1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 llvm::Expected<NativeProcessProtocolSP> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ArchSpec arch; 249 if ((status = ResolveProcessArchitecture(pid, arch)).Fail()) 250 return status.ToError(); 251 252 // Set the architecture to the exe architecture. 253 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 254 arch.GetArchitectureName()); 255 256 status = SetDefaultPtraceOpts(pid); 257 if (status.Fail()) { 258 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 259 return status.ToError(); 260 } 261 262 std::shared_ptr<NativeProcessLinux> process_sp(new NativeProcessLinux( 263 pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate, 264 arch, mainloop)); 265 process_sp->InitializeThreads({pid}); 266 return process_sp; 267 } 268 269 llvm::Expected<NativeProcessProtocolSP> NativeProcessLinux::Factory::Attach( 270 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 271 MainLoop &mainloop) const { 272 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 273 LLDB_LOG(log, "pid = {0:x}", pid); 274 275 // Retrieve the architecture for the running process. 276 ArchSpec arch; 277 Status status = ResolveProcessArchitecture(pid, arch); 278 if (!status.Success()) 279 return status.ToError(); 280 281 auto tids_or = NativeProcessLinux::Attach(pid); 282 if (!tids_or) 283 return tids_or.takeError(); 284 285 std::shared_ptr<NativeProcessLinux> process_sp( 286 new NativeProcessLinux(pid, -1, native_delegate, arch, mainloop)); 287 process_sp->InitializeThreads(*tids_or); 288 return process_sp; 289 } 290 291 // ----------------------------------------------------------------------------- 292 // Public Instance Methods 293 // ----------------------------------------------------------------------------- 294 295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 296 NativeDelegate &delegate, 297 const ArchSpec &arch, MainLoop &mainloop) 298 : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) { 299 if (m_terminal_fd != -1) { 300 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 301 assert(status.Success()); 302 } 303 304 Status status; 305 m_sigchld_handle = mainloop.RegisterSignal( 306 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 307 assert(m_sigchld_handle && status.Success()); 308 } 309 310 void NativeProcessLinux::InitializeThreads(llvm::ArrayRef<::pid_t> tids) { 311 for (const auto &tid : tids) { 312 NativeThreadLinuxSP thread_sp = AddThread(tid); 313 assert(thread_sp && "AddThread() returned a nullptr thread"); 314 thread_sp->SetStoppedBySignal(SIGSTOP); 315 ThreadWasCreated(*thread_sp); 316 } 317 318 // Let our process instance know the thread has stopped. 319 SetCurrentThreadID(tids[0]); 320 SetState(StateType::eStateStopped, false); 321 322 // Proccess any signals we received before installing our handler 323 SigchldHandler(); 324 } 325 326 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 327 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 328 329 Status status; 330 // Use a map to keep track of the threads which we have attached/need to 331 // attach. 332 Host::TidMap tids_to_attach; 333 while (Host::FindProcessThreads(pid, tids_to_attach)) { 334 for (Host::TidMap::iterator it = tids_to_attach.begin(); 335 it != tids_to_attach.end();) { 336 if (it->second == false) { 337 lldb::tid_t tid = it->first; 338 339 // Attach to the requested process. 340 // An attach will cause the thread to stop with a SIGSTOP. 341 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 342 // No such thread. The thread may have exited. 343 // More error handling may be needed. 344 if (status.GetError() == ESRCH) { 345 it = tids_to_attach.erase(it); 346 continue; 347 } 348 return status.ToError(); 349 } 350 351 int wpid = 352 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 353 // Need to use __WALL otherwise we receive an error with errno=ECHLD 354 // At this point we should have a thread stopped if waitpid succeeds. 355 if (wpid < 0) { 356 // No such thread. The thread may have exited. 357 // More error handling may be needed. 358 if (errno == ESRCH) { 359 it = tids_to_attach.erase(it); 360 continue; 361 } 362 return llvm::errorCodeToError( 363 std::error_code(errno, std::generic_category())); 364 } 365 366 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 367 return status.ToError(); 368 369 LLDB_LOG(log, "adding tid = {0}", tid); 370 it->second = true; 371 } 372 373 // move the loop forward 374 ++it; 375 } 376 } 377 378 size_t tid_count = tids_to_attach.size(); 379 if (tid_count == 0) 380 return llvm::make_error<StringError>("No such process", 381 llvm::inconvertibleErrorCode()); 382 383 std::vector<::pid_t> tids; 384 tids.reserve(tid_count); 385 for (const auto &p : tids_to_attach) 386 tids.push_back(p.first); 387 return std::move(tids); 388 } 389 390 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 391 long ptrace_opts = 0; 392 393 // Have the child raise an event on exit. This is used to keep the child in 394 // limbo until it is destroyed. 395 ptrace_opts |= PTRACE_O_TRACEEXIT; 396 397 // Have the tracer trace threads which spawn in the inferior process. 398 // TODO: if we want to support tracing the inferiors' child, add the 399 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 400 ptrace_opts |= PTRACE_O_TRACECLONE; 401 402 // Have the tracer notify us before execve returns 403 // (needed to disable legacy SIGTRAP generation) 404 ptrace_opts |= PTRACE_O_TRACEEXEC; 405 406 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 407 } 408 409 // Handles all waitpid events from the inferior process. 410 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 411 WaitStatus status) { 412 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 413 414 // Certain activities differ based on whether the pid is the tid of the main 415 // thread. 416 const bool is_main_thread = (pid == GetID()); 417 418 // Handle when the thread exits. 419 if (exited) { 420 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 421 pid, is_main_thread ? "is" : "is not"); 422 423 // This is a thread that exited. Ensure we're not tracking it anymore. 424 const bool thread_found = StopTrackingThread(pid); 425 426 if (is_main_thread) { 427 // We only set the exit status and notify the delegate if we haven't 428 // already set the process 429 // state to an exited state. We normally should have received a SIGTRAP | 430 // (PTRACE_EVENT_EXIT << 8) 431 // for the main thread. 432 const bool already_notified = (GetState() == StateType::eStateExited) || 433 (GetState() == StateType::eStateCrashed); 434 if (!already_notified) { 435 LLDB_LOG( 436 log, 437 "tid = {0} handling main thread exit ({1}), expected exit state " 438 "already set but state was {2} instead, setting exit state now", 439 pid, 440 thread_found ? "stopped tracking thread metadata" 441 : "thread metadata not found", 442 GetState()); 443 // The main thread exited. We're done monitoring. Report to delegate. 444 SetExitStatus(status, true); 445 446 // Notify delegate that our process has exited. 447 SetState(StateType::eStateExited, true); 448 } else 449 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 450 thread_found ? "stopped tracking thread metadata" 451 : "thread metadata not found"); 452 } else { 453 // Do we want to report to the delegate in this case? I think not. If 454 // this was an orderly thread exit, we would already have received the 455 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 456 // all-stop then. 457 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 458 thread_found ? "stopped tracking thread metadata" 459 : "thread metadata not found"); 460 } 461 return; 462 } 463 464 siginfo_t info; 465 const auto info_err = GetSignalInfo(pid, &info); 466 auto thread_sp = GetThreadByID(pid); 467 468 if (!thread_sp) { 469 // Normally, the only situation when we cannot find the thread is if we have 470 // just received a new thread notification. This is indicated by 471 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 472 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 473 474 if (info_err.Fail()) { 475 LLDB_LOG(log, 476 "(tid {0}) GetSignalInfo failed ({1}). " 477 "Ingoring this notification.", 478 pid, info_err); 479 return; 480 } 481 482 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 483 info.si_pid); 484 485 auto thread_sp = AddThread(pid); 486 487 // Resume the newly created thread. 488 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 489 ThreadWasCreated(*thread_sp); 490 return; 491 } 492 493 // Get details on the signal raised. 494 if (info_err.Success()) { 495 // We have retrieved the signal info. Dispatch appropriately. 496 if (info.si_signo == SIGTRAP) 497 MonitorSIGTRAP(info, *thread_sp); 498 else 499 MonitorSignal(info, *thread_sp, exited); 500 } else { 501 if (info_err.GetError() == EINVAL) { 502 // This is a group stop reception for this tid. 503 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 504 // into the tracee, triggering the group-stop mechanism. Normally 505 // receiving these would stop the process, pending a SIGCONT. Simulating 506 // this state in a debugger is hard and is generally not needed (one use 507 // case is debugging background task being managed by a shell). For 508 // general use, it is sufficient to stop the process in a signal-delivery 509 // stop which happens before the group stop. This done by MonitorSignal 510 // and works correctly for all signals. 511 LLDB_LOG(log, 512 "received a group stop for pid {0} tid {1}. Transparent " 513 "handling of group stops not supported, resuming the " 514 "thread.", 515 GetID(), pid); 516 ResumeThread(*thread_sp, thread_sp->GetState(), 517 LLDB_INVALID_SIGNAL_NUMBER); 518 } else { 519 // ptrace(GETSIGINFO) failed (but not due to group-stop). 