1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/ModuleSpec.h"
29 #include "lldb/Core/RegisterValue.h"
30 #include "lldb/Core/State.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/HostProcess.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/ProcessLauncherLinux.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/PseudoTerminal.h"
43 #include "lldb/Utility/StringExtractor.h"
44 
45 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
46 #include "NativeThreadLinux.h"
47 #include "ProcFileReader.h"
48 #include "Procfs.h"
49 
50 // System includes - They have to be included after framework includes because they define some
51 // macros which collide with variable names in other modules
52 #include <linux/unistd.h>
53 #include <sys/socket.h>
54 
55 #include <sys/syscall.h>
56 #include <sys/types.h>
57 #include <sys/user.h>
58 #include <sys/wait.h>
59 
60 #include "lldb/Host/linux/Personality.h"
61 #include "lldb/Host/linux/Ptrace.h"
62 #include "lldb/Host/linux/Uio.h"
63 
64 // Support hardware breakpoints in case it has not been defined
65 #ifndef TRAP_HWBKPT
66   #define TRAP_HWBKPT 4
67 #endif
68 
69 using namespace lldb;
70 using namespace lldb_private;
71 using namespace lldb_private::process_linux;
72 using namespace llvm;
73 
74 // Private bits we only need internally.
75 
76 static bool ProcessVmReadvSupported()
77 {
78     static bool is_supported;
79     static std::once_flag flag;
80 
81     std::call_once(flag, [] {
82         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
83 
84         uint32_t source = 0x47424742;
85         uint32_t dest = 0;
86 
87         struct iovec local, remote;
88         remote.iov_base = &source;
89         local.iov_base = &dest;
90         remote.iov_len = local.iov_len = sizeof source;
91 
92         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
93         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
94         is_supported = (res == sizeof(source) && source == dest);
95         if (log)
96         {
97             if (is_supported)
98                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
99                         __FUNCTION__);
100             else
101                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
102                         __FUNCTION__, strerror(errno));
103         }
104     });
105 
106     return is_supported;
107 }
108 
109 namespace
110 {
111 Error
112 ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch)
113 {
114     // Grab process info for the running process.
115     ProcessInstanceInfo process_info;
116     if (!Host::GetProcessInfo(pid, process_info))
117         return Error("failed to get process info");
118 
119     // Resolve the executable module.
120     ModuleSpecList module_specs;
121     if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs))
122         return Error("failed to get module specifications");
123     assert(module_specs.GetSize() == 1);
124 
125     arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
126     if (arch.IsValid())
127         return Error();
128     else
129         return Error("failed to retrieve a valid architecture from the exe module");
130 }
131 
132 void
133 MaybeLogLaunchInfo(const ProcessLaunchInfo &info)
134 {
135     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
136     if (!log)
137         return;
138 
139     if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
140         log->Printf("%s: setting STDIN to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
141     else
142         log->Printf("%s leaving STDIN as is", __FUNCTION__);
143 
144     if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
145         log->Printf("%s setting STDOUT to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
146     else
147         log->Printf("%s leaving STDOUT as is", __FUNCTION__);
148 
149     if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
150         log->Printf("%s setting STDERR to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
151     else
152         log->Printf("%s leaving STDERR as is", __FUNCTION__);
153 
154     int i = 0;
155     for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; ++args, ++i)
156         log->Printf("%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
157 }
158 
159 void
160 DisplayBytes(StreamString &s, void *bytes, uint32_t count)
161 {
162     uint8_t *ptr = (uint8_t *)bytes;
163     const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
164     for (uint32_t i = 0; i < loop_count; i++)
165     {
166         s.Printf("[%x]", *ptr);
167         ptr++;
168     }
169 }
170 
171     void
172     PtraceDisplayBytes(int &req, void *data, size_t data_size)
173     {
174         StreamString buf;
175         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
176                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
177 
178         if (verbose_log)
179         {
180             switch(req)
181             {
182             case PTRACE_POKETEXT:
183             {
184                 DisplayBytes(buf, &data, 8);
185                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
186                 break;
187             }
188             case PTRACE_POKEDATA:
189             {
190                 DisplayBytes(buf, &data, 8);
191                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
192                 break;
193             }
194             case PTRACE_POKEUSER:
195             {
196                 DisplayBytes(buf, &data, 8);
197                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
198                 break;
199             }
200             case PTRACE_SETREGS:
201             {
202                 DisplayBytes(buf, data, data_size);
203                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
204                 break;
205             }
206             case PTRACE_SETFPREGS:
207             {
208                 DisplayBytes(buf, data, data_size);
209                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
210                 break;
211             }
212             case PTRACE_SETSIGINFO:
213             {
214                 DisplayBytes(buf, data, sizeof(siginfo_t));
215                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
216                 break;
217             }
218             case PTRACE_SETREGSET:
219             {
220                 // Extract iov_base from data, which is a pointer to the struct IOVEC
221                 DisplayBytes(buf, *(void **)data, data_size);
222                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
223                 break;
224             }
225             default:
226             {
227             }
228             }
229         }
230     }
231 
232     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
233     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
234 } // end of anonymous namespace
235 
236 // Simple helper function to ensure flags are enabled on the given file
237 // descriptor.
