1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<NativeProcessProtocolSP>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ArchSpec arch;
249   if ((status = ResolveProcessArchitecture(pid, arch)).Fail())
250     return status.ToError();
251 
252   // Set the architecture to the exe architecture.
253   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
254            arch.GetArchitectureName());
255 
256   status = SetDefaultPtraceOpts(pid);
257   if (status.Fail()) {
258     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
259     return status.ToError();
260   }
261 
262   std::shared_ptr<NativeProcessLinux> process_sp(new NativeProcessLinux(
263       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
264       arch, mainloop));
265   process_sp->InitializeThreads({pid});
266   return process_sp;
267 }
268 
269 llvm::Expected<NativeProcessProtocolSP> NativeProcessLinux::Factory::Attach(
270     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
271     MainLoop &mainloop) const {
272   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
273   LLDB_LOG(log, "pid = {0:x}", pid);
274 
275   // Retrieve the architecture for the running process.
276   ArchSpec arch;
277   Status status = ResolveProcessArchitecture(pid, arch);
278   if (!status.Success())
279     return status.ToError();
280 
281   auto tids_or = NativeProcessLinux::Attach(pid);
282   if (!tids_or)
283     return tids_or.takeError();
284 
285   std::shared_ptr<NativeProcessLinux> process_sp(
286       new NativeProcessLinux(pid, -1, native_delegate, arch, mainloop));
287   process_sp->InitializeThreads(*tids_or);
288   return process_sp;
289 }
290 
291 // -----------------------------------------------------------------------------
292 // Public Instance Methods
293 // -----------------------------------------------------------------------------
294 
295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
296                                        NativeDelegate &delegate,
297                                        const ArchSpec &arch, MainLoop &mainloop)
298     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
299   if (m_terminal_fd != -1) {
300     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
301     assert(status.Success());
302   }
303 
304   Status status;
305   m_sigchld_handle = mainloop.RegisterSignal(
306       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
307   assert(m_sigchld_handle && status.Success());
308 }
309 
310 void NativeProcessLinux::InitializeThreads(llvm::ArrayRef<::pid_t> tids) {
311   for (const auto &tid : tids) {
312     NativeThreadLinuxSP thread_sp = AddThread(tid);
313     assert(thread_sp && "AddThread() returned a nullptr thread");
314     thread_sp->SetStoppedBySignal(SIGSTOP);
315     ThreadWasCreated(*thread_sp);
316   }
317 
318   // Let our process instance know the thread has stopped.
319   SetCurrentThreadID(tids[0]);
320   SetState(StateType::eStateStopped, false);
321 
322   // Proccess any signals we received before installing our handler
323   SigchldHandler();
324 }
325 
326 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
327   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
328 
329   Status status;
330   // Use a map to keep track of the threads which we have attached/need to
331   // attach.
332   Host::TidMap tids_to_attach;
333   while (Host::FindProcessThreads(pid, tids_to_attach)) {
334     for (Host::TidMap::iterator it = tids_to_attach.begin();
335          it != tids_to_attach.end();) {
336       if (it->second == false) {
337         lldb::tid_t tid = it->first;
338 
339         // Attach to the requested process.
340         // An attach will cause the thread to stop with a SIGSTOP.
341         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
342           // No such thread. The thread may have exited.
343           // More error handling may be needed.
344           if (status.GetError() == ESRCH) {
345             it = tids_to_attach.erase(it);
346             continue;
347           }
348           return status.ToError();
349         }
350 
351         int wpid =
352             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
353         // Need to use __WALL otherwise we receive an error with errno=ECHLD
354         // At this point we should have a thread stopped if waitpid succeeds.
355         if (wpid < 0) {
356           // No such thread. The thread may have exited.
357           // More error handling may be needed.
358           if (errno == ESRCH) {
359             it = tids_to_attach.erase(it);
360             continue;
361           }
362           return llvm::errorCodeToError(
363               std::error_code(errno, std::generic_category()));
364         }
365 
366         if ((status = SetDefaultPtraceOpts(tid)).Fail())
367           return status.ToError();
368 
369         LLDB_LOG(log, "adding tid = {0}", tid);
370         it->second = true;
371       }
372 
373       // move the loop forward
374       ++it;
375     }
376   }
377 
378   size_t tid_count = tids_to_attach.size();
379   if (tid_count == 0)
380     return llvm::make_error<StringError>("No such process",
381                                          llvm::inconvertibleErrorCode());
382 
383   std::vector<::pid_t> tids;
384   tids.reserve(tid_count);
385   for (const auto &p : tids_to_attach)
386     tids.push_back(p.first);
387   return std::move(tids);
388 }
389 
390 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
391   long ptrace_opts = 0;
392 
393   // Have the child raise an event on exit.  This is used to keep the child in
394   // limbo until it is destroyed.
395   ptrace_opts |= PTRACE_O_TRACEEXIT;
396 
397   // Have the tracer trace threads which spawn in the inferior process.
398   // TODO: if we want to support tracing the inferiors' child, add the
399   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
400   ptrace_opts |= PTRACE_O_TRACECLONE;
401 
402   // Have the tracer notify us before execve returns
403   // (needed to disable legacy SIGTRAP generation)
404   ptrace_opts |= PTRACE_O_TRACEEXEC;
405 
406   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
407 }
408 
409 // Handles all waitpid events from the inferior process.
410 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
411                                          WaitStatus status) {
412   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
413 
414   // Certain activities differ based on whether the pid is the tid of the main
415   // thread.
416   const bool is_main_thread = (pid == GetID());
417 
418   // Handle when the thread exits.
419   if (exited) {
420     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
421              pid, is_main_thread ? "is" : "is not");
422 
423     // This is a thread that exited.  Ensure we're not tracking it anymore.
424     const bool thread_found = StopTrackingThread(pid);
425 
426     if (is_main_thread) {
427       // We only set the exit status and notify the delegate if we haven't
428       // already set the process
429       // state to an exited state.  We normally should have received a SIGTRAP |
430       // (PTRACE_EVENT_EXIT << 8)
431       // for the main thread.
432       const bool already_notified = (GetState() == StateType::eStateExited) ||
433                                     (GetState() == StateType::eStateCrashed);
434       if (!already_notified) {
435         LLDB_LOG(
436             log,
437             "tid = {0} handling main thread exit ({1}), expected exit state "
438             "already set but state was {2} instead, setting exit state now",
439             pid,
440             thread_found ? "stopped tracking thread metadata"
441                          : "thread metadata not found",
442             GetState());
443         // The main thread exited.  We're done monitoring.  Report to delegate.
444         SetExitStatus(status, true);
445 
446         // Notify delegate that our process has exited.
447         SetState(StateType::eStateExited, true);
448       } else
449         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
450                  thread_found ? "stopped tracking thread metadata"
451                               : "thread metadata not found");
452     } else {
453       // Do we want to report to the delegate in this case?  I think not.  If
454       // this was an orderly thread exit, we would already have received the
455       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
456       // all-stop then.
457       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
458                thread_found ? "stopped tracking thread metadata"
459                             : "thread metadata not found");
460     }
461     return;
462   }
463 
464   siginfo_t info;
465   const auto info_err = GetSignalInfo(pid, &info);
466   auto thread_sp = GetThreadByID(pid);
467 
468   if (!thread_sp) {
469     // Normally, the only situation when we cannot find the thread is if we have
470     // just received a new thread notification. This is indicated by
471     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
472     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
473 
474     if (info_err.Fail()) {
475       LLDB_LOG(log,
476                "(tid {0}) GetSignalInfo failed ({1}). "
477                "Ingoring this notification.",
478                pid, info_err);
479       return;
480     }
481 
482     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
483              info.si_pid);
484 
485     auto thread_sp = AddThread(pid);
486 
487     // Resume the newly created thread.
488     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
489     ThreadWasCreated(*thread_sp);
490     return;
491   }
492 
493   // Get details on the signal raised.
494   if (info_err.Success()) {
495     // We have retrieved the signal info.  Dispatch appropriately.
496     if (info.si_signo == SIGTRAP)
497       MonitorSIGTRAP(info, *thread_sp);
498     else
499       MonitorSignal(info, *thread_sp, exited);
500   } else {
501     if (info_err.GetError() == EINVAL) {
502       // This is a group stop reception for this tid.
503       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
504       // into the tracee, triggering the group-stop mechanism. Normally
505       // receiving these would stop the process, pending a SIGCONT. Simulating
506       // this state in a debugger is hard and is generally not needed (one use
507       // case is debugging background task being managed by a shell). For
508       // general use, it is sufficient to stop the process in a signal-delivery
509       // stop which happens before the group stop. This done by MonitorSignal
510       // and works correctly for all signals.
