);
2405 
2406   return error;
2407 }
2408