1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 #include <linux/unistd.h>
21 #if defined(__ANDROID_NDK__) && defined (__arm__)
22 #include <linux/personality.h>
23 #include <linux/user.h>
24 #else
25 #include <sys/personality.h>
26 #include <sys/user.h>
27 #endif
28 #ifndef __ANDROID__
29 #include <sys/procfs.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include <sys/uio.h>
33 #include <sys/socket.h>
34 #include <sys/syscall.h>
35 #include <sys/types.h>
36 #include <sys/wait.h>
37 
38 #if defined (__arm64__) || defined (__aarch64__)
39 // NT_PRSTATUS and NT_FPREGSET definition
40 #include <elf.h>
41 #endif
42 
43 // C++ Includes
44 #include <fstream>
45 #include <string>
46 
47 // Other libraries and framework includes
48 #include "lldb/Core/Debugger.h"
49 #include "lldb/Core/Error.h"
50 #include "lldb/Core/Module.h"
51 #include "lldb/Core/ModuleSpec.h"
52 #include "lldb/Core/RegisterValue.h"
53 #include "lldb/Core/Scalar.h"
54 #include "lldb/Core/State.h"
55 #include "lldb/Host/Host.h"
56 #include "lldb/Host/HostInfo.h"
57 #include "lldb/Host/ThreadLauncher.h"
58 #include "lldb/Symbol/ObjectFile.h"
59 #include "lldb/Host/common/NativeRegisterContext.h"
60 #include "lldb/Target/ProcessLaunchInfo.h"
61 #include "lldb/Utility/PseudoTerminal.h"
62 
63 #include "lldb/Host/common/NativeBreakpoint.h"
64 #include "Utility/StringExtractor.h"
65 
66 #include "Plugins/Process/Utility/LinuxSignals.h"
67 #include "NativeThreadLinux.h"
68 #include "ProcFileReader.h"
69 #include "ThreadStateCoordinator.h"
70 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
71 
72 #ifdef __ANDROID__
73 #define __ptrace_request int
74 #define PT_DETACH PTRACE_DETACH
75 #endif
76 
77 #define DEBUG_PTRACE_MAXBYTES 20
78 
79 // Support ptrace extensions even when compiled without required kernel support
80 #ifndef PT_GETREGS
81 #ifndef PTRACE_GETREGS
82   #define PTRACE_GETREGS 12
83 #endif
84 #endif
85 #ifndef PT_SETREGS
86 #ifndef PTRACE_SETREGS
87   #define PTRACE_SETREGS 13
88 #endif
89 #endif
90 #ifndef PT_GETFPREGS
91 #ifndef PTRACE_GETFPREGS
92   #define PTRACE_GETFPREGS 14
93 #endif
94 #endif
95 #ifndef PT_SETFPREGS
96 #ifndef PTRACE_SETFPREGS
97   #define PTRACE_SETFPREGS 15
98 #endif
99 #endif
100 #ifndef PTRACE_GETREGSET
101   #define PTRACE_GETREGSET 0x4204
102 #endif
103 #ifndef PTRACE_SETREGSET
104   #define PTRACE_SETREGSET 0x4205
105 #endif
106 #ifndef PTRACE_GET_THREAD_AREA
107   #define PTRACE_GET_THREAD_AREA 25
108 #endif
109 #ifndef PTRACE_ARCH_PRCTL
110   #define PTRACE_ARCH_PRCTL      30
111 #endif
112 #ifndef ARCH_GET_FS
113   #define ARCH_SET_GS 0x1001
114   #define ARCH_SET_FS 0x1002
115   #define ARCH_GET_FS 0x1003
116   #define ARCH_GET_GS 0x1004
117 #endif
118 
119 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
120 
121 // Support hardware breakpoints in case it has not been defined
122 #ifndef TRAP_HWBKPT
123   #define TRAP_HWBKPT 4
124 #endif
125 
126 // Try to define a macro to encapsulate the tgkill syscall
127 // fall back on kill() if tgkill isn't available
128 #define tgkill(pid, tid, sig)  syscall(SYS_tgkill, pid, tid, sig)
129 
130 // We disable the tracing of ptrace calls for integration builds to
131 // avoid the additional indirection and checks.
132 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
133 #define PTRACE(req, pid, addr, data, data_size, error) \
134     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
135 #else
136 #define PTRACE(req, pid, addr, data, data_size, error) \
137     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
138 #endif
139 
140 // Private bits we only need internally.
141 namespace
142 {
143     using namespace lldb;
144     using namespace lldb_private;
145 
146     const UnixSignals&
147     GetUnixSignals ()
148     {
149         static process_linux::LinuxSignals signals;
150         return signals;
151     }
152 
153     ThreadStateCoordinator::LogFunction
154     GetThreadLoggerFunction ()
155     {
156         return [](const char *format, va_list args)
157         {
158             Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
159             if (log)
160                 log->VAPrintf (format, args);
161         };
162     }
163 
164     void
165     CoordinatorErrorHandler (const std::string &error_message)
166     {
167         Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
168         if (log)
169             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error_message.c_str ());
170         assert (false && "ThreadStateCoordinator error reported");
171     }
172 
173     Error
174     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
175     {
176         // Grab process info for the running process.
177         ProcessInstanceInfo process_info;
178         if (!platform.GetProcessInfo (pid, process_info))
179             return lldb_private::Error("failed to get process info");
180 
181         // Resolve the executable module.
182         ModuleSP exe_module_sp;
183         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), platform.GetSystemArchitecture ());
184         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
185         Error error = platform.ResolveExecutable(
186             exe_module_spec,
187             exe_module_sp,
188             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
189 
190         if (!error.Success ())
191             return error;
192 
193         // Check if we've got our architecture from the exe_module.
194         arch = exe_module_sp->GetArchitecture ();
195         if (arch.IsValid ())
196             return Error();
197         else
198             return Error("failed to retrieve a valid architecture from the exe module");
199     }
200 
201     void
202     DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
203     {
204         uint8_t *ptr = (uint8_t *)bytes;
205         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
206         for(uint32_t i=0; i<loop_count; i++)
207         {
208             s.Printf ("[%x]", *ptr);
209             ptr++;
210         }
211     }
212 
213     void
214     PtraceDisplayBytes(int &req, void *data, size_t data_size)
215     {
216         StreamString buf;
217         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
218                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
219 
220         if (verbose_log)
221         {
222             switch(req)
223             {
224             case PTRACE_POKETEXT:
225             {
226                 DisplayBytes(buf, &data, 8);
227                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
228                 break;
229             }
230             case PTRACE_POKEDATA:
231             {
232                 DisplayBytes(buf, &data, 8);
233                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
234                 break;
235             }
236             case PTRACE_POKEUSER:
237             {
238                 DisplayBytes(buf, &data, 8);
239                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
240                 break;
241             }
242             case PTRACE_SETREGS:
243             {
244                 DisplayBytes(buf, data, data_size);
245                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
246                 break;
247             }
248             case PTRACE_SETFPREGS:
249             {
250                 DisplayBytes(buf, data, data_size);
251                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
252                 break;
253             }
254             case PTRACE_SETSIGINFO:
255             {
256                 DisplayBytes(buf, data, sizeof(siginfo_t));
257                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
258                 break;
259             }
260             case PTRACE_SETREGSET:
261             {
262                 // Extract iov_base from data, which is a pointer to the struct IOVEC
263                 DisplayBytes(buf, *(void **)data, data_size);
264                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
265                 break;
266             }
267             default:
268             {
269             }
270             }
271         }
272     }
273 
274     // Wrapper for ptrace to catch errors and log calls.
275     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
276     long
277     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
278                   const char* reqName, const char* file, int line)
279     {
280         long int result;
281 
282         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
283 
284         PtraceDisplayBytes(req, data, data_size);
285 
286         error.Clear();
287         errno = 0;
288         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
289             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
290         else
291             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
292 
293         if (result == -1)
294             error.SetErrorToErrno();
295 
296         if (log)
297             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
298                     reqName, pid, addr, data, data_size, result, file, line);
299 
300         PtraceDisplayBytes(req, data, data_size);
301 
302         if (log && error.GetError() != 0)
303         {
304             const char* str;
305             switch (error.GetError())
306             {
307             case ESRCH:  str = "ESRCH"; break;
308             case EINVAL: str = "EINVAL"; break;
309             case EBUSY:  str = "EBUSY"; break;
310             case EPERM:  str = "EPERM"; break;
311             default:     str = error.AsCString();
312             }
313             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
314         }
315 
316         return result;
317     }
318 
319 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
320     // Wrapper for ptrace when logging is not required.
321     // Sets errno to 0 prior to calling ptrace.
322     long
323     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
324     {
325         long result = 0;
326 
327         error.Clear();
328         errno = 0;
329         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
330             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
331         else
332             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
333 
334         if (result == -1)
335             error.SetErrorToErrno();
336         return result;
337     }
338 #endif
339 
340     //------------------------------------------------------------------------------
341     // Static implementations of NativeProcessLinux::ReadMemory and
342     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
343     // functions without needed to go thru the thread funnel.
344 
345     lldb::addr_t
346     DoReadMemory (
347         lldb::pid_t pid,
348         lldb::addr_t vm_addr,
349         void *buf,
350         lldb::addr_t size,
351         Error &error)
352     {
353         // ptrace word size is determined by the host, not the child
354         static const unsigned word_size = sizeof(void*);
355         unsigned char *dst = static_cast<unsigned char*>(buf);
356         lldb::addr_t bytes_read;
357         lldb::addr_t remainder;
358         long data;
359 
360         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
361         if (log)
362             ProcessPOSIXLog::IncNestLevel();
363         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
364             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
365                     pid, word_size, (void*)vm_addr, buf, size);
366 
367         assert(sizeof(data) >= word_size);
368         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
369         {
370             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
371             if (error.Fail())
372             {
373                 if (log)
374                     ProcessPOSIXLog::DecNestLevel();
375                 return bytes_read;
376             }
377 
378             remainder = size - bytes_read;
379             remainder = remainder > word_size ? word_size : remainder;
380 
381             // Copy the data into our buffer
382             for (unsigned i = 0; i < remainder; ++i)
383                 dst[i] = ((data >> i*8) & 0xFF);
384 
385             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
386                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
387                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
388                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
389             {
390                 uintptr_t print_dst = 0;
391                 // Format bytes from data by moving into print_dst for log output
392                 for (unsigned i = 0; i < remainder; ++i)
393                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
394                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
395                         (void*)vm_addr, print_dst, (unsigned long)data);
396             }
397 
398             vm_addr += word_size;
399             dst += word_size;
400         }
401 
402         if (log)
403             ProcessPOSIXLog::DecNestLevel();
404         return bytes_read;
405     }
406 
407     lldb::addr_t
408     DoWriteMemory(
409         lldb::pid_t pid,
410         lldb::addr_t vm_addr,
411         const void *buf,
412         lldb::addr_t size,
413         Error &error)
414     {
415         // ptrace word size is determined by the host, not the child
416         static const unsigned word_size = sizeof(void*);
417         const unsigned char *src = static_cast<const unsigned char*>(buf);
418         lldb::addr_t bytes_written = 0;
419         lldb::addr_t remainder;
420 
421         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
422         if (log)
423             ProcessPOSIXLog::IncNestLevel();
424         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
425             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
426                     pid, word_size, (void*)vm_addr, buf, size);
427 
428         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
429         {
430             remainder = size - bytes_written;
431             remainder = remainder > word_size ? word_size : remainder;
432 
433             if (remainder == word_size)
434             {
435                 unsigned long data = 0;
436                 assert(sizeof(data) >= word_size);
437                 for (unsigned i = 0; i < word_size; ++i)
438                     data |= (unsigned long)src[i] << i*8;
439 
440                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
441                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
442                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
443                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
444                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
445                             (void*)vm_addr, *(unsigned long*)src, data);
446 
447                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
448                 {
449                     if (log)
450                         ProcessPOSIXLog::DecNestLevel();
451                     return bytes_written;
452                 }
453             }
454             else
455             {
456                 unsigned char buff[8];
457                 if (DoReadMemory(pid, vm_addr,
458                                 buff, word_size, error) != word_size)
459                 {
460                     if (log)
461                         ProcessPOSIXLog::DecNestLevel();
462                     return bytes_written;
463                 }
464 
465                 memcpy(buff, src, remainder);
466 
467                 if (DoWriteMemory(pid, vm_addr,
468                                 buff, word_size, error) != word_size)
469                 {
470                     if (log)
471                         ProcessPOSIXLog::DecNestLevel();
472                     return bytes_written;
473                 }
474 
475                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
476                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
477                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
478                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
479                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
480                             (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
481             }
482 
483             vm_addr += word_size;
484             src += word_size;
485         }
486         if (log)
487             ProcessPOSIXLog::DecNestLevel();
488         return bytes_written;
489     }
490 
491     //------------------------------------------------------------------------------
492     /// @class Operation
493     /// @brief Represents a NativeProcessLinux operation.
494     ///
495     /// Under Linux, it is not possible to ptrace() from any other thread but the
496     /// one that spawned or attached to the process from the start.  Therefore, when
497     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
498     /// process the operation must be "funneled" to a specific thread to perform the
499     /// task.  The Operation class provides an abstract base for all services the
500     /// NativeProcessLinux must perform via the single virtual function Execute, thus
501     /// encapsulating the code that needs to run in the privileged context.
