1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 Status NativeProcessProtocol::Launch( 218 ProcessLaunchInfo &launch_info, 219 NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, 220 NativeProcessProtocolSP &native_process_sp) { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 Status error; 224 225 // Verify the working directory is valid if one was specified. 226 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 227 if (working_dir && (!working_dir.ResolvePath() || 228 !llvm::sys::fs::is_directory(working_dir.GetPath()))) { 229 error.SetErrorStringWithFormat("No such file or directory: %s", 230 working_dir.GetCString()); 231 return error; 232 } 233 234 // Create the NativeProcessLinux in launch mode. 235 native_process_sp.reset(new NativeProcessLinux()); 236 237 if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { 238 native_process_sp.reset(); 239 error.SetErrorStringWithFormat("failed to register the native delegate"); 240 return error; 241 } 242 243 error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp) 244 ->LaunchInferior(mainloop, launch_info); 245 246 if (error.Fail()) { 247 native_process_sp.reset(); 248 LLDB_LOG(log, "failed to launch process: {0}", error); 249 return error; 250 } 251 252 launch_info.SetProcessID(native_process_sp->GetID()); 253 254 return error; 255 } 256 257 Status NativeProcessProtocol::Attach( 258 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 259 MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { 260 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 261 LLDB_LOG(log, "pid = {0:x}", pid); 262 263 // Retrieve the architecture for the running process. 264 ArchSpec process_arch; 265 Status error = ResolveProcessArchitecture(pid, process_arch); 266 if (!error.Success()) 267 return error; 268 269 std::shared_ptr<NativeProcessLinux> native_process_linux_sp( 270 new NativeProcessLinux()); 271 272 if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { 273 error.SetErrorStringWithFormat("failed to register the native delegate"); 274 return error; 275 } 276 277 native_process_linux_sp->AttachToInferior(mainloop, pid, error); 278 if (!error.Success()) 279 return error; 280 281 native_process_sp = native_process_linux_sp; 282 return error; 283 } 284 285 // ----------------------------------------------------------------------------- 286 // Public Instance Methods 287 // ----------------------------------------------------------------------------- 288 289 NativeProcessLinux::NativeProcessLinux() 290 : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), 291 m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), 292 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {} 293 294 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, 295 Status &error) { 296 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 297 LLDB_LOG(log, "pid = {0:x}", pid); 298 299 m_sigchld_handle = mainloop.RegisterSignal( 300 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 301 if (!m_sigchld_handle) 302 return; 303 304 error = ResolveProcessArchitecture(pid, m_arch); 305 if (!error.Success()) 306 return; 307 308 // Set the architecture to the exe architecture. 309 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 310 m_arch.GetArchitectureName()); 311 m_pid = pid; 312 SetState(eStateAttaching); 313 314 Attach(pid, error); 315 } 316 317 Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop, 318 ProcessLaunchInfo &launch_info) { 319 Status error; 320 m_sigchld_handle = mainloop.RegisterSignal( 321 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 322 if (!m_sigchld_handle) 323 return error; 324 325 SetState(eStateLaunching); 326 327 MaybeLogLaunchInfo(launch_info); 328 329 ::pid_t pid = 330 ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId(); 331 if (error.Fail()) 332 return error; 333 334 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 335 336 // Wait for the child process to trap on its call to execve. 337 ::pid_t wpid; 338 int status; 339 if ((wpid = waitpid(pid, &status, 0)) < 0) { 340 error.SetErrorToErrno(); 341 LLDB_LOG(log, "waitpid for inferior failed with %s", error); 342 343 // Mark the inferior as invalid. 344 // FIXME this could really use a new state - eStateLaunchFailure. For now, 345 // using eStateInvalid. 346 SetState(StateType::eStateInvalid); 347 348 return error; 349 } 350 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && 351 "Could not sync with inferior process."); 352 353 LLDB_LOG(log, "inferior started, now in stopped state"); 354 error = SetDefaultPtraceOpts(pid); 355 if (error.Fail()) { 356 LLDB_LOG(log, "failed to set default ptrace options: {0}", error); 357 358 // Mark the inferior as invalid. 359 // FIXME this could really use a new state - eStateLaunchFailure. For now, 360 // using eStateInvalid. 361 SetState(StateType::eStateInvalid); 362 363 return error; 364 } 365 366 // Release the master terminal descriptor and pass it off to the 367 // NativeProcessLinux instance. Similarly stash the inferior pid. 368 m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); 369 m_pid = pid; 370 launch_info.SetProcessID(pid); 371 372 if (m_terminal_fd != -1) { 373 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 374 if (error.Fail()) { 375 LLDB_LOG(log, 376 "inferior EnsureFDFlags failed for ensuring terminal " 377 "O_NONBLOCK setting: {0}", 378 error); 379 380 // Mark the inferior as invalid. 381 // FIXME this could really use a new state - eStateLaunchFailure. For 382 // now, using eStateInvalid. 383 SetState(StateType::eStateInvalid); 384 385 return error; 386 } 387 } 388 389 LLDB_LOG(log, "adding pid = {0}", pid); 390 ResolveProcessArchitecture(m_pid, m_arch); 391 NativeThreadLinuxSP thread_sp = AddThread(pid); 392 assert(thread_sp && "AddThread() returned a nullptr thread"); 393 thread_sp->SetStoppedBySignal(SIGSTOP); 394 ThreadWasCreated(*thread_sp); 395 396 // Let our process instance know the thread has stopped. 397 SetCurrentThreadID(thread_sp->GetID()); 398 SetState(StateType::eStateStopped); 399 400 if (error.Fail()) 401 LLDB_LOG(log, "inferior launching failed {0}", error); 402 return error; 403 } 404 405 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) { 406 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 407 408 // Use a map to keep track of the threads which we have attached/need to 409 // attach. 410 Host::TidMap tids_to_attach; 411 if (pid <= 1) { 412 error.SetErrorToGenericError(); 413 error.SetErrorString("Attaching to process 1 is not allowed."); 414 return -1; 415 } 416 417 while (Host::FindProcessThreads(pid, tids_to_attach)) { 418 for (Host::TidMap::iterator it = tids_to_attach.begin(); 419 it != tids_to_attach.end();) { 420 if (it->second == false) { 421 lldb::tid_t tid = it->first; 422 423 // Attach to the requested process. 424 // An attach will cause the thread to stop with a SIGSTOP. 425 error = PtraceWrapper(PTRACE_ATTACH, tid); 426 if (error.Fail()) { 427 // No such thread. The thread may have exited. 428 // More error handling may be needed. 429 if (error.GetError() == ESRCH) { 430 it = tids_to_attach.erase(it); 431 continue; 432 } else 433 return -1; 434 } 435 436 int status; 437 // Need to use __WALL otherwise we receive an error with errno=ECHLD 438 // At this point we should have a thread stopped if waitpid succeeds. 439 if ((status = waitpid(tid, NULL, __WALL)) < 0) { 440 // No such thread. The thread may have exited. 441 // More error handling may be needed. 442 if (errno == ESRCH) { 443 it = tids_to_attach.erase(it); 444 continue; 445 } else { 446 error.SetErrorToErrno(); 447 return -1; 448 } 449 } 450 451 error = SetDefaultPtraceOpts(tid); 452 if (error.Fail()) 453 return -1; 454 455 LLDB_LOG(log, "adding tid = {0}", tid); 456 it->second = true; 457 458 // Create the thread, mark it as stopped. 459 NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid))); 460 assert(thread_sp && "AddThread() returned a nullptr"); 461 462 // This will notify this is a new thread and tell the system it is 463 // stopped. 464 thread_sp->SetStoppedBySignal(SIGSTOP); 465 ThreadWasCreated(*thread_sp); 466 SetCurrentThreadID(thread_sp->GetID()); 467 } 468 469 // move the loop forward 470 ++it; 471 } 472 } 473 474 if (tids_to_attach.size() > 0) { 475 m_pid = pid; 476 // Let our process instance know the thread has stopped. 477 SetState(StateType::eStateStopped); 478 } else { 479 error.SetErrorToGenericError(); 480 error.SetErrorString("No such process."); 481 return -1; 482 } 483 484 return pid; 485 } 486 487 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 488 long ptrace_opts = 0; 489 490 // Have the child raise an event on exit. This is used to keep the child in 491 // limbo until it is destroyed. 492 ptrace_opts |= PTRACE_O_TRACEEXIT; 493 494 // Have the tracer trace threads which spawn in the inferior process. 