511       LLDB_LOG(log,
512                "received a group stop for pid {0} tid {1}. Transparent "
513                "handling of group stops not supported, resuming the "
514                "thread.",
515                GetID(), pid);
516       ResumeThread(*thread_sp, thread_sp->GetState(),
517                    LLDB_INVALID_SIGNAL_NUMBER);
518     } else {
519       // ptrace(GETSIGINFO) failed (but not due to group-stop).
520 
521       // A return value of ESRCH means the thread/process is no longer on the
522       // system, so it was killed somehow outside of our control.  Either way,
523       // we can't do anything with it anymore.
524 
525       // Stop tracking the metadata for the thread since it's entirely off the
526       // system now.
527       const bool thread_found = StopTrackingThread(pid);
528 
529       LLDB_LOG(log,
530                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
531                "status = {3}, main_thread = {4}, thread_found: {5}",
532                info_err, pid, signal, status, is_main_thread, thread_found);
533 
534       if (is_main_thread) {
535         // Notify the delegate - our process is not available but appears to
536         // have been killed outside
537         // our control.  Is eStateExited the right exit state in this case?
538         SetExitStatus(status, true);
539         SetState(StateType::eStateExited, true);
540       } else {
541         // This thread was pulled out from underneath us.  Anything to do here?
542         // Do we want to do an all stop?
543         LLDB_LOG(log,
544                  "pid {0} tid {1} non-main thread exit occurred, didn't "
545                  "tell delegate anything since thread disappeared out "
546                  "from underneath us",
547                  GetID(), pid);
548       }
549     }
550   }
551 }
552 
553 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
554   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
555 
556   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
557 
558   if (new_thread_sp) {
559     // We are already tracking the thread - we got the event on the new thread
560     // (see
561     // MonitorSignal) before this one. We are done.
562     return;
563   }
564 
565   // The thread is not tracked yet, let's wait for it to appear.
566   int status = -1;
567   LLDB_LOG(log,
568            "received thread creation event for tid {0}. tid not tracked "
569            "yet, waiting for thread to appear...",
570            tid);
571   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
572   // Since we are waiting on a specific tid, this must be the creation event.
573   // But let's do some checks just in case.
574   if (wait_pid != tid) {
575     LLDB_LOG(log,
576              "waiting for tid {0} failed. Assuming the thread has "
577              "disappeared in the meantime",
578              tid);
579     // The only way I know of this could happen is if the whole process was
580     // SIGKILLed in the mean time. In any case, we can't do anything about that
581     // now.
582     return;
583   }
584   if (WIFEXITED(status)) {
585     LLDB_LOG(log,
586              "waiting for tid {0} returned an 'exited' event. Not "
587              "tracking the thread.",
588              tid);
589     // Also a very improbable event.
590     return;
591   }
592 
593   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
594   new_thread_sp = AddThread(tid);
595 
596   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
597   ThreadWasCreated(*new_thread_sp);
598 }
599 
600 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
601                                         NativeThreadLinux &thread) {
602   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
603   const bool is_main_thread = (thread.GetID() == GetID());
604 
605   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
606 
607   switch (info.si_code) {
608   // TODO: these two cases are required if we want to support tracing of the
609   // inferiors' children.  We'd need this to debug a monitor.
610   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
611   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
612 
613   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
614     // This is the notification on the parent thread which informs us of new
615     // thread
616     // creation.
617     // We don't want to do anything with the parent thread so we just resume it.
618     // In case we
619     // want to implement "break on thread creation" functionality, we would need
620     // to stop
621     // here.
622 
623     unsigned long event_message = 0;
624     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
625       LLDB_LOG(log,
626                "pid {0} received thread creation event but "
627                "GetEventMessage failed so we don't know the new tid",
628                thread.GetID());
629     } else
630       WaitForNewThread(event_message);
631 
632     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
633     break;
634   }
635 
636   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
637     NativeThreadLinuxSP main_thread_sp;
638     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
639 
640     // Exec clears any pending notifications.
641     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
642 
643     // Remove all but the main thread here.  Linux fork creates a new process
644     // which only copies the main thread.
645     LLDB_LOG(log, "exec received, stop tracking all but main thread");
646 
647     for (auto thread_sp : m_threads) {
648       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
649       if (is_main_thread) {
650         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
651         LLDB_LOG(log, "found main thread with tid {0}, keeping",
652                  main_thread_sp->GetID());
653       } else {
654         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
655                  thread_sp->GetID());
656       }
657     }
658 
659     m_threads.clear();
660 
661     if (main_thread_sp) {
662       m_threads.push_back(main_thread_sp);
663       SetCurrentThreadID(main_thread_sp->GetID());
664       main_thread_sp->SetStoppedByExec();
665     } else {
666       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
667       LLDB_LOG(log,
668                "pid {0} no main thread found, discarded all threads, "
669                "we're in a no-thread state!",
670                GetID());
671     }
672 
673     // Tell coordinator about about the "new" (since exec) stopped main thread.
674     ThreadWasCreated(*main_thread_sp);
675 
676     // Let our delegate know we have just exec'd.
677     NotifyDidExec();
678 
679     // If we have a main thread, indicate we are stopped.
680     assert(main_thread_sp && "exec called during ptraced process but no main "
681                              "thread metadata tracked");
682 
683     // Let the process know we're stopped.
684     StopRunningThreads(main_thread_sp->GetID());
685 
686     break;
687   }
688 
689   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
690     // The inferior process or one of its threads is about to exit.
691     // We don't want to do anything with the thread so we just resume it. In
692     // case we
693     // want to implement "break on thread exit" functionality, we would need to
694     // stop
695     // here.
696 
697     unsigned long data = 0;
698     if (GetEventMessage(thread.GetID(), &data).Fail())
699       data = -1;
700 
701     LLDB_LOG(log,
702              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
703              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
704              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
705              is_main_thread);
706 
707     if (is_main_thread)
708       SetExitStatus(WaitStatus::Decode(data), true);
709 
710     StateType state = thread.GetState();
711     if (!StateIsRunningState(state)) {
712       // Due to a kernel bug, we may sometimes get this stop after the inferior
713       // gets a
714       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
715       // since normally,
716       // we should not be receiving any ptrace events while the inferior is
717       // stopped. This
718       // makes sure that the inferior is resumed and exits normally.
719       state = eStateRunning;
720     }
721     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
722 
723     break;
724   }
725 
726   case 0:
727   case TRAP_TRACE:  // We receive this on single stepping.
728   case TRAP_HWBKPT: // We receive this on watchpoint hit
729   {
730     // If a watchpoint was hit, report it
731     uint32_t wp_index;
732     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
733         wp_index, (uintptr_t)info.si_addr);
734     if (error.Fail())
735       LLDB_LOG(log,
736                "received error while checking for watchpoint hits, pid = "
737                "{0}, error = {1}",
738                thread.GetID(), error);
739     if (wp_index != LLDB_INVALID_INDEX32) {
740       MonitorWatchpoint(thread, wp_index);
741       break;
742     }
743 
744     // If a breakpoint was hit, report it
745     uint32_t bp_index;
746     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
747         bp_index, (uintptr_t)info.si_addr);
748     if (error.Fail())
749       LLDB_LOG(log, "received error while checking for hardware "
750                     "breakpoint hits, pid = {0}, error = {1}",
751                thread.GetID(), error);
752     if (bp_index != LLDB_INVALID_INDEX32) {
753       MonitorBreakpoint(thread);
754       break;
755     }
756 
757     // Otherwise, report step over
758     MonitorTrace(thread);
759     break;
760   }
761 
762   case SI_KERNEL:
763 #if defined __mips__
764     // For mips there is no special signal for watchpoint
765     // So we check for watchpoint in kernel trap
766     {
767       // If a watchpoint was hit, report it
768       uint32_t wp_index;
769       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
770           wp_index, LLDB_INVALID_ADDRESS);
771       if (error.Fail())
772         LLDB_LOG(log,
773                  "received error while checking for watchpoint hits, pid = "
774                  "{0}, error = {1}",
775                  thread.GetID(), error);
776       if (wp_index != LLDB_INVALID_INDEX32) {
777         MonitorWatchpoint(thread, wp_index);
778         break;
779       }
780     }
781 // NO BREAK
782 #endif
783   case TRAP_BRKPT:
784     MonitorBreakpoint(thread);
785     break;
786 
787   case SIGTRAP:
788   case (SIGTRAP | 0x80):
789     LLDB_LOG(
790         log,
791         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
792         info.si_code, GetID(), thread.GetID());
793 
794     // Ignore these signals until we know more about them.
795     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
796     break;
797 
798   default:
799     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
800              info.si_code, GetID(), thread.GetID());
801     MonitorSignal(info, thread, false);
802     break;
803   }
804 }
805 
806 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
807   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
808   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
809 
810   // This thread is currently stopped.
811   thread.SetStoppedByTrace();
812 
813   StopRunningThreads(thread.GetID());
814 }
815 
816 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
817   Log *log(
818       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
819   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
820 
821   // Mark the thread as stopped at breakpoint.