502     class Operation
503     {
504     public:
505         Operation () : m_error() { }
506 
507         virtual
508         ~Operation() {}
509 
510         virtual void
511         Execute (NativeProcessLinux *process) = 0;
512 
513         const Error &
514         GetError () const { return m_error; }
515 
516     protected:
517         Error m_error;
518     };
519 
520     //------------------------------------------------------------------------------
521     /// @class ReadOperation
522     /// @brief Implements NativeProcessLinux::ReadMemory.
523     class ReadOperation : public Operation
524     {
525     public:
526         ReadOperation (
527             lldb::addr_t addr,
528             void *buff,
529             lldb::addr_t size,
530             lldb::addr_t &result) :
531             Operation (),
532             m_addr (addr),
533             m_buff (buff),
534             m_size (size),
535             m_result (result)
536             {
537             }
538 
539         void Execute (NativeProcessLinux *process) override;
540 
541     private:
542         lldb::addr_t m_addr;
543         void *m_buff;
544         lldb::addr_t m_size;
545         lldb::addr_t &m_result;
546     };
547 
548     void
549     ReadOperation::Execute (NativeProcessLinux *process)
550     {
551         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
552     }
553 
554     //------------------------------------------------------------------------------
555     /// @class WriteOperation
556     /// @brief Implements NativeProcessLinux::WriteMemory.
557     class WriteOperation : public Operation
558     {
559     public:
560         WriteOperation (
561             lldb::addr_t addr,
562             const void *buff,
563             lldb::addr_t size,
564             lldb::addr_t &result) :
565             Operation (),
566             m_addr (addr),
567             m_buff (buff),
568             m_size (size),
569             m_result (result)
570             {
571             }
572 
573         void Execute (NativeProcessLinux *process) override;
574 
575     private:
576         lldb::addr_t m_addr;
577         const void *m_buff;
578         lldb::addr_t m_size;
579         lldb::addr_t &m_result;
580     };
581 
582     void
583     WriteOperation::Execute(NativeProcessLinux *process)
584     {
585         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
586     }
587 
588     //------------------------------------------------------------------------------
589     /// @class ReadRegOperation
590     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
591     class ReadRegOperation : public Operation
592     {
593     public:
594         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
595                 RegisterValue &value)
596             : m_tid(tid),
597               m_offset(static_cast<uintptr_t> (offset)),
598               m_reg_name(reg_name),
599               m_value(value)
600             { }
601 
602         void Execute(NativeProcessLinux *monitor);
603 
604     private:
605         lldb::tid_t m_tid;
606         uintptr_t m_offset;
607         const char *m_reg_name;
608         RegisterValue &m_value;
609     };
610 
611     void
612     ReadRegOperation::Execute(NativeProcessLinux *monitor)
613     {
614 #if defined (__arm64__) || defined (__aarch64__)
615         if (m_offset > sizeof(struct user_pt_regs))
616         {
617             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
618             if (offset > sizeof(struct user_fpsimd_state))
619             {
620                 m_error.SetErrorString("invalid offset value");
621                 return;
622             }
623             elf_fpregset_t regs;
624             int regset = NT_FPREGSET;
625             struct iovec ioVec;
626 
627             ioVec.iov_base = &regs;
628             ioVec.iov_len = sizeof regs;
629             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
630             if (m_error.Success())
631             {
632                 lldb_private::ArchSpec arch;
633                 if (monitor->GetArchitecture(arch))
634                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
635                 else
636                     m_error.SetErrorString("failed to get architecture");
637             }
638         }
639         else
640         {
641             elf_gregset_t regs;
642             int regset = NT_PRSTATUS;
643             struct iovec ioVec;
644 
645             ioVec.iov_base = &regs;
646             ioVec.iov_len = sizeof regs;
647             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
648             if (m_error.Success())
649             {
650                 lldb_private::ArchSpec arch;
651                 if (monitor->GetArchitecture(arch))
652                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
653                 else
654                     m_error.SetErrorString("failed to get architecture");
655             }
656         }
657 #else
658         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
659 
660         lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error);
661         if (m_error.Success())
662             m_value = data;
663 
664         if (log)
665             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
666                     m_reg_name, data);
667 #endif
668     }
669 
670     //------------------------------------------------------------------------------
671     /// @class WriteRegOperation
672     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
673     class WriteRegOperation : public Operation
674     {
675     public:
676         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
677                 const RegisterValue &value)
678             : m_tid(tid),
679               m_offset(offset),
680               m_reg_name(reg_name),
681               m_value(value)
682             { }
683 
684         void Execute(NativeProcessLinux *monitor);
685 
686     private:
687         lldb::tid_t m_tid;
688         uintptr_t m_offset;
689         const char *m_reg_name;
690         const RegisterValue &m_value;
691     };
692 
693     void
694     WriteRegOperation::Execute(NativeProcessLinux *monitor)
695     {
696 #if defined (__arm64__) || defined (__aarch64__)
697         if (m_offset > sizeof(struct user_pt_regs))
698         {
699             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
700             if (offset > sizeof(struct user_fpsimd_state))
701             {
702                 m_error.SetErrorString("invalid offset value");
703                 return;
704             }
705             elf_fpregset_t regs;
706             int regset = NT_FPREGSET;
707             struct iovec ioVec;
708 
709             ioVec.iov_base = &regs;
710             ioVec.iov_len = sizeof regs;
711             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
712             if (m_error.Sucess())
713             {
714                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
715                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
716             }
717         }
718         else
719         {
720             elf_gregset_t regs;
721             int regset = NT_PRSTATUS;
722             struct iovec ioVec;
723 
724             ioVec.iov_base = &regs;
725             ioVec.iov_len = sizeof regs;
726             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
727             if (m_error.Sucess())
728             {
729                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
730                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
731             }
732         }
733 #else
734         void* buf;
735         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
736 
737         buf = (void*) m_value.GetAsUInt64();
738 
739         if (log)
740             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
741         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
742 #endif
743     }
744 
745     //------------------------------------------------------------------------------
746     /// @class ReadGPROperation
747     /// @brief Implements NativeProcessLinux::ReadGPR.
748     class ReadGPROperation : public Operation
749     {
750     public:
751         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
752             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
753             { }
754 
755         void Execute(NativeProcessLinux *monitor);
756 
757     private:
758         lldb::tid_t m_tid;
759         void *m_buf;
760         size_t m_buf_size;
761     };
762 
763     void
764     ReadGPROperation::Execute(NativeProcessLinux *monitor)
765     {
766 #if defined (__arm64__) || defined (__aarch64__)
767         int regset = NT_PRSTATUS;
768         struct iovec ioVec;
769 
770         ioVec.iov_base = m_buf;
771         ioVec.iov_len = m_buf_size;
772         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
773 #else
774         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
775 #endif
776     }
777 
778     //------------------------------------------------------------------------------
779     /// @class ReadFPROperation
780     /// @brief Implements NativeProcessLinux::ReadFPR.
781     class ReadFPROperation : public Operation
782     {
783     public:
784         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
785             : m_tid(tid),
786               m_buf(buf),
787               m_buf_size(buf_size)
788             { }
789 
790         void Execute(NativeProcessLinux *monitor);
791 
792     private:
793         lldb::tid_t m_tid;
794         void *m_buf;
795         size_t m_buf_size;
796     };
797 
798     void
799     ReadFPROperation::Execute(NativeProcessLinux *monitor)
800     {
801 #if defined (__arm64__) || defined (__aarch64__)
802         int regset = NT_FPREGSET;
803         struct iovec ioVec;
804 
805         ioVec.iov_base = m_buf;
806         ioVec.iov_len = m_buf_size;
807         if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
808             m_result = false;
809         else
810             m_result = true;
811 #else
812         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
813 #endif
814     }
815 
816     //------------------------------------------------------------------------------
817     /// @class ReadRegisterSetOperation
818     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
819     class ReadRegisterSetOperation : public Operation
820     {
821     public:
822         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
823             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
824             { }
825 
826         void Execute(NativeProcessLinux *monitor);
827 
828     private:
829         lldb::tid_t m_tid;
830         void *m_buf;
831         size_t m_buf_size;
832         const unsigned int m_regset;
833     };
834 
835     void
836     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
837     {
838         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
839     }
840 
841     //------------------------------------------------------------------------------
842     /// @class WriteGPROperation
843     /// @brief Implements NativeProcessLinux::WriteGPR.
844     class WriteGPROperation : public Operation
845     {
846     public:
847         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
848             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
849             { }
850 
851         void Execute(NativeProcessLinux *monitor);
852 
853     private:
854         lldb::tid_t m_tid;
855         void *m_buf;
856         size_t m_buf_size;
857     };
858 
859     void
860     WriteGPROperation::Execute(NativeProcessLinux *monitor)
861     {
862 #if defined (__arm64__) || defined (__aarch64__)
863         int regset = NT_PRSTATUS;
864         struct iovec ioVec;
865 
866         ioVec.iov_base = m_buf;
867         ioVec.iov_len = m_buf_size;
868         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
869 #else
870         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
871 #endif
872     }
873 
874     //------------------------------------------------------------------------------
875     /// @class WriteFPROperation
876     /// @brief Implements NativeProcessLinux::WriteFPR.
877     class WriteFPROperation : public Operation
878     {
879     public:
880         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
881             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
882             { }
883 
884         void Execute(NativeProcessLinux *monitor);
885 
886     private:
887         lldb::tid_t m_tid;
888         void *m_buf;
889         size_t m_buf_size;
890     };
891 
892     void
893     WriteFPROperation::Execute(NativeProcessLinux *monitor)
894     {
895 #if defined (__arm64__) || defined (__aarch64__)
896         int regset = NT_FPREGSET;
897         struct iovec ioVec;
898 
899         ioVec.iov_base = m_buf;
900         ioVec.iov_len = m_buf_size;
901         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
902 #else
903         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
904 #endif
905     }
906 
907     //------------------------------------------------------------------------------
908     /// @class WriteRegisterSetOperation
909     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
910     class WriteRegisterSetOperation : public Operation
911     {
912     public:
913         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
914             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
915             { }
916 
917         void Execute(NativeProcessLinux *monitor);
918 
919     private:
920         lldb::tid_t m_tid;
921         void *m_buf;
922         size_t m_buf_size;
923         const unsigned int m_regset;
924     };
925 
926     void
927     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
928     {
929         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
930     }
931 
932     //------------------------------------------------------------------------------
933     /// @class ResumeOperation
934     /// @brief Implements NativeProcessLinux::Resume.
935     class ResumeOperation : public Operation
936     {
937     public:
938         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
939             m_tid(tid), m_signo(signo) { }
940 
941         void Execute(NativeProcessLinux *monitor);
942 
943     private:
944         lldb::tid_t m_tid;
945         uint32_t m_signo;
946     };
947 
948     void
949     ResumeOperation::Execute(NativeProcessLinux *monitor)
950     {
951         intptr_t data = 0;
952 
953         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
954             data = m_signo;
955 
956         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
957         if (m_error.Fail())
958         {
959             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
960 
961             if (log)
962                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
963         }
964     }
965 
966     //------------------------------------------------------------------------------
967     /// @class SingleStepOperation
968     /// @brief Implements NativeProcessLinux::SingleStep.
969     class SingleStepOperation : public Operation
970     {
971     public:
972         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
973             : m_tid(tid), m_signo(signo) { }
974 
975         void Execute(NativeProcessLinux *monitor);
976 
977     private:
978         lldb::tid_t m_tid;
979         uint32_t m_signo;
980     };
981 
982     void
983     SingleStepOperation::Execute(NativeProcessLinux *monitor)
984     {
985         intptr_t data = 0;
986 
987         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
988             data = m_signo;
989 
990         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
991     }
992 
993     //------------------------------------------------------------------------------
994     /// @class SiginfoOperation
995     /// @brief Implements NativeProcessLinux::GetSignalInfo.
996     class SiginfoOperation : public Operation
997     {
998     public:
999         SiginfoOperation(lldb::tid_t tid, void *info)
1000             : m_tid(tid), m_info(info) { }
1001 
1002         void Execute(NativeProcessLinux *monitor);
1003 
1004     private:
1005         lldb::tid_t m_tid;
1006         void *m_info;
1007     };
1008 
1009     void
1010     SiginfoOperation::Execute(NativeProcessLinux *monitor)
1011     {
1012         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
1013     }
1014 
1015     //------------------------------------------------------------------------------
1016     /// @class EventMessageOperation
1017     /// @brief Implements NativeProcessLinux::GetEventMessage.
1018     class EventMessageOperation : public Operation
1019     {
1020     public:
1021         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
1022             : m_tid(tid), m_message(message) { }
1023 
1024         void Execute(NativeProcessLinux *monitor);
1025 
1026     private:
1027         lldb::tid_t m_tid;
1028         unsigned long *m_message;
1029     };
1030 
1031     void
1032     EventMessageOperation::Execute(NativeProcessLinux *monitor)
1033     {
1034         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
1035     }
1036 
1037     class DetachOperation : public Operation
1038     {
1039     public:
1040         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
1041 
1042         void Execute(NativeProcessLinux *monitor);
1043 
1044     private:
1045         lldb::tid_t m_tid;
1046     };
1047 
1048     void
1049     DetachOperation::Execute(NativeProcessLinux *monitor)
1050     {
1051         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1052     }
1053 
1054 }
1055 
1056 using namespace lldb_private;
1057 
1058 // Simple helper function to ensure flags are enabled on the given file
1059 // descriptor.