495 // TODO: if we want to support tracing the inferiors' child, add the 496 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 497 ptrace_opts |= PTRACE_O_TRACECLONE; 498 499 // Have the tracer notify us before execve returns 500 // (needed to disable legacy SIGTRAP generation) 501 ptrace_opts |= PTRACE_O_TRACEEXEC; 502 503 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 504 } 505 506 // Handles all waitpid events from the inferior process. 507 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 508 WaitStatus status) { 509 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 510 511 // Certain activities differ based on whether the pid is the tid of the main 512 // thread. 513 const bool is_main_thread = (pid == GetID()); 514 515 // Handle when the thread exits. 516 if (exited) { 517 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 518 pid, is_main_thread ? "is" : "is not"); 519 520 // This is a thread that exited. Ensure we're not tracking it anymore. 521 const bool thread_found = StopTrackingThread(pid); 522 523 if (is_main_thread) { 524 // We only set the exit status and notify the delegate if we haven't 525 // already set the process 526 // state to an exited state. We normally should have received a SIGTRAP | 527 // (PTRACE_EVENT_EXIT << 8) 528 // for the main thread. 529 const bool already_notified = (GetState() == StateType::eStateExited) || 530 (GetState() == StateType::eStateCrashed); 531 if (!already_notified) { 532 LLDB_LOG( 533 log, 534 "tid = {0} handling main thread exit ({1}), expected exit state " 535 "already set but state was {2} instead, setting exit state now", 536 pid, 537 thread_found ? "stopped tracking thread metadata" 538 : "thread metadata not found", 539 GetState()); 540 // The main thread exited. We're done monitoring. Report to delegate. 541 SetExitStatus(status, true); 542 543 // Notify delegate that our process has exited. 544 SetState(StateType::eStateExited, true); 545 } else 546 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 547 thread_found ? "stopped tracking thread metadata" 548 : "thread metadata not found"); 549 } else { 550 // Do we want to report to the delegate in this case? I think not. If 551 // this was an orderly thread exit, we would already have received the 552 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 553 // all-stop then. 554 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 555 thread_found ? "stopped tracking thread metadata" 556 : "thread metadata not found"); 557 } 558 return; 559 } 560 561 siginfo_t info; 562 const auto info_err = GetSignalInfo(pid, &info); 563 auto thread_sp = GetThreadByID(pid); 564 565 if (!thread_sp) { 566 // Normally, the only situation when we cannot find the thread is if we have 567 // just received a new thread notification. This is indicated by 568 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 569 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 570 571 if (info_err.Fail()) { 572 LLDB_LOG(log, 573 "(tid {0}) GetSignalInfo failed ({1}). " 574 "Ingoring this notification.", 575 pid, info_err); 576 return; 577 } 578 579 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 580 info.si_pid); 581 582 auto thread_sp = AddThread(pid); 583 // Resume the newly created thread. 584 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 585 ThreadWasCreated(*thread_sp); 586 return; 587 } 588 589 // Get details on the signal raised. 590 if (info_err.Success()) { 591 // We have retrieved the signal info. Dispatch appropriately. 592 if (info.si_signo == SIGTRAP) 593 MonitorSIGTRAP(info, *thread_sp); 594 else 595 MonitorSignal(info, *thread_sp, exited); 596 } else { 597 if (info_err.GetError() == EINVAL) { 598 // This is a group stop reception for this tid. 599 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 600 // into the tracee, triggering the group-stop mechanism. Normally 601 // receiving these would stop the process, pending a SIGCONT. Simulating 602 // this state in a debugger is hard and is generally not needed (one use 603 // case is debugging background task being managed by a shell). For 604 // general use, it is sufficient to stop the process in a signal-delivery 605 // stop which happens before the group stop. This done by MonitorSignal 606 // and works correctly for all signals. 607 LLDB_LOG(log, 608 "received a group stop for pid {0} tid {1}. Transparent " 609 "handling of group stops not supported, resuming the " 610 "thread.", 611 GetID(), pid); 612 ResumeThread(*thread_sp, thread_sp->GetState(), 613 LLDB_INVALID_SIGNAL_NUMBER); 614 } else { 615 // ptrace(GETSIGINFO) failed (but not due to group-stop). 616 617 // A return value of ESRCH means the thread/process is no longer on the 618 // system, so it was killed somehow outside of our control. Either way, 619 // we can't do anything with it anymore. 620 621 // Stop tracking the metadata for the thread since it's entirely off the 622 // system now. 623 const bool thread_found = StopTrackingThread(pid); 624 625 LLDB_LOG(log, 626 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 627 "status = {3}, main_thread = {4}, thread_found: {5}", 628 info_err, pid, signal, status, is_main_thread, thread_found); 629 630 if (is_main_thread) { 631 // Notify the delegate - our process is not available but appears to 632 // have been killed outside 633 // our control. Is eStateExited the right exit state in this case? 634 SetExitStatus(status, true); 635 SetState(StateType::eStateExited, true); 636 } else { 637 // This thread was pulled out from underneath us. Anything to do here? 638 // Do we want to do an all stop? 639 LLDB_LOG(log, 640 "pid {0} tid {1} non-main thread exit occurred, didn't " 641 "tell delegate anything since thread disappeared out " 642 "from underneath us", 643 GetID(), pid); 644 } 645 } 646 } 647 } 648 649 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 650 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 651 652 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 653 654 if (new_thread_sp) { 655 // We are already tracking the thread - we got the event on the new thread 656 // (see 657 // MonitorSignal) before this one. We are done. 658 return; 659 } 660 661 // The thread is not tracked yet, let's wait for it to appear. 662 int status = -1; 663 ::pid_t wait_pid; 664 do { 665 LLDB_LOG(log, 666 "received thread creation event for tid {0}. tid not tracked " 667 "yet, waiting for thread to appear...", 668 tid); 669 wait_pid = waitpid(tid, &status, __WALL); 670 } while (wait_pid == -1 && errno == EINTR); 671 // Since we are waiting on a specific tid, this must be the creation event. 672 // But let's do some checks just in case. 673 if (wait_pid != tid) { 674 LLDB_LOG(log, 675 "waiting for tid {0} failed. Assuming the thread has " 676 "disappeared in the meantime", 677 tid); 678 // The only way I know of this could happen is if the whole process was 679 // SIGKILLed in the mean time. In any case, we can't do anything about that 680 // now. 681 return; 682 } 683 if (WIFEXITED(status)) { 684 LLDB_LOG(log, 685 "waiting for tid {0} returned an 'exited' event. Not " 686 "tracking the thread.", 687 tid); 688 // Also a very improbable event. 689 return; 690 } 691 692 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 693 new_thread_sp = AddThread(tid); 694 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 695 ThreadWasCreated(*new_thread_sp); 696 } 697 698 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 699 NativeThreadLinux &thread) { 700 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 701 const bool is_main_thread = (thread.GetID() == GetID()); 702 703 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 704 705 switch (info.si_code) { 706 // TODO: these two cases are required if we want to support tracing of the 707 // inferiors' children. We'd need this to debug a monitor. 708 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 709 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 710 711 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 712 // This is the notification on the parent thread which informs us of new 713 // thread 714 // creation. 715 // We don't want to do anything with the parent thread so we just resume it. 716 // In case we 717 // want to implement "break on thread creation" functionality, we would need 718 // to stop 719 // here. 720 721 unsigned long event_message = 0; 722 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 723 LLDB_LOG(log, 724 "pid {0} received thread creation event but " 725 "GetEventMessage failed so we don't know the new tid", 726 thread.GetID()); 727 } else 728 WaitForNewThread(event_message); 729 730 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 731 break; 732 } 733 734 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 735 NativeThreadLinuxSP main_thread_sp; 736 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 737 738 // Exec clears any pending notifications. 739 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 740 741 // Remove all but the main thread here. Linux fork creates a new process 742 // which only copies the main thread. 