238 static Error
239 EnsureFDFlags(int fd, int flags)
240 {
241     Error error;
242 
243     int status = fcntl(fd, F_GETFL);
244     if (status == -1)
245     {
246         error.SetErrorToErrno();
247         return error;
248     }
249 
250     if (fcntl(fd, F_SETFL, status | flags) == -1)
251     {
252         error.SetErrorToErrno();
253         return error;
254     }
255 
256     return error;
257 }
258 
259 // -----------------------------------------------------------------------------
260 // Public Static Methods
261 // -----------------------------------------------------------------------------
262 
263 Error
264 NativeProcessProtocol::Launch (
265     ProcessLaunchInfo &launch_info,
266     NativeProcessProtocol::NativeDelegate &native_delegate,
267     MainLoop &mainloop,
268     NativeProcessProtocolSP &native_process_sp)
269 {
270     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
271 
272     Error error;
273 
274     // Verify the working directory is valid if one was specified.
275     FileSpec working_dir{launch_info.GetWorkingDirectory()};
276     if (working_dir &&
277             (!working_dir.ResolvePath() ||
278              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
279     {
280         error.SetErrorStringWithFormat ("No such file or directory: %s",
281                 working_dir.GetCString());
282         return error;
283     }
284 
285     // Create the NativeProcessLinux in launch mode.
286     native_process_sp.reset (new NativeProcessLinux ());
287 
288     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
289     {
290         native_process_sp.reset ();
291         error.SetErrorStringWithFormat ("failed to register the native delegate");
292         return error;
293     }
294 
295     error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)->LaunchInferior(mainloop, launch_info);
296 
297     if (error.Fail ())
298     {
299         native_process_sp.reset ();
300         if (log)
301             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
302         return error;
303     }
304 
305     launch_info.SetProcessID (native_process_sp->GetID ());
306 
307     return error;
308 }
309 
310 Error
311 NativeProcessProtocol::Attach (
312     lldb::pid_t pid,
313     NativeProcessProtocol::NativeDelegate &native_delegate,
314     MainLoop &mainloop,
315     NativeProcessProtocolSP &native_process_sp)
316 {
317     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
318     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
319         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
320 
321     // Retrieve the architecture for the running process.
322     ArchSpec process_arch;
323     Error error = ResolveProcessArchitecture(pid, process_arch);
324     if (!error.Success ())
325         return error;
326 
327     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
328 
329     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
330     {
331         error.SetErrorStringWithFormat ("failed to register the native delegate");
332         return error;
333     }
334 
335     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
336     if (!error.Success ())
337         return error;
338 
339     native_process_sp = native_process_linux_sp;
340     return error;
341 }
342 
343 // -----------------------------------------------------------------------------
344 // Public Instance Methods
345 // -----------------------------------------------------------------------------
346 
347 NativeProcessLinux::NativeProcessLinux () :
348     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
349     m_arch (),
350     m_supports_mem_region (eLazyBoolCalculate),
351     m_mem_region_cache (),
352     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
353 {
354 }
355 
356 void
357 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
358 {
359     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
360     if (log)
361         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
362 
363     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
364             [this] (MainLoopBase &) { SigchldHandler(); }, error);
365     if (! m_sigchld_handle)
366         return;
367 
368     error = ResolveProcessArchitecture(pid, m_arch);
369     if (!error.Success())
370         return;
371 
372     // Set the architecture to the exe architecture.