520 521 // A return value of ESRCH means the thread/process is no longer on the 522 // system, so it was killed somehow outside of our control. Either way, 523 // we can't do anything with it anymore. 524 525 // Stop tracking the metadata for the thread since it's entirely off the 526 // system now. 527 const bool thread_found = StopTrackingThread(pid); 528 529 LLDB_LOG(log, 530 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 531 "status = {3}, main_thread = {4}, thread_found: {5}", 532 info_err, pid, signal, status, is_main_thread, thread_found); 533 534 if (is_main_thread) { 535 // Notify the delegate - our process is not available but appears to 536 // have been killed outside 537 // our control. Is eStateExited the right exit state in this case? 538 SetExitStatus(status, true); 539 SetState(StateType::eStateExited, true); 540 } else { 541 // This thread was pulled out from underneath us. Anything to do here? 542 // Do we want to do an all stop? 543 LLDB_LOG(log, 544 "pid {0} tid {1} non-main thread exit occurred, didn't " 545 "tell delegate anything since thread disappeared out " 546 "from underneath us", 547 GetID(), pid); 548 } 549 } 550 } 551 } 552 553 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 554 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 555 556 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 557 558 if (new_thread_sp) { 559 // We are already tracking the thread - we got the event on the new thread 560 // (see 561 // MonitorSignal) before this one. We are done. 562 return; 563 } 564 565 // The thread is not tracked yet, let's wait for it to appear. 566 int status = -1; 567 LLDB_LOG(log, 568 "received thread creation event for tid {0}. tid not tracked " 569 "yet, waiting for thread to appear...", 570 tid); 571 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL); 572 // Since we are waiting on a specific tid, this must be the creation event. 573 // But let's do some checks just in case. 574 if (wait_pid != tid) { 575 LLDB_LOG(log, 576 "waiting for tid {0} failed. Assuming the thread has " 577 "disappeared in the meantime", 578 tid); 579 // The only way I know of this could happen is if the whole process was 580 // SIGKILLed in the mean time. In any case, we can't do anything about that 581 // now. 582 return; 583 } 584 if (WIFEXITED(status)) { 585 LLDB_LOG(log, 586 "waiting for tid {0} returned an 'exited' event. Not " 587 "tracking the thread.", 588 tid); 589 // Also a very improbable event. 590 return; 591 } 592 593 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 594 new_thread_sp = AddThread(tid); 595 596 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 597 ThreadWasCreated(*new_thread_sp); 598 } 599 600 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 601 NativeThreadLinux &thread) { 602 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 603 const bool is_main_thread = (thread.GetID() == GetID()); 604 605 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 606 607 switch (info.si_code) { 608 // TODO: these two cases are required if we want to support tracing of the 609 // inferiors' children. We'd need this to debug a monitor. 610 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 611 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 612 613 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 614 // This is the notification on the parent thread which informs us of new 615 // thread 616 // creation. 617 // We don't want to do anything with the parent thread so we just resume it. 618 // In case we 619 // want to implement "break on thread creation" functionality, we would need 620 // to stop 621 // here. 622 623 unsigned long event_message = 0; 624 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 625 LLDB_LOG(log, 626 "pid {0} received thread creation event but " 627 "GetEventMessage failed so we don't know the new tid", 628 thread.GetID()); 629 } else 630 WaitForNewThread(event_message); 631 632 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 633 break; 634 } 635 636 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 637 NativeThreadLinuxSP main_thread_sp; 638 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 639 640 // Exec clears any pending notifications. 641 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 642 643 // Remove all but the main thread here. Linux fork creates a new process 644 // which only copies the main thread. 645 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 646 647 for (auto thread_sp : m_threads) { 648 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 649 if (is_main_thread) { 650 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 651 LLDB_LOG(log, "found main thread with tid {0}, keeping", 652 main_thread_sp->GetID()); 653 } else { 654 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 655 thread_sp->GetID()); 656 } 657 } 658 659 m_threads.clear(); 660 661 if (main_thread_sp) { 662 m_threads.push_back(main_thread_sp); 663 SetCurrentThreadID(main_thread_sp->GetID()); 664 main_thread_sp->SetStoppedByExec(); 665 } else { 666 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 667 LLDB_LOG(log, 668 "pid {0} no main thread found, discarded all threads, " 669 "we're in a no-thread state!", 670 GetID()); 671 } 672 673 // Tell coordinator about about the "new" (since exec) stopped main thread. 674 ThreadWasCreated(*main_thread_sp); 675 676 // Let our delegate know we have just exec'd. 677 NotifyDidExec(); 678 679 // If we have a main thread, indicate we are stopped. 680 assert(main_thread_sp && "exec called during ptraced process but no main " 681 "thread metadata tracked"); 682 683 // Let the process know we're stopped. 684 StopRunningThreads(main_thread_sp->GetID()); 685 686 break; 687 } 688 689 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 690 // The inferior process or one of its threads is about to exit. 691 // We don't want to do anything with the thread so we just resume it. In 692 // case we 693 // want to implement "break on thread exit" functionality, we would need to 694 // stop 695 // here. 696 697 unsigned long data = 0; 698 if (GetEventMessage(thread.GetID(), &data).Fail()) 699 data = -1; 700 701 LLDB_LOG(log, 702 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 703 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 704 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 705 is_main_thread); 706 707 if (is_main_thread) 708 SetExitStatus(WaitStatus::Decode(data), true); 709 710 StateType state = thread.GetState(); 711 if (!StateIsRunningState(state)) { 712 // Due to a kernel bug, we may sometimes get this stop after the inferior 713 // gets a 714 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 715 // since normally, 716 // we should not be receiving any ptrace events while the inferior is 717 // stopped. This 718 // makes sure that the inferior is resumed and exits normally. 719 state = eStateRunning; 720 } 721 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 722 723 break; 724 } 725 726 case 0: 727 case TRAP_TRACE: // We receive this on single stepping. 728 case TRAP_HWBKPT: // We receive this on watchpoint hit 729 { 730 // If a watchpoint was hit, report it 731 uint32_t wp_index; 732 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 733 wp_index, (uintptr_t)info.si_addr); 734 if (error.Fail()) 735 LLDB_LOG(log, 736 "received error while checking for watchpoint hits, pid = " 737 "{0}, error = {1}", 738 thread.GetID(), error); 739 if (wp_index != LLDB_INVALID_INDEX32) { 740 MonitorWatchpoint(thread, wp_index); 741 break; 742 } 743 744 // If a breakpoint was hit, report it 745 uint32_t bp_index; 746 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 747 bp_index, (uintptr_t)info.si_addr); 748 if (error.Fail()) 749 LLDB_LOG(log, "received error while checking for hardware " 750 "breakpoint hits, pid = {0}, error = {1}", 751 thread.GetID(), error); 752 if (bp_index != LLDB_INVALID_INDEX32) { 753 MonitorBreakpoint(thread); 754 break; 755 } 756 757 // Otherwise, report step over 758 MonitorTrace(thread); 759 break; 760 } 761 762 case SI_KERNEL: 763 #if defined __mips__ 764 // For mips there is no special signal for watchpoint 765 // So we check for watchpoint in kernel trap 766 { 767 // If a watchpoint was hit, report it 768 uint32_t wp_index; 769 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 770 wp_index, LLDB_INVALID_ADDRESS); 771 if (error.Fail()) 772 LLDB_LOG(log, 773 "received error while checking for watchpoint hits, pid = " 774 "{0}, error = {1}", 775 thread.GetID(), error); 776 if (wp_index != LLDB_INVALID_INDEX32) { 777 MonitorWatchpoint(thread, wp_index); 778 break; 779 } 780 } 781 // NO BREAK 782 #endif 783 case TRAP_BRKPT: 784 MonitorBreakpoint(thread); 785 break; 786 787 case SIGTRAP: 788 case (SIGTRAP | 0x80): 789 LLDB_LOG( 790 log, 791 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 792 info.si_code, GetID(), thread.GetID()); 793 794 // Ignore these signals until we know more about them. 795 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 796 break; 797 798 default: 799 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 800 info.si_code, GetID(), thread.GetID()); 801 MonitorSignal(info, thread, false); 802 break; 803 } 804 } 805 806 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 807 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 808 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 809 810 // This thread is currently stopped. 811 thread.SetStoppedByTrace(); 812 813 StopRunningThreads(thread.GetID()); 814 } 815 816 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 817 Log *log( 818 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 819 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 820 821 // Mark the thread as stopped at breakpoint. 