743 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 744 745 for (auto thread_sp : m_threads) { 746 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 747 if (is_main_thread) { 748 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 749 LLDB_LOG(log, "found main thread with tid {0}, keeping", 750 main_thread_sp->GetID()); 751 } else { 752 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 753 thread_sp->GetID()); 754 } 755 } 756 757 m_threads.clear(); 758 759 if (main_thread_sp) { 760 m_threads.push_back(main_thread_sp); 761 SetCurrentThreadID(main_thread_sp->GetID()); 762 main_thread_sp->SetStoppedByExec(); 763 } else { 764 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 765 LLDB_LOG(log, 766 "pid {0} no main thread found, discarded all threads, " 767 "we're in a no-thread state!", 768 GetID()); 769 } 770 771 // Tell coordinator about about the "new" (since exec) stopped main thread. 772 ThreadWasCreated(*main_thread_sp); 773 774 // Let our delegate know we have just exec'd. 775 NotifyDidExec(); 776 777 // If we have a main thread, indicate we are stopped. 778 assert(main_thread_sp && "exec called during ptraced process but no main " 779 "thread metadata tracked"); 780 781 // Let the process know we're stopped. 782 StopRunningThreads(main_thread_sp->GetID()); 783 784 break; 785 } 786 787 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 788 // The inferior process or one of its threads is about to exit. 789 // We don't want to do anything with the thread so we just resume it. In 790 // case we 791 // want to implement "break on thread exit" functionality, we would need to 792 // stop 793 // here. 794 795 unsigned long data = 0; 796 if (GetEventMessage(thread.GetID(), &data).Fail()) 797 data = -1; 798 799 LLDB_LOG(log, 800 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 801 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 802 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 803 is_main_thread); 804 805 if (is_main_thread) 806 SetExitStatus(WaitStatus::Decode(data), true); 807 808 StateType state = thread.GetState(); 809 if (!StateIsRunningState(state)) { 810 // Due to a kernel bug, we may sometimes get this stop after the inferior 811 // gets a 812 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 813 // since normally, 814 // we should not be receiving any ptrace events while the inferior is 815 // stopped. This 816 // makes sure that the inferior is resumed and exits normally. 817 state = eStateRunning; 818 } 819 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 820 821 break; 822 } 823 824 case 0: 825 case TRAP_TRACE: // We receive this on single stepping. 826 case TRAP_HWBKPT: // We receive this on watchpoint hit 827 { 828 // If a watchpoint was hit, report it 829 uint32_t wp_index; 830 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 831 wp_index, (uintptr_t)info.si_addr); 832 if (error.Fail()) 833 LLDB_LOG(log, 834 "received error while checking for watchpoint hits, pid = " 835 "{0}, error = {1}", 836 thread.GetID(), error); 837 if (wp_index != LLDB_INVALID_INDEX32) { 838 MonitorWatchpoint(thread, wp_index); 839 break; 840 } 841 842 // If a breakpoint was hit, report it 843 uint32_t bp_index; 844 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 845 bp_index, (uintptr_t)info.si_addr); 846 if (error.Fail()) 847 LLDB_LOG(log, "received error while checking for hardware " 848 "breakpoint hits, pid = {0}, error = {1}", 849 thread.GetID(), error); 850 if (bp_index != LLDB_INVALID_INDEX32) { 851 MonitorBreakpoint(thread); 852 break; 853 } 854 855 // Otherwise, report step over 856 MonitorTrace(thread); 857 break; 858 } 859 860 case SI_KERNEL: 861 #if defined __mips__ 862 // For mips there is no special signal for watchpoint 863 // So we check for watchpoint in kernel trap 864 { 865 // If a watchpoint was hit, report it 866 uint32_t wp_index; 867 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 868 wp_index, LLDB_INVALID_ADDRESS); 869 if (error.Fail()) 870 LLDB_LOG(log, 871 "received error while checking for watchpoint hits, pid = " 872 "{0}, error = {1}", 873 thread.GetID(), error); 874 if (wp_index != LLDB_INVALID_INDEX32) { 875 MonitorWatchpoint(thread, wp_index); 876 break; 877 } 878 } 879 // NO BREAK 880 #endif 881 case TRAP_BRKPT: 882 MonitorBreakpoint(thread); 883 break; 884 885 case SIGTRAP: 886 case (SIGTRAP | 0x80): 887 LLDB_LOG( 888 log, 889 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 890 info.si_code, GetID(), thread.GetID()); 891 892 // Ignore these signals until we know more about them. 893 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 894 break; 895 896 default: 897 LLDB_LOG( 898 log, 899 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 900 info.si_code, GetID(), thread.GetID()); 901 llvm_unreachable("Unexpected SIGTRAP code!"); 902 break; 903 } 904 } 905 906 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 907 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 908 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 909 910 // This thread is currently stopped. 911 thread.SetStoppedByTrace(); 912 913 StopRunningThreads(thread.GetID()); 914 } 915 916 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 917 Log *log( 918 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 919 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 920 921 // Mark the thread as stopped at breakpoint. 922 thread.SetStoppedByBreakpoint(); 923 Status error = FixupBreakpointPCAsNeeded(thread); 924 if (error.Fail()) 925 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 926 927 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 928 m_threads_stepping_with_breakpoint.end()) 929 thread.SetStoppedByTrace(); 930 931 StopRunningThreads(thread.GetID()); 932 } 933 934 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 935 uint32_t wp_index) { 936 Log *log( 937 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 938 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 939 thread.GetID(), wp_index); 940 941 // Mark the thread as stopped at watchpoint. 942 // The address is at (lldb::addr_t)info->si_addr if we need it. 943 thread.SetStoppedByWatchpoint(wp_index); 944 945 // We need to tell all other running threads before we notify the delegate 946 // about this stop. 947 StopRunningThreads(thread.GetID()); 948 } 949 950 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 951 NativeThreadLinux &thread, bool exited) { 952 const int signo = info.si_signo; 953 const bool is_from_llgs = info.si_pid == getpid(); 954 955 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 956 957 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 958 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 959 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 960 // 961 // IOW, user generated signals never generate what we consider to be a 962 // "crash". 963 // 964 // Similarly, ACK signals generated by this monitor. 965 966 // Handle the signal. 967 LLDB_LOG(log, 968 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 969 "waitpid pid = {4})", 970 Host::GetSignalAsCString(signo), signo, info.si_code, 971 thread.GetID()); 972 973 // Check for thread stop notification. 974 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 975 // This is a tgkill()-based stop. 976 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 977 978 // Check that we're not already marked with a stop reason. 979 // Note this thread really shouldn't already be marked as stopped - if we 980 // were, that would imply that the kernel signaled us with the thread 981 // stopping which we handled and marked as stopped, and that, without an 982 // intervening resume, we received another stop. It is more likely that we 983 // are missing the marking of a run state somewhere if we find that the 984 // thread was marked as stopped. 985 const StateType thread_state = thread.GetState(); 986 if (!StateIsStoppedState(thread_state, false)) { 987 // An inferior thread has stopped because of a SIGSTOP we have sent it. 988 // Generally, these are not important stops and we don't want to report 989 // them as they are just used to stop other threads when one thread (the 990 // one with the *real* stop reason) hits a breakpoint (watchpoint, 991 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 992 // the real stop reason, so we leave the signal intact if this is the 993 // thread that was chosen as the triggering thread. 994 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 995 if (m_pending_notification_tid == thread.GetID()) 996 thread.SetStoppedBySignal(SIGSTOP, &info); 997 else 998 thread.SetStoppedWithNoReason(); 999 1000 SetCurrentThreadID(thread.GetID()); 1001 SignalIfAllThreadsStopped(); 1002 } else { 1003 // We can end up here if stop was initiated by LLGS but by this time a 1004 // thread stop has occurred - maybe initiated by another event. 1005 Status error = ResumeThread(thread, thread.GetState(), 0); 1006 if (error.Fail()) 1007 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 1008 error); 1009 } 1010 } else { 1011 LLDB_LOG(log, 1012 "pid {0} tid {1}, thread was already marked as a stopped " 1013 "state (state={2}), leaving stop signal as is", 1014 GetID(), thread.GetID(), thread_state); 1015 SignalIfAllThreadsStopped(); 1016 } 1017 1018 // Done handling. 