1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/LLDBLog.h"
42 #include "lldb/Utility/State.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StringExtractor.h"
45 #include "llvm/ADT/ScopeExit.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 #ifdef __aarch64__
58 #include <asm/hwcap.h>
59 #include <sys/auxv.h>
60 #endif
61 
62 // Support hardware breakpoints in case it has not been defined
63 #ifndef TRAP_HWBKPT
64 #define TRAP_HWBKPT 4
65 #endif
66 
67 #ifndef HWCAP2_MTE
68 #define HWCAP2_MTE (1 << 18)
69 #endif
70 
71 using namespace lldb;
72 using namespace lldb_private;
73 using namespace lldb_private::process_linux;
74 using namespace llvm;
75 
76 // Private bits we only need internally.
77 
78 static bool ProcessVmReadvSupported() {
79   static bool is_supported;
80   static llvm::once_flag flag;
81 
82   llvm::call_once(flag, [] {
83     Log *log = GetLog(POSIXLog::Process);
84 
85     uint32_t source = 0x47424742;
86     uint32_t dest = 0;
87 
88     struct iovec local, remote;
89     remote.iov_base = &source;
90     local.iov_base = &dest;
91     remote.iov_len = local.iov_len = sizeof source;
92 
93     // We shall try if cross-process-memory reads work by attempting to read a
94     // value from our own process.
95     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
96     is_supported = (res == sizeof(source) && source == dest);
97     if (is_supported)
98       LLDB_LOG(log,
99                "Detected kernel support for process_vm_readv syscall. "
100                "Fast memory reads enabled.");
101     else
102       LLDB_LOG(log,
103                "syscall process_vm_readv failed (error: {0}). Fast memory "
104                "reads disabled.",
105                llvm::sys::StrError());
106   });
107 
108   return is_supported;
109 }
110 
111 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
112   Log *log = GetLog(POSIXLog::Process);
113   if (!log)
114     return;
115 
116   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
117     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
118   else
119     LLDB_LOG(log, "leaving STDIN as is");
120 
121   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
122     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
123   else
124     LLDB_LOG(log, "leaving STDOUT as is");
125 
126   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
127     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
128   else
129     LLDB_LOG(log, "leaving STDERR as is");
130 
131   int i = 0;
132   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
133        ++args, ++i)
134     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
135 }
136 
137 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
138   uint8_t *ptr = (uint8_t *)bytes;
139   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
140   for (uint32_t i = 0; i < loop_count; i++) {
141     s.Printf("[%x]", *ptr);
142     ptr++;
143   }
144 }
145 
146 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
147   Log *log = GetLog(POSIXLog::Ptrace);
148   if (!log)
149     return;
150   StreamString buf;
151 
152   switch (req) {
153   case PTRACE_POKETEXT: {
154     DisplayBytes(buf, &data, 8);
155     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
156     break;
157   }
158   case PTRACE_POKEDATA: {
159     DisplayBytes(buf, &data, 8);
160     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
161     break;
162   }
163   case PTRACE_POKEUSER: {
164     DisplayBytes(buf, &data, 8);
165     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
166     break;
167   }
168   case PTRACE_SETREGS: {
169     DisplayBytes(buf, data, data_size);
170     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
171     break;
172   }
173   case PTRACE_SETFPREGS: {
174     DisplayBytes(buf, data, data_size);
175     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
176     break;
177   }
178   case PTRACE_SETSIGINFO: {
179     DisplayBytes(buf, data, sizeof(siginfo_t));
180     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
181     break;
182   }
183   case PTRACE_SETREGSET: {
184     // Extract iov_base from data, which is a pointer to the struct iovec
185     DisplayBytes(buf, *(void **)data, data_size);
186     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
187     break;
188   }
189   default: {}
190   }
191 }
192 
193 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
194 static_assert(sizeof(long) >= k_ptrace_word_size,
195               "Size of long must be larger than ptrace word size");
196 
197 // Simple helper function to ensure flags are enabled on the given file
198 // descriptor.
199 static Status EnsureFDFlags(int fd, int flags) {
200   Status error;
201 
202   int status = fcntl(fd, F_GETFL);
203   if (status == -1) {
204     error.SetErrorToErrno();
205     return error;
206   }
207 
208   if (fcntl(fd, F_SETFL, status | flags) == -1) {
209     error.SetErrorToErrno();
210     return error;
211   }
212 
213   return error;
214 }
215 
216 // Public Static Methods
217 
218 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
219 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
220                                     NativeDelegate &native_delegate,
221                                     MainLoop &mainloop) const {
222   Log *log = GetLog(POSIXLog::Process);
223 
224   MaybeLogLaunchInfo(launch_info);
225 
226   Status status;
227   ::pid_t pid = ProcessLauncherPosixFork()
228                     .LaunchProcess(launch_info, status)
229                     .GetProcessId();
230   LLDB_LOG(log, "pid = {0:x}", pid);
231   if (status.Fail()) {
232     LLDB_LOG(log, "failed to launch process: {0}", status);
233     return status.ToError();
234   }
235 
236   // Wait for the child process to trap on its call to execve.
237   int wstatus;
238   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
239   assert(wpid == pid);
240   (void)wpid;
241   if (!WIFSTOPPED(wstatus)) {
242     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
243              WaitStatus::Decode(wstatus));
244     return llvm::make_error<StringError>("Could not sync with inferior process",
245                                          llvm::inconvertibleErrorCode());
246   }
247   LLDB_LOG(log, "inferior started, now in stopped state");
248 
249   ProcessInstanceInfo Info;
250   if (!Host::GetProcessInfo(pid, Info)) {
251     return llvm::make_error<StringError>("Cannot get process architecture",
252                                          llvm::inconvertibleErrorCode());
253   }
254 
255   // Set the architecture to the exe architecture.
256   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
257            Info.GetArchitecture().GetArchitectureName());
258 
259   status = SetDefaultPtraceOpts(pid);
260   if (status.Fail()) {
261     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
262     return status.ToError();
263   }
264 
265   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
266       pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
267       Info.GetArchitecture(), mainloop, {pid}));
268 }
269 
270 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
271 NativeProcessLinux::Factory::Attach(
272     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
273     MainLoop &mainloop) const {
274   Log *log = GetLog(POSIXLog::Process);
275   LLDB_LOG(log, "pid = {0:x}", pid);
276 
277   // Retrieve the architecture for the running process.
278   ProcessInstanceInfo Info;
279   if (!Host::GetProcessInfo(pid, Info)) {
280     return llvm::make_error<StringError>("Cannot get process architecture",
281                                          llvm::inconvertibleErrorCode());
282   }
283 
284   auto tids_or = NativeProcessLinux::Attach(pid);
285   if (!tids_or)
286     return tids_or.takeError();
287 
288   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
289       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
290 }
291 
292 NativeProcessLinux::Extension
293 NativeProcessLinux::Factory::GetSupportedExtensions() const {
294   NativeProcessLinux::Extension supported =
295       Extension::multiprocess | Extension::fork | Extension::vfork |
296       Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 |
297       Extension::siginfo_read;
298 
299 #ifdef __aarch64__
300   // At this point we do not have a process so read auxv directly.