822 thread.SetStoppedByBreakpoint(); 823 Status error = FixupBreakpointPCAsNeeded(thread); 824 if (error.Fail()) 825 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 826 827 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 828 m_threads_stepping_with_breakpoint.end()) 829 thread.SetStoppedByTrace(); 830 831 StopRunningThreads(thread.GetID()); 832 } 833 834 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 835 uint32_t wp_index) { 836 Log *log( 837 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 838 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 839 thread.GetID(), wp_index); 840 841 // Mark the thread as stopped at watchpoint. 842 // The address is at (lldb::addr_t)info->si_addr if we need it. 843 thread.SetStoppedByWatchpoint(wp_index); 844 845 // We need to tell all other running threads before we notify the delegate 846 // about this stop. 847 StopRunningThreads(thread.GetID()); 848 } 849 850 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 851 NativeThreadLinux &thread, bool exited) { 852 const int signo = info.si_signo; 853 const bool is_from_llgs = info.si_pid == getpid(); 854 855 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 856 857 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 858 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 859 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 860 // 861 // IOW, user generated signals never generate what we consider to be a 862 // "crash". 863 // 864 // Similarly, ACK signals generated by this monitor. 865 866 // Handle the signal. 867 LLDB_LOG(log, 868 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 869 "waitpid pid = {4})", 870 Host::GetSignalAsCString(signo), signo, info.si_code, 871 thread.GetID()); 872 873 // Check for thread stop notification. 874 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 875 // This is a tgkill()-based stop. 876 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 877 878 // Check that we're not already marked with a stop reason. 879 // Note this thread really shouldn't already be marked as stopped - if we 880 // were, that would imply that the kernel signaled us with the thread 881 // stopping which we handled and marked as stopped, and that, without an 882 // intervening resume, we received another stop. It is more likely that we 883 // are missing the marking of a run state somewhere if we find that the 884 // thread was marked as stopped. 885 const StateType thread_state = thread.GetState(); 886 if (!StateIsStoppedState(thread_state, false)) { 887 // An inferior thread has stopped because of a SIGSTOP we have sent it. 888 // Generally, these are not important stops and we don't want to report 889 // them as they are just used to stop other threads when one thread (the 890 // one with the *real* stop reason) hits a breakpoint (watchpoint, 891 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 892 // the real stop reason, so we leave the signal intact if this is the 893 // thread that was chosen as the triggering thread. 894 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 895 if (m_pending_notification_tid == thread.GetID()) 896 thread.SetStoppedBySignal(SIGSTOP, &info); 897 else 898 thread.SetStoppedWithNoReason(); 899 900 SetCurrentThreadID(thread.GetID()); 901 SignalIfAllThreadsStopped(); 902 } else { 903 // We can end up here if stop was initiated by LLGS but by this time a 904 // thread stop has occurred - maybe initiated by another event. 905 Status error = ResumeThread(thread, thread.GetState(), 0); 906 if (error.Fail()) 907 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 908 error); 909 } 910 } else { 911 LLDB_LOG(log, 912 "pid {0} tid {1}, thread was already marked as a stopped " 913 "state (state={2}), leaving stop signal as is", 914 GetID(), thread.GetID(), thread_state); 915 SignalIfAllThreadsStopped(); 916 } 917 918 // Done handling. 919 return; 920 } 921 922 // Check if debugger should stop at this signal or just ignore it 923 // and resume the inferior. 924 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 925 ResumeThread(thread, thread.GetState(), signo); 926 return; 927 } 928 929 // This thread is stopped. 930 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 931 thread.SetStoppedBySignal(signo, &info); 932 933 // Send a stop to the debugger after we get all other threads to stop. 934 StopRunningThreads(thread.GetID()); 935 } 936 937 namespace { 938 939 struct EmulatorBaton { 940 NativeProcessLinux *m_process; 941 NativeRegisterContext *m_reg_context; 942 943 // eRegisterKindDWARF -> RegsiterValue 944 std::unordered_map<uint32_t, RegisterValue> m_register_values; 945 946 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 947 : m_process(process), m_reg_context(reg_context) {} 948 }; 949 950 } // anonymous namespace 951 952 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 953 const EmulateInstruction::Context &context, 954 lldb::addr_t addr, void *dst, size_t length) { 955 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 956 957 size_t bytes_read; 958 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 959 return bytes_read; 960 } 961 962 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 963 const RegisterInfo *reg_info, 964 RegisterValue ®_value) { 965 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 966 967 auto it = emulator_baton->m_register_values.find( 968 reg_info->kinds[eRegisterKindDWARF]); 969 if (it != emulator_baton->m_register_values.end()) { 970 reg_value = it->second; 971 return true; 972 } 973 974 // The emulator only fill in the dwarf regsiter numbers (and in some case 975 // the generic register numbers). Get the full register info from the 976 // register context based on the dwarf register numbers. 977 const RegisterInfo *full_reg_info = 978 emulator_baton->m_reg_context->GetRegisterInfo( 979 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 980 981 Status error = 982 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 983 if (error.Success()) 984 return true; 985 986 return false; 987 } 988 989 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 990 const EmulateInstruction::Context &context, 991 const RegisterInfo *reg_info, 992 const RegisterValue ®_value) { 993 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 994 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 995 reg_value; 996 return true; 997 } 998 999 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1000 const EmulateInstruction::Context &context, 1001 lldb::addr_t addr, const void *dst, 1002 size_t length) { 1003 return length; 1004 } 1005 1006 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1007 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1008 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1009 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1010 LLDB_INVALID_ADDRESS); 1011 } 1012 1013 Status 1014 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 1015 Status error; 1016 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1017 1018 std::unique_ptr<EmulateInstruction> emulator_ap( 1019 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1020 nullptr)); 1021 1022 if (emulator_ap == nullptr) 1023 return Status("Instruction emulator not found!"); 1024 1025 EmulatorBaton baton(this, register_context_sp.get()); 1026 emulator_ap->SetBaton(&baton); 1027 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1028 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1029 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1030 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1031 1032 if (!emulator_ap->ReadInstruction()) 1033 return Status("Read instruction failed!"); 1034 1035 bool emulation_result = 1036 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1037 1038 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1039 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1040 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1041 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1042 1043 auto pc_it = 1044 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1045 auto flags_it = 1046 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1047 1048 lldb::addr_t next_pc; 1049 lldb::addr_t next_flags; 1050 if (emulation_result) { 1051 assert(pc_it != baton.m_register_values.end() && 1052 "Emulation was successfull but PC wasn't updated"); 1053 next_pc = pc_it->second.GetAsUInt64(); 1054 1055 if (flags_it != baton.m_register_values.end()) 1056 next_flags = flags_it->second.GetAsUInt64(); 1057 else 1058 next_flags = ReadFlags(register_context_sp.get()); 1059 } else if (pc_it == baton.m_register_values.end()) { 1060 // Emulate instruction failed and it haven't changed PC. Advance PC 1061 // with the size of the current opcode because the emulation of all 1062 // PC modifying instruction should be successful. The failure most 1063 // likely caused by a not supported instruction which don't modify PC. 1064 next_pc = 1065 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1066 next_flags = ReadFlags(register_context_sp.get()); 1067 } else { 1068 // The instruction emulation failed after it modified the PC. It is an 1069 // unknown error where we can't continue because the next instruction is 1070 // modifying the PC but we don't know how. 1071 return Status("Instruction emulation failed unexpectedly."); 1072 } 1073 1074 if (m_arch.GetMachine() == llvm::Triple::arm) { 1075 if (next_flags & 0x20) { 1076 // Thumb mode 1077 error = SetSoftwareBreakpoint(next_pc, 2); 1078 } else { 1079 // Arm mode 1080 error = SetSoftwareBreakpoint(next_pc, 4); 1081 } 1082 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1083 m_arch.GetMachine() == llvm::Triple::mips64el || 1084 m_arch.GetMachine() == llvm::Triple::mips || 1085 m_arch.GetMachine() == llvm::Triple::mipsel) 1086 error = SetSoftwareBreakpoint(next_pc, 4); 1087 else { 1088 // No size hint is given for the next breakpoint 1089 error = SetSoftwareBreakpoint(next_pc, 0); 1090 } 1091 1092 // If setting the breakpoint fails because next_pc is out of 1093 // the address space, ignore it and let the debugee segfault. 