1019 return; 1020 } 1021 1022 // Check if debugger should stop at this signal or just ignore it 1023 // and resume the inferior. 1024 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 1025 ResumeThread(thread, thread.GetState(), signo); 1026 return; 1027 } 1028 1029 // This thread is stopped. 1030 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 1031 thread.SetStoppedBySignal(signo, &info); 1032 1033 // Send a stop to the debugger after we get all other threads to stop. 1034 StopRunningThreads(thread.GetID()); 1035 } 1036 1037 namespace { 1038 1039 struct EmulatorBaton { 1040 NativeProcessLinux *m_process; 1041 NativeRegisterContext *m_reg_context; 1042 1043 // eRegisterKindDWARF -> RegsiterValue 1044 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1045 1046 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 1047 : m_process(process), m_reg_context(reg_context) {} 1048 }; 1049 1050 } // anonymous namespace 1051 1052 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 1053 const EmulateInstruction::Context &context, 1054 lldb::addr_t addr, void *dst, size_t length) { 1055 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1056 1057 size_t bytes_read; 1058 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1059 return bytes_read; 1060 } 1061 1062 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 1063 const RegisterInfo *reg_info, 1064 RegisterValue ®_value) { 1065 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1066 1067 auto it = emulator_baton->m_register_values.find( 1068 reg_info->kinds[eRegisterKindDWARF]); 1069 if (it != emulator_baton->m_register_values.end()) { 1070 reg_value = it->second; 1071 return true; 1072 } 1073 1074 // The emulator only fill in the dwarf regsiter numbers (and in some case 1075 // the generic register numbers). Get the full register info from the 1076 // register context based on the dwarf register numbers. 1077 const RegisterInfo *full_reg_info = 1078 emulator_baton->m_reg_context->GetRegisterInfo( 1079 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1080 1081 Status error = 1082 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1083 if (error.Success()) 1084 return true; 1085 1086 return false; 1087 } 1088 1089 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 1090 const EmulateInstruction::Context &context, 1091 const RegisterInfo *reg_info, 1092 const RegisterValue ®_value) { 1093 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1094 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 1095 reg_value; 1096 return true; 1097 } 1098 1099 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1100 const EmulateInstruction::Context &context, 1101 lldb::addr_t addr, const void *dst, 1102 size_t length) { 1103 return length; 1104 } 1105 1106 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1107 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1108 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1109 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1110 LLDB_INVALID_ADDRESS); 1111 } 1112 1113 Status 1114 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 1115 Status error; 1116 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1117 1118 std::unique_ptr<EmulateInstruction> emulator_ap( 1119 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1120 nullptr)); 1121 1122 if (emulator_ap == nullptr) 1123 return Status("Instruction emulator not found!"); 1124 1125 EmulatorBaton baton(this, register_context_sp.get()); 1126 emulator_ap->SetBaton(&baton); 1127 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1128 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1129 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1130 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1131 1132 if (!emulator_ap->ReadInstruction()) 1133 return Status("Read instruction failed!"); 1134 1135 bool emulation_result = 1136 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1137 1138 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1139 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1140 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1141 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1142 1143 auto pc_it = 1144 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1145 auto flags_it = 1146 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1147 1148 lldb::addr_t next_pc; 1149 lldb::addr_t next_flags; 1150 if (emulation_result) { 1151 assert(pc_it != baton.m_register_values.end() && 1152 "Emulation was successfull but PC wasn't updated"); 1153 next_pc = pc_it->second.GetAsUInt64(); 1154 1155 if (flags_it != baton.m_register_values.end()) 1156 next_flags = flags_it->second.GetAsUInt64(); 1157 else 1158 next_flags = ReadFlags(register_context_sp.get()); 1159 } else if (pc_it == baton.m_register_values.end()) { 1160 // Emulate instruction failed and it haven't changed PC. Advance PC 1161 // with the size of the current opcode because the emulation of all 1162 // PC modifying instruction should be successful. The failure most 1163 // likely caused by a not supported instruction which don't modify PC. 1164 next_pc = 1165 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1166 next_flags = ReadFlags(register_context_sp.get()); 1167 } else { 1168 // The instruction emulation failed after it modified the PC. It is an 1169 // unknown error where we can't continue because the next instruction is 1170 // modifying the PC but we don't know how. 1171 return Status("Instruction emulation failed unexpectedly."); 1172 } 1173 1174 if (m_arch.GetMachine() == llvm::Triple::arm) { 1175 if (next_flags & 0x20) { 1176 // Thumb mode 1177 error = SetSoftwareBreakpoint(next_pc, 2); 1178 } else { 1179 // Arm mode 1180 error = SetSoftwareBreakpoint(next_pc, 4); 1181 } 1182 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1183 m_arch.GetMachine() == llvm::Triple::mips64el || 1184 m_arch.GetMachine() == llvm::Triple::mips || 1185 m_arch.GetMachine() == llvm::Triple::mipsel) 1186 error = SetSoftwareBreakpoint(next_pc, 4); 1187 else { 1188 // No size hint is given for the next breakpoint 1189 error = SetSoftwareBreakpoint(next_pc, 0); 1190 } 1191 1192 // If setting the breakpoint fails because next_pc is out of 1193 // the address space, ignore it and let the debugee segfault. 1194 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1195 return Status(); 1196 } else if (error.Fail()) 1197 return error; 1198 1199 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1200 1201 return Status(); 1202 } 1203 1204 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1205 if (m_arch.GetMachine() == llvm::Triple::arm || 1206 m_arch.GetMachine() == llvm::Triple::mips64 || 1207 m_arch.GetMachine() == llvm::Triple::mips64el || 1208 m_arch.GetMachine() == llvm::Triple::mips || 1209 m_arch.GetMachine() == llvm::Triple::mipsel) 1210 return false; 1211 return true; 1212 } 1213 1214 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1215 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1216 LLDB_LOG(log, "pid {0}", GetID()); 1217 1218 bool software_single_step = !SupportHardwareSingleStepping(); 1219 1220 if (software_single_step) { 1221 for (auto thread_sp : m_threads) { 1222 assert(thread_sp && "thread list should not contain NULL threads"); 1223 1224 const ResumeAction *const action = 1225 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1226 if (action == nullptr) 1227 continue; 1228 1229 if (action->state == eStateStepping) { 1230 Status error = SetupSoftwareSingleStepping( 1231 static_cast<NativeThreadLinux &>(*thread_sp)); 1232 if (error.Fail()) 1233 return error; 1234 } 1235 } 1236 } 1237 1238 for (auto thread_sp : m_threads) { 1239 assert(thread_sp && "thread list should not contain NULL threads"); 1240 1241 const ResumeAction *const action = 1242 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1243 1244 if (action == nullptr) { 1245 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1246 thread_sp->GetID()); 1247 continue; 1248 } 1249 1250 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1251 action->state, GetID(), thread_sp->GetID()); 1252 1253 switch (action->state) { 1254 case eStateRunning: 1255 case eStateStepping: { 1256 // Run the thread, possibly feeding it the signal. 1257 const int signo = action->signal; 1258 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1259 signo); 1260 break; 1261 } 1262 1263 case eStateSuspended: 1264 case eStateStopped: 1265 llvm_unreachable("Unexpected state"); 1266 1267 default: 1268 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1269 "for pid %" PRIu64 ", tid %" PRIu64, 1270 __FUNCTION__, StateAsCString(action->state), GetID(), 1271 thread_sp->GetID()); 1272 } 1273 } 1274 1275 return Status(); 1276 } 1277 1278 Status NativeProcessLinux::Halt() { 1279 Status error; 1280 1281 if (kill(GetID(), SIGSTOP) != 0) 1282 error.SetErrorToErrno(); 1283 1284 return error; 1285 } 1286 1287 Status NativeProcessLinux::Detach() { 1288 Status error; 1289 1290 // Stop monitoring the inferior. 