1060 static bool
1061 EnsureFDFlags(int fd, int flags, Error &error)
1062 {
1063     int status;
1064 
1065     if ((status = fcntl(fd, F_GETFL)) == -1)
1066     {
1067         error.SetErrorToErrno();
1068         return false;
1069     }
1070 
1071     if (fcntl(fd, F_SETFL, status | flags) == -1)
1072     {
1073         error.SetErrorToErrno();
1074         return false;
1075     }
1076 
1077     return true;
1078 }
1079 
1080 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor)
1081     : m_monitor(monitor)
1082 {
1083     sem_init(&m_semaphore, 0, 0);
1084 }
1085 
1086 NativeProcessLinux::OperationArgs::~OperationArgs()
1087 {
1088     sem_destroy(&m_semaphore);
1089 }
1090 
1091 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor,
1092                                        lldb_private::Module *module,
1093                                        char const **argv,
1094                                        char const **envp,
1095                                        const std::string &stdin_path,
1096                                        const std::string &stdout_path,
1097                                        const std::string &stderr_path,
1098                                        const char *working_dir,
1099                                        const lldb_private::ProcessLaunchInfo &launch_info)
1100     : OperationArgs(monitor),
1101       m_module(module),
1102       m_argv(argv),
1103       m_envp(envp),
1104       m_stdin_path(stdin_path),
1105       m_stdout_path(stdout_path),
1106       m_stderr_path(stderr_path),
1107       m_working_dir(working_dir),
1108       m_launch_info(launch_info)
1109 {
1110 }
1111 
1112 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1113 { }
1114 
1115 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor,
1116                                        lldb::pid_t pid)
1117     : OperationArgs(monitor), m_pid(pid) { }
1118 
1119 NativeProcessLinux::AttachArgs::~AttachArgs()
1120 { }
1121 
1122 // -----------------------------------------------------------------------------
1123 // Public Static Methods
1124 // -----------------------------------------------------------------------------
1125 
1126 lldb_private::Error
1127 NativeProcessLinux::LaunchProcess (
1128     lldb_private::Module *exe_module,
1129     lldb_private::ProcessLaunchInfo &launch_info,
1130     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1131     NativeProcessProtocolSP &native_process_sp)
1132 {
1133     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1134 
1135     Error error;
1136 
1137     // Verify the working directory is valid if one was specified.
1138     const char* working_dir = launch_info.GetWorkingDirectory ();
1139     if (working_dir)
1140     {
1141       FileSpec working_dir_fs (working_dir, true);
1142       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1143       {
1144           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1145           return error;
1146       }
1147     }
1148 
1149     const lldb_private::FileAction *file_action;
1150 
1151     // Default of NULL will mean to use existing open file descriptors.
1152     std::string stdin_path;
1153     std::string stdout_path;
1154     std::string stderr_path;
1155 
1156     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1157     if (file_action)
1158         stdin_path = file_action->GetPath ();
1159 
1160     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1161     if (file_action)
1162         stdout_path = file_action->GetPath ();
1163 
1164     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1165     if (file_action)
1166         stderr_path = file_action->GetPath ();
1167 
1168     if (log)
1169     {
1170         if (!stdin_path.empty ())
1171             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1172         else
1173             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1174 
1175         if (!stdout_path.empty ())
1176             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1177         else
1178             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1179 
1180         if (!stderr_path.empty ())
1181             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1182         else
1183             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1184     }
1185 
1186     // Create the NativeProcessLinux in launch mode.
1187     native_process_sp.reset (new NativeProcessLinux ());
1188 
1189     if (log)
1190     {
1191         int i = 0;
1192         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1193         {
1194             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1195             ++i;
1196         }
1197     }
1198 
1199     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1200     {
1201         native_process_sp.reset ();
1202         error.SetErrorStringWithFormat ("failed to register the native delegate");
1203         return error;
1204     }
1205 
1206     reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior (
1207             exe_module,
1208             launch_info.GetArguments ().GetConstArgumentVector (),
1209             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1210             stdin_path,
1211             stdout_path,
1212             stderr_path,
1213             working_dir,
1214             launch_info,
1215             error);
1216 
1217     if (error.Fail ())
1218     {
1219         native_process_sp.reset ();
1220         if (log)
1221             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1222         return error;
1223     }
1224 
1225     launch_info.SetProcessID (native_process_sp->GetID ());
1226 
1227     return error;
1228 }
1229 
1230 lldb_private::Error
1231 NativeProcessLinux::AttachToProcess (
1232     lldb::pid_t pid,
1233     lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1234     NativeProcessProtocolSP &native_process_sp)
1235 {
1236     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1237     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1238         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1239 
1240     // Grab the current platform architecture.  This should be Linux,
1241     // since this code is only intended to run on a Linux host.
1242     PlatformSP platform_sp (Platform::GetHostPlatform ());
1243     if (!platform_sp)
1244         return Error("failed to get a valid default platform");
1245 
1246     // Retrieve the architecture for the running process.
1247     ArchSpec process_arch;
1248     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1249     if (!error.Success ())
1250         return error;
1251 
1252     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1253 
1254     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1255     {
1256         error.SetErrorStringWithFormat ("failed to register the native delegate");
1257         return error;
1258     }
1259 
1260     native_process_linux_sp->AttachToInferior (pid, error);
1261     if (!error.Success ())
1262         return error;
1263 
1264     native_process_sp = native_process_linux_sp;
1265     return error;
1266 }
1267 
1268 // -----------------------------------------------------------------------------
1269 // Public Instance Methods
1270 // -----------------------------------------------------------------------------
1271 
1272 NativeProcessLinux::NativeProcessLinux () :
1273     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1274     m_arch (),
1275     m_operation_thread (),
1276     m_monitor_thread (),
1277     m_operation (nullptr),
1278     m_operation_mutex (),
1279     m_operation_pending (),
1280     m_operation_done (),
1281     m_supports_mem_region (eLazyBoolCalculate),
1282     m_mem_region_cache (),
1283     m_mem_region_cache_mutex (),
1284     m_coordinator_up (new ThreadStateCoordinator (GetThreadLoggerFunction ())),
1285     m_coordinator_thread ()
1286 {
1287 }
1288 
1289 //------------------------------------------------------------------------------
1290 /// The basic design of the NativeProcessLinux is built around two threads.
1291 ///
1292 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
1293 /// for changes in the debugee state.  When a change is detected a
1294 /// ProcessMessage is sent to the associated ProcessLinux instance.  This thread
1295 /// "drives" state changes in the debugger.
1296 ///
1297 /// The second thread (@see OperationThread) is responsible for two things 1)
1298 /// launching or attaching to the inferior process, and then 2) servicing
1299 /// operations such as register reads/writes, stepping, etc.  See the comments
1300 /// on the Operation class for more info as to why this is needed.
1301 void
1302 NativeProcessLinux::LaunchInferior (
1303     Module *module,
1304     const char *argv[],
1305     const char *envp[],
1306     const std::string &stdin_path,
1307     const std::string &stdout_path,
1308     const std::string &stderr_path,
1309     const char *working_dir,
1310     const lldb_private::ProcessLaunchInfo &launch_info,
1311     lldb_private::Error &error)
1312 {
1313     if (module)
1314         m_arch = module->GetArchitecture ();
1315 
1316     SetState (eStateLaunching);
1317 
1318     std::unique_ptr<LaunchArgs> args(
1319         new LaunchArgs(
1320             this, module, argv, envp,
1321             stdin_path, stdout_path, stderr_path,
1322             working_dir, launch_info));
1323 
1324     sem_init (&m_operation_pending, 0, 0);
1325     sem_init (&m_operation_done, 0, 0);
1326 
1327     StartLaunchOpThread (args.get(), error);
1328     if (!error.Success ())
1329         return;
1330 
1331     error = StartCoordinatorThread ();
1332     if (!error.Success ())
1333         return;
1334 
1335 WAIT_AGAIN:
1336     // Wait for the operation thread to initialize.
1337     if (sem_wait(&args->m_semaphore))
1338     {
1339         if (errno == EINTR)
1340             goto WAIT_AGAIN;
1341         else
1342         {
1343             error.SetErrorToErrno();
1344             return;
1345         }
1346     }
1347 
1348     // Check that the launch was a success.
1349     if (!args->m_error.Success())
1350     {
1351         StopOpThread();
1352         StopCoordinatorThread ();
1353         error = args->m_error;
1354         return;
1355     }
1356 
1357     // Finally, start monitoring the child process for change in state.
1358     m_monitor_thread = Host::StartMonitoringChildProcess(
1359         NativeProcessLinux::MonitorCallback, this, GetID(), true);
1360     if (!m_monitor_thread.IsJoinable())
1361     {
1362         error.SetErrorToGenericError();
1363         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1364         return;
1365     }
1366 }
1367 
1368 void
1369 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error)
1370 {
1371     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1372     if (log)
1373         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1374 
1375     // We can use the Host for everything except the ResolveExecutable portion.
1376     PlatformSP platform_sp = Platform::GetHostPlatform ();
1377     if (!platform_sp)
1378     {
1379         if (log)
1380             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1381         error.SetErrorString ("no default platform available");
1382         return;
1383     }
1384 
1385     // Gather info about the process.
1386     ProcessInstanceInfo process_info;
1387     if (!platform_sp->GetProcessInfo (pid, process_info))
1388     {
1389         if (log)
1390             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1391         error.SetErrorString ("failed to get process info");
1392         return;
1393     }
1394 
1395     // Resolve the executable module
1396     ModuleSP exe_module_sp;
1397     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1398     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), HostInfo::GetArchitecture());
1399     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1400                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1401     if (!error.Success())
1402         return;
1403 
1404     // Set the architecture to the exe architecture.
1405     m_arch = exe_module_sp->GetArchitecture();
1406     if (log)
1407         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1408 
1409     m_pid = pid;
1410     SetState(eStateAttaching);
1411 
1412     sem_init (&m_operation_pending, 0, 0);
1413     sem_init (&m_operation_done, 0, 0);
1414 
1415     std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid));
1416 
1417     StartAttachOpThread(args.get (), error);
1418     if (!error.Success ())
1419         return;
1420 
1421     error = StartCoordinatorThread ();
1422     if (!error.Success ())
1423         return;
1424 
1425 WAIT_AGAIN:
1426     // Wait for the operation thread to initialize.
1427     if (sem_wait (&args->m_semaphore))
1428     {
1429         if (errno == EINTR)
1430             goto WAIT_AGAIN;
1431         else
1432         {
1433             error.SetErrorToErrno ();
1434             return;
1435         }
1436     }
1437 
1438     // Check that the attach was a success.
1439     if (!args->m_error.Success ())
1440     {
1441         StopOpThread ();
1442         StopCoordinatorThread ();
1443         error = args->m_error;
1444         return;
1445     }
1446 
1447     // Finally, start monitoring the child process for change in state.
1448     m_monitor_thread = Host::StartMonitoringChildProcess (
1449         NativeProcessLinux::MonitorCallback, this, GetID (), true);
1450     if (!m_monitor_thread.IsJoinable())
1451     {
1452         error.SetErrorToGenericError ();
1453         error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1454         return;
1455     }
1456 }
1457 
1458 NativeProcessLinux::~NativeProcessLinux()
1459 {
1460     StopMonitor();
1461 }
1462 
1463 //------------------------------------------------------------------------------
1464 // Thread setup and tear down.
1465 
1466 void
1467 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error)
1468 {
1469     static const char *g_thread_name = "lldb.process.nativelinux.operation";
1470 
1471     if (m_operation_thread.IsJoinable())
1472         return;
1473 
1474     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error);
1475 }
1476 
1477 void *
1478 NativeProcessLinux::LaunchOpThread(void *arg)
1479 {
1480     LaunchArgs *args = static_cast<LaunchArgs*>(arg);
1481 
1482     if (!Launch(args)) {
1483         sem_post(&args->m_semaphore);
1484         return NULL;
1485     }
1486 
1487     ServeOperation(args);
1488     return NULL;
1489 }
1490 
1491 bool
1492 NativeProcessLinux::Launch(LaunchArgs *args)
1493 {
1494     assert (args && "null args");
1495     if (!args)
1496         return false;
1497 
1498     NativeProcessLinux *monitor = args->m_monitor;
1499     assert (monitor && "monitor is NULL");
1500     if (!monitor)
1501         return false;
1502 
1503     const char **argv = args->m_argv;
1504     const char **envp = args->m_envp;
1505     const char *working_dir = args->m_working_dir;
1506 
1507     lldb_utility::PseudoTerminal terminal;
1508     const size_t err_len = 1024;
1509     char err_str[err_len];
1510     lldb::pid_t pid;
1511     NativeThreadProtocolSP thread_sp;
1512 
1513     lldb::ThreadSP inferior;
1514 
1515     // Propagate the environment if one is not supplied.
1516     if (envp == NULL || envp[0] == NULL)
1517         envp = const_cast<const char **>(environ);
1518 
1519     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1520     {
1521         args->m_error.SetErrorToGenericError();
1522         args->m_error.SetErrorString("Process fork failed.");
1523         return false;
1524     }
1525 
1526     // Recognized child exit status codes.