822   thread.SetStoppedByBreakpoint();
823   Status error = FixupBreakpointPCAsNeeded(thread);
824   if (error.Fail())
825     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
826 
827   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
828       m_threads_stepping_with_breakpoint.end())
829     thread.SetStoppedByTrace();
830 
831   StopRunningThreads(thread.GetID());
832 }
833 
834 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
835                                            uint32_t wp_index) {
836   Log *log(
837       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
838   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
839            thread.GetID(), wp_index);
840 
841   // Mark the thread as stopped at watchpoint.
842   // The address is at (lldb::addr_t)info->si_addr if we need it.
843   thread.SetStoppedByWatchpoint(wp_index);
844 
845   // We need to tell all other running threads before we notify the delegate
846   // about this stop.
847   StopRunningThreads(thread.GetID());
848 }
849 
850 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
851                                        NativeThreadLinux &thread, bool exited) {
852   const int signo = info.si_signo;
853   const bool is_from_llgs = info.si_pid == getpid();
854 
855   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
856 
857   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
858   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
859   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
860   //
861   // IOW, user generated signals never generate what we consider to be a
862   // "crash".
863   //
864   // Similarly, ACK signals generated by this monitor.
865 
866   // Handle the signal.
867   LLDB_LOG(log,
868            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
869            "waitpid pid = {4})",
870            Host::GetSignalAsCString(signo), signo, info.si_code,
871            thread.GetID());
872 
873   // Check for thread stop notification.
874   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
875     // This is a tgkill()-based stop.
876     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
877 
878     // Check that we're not already marked with a stop reason.
879     // Note this thread really shouldn't already be marked as stopped - if we
880     // were, that would imply that the kernel signaled us with the thread
881     // stopping which we handled and marked as stopped, and that, without an
882     // intervening resume, we received another stop.  It is more likely that we
883     // are missing the marking of a run state somewhere if we find that the
884     // thread was marked as stopped.
885     const StateType thread_state = thread.GetState();
886     if (!StateIsStoppedState(thread_state, false)) {
887       // An inferior thread has stopped because of a SIGSTOP we have sent it.
888       // Generally, these are not important stops and we don't want to report
889       // them as they are just used to stop other threads when one thread (the
890       // one with the *real* stop reason) hits a breakpoint (watchpoint,
891       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
892       // the real stop reason, so we leave the signal intact if this is the
893       // thread that was chosen as the triggering thread.
894       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
895         if (m_pending_notification_tid == thread.GetID())
896           thread.SetStoppedBySignal(SIGSTOP, &info);
897         else
898           thread.SetStoppedWithNoReason();
899 
900         SetCurrentThreadID(thread.GetID());
901         SignalIfAllThreadsStopped();
902       } else {
903         // We can end up here if stop was initiated by LLGS but by this time a
904         // thread stop has occurred - maybe initiated by another event.
905         Status error = ResumeThread(thread, thread.GetState(), 0);
906         if (error.Fail())
907           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
908                    error);
909       }
910     } else {
911       LLDB_LOG(log,
912                "pid {0} tid {1}, thread was already marked as a stopped "
913                "state (state={2}), leaving stop signal as is",
914                GetID(), thread.GetID(), thread_state);
915       SignalIfAllThreadsStopped();
916     }
917 
918     // Done handling.
919     return;
920   }
921 
922   // Check if debugger should stop at this signal or just ignore it
923   // and resume the inferior.
924   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
925      ResumeThread(thread, thread.GetState(), signo);
926      return;
927   }
928 
929   // This thread is stopped.
930   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
931   thread.SetStoppedBySignal(signo, &info);
932 
933   // Send a stop to the debugger after we get all other threads to stop.
934   StopRunningThreads(thread.GetID());
935 }
936 
937 namespace {
938 
939 struct EmulatorBaton {
940   NativeProcessLinux *m_process;
941   NativeRegisterContext *m_reg_context;
942 
943   // eRegisterKindDWARF -> RegsiterValue
944   std::unordered_map<uint32_t, RegisterValue> m_register_values;
945 
946   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
947       : m_process(process), m_reg_context(reg_context) {}
948 };
949 
950 } // anonymous namespace
951 
952 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
953                                  const EmulateInstruction::Context &context,
954                                  lldb::addr_t addr, void *dst, size_t length) {
955   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
956 
957   size_t bytes_read;
958   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
959   return bytes_read;
960 }
961 
962 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
963                                  const RegisterInfo *reg_info,
964                                  RegisterValue &reg_value) {
965   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
966 
967   auto it = emulator_baton->m_register_values.find(
968       reg_info->kinds[eRegisterKindDWARF]);
969   if (it != emulator_baton->m_register_values.end()) {
970     reg_value = it->second;
971     return true;
972   }
973 
974   // The emulator only fill in the dwarf regsiter numbers (and in some case
975   // the generic register numbers). Get the full register info from the
976   // register context based on the dwarf register numbers.
977   const RegisterInfo *full_reg_info =
978       emulator_baton->m_reg_context->GetRegisterInfo(
979           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
980 
981   Status error =
982       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
983   if (error.Success())
984     return true;
985 
986   return false;
987 }
988 
989 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
990                                   const EmulateInstruction::Context &context,
991                                   const RegisterInfo *reg_info,
992                                   const RegisterValue &reg_value) {
993   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
994   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
995       reg_value;
996   return true;
997 }
998 
999 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
1000                                   const EmulateInstruction::Context &context,
1001                                   lldb::addr_t addr, const void *dst,
1002                                   size_t length) {
1003   return length;
1004 }
1005 
1006 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1007   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1008       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1009   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1010                                                   LLDB_INVALID_ADDRESS);
1011 }
1012 
1013 Status
1014 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
1015   Status error;
1016   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1017 
1018   std::unique_ptr<EmulateInstruction> emulator_ap(
1019       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1020                                      nullptr));
1021 
1022   if (emulator_ap == nullptr)
1023     return Status("Instruction emulator not found!");
1024 
1025   EmulatorBaton baton(this, register_context_sp.get());
1026   emulator_ap->SetBaton(&baton);
1027   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1028   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1029   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1030   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1031 
1032   if (!emulator_ap->ReadInstruction())
1033     return Status("Read instruction failed!");
1034 
1035   bool emulation_result =
1036       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1037 
1038   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1039       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1040   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1041       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1042 
1043   auto pc_it =
1044       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1045   auto flags_it =
1046       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1047 
1048   lldb::addr_t next_pc;
1049   lldb::addr_t next_flags;
1050   if (emulation_result) {
1051     assert(pc_it != baton.m_register_values.end() &&
1052            "Emulation was successfull but PC wasn't updated");
1053     next_pc = pc_it->second.GetAsUInt64();
1054 
1055     if (flags_it != baton.m_register_values.end())
1056       next_flags = flags_it->second.GetAsUInt64();
1057     else
1058       next_flags = ReadFlags(register_context_sp.get());
1059   } else if (pc_it == baton.m_register_values.end()) {
1060     // Emulate instruction failed and it haven't changed PC. Advance PC
1061     // with the size of the current opcode because the emulation of all
1062     // PC modifying instruction should be successful. The failure most
1063     // likely caused by a not supported instruction which don't modify PC.
1064     next_pc =
1065         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1066     next_flags = ReadFlags(register_context_sp.get());
1067   } else {
1068     // The instruction emulation failed after it modified the PC. It is an
1069     // unknown error where we can't continue because the next instruction is
1070     // modifying the PC but we don't  know how.
1071     return Status("Instruction emulation failed unexpectedly.");
1072   }
1073 
1074   if (m_arch.GetMachine() == llvm::Triple::arm) {
1075     if (next_flags & 0x20) {
1076       // Thumb mode
1077       error = SetSoftwareBreakpoint(next_pc, 2);
1078     } else {
1079       // Arm mode
1080       error = SetSoftwareBreakpoint(next_pc, 4);
1081     }
1082   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1083              m_arch.GetMachine() == llvm::Triple::mips64el ||
1084              m_arch.GetMachine() == llvm::Triple::mips ||
1085              m_arch.GetMachine() == llvm::Triple::mipsel)
1086     error = SetSoftwareBreakpoint(next_pc, 4);
1087   else {
1088     // No size hint is given for the next breakpoint
1089     error = SetSoftwareBreakpoint(next_pc, 0);
1090   }
1091 
1092   // If setting the breakpoint fails because next_pc is out of
1093   // the address space, ignore it and let the debugee segfault.