1291 m_sigchld_handle.reset(); 1292 1293 // Tell ptrace to detach from the process. 1294 if (GetID() == LLDB_INVALID_PROCESS_ID) 1295 return error; 1296 1297 for (auto thread_sp : m_threads) { 1298 Status e = Detach(thread_sp->GetID()); 1299 if (e.Fail()) 1300 error = 1301 e; // Save the error, but still attempt to detach from other threads. 1302 } 1303 1304 return error; 1305 } 1306 1307 Status NativeProcessLinux::Signal(int signo) { 1308 Status error; 1309 1310 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1311 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1312 Host::GetSignalAsCString(signo), GetID()); 1313 1314 if (kill(GetID(), signo)) 1315 error.SetErrorToErrno(); 1316 1317 return error; 1318 } 1319 1320 Status NativeProcessLinux::Interrupt() { 1321 // Pick a running thread (or if none, a not-dead stopped thread) as 1322 // the chosen thread that will be the stop-reason thread. 1323 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1324 1325 NativeThreadProtocolSP running_thread_sp; 1326 NativeThreadProtocolSP stopped_thread_sp; 1327 1328 LLDB_LOG(log, "selecting running thread for interrupt target"); 1329 for (auto thread_sp : m_threads) { 1330 // The thread shouldn't be null but lets just cover that here. 1331 if (!thread_sp) 1332 continue; 1333 1334 // If we have a running or stepping thread, we'll call that the 1335 // target of the interrupt. 1336 const auto thread_state = thread_sp->GetState(); 1337 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1338 running_thread_sp = thread_sp; 1339 break; 1340 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1341 // Remember the first non-dead stopped thread. We'll use that as a backup 1342 // if there are no running threads. 1343 stopped_thread_sp = thread_sp; 1344 } 1345 } 1346 1347 if (!running_thread_sp && !stopped_thread_sp) { 1348 Status error("found no running/stepping or live stopped threads as target " 1349 "for interrupt"); 1350 LLDB_LOG(log, "skipping due to error: {0}", error); 1351 1352 return error; 1353 } 1354 1355 NativeThreadProtocolSP deferred_signal_thread_sp = 1356 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1357 1358 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1359 running_thread_sp ? "running" : "stopped", 1360 deferred_signal_thread_sp->GetID()); 1361 1362 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1363 1364 return Status(); 1365 } 1366 1367 Status NativeProcessLinux::Kill() { 1368 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1369 LLDB_LOG(log, "pid {0}", GetID()); 1370 1371 Status error; 1372 1373 switch (m_state) { 1374 case StateType::eStateInvalid: 1375 case StateType::eStateExited: 1376 case StateType::eStateCrashed: 1377 case StateType::eStateDetached: 1378 case StateType::eStateUnloaded: 1379 // Nothing to do - the process is already dead. 1380 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1381 m_state); 1382 return error; 1383 1384 case StateType::eStateConnected: 1385 case StateType::eStateAttaching: 1386 case StateType::eStateLaunching: 1387 case StateType::eStateStopped: 1388 case StateType::eStateRunning: 1389 case StateType::eStateStepping: 1390 case StateType::eStateSuspended: 1391 // We can try to kill a process in these states. 1392 break; 1393 } 1394 1395 if (kill(GetID(), SIGKILL) != 0) { 1396 error.SetErrorToErrno(); 1397 return error; 1398 } 1399 1400 return error; 1401 } 1402 1403 static Status 1404 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1405 MemoryRegionInfo &memory_region_info) { 1406 memory_region_info.Clear(); 1407 1408 StringExtractor line_extractor(maps_line); 1409 1410 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1411 // pathname 1412 // perms: rwxp (letter is present if set, '-' if not, final character is 1413 // p=private, s=shared). 1414 1415 // Parse out the starting address 1416 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1417 1418 // Parse out hyphen separating start and end address from range. 1419 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1420 return Status( 1421 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1422 1423 // Parse out the ending address 1424 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1425 1426 // Parse out the space after the address. 1427 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1428 return Status( 1429 "malformed /proc/{pid}/maps entry, missing space after range"); 1430 1431 // Save the range. 1432 memory_region_info.GetRange().SetRangeBase(start_address); 1433 memory_region_info.GetRange().SetRangeEnd(end_address); 1434 1435 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1436 // process. 1437 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1438 1439 // Parse out each permission entry. 1440 if (line_extractor.GetBytesLeft() < 4) 1441 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1442 "permissions"); 1443 1444 // Handle read permission. 1445 const char read_perm_char = line_extractor.GetChar(); 1446 if (read_perm_char == 'r') 1447 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1448 else if (read_perm_char == '-') 1449 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1450 else 1451 return Status("unexpected /proc/{pid}/maps read permission char"); 1452 1453 // Handle write permission. 1454 const char write_perm_char = line_extractor.GetChar(); 1455 if (write_perm_char == 'w') 1456 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1457 else if (write_perm_char == '-') 1458 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1459 else 1460 return Status("unexpected /proc/{pid}/maps write permission char"); 1461 1462 // Handle execute permission. 1463 const char exec_perm_char = line_extractor.GetChar(); 1464 if (exec_perm_char == 'x') 1465 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1466 else if (exec_perm_char == '-') 1467 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1468 else 1469 return Status("unexpected /proc/{pid}/maps exec permission char"); 1470 1471 line_extractor.GetChar(); // Read the private bit 1472 line_extractor.SkipSpaces(); // Skip the separator 1473 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1474 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1475 line_extractor.GetChar(); // Read the device id separator 1476 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1477 line_extractor.SkipSpaces(); // Skip the separator 1478 line_extractor.GetU64(0, 10); // Read the inode number 1479 1480 line_extractor.SkipSpaces(); 1481 const char *name = line_extractor.Peek(); 1482 if (name) 1483 memory_region_info.SetName(name); 1484 1485 return Status(); 1486 } 1487 1488 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1489 MemoryRegionInfo &range_info) { 1490 // FIXME review that the final memory region returned extends to the end of 1491 // the virtual address space, 1492 // with no perms if it is not mapped. 1493 1494 // Use an approach that reads memory regions from /proc/{pid}/maps. 1495 // Assume proc maps entries are in ascending order. 1496 // FIXME assert if we find differently. 1497 1498 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1499 // We're done. 1500 return Status("unsupported"); 1501 } 1502 1503 Status error = PopulateMemoryRegionCache(); 1504 if (error.Fail()) { 1505 return error; 1506 } 1507 1508 lldb::addr_t prev_base_address = 0; 1509 1510 // FIXME start by finding the last region that is <= target address using 1511 // binary search. Data is sorted. 1512 // There can be a ton of regions on pthreads apps with lots of threads. 1513 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1514 ++it) { 1515 MemoryRegionInfo &proc_entry_info = it->first; 1516 1517 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1518 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1519 "descending /proc/pid/maps entries detected, unexpected"); 1520 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1521 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1522 1523 // If the target address comes before this entry, indicate distance to next 1524 // region. 1525 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1526 range_info.GetRange().SetRangeBase(load_addr); 1527 range_info.GetRange().SetByteSize( 1528 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1529 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1530 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1531 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1532 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1533 1534 return error; 1535 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1536 // The target address is within the memory region we're processing here. 1537 range_info = proc_entry_info; 1538 return error; 1539 } 1540 1541 // The target memory address comes somewhere after the region we just 1542 // parsed. 