1527     enum {
1528         ePtraceFailed = 1,
1529         eDupStdinFailed,
1530         eDupStdoutFailed,
1531         eDupStderrFailed,
1532         eChdirFailed,
1533         eExecFailed,
1534         eSetGidFailed
1535     };
1536 
1537     // Child process.
1538     if (pid == 0)
1539     {
1540         // FIXME consider opening a pipe between parent/child and have this forked child
1541         // send log info to parent re: launch status, in place of the log lines removed here.
1542 
1543         // Start tracing this child that is about to exec.
1544         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, args->m_error);
1545         if (args->m_error.Fail())
1546             exit(ePtraceFailed);
1547 
1548         // Do not inherit setgid powers.
1549         if (setgid(getgid()) != 0)
1550             exit(eSetGidFailed);
1551 
1552         // Attempt to have our own process group.
1553         if (setpgid(0, 0) != 0)
1554         {
1555             // FIXME log that this failed. This is common.
1556             // Don't allow this to prevent an inferior exec.
1557         }
1558 
1559         // Dup file descriptors if needed.
1560         if (!args->m_stdin_path.empty ())
1561             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1562                 exit(eDupStdinFailed);
1563 
1564         if (!args->m_stdout_path.empty ())
1565             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT))
1566                 exit(eDupStdoutFailed);
1567 
1568         if (!args->m_stderr_path.empty ())
1569             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT))
1570                 exit(eDupStderrFailed);
1571 
1572         // Change working directory
1573         if (working_dir != NULL && working_dir[0])
1574           if (0 != ::chdir(working_dir))
1575               exit(eChdirFailed);
1576 
1577         // Disable ASLR if requested.
1578         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1579         {
1580             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1581             if (old_personality == -1)
1582             {
1583                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1584             }
1585             else
1586             {
1587                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1588                 if (new_personality == -1)
1589                 {
1590                     // Disabling ASLR failed.
1591                 }
1592                 else
1593                 {
1594                     // Disabling ASLR succeeded.
1595                 }
1596             }
1597         }
1598 
1599         // Execute.  We should never return...
1600         execve(argv[0],
1601                const_cast<char *const *>(argv),
1602                const_cast<char *const *>(envp));
1603 
1604         // ...unless exec fails.  In which case we definitely need to end the child here.
1605         exit(eExecFailed);
1606     }
1607 
1608     //
1609     // This is the parent code here.
1610     //
1611     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1612 
1613     // Wait for the child process to trap on its call to execve.
1614     ::pid_t wpid;
1615     int status;
1616     if ((wpid = waitpid(pid, &status, 0)) < 0)
1617     {
1618         args->m_error.SetErrorToErrno();
1619 
1620         if (log)
1621             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ());
1622 
1623         // Mark the inferior as invalid.
1624         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1625         monitor->SetState (StateType::eStateInvalid);
1626 
1627         return false;
1628     }
1629     else if (WIFEXITED(status))
1630     {
1631         // open, dup or execve likely failed for some reason.
1632         args->m_error.SetErrorToGenericError();
1633         switch (WEXITSTATUS(status))
1634         {
1635             case ePtraceFailed:
1636                 args->m_error.SetErrorString("Child ptrace failed.");
1637                 break;
1638             case eDupStdinFailed:
1639                 args->m_error.SetErrorString("Child open stdin failed.");
1640                 break;
1641             case eDupStdoutFailed:
1642                 args->m_error.SetErrorString("Child open stdout failed.");
1643                 break;
1644             case eDupStderrFailed:
1645                 args->m_error.SetErrorString("Child open stderr failed.");
1646                 break;
1647             case eChdirFailed:
1648                 args->m_error.SetErrorString("Child failed to set working directory.");
1649                 break;
1650             case eExecFailed:
1651                 args->m_error.SetErrorString("Child exec failed.");
1652                 break;
1653             case eSetGidFailed:
1654                 args->m_error.SetErrorString("Child setgid failed.");
1655                 break;
1656             default:
1657                 args->m_error.SetErrorString("Child returned unknown exit status.");
1658                 break;
1659         }
1660 
1661         if (log)
1662         {
1663             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1664                     __FUNCTION__,
1665                     WEXITSTATUS(status));
1666         }
1667 
1668         // Mark the inferior as invalid.
1669         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1670         monitor->SetState (StateType::eStateInvalid);
1671 
1672         return false;
1673     }
1674     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1675            "Could not sync with inferior process.");
1676 
1677     if (log)
1678         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1679 
1680     args->m_error = SetDefaultPtraceOpts(pid);
1681     if (args->m_error.Fail())
1682     {
1683         if (log)
1684             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1685                     __FUNCTION__,
1686                     args->m_error.AsCString ());
1687 
1688         // Mark the inferior as invalid.
1689         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1690         monitor->SetState (StateType::eStateInvalid);
1691 
1692         return false;
1693     }
1694 
1695     // Release the master terminal descriptor and pass it off to the
1696     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1697     monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1698     monitor->m_pid = pid;
1699 
1700     // Set the terminal fd to be in non blocking mode (it simplifies the
1701     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1702     // descriptor to read from).
1703     if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
1704     {
1705         if (log)
1706             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1707                     __FUNCTION__,
1708                     args->m_error.AsCString ());
1709 
1710         // Mark the inferior as invalid.
1711         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1712         monitor->SetState (StateType::eStateInvalid);
1713 
1714         return false;
1715     }
1716 
1717     if (log)
1718         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1719 
1720     thread_sp = monitor->AddThread (pid);
1721     assert (thread_sp && "AddThread() returned a nullptr thread");
1722     monitor->NotifyThreadCreateStopped (pid);
1723     reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1724 
1725     // Let our process instance know the thread has stopped.
1726     monitor->SetCurrentThreadID (thread_sp->GetID ());
1727     monitor->SetState (StateType::eStateStopped);
1728 
1729     if (log)
1730     {
1731         if (args->m_error.Success ())
1732         {
1733             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1734         }
1735         else
1736         {
1737             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1738                 __FUNCTION__,
1739                 args->m_error.AsCString ());
1740         }
1741     }
1742     return args->m_error.Success();
1743 }
1744 
1745 void
1746 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
1747 {
1748     static const char *g_thread_name = "lldb.process.linux.operation";
1749 
1750     if (m_operation_thread.IsJoinable())
1751         return;
1752 
1753     m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error);
1754 }
1755 
1756 void *
1757 NativeProcessLinux::AttachOpThread(void *arg)
1758 {
1759     AttachArgs *args = static_cast<AttachArgs*>(arg);
1760 
1761     if (!Attach(args)) {
1762         sem_post(&args->m_semaphore);
1763         return nullptr;
1764     }
1765 
1766     ServeOperation(args);
1767     return nullptr;
1768 }
1769 
1770 bool
1771 NativeProcessLinux::Attach(AttachArgs *args)
1772 {
1773     lldb::pid_t pid = args->m_pid;
1774 
1775     NativeProcessLinux *monitor = args->m_monitor;
1776     lldb::ThreadSP inferior;
1777     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1778 
1779     // Use a map to keep track of the threads which we have attached/need to attach.
1780     Host::TidMap tids_to_attach;
1781     if (pid <= 1)
1782     {
1783         args->m_error.SetErrorToGenericError();
1784         args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
1785         goto FINISH;
1786     }
1787 
1788     while (Host::FindProcessThreads(pid, tids_to_attach))
1789     {
1790         for (Host::TidMap::iterator it = tids_to_attach.begin();
1791              it != tids_to_attach.end();)
1792         {
1793             if (it->second == false)
1794             {
1795                 lldb::tid_t tid = it->first;
1796 
1797                 // Attach to the requested process.
1798                 // An attach will cause the thread to stop with a SIGSTOP.
1799                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, args->m_error);
1800                 if (args->m_error.Fail())
1801                 {
1802                     // No such thread. The thread may have exited.
1803                     // More error handling may be needed.
1804                     if (args->m_error.GetError() == ESRCH)
1805                     {
1806                         it = tids_to_attach.erase(it);
1807                         continue;
1808                     }
1809                     else
1810                         goto FINISH;
1811                 }
1812 
1813                 int status;
1814                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1815                 // At this point we should have a thread stopped if waitpid succeeds.
1816                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1817                 {
1818                     // No such thread. The thread may have exited.
1819                     // More error handling may be needed.
1820                     if (errno == ESRCH)
1821                     {
1822                         it = tids_to_attach.erase(it);
1823                         continue;
1824                     }
1825                     else
1826                     {
1827                         args->m_error.SetErrorToErrno();
1828                         goto FINISH;
1829                     }
1830                 }
1831 
1832                 args->m_error = SetDefaultPtraceOpts(tid);
1833                 if (args->m_error.Fail())
1834                     goto FINISH;
1835 
1836 
1837                 if (log)
1838                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1839 
1840                 it->second = true;
1841 
1842                 // Create the thread, mark it as stopped.
1843                 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid)));
1844                 assert (thread_sp && "AddThread() returned a nullptr");
1845 
1846                 // This will notify this is a new thread and tell the system it is stopped.
1847                 monitor->NotifyThreadCreateStopped (tid);
1848                 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1849                 monitor->SetCurrentThreadID (thread_sp->GetID ());
1850             }
1851 
1852             // move the loop forward
1853             ++it;
1854         }
1855     }
1856 
1857     if (tids_to_attach.size() > 0)
1858     {
1859         monitor->m_pid = pid;
1860         // Let our process instance know the thread has stopped.
1861         monitor->SetState (StateType::eStateStopped);
1862     }
1863     else
1864     {
1865         args->m_error.SetErrorToGenericError();
1866         args->m_error.SetErrorString("No such process.");
1867     }
1868 
1869  FINISH:
1870     return args->m_error.Success();
1871 }
1872 
1873 Error
1874 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1875 {
1876     long ptrace_opts = 0;
1877 
1878     // Have the child raise an event on exit.  This is used to keep the child in
1879     // limbo until it is destroyed.
1880     ptrace_opts |= PTRACE_O_TRACEEXIT;
1881 
1882     // Have the tracer trace threads which spawn in the inferior process.
1883     // TODO: if we want to support tracing the inferiors' child, add the
1884     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1885     ptrace_opts |= PTRACE_O_TRACECLONE;
1886 
1887     // Have the tracer notify us before execve returns
1888     // (needed to disable legacy SIGTRAP generation)
1889     ptrace_opts |= PTRACE_O_TRACEEXEC;
1890 
1891     Error error;
1892     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1893     return error;
1894 }
1895 
1896 static ExitType convert_pid_status_to_exit_type (int status)
1897 {
1898     if (WIFEXITED (status))
1899         return ExitType::eExitTypeExit;
1900     else if (WIFSIGNALED (status))
1901         return ExitType::eExitTypeSignal;
1902     else if (WIFSTOPPED (status))
1903         return ExitType::eExitTypeStop;
1904     else
1905     {
1906         // We don't know what this is.
1907         return ExitType::eExitTypeInvalid;
1908     }
1909 }
1910 
1911 static int convert_pid_status_to_return_code (int status)
1912 {
1913     if (WIFEXITED (status))
1914         return WEXITSTATUS (status);
1915     else if (WIFSIGNALED (status))
1916         return WTERMSIG (status);
1917     else if (WIFSTOPPED (status))
1918         return WSTOPSIG (status);
1919     else
1920     {
1921         // We don't know what this is.
1922         return ExitType::eExitTypeInvalid;
1923     }
1924 }
1925 
1926 // Main process monitoring waitpid-loop handler.
1927 bool
1928 NativeProcessLinux::MonitorCallback(void *callback_baton,
1929                                 lldb::pid_t pid,
1930                                 bool exited,
1931                                 int signal,
1932                                 int status)
1933 {
1934     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1935 
1936     NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton);
1937     assert (process && "process is null");
1938     if (!process)
1939     {
1940         if (log)
1941             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid);
1942         return true;
1943     }
1944 
1945     // Certain activities differ based on whether the pid is the tid of the main thread.
1946     const bool is_main_thread = (pid == process->GetID ());
1947 
1948     // Assume we keep monitoring by default.
1949     bool stop_monitoring = false;
1950 
1951     // Handle when the thread exits.
1952     if (exited)
1953     {
1954         if (log)
1955             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1956 
1957         // This is a thread that exited.  Ensure we're not tracking it anymore.
1958         const bool thread_found = process->StopTrackingThread (pid);
1959 
1960         // Make sure the thread state coordinator knows about this.
1961         process->NotifyThreadDeath (pid);
1962 
1963         if (is_main_thread)
1964         {
1965             // We only set the exit status and notify the delegate if we haven't already set the process
1966             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1967             // for the main thread.
1968             const bool already_notified = (process->GetState() == StateType::eStateExited) || (process->GetState () == StateType::eStateCrashed);
1969             if (!already_notified)
1970             {
1971                 if (log)
1972                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ()));
1973                 // The main thread exited.  We're done monitoring.  Report to delegate.
1974                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1975 
1976                 // Notify delegate that our process has exited.
1977                 process->SetState (StateType::eStateExited, true);
1978             }
1979             else
1980             {
1981                 if (log)
1982                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1983             }
1984             return true;
1985         }
1986         else
1987         {
1988             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1989             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1990             // and we would have done an all-stop then.
1991             if (log)
1992                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1993 
1994             // Not the main thread, we keep going.
1995             return false;
1996         }
1997     }
1998 
1999     // Get details on the signal raised.
2000     siginfo_t info;
2001     const auto err = process->GetSignalInfo(pid, &info);
2002     if (err.Success())
2003     {
2004         // We have retrieved the signal info.  Dispatch appropriately.