1094   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1095     return Status();
1096   } else if (error.Fail())
1097     return error;
1098 
1099   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1100 
1101   return Status();
1102 }
1103 
1104 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1105   if (m_arch.GetMachine() == llvm::Triple::arm ||
1106       m_arch.GetMachine() == llvm::Triple::mips64 ||
1107       m_arch.GetMachine() == llvm::Triple::mips64el ||
1108       m_arch.GetMachine() == llvm::Triple::mips ||
1109       m_arch.GetMachine() == llvm::Triple::mipsel)
1110     return false;
1111   return true;
1112 }
1113 
1114 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1115   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1116   LLDB_LOG(log, "pid {0}", GetID());
1117 
1118   bool software_single_step = !SupportHardwareSingleStepping();
1119 
1120   if (software_single_step) {
1121     for (auto thread_sp : m_threads) {
1122       assert(thread_sp && "thread list should not contain NULL threads");
1123 
1124       const ResumeAction *const action =
1125           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1126       if (action == nullptr)
1127         continue;
1128 
1129       if (action->state == eStateStepping) {
1130         Status error = SetupSoftwareSingleStepping(
1131             static_cast<NativeThreadLinux &>(*thread_sp));
1132         if (error.Fail())
1133           return error;
1134       }
1135     }
1136   }
1137 
1138   for (auto thread_sp : m_threads) {
1139     assert(thread_sp && "thread list should not contain NULL threads");
1140 
1141     const ResumeAction *const action =
1142         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1143 
1144     if (action == nullptr) {
1145       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1146                thread_sp->GetID());
1147       continue;
1148     }
1149 
1150     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1151              action->state, GetID(), thread_sp->GetID());
1152 
1153     switch (action->state) {
1154     case eStateRunning:
1155     case eStateStepping: {
1156       // Run the thread, possibly feeding it the signal.
1157       const int signo = action->signal;
1158       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1159                    signo);
1160       break;
1161     }
1162 
1163     case eStateSuspended:
1164     case eStateStopped:
1165       llvm_unreachable("Unexpected state");
1166 
1167     default:
1168       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1169                     "for pid %" PRIu64 ", tid %" PRIu64,
1170                     __FUNCTION__, StateAsCString(action->state), GetID(),
1171                     thread_sp->GetID());
1172     }
1173   }
1174 
1175   return Status();
1176 }
1177 
1178 Status NativeProcessLinux::Halt() {
1179   Status error;
1180 
1181   if (kill(GetID(), SIGSTOP) != 0)
1182     error.SetErrorToErrno();
1183 
1184   return error;
1185 }
1186 
1187 Status NativeProcessLinux::Detach() {
1188   Status error;
1189 
1190   // Stop monitoring the inferior.
1191   m_sigchld_handle.reset();
1192 
1193   // Tell ptrace to detach from the process.
1194   if (GetID() == LLDB_INVALID_PROCESS_ID)
1195     return error;
1196 
1197   for (auto thread_sp : m_threads) {
1198     Status e = Detach(thread_sp->GetID());
1199     if (e.Fail())
1200       error =
1201           e; // Save the error, but still attempt to detach from other threads.
1202   }
1203 
1204   m_processor_trace_monitor.clear();
1205   m_pt_proces_trace_id = LLDB_INVALID_UID;
1206 
1207   return error;
1208 }
1209 
1210 Status NativeProcessLinux::Signal(int signo) {
1211   Status error;
1212 
1213   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1214   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1215            Host::GetSignalAsCString(signo), GetID());
1216 
1217   if (kill(GetID(), signo))
1218     error.SetErrorToErrno();
1219 
1220   return error;
1221 }
1222 
1223 Status NativeProcessLinux::Interrupt() {
1224   // Pick a running thread (or if none, a not-dead stopped thread) as
1225   // the chosen thread that will be the stop-reason thread.
1226   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1227 
1228   NativeThreadProtocolSP running_thread_sp;
1229   NativeThreadProtocolSP stopped_thread_sp;
1230 
1231   LLDB_LOG(log, "selecting running thread for interrupt target");
1232   for (auto thread_sp : m_threads) {
1233     // The thread shouldn't be null but lets just cover that here.
1234     if (!thread_sp)
1235       continue;
1236 
1237     // If we have a running or stepping thread, we'll call that the
1238     // target of the interrupt.
1239     const auto thread_state = thread_sp->GetState();
1240     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1241       running_thread_sp = thread_sp;
1242       break;
1243     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1244       // Remember the first non-dead stopped thread.  We'll use that as a backup
1245       // if there are no running threads.
1246       stopped_thread_sp = thread_sp;
1247     }
1248   }
1249 
1250   if (!running_thread_sp && !stopped_thread_sp) {
1251     Status error("found no running/stepping or live stopped threads as target "
1252                  "for interrupt");
1253     LLDB_LOG(log, "skipping due to error: {0}", error);
1254 
1255     return error;
1256   }
1257 
1258   NativeThreadProtocolSP deferred_signal_thread_sp =
1259       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1260 
1261   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1262            running_thread_sp ? "running" : "stopped",
1263            deferred_signal_thread_sp->GetID());
1264 
1265   StopRunningThreads(deferred_signal_thread_sp->GetID());
1266 
1267   return Status();
1268 }
1269 
1270 Status NativeProcessLinux::Kill() {
1271   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1272   LLDB_LOG(log, "pid {0}", GetID());
1273 
1274   Status error;
1275 
1276   switch (m_state) {
1277   case StateType::eStateInvalid:
1278   case StateType::eStateExited:
1279   case StateType::eStateCrashed:
1280   case StateType::eStateDetached:
1281   case StateType::eStateUnloaded:
1282     // Nothing to do - the process is already dead.
1283     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1284              m_state);
1285     return error;
1286 
1287   case StateType::eStateConnected:
1288   case StateType::eStateAttaching:
1289   case StateType::eStateLaunching:
1290   case StateType::eStateStopped:
1291   case StateType::eStateRunning:
1292   case StateType::eStateStepping:
1293   case StateType::eStateSuspended:
1294     // We can try to kill a process in these states.
1295     break;
1296   }
1297 
1298   if (kill(GetID(), SIGKILL) != 0) {
1299     error.SetErrorToErrno();
1300     return error;
1301   }
1302 
1303   return error;
1304 }
1305 
1306 static Status
1307 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1308                                       MemoryRegionInfo &memory_region_info) {
1309   memory_region_info.Clear();
1310 
1311   StringExtractor line_extractor(maps_line);
1312 
1313   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1314   // pathname
1315   // perms: rwxp   (letter is present if set, '-' if not, final character is
1316   // p=private, s=shared).
1317 
1318   // Parse out the starting address
1319   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1320 
1321   // Parse out hyphen separating start and end address from range.
1322   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1323     return Status(
1324         "malformed /proc/{pid}/maps entry, missing dash between address range");
1325 
1326   // Parse out the ending address
1327   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1328 
1329   // Parse out the space after the address.
1330   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1331     return Status(
1332         "malformed /proc/{pid}/maps entry, missing space after range");
1333 
1334   // Save the range.
1335   memory_region_info.GetRange().SetRangeBase(start_address);
1336   memory_region_info.GetRange().SetRangeEnd(end_address);
1337 
1338   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1339   // process.
1340   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1341 
1342   // Parse out each permission entry.
1343   if (line_extractor.GetBytesLeft() < 4)
1344     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1345                   "permissions");
1346 
1347   // Handle read permission.
1348   const char read_perm_char = line_extractor.GetChar();
1349   if (read_perm_char == 'r')
1350     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1351   else if (read_perm_char == '-')
1352     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1353   else
1354     return Status("unexpected /proc/{pid}/maps read permission char");
1355 
1356   // Handle write permission.
1357   const char write_perm_char = line_extractor.GetChar();
1358   if (write_perm_char == 'w')
1359     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1360   else if (write_perm_char == '-')
1361     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1362   else
1363     return Status("unexpected /proc/{pid}/maps write permission char");
1364 
1365   // Handle execute permission.
1366   const char exec_perm_char = line_extractor.GetChar();
1367   if (exec_perm_char == 'x')
1368     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1369   else if (exec_perm_char == '-')
1370     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1371   else
1372     return Status("unexpected /proc/{pid}/maps exec permission char");
1373 
1374   line_extractor.GetChar();              // Read the private bit
1375   line_extractor.SkipSpaces();           // Skip the separator
1376   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1377   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1378   line_extractor.GetChar();              // Read the device id separator
1379   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1380   line_extractor.SkipSpaces();           // Skip the separator
1381   line_extractor.GetU64(0, 10);          // Read the inode number
1382 
1383   line_extractor.SkipSpaces();
1384   const char *name = line_extractor.Peek();
1385   if (name)
1386     memory_region_info.SetName(name);
1387 
1388   return Status();
1389 }
1390 
1391 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1392                                                MemoryRegionInfo &range_info) {
1393   // FIXME review that the final memory region returned extends to the end of
1394   // the virtual address space,
1395   // with no perms if it is not mapped.
1396 
1397   // Use an approach that reads memory regions from /proc/{pid}/maps.