301   if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
302     supported |= Extension::memory_tagging;
303 #endif
304 
305   return supported;
306 }
307 
308 // Public Instance Methods
309 
310 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
311                                        NativeDelegate &delegate,
312                                        const ArchSpec &arch, MainLoop &mainloop,
313                                        llvm::ArrayRef<::pid_t> tids)
314     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
315       m_main_loop(mainloop) {
316   if (m_terminal_fd != -1) {
317     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
318     assert(status.Success());
319   }
320 
321   Status status;
322   m_sigchld_handle = mainloop.RegisterSignal(
323       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
324   assert(m_sigchld_handle && status.Success());
325 
326   for (const auto &tid : tids) {
327     NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
328     ThreadWasCreated(thread);
329   }
330 
331   // Let our process instance know the thread has stopped.
332   SetCurrentThreadID(tids[0]);
333   SetState(StateType::eStateStopped, false);
334 
335   // Proccess any signals we received before installing our handler
336   SigchldHandler();
337 }
338 
339 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
340   Log *log = GetLog(POSIXLog::Process);
341 
342   Status status;
343   // Use a map to keep track of the threads which we have attached/need to
344   // attach.
345   Host::TidMap tids_to_attach;
346   while (Host::FindProcessThreads(pid, tids_to_attach)) {
347     for (Host::TidMap::iterator it = tids_to_attach.begin();
348          it != tids_to_attach.end();) {
349       if (it->second == false) {
350         lldb::tid_t tid = it->first;
351 
352         // Attach to the requested process.
353         // An attach will cause the thread to stop with a SIGSTOP.
354         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
355           // No such thread. The thread may have exited. More error handling
356           // may be needed.
357           if (status.GetError() == ESRCH) {
358             it = tids_to_attach.erase(it);
359             continue;
360           }
361           return status.ToError();
362         }
363 
364         int wpid =
365             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
366         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
367         // this point we should have a thread stopped if waitpid succeeds.
368         if (wpid < 0) {
369           // No such thread. The thread may have exited. More error handling
370           // may be needed.
371           if (errno == ESRCH) {
372             it = tids_to_attach.erase(it);
373             continue;
374           }
375           return llvm::errorCodeToError(
376               std::error_code(errno, std::generic_category()));
377         }
378 
379         if ((status = SetDefaultPtraceOpts(tid)).Fail())
380           return status.ToError();
381 
382         LLDB_LOG(log, "adding tid = {0}", tid);
383         it->second = true;
384       }
385 
386       // move the loop forward
387       ++it;
388     }
389   }
390 
391   size_t tid_count = tids_to_attach.size();
392   if (tid_count == 0)
393     return llvm::make_error<StringError>("No such process",
394                                          llvm::inconvertibleErrorCode());
395 
396   std::vector<::pid_t> tids;
397   tids.reserve(tid_count);
398   for (const auto &p : tids_to_attach)
399     tids.push_back(p.first);
400   return std::move(tids);
401 }
402 
403 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
404   long ptrace_opts = 0;
405 
406   // Have the child raise an event on exit.  This is used to keep the child in
407   // limbo until it is destroyed.
408   ptrace_opts |= PTRACE_O_TRACEEXIT;
409 
410   // Have the tracer trace threads which spawn in the inferior process.
411   ptrace_opts |= PTRACE_O_TRACECLONE;
412 
413   // Have the tracer notify us before execve returns (needed to disable legacy
414   // SIGTRAP generation)
415   ptrace_opts |= PTRACE_O_TRACEEXEC;
416 
417   // Have the tracer trace forked children.
418   ptrace_opts |= PTRACE_O_TRACEFORK;
419 
420   // Have the tracer trace vforks.
421   ptrace_opts |= PTRACE_O_TRACEVFORK;
422 
423   // Have the tracer trace vfork-done in order to restore breakpoints after
424   // the child finishes sharing memory.
425   ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
426 
427   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
428 }
429 
430 // Handles all waitpid events from the inferior process.
431 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread,
432                                          WaitStatus status) {
433   Log *log = GetLog(LLDBLog::Process);
434 
435   // Certain activities differ based on whether the pid is the tid of the main
436   // thread.
437   const bool is_main_thread = (thread.GetID() == GetID());
438 
439   // Handle when the thread exits.
440   if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) {
441     LLDB_LOG(log,
442              "got exit status({0}) , tid = {1} ({2} main thread), process "
443              "state = {3}",
444              status, thread.GetID(), is_main_thread ? "is" : "is not",
445              GetState());
446 
447     // This is a thread that exited.  Ensure we're not tracking it anymore.
448     StopTrackingThread(thread);
449 
450     assert(!is_main_thread && "Main thread exits handled elsewhere");
451     return;
452   }
453 
454   siginfo_t info;
455   const auto info_err = GetSignalInfo(thread.GetID(), &info);
456 
457   // Get details on the signal raised.
458   if (info_err.Success()) {
459     // We have retrieved the signal info.  Dispatch appropriately.
460     if (info.si_signo == SIGTRAP)
461       MonitorSIGTRAP(info, thread);
462     else
463       MonitorSignal(info, thread);
464   } else {
465     if (info_err.GetError() == EINVAL) {
466       // This is a group stop reception for this tid. We can reach here if we
467       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
468       // triggering the group-stop mechanism. Normally receiving these would
469       // stop the process, pending a SIGCONT. Simulating this state in a
470       // debugger is hard and is generally not needed (one use case is
471       // debugging background task being managed by a shell). For general use,
472       // it is sufficient to stop the process in a signal-delivery stop which
473       // happens before the group stop. This done by MonitorSignal and works
474       // correctly for all signals.
475       LLDB_LOG(log,
476                "received a group stop for pid {0} tid {1}. Transparent "
477                "handling of group stops not supported, resuming the "
478                "thread.",
479                GetID(), thread.GetID());
480       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
481     } else {
482       // ptrace(GETSIGINFO) failed (but not due to group-stop).
483 
484       // A return value of ESRCH means the thread/process has died in the mean
485       // time. This can (e.g.) happen when another thread does an exit_group(2)
486       // or the entire process get SIGKILLed.
487       // We can't do anything with this thread anymore, but we keep it around
488       // until we get the WIFEXITED event.
489 
490       LLDB_LOG(log,
491                "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = "
492                "{3}. Expecting WIFEXITED soon.",
493                thread.GetID(), info_err, status, is_main_thread);
494     }
495   }
496 }
497 
498 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
499   Log *log = GetLog(POSIXLog::Process);
500 
501   // The PID is not tracked yet, let's wait for it to appear.
502   int status = -1;
503   LLDB_LOG(log,
504            "received clone event for pid {0}. pid not tracked yet, "
505            "waiting for it to appear...",
506            pid);
507   ::pid_t wait_pid =
508       llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
509 
510   // It's theoretically possible to get other events if the entire process was
511   // SIGKILLed before we got a chance to check this. In that case, we'll just
512   // clean everything up when we get the process exit event.
513 
514   LLDB_LOG(log,
515            "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})",
516            pid, wait_pid, errno, WaitStatus::Decode(status));
517 }
518 
519 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
520                                         NativeThreadLinux &thread) {
521   Log *log = GetLog(POSIXLog::Process);
522   const bool is_main_thread = (thread.GetID() == GetID());
523 
524   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
525 
526   switch (info.si_code) {
527   case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
528   case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
529   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
530     // This can either mean a new thread or a new process spawned via
531     // clone(2) without SIGCHLD or CLONE_VFORK flag.  Note that clone(2)
532     // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
533     // of these flags are passed.