1094 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1095 return Status(); 1096 } else if (error.Fail()) 1097 return error; 1098 1099 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1100 1101 return Status(); 1102 } 1103 1104 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1105 if (m_arch.GetMachine() == llvm::Triple::arm || 1106 m_arch.GetMachine() == llvm::Triple::mips64 || 1107 m_arch.GetMachine() == llvm::Triple::mips64el || 1108 m_arch.GetMachine() == llvm::Triple::mips || 1109 m_arch.GetMachine() == llvm::Triple::mipsel) 1110 return false; 1111 return true; 1112 } 1113 1114 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1115 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1116 LLDB_LOG(log, "pid {0}", GetID()); 1117 1118 bool software_single_step = !SupportHardwareSingleStepping(); 1119 1120 if (software_single_step) { 1121 for (auto thread_sp : m_threads) { 1122 assert(thread_sp && "thread list should not contain NULL threads"); 1123 1124 const ResumeAction *const action = 1125 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1126 if (action == nullptr) 1127 continue; 1128 1129 if (action->state == eStateStepping) { 1130 Status error = SetupSoftwareSingleStepping( 1131 static_cast<NativeThreadLinux &>(*thread_sp)); 1132 if (error.Fail()) 1133 return error; 1134 } 1135 } 1136 } 1137 1138 for (auto thread_sp : m_threads) { 1139 assert(thread_sp && "thread list should not contain NULL threads"); 1140 1141 const ResumeAction *const action = 1142 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1143 1144 if (action == nullptr) { 1145 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1146 thread_sp->GetID()); 1147 continue; 1148 } 1149 1150 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1151 action->state, GetID(), thread_sp->GetID()); 1152 1153 switch (action->state) { 1154 case eStateRunning: 1155 case eStateStepping: { 1156 // Run the thread, possibly feeding it the signal. 1157 const int signo = action->signal; 1158 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1159 signo); 1160 break; 1161 } 1162 1163 case eStateSuspended: 1164 case eStateStopped: 1165 llvm_unreachable("Unexpected state"); 1166 1167 default: 1168 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1169 "for pid %" PRIu64 ", tid %" PRIu64, 1170 __FUNCTION__, StateAsCString(action->state), GetID(), 1171 thread_sp->GetID()); 1172 } 1173 } 1174 1175 return Status(); 1176 } 1177 1178 Status NativeProcessLinux::Halt() { 1179 Status error; 1180 1181 if (kill(GetID(), SIGSTOP) != 0) 1182 error.SetErrorToErrno(); 1183 1184 return error; 1185 } 1186 1187 Status NativeProcessLinux::Detach() { 1188 Status error; 1189 1190 // Stop monitoring the inferior. 1191 m_sigchld_handle.reset(); 1192 1193 // Tell ptrace to detach from the process. 1194 if (GetID() == LLDB_INVALID_PROCESS_ID) 1195 return error; 1196 1197 for (auto thread_sp : m_threads) { 1198 Status e = Detach(thread_sp->GetID()); 1199 if (e.Fail()) 1200 error = 1201 e; // Save the error, but still attempt to detach from other threads. 1202 } 1203 1204 m_processor_trace_monitor.clear(); 1205 m_pt_proces_trace_id = LLDB_INVALID_UID; 1206 1207 return error; 1208 } 1209 1210 Status NativeProcessLinux::Signal(int signo) { 1211 Status error; 1212 1213 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1214 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1215 Host::GetSignalAsCString(signo), GetID()); 1216 1217 if (kill(GetID(), signo)) 1218 error.SetErrorToErrno(); 1219 1220 return error; 1221 } 1222 1223 Status NativeProcessLinux::Interrupt() { 1224 // Pick a running thread (or if none, a not-dead stopped thread) as 1225 // the chosen thread that will be the stop-reason thread. 1226 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1227 1228 NativeThreadProtocolSP running_thread_sp; 1229 NativeThreadProtocolSP stopped_thread_sp; 1230 1231 LLDB_LOG(log, "selecting running thread for interrupt target"); 1232 for (auto thread_sp : m_threads) { 1233 // The thread shouldn't be null but lets just cover that here. 1234 if (!thread_sp) 1235 continue; 1236 1237 // If we have a running or stepping thread, we'll call that the 1238 // target of the interrupt. 1239 const auto thread_state = thread_sp->GetState(); 1240 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1241 running_thread_sp = thread_sp; 1242 break; 1243 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1244 // Remember the first non-dead stopped thread. We'll use that as a backup 1245 // if there are no running threads. 1246 stopped_thread_sp = thread_sp; 1247 } 1248 } 1249 1250 if (!running_thread_sp && !stopped_thread_sp) { 1251 Status error("found no running/stepping or live stopped threads as target " 1252 "for interrupt"); 1253 LLDB_LOG(log, "skipping due to error: {0}", error); 1254 1255 return error; 1256 } 1257 1258 NativeThreadProtocolSP deferred_signal_thread_sp = 1259 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1260 1261 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1262 running_thread_sp ? "running" : "stopped", 1263 deferred_signal_thread_sp->GetID()); 1264 1265 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1266 1267 return Status(); 1268 } 1269 1270 Status NativeProcessLinux::Kill() { 1271 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1272 LLDB_LOG(log, "pid {0}", GetID()); 1273 1274 Status error; 1275 1276 switch (m_state) { 1277 case StateType::eStateInvalid: 1278 case StateType::eStateExited: 1279 case StateType::eStateCrashed: 1280 case StateType::eStateDetached: 1281 case StateType::eStateUnloaded: 1282 // Nothing to do - the process is already dead. 1283 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1284 m_state); 1285 return error; 1286 1287 case StateType::eStateConnected: 1288 case StateType::eStateAttaching: 1289 case StateType::eStateLaunching: 1290 case StateType::eStateStopped: 1291 case StateType::eStateRunning: 1292 case StateType::eStateStepping: 1293 case StateType::eStateSuspended: 1294 // We can try to kill a process in these states. 1295 break; 1296 } 1297 1298 if (kill(GetID(), SIGKILL) != 0) { 1299 error.SetErrorToErrno(); 1300 return error; 1301 } 1302 1303 return error; 1304 } 1305 1306 static Status 1307 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1308 MemoryRegionInfo &memory_region_info) { 1309 memory_region_info.Clear(); 1310 1311 StringExtractor line_extractor(maps_line); 1312 1313 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1314 // pathname 1315 // perms: rwxp (letter is present if set, '-' if not, final character is 1316 // p=private, s=shared). 1317 1318 // Parse out the starting address 1319 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1320 1321 // Parse out hyphen separating start and end address from range. 1322 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1323 return Status( 1324 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1325 1326 // Parse out the ending address 1327 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1328 1329 // Parse out the space after the address. 1330 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1331 return Status( 1332 "malformed /proc/{pid}/maps entry, missing space after range"); 1333 1334 // Save the range. 1335 memory_region_info.GetRange().SetRangeBase(start_address); 1336 memory_region_info.GetRange().SetRangeEnd(end_address); 1337 1338 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1339 // process. 1340 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1341 1342 // Parse out each permission entry. 1343 if (line_extractor.GetBytesLeft() < 4) 1344 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1345 "permissions"); 1346 1347 // Handle read permission. 1348 const char read_perm_char = line_extractor.GetChar(); 1349 if (read_perm_char == 'r') 1350 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1351 else if (read_perm_char == '-') 1352 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1353 else 1354 return Status("unexpected /proc/{pid}/maps read permission char"); 1355 1356 // Handle write permission. 1357 const char write_perm_char = line_extractor.GetChar(); 1358 if (write_perm_char == 'w') 1359 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1360 else if (write_perm_char == '-') 1361 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1362 else 1363 return Status("unexpected /proc/{pid}/maps write permission char"); 1364 1365 // Handle execute permission. 1366 const char exec_perm_char = line_extractor.GetChar(); 1367 if (exec_perm_char == 'x') 1368 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1369 else if (exec_perm_char == '-') 1370 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1371 else 1372 return Status("unexpected /proc/{pid}/maps exec permission char"); 1373 1374 line_extractor.GetChar(); // Read the private bit 1375 line_extractor.SkipSpaces(); // Skip the separator 1376 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1377 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1378 line_extractor.GetChar(); // Read the device id separator 1379 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1380 line_extractor.SkipSpaces(); // Skip the separator 1381 line_extractor.GetU64(0, 10); // Read the inode number 1382 1383 line_extractor.SkipSpaces(); 1384 const char *name = line_extractor.Peek(); 1385 if (name) 1386 memory_region_info.SetName(name); 1387 1388 return Status(); 1389 } 1390 1391 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1392 MemoryRegionInfo &range_info) { 1393 // FIXME review that the final memory region returned extends to the end of 1394 // the virtual address space, 1395 // with no perms if it is not mapped. 