1543 } 1544 1545 // If we made it here, we didn't find an entry that contained the given 1546 // address. Return the 1547 // load_addr as start and the amount of bytes betwwen load address and the end 1548 // of the memory as 1549 // size. 1550 range_info.GetRange().SetRangeBase(load_addr); 1551 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1552 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1553 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1554 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1555 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1556 return error; 1557 } 1558 1559 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1560 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1561 1562 // If our cache is empty, pull the latest. There should always be at least 1563 // one memory region if memory region handling is supported. 1564 if (!m_mem_region_cache.empty()) { 1565 LLDB_LOG(log, "reusing {0} cached memory region entries", 1566 m_mem_region_cache.size()); 1567 return Status(); 1568 } 1569 1570 auto BufferOrError = getProcFile(GetID(), "maps"); 1571 if (!BufferOrError) { 1572 m_supports_mem_region = LazyBool::eLazyBoolNo; 1573 return BufferOrError.getError(); 1574 } 1575 StringRef Rest = BufferOrError.get()->getBuffer(); 1576 while (! Rest.empty()) { 1577 StringRef Line; 1578 std::tie(Line, Rest) = Rest.split('\n'); 1579 MemoryRegionInfo info; 1580 const Status parse_error = 1581 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1582 if (parse_error.Fail()) { 1583 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1584 parse_error); 1585 m_supports_mem_region = LazyBool::eLazyBoolNo; 1586 return parse_error; 1587 } 1588 m_mem_region_cache.emplace_back( 1589 info, FileSpec(info.GetName().GetCString(), true)); 1590 } 1591 1592 if (m_mem_region_cache.empty()) { 1593 // No entries after attempting to read them. This shouldn't happen if 1594 // /proc/{pid}/maps is supported. Assume we don't support map entries 1595 // via procfs. 1596 m_supports_mem_region = LazyBool::eLazyBoolNo; 1597 LLDB_LOG(log, 1598 "failed to find any procfs maps entries, assuming no support " 1599 "for memory region metadata retrieval"); 1600 return Status("not supported"); 1601 } 1602 1603 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1604 m_mem_region_cache.size(), GetID()); 1605 1606 // We support memory retrieval, remember that. 1607 m_supports_mem_region = LazyBool::eLazyBoolYes; 1608 return Status(); 1609 } 1610 1611 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1612 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1613 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1614 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1615 m_mem_region_cache.size()); 1616 m_mem_region_cache.clear(); 1617 } 1618 1619 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1620 lldb::addr_t &addr) { 1621 // FIXME implementing this requires the equivalent of 1622 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1623 // functional ThreadPlans working with Native*Protocol. 1624 #if 1 1625 return Status("not implemented yet"); 1626 #else 1627 addr = LLDB_INVALID_ADDRESS; 1628 1629 unsigned prot = 0; 1630 if (permissions & lldb::ePermissionsReadable) 1631 prot |= eMmapProtRead; 1632 if (permissions & lldb::ePermissionsWritable) 1633 prot |= eMmapProtWrite; 1634 if (permissions & lldb::ePermissionsExecutable) 1635 prot |= eMmapProtExec; 1636 1637 // TODO implement this directly in NativeProcessLinux 1638 // (and lift to NativeProcessPOSIX if/when that class is 1639 // refactored out). 1640 if (InferiorCallMmap(this, addr, 0, size, prot, 1641 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1642 m_addr_to_mmap_size[addr] = size; 1643 return Status(); 1644 } else { 1645 addr = LLDB_INVALID_ADDRESS; 1646 return Status("unable to allocate %" PRIu64 1647 " bytes of memory with permissions %s", 1648 size, GetPermissionsAsCString(permissions)); 1649 } 1650 #endif 1651 } 1652 1653 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1654 // FIXME see comments in AllocateMemory - required lower-level 1655 // bits not in place yet (ThreadPlans) 1656 return Status("not implemented"); 1657 } 1658 1659 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1660 // punt on this for now 1661 return LLDB_INVALID_ADDRESS; 1662 } 1663 1664 size_t NativeProcessLinux::UpdateThreads() { 1665 // The NativeProcessLinux monitoring threads are always up to date 1666 // with respect to thread state and they keep the thread list 1667 // populated properly. All this method needs to do is return the 1668 // thread count. 1669 return m_threads.size(); 1670 } 1671 1672 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1673 arch = m_arch; 1674 return true; 1675 } 1676 1677 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1678 uint32_t &actual_opcode_size) { 1679 // FIXME put this behind a breakpoint protocol class that can be 1680 // set per architecture. Need ARM, MIPS support here. 1681 static const uint8_t g_i386_opcode[] = {0xCC}; 1682 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1683 1684 switch (m_arch.GetMachine()) { 1685 case llvm::Triple::x86: 1686 case llvm::Triple::x86_64: 1687 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1688 return Status(); 1689 1690 case llvm::Triple::systemz: 1691 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1692 return Status(); 1693 1694 case llvm::Triple::arm: 1695 case llvm::Triple::aarch64: 1696 case llvm::Triple::mips64: 1697 case llvm::Triple::mips64el: 1698 case llvm::Triple::mips: 1699 case llvm::Triple::mipsel: 1700 // On these architectures the PC don't get updated for breakpoint hits 1701 actual_opcode_size = 0; 1702 return Status(); 1703 1704 default: 1705 assert(false && "CPU type not supported!"); 1706 return Status("CPU type not supported"); 1707 } 1708 } 1709 1710 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1711 bool hardware) { 1712 if (hardware) 1713 return SetHardwareBreakpoint(addr, size); 1714 else 1715 return SetSoftwareBreakpoint(addr, size); 1716 } 1717 1718 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1719 if (hardware) 1720 return RemoveHardwareBreakpoint(addr); 1721 else 1722 return NativeProcessProtocol::RemoveBreakpoint(addr); 1723 } 1724 1725 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1726 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1727 const uint8_t *&trap_opcode_bytes) { 1728 // FIXME put this behind a breakpoint protocol class that can be set per 1729 // architecture. Need MIPS support here. 1730 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1731 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1732 // linux kernel does otherwise. 1733 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1734 static const uint8_t g_i386_opcode[] = {0xCC}; 1735 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1736 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1737 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1738 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1739 1740 switch (m_arch.GetMachine()) { 1741 case llvm::Triple::aarch64: 1742 trap_opcode_bytes = g_aarch64_opcode; 1743 actual_opcode_size = sizeof(g_aarch64_opcode); 1744 return Status(); 1745 1746 case llvm::Triple::arm: 1747 switch (trap_opcode_size_hint) { 1748 case 2: 1749 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1750 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1751 return Status(); 1752 case 4: 1753 trap_opcode_bytes = g_arm_breakpoint_opcode; 1754 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1755 return Status(); 1756 default: 1757 assert(false && "Unrecognised trap opcode size hint!"); 1758 return Status("Unrecognised trap opcode size hint!"); 1759 } 1760 1761 case llvm::Triple::x86: 1762 case llvm::Triple::x86_64: 1763 trap_opcode_bytes = g_i386_opcode; 1764 actual_opcode_size = sizeof(g_i386_opcode); 1765 return Status(); 1766 1767 case llvm::Triple::mips: 1768 case llvm::Triple::mips64: 1769 trap_opcode_bytes = g_mips64_opcode; 1770 actual_opcode_size = sizeof(g_mips64_opcode); 1771 return Status(); 1772 1773 case llvm::Triple::mipsel: 1774 case llvm::Triple::mips64el: 1775 trap_opcode_bytes = g_mips64el_opcode; 1776 actual_opcode_size = sizeof(g_mips64el_opcode); 1777 return Status(); 1778 1779 case llvm::Triple::systemz: 1780 trap_opcode_bytes = g_s390x_opcode; 1781 actual_opcode_size = sizeof(g_s390x_opcode); 1782 return Status(); 1783 1784 default: 1785 assert(false && "CPU type not supported!"); 1786 return Status("CPU type not supported"); 1787 } 1788 } 1789 1790 #if 0 1791 ProcessMessage::CrashReason 1792 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1793 { 1794 ProcessMessage::CrashReason reason; 1795 assert(info->si_signo == SIGSEGV); 1796 1797 reason = ProcessMessage::eInvalidCrashReason; 1798 1799 switch (info->si_code) 1800 { 1801 default: 1802 assert(false && "unexpected si_code for SIGSEGV"); 1803 break; 1804 case SI_KERNEL: 1805 // Linux will occasionally send spurious SI_KERNEL codes. 1806 // (this is poorly documented in sigaction) 1807 // One way to get this is via unaligned SIMD loads. 