2005         if (info.si_signo == SIGTRAP)
2006             process->MonitorSIGTRAP(&info, pid);
2007         else
2008             process->MonitorSignal(&info, pid, exited);
2009 
2010         stop_monitoring = false;
2011     }
2012     else
2013     {
2014         if (err.GetError() == EINVAL)
2015         {
2016             // This is a group stop reception for this tid.
2017             if (log)
2018                 log->Printf ("NativeThreadLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, process->GetID (), pid);
2019             process->NotifyThreadStop (pid);
2020         }
2021         else
2022         {
2023             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2024 
2025             // A return value of ESRCH means the thread/process is no longer on the system,
2026             // so it was killed somehow outside of our control.  Either way, we can't do anything
2027             // with it anymore.
2028 
2029             // We stop monitoring if it was the main thread.
2030             stop_monitoring = is_main_thread;
2031 
2032             // Stop tracking the metadata for the thread since it's entirely off the system now.
2033             const bool thread_found = process->StopTrackingThread (pid);
2034 
2035             // Make sure the thread state coordinator knows about this.
2036             process->NotifyThreadDeath (pid);
2037 
2038             if (log)
2039                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2040                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2041 
2042             if (is_main_thread)
2043             {
2044                 // Notify the delegate - our process is not available but appears to have been killed outside
2045                 // our control.  Is eStateExited the right exit state in this case?
2046                 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2047                 process->SetState (StateType::eStateExited, true);
2048             }
2049             else
2050             {
2051                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2052                 if (log)
2053                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid);
2054             }
2055         }
2056     }
2057 
2058     return stop_monitoring;
2059 }
2060 
2061 void
2062 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2063 {
2064     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2065     const bool is_main_thread = (pid == GetID ());
2066 
2067     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2068     if (!info)
2069         return;
2070 
2071     // See if we can find a thread for this signal.
2072     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2073     if (!thread_sp)
2074     {
2075         if (log)
2076             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2077     }
2078 
2079     switch (info->si_code)
2080     {
2081     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2082     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2083     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2084 
2085     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2086     {
2087         lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
2088 
2089         // The main thread is stopped here.
2090         if (thread_sp)
2091             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2092         NotifyThreadStop (pid);
2093 
2094         unsigned long event_message = 0;
2095         if (GetEventMessage (pid, &event_message).Success())
2096         {
2097             tid = static_cast<lldb::tid_t> (event_message);
2098             if (log)
2099                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
2100 
2101             // If we don't track the thread yet: create it, mark as stopped.
2102             // If we do track it, this is the wait we needed.  Now resume the new thread.
2103             // In all cases, resume the current (i.e. main process) thread.
2104             bool created_now = false;
2105             NativeThreadProtocolSP new_thread_sp = GetOrCreateThread (tid, created_now);
2106             assert (new_thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2107 
2108             // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation.
2109             if (!created_now)
2110             {
2111                 // We can now resume the newly created thread since it is fully created.
2112                 NotifyThreadCreateStopped (tid);
2113                 m_coordinator_up->RequestThreadResume (tid,
2114                                                        [=](lldb::tid_t tid_to_resume, bool supress_signal)
2115                                                        {
2116                                                            reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetRunning ();
2117                                                            return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2118                                                        },
2119                                                        CoordinatorErrorHandler);
2120             }
2121             else
2122             {
2123                 // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2124                 // this thread is ready to go.
2125                 reinterpret_cast<NativeThreadLinux*> (new_thread_sp.get ())->SetLaunching ();
2126             }
2127         }
2128         else
2129         {
2130             if (log)
2131                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2132         }
2133 
2134         // In all cases, we can resume the main thread here.
2135         m_coordinator_up->RequestThreadResume (pid,
2136                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2137                                                {
2138                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2139                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2140                                                },
2141                                                CoordinatorErrorHandler);
2142 
2143         break;
2144     }
2145 
2146     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2147     {
2148         NativeThreadProtocolSP main_thread_sp;
2149         if (log)
2150             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2151 
2152         // The thread state coordinator needs to reset due to the exec.
2153         m_coordinator_up->ResetForExec ();
2154 
2155         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2156         {
2157             Mutex::Locker locker (m_threads_mutex);
2158 
2159             if (log)
2160                 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2161 
2162             for (auto thread_sp : m_threads)
2163             {
2164                 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2165                 if (is_main_thread)
2166                 {
2167                     main_thread_sp = thread_sp;
2168                     if (log)
2169                         log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2170                 }
2171                 else
2172                 {
2173                     // Tell thread coordinator this thread is dead.
2174                     if (log)
2175                         log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2176                 }
2177             }
2178 
2179             m_threads.clear ();
2180 
2181             if (main_thread_sp)
2182             {
2183                 m_threads.push_back (main_thread_sp);
2184                 SetCurrentThreadID (main_thread_sp->GetID ());
2185                 reinterpret_cast<NativeThreadLinux*>(main_thread_sp.get())->SetStoppedByExec ();
2186             }
2187             else
2188             {
2189                 SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2190                 if (log)
2191                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2192             }
2193         }
2194 
2195         // Tell coordinator about about the "new" (since exec) stopped main thread.
2196         const lldb::tid_t main_thread_tid = GetID ();
2197         NotifyThreadCreateStopped (main_thread_tid);
2198 
2199         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2200         // Consider a handler that can execute when that happens.
2201         // Let our delegate know we have just exec'd.
2202         NotifyDidExec ();
2203 
2204         // If we have a main thread, indicate we are stopped.
2205         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2206 
2207         // Let the process know we're stopped.
2208         SetState (StateType::eStateStopped);
2209 
2210         break;
2211     }
2212 
2213     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2214     {
2215         // The inferior process or one of its threads is about to exit.
2216 
2217         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2218         NotifyThreadStop (pid);
2219 
2220         unsigned long data = 0;
2221         if (GetEventMessage(pid, &data).Fail())
2222             data = -1;
2223 
2224         if (log)
2225         {
2226             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2227                          __FUNCTION__,
2228                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2229                          pid,
2230                     is_main_thread ? "is main thread" : "not main thread");
2231         }
2232 
2233         if (is_main_thread)
2234         {
2235             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2236         }
2237 
2238         const int signo = static_cast<int> (data);
2239         m_coordinator_up->RequestThreadResume (pid,
2240                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2241                                                {
2242                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2243                                                    return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2244                                                },
2245                                                CoordinatorErrorHandler);
2246 
2247         break;
2248     }
2249 
2250     case 0:
2251     case TRAP_TRACE:
2252         // We receive this on single stepping.
2253         if (log)
2254             log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid);
2255 
2256         if (thread_sp)
2257         {
2258             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByTrace ();
2259         }
2260 
2261         // This thread is currently stopped.
2262         NotifyThreadStop (pid);
2263 
2264         // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2265         // This would have already happened at the time the Resume() with step operation was signaled.
2266         // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2267         // once all running threads have checked in as stopped.
2268         SetCurrentThreadID (pid);
2269         // Tell the process we have a stop (from software breakpoint).
2270         SetState (StateType::eStateStopped, true);
2271         break;
2272 
2273     case SI_KERNEL:
2274     case TRAP_BRKPT:
2275         if (log)
2276             log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2277 
2278         // This thread is currently stopped.
2279         NotifyThreadStop (pid);
2280 
2281         // Mark the thread as stopped at breakpoint.
2282         if (thread_sp)
2283         {
2284             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedByBreakpoint ();
2285             Error error = FixupBreakpointPCAsNeeded (thread_sp);
2286             if (error.Fail ())
2287             {
2288                 if (log)
2289                     log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ());
2290             }
2291         }
2292         else
2293         {
2294             if (log)
2295                 log->Printf ("NativeProcessLinux::%s()  pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid);
2296         }
2297 
2298 
2299         // We need to tell all other running threads before we notify the delegate about this stop.
2300         CallAfterRunningThreadsStop (pid,
2301                                      [=](lldb::tid_t deferred_notification_tid)
2302                                      {
2303                                          SetCurrentThreadID (deferred_notification_tid);
2304                                          // Tell the process we have a stop (from software breakpoint).
2305                                          SetState (StateType::eStateStopped, true);
2306                                      });
2307         break;
2308 
2309     case TRAP_HWBKPT:
2310         if (log)
2311             log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2312 
2313         // This thread is currently stopped.
2314         NotifyThreadStop (pid);
2315 
2316         // Mark the thread as stopped at watchpoint.
2317         // The address is at (lldb::addr_t)info->si_addr if we need it.
2318         if (thread_sp)
2319             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2320         else
2321         {
2322             if (log)
2323                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid);
2324         }
2325 
2326         // We need to tell all other running threads before we notify the delegate about this stop.
2327         CallAfterRunningThreadsStop (pid,
2328                                      [=](lldb::tid_t deferred_notification_tid)
2329                                      {
2330                                          SetCurrentThreadID (deferred_notification_tid);
2331                                          // Tell the process we have a stop (from hardware breakpoint).
2332                                          SetState (StateType::eStateStopped, true);
2333                                      });
2334         break;
2335 
2336     case SIGTRAP:
2337     case (SIGTRAP | 0x80):
2338         if (log)
2339             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2340 
2341         // This thread is currently stopped.
2342         NotifyThreadStop (pid);
2343         if (thread_sp)
2344             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2345 
2346 
2347         // Ignore these signals until we know more about them.
2348         m_coordinator_up->RequestThreadResume (pid,
2349                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2350                                                {
2351                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2352                                                    return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2353                                                },
2354                                                CoordinatorErrorHandler);
2355         break;
2356 
2357     default:
2358         assert(false && "Unexpected SIGTRAP code!");
2359         if (log)
2360             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2361         break;
2362 
2363     }
2364 }
2365 
2366 void
2367 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2368 {
2369     assert (info && "null info");
2370     if (!info)
2371         return;
2372 
2373     const int signo = info->si_signo;
2374     const bool is_from_llgs = info->si_pid == getpid ();
2375 
2376     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2377 
2378     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2379     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2380     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2381     //
2382     // IOW, user generated signals never generate what we consider to be a
2383     // "crash".
2384     //
2385     // Similarly, ACK signals generated by this monitor.
2386 
2387     // See if we can find a thread for this signal.
2388     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2389     if (!thread_sp)
2390     {
2391         if (log)
2392             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2393     }
2394 
2395     // Handle the signal.
2396     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2397     {
2398         if (log)
2399             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2400                             __FUNCTION__,
2401                             GetUnixSignals ().GetSignalAsCString (signo),
2402                             signo,
2403                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2404                             info->si_pid,
2405                             is_from_llgs ? "from llgs" : "not from llgs",
2406                             pid);
2407     }
2408 
2409     // Check for new thread notification.
2410     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2411     {
2412         // A new thread creation is being signaled.  This is one of two parts that come in
2413         // a non-deterministic order.  pid is the thread id.
2414         if (log)
2415             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2416                      __FUNCTION__, GetID (), pid);
2417 
2418         // Did we already create the thread?
2419         bool created_now = false;
2420         thread_sp = GetOrCreateThread (pid, created_now);
2421         assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2422 
2423         // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create.
2424         if (!created_now)
2425         {
2426             // We can now resume the newly created thread since it is fully created.
2427             NotifyThreadCreateStopped (pid);
2428             m_coordinator_up->RequestThreadResume (pid,
2429                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2430                                                    {
2431                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2432                                                        return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2433                                                    },
2434                                                    CoordinatorErrorHandler);
2435         }
2436         else
2437         {
2438             // Mark the thread as currently launching.  Need to wait for SIGTRAP clone on the main thread before
2439             // this thread is ready to go.
2440             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
2441         }
2442 
2443         // Done handling.
2444         return;
2445     }
2446 
2447     // Check for thread stop notification.
2448     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2449     {
2450         // This is a tgkill()-based stop.
2451         if (thread_sp)
2452         {
2453             if (log)
2454                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2455                              __FUNCTION__,
2456                              GetID (),
2457                              pid);
2458 
2459             // Check that we're not already marked with a stop reason.
2460             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2461             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2462             // and that, without an intervening resume, we received another stop.  It is more likely
2463             // that we are missing the marking of a run state somewhere if we find that the thread was
2464             // marked as stopped.
2465             NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ());
2466             assert (linux_thread_p && "linux_thread_p is null!");
2467 
2468             const StateType thread_state = linux_thread_p->GetState ();
2469             if (!StateIsStoppedState (thread_state, false))
2470             {
2471                 // An inferior thread just stopped, but was not the primary cause of the process stop.
2472                 // Instead, something else (like a breakpoint or step) caused the stop.  Mark the
2473                 // stop signal as 0 to let lldb know this isn't the important stop.
2474                 linux_thread_p->SetStoppedBySignal (0);
2475                 SetCurrentThreadID (thread_sp->GetID ());
2476                 m_coordinator_up->NotifyThreadStop (thread_sp->GetID (), true, CoordinatorErrorHandler);
2477             }
2478             else
2479             {
2480                 if (log)
2481                 {
2482                     // Retrieve the signal name if the thread was stopped by a signal.