373     if (log)
374         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
375 
376     m_pid = pid;
377     SetState(eStateAttaching);
378 
379     Attach(pid, error);
380 }
381 
382 Error
383 NativeProcessLinux::LaunchInferior(MainLoop &mainloop, ProcessLaunchInfo &launch_info)
384 {
385     Error error;
386     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
387     if (!m_sigchld_handle)
388         return error;
389 
390     SetState(eStateLaunching);
391 
392     MaybeLogLaunchInfo(launch_info);
393 
394     ::pid_t pid = ProcessLauncherLinux().LaunchProcess(launch_info, error).GetProcessId();
395     if (error.Fail())
396         return error;
397 
398     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
399 
400     // Wait for the child process to trap on its call to execve.
401     ::pid_t wpid;
402     int status;
403     if ((wpid = waitpid(pid, &status, 0)) < 0)
404     {
405         error.SetErrorToErrno();
406         if (log)
407             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
408                     __FUNCTION__, error.AsCString ());
409 
410         // Mark the inferior as invalid.
411         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
412         SetState (StateType::eStateInvalid);
413 
414         return error;
415     }
416     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
417            "Could not sync with inferior process.");
418 
419     if (log)
420         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
421 
422     error = SetDefaultPtraceOpts(pid);
423     if (error.Fail())
424     {
425         if (log)
426             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
427                     __FUNCTION__, error.AsCString ());
428 
429         // Mark the inferior as invalid.
430         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
431         SetState (StateType::eStateInvalid);
432 
433         return error;
434     }
435 
436     // Release the master terminal descriptor and pass it off to the
437     // NativeProcessLinux instance.  Similarly stash the inferior pid.
438     m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
439     m_pid = pid;
440     launch_info.SetProcessID(pid);
441 
442     if (m_terminal_fd != -1)
443     {
444         error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
445         if (error.Fail())
446         {
447             if (log)
448                 log->Printf(
449                     "NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
450                     __FUNCTION__, error.AsCString());
451 
452             // Mark the inferior as invalid.
453             // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
454             SetState(StateType::eStateInvalid);
455 
456             return error;
457         }
458     }
459 
460     if (log)
461         log->Printf("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, uint64_t(pid));
462 
463     ResolveProcessArchitecture(m_pid, m_arch);
464     NativeThreadLinuxSP thread_sp = AddThread(pid);
465     assert (thread_sp && "AddThread() returned a nullptr thread");
466     thread_sp->SetStoppedBySignal(SIGSTOP);
467     ThreadWasCreated(*thread_sp);
468 
469     // Let our process instance know the thread has stopped.
470     SetCurrentThreadID (thread_sp->GetID ());
471     SetState (StateType::eStateStopped);
472 
473     if (log)
474     {
475         if (error.Success ())
476             log->Printf("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
477         else
478             log->Printf("NativeProcessLinux::%s inferior launching failed: %s", __FUNCTION__, error.AsCString());
479     }
480     return error;
481 }
482 
483 ::pid_t
484 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
485 {
486     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
487 
488     // Use a map to keep track of the threads which we have attached/need to attach.
489     Host::TidMap tids_to_attach;
490     if (pid <= 1)
491     {
492         error.SetErrorToGenericError();
493         error.SetErrorString("Attaching to process 1 is not allowed.");
494         return -1;
495     }
496 
497     while (Host::FindProcessThreads(pid, tids_to_attach))
498     {
499         for (Host::TidMap::iterator it = tids_to_attach.begin();
500              it != tids_to_attach.end();)
501         {
502             if (it->second == false)
503             {
504                 lldb::tid_t tid = it->first;
505 
506                 // Attach to the requested process.
507                 // An attach will cause the thread to stop with a SIGSTOP.
508                 error = PtraceWrapper(PTRACE_ATTACH, tid);
509                 if (error.Fail())
510                 {
511                     // No such thread. The thread may have exited.
512                     // More error handling may be needed.
513                     if (error.GetError() == ESRCH)
514                     {
515                         it = tids_to_attach.erase(it);
516                         continue;
517                     }
518                     else
519                         return -1;
520                 }
521 
522                 int status;
523                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
524                 // At this point we should have a thread stopped if waitpid succeeds.
525                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
526                 {
527                     // No such thread. The thread may have exited.