534 
535     unsigned long event_message = 0;
536     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
537       LLDB_LOG(log,
538                "pid {0} received clone() event but GetEventMessage failed "
539                "so we don't know the new pid/tid",
540                thread.GetID());
541       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
542     } else {
543       MonitorClone(thread, event_message, info.si_code >> 8);
544     }
545 
546     break;
547   }
548 
549   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
550     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
551 
552     // Exec clears any pending notifications.
553     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
554 
555     // Remove all but the main thread here.  Linux fork creates a new process
556     // which only copies the main thread.
557     LLDB_LOG(log, "exec received, stop tracking all but main thread");
558 
559     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
560       return t->GetID() != GetID();
561     });
562     assert(m_threads.size() == 1);
563     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
564 
565     SetCurrentThreadID(main_thread->GetID());
566     main_thread->SetStoppedByExec();
567 
568     // Tell coordinator about about the "new" (since exec) stopped main thread.
569     ThreadWasCreated(*main_thread);
570 
571     // Let our delegate know we have just exec'd.
572     NotifyDidExec();
573 
574     // Let the process know we're stopped.
575     StopRunningThreads(main_thread->GetID());
576 
577     break;
578   }
579 
580   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
581     // The inferior process or one of its threads is about to exit. We don't
582     // want to do anything with the thread so we just resume it. In case we
583     // want to implement "break on thread exit" functionality, we would need to
584     // stop here.
585 
586     unsigned long data = 0;
587     if (GetEventMessage(thread.GetID(), &data).Fail())
588       data = -1;
589 
590     LLDB_LOG(log,
591              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
592              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
593              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
594              is_main_thread);
595 
596 
597     StateType state = thread.GetState();
598     if (!StateIsRunningState(state)) {
599       // Due to a kernel bug, we may sometimes get this stop after the inferior
600       // gets a SIGKILL. This confuses our state tracking logic in
601       // ResumeThread(), since normally, we should not be receiving any ptrace
602       // events while the inferior is stopped. This makes sure that the
603       // inferior is resumed and exits normally.
604       state = eStateRunning;
605     }
606     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
607 
608     if (is_main_thread) {
609       // Main thread report the read (WIFEXITED) event only after all threads in
610       // the process exit, so we need to stop tracking it here instead of in
611       // MonitorCallback
612       StopTrackingThread(thread);
613     }
614 
615     break;
616   }
617 
618   case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
619     if (bool(m_enabled_extensions & Extension::vfork)) {
620       thread.SetStoppedByVForkDone();
621       StopRunningThreads(thread.GetID());
622     }
623     else
624       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
625     break;
626   }
627 
628   case 0:
629   case TRAP_TRACE:  // We receive this on single stepping.
630   case TRAP_HWBKPT: // We receive this on watchpoint hit
631   {
632     // If a watchpoint was hit, report it
633     uint32_t wp_index;
634     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
635         wp_index, (uintptr_t)info.si_addr);
636     if (error.Fail())
637       LLDB_LOG(log,
638                "received error while checking for watchpoint hits, pid = "
639                "{0}, error = {1}",
640                thread.GetID(), error);
641     if (wp_index != LLDB_INVALID_INDEX32) {
642       MonitorWatchpoint(thread, wp_index);
643       break;
644     }
645 
646     // If a breakpoint was hit, report it
647     uint32_t bp_index;
648     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
649         bp_index, (uintptr_t)info.si_addr);
650     if (error.Fail())
651       LLDB_LOG(log, "received error while checking for hardware "
652                     "breakpoint hits, pid = {0}, error = {1}",
653                thread.GetID(), error);
654     if (bp_index != LLDB_INVALID_INDEX32) {
655       MonitorBreakpoint(thread);
656       break;
657     }
658 
659     // Otherwise, report step over
660     MonitorTrace(thread);
661     break;
662   }
663 
664   case SI_KERNEL:
665 #if defined __mips__
666     // For mips there is no special signal for watchpoint So we check for
667     // watchpoint in kernel trap
668     {
669       // If a watchpoint was hit, report it
670       uint32_t wp_index;
671       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
672           wp_index, LLDB_INVALID_ADDRESS);
673       if (error.Fail())
674         LLDB_LOG(log,
675                  "received error while checking for watchpoint hits, pid = "
676                  "{0}, error = {1}",
677                  thread.GetID(), error);
678       if (wp_index != LLDB_INVALID_INDEX32) {
679         MonitorWatchpoint(thread, wp_index);
680         break;
681       }
682     }
683 // NO BREAK
684 #endif
685   case TRAP_BRKPT:
686     MonitorBreakpoint(thread);
687     break;
688 
689   case SIGTRAP:
690   case (SIGTRAP | 0x80):
691     LLDB_LOG(
692         log,
693         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
694         info.si_code, GetID(), thread.GetID());
695 
696     // Ignore these signals until we know more about them.
697     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
698     break;
699 
700   default:
701     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
702              info.si_code, GetID(), thread.GetID());
703     MonitorSignal(info, thread);
704     break;
705   }
706 }
707 
708 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
709   Log *log = GetLog(POSIXLog::Process);
710   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
711 
712   // This thread is currently stopped.
713   thread.SetStoppedByTrace();
714 
715   StopRunningThreads(thread.GetID());
716 }
717 
718 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
719   Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
720   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
721 
722   // Mark the thread as stopped at breakpoint.
723   thread.SetStoppedByBreakpoint();
724   FixupBreakpointPCAsNeeded(thread);
725 
726   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
727       m_threads_stepping_with_breakpoint.end())
728     thread.SetStoppedByTrace();
729 
730   StopRunningThreads(thread.GetID());
731 }
732 
733 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
734                                            uint32_t wp_index) {
735   Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints);
736   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
737            thread.GetID(), wp_index);
738 
739   // Mark the thread as stopped at watchpoint. The address is at
740   // (lldb::addr_t)info->si_addr if we need it.
741   thread.SetStoppedByWatchpoint(wp_index);
742 
743   // We need to tell all other running threads before we notify the delegate
744   // about this stop.
745   StopRunningThreads(thread.GetID());
746 }
747 
748 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
749                                        NativeThreadLinux &thread) {
750   const int signo = info.si_signo;
751   const bool is_from_llgs = info.si_pid == getpid();
752 
753   Log *log = GetLog(POSIXLog::Process);
754 
755   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
756   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
757   // or raise(3).  Similarly for tgkill(2) on Linux.
758   //
759   // IOW, user generated signals never generate what we consider to be a
760   // "crash".
761   //
762   // Similarly, ACK signals generated by this monitor.
763 
764   // Handle the signal.
765   LLDB_LOG(log,
766            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
767            "waitpid pid = {4})",
768            Host::GetSignalAsCString(signo), signo, info.si_code,
769            thread.GetID());
770 
771   // Check for thread stop notification.
772   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
773     // This is a tgkill()-based stop.
774     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
775 
776     // Check that we're not already marked with a stop reason. Note this thread
777     // really shouldn't already be marked as stopped - if we were, that would
778     // imply that the kernel signaled us with the thread stopping which we
779     // handled and marked as stopped, and that, without an intervening resume,
780     // we received another stop.  It is more likely that we are missing the
781     // marking of a run state somewhere if we find that the thread was marked
782     // as stopped.
783     const StateType thread_state = thread.GetState();
784     if (!StateIsStoppedState(thread_state, false)) {
785       // An inferior thread has stopped because of a SIGSTOP we have sent it.