1396 1397 // Use an approach that reads memory regions from /proc/{pid}/maps. 1398 // Assume proc maps entries are in ascending order. 1399 // FIXME assert if we find differently. 1400 1401 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1402 // We're done. 1403 return Status("unsupported"); 1404 } 1405 1406 Status error = PopulateMemoryRegionCache(); 1407 if (error.Fail()) { 1408 return error; 1409 } 1410 1411 lldb::addr_t prev_base_address = 0; 1412 1413 // FIXME start by finding the last region that is <= target address using 1414 // binary search. Data is sorted. 1415 // There can be a ton of regions on pthreads apps with lots of threads. 1416 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1417 ++it) { 1418 MemoryRegionInfo &proc_entry_info = it->first; 1419 1420 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1421 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1422 "descending /proc/pid/maps entries detected, unexpected"); 1423 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1424 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1425 1426 // If the target address comes before this entry, indicate distance to next 1427 // region. 1428 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1429 range_info.GetRange().SetRangeBase(load_addr); 1430 range_info.GetRange().SetByteSize( 1431 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1432 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1433 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1434 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1435 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1436 1437 return error; 1438 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1439 // The target address is within the memory region we're processing here. 1440 range_info = proc_entry_info; 1441 return error; 1442 } 1443 1444 // The target memory address comes somewhere after the region we just 1445 // parsed. 1446 } 1447 1448 // If we made it here, we didn't find an entry that contained the given 1449 // address. Return the 1450 // load_addr as start and the amount of bytes betwwen load address and the end 1451 // of the memory as 1452 // size. 1453 range_info.GetRange().SetRangeBase(load_addr); 1454 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1455 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1456 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1457 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1458 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1459 return error; 1460 } 1461 1462 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1463 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1464 1465 // If our cache is empty, pull the latest. There should always be at least 1466 // one memory region if memory region handling is supported. 1467 if (!m_mem_region_cache.empty()) { 1468 LLDB_LOG(log, "reusing {0} cached memory region entries", 1469 m_mem_region_cache.size()); 1470 return Status(); 1471 } 1472 1473 auto BufferOrError = getProcFile(GetID(), "maps"); 1474 if (!BufferOrError) { 1475 m_supports_mem_region = LazyBool::eLazyBoolNo; 1476 return BufferOrError.getError(); 1477 } 1478 StringRef Rest = BufferOrError.get()->getBuffer(); 1479 while (! Rest.empty()) { 1480 StringRef Line; 1481 std::tie(Line, Rest) = Rest.split('\n'); 1482 MemoryRegionInfo info; 1483 const Status parse_error = 1484 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1485 if (parse_error.Fail()) { 1486 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1487 parse_error); 1488 m_supports_mem_region = LazyBool::eLazyBoolNo; 1489 return parse_error; 1490 } 1491 m_mem_region_cache.emplace_back( 1492 info, FileSpec(info.GetName().GetCString(), true)); 1493 } 1494 1495 if (m_mem_region_cache.empty()) { 1496 // No entries after attempting to read them. This shouldn't happen if 1497 // /proc/{pid}/maps is supported. Assume we don't support map entries 1498 // via procfs. 1499 m_supports_mem_region = LazyBool::eLazyBoolNo; 1500 LLDB_LOG(log, 1501 "failed to find any procfs maps entries, assuming no support " 1502 "for memory region metadata retrieval"); 1503 return Status("not supported"); 1504 } 1505 1506 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1507 m_mem_region_cache.size(), GetID()); 1508 1509 // We support memory retrieval, remember that. 1510 m_supports_mem_region = LazyBool::eLazyBoolYes; 1511 return Status(); 1512 } 1513 1514 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1515 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1516 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1517 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1518 m_mem_region_cache.size()); 1519 m_mem_region_cache.clear(); 1520 } 1521 1522 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1523 lldb::addr_t &addr) { 1524 // FIXME implementing this requires the equivalent of 1525 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1526 // functional ThreadPlans working with Native*Protocol. 1527 #if 1 1528 return Status("not implemented yet"); 1529 #else 1530 addr = LLDB_INVALID_ADDRESS; 1531 1532 unsigned prot = 0; 1533 if (permissions & lldb::ePermissionsReadable) 1534 prot |= eMmapProtRead; 1535 if (permissions & lldb::ePermissionsWritable) 1536 prot |= eMmapProtWrite; 1537 if (permissions & lldb::ePermissionsExecutable) 1538 prot |= eMmapProtExec; 1539 1540 // TODO implement this directly in NativeProcessLinux 1541 // (and lift to NativeProcessPOSIX if/when that class is 1542 // refactored out). 1543 if (InferiorCallMmap(this, addr, 0, size, prot, 1544 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1545 m_addr_to_mmap_size[addr] = size; 1546 return Status(); 1547 } else { 1548 addr = LLDB_INVALID_ADDRESS; 1549 return Status("unable to allocate %" PRIu64 1550 " bytes of memory with permissions %s", 1551 size, GetPermissionsAsCString(permissions)); 1552 } 1553 #endif 1554 } 1555 1556 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1557 // FIXME see comments in AllocateMemory - required lower-level 1558 // bits not in place yet (ThreadPlans) 1559 return Status("not implemented"); 1560 } 1561 1562 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1563 // punt on this for now 1564 return LLDB_INVALID_ADDRESS; 1565 } 1566 1567 size_t NativeProcessLinux::UpdateThreads() { 1568 // The NativeProcessLinux monitoring threads are always up to date 1569 // with respect to thread state and they keep the thread list 1570 // populated properly. All this method needs to do is return the 1571 // thread count. 1572 return m_threads.size(); 1573 } 1574 1575 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1576 arch = m_arch; 1577 return true; 1578 } 1579 1580 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1581 uint32_t &actual_opcode_size) { 1582 // FIXME put this behind a breakpoint protocol class that can be 1583 // set per architecture. Need ARM, MIPS support here. 1584 static const uint8_t g_i386_opcode[] = {0xCC}; 1585 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1586 1587 switch (m_arch.GetMachine()) { 1588 case llvm::Triple::x86: 1589 case llvm::Triple::x86_64: 1590 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1591 return Status(); 1592 1593 case llvm::Triple::systemz: 1594 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1595 return Status(); 1596 1597 case llvm::Triple::arm: 1598 case llvm::Triple::aarch64: 1599 case llvm::Triple::mips64: 1600 case llvm::Triple::mips64el: 1601 case llvm::Triple::mips: 1602 case llvm::Triple::mipsel: 1603 // On these architectures the PC don't get updated for breakpoint hits 1604 actual_opcode_size = 0; 1605 return Status(); 1606 1607 default: 1608 assert(false && "CPU type not supported!"); 1609 return Status("CPU type not supported"); 1610 } 1611 } 1612 1613 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1614 bool hardware) { 1615 if (hardware) 1616 return SetHardwareBreakpoint(addr, size); 1617 else 1618 return SetSoftwareBreakpoint(addr, size); 1619 } 1620 1621 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1622 if (hardware) 1623 return RemoveHardwareBreakpoint(addr); 1624 else 1625 return NativeProcessProtocol::RemoveBreakpoint(addr); 1626 } 1627 1628 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1629 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1630 const uint8_t *&trap_opcode_bytes) { 1631 // FIXME put this behind a breakpoint protocol class that can be set per 1632 // architecture. Need MIPS support here. 1633 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1634 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1635 // linux kernel does otherwise. 