1808 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1809 break; 1810 case SEGV_MAPERR: 1811 reason = ProcessMessage::eInvalidAddress; 1812 break; 1813 case SEGV_ACCERR: 1814 reason = ProcessMessage::ePrivilegedAddress; 1815 break; 1816 } 1817 1818 return reason; 1819 } 1820 #endif 1821 1822 #if 0 1823 ProcessMessage::CrashReason 1824 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1825 { 1826 ProcessMessage::CrashReason reason; 1827 assert(info->si_signo == SIGILL); 1828 1829 reason = ProcessMessage::eInvalidCrashReason; 1830 1831 switch (info->si_code) 1832 { 1833 default: 1834 assert(false && "unexpected si_code for SIGILL"); 1835 break; 1836 case ILL_ILLOPC: 1837 reason = ProcessMessage::eIllegalOpcode; 1838 break; 1839 case ILL_ILLOPN: 1840 reason = ProcessMessage::eIllegalOperand; 1841 break; 1842 case ILL_ILLADR: 1843 reason = ProcessMessage::eIllegalAddressingMode; 1844 break; 1845 case ILL_ILLTRP: 1846 reason = ProcessMessage::eIllegalTrap; 1847 break; 1848 case ILL_PRVOPC: 1849 reason = ProcessMessage::ePrivilegedOpcode; 1850 break; 1851 case ILL_PRVREG: 1852 reason = ProcessMessage::ePrivilegedRegister; 1853 break; 1854 case ILL_COPROC: 1855 reason = ProcessMessage::eCoprocessorError; 1856 break; 1857 case ILL_BADSTK: 1858 reason = ProcessMessage::eInternalStackError; 1859 break; 1860 } 1861 1862 return reason; 1863 } 1864 #endif 1865 1866 #if 0 1867 ProcessMessage::CrashReason 1868 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1869 { 1870 ProcessMessage::CrashReason reason; 1871 assert(info->si_signo == SIGFPE); 1872 1873 reason = ProcessMessage::eInvalidCrashReason; 1874 1875 switch (info->si_code) 1876 { 1877 default: 1878 assert(false && "unexpected si_code for SIGFPE"); 1879 break; 1880 case FPE_INTDIV: 1881 reason = ProcessMessage::eIntegerDivideByZero; 1882 break; 1883 case FPE_INTOVF: 1884 reason = ProcessMessage::eIntegerOverflow; 1885 break; 1886 case FPE_FLTDIV: 1887 reason = ProcessMessage::eFloatDivideByZero; 1888 break; 1889 case FPE_FLTOVF: 1890 reason = ProcessMessage::eFloatOverflow; 1891 break; 1892 case FPE_FLTUND: 1893 reason = ProcessMessage::eFloatUnderflow; 1894 break; 1895 case FPE_FLTRES: 1896 reason = ProcessMessage::eFloatInexactResult; 1897 break; 1898 case FPE_FLTINV: 1899 reason = ProcessMessage::eFloatInvalidOperation; 1900 break; 1901 case FPE_FLTSUB: 1902 reason = ProcessMessage::eFloatSubscriptRange; 1903 break; 1904 } 1905 1906 return reason; 1907 } 1908 #endif 1909 1910 #if 0 1911 ProcessMessage::CrashReason 1912 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1913 { 1914 ProcessMessage::CrashReason reason; 1915 assert(info->si_signo == SIGBUS); 1916 1917 reason = ProcessMessage::eInvalidCrashReason; 1918 1919 switch (info->si_code) 1920 { 1921 default: 1922 assert(false && "unexpected si_code for SIGBUS"); 1923 break; 1924 case BUS_ADRALN: 1925 reason = ProcessMessage::eIllegalAlignment; 1926 break; 1927 case BUS_ADRERR: 1928 reason = ProcessMessage::eIllegalAddress; 1929 break; 1930 case BUS_OBJERR: 1931 reason = ProcessMessage::eHardwareError; 1932 break; 1933 } 1934 1935 return reason; 1936 } 1937 #endif 1938 1939 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1940 size_t &bytes_read) { 1941 if (ProcessVmReadvSupported()) { 1942 // The process_vm_readv path is about 50 times faster than ptrace api. We 1943 // want to use 1944 // this syscall if it is supported. 1945 1946 const ::pid_t pid = GetID(); 1947 1948 struct iovec local_iov, remote_iov; 1949 local_iov.iov_base = buf; 1950 local_iov.iov_len = size; 1951 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1952 remote_iov.iov_len = size; 1953 1954 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1955 const bool success = bytes_read == size; 1956 1957 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1958 LLDB_LOG(log, 1959 "using process_vm_readv to read {0} bytes from inferior " 1960 "address {1:x}: {2}", 1961 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1962 1963 if (success) 1964 return Status(); 1965 // else the call failed for some reason, let's retry the read using ptrace 1966 // api. 1967 } 1968 1969 unsigned char *dst = static_cast<unsigned char *>(buf); 1970 size_t remainder; 1971 long data; 1972 1973 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1974 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1975 1976 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1977 Status error = NativeProcessLinux::PtraceWrapper( 1978 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1979 if (error.Fail()) 1980 return error; 1981 1982 remainder = size - bytes_read; 1983 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1984 1985 // Copy the data into our buffer 1986 memcpy(dst, &data, remainder); 1987 1988 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1989 addr += k_ptrace_word_size; 1990 dst += k_ptrace_word_size; 1991 } 1992 return Status(); 1993 } 1994 1995 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1996 size_t size, 1997 size_t &bytes_read) { 1998 Status error = ReadMemory(addr, buf, size, bytes_read); 1999 if (error.Fail()) 2000 return error; 2001 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2002 } 2003 2004 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 2005 size_t size, size_t &bytes_written) { 2006 const unsigned char *src = static_cast<const unsigned char *>(buf); 2007 size_t remainder; 2008 Status error; 2009 2010 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2011 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2012 2013 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 2014 remainder = size - bytes_written; 2015 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2016 2017 if (remainder == k_ptrace_word_size) { 2018 unsigned long data = 0; 2019 memcpy(&data, src, k_ptrace_word_size); 2020 2021 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2022 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 2023 (void *)addr, (void *)data); 2024 if (error.Fail()) 2025 return error; 2026 } else { 2027 unsigned char buff[8]; 2028 size_t bytes_read; 2029 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2030 if (error.Fail()) 2031 return error; 2032 2033 memcpy(buff, src, remainder); 2034 2035 size_t bytes_written_rec; 2036 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2037 if (error.Fail()) 2038 return error; 2039 2040 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 2041 *(unsigned long *)buff); 2042 } 2043 2044 addr += k_ptrace_word_size; 2045 src += k_ptrace_word_size; 2046 } 2047 return error; 2048 } 2049 2050 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 2051 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2052 } 2053 2054 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 2055 unsigned long *message) { 2056 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2057 } 2058 2059 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 2060 if (tid == LLDB_INVALID_THREAD_ID) 2061 return Status(); 2062 2063 return PtraceWrapper(PTRACE_DETACH, tid); 2064 } 2065 2066 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 2067 for (auto thread_sp : m_threads) { 2068 assert(thread_sp && "thread list should not contain NULL threads"); 2069 if (thread_sp->GetID() == thread_id) { 2070 // We have this thread. 2071 return true; 2072 } 2073 } 2074 2075 // We don't have this thread. 2076 return false; 2077 } 2078 2079 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 2080 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2081 LLDB_LOG(log, "tid: {0})", thread_id); 2082 2083 bool found = false; 2084 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 2085 if (*it && ((*it)->GetID() == thread_id)) { 2086 m_threads.erase(it); 2087 found = true; 2088 break; 2089 } 2090 } 2091 2092 SignalIfAllThreadsStopped(); 2093 return found; 2094 } 2095 2096 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2097 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2098 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2099 2100 assert(!HasThreadNoLock(thread_id) && 2101 "attempted to add a thread by id that already exists"); 2102 2103 // If this is the first thread, save it as the current thread 2104 if (m_threads.empty()) 2105 SetCurrentThreadID(thread_id); 2106 2107 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2108 m_threads.push_back(thread_sp); 2109 return thread_sp; 2110 } 2111 2112 Status 2113 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2114 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2115 2116 Status error; 2117 2118 // Find out the size of a breakpoint (might depend on where we are in the 2119 // code). 2120 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2121 if (!context_sp) { 2122 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2123 LLDB_LOG(log, "failed: {0}", error); 2124 return error; 2125 } 2126 2127 uint32_t breakpoint_size = 0; 2128 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2129 if (error.Fail()) { 2130 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2131 return error; 2132 } else 2133 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2134 2135 // First try probing for a breakpoint at a software breakpoint location: PC - 2136 // breakpoint size. 2137 const lldb::addr_t initial_pc_addr = 2138 context_sp->GetPCfromBreakpointLocation(); 2139 lldb::addr_t breakpoint_addr = initial_pc_addr; 2140 if (breakpoint_size > 0) { 2141 // Do not allow breakpoint probe to wrap around. 