786       // Generally, these are not important stops and we don't want to report
787       // them as they are just used to stop other threads when one thread (the
788       // one with the *real* stop reason) hits a breakpoint (watchpoint,
789       // etc...). However, in the case of an asynchronous Interrupt(), this
790       // *is* the real stop reason, so we leave the signal intact if this is
791       // the thread that was chosen as the triggering thread.
792       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
793         if (m_pending_notification_tid == thread.GetID())
794           thread.SetStoppedBySignal(SIGSTOP, &info);
795         else
796           thread.SetStoppedWithNoReason();
797 
798         SetCurrentThreadID(thread.GetID());
799         SignalIfAllThreadsStopped();
800       } else {
801         // We can end up here if stop was initiated by LLGS but by this time a
802         // thread stop has occurred - maybe initiated by another event.
803         Status error = ResumeThread(thread, thread.GetState(), 0);
804         if (error.Fail())
805           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
806                    error);
807       }
808     } else {
809       LLDB_LOG(log,
810                "pid {0} tid {1}, thread was already marked as a stopped "
811                "state (state={2}), leaving stop signal as is",
812                GetID(), thread.GetID(), thread_state);
813       SignalIfAllThreadsStopped();
814     }
815 
816     // Done handling.
817     return;
818   }
819 
820   // Check if debugger should stop at this signal or just ignore it and resume
821   // the inferior.
822   if (m_signals_to_ignore.contains(signo)) {
823      ResumeThread(thread, thread.GetState(), signo);
824      return;
825   }
826 
827   // This thread is stopped.
828   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
829   thread.SetStoppedBySignal(signo, &info);
830 
831   // Send a stop to the debugger after we get all other threads to stop.
832   StopRunningThreads(thread.GetID());
833 }
834 
835 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent,
836                                       lldb::pid_t child_pid, int event) {
837   Log *log = GetLog(POSIXLog::Process);
838   LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(),
839            child_pid, event);
840 
841   WaitForCloneNotification(child_pid);
842 
843   switch (event) {
844   case PTRACE_EVENT_CLONE: {
845     // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
846     // Try to grab the new process' PGID to figure out which one it is.
847     // If PGID is the same as the PID, then it's a new process.  Otherwise,
848     // it's a thread.
849     auto tgid_ret = getPIDForTID(child_pid);
850     if (tgid_ret != child_pid) {
851       // A new thread should have PGID matching our process' PID.
852       assert(!tgid_ret || tgid_ret.getValue() == GetID());
853 
854       NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
855       ThreadWasCreated(child_thread);
856 
857       // Resume the parent.
858       ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
859       break;
860     }
861   }
862     LLVM_FALLTHROUGH;
863   case PTRACE_EVENT_FORK:
864   case PTRACE_EVENT_VFORK: {
865     bool is_vfork = event == PTRACE_EVENT_VFORK;
866     std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
867         static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
868         m_main_loop, {static_cast<::pid_t>(child_pid)})};
869     if (!is_vfork)
870       child_process->m_software_breakpoints = m_software_breakpoints;
871 
872     Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
873     if (bool(m_enabled_extensions & expected_ext)) {
874       m_delegate.NewSubprocess(this, std::move(child_process));
875       // NB: non-vfork clone() is reported as fork
876       parent.SetStoppedByFork(is_vfork, child_pid);
877       StopRunningThreads(parent.GetID());
878     } else {
879       child_process->Detach();
880       ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
881     }
882     break;
883   }
884   default:
885     llvm_unreachable("unknown clone_info.event");
886   }
887 
888   return true;
889 }
890 
891 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
892   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
893     return false;
894   return true;
895 }
896 
897 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
898   Log *log = GetLog(POSIXLog::Process);
899   LLDB_LOG(log, "pid {0}", GetID());
900 
901   bool software_single_step = !SupportHardwareSingleStepping();
902 
903   if (software_single_step) {
904     for (const auto &thread : m_threads) {
905       assert(thread && "thread list should not contain NULL threads");
906 
907       const ResumeAction *const action =
908           resume_actions.GetActionForThread(thread->GetID(), true);
909       if (action == nullptr)
910         continue;
911 
912       if (action->state == eStateStepping) {
913         Status error = SetupSoftwareSingleStepping(
914             static_cast<NativeThreadLinux &>(*thread));
915         if (error.Fail())
916           return error;
917       }
918     }
919   }
920 
921   for (const auto &thread : m_threads) {
922     assert(thread && "thread list should not contain NULL threads");
923 
924     const ResumeAction *const action =
925         resume_actions.GetActionForThread(thread->GetID(), true);
926 
927     if (action == nullptr) {
928       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
929                thread->GetID());
930       continue;
931     }
932 
933     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
934              action->state, GetID(), thread->GetID());
935 
936     switch (action->state) {
937     case eStateRunning:
938     case eStateStepping: {
939       // Run the thread, possibly feeding it the signal.
940       const int signo = action->signal;
941       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
942                    signo);
943       break;
944     }
945 
946     case eStateSuspended:
947     case eStateStopped:
948       llvm_unreachable("Unexpected state");
949 
950     default:
951       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
952                     "for pid %" PRIu64 ", tid %" PRIu64,
953                     __FUNCTION__, StateAsCString(action->state), GetID(),
954                     thread->GetID());
955     }
956   }
957 
958   return Status();
959 }
960 
961 Status NativeProcessLinux::Halt() {
962   Status error;
963 
964   if (kill(GetID(), SIGSTOP) != 0)
965     error.SetErrorToErrno();
966 
967   return error;
968 }
969 
970 Status NativeProcessLinux::Detach() {
971   Status error;
972 
973   // Stop monitoring the inferior.
974   m_sigchld_handle.reset();
975 
976   // Tell ptrace to detach from the process.
977   if (GetID() == LLDB_INVALID_PROCESS_ID)
978     return error;
979 
980   for (const auto &thread : m_threads) {
981     Status e = Detach(thread->GetID());
982     if (e.Fail())
983       error =
984           e; // Save the error, but still attempt to detach from other threads.
985   }
986 
987   m_intel_pt_collector.Clear();
988 
989   return error;
990 }
991 
992 Status NativeProcessLinux::Signal(int signo) {
993   Status error;
994 
995   Log *log = GetLog(POSIXLog::Process);
996   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
997            Host::GetSignalAsCString(signo), GetID());
998 
999   if (kill(GetID(), signo))
1000     error.SetErrorToErrno();
1001 
1002   return error;
1003 }
1004 
1005 Status NativeProcessLinux::Interrupt() {
1006   // Pick a running thread (or if none, a not-dead stopped thread) as the
1007   // chosen thread that will be the stop-reason thread.
1008   Log *log = GetLog(POSIXLog::Process);
1009 
1010   NativeThreadProtocol *running_thread = nullptr;
1011   NativeThreadProtocol *stopped_thread = nullptr;
1012 
1013   LLDB_LOG(log, "selecting running thread for interrupt target");
1014   for (const auto &thread : m_threads) {
1015     // If we have a running or stepping thread, we'll call that the target of
1016     // the interrupt.
1017     const auto thread_state = thread->GetState();
1018     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1019       running_thread = thread.get();
1020       break;
1021     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1022       // Remember the first non-dead stopped thread.  We'll use that as a
1023       // backup if there are no running threads.