1636 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1637 static const uint8_t g_i386_opcode[] = {0xCC}; 1638 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1639 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1640 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1641 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1642 1643 switch (m_arch.GetMachine()) { 1644 case llvm::Triple::aarch64: 1645 trap_opcode_bytes = g_aarch64_opcode; 1646 actual_opcode_size = sizeof(g_aarch64_opcode); 1647 return Status(); 1648 1649 case llvm::Triple::arm: 1650 switch (trap_opcode_size_hint) { 1651 case 2: 1652 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1653 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1654 return Status(); 1655 case 4: 1656 trap_opcode_bytes = g_arm_breakpoint_opcode; 1657 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1658 return Status(); 1659 default: 1660 assert(false && "Unrecognised trap opcode size hint!"); 1661 return Status("Unrecognised trap opcode size hint!"); 1662 } 1663 1664 case llvm::Triple::x86: 1665 case llvm::Triple::x86_64: 1666 trap_opcode_bytes = g_i386_opcode; 1667 actual_opcode_size = sizeof(g_i386_opcode); 1668 return Status(); 1669 1670 case llvm::Triple::mips: 1671 case llvm::Triple::mips64: 1672 trap_opcode_bytes = g_mips64_opcode; 1673 actual_opcode_size = sizeof(g_mips64_opcode); 1674 return Status(); 1675 1676 case llvm::Triple::mipsel: 1677 case llvm::Triple::mips64el: 1678 trap_opcode_bytes = g_mips64el_opcode; 1679 actual_opcode_size = sizeof(g_mips64el_opcode); 1680 return Status(); 1681 1682 case llvm::Triple::systemz: 1683 trap_opcode_bytes = g_s390x_opcode; 1684 actual_opcode_size = sizeof(g_s390x_opcode); 1685 return Status(); 1686 1687 default: 1688 assert(false && "CPU type not supported!"); 1689 return Status("CPU type not supported"); 1690 } 1691 } 1692 1693 #if 0 1694 ProcessMessage::CrashReason 1695 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1696 { 1697 ProcessMessage::CrashReason reason; 1698 assert(info->si_signo == SIGSEGV); 1699 1700 reason = ProcessMessage::eInvalidCrashReason; 1701 1702 switch (info->si_code) 1703 { 1704 default: 1705 assert(false && "unexpected si_code for SIGSEGV"); 1706 break; 1707 case SI_KERNEL: 1708 // Linux will occasionally send spurious SI_KERNEL codes. 1709 // (this is poorly documented in sigaction) 1710 // One way to get this is via unaligned SIMD loads. 1711 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1712 break; 1713 case SEGV_MAPERR: 1714 reason = ProcessMessage::eInvalidAddress; 1715 break; 1716 case SEGV_ACCERR: 1717 reason = ProcessMessage::ePrivilegedAddress; 1718 break; 1719 } 1720 1721 return reason; 1722 } 1723 #endif 1724 1725 #if 0 1726 ProcessMessage::CrashReason 1727 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1728 { 1729 ProcessMessage::CrashReason reason; 1730 assert(info->si_signo == SIGILL); 1731 1732 reason = ProcessMessage::eInvalidCrashReason; 1733 1734 switch (info->si_code) 1735 { 1736 default: 1737 assert(false && "unexpected si_code for SIGILL"); 1738 break; 1739 case ILL_ILLOPC: 1740 reason = ProcessMessage::eIllegalOpcode; 1741 break; 1742 case ILL_ILLOPN: 1743 reason = ProcessMessage::eIllegalOperand; 1744 break; 1745 case ILL_ILLADR: 1746 reason = ProcessMessage::eIllegalAddressingMode; 1747 break; 1748 case ILL_ILLTRP: 1749 reason = ProcessMessage::eIllegalTrap; 1750 break; 1751 case ILL_PRVOPC: 1752 reason = ProcessMessage::ePrivilegedOpcode; 1753 break; 1754 case ILL_PRVREG: 1755 reason = ProcessMessage::ePrivilegedRegister; 1756 break; 1757 case ILL_COPROC: 1758 reason = ProcessMessage::eCoprocessorError; 1759 break; 1760 case ILL_BADSTK: 1761 reason = ProcessMessage::eInternalStackError; 1762 break; 1763 } 1764 1765 return reason; 1766 } 1767 #endif 1768 1769 #if 0 1770 ProcessMessage::CrashReason 1771 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1772 { 1773 ProcessMessage::CrashReason reason; 1774 assert(info->si_signo == SIGFPE); 1775 1776 reason = ProcessMessage::eInvalidCrashReason; 1777 1778 switch (info->si_code) 1779 { 1780 default: 1781 assert(false && "unexpected si_code for SIGFPE"); 1782 break; 1783 case FPE_INTDIV: 1784 reason = ProcessMessage::eIntegerDivideByZero; 1785 break; 1786 case FPE_INTOVF: 1787 reason = ProcessMessage::eIntegerOverflow; 1788 break; 1789 case FPE_FLTDIV: 1790 reason = ProcessMessage::eFloatDivideByZero; 1791 break; 1792 case FPE_FLTOVF: 1793 reason = ProcessMessage::eFloatOverflow; 1794 break; 1795 case FPE_FLTUND: 1796 reason = ProcessMessage::eFloatUnderflow; 1797 break; 1798 case FPE_FLTRES: 1799 reason = ProcessMessage::eFloatInexactResult; 1800 break; 1801 case FPE_FLTINV: 1802 reason = ProcessMessage::eFloatInvalidOperation; 1803 break; 1804 case FPE_FLTSUB: 1805 reason = ProcessMessage::eFloatSubscriptRange; 1806 break; 1807 } 1808 1809 return reason; 1810 } 1811 #endif 1812 1813 #if 0 1814 ProcessMessage::CrashReason 1815 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1816 { 1817 ProcessMessage::CrashReason reason; 1818 assert(info->si_signo == SIGBUS); 1819 1820 reason = ProcessMessage::eInvalidCrashReason; 1821 1822 switch (info->si_code) 1823 { 1824 default: 1825 assert(false && "unexpected si_code for SIGBUS"); 1826 break; 1827 case BUS_ADRALN: 1828 reason = ProcessMessage::eIllegalAlignment; 1829 break; 1830 case BUS_ADRERR: 1831 reason = ProcessMessage::eIllegalAddress; 1832 break; 1833 case BUS_OBJERR: 1834 reason = ProcessMessage::eHardwareError; 1835 break; 1836 } 1837 1838 return reason; 1839 } 1840 #endif 1841 1842 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1843 size_t &bytes_read) { 1844 if (ProcessVmReadvSupported()) { 1845 // The process_vm_readv path is about 50 times faster than ptrace api. We 1846 // want to use 1847 // this syscall if it is supported. 1848 1849 const ::pid_t pid = GetID(); 1850 1851 struct iovec local_iov, remote_iov; 1852 local_iov.iov_base = buf; 1853 local_iov.iov_len = size; 1854 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1855 remote_iov.iov_len = size; 1856 1857 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1858 const bool success = bytes_read == size; 1859 1860 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1861 LLDB_LOG(log, 1862 "using process_vm_readv to read {0} bytes from inferior " 1863 "address {1:x}: {2}", 1864 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1865 1866 if (success) 1867 return Status(); 1868 // else the call failed for some reason, let's retry the read using ptrace 1869 // api. 1870 } 1871 1872 unsigned char *dst = static_cast<unsigned char *>(buf); 1873 size_t remainder; 1874 long data; 1875 1876 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1877 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1878 1879 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1880 Status error = NativeProcessLinux::PtraceWrapper( 1881 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1882 if (error.Fail()) 1883 return error; 1884 1885 remainder = size - bytes_read; 1886 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1887 1888 // Copy the data into our buffer 1889 memcpy(dst, &data, remainder); 1890 1891 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1892 addr += k_ptrace_word_size; 1893 dst += k_ptrace_word_size; 1894 } 1895 return Status(); 1896 } 1897 1898 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 1899 size_t size, 1900 size_t &bytes_read) { 1901 Status error = ReadMemory(addr, buf, size, bytes_read); 1902 if (error.Fail()) 1903 return error; 1904 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 1905 } 1906 1907 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1908 size_t size, size_t &bytes_written) { 1909 const unsigned char *src = static_cast<const unsigned char *>(buf); 1910 size_t remainder; 1911 Status error; 1912 1913 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1914 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1915 1916 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1917 remainder = size - bytes_written; 1918 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1919 1920 if (remainder == k_ptrace_word_size) { 1921 unsigned long data = 0; 1922 memcpy(&data, src, k_ptrace_word_size); 1923 1924 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1925 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1926 (void *)addr, (void *)data); 1927 if (error.Fail()) 1928 return error; 1929 } else { 1930 unsigned char buff[8]; 1931 size_t bytes_read; 1932 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1933 if (error.Fail()) 1934 return error; 1935 1936 memcpy(buff, src, remainder); 1937 1938 size_t bytes_written_rec; 1939 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1940 if (error.Fail()) 1941 return error; 1942 1943 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1944 *(unsigned long *)buff); 1945 } 1946 1947 addr += k_ptrace_word_size; 1948 src += k_ptrace_word_size; 1949 } 1950 return error; 1951 } 1952 1953 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1954 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1955 } 1956 1957 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1958 unsigned long *message) { 1959 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1960 } 1961 1962 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1963 if (tid == LLDB_INVALID_THREAD_ID) 1964 return Status(); 1965 1966 return PtraceWrapper(PTRACE_DETACH, tid); 1967 } 1968 1969 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1970 for (auto thread_sp : m_threads) { 1971 assert(thread_sp && "thread list should not contain NULL threads"); 1972 if (thread_sp->GetID() == thread_id) { 1973 // We have this thread. 1974 return true; 1975 } 1976 } 1977 1978 // We don't have this thread. 