2483                     int stop_signo = 0;
2484                     const bool stopped_by_signal = linux_thread_p->IsStopped (&stop_signo);
2485                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2486                     if (!signal_name)
2487                         signal_name = "<no-signal-name>";
2488 
2489                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2490                                  __FUNCTION__,
2491                                  GetID (),
2492                                  linux_thread_p->GetID (),
2493                                  StateAsCString (thread_state),
2494                                  stop_signo,
2495                                  signal_name);
2496                 }
2497                 // Tell the thread state coordinator about the stop.
2498                 NotifyThreadStop (thread_sp->GetID ());
2499             }
2500         }
2501 
2502         // Done handling.
2503         return;
2504     }
2505 
2506     if (log)
2507         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2508 
2509     // This thread is stopped.
2510     NotifyThreadStop (pid);
2511 
2512     switch (signo)
2513     {
2514     case SIGSTOP:
2515         {
2516             if (log)
2517             {
2518                 if (is_from_llgs)
2519                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2520                 else
2521                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2522             }
2523 
2524             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2525             // This thread will get stopped again as part of the group-stop completion.
2526             m_coordinator_up->RequestThreadResume (pid,
2527                                                    [=](lldb::tid_t tid_to_resume, bool supress_signal)
2528                                                    {
2529                                                        reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2530                                                        // Pass this signal number on to the inferior to handle.
2531                                                        return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2532                                                    },
2533                                                    CoordinatorErrorHandler);
2534         }
2535         break;
2536     case SIGSEGV:
2537     case SIGILL:
2538     case SIGFPE:
2539     case SIGBUS:
2540         if (thread_sp)
2541             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (*info);
2542         break;
2543     default:
2544         // This is just a pre-signal-delivery notification of the incoming signal.
2545         if (thread_sp)
2546             reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2547 
2548         break;
2549     }
2550 
2551     // Send a stop to the debugger after we get all other threads to stop.
2552     CallAfterRunningThreadsStop (pid,
2553                                  [=] (lldb::tid_t signaling_tid)
2554                                  {
2555                                      SetCurrentThreadID (signaling_tid);
2556                                      SetState (StateType::eStateStopped, true);
2557                                  });
2558 }
2559 
2560 Error
2561 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2562 {
2563     Error error;
2564 
2565     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2566     if (log)
2567         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2568 
2569     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
2570     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
2571     int deferred_signo = 0;
2572     NativeThreadProtocolSP deferred_signal_thread_sp;
2573     int resume_count = 0;
2574     bool stepping = false;
2575 
2576 
2577     // std::vector<NativeThreadProtocolSP> new_stop_threads;
2578 
2579     // Scope for threads mutex.
2580     {
2581         Mutex::Locker locker (m_threads_mutex);
2582         for (auto thread_sp : m_threads)
2583         {
2584             assert (thread_sp && "thread list should not contain NULL threads");
2585 
2586             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2587             assert (action && "NULL ResumeAction returned for thread during Resume ()");
2588 
2589             if (log)
2590             {
2591                 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2592                         __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2593             }
2594 
2595             switch (action->state)
2596             {
2597             case eStateRunning:
2598             {
2599                 // Run the thread, possibly feeding it the signal.
2600                 const int signo = action->signal;
2601                 m_coordinator_up->RequestThreadResumeAsNeeded (thread_sp->GetID (),
2602                                                                [=](lldb::tid_t tid_to_resume, bool supress_signal)
2603                                                                {
2604                                                                    reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2605                                                                    // Pass this signal number on to the inferior to handle.
2606                                                                    return Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2607                                                                },
2608                                                                CoordinatorErrorHandler);
2609                 ++resume_count;
2610                 break;
2611             }
2612 
2613             case eStateStepping:
2614             {
2615                 // Request the step.
2616                 const int signo = action->signal;
2617                 m_coordinator_up->RequestThreadResume (thread_sp->GetID (),
2618                                                        [=](lldb::tid_t tid_to_step, bool supress_signal)
2619                                                        {
2620                                                            reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStepping ();
2621                                                            const auto step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2622                                                            assert (step_result.Success() && "SingleStep() failed");
2623                                                            return step_result;
2624                                                        },
2625                                                        CoordinatorErrorHandler);
2626                 stepping = true;
2627                 break;
2628             }
2629 
2630             case eStateSuspended:
2631             case eStateStopped:
2632                 // if we haven't chosen a deferred signal tid yet, use this one.
2633                 if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
2634                 {
2635                     deferred_signal_tid = thread_sp->GetID ();
2636                     deferred_signal_thread_sp = thread_sp;
2637                     deferred_signo = SIGSTOP;
2638                 }
2639                 break;
2640 
2641             default:
2642                 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2643                         __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2644             }
2645         }
2646     }
2647 
2648     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
2649     // after all other running threads have stopped.
2650     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
2651     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
2652     {
2653         CallAfterRunningThreadsStopWithSkipTID (deferred_signal_tid,
2654                                                 deferred_signal_skip_tid,
2655                                      [=](lldb::tid_t deferred_notification_tid)
2656                                      {
2657                                          // Set the signal thread to the current thread.
2658                                          SetCurrentThreadID (deferred_notification_tid);
2659 
2660                                          // Set the thread state as stopped by the deferred signo.
2661                                          reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (deferred_signo);
2662 
2663                                          // Tell the process delegate that the process is in a stopped state.
2664                                          SetState (StateType::eStateStopped, true);
2665                                      });
2666     }
2667 
2668     return error;
2669 }
2670 
2671 Error
2672 NativeProcessLinux::Halt ()
2673 {
2674     Error error;
2675 
2676     if (kill (GetID (), SIGSTOP) != 0)
2677         error.SetErrorToErrno ();
2678 
2679     return error;
2680 }
2681 
2682 Error
2683 NativeProcessLinux::Detach ()
2684 {
2685     Error error;
2686 
2687     // Tell ptrace to detach from the process.
2688     if (GetID () != LLDB_INVALID_PROCESS_ID)
2689         error = Detach (GetID ());
2690 
2691     // Stop monitoring the inferior.
2692     StopMonitor ();
2693 
2694     // No error.
2695     return error;
2696 }
2697 
2698 Error
2699 NativeProcessLinux::Signal (int signo)
2700 {
2701     Error error;
2702 
2703     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2704     if (log)
2705         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2706                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2707 
2708     if (kill(GetID(), signo))
2709         error.SetErrorToErrno();
2710 
2711     return error;
2712 }
2713 
2714 Error
2715 NativeProcessLinux::Interrupt ()
2716 {
2717     // Pick a running thread (or if none, a not-dead stopped thread) as
2718     // the chosen thread that will be the stop-reason thread.
2719     Error error;
2720     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2721 
2722     NativeThreadProtocolSP running_thread_sp;
2723     NativeThreadProtocolSP stopped_thread_sp;
2724     {
2725         Mutex::Locker locker (m_threads_mutex);
2726 
2727         if (log)
2728             log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2729 
2730         for (auto thread_sp : m_threads)
2731         {
2732             // The thread shouldn't be null but lets just cover that here.
2733             if (!thread_sp)
2734                 continue;
2735 
2736             // If we have a running or stepping thread, we'll call that the
2737             // target of the interrupt.
2738             const auto thread_state = thread_sp->GetState ();
2739             if (thread_state == eStateRunning ||
2740                 thread_state == eStateStepping)
2741             {
2742                 running_thread_sp = thread_sp;
2743                 break;
2744             }
2745             else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2746             {
2747                 // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2748                 stopped_thread_sp = thread_sp;
2749             }
2750         }
2751     }
2752 
2753     if (!running_thread_sp && !stopped_thread_sp)
2754     {
2755         error.SetErrorString ("found no running/stepping or live stopped threads as target for interrupt");
2756         if (log)
2757         {
2758             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2759         }
2760         return error;
2761     }
2762 
2763     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2764 
2765     if (log)
2766         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2767                      __FUNCTION__,
2768                      GetID (),
2769                      running_thread_sp ? "running" : "stopped",
2770                      deferred_signal_thread_sp->GetID ());
2771 
2772     CallAfterRunningThreadsStop (deferred_signal_thread_sp->GetID (),
2773                                  [=](lldb::tid_t deferred_notification_tid)
2774                                  {
2775                                      // Set the signal thread to the current thread.
2776                                      SetCurrentThreadID (deferred_notification_tid);
2777 
2778                                      // Set the thread state as stopped by the deferred signo.
2779                                      reinterpret_cast<NativeThreadLinux*> (deferred_signal_thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
2780 
2781                                                 // Tell the process delegate that the process is in a stopped state.
2782                                                 SetState (StateType::eStateStopped, true);
2783                                             });
2784     return error;
2785 }
2786 
2787 Error
2788 NativeProcessLinux::Kill ()
2789 {
2790     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2791     if (log)
2792         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2793 
2794     Error error;
2795 
2796     switch (m_state)
2797     {
2798         case StateType::eStateInvalid:
2799         case StateType::eStateExited:
2800         case StateType::eStateCrashed:
2801         case StateType::eStateDetached:
2802         case StateType::eStateUnloaded:
2803             // Nothing to do - the process is already dead.
2804             if (log)
2805                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2806             return error;
2807 
2808         case StateType::eStateConnected:
2809         case StateType::eStateAttaching:
2810         case StateType::eStateLaunching:
2811         case StateType::eStateStopped:
2812         case StateType::eStateRunning:
2813         case StateType::eStateStepping:
2814         case StateType::eStateSuspended:
2815             // We can try to kill a process in these states.
2816             break;
2817     }
2818 
2819     if (kill (GetID (), SIGKILL) != 0)
2820     {
2821         error.SetErrorToErrno ();
2822         return error;
2823     }
2824 
2825     return error;
2826 }
2827 
2828 static Error
2829 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2830 {
2831     memory_region_info.Clear();
2832 
2833     StringExtractor line_extractor (maps_line.c_str ());
2834 
2835     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2836     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2837 
2838     // Parse out the starting address
2839     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2840 
2841     // Parse out hyphen separating start and end address from range.
2842     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2843         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2844 
2845     // Parse out the ending address
2846     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2847 
2848     // Parse out the space after the address.
2849     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2850         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2851 
2852     // Save the range.
2853     memory_region_info.GetRange ().SetRangeBase (start_address);
2854     memory_region_info.GetRange ().SetRangeEnd (end_address);
2855 
2856     // Parse out each permission entry.
2857     if (line_extractor.GetBytesLeft () < 4)
2858         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2859 
2860     // Handle read permission.
2861     const char read_perm_char = line_extractor.GetChar ();
2862     if (read_perm_char == 'r')
2863         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2864     else
2865     {
2866         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2867         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2868     }
2869 
2870     // Handle write permission.
2871     const char write_perm_char = line_extractor.GetChar ();
2872     if (write_perm_char == 'w')
2873         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2874     else
2875     {
2876         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2877         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2878     }
2879 
2880     // Handle execute permission.
2881     const char exec_perm_char = line_extractor.GetChar ();
2882     if (exec_perm_char == 'x')
2883         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2884     else
2885     {
2886         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2887         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2888     }
2889 
2890     return Error ();
2891 }
2892 
2893 Error
2894 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2895 {
2896     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2897     // with no perms if it is not mapped.
2898 
2899     // Use an approach that reads memory regions from /proc/{pid}/maps.
2900     // Assume proc maps entries are in ascending order.
2901     // FIXME assert if we find differently.
2902     Mutex::Locker locker (m_mem_region_cache_mutex);
2903 
2904     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2905     Error error;
2906 
2907     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2908     {
2909         // We're done.
2910         error.SetErrorString ("unsupported");
2911         return error;
2912     }
2913 
2914     // If our cache is empty, pull the latest.  There should always be at least one memory region
2915     // if memory region handling is supported.
2916     if (m_mem_region_cache.empty ())
2917     {
2918         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2919              [&] (const std::string &line) -> bool
2920              {
2921                  MemoryRegionInfo info;
2922                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2923                  if (parse_error.Success ())
2924                  {
2925                      m_mem_region_cache.push_back (info);
2926                      return true;
2927                  }
2928                  else
2929                  {
2930                      if (log)
2931                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2932                      return false;
2933                  }
2934              });
2935 
2936         // If we had an error, we'll mark unsupported.
2937         if (error.Fail ())
2938         {
2939             m_supports_mem_region = LazyBool::eLazyBoolNo;
2940             return error;
2941         }
2942         else if (m_mem_region_cache.empty ())
2943         {
2944             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2945             // is supported.  Assume we don't support map entries via procfs.
2946             if (log)
2947                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2948             m_supports_mem_region = LazyBool::eLazyBoolNo;
2949             error.SetErrorString ("not supported");
2950             return error;
2951         }
2952 
2953         if (log)
2954             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2955 
2956         // We support memory retrieval, remember that.
2957         m_supports_mem_region = LazyBool::eLazyBoolYes;
2958     }
2959     else
2960     {
2961         if (log)
2962             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2963     }
2964 
2965     lldb::addr_t prev_base_address = 0;
2966 
2967     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2968     // There can be a ton of regions on pthreads apps with lots of threads.
2969     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2970     {
2971         MemoryRegionInfo &proc_entry_info = *it;
2972 
2973         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2974         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2975         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2976 
2977         // If the target address comes before this entry, indicate distance to next region.
2978         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2979         {
2980             range_info.GetRange ().SetRangeBase (load_addr);
2981             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2982             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2983             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2984             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2985 
2986             return error;
2987         }
2988         else if (proc_entry_info.GetRange ().Contains (load_addr))
2989         {
2990             // The target address is within the memory region we're processing here.