1398   // Assume proc maps entries are in ascending order.
1399   // FIXME assert if we find differently.
1400 
1401   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1402     // We're done.
1403     return Status("unsupported");
1404   }
1405 
1406   Status error = PopulateMemoryRegionCache();
1407   if (error.Fail()) {
1408     return error;
1409   }
1410 
1411   lldb::addr_t prev_base_address = 0;
1412 
1413   // FIXME start by finding the last region that is <= target address using
1414   // binary search.  Data is sorted.
1415   // There can be a ton of regions on pthreads apps with lots of threads.
1416   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1417        ++it) {
1418     MemoryRegionInfo &proc_entry_info = it->first;
1419 
1420     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1421     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1422            "descending /proc/pid/maps entries detected, unexpected");
1423     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1424     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1425 
1426     // If the target address comes before this entry, indicate distance to next
1427     // region.
1428     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1429       range_info.GetRange().SetRangeBase(load_addr);
1430       range_info.GetRange().SetByteSize(
1431           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1432       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1433       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1434       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1435       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1436 
1437       return error;
1438     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1439       // The target address is within the memory region we're processing here.
1440       range_info = proc_entry_info;
1441       return error;
1442     }
1443 
1444     // The target memory address comes somewhere after the region we just
1445     // parsed.
1446   }
1447 
1448   // If we made it here, we didn't find an entry that contained the given
1449   // address. Return the
1450   // load_addr as start and the amount of bytes betwwen load address and the end
1451   // of the memory as
1452   // size.
1453   range_info.GetRange().SetRangeBase(load_addr);
1454   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1455   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1456   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1457   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1458   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1459   return error;
1460 }
1461 
1462 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1463   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1464 
1465   // If our cache is empty, pull the latest.  There should always be at least
1466   // one memory region if memory region handling is supported.
1467   if (!m_mem_region_cache.empty()) {
1468     LLDB_LOG(log, "reusing {0} cached memory region entries",
1469              m_mem_region_cache.size());
1470     return Status();
1471   }
1472 
1473   auto BufferOrError = getProcFile(GetID(), "maps");
1474   if (!BufferOrError) {
1475     m_supports_mem_region = LazyBool::eLazyBoolNo;
1476     return BufferOrError.getError();
1477   }
1478   StringRef Rest = BufferOrError.get()->getBuffer();
1479   while (! Rest.empty()) {
1480     StringRef Line;
1481     std::tie(Line, Rest) = Rest.split('\n');
1482     MemoryRegionInfo info;
1483     const Status parse_error =
1484         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1485     if (parse_error.Fail()) {
1486       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1487                parse_error);
1488       m_supports_mem_region = LazyBool::eLazyBoolNo;
1489       return parse_error;
1490     }
1491     m_mem_region_cache.emplace_back(
1492         info, FileSpec(info.GetName().GetCString(), true));
1493   }
1494 
1495   if (m_mem_region_cache.empty()) {
1496     // No entries after attempting to read them.  This shouldn't happen if
1497     // /proc/{pid}/maps is supported. Assume we don't support map entries
1498     // via procfs.
1499     m_supports_mem_region = LazyBool::eLazyBoolNo;
1500     LLDB_LOG(log,
1501              "failed to find any procfs maps entries, assuming no support "
1502              "for memory region metadata retrieval");
1503     return Status("not supported");
1504   }
1505 
1506   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1507            m_mem_region_cache.size(), GetID());
1508 
1509   // We support memory retrieval, remember that.
1510   m_supports_mem_region = LazyBool::eLazyBoolYes;
1511   return Status();
1512 }
1513 
1514 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1515   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1516   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1517   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1518            m_mem_region_cache.size());
1519   m_mem_region_cache.clear();
1520 }
1521 
1522 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1523                                           lldb::addr_t &addr) {
1524 // FIXME implementing this requires the equivalent of
1525 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1526 // functional ThreadPlans working with Native*Protocol.
1527 #if 1
1528   return Status("not implemented yet");
1529 #else
1530   addr = LLDB_INVALID_ADDRESS;
1531 
1532   unsigned prot = 0;
1533   if (permissions & lldb::ePermissionsReadable)
1534     prot |= eMmapProtRead;
1535   if (permissions & lldb::ePermissionsWritable)
1536     prot |= eMmapProtWrite;
1537   if (permissions & lldb::ePermissionsExecutable)
1538     prot |= eMmapProtExec;
1539 
1540   // TODO implement this directly in NativeProcessLinux
1541   // (and lift to NativeProcessPOSIX if/when that class is
1542   // refactored out).
1543   if (InferiorCallMmap(this, addr, 0, size, prot,
1544                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1545     m_addr_to_mmap_size[addr] = size;
1546     return Status();
1547   } else {
1548     addr = LLDB_INVALID_ADDRESS;
1549     return Status("unable to allocate %" PRIu64
1550                   " bytes of memory with permissions %s",
1551                   size, GetPermissionsAsCString(permissions));
1552   }
1553 #endif
1554 }
1555 
1556 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1557   // FIXME see comments in AllocateMemory - required lower-level
1558   // bits not in place yet (ThreadPlans)
1559   return Status("not implemented");
1560 }
1561 
1562 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1563   // punt on this for now
1564   return LLDB_INVALID_ADDRESS;
1565 }
1566 
1567 size_t NativeProcessLinux::UpdateThreads() {
1568   // The NativeProcessLinux monitoring threads are always up to date
1569   // with respect to thread state and they keep the thread list
1570   // populated properly. All this method needs to do is return the
1571   // thread count.
1572   return m_threads.size();
1573 }
1574 
1575 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1576   arch = m_arch;
1577   return true;
1578 }
1579 
1580 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1581     uint32_t &actual_opcode_size) {
1582   // FIXME put this behind a breakpoint protocol class that can be
1583   // set per architecture.  Need ARM, MIPS support here.
1584   static const uint8_t g_i386_opcode[] = {0xCC};
1585   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1586 
1587   switch (m_arch.GetMachine()) {
1588   case llvm::Triple::x86:
1589   case llvm::Triple::x86_64:
1590     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1591     return Status();
1592 
1593   case llvm::Triple::systemz:
1594     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1595     return Status();
1596 
1597   case llvm::Triple::arm:
1598   case llvm::Triple::aarch64:
1599   case llvm::Triple::mips64:
1600   case llvm::Triple::mips64el:
1601   case llvm::Triple::mips:
1602   case llvm::Triple::mipsel:
1603     // On these architectures the PC don't get updated for breakpoint hits
1604     actual_opcode_size = 0;
1605     return Status();
1606 
1607   default:
1608     assert(false && "CPU type not supported!");
1609     return Status("CPU type not supported");
1610   }
1611 }
1612 
1613 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1614                                          bool hardware) {
1615   if (hardware)
1616     return SetHardwareBreakpoint(addr, size);
1617   else
1618     return SetSoftwareBreakpoint(addr, size);
1619 }
1620 
1621 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1622   if (hardware)
1623     return RemoveHardwareBreakpoint(addr);
1624   else
1625     return NativeProcessProtocol::RemoveBreakpoint(addr);
1626 }
1627 
1628 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1629     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1630     const uint8_t *&trap_opcode_bytes) {
1631   // FIXME put this behind a breakpoint protocol class that can be set per
1632   // architecture.  Need MIPS support here.
1633   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1634   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1635   // linux kernel does otherwise.
1636   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1637   static const uint8_t g_i386_opcode[] = {0xCC};
1638   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1639   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1640   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1641   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1642 
1643   switch (m_arch.GetMachine()) {
1644   case llvm::Triple::aarch64:
1645     trap_opcode_bytes = g_aarch64_opcode;
1646     actual_opcode_size = sizeof(g_aarch64_opcode);
1647     return Status();
1648 
1649   case llvm::Triple::arm:
1650     switch (trap_opcode_size_hint) {
1651     case 2:
1652       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1653       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1654       return Status();
1655     case 4:
1656       trap_opcode_bytes = g_arm_breakpoint_opcode;
1657       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1658       return Status();
1659     default:
1660       assert(false && "Unrecognised trap opcode size hint!");
1661       return Status("Unrecognised trap opcode size hint!");
1662     }
1663 
1664   case llvm::Triple::x86:
1665   case llvm::Triple::x86_64:
1666     trap_opcode_bytes = g_i386_opcode;
1667     actual_opcode_size = sizeof(g_i386_opcode);
1668     return Status();
1669 
1670   case llvm::Triple::mips:
1671   case llvm::Triple::mips64:
1672     trap_opcode_bytes = g_mips64_opcode;
1673     actual_opcode_size = sizeof(g_mips64_opcode);
1674     return Status();
1675 
1676   case llvm::Triple::mipsel:
1677   case llvm::Triple::mips64el:
1678     trap_opcode_bytes = g_mips64el_opcode;
1679     actual_opcode_size = sizeof(g_mips64el_opcode);
1680     return Status();
1681 
1682   case llvm::Triple::systemz:
1683     trap_opcode_bytes = g_s390x_opcode;
1684     actual_opcode_size = sizeof(g_s390x_opcode);
1685     return Status();
1686 
1687   default:
1688     assert(false && "CPU type not supported!");
1689     return Status("CPU type not supported");
1690   }
1691 }
1692 
1693 #if 0
1694 ProcessMessage::CrashReason
1695 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1696 {
1697     ProcessMessage::CrashReason reason;
1698     assert(info->si_signo == SIGSEGV);
1699 
1700     reason = ProcessMessage::eInvalidCrashReason;
1701 
1702     switch (info->si_code)
1703     {
1704     default:
1705         assert(false && "unexpected si_code for SIGSEGV");
1706         break;
1707     case SI_KERNEL:
1708         // Linux will occasionally send spurious SI_KERNEL codes.