1979 return false; 1980 } 1981 1982 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 1983 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1984 LLDB_LOG(log, "tid: {0})", thread_id); 1985 1986 bool found = false; 1987 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 1988 if (*it && ((*it)->GetID() == thread_id)) { 1989 m_threads.erase(it); 1990 found = true; 1991 break; 1992 } 1993 } 1994 1995 if (found) 1996 StopTracingForThread(thread_id); 1997 SignalIfAllThreadsStopped(); 1998 return found; 1999 } 2000 2001 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2002 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2003 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2004 2005 assert(!HasThreadNoLock(thread_id) && 2006 "attempted to add a thread by id that already exists"); 2007 2008 // If this is the first thread, save it as the current thread 2009 if (m_threads.empty()) 2010 SetCurrentThreadID(thread_id); 2011 2012 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2013 m_threads.push_back(thread_sp); 2014 2015 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2016 auto traceMonitor = ProcessorTraceMonitor::Create( 2017 GetID(), thread_id, m_pt_process_trace_config, true); 2018 if (traceMonitor) { 2019 m_pt_traced_thread_group.insert(thread_id); 2020 m_processor_trace_monitor.insert( 2021 std::make_pair(thread_id, std::move(*traceMonitor))); 2022 } else { 2023 LLDB_LOG(log, "failed to start trace on thread {0}", thread_id); 2024 Status error(traceMonitor.takeError()); 2025 LLDB_LOG(log, "error {0}", error); 2026 } 2027 } 2028 2029 return thread_sp; 2030 } 2031 2032 Status 2033 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2034 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2035 2036 Status error; 2037 2038 // Find out the size of a breakpoint (might depend on where we are in the 2039 // code). 2040 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2041 if (!context_sp) { 2042 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2043 LLDB_LOG(log, "failed: {0}", error); 2044 return error; 2045 } 2046 2047 uint32_t breakpoint_size = 0; 2048 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2049 if (error.Fail()) { 2050 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2051 return error; 2052 } else 2053 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2054 2055 // First try probing for a breakpoint at a software breakpoint location: PC - 2056 // breakpoint size. 2057 const lldb::addr_t initial_pc_addr = 2058 context_sp->GetPCfromBreakpointLocation(); 2059 lldb::addr_t breakpoint_addr = initial_pc_addr; 2060 if (breakpoint_size > 0) { 2061 // Do not allow breakpoint probe to wrap around. 2062 if (breakpoint_addr >= breakpoint_size) 2063 breakpoint_addr -= breakpoint_size; 2064 } 2065 2066 // Check if we stopped because of a breakpoint. 2067 NativeBreakpointSP breakpoint_sp; 2068 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2069 if (!error.Success() || !breakpoint_sp) { 2070 // We didn't find one at a software probe location. Nothing to do. 2071 LLDB_LOG(log, 2072 "pid {0} no lldb breakpoint found at current pc with " 2073 "adjustment: {1}", 2074 GetID(), breakpoint_addr); 2075 return Status(); 2076 } 2077 2078 // If the breakpoint is not a software breakpoint, nothing to do. 2079 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2080 LLDB_LOG( 2081 log, 2082 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2083 GetID(), breakpoint_addr); 2084 return Status(); 2085 } 2086 2087 // 2088 // We have a software breakpoint and need to adjust the PC. 2089 // 2090 2091 // Sanity check. 2092 if (breakpoint_size == 0) { 2093 // Nothing to do! How did we get here? 2094 LLDB_LOG(log, 2095 "pid {0} breakpoint found at {1:x}, it is software, but the " 2096 "size is zero, nothing to do (unexpected)", 2097 GetID(), breakpoint_addr); 2098 return Status(); 2099 } 2100 2101 // Change the program counter. 2102 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2103 thread.GetID(), initial_pc_addr, breakpoint_addr); 2104 2105 error = context_sp->SetPC(breakpoint_addr); 2106 if (error.Fail()) { 2107 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2108 thread.GetID(), error); 2109 return error; 2110 } 2111 2112 return error; 2113 } 2114 2115 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2116 FileSpec &file_spec) { 2117 Status error = PopulateMemoryRegionCache(); 2118 if (error.Fail()) 2119 return error; 2120 2121 FileSpec module_file_spec(module_path, true); 2122 2123 file_spec.Clear(); 2124 for (const auto &it : m_mem_region_cache) { 2125 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2126 file_spec = it.second; 2127 return Status(); 2128 } 2129 } 2130 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2131 module_file_spec.GetFilename().AsCString(), GetID()); 2132 } 2133 2134 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2135 lldb::addr_t &load_addr) { 2136 load_addr = LLDB_INVALID_ADDRESS; 2137 Status error = PopulateMemoryRegionCache(); 2138 if (error.Fail()) 2139 return error; 2140 2141 FileSpec file(file_name, false); 2142 for (const auto &it : m_mem_region_cache) { 2143 if (it.second == file) { 2144 load_addr = it.first.GetRange().GetRangeBase(); 2145 return Status(); 2146 } 2147 } 2148 return Status("No load address found for specified file."); 2149 } 2150 2151 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2152 return std::static_pointer_cast<NativeThreadLinux>( 2153 NativeProcessProtocol::GetThreadByID(tid)); 2154 } 2155 2156 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2157 lldb::StateType state, int signo) { 2158 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2159 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2160 2161 // Before we do the resume below, first check if we have a pending 2162 // stop notification that is currently waiting for 2163 // all threads to stop. This is potentially a buggy situation since 2164 // we're ostensibly waiting for threads to stop before we send out the 2165 // pending notification, and here we are resuming one before we send 2166 // out the pending stop notification. 2167 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2168 LLDB_LOG(log, 2169 "about to resume tid {0} per explicit request but we have a " 2170 "pending stop notification (tid {1}) that is actively " 2171 "waiting for this thread to stop. Valid sequence of events?", 2172 thread.GetID(), m_pending_notification_tid); 2173 } 2174 2175 // Request a resume. We expect this to be synchronous and the system 2176 // to reflect it is running after this completes. 2177 switch (state) { 2178 case eStateRunning: { 2179 const auto resume_result = thread.Resume(signo); 2180 if (resume_result.Success()) 2181 SetState(eStateRunning, true); 2182 return resume_result; 2183 } 2184 case eStateStepping: { 2185 const auto step_result = thread.SingleStep(signo); 2186 if (step_result.Success()) 2187 SetState(eStateRunning, true); 2188 return step_result; 2189 } 2190 default: 2191 LLDB_LOG(log, "Unhandled state {0}.", state); 2192 llvm_unreachable("Unhandled state for resume"); 2193 } 2194 } 2195 2196 //===----------------------------------------------------------------------===// 2197 2198 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2199 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2200 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2201 triggering_tid); 2202 2203 m_pending_notification_tid = triggering_tid; 2204 2205 // Request a stop for all the thread stops that need to be stopped 2206 // and are not already known to be stopped. 2207 for (const auto &thread_sp : m_threads) { 2208 if (StateIsRunningState(thread_sp->GetState())) 2209 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2210 } 2211 2212 SignalIfAllThreadsStopped(); 2213 LLDB_LOG(log, "event processing done"); 2214 } 2215 2216 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2217 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2218 return; // No pending notification. Nothing to do. 2219 2220 for (const auto &thread_sp : m_threads) { 2221 if (StateIsRunningState(thread_sp->GetState())) 2222 return; // Some threads are still running. Don't signal yet. 2223 } 2224 2225 // We have a pending notification and all threads have stopped. 2226 Log *log( 2227 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2228 2229 // Clear any temporary breakpoints we used to implement software single 2230 // stepping. 2231 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2232 Status error = RemoveBreakpoint(thread_info.second); 2233 if (error.Fail()) 2234 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2235 thread_info.first, error); 2236 } 2237 m_threads_stepping_with_breakpoint.clear(); 2238 2239 // Notify the delegate about the stop 2240 SetCurrentThreadID(m_pending_notification_tid); 2241 SetState(StateType::eStateStopped, true); 2242 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2243 } 2244 2245 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2246 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2247 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2248 2249 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2250 StateIsRunningState(thread.GetState())) { 2251 // We will need to wait for this new thread to stop as well before firing 2252 // the 2253 // notification. 2254 thread.RequestStop(); 2255 } 2256 } 2257 2258 void NativeProcessLinux::SigchldHandler() { 2259 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2260 // Process all pending waitpid notifications. 2261 while (true) { 2262 int status = -1; 2263 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status, 2264 __WALL | __WNOTHREAD | WNOHANG); 2265 2266 if (wait_pid == 0) 2267 break; // We are done. 2268 2269 if (wait_pid == -1) { 2270 Status error(errno, eErrorTypePOSIX); 2271 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2272 break; 2273 } 2274 2275 WaitStatus wait_status = WaitStatus::Decode(status); 2276 bool exited = wait_status.type == WaitStatus::Exit || 2277 (wait_status.type == WaitStatus::Signal && 2278 wait_pid == static_cast<::pid_t>(GetID())); 2279 2280 LLDB_LOG( 2281 log, 2282 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", 2283 wait_pid, wait_status, exited); 2284 2285 MonitorCallback(wait_pid, exited, wait_status); 2286 } 2287 } 2288 2289 // Wrapper for ptrace to catch errors and log calls. 