2991             range_info = proc_entry_info;
2992             return error;
2993         }
2994 
2995         // The target memory address comes somewhere after the region we just parsed.
2996     }
2997 
2998     // If we made it here, we didn't find an entry that contained the given address.
2999     error.SetErrorString ("address comes after final region");
3000 
3001     if (log)
3002         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3003 
3004     return error;
3005 }
3006 
3007 void
3008 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3009 {
3010     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3011     if (log)
3012         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3013 
3014     {
3015         Mutex::Locker locker (m_mem_region_cache_mutex);
3016         if (log)
3017             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3018         m_mem_region_cache.clear ();
3019     }
3020 }
3021 
3022 Error
3023 NativeProcessLinux::AllocateMemory (
3024     lldb::addr_t size,
3025     uint32_t permissions,
3026     lldb::addr_t &addr)
3027 {
3028     // FIXME implementing this requires the equivalent of
3029     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3030     // functional ThreadPlans working with Native*Protocol.
3031 #if 1
3032     return Error ("not implemented yet");
3033 #else
3034     addr = LLDB_INVALID_ADDRESS;
3035 
3036     unsigned prot = 0;
3037     if (permissions & lldb::ePermissionsReadable)
3038         prot |= eMmapProtRead;
3039     if (permissions & lldb::ePermissionsWritable)
3040         prot |= eMmapProtWrite;
3041     if (permissions & lldb::ePermissionsExecutable)
3042         prot |= eMmapProtExec;
3043 
3044     // TODO implement this directly in NativeProcessLinux
3045     // (and lift to NativeProcessPOSIX if/when that class is
3046     // refactored out).
3047     if (InferiorCallMmap(this, addr, 0, size, prot,
3048                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3049         m_addr_to_mmap_size[addr] = size;
3050         return Error ();
3051     } else {
3052         addr = LLDB_INVALID_ADDRESS;
3053         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3054     }
3055 #endif
3056 }
3057 
3058 Error
3059 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3060 {
3061     // FIXME see comments in AllocateMemory - required lower-level
3062     // bits not in place yet (ThreadPlans)
3063     return Error ("not implemented");
3064 }
3065 
3066 lldb::addr_t
3067 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3068 {
3069 #if 1
3070     // punt on this for now
3071     return LLDB_INVALID_ADDRESS;
3072 #else
3073     // Return the image info address for the exe module
3074 #if 1
3075     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3076 
3077     ModuleSP module_sp;
3078     Error error = GetExeModuleSP (module_sp);
3079     if (error.Fail ())
3080     {
3081          if (log)
3082             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3083         return LLDB_INVALID_ADDRESS;
3084     }
3085 
3086     if (module_sp == nullptr)
3087     {
3088          if (log)
3089             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3090          return LLDB_INVALID_ADDRESS;
3091     }
3092 
3093     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3094     if (object_file_sp == nullptr)
3095     {
3096          if (log)
3097             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3098          return LLDB_INVALID_ADDRESS;
3099     }
3100 
3101     return obj_file_sp->GetImageInfoAddress();
3102 #else
3103     Target *target = &GetTarget();
3104     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3105     Address addr = obj_file->GetImageInfoAddress(target);
3106 
3107     if (addr.IsValid())
3108         return addr.GetLoadAddress(target);
3109     return LLDB_INVALID_ADDRESS;
3110 #endif
3111 #endif // punt on this for now
3112 }
3113 
3114 size_t
3115 NativeProcessLinux::UpdateThreads ()
3116 {
3117     // The NativeProcessLinux monitoring threads are always up to date
3118     // with respect to thread state and they keep the thread list
3119     // populated properly. All this method needs to do is return the
3120     // thread count.
3121     Mutex::Locker locker (m_threads_mutex);
3122     return m_threads.size ();
3123 }
3124 
3125 bool
3126 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3127 {
3128     arch = m_arch;
3129     return true;
3130 }
3131 
3132 Error
3133 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3134 {
3135     // FIXME put this behind a breakpoint protocol class that can be
3136     // set per architecture.  Need ARM, MIPS support here.
3137     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3138     static const uint8_t g_i386_opcode [] = { 0xCC };
3139 
3140     switch (m_arch.GetMachine ())
3141     {
3142         case llvm::Triple::aarch64:
3143             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3144             return Error ();
3145 
3146         case llvm::Triple::x86:
3147         case llvm::Triple::x86_64:
3148             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3149             return Error ();
3150 
3151         default:
3152             assert(false && "CPU type not supported!");
3153             return Error ("CPU type not supported");
3154     }
3155 }
3156 
3157 Error
3158 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3159 {
3160     if (hardware)
3161         return Error ("NativeProcessLinux does not support hardware breakpoints");
3162     else
3163         return SetSoftwareBreakpoint (addr, size);
3164 }
3165 
3166 Error
3167 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes)
3168 {
3169     // FIXME put this behind a breakpoint protocol class that can be
3170     // set per architecture.  Need ARM, MIPS support here.
3171     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3172     static const uint8_t g_i386_opcode [] = { 0xCC };
3173 
3174     switch (m_arch.GetMachine ())
3175     {
3176     case llvm::Triple::aarch64:
3177         trap_opcode_bytes = g_aarch64_opcode;
3178         actual_opcode_size = sizeof(g_aarch64_opcode);
3179         return Error ();
3180 
3181     case llvm::Triple::x86:
3182     case llvm::Triple::x86_64:
3183         trap_opcode_bytes = g_i386_opcode;
3184         actual_opcode_size = sizeof(g_i386_opcode);
3185         return Error ();
3186 
3187     default:
3188         assert(false && "CPU type not supported!");
3189         return Error ("CPU type not supported");
3190     }
3191 }
3192 
3193 #if 0
3194 ProcessMessage::CrashReason
3195 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3196 {
3197     ProcessMessage::CrashReason reason;
3198     assert(info->si_signo == SIGSEGV);
3199 
3200     reason = ProcessMessage::eInvalidCrashReason;
3201 
3202     switch (info->si_code)
3203     {
3204     default:
3205         assert(false && "unexpected si_code for SIGSEGV");
3206         break;
3207     case SI_KERNEL:
3208         // Linux will occasionally send spurious SI_KERNEL codes.
3209         // (this is poorly documented in sigaction)
3210         // One way to get this is via unaligned SIMD loads.
3211         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3212         break;
3213     case SEGV_MAPERR:
3214         reason = ProcessMessage::eInvalidAddress;
3215         break;
3216     case SEGV_ACCERR:
3217         reason = ProcessMessage::ePrivilegedAddress;
3218         break;
3219     }
3220 
3221     return reason;
3222 }
3223 #endif
3224 
3225 
3226 #if 0
3227 ProcessMessage::CrashReason
3228 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3229 {
3230     ProcessMessage::CrashReason reason;
3231     assert(info->si_signo == SIGILL);
3232 
3233     reason = ProcessMessage::eInvalidCrashReason;
3234 
3235     switch (info->si_code)
3236     {
3237     default:
3238         assert(false && "unexpected si_code for SIGILL");
3239         break;
3240     case ILL_ILLOPC:
3241         reason = ProcessMessage::eIllegalOpcode;
3242         break;
3243     case ILL_ILLOPN:
3244         reason = ProcessMessage::eIllegalOperand;
3245         break;
3246     case ILL_ILLADR:
3247         reason = ProcessMessage::eIllegalAddressingMode;
3248         break;
3249     case ILL_ILLTRP:
3250         reason = ProcessMessage::eIllegalTrap;
3251         break;
3252     case ILL_PRVOPC:
3253         reason = ProcessMessage::ePrivilegedOpcode;
3254         break;
3255     case ILL_PRVREG:
3256         reason = ProcessMessage::ePrivilegedRegister;
3257         break;
3258     case ILL_COPROC:
3259         reason = ProcessMessage::eCoprocessorError;
3260         break;
3261     case ILL_BADSTK:
3262         reason = ProcessMessage::eInternalStackError;
3263         break;
3264     }
3265 
3266     return reason;
3267 }
3268 #endif
3269 
3270 #if 0
3271 ProcessMessage::CrashReason
3272 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3273 {
3274     ProcessMessage::CrashReason reason;
3275     assert(info->si_signo == SIGFPE);
3276 
3277     reason = ProcessMessage::eInvalidCrashReason;
3278 
3279     switch (info->si_code)
3280     {
3281     default:
3282         assert(false && "unexpected si_code for SIGFPE");
3283         break;
3284     case FPE_INTDIV:
3285         reason = ProcessMessage::eIntegerDivideByZero;
3286         break;
3287     case FPE_INTOVF:
3288         reason = ProcessMessage::eIntegerOverflow;
3289         break;
3290     case FPE_FLTDIV:
3291         reason = ProcessMessage::eFloatDivideByZero;
3292         break;
3293     case FPE_FLTOVF:
3294         reason = ProcessMessage::eFloatOverflow;
3295         break;
3296     case FPE_FLTUND:
3297         reason = ProcessMessage::eFloatUnderflow;
3298         break;
3299     case FPE_FLTRES:
3300         reason = ProcessMessage::eFloatInexactResult;
3301         break;
3302     case FPE_FLTINV:
3303         reason = ProcessMessage::eFloatInvalidOperation;
3304         break;
3305     case FPE_FLTSUB:
3306         reason = ProcessMessage::eFloatSubscriptRange;
3307         break;
3308     }
3309 
3310     return reason;
3311 }
3312 #endif
3313 
3314 #if 0
3315 ProcessMessage::CrashReason
3316 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3317 {
3318     ProcessMessage::CrashReason reason;
3319     assert(info->si_signo == SIGBUS);
3320 
3321     reason = ProcessMessage::eInvalidCrashReason;
3322 
3323     switch (info->si_code)
3324     {
3325     default:
3326         assert(false && "unexpected si_code for SIGBUS");
3327         break;
3328     case BUS_ADRALN:
3329         reason = ProcessMessage::eIllegalAlignment;
3330         break;
3331     case BUS_ADRERR:
3332         reason = ProcessMessage::eIllegalAddress;
3333         break;
3334     case BUS_OBJERR:
3335         reason = ProcessMessage::eHardwareError;
3336         break;
3337     }
3338 
3339     return reason;
3340 }
3341 #endif
3342 
3343 void
3344 NativeProcessLinux::ServeOperation(OperationArgs *args)
3345 {
3346     NativeProcessLinux *monitor = args->m_monitor;
3347 
3348     // We are finised with the arguments and are ready to go.  Sync with the
3349     // parent thread and start serving operations on the inferior.
3350     sem_post(&args->m_semaphore);
3351 
3352     for(;;)
3353     {
3354         // wait for next pending operation
3355         if (sem_wait(&monitor->m_operation_pending))
3356         {
3357             if (errno == EINTR)
3358                 continue;
3359             assert(false && "Unexpected errno from sem_wait");
3360         }
3361 
3362         reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor);
3363 
3364         // notify calling thread that operation is complete
3365         sem_post(&monitor->m_operation_done);
3366     }
3367 }
3368 
3369 void
3370 NativeProcessLinux::DoOperation(void *op)
3371 {
3372     Mutex::Locker lock(m_operation_mutex);
3373 
3374     m_operation = op;
3375 
3376     // notify operation thread that an operation is ready to be processed
3377     sem_post(&m_operation_pending);
3378 
3379     // wait for operation to complete
3380     while (sem_wait(&m_operation_done))
3381     {
3382         if (errno == EINTR)
3383             continue;
3384         assert(false && "Unexpected errno from sem_wait");
3385     }
3386 }
3387 
3388 Error
3389 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3390 {
3391     ReadOperation op(addr, buf, size, bytes_read);
3392     DoOperation(&op);
3393     return op.GetError ();
3394 }
3395 
3396 Error
3397 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3398 {
3399     WriteOperation op(addr, buf, size, bytes_written);
3400     DoOperation(&op);
3401     return op.GetError ();
3402 }
3403 
3404 Error
3405 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3406                                   uint32_t size, RegisterValue &value)
3407 {
3408     ReadRegOperation op(tid, offset, reg_name, value);
3409     DoOperation(&op);
3410     return op.GetError();
3411 }
3412 
3413 Error
3414 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3415                                    const char* reg_name, const RegisterValue &value)
3416 {
3417     WriteRegOperation op(tid, offset, reg_name, value);
3418     DoOperation(&op);
3419     return op.GetError();
3420 }
3421 
3422 Error
3423 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3424 {
3425     ReadGPROperation op(tid, buf, buf_size);
3426     DoOperation(&op);
3427     return op.GetError();
3428 }
3429 
3430 Error
3431 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3432 {
3433     ReadFPROperation op(tid, buf, buf_size);
3434     DoOperation(&op);
3435     return op.GetError();
3436 }
3437 
3438 Error
3439 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3440 {
3441     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3442     DoOperation(&op);
3443     return op.GetError();
3444 }
3445 
3446 Error
3447 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3448 {
3449     WriteGPROperation op(tid, buf, buf_size);
3450     DoOperation(&op);
3451     return op.GetError();
3452 }
3453 
3454 Error
3455 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3456 {
3457     WriteFPROperation op(tid, buf, buf_size);
3458     DoOperation(&op);
3459     return op.GetError();
3460 }
3461 
3462 Error
3463 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3464 {
3465     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3466     DoOperation(&op);
3467     return op.GetError();
3468 }
3469 
3470 Error
3471 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3472 {
3473     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3474 
3475     if (log)
3476         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3477                                  GetUnixSignals().GetSignalAsCString (signo));
3478     ResumeOperation op (tid, signo);
3479     DoOperation (&op);
3480     if (log)
3481         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3482     return op.GetError();
3483 }
3484 
3485 Error
3486 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3487 {
3488     SingleStepOperation op(tid, signo);
3489     DoOperation(&op);
3490     return op.GetError();
3491 }
3492 
3493 Error
3494 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3495 {
3496     SiginfoOperation op(tid, siginfo);
3497     DoOperation(&op);
3498     return op.GetError();
3499 }
3500 
3501 Error
3502 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3503 {
3504     EventMessageOperation op(tid, message);
3505     DoOperation(&op);
3506     return op.GetError();
3507 }
3508 
3509 lldb_private::Error
3510 NativeProcessLinux::Detach(lldb::tid_t tid)
3511 {
3512     if (tid == LLDB_INVALID_THREAD_ID)
3513         return Error();
3514 
3515     DetachOperation op(tid);
3516     DoOperation(&op);
3517     return op.GetError();
3518 }
3519 
3520 bool
3521 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3522 {
3523     int target_fd = open(path, flags, 0666);
3524 
3525     if (target_fd == -1)
3526         return false;
3527 
3528     return (dup2(target_fd, fd) == -1) ? false : true;
3529 }
3530 
3531 void
3532 NativeProcessLinux::StopMonitoringChildProcess()
3533 {
3534     if (m_monitor_thread.IsJoinable())
3535     {
3536         m_monitor_thread.Cancel();
3537         m_monitor_thread.Join(nullptr);
3538     }
3539 }
3540 
3541 void
3542 NativeProcessLinux::StopMonitor()
3543 {
3544     StopMonitoringChildProcess();
3545     StopOpThread();
3546     StopCoordinatorThread ();
3547     sem_destroy(&m_operation_pending);
3548     sem_destroy(&m_operation_done);
3549 
3550     // TODO: validate whether this still holds, fix up comment.