1709         // (this is poorly documented in sigaction)
1710         // One way to get this is via unaligned SIMD loads.
1711         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1712         break;
1713     case SEGV_MAPERR:
1714         reason = ProcessMessage::eInvalidAddress;
1715         break;
1716     case SEGV_ACCERR:
1717         reason = ProcessMessage::ePrivilegedAddress;
1718         break;
1719     }
1720 
1721     return reason;
1722 }
1723 #endif
1724 
1725 #if 0
1726 ProcessMessage::CrashReason
1727 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1728 {
1729     ProcessMessage::CrashReason reason;
1730     assert(info->si_signo == SIGILL);
1731 
1732     reason = ProcessMessage::eInvalidCrashReason;
1733 
1734     switch (info->si_code)
1735     {
1736     default:
1737         assert(false && "unexpected si_code for SIGILL");
1738         break;
1739     case ILL_ILLOPC:
1740         reason = ProcessMessage::eIllegalOpcode;
1741         break;
1742     case ILL_ILLOPN:
1743         reason = ProcessMessage::eIllegalOperand;
1744         break;
1745     case ILL_ILLADR:
1746         reason = ProcessMessage::eIllegalAddressingMode;
1747         break;
1748     case ILL_ILLTRP:
1749         reason = ProcessMessage::eIllegalTrap;
1750         break;
1751     case ILL_PRVOPC:
1752         reason = ProcessMessage::ePrivilegedOpcode;
1753         break;
1754     case ILL_PRVREG:
1755         reason = ProcessMessage::ePrivilegedRegister;
1756         break;
1757     case ILL_COPROC:
1758         reason = ProcessMessage::eCoprocessorError;
1759         break;
1760     case ILL_BADSTK:
1761         reason = ProcessMessage::eInternalStackError;
1762         break;
1763     }
1764 
1765     return reason;
1766 }
1767 #endif
1768 
1769 #if 0
1770 ProcessMessage::CrashReason
1771 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1772 {
1773     ProcessMessage::CrashReason reason;
1774     assert(info->si_signo == SIGFPE);
1775 
1776     reason = ProcessMessage::eInvalidCrashReason;
1777 
1778     switch (info->si_code)
1779     {
1780     default:
1781         assert(false && "unexpected si_code for SIGFPE");
1782         break;
1783     case FPE_INTDIV:
1784         reason = ProcessMessage::eIntegerDivideByZero;
1785         break;
1786     case FPE_INTOVF:
1787         reason = ProcessMessage::eIntegerOverflow;
1788         break;
1789     case FPE_FLTDIV:
1790         reason = ProcessMessage::eFloatDivideByZero;
1791         break;
1792     case FPE_FLTOVF:
1793         reason = ProcessMessage::eFloatOverflow;
1794         break;
1795     case FPE_FLTUND:
1796         reason = ProcessMessage::eFloatUnderflow;
1797         break;
1798     case FPE_FLTRES:
1799         reason = ProcessMessage::eFloatInexactResult;
1800         break;
1801     case FPE_FLTINV:
1802         reason = ProcessMessage::eFloatInvalidOperation;
1803         break;
1804     case FPE_FLTSUB:
1805         reason = ProcessMessage::eFloatSubscriptRange;
1806         break;
1807     }
1808 
1809     return reason;
1810 }
1811 #endif
1812 
1813 #if 0
1814 ProcessMessage::CrashReason
1815 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1816 {
1817     ProcessMessage::CrashReason reason;
1818     assert(info->si_signo == SIGBUS);
1819 
1820     reason = ProcessMessage::eInvalidCrashReason;
1821 
1822     switch (info->si_code)
1823     {
1824     default:
1825         assert(false && "unexpected si_code for SIGBUS");
1826         break;
1827     case BUS_ADRALN:
1828         reason = ProcessMessage::eIllegalAlignment;
1829         break;
1830     case BUS_ADRERR:
1831         reason = ProcessMessage::eIllegalAddress;
1832         break;
1833     case BUS_OBJERR:
1834         reason = ProcessMessage::eHardwareError;
1835         break;
1836     }
1837 
1838     return reason;
1839 }
1840 #endif
1841 
1842 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1843                                       size_t &bytes_read) {
1844   if (ProcessVmReadvSupported()) {
1845     // The process_vm_readv path is about 50 times faster than ptrace api. We
1846     // want to use
1847     // this syscall if it is supported.
1848 
1849     const ::pid_t pid = GetID();
1850 
1851     struct iovec local_iov, remote_iov;
1852     local_iov.iov_base = buf;
1853     local_iov.iov_len = size;
1854     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1855     remote_iov.iov_len = size;
1856 
1857     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1858     const bool success = bytes_read == size;
1859 
1860     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1861     LLDB_LOG(log,
1862              "using process_vm_readv to read {0} bytes from inferior "
1863              "address {1:x}: {2}",
1864              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1865 
1866     if (success)
1867       return Status();
1868     // else the call failed for some reason, let's retry the read using ptrace
1869     // api.
1870   }
1871 
1872   unsigned char *dst = static_cast<unsigned char *>(buf);
1873   size_t remainder;
1874   long data;
1875 
1876   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1877   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1878 
1879   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1880     Status error = NativeProcessLinux::PtraceWrapper(
1881         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1882     if (error.Fail())
1883       return error;
1884 
1885     remainder = size - bytes_read;
1886     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1887 
1888     // Copy the data into our buffer
1889     memcpy(dst, &data, remainder);
1890 
1891     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1892     addr += k_ptrace_word_size;
1893     dst += k_ptrace_word_size;
1894   }
1895   return Status();
1896 }
1897 
1898 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1899                                                  size_t size,
1900                                                  size_t &bytes_read) {
1901   Status error = ReadMemory(addr, buf, size, bytes_read);
1902   if (error.Fail())
1903     return error;
1904   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1905 }
1906 
1907 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1908                                        size_t size, size_t &bytes_written) {
1909   const unsigned char *src = static_cast<const unsigned char *>(buf);
1910   size_t remainder;
1911   Status error;
1912 
1913   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1914   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1915 
1916   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1917     remainder = size - bytes_written;
1918     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1919 
1920     if (remainder == k_ptrace_word_size) {
1921       unsigned long data = 0;
1922       memcpy(&data, src, k_ptrace_word_size);
1923 
1924       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1925       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1926                                                 (void *)addr, (void *)data);
1927       if (error.Fail())
1928         return error;
1929     } else {
1930       unsigned char buff[8];
1931       size_t bytes_read;
1932       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1933       if (error.Fail())
1934         return error;
1935 
1936       memcpy(buff, src, remainder);
1937 
1938       size_t bytes_written_rec;
1939       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1940       if (error.Fail())
1941         return error;
1942 
1943       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1944                *(unsigned long *)buff);
1945     }
1946 
1947     addr += k_ptrace_word_size;
1948     src += k_ptrace_word_size;
1949   }
1950   return error;
1951 }
1952 
1953 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1954   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1955 }
1956 
1957 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1958                                            unsigned long *message) {
1959   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1960 }
1961 
1962 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1963   if (tid == LLDB_INVALID_THREAD_ID)
1964     return Status();
1965 
1966   return PtraceWrapper(PTRACE_DETACH, tid);
1967 }
1968 
1969 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1970   for (auto thread_sp : m_threads) {
1971     assert(thread_sp && "thread list should not contain NULL threads");
1972     if (thread_sp->GetID() == thread_id) {
1973       // We have this thread.
1974       return true;
1975     }
1976   }
1977 
1978   // We don't have this thread.