2290 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2291 // for PTRACE_PEEK*) 2292 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2293 void *data, size_t data_size, 2294 long *result) { 2295 Status error; 2296 long int ret; 2297 2298 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2299 2300 PtraceDisplayBytes(req, data, data_size); 2301 2302 errno = 0; 2303 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2304 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2305 *(unsigned int *)addr, data); 2306 else 2307 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2308 addr, data); 2309 2310 if (ret == -1) 2311 error.SetErrorToErrno(); 2312 2313 if (result) 2314 *result = ret; 2315 2316 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2317 data_size, ret); 2318 2319 PtraceDisplayBytes(req, data, data_size); 2320 2321 if (error.Fail()) 2322 LLDB_LOG(log, "ptrace() failed: {0}", error); 2323 2324 return error; 2325 } 2326 2327 llvm::Expected<ProcessorTraceMonitor &> 2328 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid, 2329 lldb::tid_t thread) { 2330 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2331 if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) { 2332 LLDB_LOG(log, "thread not specified: {0}", traceid); 2333 return Status("tracing not active thread not specified").ToError(); 2334 } 2335 2336 for (auto& iter : m_processor_trace_monitor) { 2337 if (traceid == iter.second->GetTraceID() && 2338 (thread == iter.first || thread == LLDB_INVALID_THREAD_ID)) 2339 return *(iter.second); 2340 } 2341 2342 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2343 return Status("tracing not active for this thread").ToError(); 2344 } 2345 2346 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid, 2347 lldb::tid_t thread, 2348 llvm::MutableArrayRef<uint8_t> &buffer, 2349 size_t offset) { 2350 TraceOptions trace_options; 2351 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2352 Status error; 2353 2354 LLDB_LOG(log, "traceid {0}", traceid); 2355 2356 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2357 if (!perf_monitor) { 2358 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2359 buffer = buffer.slice(buffer.size()); 2360 error = perf_monitor.takeError(); 2361 return error; 2362 } 2363 return (*perf_monitor).ReadPerfTraceData(buffer, offset); 2364 } 2365 2366 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread, 2367 llvm::MutableArrayRef<uint8_t> &buffer, 2368 size_t offset) { 2369 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2370 Status error; 2371 2372 LLDB_LOG(log, "traceid {0}", traceid); 2373 2374 auto perf_monitor = LookupProcessorTraceInstance(traceid, thread); 2375 if (!perf_monitor) { 2376 LLDB_LOG(log, "traceid not being traced: {0}", traceid); 2377 buffer = buffer.slice(buffer.size()); 2378 error = perf_monitor.takeError(); 2379 return error; 2380 } 2381 return (*perf_monitor).ReadPerfTraceAux(buffer, offset); 2382 } 2383 2384 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid, 2385 TraceOptions &config) { 2386 Status error; 2387 if (config.getThreadID() == LLDB_INVALID_THREAD_ID && 2388 m_pt_proces_trace_id == traceid) { 2389 if (m_pt_proces_trace_id == LLDB_INVALID_UID) { 2390 error.SetErrorString("tracing not active for this process"); 2391 return error; 2392 } 2393 config = m_pt_process_trace_config; 2394 } else { 2395 auto perf_monitor = 2396 LookupProcessorTraceInstance(traceid, config.getThreadID()); 2397 if (!perf_monitor) { 2398 error = perf_monitor.takeError(); 2399 return error; 2400 } 2401 error = (*perf_monitor).GetTraceConfig(config); 2402 } 2403 return error; 2404 } 2405 2406 lldb::user_id_t 2407 NativeProcessLinux::StartTraceGroup(const TraceOptions &config, 2408 Status &error) { 2409 2410 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2411 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2412 return LLDB_INVALID_UID; 2413 2414 if (m_pt_proces_trace_id != LLDB_INVALID_UID) { 2415 error.SetErrorString("tracing already active on this process"); 2416 return m_pt_proces_trace_id; 2417 } 2418 2419 for (const auto &thread_sp : m_threads) { 2420 if (auto traceInstance = ProcessorTraceMonitor::Create( 2421 GetID(), thread_sp->GetID(), config, true)) { 2422 m_pt_traced_thread_group.insert(thread_sp->GetID()); 2423 m_processor_trace_monitor.insert( 2424 std::make_pair(thread_sp->GetID(), std::move(*traceInstance))); 2425 } 2426 } 2427 2428 m_pt_process_trace_config = config; 2429 error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config); 2430 2431 // Trace on Complete process will have traceid of 0 2432 m_pt_proces_trace_id = 0; 2433 2434 LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id); 2435 return m_pt_proces_trace_id; 2436 } 2437 2438 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config, 2439 Status &error) { 2440 if (config.getType() != TraceType::eTraceTypeProcessorTrace) 2441 return NativeProcessProtocol::StartTrace(config, error); 2442 2443 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2444 2445 lldb::tid_t threadid = config.getThreadID(); 2446 2447 if (threadid == LLDB_INVALID_THREAD_ID) 2448 return StartTraceGroup(config, error); 2449 2450 auto thread_sp = GetThreadByID(threadid); 2451 if (!thread_sp) { 2452 // Thread not tracked by lldb so don't trace. 2453 error.SetErrorString("invalid thread id"); 2454 return LLDB_INVALID_UID; 2455 } 2456 2457 const auto &iter = m_processor_trace_monitor.find(threadid); 2458 if (iter != m_processor_trace_monitor.end()) { 2459 LLDB_LOG(log, "Thread already being traced"); 2460 error.SetErrorString("tracing already active on this thread"); 2461 return LLDB_INVALID_UID; 2462 } 2463 2464 auto traceMonitor = 2465 ProcessorTraceMonitor::Create(GetID(), threadid, config, false); 2466 if (!traceMonitor) { 2467 error = traceMonitor.takeError(); 2468 LLDB_LOG(log, "error {0}", error); 2469 return LLDB_INVALID_UID; 2470 } 2471 lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID(); 2472 m_processor_trace_monitor.insert( 2473 std::make_pair(threadid, std::move(*traceMonitor))); 2474 return ret_trace_id; 2475 } 2476 2477 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) { 2478 Status error; 2479 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2480 LLDB_LOG(log, "Thread {0}", thread); 2481 2482 const auto& iter = m_processor_trace_monitor.find(thread); 2483 if (iter == m_processor_trace_monitor.end()) { 2484 error.SetErrorString("tracing not active for this thread"); 2485 return error; 2486 } 2487 2488 if (iter->second->GetTraceID() == m_pt_proces_trace_id) { 2489 // traceid maps to the whole process so we have to erase it from the 2490 // thread group. 2491 LLDB_LOG(log, "traceid maps to process"); 2492 m_pt_traced_thread_group.erase(thread); 2493 } 2494 m_processor_trace_monitor.erase(iter); 2495 2496 return error; 2497 } 2498 2499 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid, 2500 lldb::tid_t thread) { 2501 Status error; 2502 2503 TraceOptions trace_options; 2504 trace_options.setThreadID(thread); 2505 error = NativeProcessLinux::GetTraceConfig(traceid, trace_options); 2506 2507 if (error.Fail()) 2508 return error; 2509 2510 switch (trace_options.getType()) { 2511 case lldb::TraceType::eTraceTypeProcessorTrace: 2512 if (traceid == m_pt_proces_trace_id && 2513 thread == LLDB_INVALID_THREAD_ID) 2514 StopProcessorTracingOnProcess(); 2515 else 2516 error = StopProcessorTracingOnThread(traceid, thread); 2517 break; 2518 default: 2519 error.SetErrorString("trace not supported"); 2520 break; 2521 } 2522 2523 return error; 2524 } 2525 2526 void NativeProcessLinux::StopProcessorTracingOnProcess() { 2527 for (auto thread_id_iter : m_pt_traced_thread_group) 2528 m_processor_trace_monitor.erase(thread_id_iter); 2529 m_pt_traced_thread_group.clear(); 2530 m_pt_proces_trace_id = LLDB_INVALID_UID; 2531 } 2532 2533 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid, 2534 lldb::tid_t thread) { 2535 Status error; 2536 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2537 2538 if (thread == LLDB_INVALID_THREAD_ID) { 2539 for (auto& iter : m_processor_trace_monitor) { 2540 if (iter.second->GetTraceID() == traceid) { 2541 // Stopping a trace instance for an individual thread 2542 // hence there will only be one traceid that can match. 2543 m_processor_trace_monitor.erase(iter.first); 2544 return error; 2545 } 2546 LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID()); 2547 } 2548 2549 LLDB_LOG(log, "Invalid TraceID"); 2550 error.SetErrorString("invalid trace id"); 2551 return error; 2552 } 2553 2554 // thread is specified so we can use find function on the map. 2555 const auto& iter = m_processor_trace_monitor.find(thread); 2556 if (iter == m_processor_trace_monitor.end()) { 2557 // thread not found in our map. 2558 LLDB_LOG(log, "thread not being traced"); 2559 error.SetErrorString("tracing not active for this thread"); 2560 return error; 2561 } 2562 if (iter->second->GetTraceID() != traceid) { 2563 // traceid did not match so it has to be invalid. 2564 LLDB_LOG(log, "Invalid TraceID"); 2565 error.SetErrorString("invalid trace id"); 2566 return error; 2567 } 2568 2569 LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread); 2570 2571 if (traceid == m_pt_proces_trace_id) { 2572 // traceid maps to the whole process so we have to erase it from the 2573 // thread group. 2574 LLDB_LOG(log, "traceid maps to process"); 2575 m_pt_traced_thread_group.erase(thread); 2576 } 2577 m_processor_trace_monitor.erase(iter); 2578 2579 return error; 2580 } 2581