2142 if (breakpoint_addr >= breakpoint_size) 2143 breakpoint_addr -= breakpoint_size; 2144 } 2145 2146 // Check if we stopped because of a breakpoint. 2147 NativeBreakpointSP breakpoint_sp; 2148 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2149 if (!error.Success() || !breakpoint_sp) { 2150 // We didn't find one at a software probe location. Nothing to do. 2151 LLDB_LOG(log, 2152 "pid {0} no lldb breakpoint found at current pc with " 2153 "adjustment: {1}", 2154 GetID(), breakpoint_addr); 2155 return Status(); 2156 } 2157 2158 // If the breakpoint is not a software breakpoint, nothing to do. 2159 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2160 LLDB_LOG( 2161 log, 2162 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2163 GetID(), breakpoint_addr); 2164 return Status(); 2165 } 2166 2167 // 2168 // We have a software breakpoint and need to adjust the PC. 2169 // 2170 2171 // Sanity check. 2172 if (breakpoint_size == 0) { 2173 // Nothing to do! How did we get here? 2174 LLDB_LOG(log, 2175 "pid {0} breakpoint found at {1:x}, it is software, but the " 2176 "size is zero, nothing to do (unexpected)", 2177 GetID(), breakpoint_addr); 2178 return Status(); 2179 } 2180 2181 // Change the program counter. 2182 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2183 thread.GetID(), initial_pc_addr, breakpoint_addr); 2184 2185 error = context_sp->SetPC(breakpoint_addr); 2186 if (error.Fail()) { 2187 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2188 thread.GetID(), error); 2189 return error; 2190 } 2191 2192 return error; 2193 } 2194 2195 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2196 FileSpec &file_spec) { 2197 Status error = PopulateMemoryRegionCache(); 2198 if (error.Fail()) 2199 return error; 2200 2201 FileSpec module_file_spec(module_path, true); 2202 2203 file_spec.Clear(); 2204 for (const auto &it : m_mem_region_cache) { 2205 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2206 file_spec = it.second; 2207 return Status(); 2208 } 2209 } 2210 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2211 module_file_spec.GetFilename().AsCString(), GetID()); 2212 } 2213 2214 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2215 lldb::addr_t &load_addr) { 2216 load_addr = LLDB_INVALID_ADDRESS; 2217 Status error = PopulateMemoryRegionCache(); 2218 if (error.Fail()) 2219 return error; 2220 2221 FileSpec file(file_name, false); 2222 for (const auto &it : m_mem_region_cache) { 2223 if (it.second == file) { 2224 load_addr = it.first.GetRange().GetRangeBase(); 2225 return Status(); 2226 } 2227 } 2228 return Status("No load address found for specified file."); 2229 } 2230 2231 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2232 return std::static_pointer_cast<NativeThreadLinux>( 2233 NativeProcessProtocol::GetThreadByID(tid)); 2234 } 2235 2236 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2237 lldb::StateType state, int signo) { 2238 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2239 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2240 2241 // Before we do the resume below, first check if we have a pending 2242 // stop notification that is currently waiting for 2243 // all threads to stop. This is potentially a buggy situation since 2244 // we're ostensibly waiting for threads to stop before we send out the 2245 // pending notification, and here we are resuming one before we send 2246 // out the pending stop notification. 2247 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2248 LLDB_LOG(log, 2249 "about to resume tid {0} per explicit request but we have a " 2250 "pending stop notification (tid {1}) that is actively " 2251 "waiting for this thread to stop. Valid sequence of events?", 2252 thread.GetID(), m_pending_notification_tid); 2253 } 2254 2255 // Request a resume. We expect this to be synchronous and the system 2256 // to reflect it is running after this completes. 2257 switch (state) { 2258 case eStateRunning: { 2259 const auto resume_result = thread.Resume(signo); 2260 if (resume_result.Success()) 2261 SetState(eStateRunning, true); 2262 return resume_result; 2263 } 2264 case eStateStepping: { 2265 const auto step_result = thread.SingleStep(signo); 2266 if (step_result.Success()) 2267 SetState(eStateRunning, true); 2268 return step_result; 2269 } 2270 default: 2271 LLDB_LOG(log, "Unhandled state {0}.", state); 2272 llvm_unreachable("Unhandled state for resume"); 2273 } 2274 } 2275 2276 //===----------------------------------------------------------------------===// 2277 2278 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2279 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2280 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2281 triggering_tid); 2282 2283 m_pending_notification_tid = triggering_tid; 2284 2285 // Request a stop for all the thread stops that need to be stopped 2286 // and are not already known to be stopped. 2287 for (const auto &thread_sp : m_threads) { 2288 if (StateIsRunningState(thread_sp->GetState())) 2289 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2290 } 2291 2292 SignalIfAllThreadsStopped(); 2293 LLDB_LOG(log, "event processing done"); 2294 } 2295 2296 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2297 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2298 return; // No pending notification. Nothing to do. 2299 2300 for (const auto &thread_sp : m_threads) { 2301 if (StateIsRunningState(thread_sp->GetState())) 2302 return; // Some threads are still running. Don't signal yet. 2303 } 2304 2305 // We have a pending notification and all threads have stopped. 2306 Log *log( 2307 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2308 2309 // Clear any temporary breakpoints we used to implement software single 2310 // stepping. 2311 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2312 Status error = RemoveBreakpoint(thread_info.second); 2313 if (error.Fail()) 2314 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2315 thread_info.first, error); 2316 } 2317 m_threads_stepping_with_breakpoint.clear(); 2318 2319 // Notify the delegate about the stop 2320 SetCurrentThreadID(m_pending_notification_tid); 2321 SetState(StateType::eStateStopped, true); 2322 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2323 } 2324 2325 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2326 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2327 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2328 2329 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2330 StateIsRunningState(thread.GetState())) { 2331 // We will need to wait for this new thread to stop as well before firing 2332 // the 2333 // notification. 2334 thread.RequestStop(); 2335 } 2336 } 2337 2338 void NativeProcessLinux::SigchldHandler() { 2339 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2340 // Process all pending waitpid notifications. 2341 while (true) { 2342 int status = -1; 2343 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2344 2345 if (wait_pid == 0) 2346 break; // We are done. 2347 2348 if (wait_pid == -1) { 2349 if (errno == EINTR) 2350 continue; 2351 2352 Status error(errno, eErrorTypePOSIX); 2353 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2354 break; 2355 } 2356 2357 WaitStatus wait_status = WaitStatus::Decode(status); 2358 bool exited = wait_status.type == WaitStatus::Exit || 2359 (wait_status.type == WaitStatus::Signal && 2360 wait_pid == static_cast<::pid_t>(GetID())); 2361 2362 LLDB_LOG( 2363 log, 2364 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2365 wait_pid, wait_status, exited); 2366 2367 MonitorCallback(wait_pid, exited, wait_status); 2368 } 2369 } 2370 2371 // Wrapper for ptrace to catch errors and log calls. 2372 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2373 // for PTRACE_PEEK*) 2374 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2375 void *data, size_t data_size, 2376 long *result) { 2377 Status error; 2378 long int ret; 2379 2380 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2381 2382 PtraceDisplayBytes(req, data, data_size); 2383 2384 errno = 0; 2385 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2386 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2387 *(unsigned int *)addr, data); 2388 else 2389 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2390 addr, data); 2391 2392 if (ret == -1) 2393 error.SetErrorToErrno(); 2394 2395 if (result) 2396 *result = ret; 2397 2398 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2399 data_size, ret); 2400 2401 PtraceDisplayBytes(req, data, data_size); 2402 2403 if (error.Fail()) 2404 LLDB_LOG(log, "ptrace() failed: {0}", error); 2405 2406 return error; 2407 } 2408