1979   return false;
1980 }
1981 
1982 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1983   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1984   LLDB_LOG(log, "tid: {0})", thread_id);
1985 
1986   bool found = false;
1987   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1988     if (*it && ((*it)->GetID() == thread_id)) {
1989       m_threads.erase(it);
1990       found = true;
1991       break;
1992     }
1993   }
1994 
1995   if (found)
1996     StopTracingForThread(thread_id);
1997   SignalIfAllThreadsStopped();
1998   return found;
1999 }
2000 
2001 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
2002   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
2003   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2004 
2005   assert(!HasThreadNoLock(thread_id) &&
2006          "attempted to add a thread by id that already exists");
2007 
2008   // If this is the first thread, save it as the current thread
2009   if (m_threads.empty())
2010     SetCurrentThreadID(thread_id);
2011 
2012   auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2013   m_threads.push_back(thread_sp);
2014 
2015   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2016     auto traceMonitor = ProcessorTraceMonitor::Create(
2017         GetID(), thread_id, m_pt_process_trace_config, true);
2018     if (traceMonitor) {
2019       m_pt_traced_thread_group.insert(thread_id);
2020       m_processor_trace_monitor.insert(
2021           std::make_pair(thread_id, std::move(*traceMonitor)));
2022     } else {
2023       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
2024       Status error(traceMonitor.takeError());
2025       LLDB_LOG(log, "error {0}", error);
2026     }
2027   }
2028 
2029   return thread_sp;
2030 }
2031 
2032 Status
2033 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2034   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2035 
2036   Status error;
2037 
2038   // Find out the size of a breakpoint (might depend on where we are in the
2039   // code).
2040   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2041   if (!context_sp) {
2042     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2043     LLDB_LOG(log, "failed: {0}", error);
2044     return error;
2045   }
2046 
2047   uint32_t breakpoint_size = 0;
2048   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2049   if (error.Fail()) {
2050     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2051     return error;
2052   } else
2053     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2054 
2055   // First try probing for a breakpoint at a software breakpoint location: PC -
2056   // breakpoint size.
2057   const lldb::addr_t initial_pc_addr =
2058       context_sp->GetPCfromBreakpointLocation();
2059   lldb::addr_t breakpoint_addr = initial_pc_addr;
2060   if (breakpoint_size > 0) {
2061     // Do not allow breakpoint probe to wrap around.
2062     if (breakpoint_addr >= breakpoint_size)
2063       breakpoint_addr -= breakpoint_size;
2064   }
2065 
2066   // Check if we stopped because of a breakpoint.
2067   NativeBreakpointSP breakpoint_sp;
2068   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2069   if (!error.Success() || !breakpoint_sp) {
2070     // We didn't find one at a software probe location.  Nothing to do.
2071     LLDB_LOG(log,
2072              "pid {0} no lldb breakpoint found at current pc with "
2073              "adjustment: {1}",
2074              GetID(), breakpoint_addr);
2075     return Status();
2076   }
2077 
2078   // If the breakpoint is not a software breakpoint, nothing to do.
2079   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2080     LLDB_LOG(
2081         log,
2082         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2083         GetID(), breakpoint_addr);
2084     return Status();
2085   }
2086 
2087   //
2088   // We have a software breakpoint and need to adjust the PC.
2089   //
2090 
2091   // Sanity check.
2092   if (breakpoint_size == 0) {
2093     // Nothing to do!  How did we get here?
2094     LLDB_LOG(log,
2095              "pid {0} breakpoint found at {1:x}, it is software, but the "
2096              "size is zero, nothing to do (unexpected)",
2097              GetID(), breakpoint_addr);
2098     return Status();
2099   }
2100 
2101   // Change the program counter.
2102   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2103            thread.GetID(), initial_pc_addr, breakpoint_addr);
2104 
2105   error = context_sp->SetPC(breakpoint_addr);
2106   if (error.Fail()) {
2107     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2108              thread.GetID(), error);
2109     return error;
2110   }
2111 
2112   return error;
2113 }
2114 
2115 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2116                                                    FileSpec &file_spec) {
2117   Status error = PopulateMemoryRegionCache();
2118   if (error.Fail())
2119     return error;
2120 
2121   FileSpec module_file_spec(module_path, true);
2122 
2123   file_spec.Clear();
2124   for (const auto &it : m_mem_region_cache) {
2125     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2126       file_spec = it.second;
2127       return Status();
2128     }
2129   }
2130   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2131                 module_file_spec.GetFilename().AsCString(), GetID());
2132 }
2133 
2134 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2135                                               lldb::addr_t &load_addr) {
2136   load_addr = LLDB_INVALID_ADDRESS;
2137   Status error = PopulateMemoryRegionCache();
2138   if (error.Fail())
2139     return error;
2140 
2141   FileSpec file(file_name, false);
2142   for (const auto &it : m_mem_region_cache) {
2143     if (it.second == file) {
2144       load_addr = it.first.GetRange().GetRangeBase();
2145       return Status();
2146     }
2147   }
2148   return Status("No load address found for specified file.");
2149 }
2150 
2151 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2152   return std::static_pointer_cast<NativeThreadLinux>(
2153       NativeProcessProtocol::GetThreadByID(tid));
2154 }
2155 
2156 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2157                                         lldb::StateType state, int signo) {
2158   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2159   LLDB_LOG(log, "tid: {0}", thread.GetID());
2160 
2161   // Before we do the resume below, first check if we have a pending
2162   // stop notification that is currently waiting for
2163   // all threads to stop.  This is potentially a buggy situation since
2164   // we're ostensibly waiting for threads to stop before we send out the
2165   // pending notification, and here we are resuming one before we send
2166   // out the pending stop notification.
2167   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2168     LLDB_LOG(log,
2169              "about to resume tid {0} per explicit request but we have a "
2170              "pending stop notification (tid {1}) that is actively "
2171              "waiting for this thread to stop. Valid sequence of events?",
2172              thread.GetID(), m_pending_notification_tid);
2173   }
2174 
2175   // Request a resume.  We expect this to be synchronous and the system
2176   // to reflect it is running after this completes.
2177   switch (state) {
2178   case eStateRunning: {
2179     const auto resume_result = thread.Resume(signo);
2180     if (resume_result.Success())
2181       SetState(eStateRunning, true);
2182     return resume_result;
2183   }
2184   case eStateStepping: {
2185     const auto step_result = thread.SingleStep(signo);
2186     if (step_result.Success())
2187       SetState(eStateRunning, true);
2188     return step_result;
2189   }
2190   default:
2191     LLDB_LOG(log, "Unhandled state {0}.", state);
2192     llvm_unreachable("Unhandled state for resume");
2193   }
2194 }
2195 
2196 //===----------------------------------------------------------------------===//
2197 
2198 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2199   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2200   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2201            triggering_tid);
2202 
2203   m_pending_notification_tid = triggering_tid;
2204 
2205   // Request a stop for all the thread stops that need to be stopped
2206   // and are not already known to be stopped.
2207   for (const auto &thread_sp : m_threads) {
2208     if (StateIsRunningState(thread_sp->GetState()))
2209       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2210   }
2211 
2212   SignalIfAllThreadsStopped();
2213   LLDB_LOG(log, "event processing done");
2214 }
2215 
2216 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2217   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2218     return; // No pending notification. Nothing to do.
2219 
2220   for (const auto &thread_sp : m_threads) {
2221     if (StateIsRunningState(thread_sp->GetState()))
2222       return; // Some threads are still running. Don't signal yet.
2223   }
2224 
2225   // We have a pending notification and all threads have stopped.
2226   Log *log(
2227       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2228 
2229   // Clear any temporary breakpoints we used to implement software single
2230   // stepping.
2231   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2232     Status error = RemoveBreakpoint(thread_info.second);
2233     if (error.Fail())
2234       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2235                thread_info.first, error);
2236   }
2237   m_threads_stepping_with_breakpoint.clear();
2238 
2239   // Notify the delegate about the stop
2240   SetCurrentThreadID(m_pending_notification_tid);
2241   SetState(StateType::eStateStopped, true);
2242   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2243 }
2244 
2245 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2246   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2247   LLDB_LOG(log, "tid: {0}", thread.GetID());
2248 
2249   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2250       StateIsRunningState(thread.GetState())) {
2251     // We will need to wait for this new thread to stop as well before firing
2252     // the
2253     // notification.
2254     thread.RequestStop();
2255   }
2256 }
2257 
2258 void NativeProcessLinux::SigchldHandler() {
2259   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2260   // Process all pending waitpid notifications.
2261   while (true) {
2262     int status = -1;
2263     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2264                                           __WALL | __WNOTHREAD | WNOHANG);
2265 
2266     if (wait_pid == 0)
2267       break; // We are done.
2268 
2269     if (wait_pid == -1) {
2270       Status error(errno, eErrorTypePOSIX);
2271       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2272       break;
2273     }
2274 
2275     WaitStatus wait_status = WaitStatus::Decode(status);
2276     bool exited = wait_status.type == WaitStatus::Exit ||
2277                   (wait_status.type == WaitStatus::Signal &&
2278                    wait_pid == static_cast<::pid_t>(GetID()));
2279 
2280     LLDB_LOG(
2281         log,
2282         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2283         wait_pid, wait_status, exited);
2284 
2285     MonitorCallback(wait_pid, exited, wait_status);
2286   }
2287 }
2288 
2289 // Wrapper for ptrace to catch errors and log calls.