1024       stopped_thread = thread.get();
1025     }
1026   }
1027 
1028   if (!running_thread && !stopped_thread) {
1029     Status error("found no running/stepping or live stopped threads as target "
1030                  "for interrupt");
1031     LLDB_LOG(log, "skipping due to error: {0}", error);
1032 
1033     return error;
1034   }
1035 
1036   NativeThreadProtocol *deferred_signal_thread =
1037       running_thread ? running_thread : stopped_thread;
1038 
1039   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1040            running_thread ? "running" : "stopped",
1041            deferred_signal_thread->GetID());
1042 
1043   StopRunningThreads(deferred_signal_thread->GetID());
1044 
1045   return Status();
1046 }
1047 
1048 Status NativeProcessLinux::Kill() {
1049   Log *log = GetLog(POSIXLog::Process);
1050   LLDB_LOG(log, "pid {0}", GetID());
1051 
1052   Status error;
1053 
1054   switch (m_state) {
1055   case StateType::eStateInvalid:
1056   case StateType::eStateExited:
1057   case StateType::eStateCrashed:
1058   case StateType::eStateDetached:
1059   case StateType::eStateUnloaded:
1060     // Nothing to do - the process is already dead.
1061     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1062              m_state);
1063     return error;
1064 
1065   case StateType::eStateConnected:
1066   case StateType::eStateAttaching:
1067   case StateType::eStateLaunching:
1068   case StateType::eStateStopped:
1069   case StateType::eStateRunning:
1070   case StateType::eStateStepping:
1071   case StateType::eStateSuspended:
1072     // We can try to kill a process in these states.
1073     break;
1074   }
1075 
1076   if (kill(GetID(), SIGKILL) != 0) {
1077     error.SetErrorToErrno();
1078     return error;
1079   }
1080 
1081   return error;
1082 }
1083 
1084 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1085                                                MemoryRegionInfo &range_info) {
1086   // FIXME review that the final memory region returned extends to the end of
1087   // the virtual address space,
1088   // with no perms if it is not mapped.
1089 
1090   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1091   // proc maps entries are in ascending order.
1092   // FIXME assert if we find differently.
1093 
1094   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1095     // We're done.
1096     return Status("unsupported");
1097   }
1098 
1099   Status error = PopulateMemoryRegionCache();
1100   if (error.Fail()) {
1101     return error;
1102   }
1103 
1104   lldb::addr_t prev_base_address = 0;
1105 
1106   // FIXME start by finding the last region that is <= target address using
1107   // binary search.  Data is sorted.
1108   // There can be a ton of regions on pthreads apps with lots of threads.
1109   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1110        ++it) {
1111     MemoryRegionInfo &proc_entry_info = it->first;
1112 
1113     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1114     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1115            "descending /proc/pid/maps entries detected, unexpected");
1116     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1117     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1118 
1119     // If the target address comes before this entry, indicate distance to next
1120     // region.
1121     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1122       range_info.GetRange().SetRangeBase(load_addr);
1123       range_info.GetRange().SetByteSize(
1124           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1125       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1126       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1127       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1128       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1129 
1130       return error;
1131     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1132       // The target address is within the memory region we're processing here.
1133       range_info = proc_entry_info;
1134       return error;
1135     }
1136 
1137     // The target memory address comes somewhere after the region we just
1138     // parsed.
1139   }
1140 
1141   // If we made it here, we didn't find an entry that contained the given
1142   // address. Return the load_addr as start and the amount of bytes betwwen
1143   // load address and the end of the memory as size.
1144   range_info.GetRange().SetRangeBase(load_addr);
1145   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1146   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1147   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1148   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1149   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1150   return error;
1151 }
1152 
1153 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1154   Log *log = GetLog(POSIXLog::Process);
1155 
1156   // If our cache is empty, pull the latest.  There should always be at least
1157   // one memory region if memory region handling is supported.
1158   if (!m_mem_region_cache.empty()) {
1159     LLDB_LOG(log, "reusing {0} cached memory region entries",
1160              m_mem_region_cache.size());
1161     return Status();
1162   }
1163 
1164   Status Result;
1165   LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1166     if (Info) {
1167       FileSpec file_spec(Info->GetName().GetCString());
1168       FileSystem::Instance().Resolve(file_spec);
1169       m_mem_region_cache.emplace_back(*Info, file_spec);
1170       return true;
1171     }
1172 
1173     Result = Info.takeError();
1174     m_supports_mem_region = LazyBool::eLazyBoolNo;
1175     LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1176     return false;
1177   };
1178 
1179   // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1180   // if CONFIG_PROC_PAGE_MONITOR is enabled
1181   auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps");
1182   if (BufferOrError)
1183     ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1184   else {
1185     BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps");
1186     if (!BufferOrError) {
1187       m_supports_mem_region = LazyBool::eLazyBoolNo;
1188       return BufferOrError.getError();
1189     }
1190 
1191     ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1192   }
1193 
1194   if (Result.Fail())
1195     return Result;
1196 
1197   if (m_mem_region_cache.empty()) {
1198     // No entries after attempting to read them.  This shouldn't happen if
1199     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1200     // procfs.
1201     m_supports_mem_region = LazyBool::eLazyBoolNo;
1202     LLDB_LOG(log,
1203              "failed to find any procfs maps entries, assuming no support "
1204              "for memory region metadata retrieval");
1205     return Status("not supported");
1206   }
1207 
1208   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1209            m_mem_region_cache.size(), GetID());
1210 
1211   // We support memory retrieval, remember that.
1212   m_supports_mem_region = LazyBool::eLazyBoolYes;
1213   return Status();
1214 }
1215 
1216 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1217   Log *log = GetLog(POSIXLog::Process);
1218   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1219   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1220            m_mem_region_cache.size());
1221   m_mem_region_cache.clear();
1222 }
1223 
1224 llvm::Expected<uint64_t>
1225 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1226   PopulateMemoryRegionCache();
1227   auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1228     return pair.first.GetExecutable() == MemoryRegionInfo::eYes;
1229   });
1230   if (region_it == m_mem_region_cache.end())
1231     return llvm::createStringError(llvm::inconvertibleErrorCode(),
1232                                    "No executable memory region found!");
1233 
1234   addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1235 
1236   NativeThreadLinux &thread = *GetCurrentThread();
1237   assert(thread.GetState() == eStateStopped);
1238   NativeRegisterContextLinux &reg_ctx = thread.GetRegisterContext();
1239 
1240   NativeRegisterContextLinux::SyscallData syscall_data =
1241       *reg_ctx.GetSyscallData();
1242 
1243   WritableDataBufferSP registers_sp;
1244   if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1245     return std::move(Err);
1246   auto restore_regs = llvm::make_scope_exit(
1247       [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1248 
1249   llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1250   size_t bytes_read;
1251   if (llvm::Error Err =
1252           ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1253               .ToError()) {
1254     return std::move(Err);
1255   }
1256 
1257   auto restore_mem = llvm::make_scope_exit(
1258       [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1259 
1260   if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1261     return std::move(Err);
1262 
1263   for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1264     if (llvm::Error Err =
1265             reg_ctx
1266                 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1267                 .ToError()) {
1268       return std::move(Err);
1269     }
1270   }
1271   if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1272                                     syscall_data.Insn.size(), bytes_read)
1273                             .ToError())
1274     return std::move(Err);
1275 
1276   m_mem_region_cache.clear();
1277 
1278   // With software single stepping the syscall insn buffer must also include a
1279   // trap instruction to stop the process.