3551     // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
3552     // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
3553     // the descriptor to a ConnectionFileDescriptor object.  Consequently
3554     // even though still has the file descriptor, we shouldn't close it here.
3555 }
3556 
3557 void
3558 NativeProcessLinux::StopOpThread()
3559 {
3560     if (!m_operation_thread.IsJoinable())
3561         return;
3562 
3563     m_operation_thread.Cancel();
3564     m_operation_thread.Join(nullptr);
3565 }
3566 
3567 Error
3568 NativeProcessLinux::StartCoordinatorThread ()
3569 {
3570     Error error;
3571     static const char *g_thread_name = "lldb.process.linux.ts_coordinator";
3572     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3573 
3574     // Skip if thread is already running
3575     if (m_coordinator_thread.IsJoinable())
3576     {
3577         error.SetErrorString ("ThreadStateCoordinator's run loop is already running");
3578         if (log)
3579             log->Printf ("NativeProcessLinux::%s %s", __FUNCTION__, error.AsCString ());
3580         return error;
3581     }
3582 
3583     // Enable verbose logging if lldb thread logging is enabled.
3584     m_coordinator_up->LogEnableEventProcessing (log != nullptr);
3585 
3586     if (log)
3587         log->Printf ("NativeProcessLinux::%s launching ThreadStateCoordinator thread for pid %" PRIu64, __FUNCTION__, GetID ());
3588     m_coordinator_thread = ThreadLauncher::LaunchThread(g_thread_name, CoordinatorThread, this, &error);
3589     return error;
3590 }
3591 
3592 void *
3593 NativeProcessLinux::CoordinatorThread (void *arg)
3594 {
3595     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3596 
3597     NativeProcessLinux *const process = static_cast<NativeProcessLinux*> (arg);
3598     assert (process && "null process passed to CoordinatorThread");
3599     if (!process)
3600     {
3601         if (log)
3602             log->Printf ("NativeProcessLinux::%s null process, exiting ThreadStateCoordinator processing loop", __FUNCTION__);
3603         return nullptr;
3604     }
3605 
3606     // Run the thread state coordinator loop until it is done.  This call uses
3607     // efficient waiting for an event to be ready.
3608     while (process->m_coordinator_up->ProcessNextEvent () == ThreadStateCoordinator::eventLoopResultContinue)
3609     {
3610     }
3611 
3612     if (log)
3613         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " exiting ThreadStateCoordinator processing loop due to coordinator indicating completion", __FUNCTION__, process->GetID ());
3614 
3615     return nullptr;
3616 }
3617 
3618 void
3619 NativeProcessLinux::StopCoordinatorThread()
3620 {
3621     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3622     if (log)
3623         log->Printf ("NativeProcessLinux::%s requesting ThreadStateCoordinator stop for pid %" PRIu64, __FUNCTION__, GetID ());
3624 
3625     // Tell the coordinator we're done.  This will cause the coordinator
3626     // run loop thread to exit when the processing queue hits this message.
3627     m_coordinator_up->StopCoordinator ();
3628 }
3629 
3630 bool
3631 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3632 {
3633     for (auto thread_sp : m_threads)
3634     {
3635         assert (thread_sp && "thread list should not contain NULL threads");
3636         if (thread_sp->GetID () == thread_id)
3637         {
3638             // We have this thread.
3639             return true;
3640         }
3641     }
3642 
3643     // We don't have this thread.
3644     return false;
3645 }
3646 
3647 NativeThreadProtocolSP
3648 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3649 {
3650     // CONSIDER organize threads by map - we can do better than linear.
3651     for (auto thread_sp : m_threads)
3652     {
3653         if (thread_sp->GetID () == thread_id)
3654             return thread_sp;
3655     }
3656 
3657     // We don't have this thread.
3658     return NativeThreadProtocolSP ();
3659 }
3660 
3661 bool
3662 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3663 {
3664     Mutex::Locker locker (m_threads_mutex);
3665     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3666     {
3667         if (*it && ((*it)->GetID () == thread_id))
3668         {
3669             m_threads.erase (it);
3670             return true;
3671         }
3672     }
3673 
3674     // Didn't find it.
3675     return false;
3676 }
3677 
3678 NativeThreadProtocolSP
3679 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3680 {
3681     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3682 
3683     Mutex::Locker locker (m_threads_mutex);
3684 
3685     if (log)
3686     {
3687         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3688                 __FUNCTION__,
3689                 GetID (),
3690                 thread_id);
3691     }
3692 
3693     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3694 
3695     // If this is the first thread, save it as the current thread
3696     if (m_threads.empty ())
3697         SetCurrentThreadID (thread_id);
3698 
3699     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3700     m_threads.push_back (thread_sp);
3701 
3702     return thread_sp;
3703 }
3704 
3705 NativeThreadProtocolSP
3706 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created)
3707 {
3708     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3709 
3710     Mutex::Locker locker (m_threads_mutex);
3711     if (log)
3712     {
3713         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64,
3714                      __FUNCTION__,
3715                      GetID (),
3716                      thread_id);
3717     }
3718 
3719     // Retrieve the thread if it is already getting tracked.
3720     NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id);
3721     if (thread_sp)
3722     {
3723         if (log)
3724             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning",
3725                          __FUNCTION__,
3726                          GetID (),
3727                          thread_id);
3728         created = false;
3729         return thread_sp;
3730 
3731     }
3732 
3733     // Create the thread metadata since it isn't being tracked.
3734     if (log)
3735         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now",
3736                      __FUNCTION__,
3737                      GetID (),
3738                      thread_id);
3739 
3740     thread_sp.reset (new NativeThreadLinux (this, thread_id));
3741     m_threads.push_back (thread_sp);
3742     created = true;
3743 
3744     return thread_sp;
3745 }
3746 
3747 Error
3748 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3749 {
3750     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3751 
3752     Error error;
3753 
3754     // Get a linux thread pointer.
3755     if (!thread_sp)
3756     {
3757         error.SetErrorString ("null thread_sp");
3758         if (log)
3759             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3760         return error;
3761     }
3762     NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get());
3763 
3764     // Find out the size of a breakpoint (might depend on where we are in the code).
3765     NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext ();
3766     if (!context_sp)
3767     {
3768         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3769         if (log)
3770             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3771         return error;
3772     }
3773 
3774     uint32_t breakpoint_size = 0;
3775     error = GetSoftwareBreakpointSize (context_sp, breakpoint_size);
3776     if (error.Fail ())
3777     {
3778         if (log)
3779             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3780         return error;
3781     }
3782     else
3783     {
3784         if (log)
3785             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3786     }
3787 
3788     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3789     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3790     lldb::addr_t breakpoint_addr = initial_pc_addr;
3791     if (breakpoint_size > static_cast<lldb::addr_t> (0))
3792     {
3793         // Do not allow breakpoint probe to wrap around.
3794         if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
3795             breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
3796     }
3797 
3798     // Check if we stopped because of a breakpoint.
3799     NativeBreakpointSP breakpoint_sp;
3800     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3801     if (!error.Success () || !breakpoint_sp)
3802     {
3803         // We didn't find one at a software probe location.  Nothing to do.
3804         if (log)
3805             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3806         return Error ();
3807     }
3808 
3809     // If the breakpoint is not a software breakpoint, nothing to do.
3810     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3811     {
3812         if (log)
3813             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3814         return Error ();
3815     }
3816 
3817     //
3818     // We have a software breakpoint and need to adjust the PC.
3819     //
3820 
3821     // Sanity check.
3822     if (breakpoint_size == 0)
3823     {
3824         // Nothing to do!  How did we get here?
3825         if (log)
3826             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3827         return Error ();
3828     }
3829 
3830     // Change the program counter.
3831     if (log)
3832         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr);
3833 
3834     error = context_sp->SetPC (breakpoint_addr);
3835     if (error.Fail ())
3836     {
3837         if (log)
3838             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ());
3839         return error;
3840     }
3841 
3842     return error;
3843 }
3844 
3845 void
3846 NativeProcessLinux::NotifyThreadCreateStopped (lldb::tid_t tid)
3847 {
3848     const bool is_stopped = true;
3849     m_coordinator_up->NotifyThreadCreate (tid, is_stopped, CoordinatorErrorHandler);
3850 }
3851 
3852 void
3853 NativeProcessLinux::NotifyThreadDeath (lldb::tid_t tid)
3854 {
3855     m_coordinator_up->NotifyThreadDeath (tid, CoordinatorErrorHandler);
3856 }
3857 
3858 void
3859 NativeProcessLinux::NotifyThreadStop (lldb::tid_t tid)
3860 {
3861     m_coordinator_up->NotifyThreadStop (tid, false, CoordinatorErrorHandler);
3862 }
3863 
3864 void
3865 NativeProcessLinux::CallAfterRunningThreadsStop (lldb::tid_t tid,
3866                                                  const std::function<void (lldb::tid_t tid)> &call_after_function)
3867 {
3868     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3869     if (log)
3870         log->Printf("NativeProcessLinux::%s tid %" PRIu64, __FUNCTION__, tid);
3871 
3872     const lldb::pid_t pid = GetID ();
3873     m_coordinator_up->CallAfterRunningThreadsStop (tid,
3874                                                    [=](lldb::tid_t request_stop_tid)
3875                                                    {
3876                                                        return RequestThreadStop(pid, request_stop_tid);
3877                                                    },
3878                                                    call_after_function,
3879                                                    CoordinatorErrorHandler);
3880 }
3881 
3882 void
3883 NativeProcessLinux::CallAfterRunningThreadsStopWithSkipTID (lldb::tid_t deferred_signal_tid,
3884                                                             lldb::tid_t skip_stop_request_tid,
3885                                                             const std::function<void (lldb::tid_t tid)> &call_after_function)
3886 {
3887     Log *const log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3888     if (log)
3889         log->Printf("NativeProcessLinux::%s deferred_signal_tid %" PRIu64 ", skip_stop_request_tid %" PRIu64, __FUNCTION__, deferred_signal_tid, skip_stop_request_tid);
3890 
3891     const lldb::pid_t pid = GetID ();
3892     m_coordinator_up->CallAfterRunningThreadsStopWithSkipTIDs (deferred_signal_tid,
3893                                                                skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? ThreadStateCoordinator::ThreadIDSet {skip_stop_request_tid} : ThreadStateCoordinator::ThreadIDSet (),
3894                                                                [=](lldb::tid_t request_stop_tid)
3895                                                                {
3896                                                                    return RequestThreadStop(pid, request_stop_tid);
3897                                                                },
3898                                                                call_after_function,
3899                                                                CoordinatorErrorHandler);
3900 }
3901 
3902 lldb_private::Error
3903 NativeProcessLinux::RequestThreadStop (const lldb::pid_t pid, const lldb::tid_t tid)
3904 {
3905     Log* log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3906     if (log)
3907         log->Printf ("NativeProcessLinux::%s requesting thread stop(pid: %" PRIu64 ", tid: %" PRIu64 ")", __FUNCTION__, pid, tid);
3908 
3909     Error err;
3910     errno = 0;
3911     if (::tgkill (pid, tid, SIGSTOP) != 0)
3912     {
3913         err.SetErrorToErrno ();
3914         if (log)
3915             log->Printf ("NativeProcessLinux::%s tgkill(%" PRIu64 ", %" PRIu64 ", SIGSTOP) failed: %s", __FUNCTION__, pid, tid, err.AsCString ());
3916     }
3917 
3918     return err;
3919 }
3920