2290 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2291 // for PTRACE_PEEK*)
2292 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2293                                          void *data, size_t data_size,
2294                                          long *result) {
2295   Status error;
2296   long int ret;
2297 
2298   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2299 
2300   PtraceDisplayBytes(req, data, data_size);
2301 
2302   errno = 0;
2303   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2304     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2305                  *(unsigned int *)addr, data);
2306   else
2307     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2308                  addr, data);
2309 
2310   if (ret == -1)
2311     error.SetErrorToErrno();
2312 
2313   if (result)
2314     *result = ret;
2315 
2316   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2317            data_size, ret);
2318 
2319   PtraceDisplayBytes(req, data, data_size);
2320 
2321   if (error.Fail())
2322     LLDB_LOG(log, "ptrace() failed: {0}", error);
2323 
2324   return error;
2325 }
2326 
2327 llvm::Expected<ProcessorTraceMonitor &>
2328 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2329                                                  lldb::tid_t thread) {
2330   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2331   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2332     LLDB_LOG(log, "thread not specified: {0}", traceid);
2333     return Status("tracing not active thread not specified").ToError();
2334   }
2335 
2336   for (auto& iter : m_processor_trace_monitor) {
2337     if (traceid == iter.second->GetTraceID() &&
2338         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2339       return *(iter.second);
2340   }
2341 
2342   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2343   return Status("tracing not active for this thread").ToError();
2344 }
2345 
2346 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2347                                        lldb::tid_t thread,
2348                                        llvm::MutableArrayRef<uint8_t> &buffer,
2349                                        size_t offset) {
2350   TraceOptions trace_options;
2351   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2352   Status error;
2353 
2354   LLDB_LOG(log, "traceid {0}", traceid);
2355 
2356   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2357   if (!perf_monitor) {
2358     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2359     buffer = buffer.slice(buffer.size());
2360     error = perf_monitor.takeError();
2361     return error;
2362   }
2363   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2364 }
2365 
2366 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2367                                    llvm::MutableArrayRef<uint8_t> &buffer,
2368                                    size_t offset) {
2369   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2370   Status error;
2371 
2372   LLDB_LOG(log, "traceid {0}", traceid);
2373 
2374   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2375   if (!perf_monitor) {
2376     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2377     buffer = buffer.slice(buffer.size());
2378     error = perf_monitor.takeError();
2379     return error;
2380   }
2381   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2382 }
2383 
2384 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2385                                           TraceOptions &config) {
2386   Status error;
2387   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2388       m_pt_proces_trace_id == traceid) {
2389     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2390       error.SetErrorString("tracing not active for this process");
2391       return error;
2392     }
2393     config = m_pt_process_trace_config;
2394   } else {
2395     auto perf_monitor =
2396         LookupProcessorTraceInstance(traceid, config.getThreadID());
2397     if (!perf_monitor) {
2398       error = perf_monitor.takeError();
2399       return error;
2400     }
2401     error = (*perf_monitor).GetTraceConfig(config);
2402   }
2403   return error;
2404 }
2405 
2406 lldb::user_id_t
2407 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2408                                            Status &error) {
2409 
2410   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2411   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2412     return LLDB_INVALID_UID;
2413 
2414   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2415     error.SetErrorString("tracing already active on this process");
2416     return m_pt_proces_trace_id;
2417   }
2418 
2419   for (const auto &thread_sp : m_threads) {
2420     if (auto traceInstance = ProcessorTraceMonitor::Create(
2421             GetID(), thread_sp->GetID(), config, true)) {
2422       m_pt_traced_thread_group.insert(thread_sp->GetID());
2423       m_processor_trace_monitor.insert(
2424           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2425     }
2426   }
2427 
2428   m_pt_process_trace_config = config;
2429   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2430 
2431   // Trace on Complete process will have traceid of 0
2432   m_pt_proces_trace_id = 0;
2433 
2434   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2435   return m_pt_proces_trace_id;
2436 }
2437 
2438 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2439                                                Status &error) {
2440   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2441     return NativeProcessProtocol::StartTrace(config, error);
2442 
2443   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2444 
2445   lldb::tid_t threadid = config.getThreadID();
2446 
2447   if (threadid == LLDB_INVALID_THREAD_ID)
2448     return StartTraceGroup(config, error);
2449 
2450   auto thread_sp = GetThreadByID(threadid);
2451   if (!thread_sp) {
2452     // Thread not tracked by lldb so don't trace.
2453     error.SetErrorString("invalid thread id");
2454     return LLDB_INVALID_UID;
2455   }
2456 
2457   const auto &iter = m_processor_trace_monitor.find(threadid);
2458   if (iter != m_processor_trace_monitor.end()) {
2459     LLDB_LOG(log, "Thread already being traced");
2460     error.SetErrorString("tracing already active on this thread");
2461     return LLDB_INVALID_UID;
2462   }
2463 
2464   auto traceMonitor =
2465       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2466   if (!traceMonitor) {
2467     error = traceMonitor.takeError();
2468     LLDB_LOG(log, "error {0}", error);
2469     return LLDB_INVALID_UID;
2470   }
2471   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2472   m_processor_trace_monitor.insert(
2473       std::make_pair(threadid, std::move(*traceMonitor)));
2474   return ret_trace_id;
2475 }
2476 
2477 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2478   Status error;
2479   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2480   LLDB_LOG(log, "Thread {0}", thread);
2481 
2482   const auto& iter = m_processor_trace_monitor.find(thread);
2483   if (iter == m_processor_trace_monitor.end()) {
2484     error.SetErrorString("tracing not active for this thread");
2485     return error;
2486   }
2487 
2488   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2489     // traceid maps to the whole process so we have to erase it from the
2490     // thread group.
2491     LLDB_LOG(log, "traceid maps to process");
2492     m_pt_traced_thread_group.erase(thread);
2493   }
2494   m_processor_trace_monitor.erase(iter);
2495 
2496   return error;
2497 }
2498 
2499 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2500                                      lldb::tid_t thread) {
2501   Status error;
2502 
2503   TraceOptions trace_options;
2504   trace_options.setThreadID(thread);
2505   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2506 
2507   if (error.Fail())
2508     return error;
2509 
2510   switch (trace_options.getType()) {
2511   case lldb::TraceType::eTraceTypeProcessorTrace:
2512     if (traceid == m_pt_proces_trace_id &&
2513         thread == LLDB_INVALID_THREAD_ID)
2514       StopProcessorTracingOnProcess();
2515     else
2516       error = StopProcessorTracingOnThread(traceid, thread);
2517     break;
2518   default:
2519     error.SetErrorString("trace not supported");
2520     break;
2521   }
2522 
2523   return error;
2524 }
2525 
2526 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2527   for (auto thread_id_iter : m_pt_traced_thread_group)
2528     m_processor_trace_monitor.erase(thread_id_iter);
2529   m_pt_traced_thread_group.clear();
2530   m_pt_proces_trace_id = LLDB_INVALID_UID;
2531 }
2532 
2533 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2534                                                         lldb::tid_t thread) {
2535   Status error;
2536   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2537 
2538   if (thread == LLDB_INVALID_THREAD_ID) {
2539     for (auto& iter : m_processor_trace_monitor) {
2540       if (iter.second->GetTraceID() == traceid) {
2541         // Stopping a trace instance for an individual thread
2542         // hence there will only be one traceid that can match.
2543         m_processor_trace_monitor.erase(iter.first);
2544         return error;
2545       }
2546       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2547     }
2548 
2549     LLDB_LOG(log, "Invalid TraceID");
2550     error.SetErrorString("invalid trace id");
2551     return error;
2552   }
2553 
2554   // thread is specified so we can use find function on the map.
2555   const auto& iter = m_processor_trace_monitor.find(thread);
2556   if (iter == m_processor_trace_monitor.end()) {
2557     // thread not found in our map.
2558     LLDB_LOG(log, "thread not being traced");
2559     error.SetErrorString("tracing not active for this thread");
2560     return error;
2561   }
2562   if (iter->second->GetTraceID() != traceid) {
2563     // traceid did not match so it has to be invalid.
2564     LLDB_LOG(log, "Invalid TraceID");
2565     error.SetErrorString("invalid trace id");
2566     return error;
2567   }
2568 
2569   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2570 
2571   if (traceid == m_pt_proces_trace_id) {
2572     // traceid maps to the whole process so we have to erase it from the
2573     // thread group.
2574     LLDB_LOG(log, "traceid maps to process");
2575     m_pt_traced_thread_group.erase(thread);
2576   }
2577   m_processor_trace_monitor.erase(iter);
2578 
2579   return error;
2580 }
2581