1280   int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1281   if (llvm::Error Err =
1282           PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1283     return std::move(Err);
1284 
1285   int status;
1286   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1287                                                  &status, __WALL);
1288   if (wait_pid == -1) {
1289     return llvm::errorCodeToError(
1290         std::error_code(errno, std::generic_category()));
1291   }
1292   assert((unsigned)wait_pid == thread.GetID());
1293 
1294   uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1295 
1296   // Values larger than this are actually negative errno numbers.
1297   uint64_t errno_threshold =
1298       (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1299   if (result > errno_threshold) {
1300     return llvm::errorCodeToError(
1301         std::error_code(-result & 0xfff, std::generic_category()));
1302   }
1303 
1304   return result;
1305 }
1306 
1307 llvm::Expected<addr_t>
1308 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1309 
1310   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1311       GetCurrentThread()->GetRegisterContext().GetMmapData();
1312   if (!mmap_data)
1313     return llvm::make_error<UnimplementedError>();
1314 
1315   unsigned prot = PROT_NONE;
1316   assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1317                          ePermissionsExecutable)) == permissions &&
1318          "Unknown permission!");
1319   if (permissions & ePermissionsReadable)
1320     prot |= PROT_READ;
1321   if (permissions & ePermissionsWritable)
1322     prot |= PROT_WRITE;
1323   if (permissions & ePermissionsExecutable)
1324     prot |= PROT_EXEC;
1325 
1326   llvm::Expected<uint64_t> Result =
1327       Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1328                uint64_t(-1), 0});
1329   if (Result)
1330     m_allocated_memory.try_emplace(*Result, size);
1331   return Result;
1332 }
1333 
1334 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1335   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1336       GetCurrentThread()->GetRegisterContext().GetMmapData();
1337   if (!mmap_data)
1338     return llvm::make_error<UnimplementedError>();
1339 
1340   auto it = m_allocated_memory.find(addr);
1341   if (it == m_allocated_memory.end())
1342     return llvm::createStringError(llvm::errc::invalid_argument,
1343                                    "Memory not allocated by the debugger.");
1344 
1345   llvm::Expected<uint64_t> Result =
1346       Syscall({mmap_data->SysMunmap, addr, it->second});
1347   if (!Result)
1348     return Result.takeError();
1349 
1350   m_allocated_memory.erase(it);
1351   return llvm::Error::success();
1352 }
1353 
1354 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1355                                           size_t len,
1356                                           std::vector<uint8_t> &tags) {
1357   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1358       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1359   if (!details)
1360     return Status(details.takeError());
1361 
1362   // Ignore 0 length read
1363   if (!len)
1364     return Status();
1365 
1366   // lldb will align the range it requests but it is not required to by
1367   // the protocol so we'll do it again just in case.
1368   // Remove tag bits too. Ptrace calls may work regardless but that
1369   // is not a guarantee.
1370   MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1371   range = details->manager->ExpandToGranule(range);
1372 
1373   // Allocate enough space for all tags to be read
1374   size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1375   tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1376 
1377   struct iovec tags_iovec;
1378   uint8_t *dest = tags.data();
1379   lldb::addr_t read_addr = range.GetRangeBase();
1380 
1381   // This call can return partial data so loop until we error or
1382   // get all tags back.
1383   while (num_tags) {
1384     tags_iovec.iov_base = dest;
1385     tags_iovec.iov_len = num_tags;
1386 
1387     Status error = NativeProcessLinux::PtraceWrapper(
1388         details->ptrace_read_req, GetCurrentThreadID(),
1389         reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec),
1390         0, nullptr);
1391 
1392     if (error.Fail()) {
1393       // Discard partial reads
1394       tags.resize(0);
1395       return error;
1396     }
1397 
1398     size_t tags_read = tags_iovec.iov_len;
1399     assert(tags_read && (tags_read <= num_tags));
1400 
1401     dest += tags_read * details->manager->GetTagSizeInBytes();
1402     read_addr += details->manager->GetGranuleSize() * tags_read;
1403     num_tags -= tags_read;
1404   }
1405 
1406   return Status();
1407 }
1408 
1409 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr,
1410                                            size_t len,
1411                                            const std::vector<uint8_t> &tags) {
1412   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1413       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1414   if (!details)
1415     return Status(details.takeError());
1416 
1417   // Ignore 0 length write
1418   if (!len)
1419     return Status();
1420 
1421   // lldb will align the range it requests but it is not required to by
1422   // the protocol so we'll do it again just in case.
1423   // Remove tag bits too. Ptrace calls may work regardless but that
1424   // is not a guarantee.
1425   MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1426   range = details->manager->ExpandToGranule(range);
1427 
1428   // Not checking number of tags here, we may repeat them below
1429   llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err =
1430       details->manager->UnpackTagsData(tags);
1431   if (!unpacked_tags_or_err)
1432     return Status(unpacked_tags_or_err.takeError());
1433 
1434   llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err =
1435       details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range);
1436   if (!repeated_tags_or_err)
1437     return Status(repeated_tags_or_err.takeError());
1438 
1439   // Repack them for ptrace to use
1440   llvm::Expected<std::vector<uint8_t>> final_tag_data =
1441       details->manager->PackTags(*repeated_tags_or_err);
1442   if (!final_tag_data)
1443     return Status(final_tag_data.takeError());
1444 
1445   struct iovec tags_vec;
1446   uint8_t *src = final_tag_data->data();
1447   lldb::addr_t write_addr = range.GetRangeBase();
1448   // unpacked tags size because the number of bytes per tag might not be 1
1449   size_t num_tags = repeated_tags_or_err->size();
1450 
1451   // This call can partially write tags, so we loop until we
1452   // error or all tags have been written.
1453   while (num_tags > 0) {
1454     tags_vec.iov_base = src;
1455     tags_vec.iov_len = num_tags;
1456 
1457     Status error = NativeProcessLinux::PtraceWrapper(
1458         details->ptrace_write_req, GetCurrentThreadID(),
1459         reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0,
1460         nullptr);
1461 
1462     if (error.Fail()) {
1463       // Don't attempt to restore the original values in the case of a partial
1464       // write
1465       return error;
1466     }
1467 
1468     size_t tags_written = tags_vec.iov_len;
1469     assert(tags_written && (tags_written <= num_tags));
1470 
1471     src += tags_written * details->manager->GetTagSizeInBytes();
1472     write_addr += details->manager->GetGranuleSize() * tags_written;
1473     num_tags -= tags_written;
1474   }
1475 
1476   return Status();
1477 }
1478 
1479 size_t NativeProcessLinux::UpdateThreads() {
1480   // The NativeProcessLinux monitoring threads are always up to date with
1481   // respect to thread state and they keep the thread list populated properly.
1482   // All this method needs to do is return the thread count.
1483   return m_threads.size();
1484 }
1485 
1486 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1487                                          bool hardware) {
1488   if (hardware)
1489     return SetHardwareBreakpoint(addr, size);
1490   else
1491     return SetSoftwareBreakpoint(addr, size);
1492 }
1493 
1494 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1495   if (hardware)
1496     return RemoveHardwareBreakpoint(addr);
1497   else
1498     return NativeProcessProtocol::RemoveBreakpoint(addr);
1499 }
1500 
1501 llvm::Expected<llvm::ArrayRef<uint8_t>>
1502 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1503   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1504   // linux kernel does otherwise.
1505   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1506   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1507 
1508   switch (GetArchitecture().GetMachine()) {
1509   case llvm::Triple::arm:
1510     switch (size_hint) {
1511     case 2:
1512       return llvm::makeArrayRef(g_thumb_opcode);
1513     case 4:
1514       return llvm::makeArrayRef(g_arm_opcode);
1515     default:
1516       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1517                                      "Unrecognised trap opcode size hint!");
1518     }
1519   default:
1520     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1521   }
1522 }
1523 
1524 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1525                                       size_t &bytes_read) {
1526   if (ProcessVmReadvSupported()) {
1527     // The process_vm_readv path is about 50 times faster than ptrace api. We
1528     // want to use this syscall if it is supported.
1529 
1530     struct iovec local_iov, remote_iov;
1531     local_iov.iov_base = buf;
1532     local_iov.iov_len = size;
1533     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1534     remote_iov.iov_len = size;
1535 
1536     bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1,
1537                                   &remote_iov, 1, 0);
1538     const bool success = bytes_read == size;
1539 
1540     Log *log = GetLog(POSIXLog::Process);
1541     LLDB_LOG(log,
1542              "using process_vm_readv to read {0} bytes from inferior "
1543              "address {1:x}: {2}",
1544              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1545 
1546     if (success)
1547       return Status();
1548     // else the call failed for some reason, let's retry the read using ptrace
1549     // api.
1550   }
1551 
1552   unsigned char *dst = static_cast<unsigned char *>(buf);
1553   size_t remainder;
1554   long data;
1555 
1556   Log *log = GetLog(POSIXLog::Memory);
1557   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1558 
1559   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1560     Status error = NativeProcessLinux::PtraceWrapper(
1561         PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data);
1562     if (error.Fail())
1563       return error;
1564 
1565     remainder = size - bytes_read;
1566     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1567 
1568     // Copy the data into our buffer
1569     memcpy(dst, &data, remainder);
1570 
1571     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1572     addr += k_ptrace_word_size;
1573     dst += k_ptrace_word_size;
1574   }
1575   return Status();
1576 }
1577 
1578 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1579                                        size_t size, size_t &bytes_written) {
1580   const unsigned char *src = static_cast<const unsigned char *>(buf);
1581   size_t remainder;
1582   Status error;
1583 
1584   Log *log = GetLog(POSIXLog::Memory);
1585   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1586 
1587   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1588     remainder = size - bytes_written;
1589     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1590 
1591     if (remainder == k_ptrace_word_size) {
1592       unsigned long data = 0;
1593       memcpy(&data, src, k_ptrace_word_size);
1594 
1595       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1596       error = NativeProcessLinux::PtraceWrapper(
1597           PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data);
1598       if (error.Fail())
1599         return error;
1600     } else {
1601       unsigned char buff[8];
1602       size_t bytes_read;
1603       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1604       if (error.Fail())
1605         return error;
1606 
1607       memcpy(buff, src, remainder);
1608 
1609       size_t bytes_written_rec;
1610       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1611       if (error.Fail())
1612         return error;
1613 
1614       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1615                *(unsigned long *)buff);
1616     }
1617 
1618     addr += k_ptrace_word_size;
1619     src += k_ptrace_word_size;
1620   }
1621   return error;
1622 }
1623 
1624 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const {
1625   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1626 }
1627 
1628 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1629                                            unsigned long *message) {
1630   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1631 }
1632 
1633 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1634   if (tid == LLDB_INVALID_THREAD_ID)
1635     return Status();
1636 
1637   return PtraceWrapper(PTRACE_DETACH, tid);
1638 }
1639 
1640 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1641   for (const auto &thread : m_threads) {
1642     assert(thread && "thread list should not contain NULL threads");
1643     if (thread->GetID() == thread_id) {
1644       // We have this thread.
1645       return true;
1646     }
1647   }
1648 
1649   // We don't have this thread.
1650   return false;
1651 }
1652 
1653 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) {
1654   Log *const log = GetLog(POSIXLog::Thread);
1655   lldb::tid_t thread_id = thread.GetID();
1656   LLDB_LOG(log, "tid: {0}", thread_id);
1657 
1658   auto it = llvm::find_if(m_threads, [&](const auto &thread_up) {
1659     return thread_up.get() == &thread;
1660   });
1661   assert(it != m_threads.end());
1662   m_threads.erase(it);
1663 
1664   NotifyTracersOfThreadDestroyed(thread_id);
1665   SignalIfAllThreadsStopped();
1666 }
1667 
1668 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1669   Log *log = GetLog(POSIXLog::Thread);
1670   Status error(m_intel_pt_collector.OnThreadCreated(tid));
1671   if (error.Fail())
1672     LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1673              tid, error.AsCString());
1674   return error;
1675 }
1676 
1677 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1678   Log *log = GetLog(POSIXLog::Thread);
1679   Status error(m_intel_pt_collector.OnThreadDestroyed(tid));
1680   if (error.Fail())
1681     LLDB_LOG(log,
1682              "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1683              tid, error.AsCString());
1684   return error;
1685 }
1686 
1687 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1688                                                  bool resume) {
1689   Log *log = GetLog(POSIXLog::Thread);
1690   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1691 
1692   assert(!HasThreadNoLock(thread_id) &&
1693          "attempted to add a thread by id that already exists");
1694 
1695   // If this is the first thread, save it as the current thread
1696   if (m_threads.empty())
1697     SetCurrentThreadID(thread_id);
1698 
1699   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1700   NativeThreadLinux &thread =
1701       static_cast<NativeThreadLinux &>(*m_threads.back());
1702 
1703   Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1704   if (tracing_error.Fail()) {
1705     thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1706     StopRunningThreads(thread.GetID());
1707   } else if (resume)
1708     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1709   else
1710     thread.SetStoppedBySignal(SIGSTOP);
1711 
1712   return thread;
1713 }
1714 
1715 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1716                                                    FileSpec &file_spec) {
1717   Status error = PopulateMemoryRegionCache();
1718   if (error.Fail())
1719     return error;
1720 
1721   FileSpec module_file_spec(module_path);
1722   FileSystem::Instance().Resolve(module_file_spec);
1723 
1724   file_spec.Clear();
1725   for (const auto &it : m_mem_region_cache) {
1726     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1727       file_spec = it.second;
1728       return Status();
1729     }
1730   }
1731   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1732                 module_file_spec.GetFilename().AsCString(), GetID());
1733 }
1734 
1735 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1736                                               lldb::addr_t &load_addr) {
1737   load_addr = LLDB_INVALID_ADDRESS;
1738   Status error = PopulateMemoryRegionCache();
1739   if (error.Fail())
1740     return error;
1741 
1742   FileSpec file(file_name);
1743   for (const auto &it : m_mem_region_cache) {
1744     if (it.second == file) {
1745       load_addr = it.first.GetRange().GetRangeBase();
1746       return Status();
1747     }
1748   }
1749   return Status("No load address found for specified file.");
1750 }
1751 
1752 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1753   return static_cast<NativeThreadLinux *>(
1754       NativeProcessProtocol::GetThreadByID(tid));
1755 }
1756 
1757 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1758   return static_cast<NativeThreadLinux *>(
1759       NativeProcessProtocol::GetCurrentThread());
1760 }
1761 
1762 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1763                                         lldb::StateType state, int signo) {
1764   Log *const log = GetLog(POSIXLog::Thread);
1765   LLDB_LOG(log, "tid: {0}", thread.GetID());
1766 
1767   // Before we do the resume below, first check if we have a pending stop
1768   // notification that is currently waiting for all threads to stop.  This is
1769   // potentially a buggy situation since we're ostensibly waiting for threads
1770   // to stop before we send out the pending notification, and here we are
1771   // resuming one before we send out the pending stop notification.
1772   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1773     LLDB_LOG(log,
1774              "about to resume tid {0} per explicit request but we have a "
1775              "pending stop notification (tid {1}) that is actively "
1776              "waiting for this thread to stop. Valid sequence of events?",
1777              thread.GetID(), m_pending_notification_tid);
1778   }
1779 
1780   // Request a resume.  We expect this to be synchronous and the system to
1781   // reflect it is running after this completes.
1782   switch (state) {
1783   case eStateRunning: {
1784     const auto resume_result = thread.Resume(signo);
1785     if (resume_result.Success())
1786       SetState(eStateRunning, true);
1787     return resume_result;
1788   }
1789   case eStateStepping: {
1790     const auto step_result = thread.SingleStep(signo);
1791     if (step_result.Success())
1792       SetState(eStateRunning, true);
1793     return step_result;
1794   }
1795   default:
1796     LLDB_LOG(log, "Unhandled state {0}.", state);
1797     llvm_unreachable("Unhandled state for resume");
1798   }
1799 }
1800 
1801 //===----------------------------------------------------------------------===//
1802 
1803 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1804   Log *const log = GetLog(POSIXLog::Thread);
1805   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1806            triggering_tid);
1807 
1808   m_pending_notification_tid = triggering_tid;
1809 
1810   // Request a stop for all the thread stops that need to be stopped and are
1811   // not already known to be stopped.
1812   for (const auto &thread : m_threads) {
1813     if (StateIsRunningState(thread->GetState()))
1814       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1815   }
1816 
1817   SignalIfAllThreadsStopped();
1818   LLDB_LOG(log, "event processing done");
1819 }
1820 
1821 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1822   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1823     return; // No pending notification. Nothing to do.
1824 
1825   for (const auto &thread_sp : m_threads) {
1826     if (StateIsRunningState(thread_sp->GetState()))
1827       return; // Some threads are still running. Don't signal yet.
1828   }
1829 
1830   // We have a pending notification and all threads have stopped.
1831   Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
1832 
1833   // Clear any temporary breakpoints we used to implement software single
1834   // stepping.
1835   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1836     Status error = RemoveBreakpoint(thread_info.second);
1837     if (error.Fail())
1838       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1839                thread_info.first, error);
1840   }
1841   m_threads_stepping_with_breakpoint.clear();
1842 
1843   // Notify the delegate about the stop
1844   SetCurrentThreadID(m_pending_notification_tid);
1845   SetState(StateType::eStateStopped, true);
1846   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1847 }
1848 
1849 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1850   Log *const log = GetLog(POSIXLog::Thread);
1851   LLDB_LOG(log, "tid: {0}", thread.GetID());
1852 
1853   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1854       StateIsRunningState(thread.GetState())) {
1855     // We will need to wait for this new thread to stop as well before firing
1856     // the notification.
1857     thread.RequestStop();
1858   }
1859 }
1860 
1861 static llvm::Optional<WaitStatus> HandlePid(::pid_t pid) {
1862   Log *log = GetLog(POSIXLog::Process);
1863 
1864   int status;
1865   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(
1866       -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG);
1867 
1868   if (wait_pid == 0)
1869     return llvm::None;
1870 
1871   if (wait_pid == -1) {
1872     Status error(errno, eErrorTypePOSIX);
1873     LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid,
1874              error);
1875     return llvm::None;
1876   }
1877 
1878   assert(wait_pid == pid);
1879 
1880   WaitStatus wait_status = WaitStatus::Decode(status);
1881 
1882   LLDB_LOG(log, "waitpid({0})  got status = {1}", pid, wait_status);
1883   return wait_status;
1884 }
1885 
1886 void NativeProcessLinux::SigchldHandler() {
1887   Log *log = GetLog(POSIXLog::Process);
1888 
1889   // Threads can appear or disappear as a result of event processing, so gather
1890   // the events upfront.
1891   llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events;
1892   bool checked_main_thread = false;
1893   for (const auto &thread_up : m_threads) {
1894     if (thread_up->GetID() == GetID())
1895       checked_main_thread = true;
1896 
1897     if (llvm::Optional<WaitStatus> status = HandlePid(thread_up->GetID()))
1898       tid_events.try_emplace(thread_up->GetID(), *status);
1899   }
1900   // Check the main thread even when we're not tracking it as process exit
1901   // events are reported that way.
1902   if (!checked_main_thread) {
1903     if (llvm::Optional<WaitStatus> status = HandlePid(GetID()))
1904       tid_events.try_emplace(GetID(), *status);
1905   }
1906 
1907   for (auto &KV : tid_events) {
1908     LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second);
1909     if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit ||
1910                                 KV.second.type == WaitStatus::Signal)) {
1911 
1912       // The process exited.  We're done monitoring.  Report to delegate.
1913       SetExitStatus(KV.second, true);
1914       return;
1915     }
1916     NativeThreadLinux *thread = GetThreadByID(KV.first);
1917     assert(thread && "Why did this thread disappear?");
1918     MonitorCallback(*thread, KV.second);
1919   }
1920 }
1921 
1922 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1923 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1924 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1925                                          void *data, size_t data_size,
1926                                          long *result) {
1927   Status error;
1928   long int ret;
1929 
1930   Log *log = GetLog(POSIXLog::Ptrace);
1931 
1932   PtraceDisplayBytes(req, data, data_size);
1933 
1934   errno = 0;
1935   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1936     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1937                  *(unsigned int *)addr, data);
1938   else
1939     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1940                  addr, data);
1941 
1942   if (ret == -1)
1943     error.SetErrorToErrno();
1944 
1945   if (result)
1946     *result = ret;
1947 
1948   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1949            data_size, ret);
1950 
1951   PtraceDisplayBytes(req, data, data_size);
1952 
1953   if (error.Fail())
1954     LLDB_LOG(log, "ptrace() failed: {0}", error);
1955 
1956   return error;
1957 }
1958 
1959 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
1960   if (IntelPTCollector::IsSupported())
1961     return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
1962   return NativeProcessProtocol::TraceSupported();
1963 }
1964 
1965 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
1966   if (type == "intel-pt") {
1967     if (Expected<TraceIntelPTStartRequest> request =
1968             json::parse<TraceIntelPTStartRequest>(json_request,
1969                                                   "TraceIntelPTStartRequest")) {
1970       std::vector<lldb::tid_t> process_threads;
1971       for (auto &thread : m_threads)
1972         process_threads.push_back(thread->GetID());
1973       return m_intel_pt_collector.TraceStart(*request, process_threads);
1974     } else
1975       return request.takeError();
1976   }
1977 
1978   return NativeProcessProtocol::TraceStart(json_request, type);
1979 }
1980 
1981 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
1982   if (request.type == "intel-pt")
1983     return m_intel_pt_collector.TraceStop(request);
1984   return NativeProcessProtocol::TraceStop(request);
1985 }
1986 
1987 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
1988   if (type == "intel-pt")
1989     return m_intel_pt_collector.GetState();
1990   return NativeProcessProtocol::TraceGetState(type);
1991 }
1992 
1993 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
1994     const TraceGetBinaryDataRequest &request) {
1995   if (request.type == "intel-pt")
1996     return m_intel_pt_collector.GetBinaryData(request);
1997   return NativeProcessProtocol::TraceGetBinaryData(request);
1998 }
1999