528                     // More error handling may be needed.
529                     if (errno == ESRCH)
530                     {
531                         it = tids_to_attach.erase(it);
532                         continue;
533                     }
534                     else
535                     {
536                         error.SetErrorToErrno();
537                         return -1;
538                     }
539                 }
540 
541                 error = SetDefaultPtraceOpts(tid);
542                 if (error.Fail())
543                     return -1;
544 
545                 if (log)
546                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
547 
548                 it->second = true;
549 
550                 // Create the thread, mark it as stopped.
551                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
552                 assert (thread_sp && "AddThread() returned a nullptr");
553 
554                 // This will notify this is a new thread and tell the system it is stopped.
555                 thread_sp->SetStoppedBySignal(SIGSTOP);
556                 ThreadWasCreated(*thread_sp);
557                 SetCurrentThreadID (thread_sp->GetID ());
558             }
559 
560             // move the loop forward
561             ++it;
562         }
563     }
564 
565     if (tids_to_attach.size() > 0)
566     {
567         m_pid = pid;
568         // Let our process instance know the thread has stopped.
569         SetState (StateType::eStateStopped);
570     }
571     else
572     {
573         error.SetErrorToGenericError();
574         error.SetErrorString("No such process.");
575         return -1;
576     }
577 
578     return pid;
579 }
580 
581 Error
582 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
583 {
584     long ptrace_opts = 0;
585 
586     // Have the child raise an event on exit.  This is used to keep the child in
587     // limbo until it is destroyed.
588     ptrace_opts |= PTRACE_O_TRACEEXIT;
589 
590     // Have the tracer trace threads which spawn in the inferior process.
591     // TODO: if we want to support tracing the inferiors' child, add the
592     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
593     ptrace_opts |= PTRACE_O_TRACECLONE;
594 
595     // Have the tracer notify us before execve returns
596     // (needed to disable legacy SIGTRAP generation)
597     ptrace_opts |= PTRACE_O_TRACEEXEC;
598 
599     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
600 }
601 
602 static ExitType convert_pid_status_to_exit_type (int status)
603 {
604     if (WIFEXITED (status))
605         return ExitType::eExitTypeExit;
606     else if (WIFSIGNALED (status))
607         return ExitType::eExitTypeSignal;
608     else if (WIFSTOPPED (status))
609         return ExitType::eExitTypeStop;
610     else
611     {
612         // We don't know what this is.
613         return ExitType::eExitTypeInvalid;
614     }
615 }
616 
617 static int convert_pid_status_to_return_code (int status)
618 {
619     if (WIFEXITED (status))
620         return WEXITSTATUS (status);
621     else if (WIFSIGNALED (status))
622         return WTERMSIG (status);
623     else if (WIFSTOPPED (status))
624         return WSTOPSIG (status);
625     else
626     {
627         // We don't know what this is.
628         return ExitType::eExitTypeInvalid;
629     }
630 }
631 
632 // Handles all waitpid events from the inferior process.
633 void
634 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
635                                     bool exited,
636                                     int signal,
637                                     int status)
638 {
639     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
640 
641     // Certain activities differ based on whether the pid is the tid of the main thread.
642     const bool is_main_thread = (pid == GetID ());
643 
644     // Handle when the thread exits.
645     if (exited)
646     {
647         if (log)
648             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
649 
650         // This is a thread that exited.  Ensure we're not tracking it anymore.
651         const bool thread_found = StopTrackingThread (pid);
652 
653         if (is_main_thread)
654         {
655             // We only set the exit status and notify the delegate if we haven't already set the process
656             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
657             // for the main thread.
658             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
659             if (!already_notified)
660             {
661                 if (log)
662                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
663                 // The main thread exited.  We're done monitoring.  Report to delegate.
664                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
665 
666                 // Notify delegate that our process has exited.
667                 SetState (StateType::eStateExited, true);
668             }
669             else
670             {
671                 if (log)
672                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
673             }
674         }
675         else
676         {
677             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
678             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
679             // and we would have done an all-stop then.
680             if (log)
681                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
682         }
683         return;
684     }
685 
686     siginfo_t info;
687     const auto info_err = GetSignalInfo(pid, &info);
688     auto thread_sp = GetThreadByID(pid);
689 
690     if (! thread_sp)
691     {
692         // Normally, the only situation when we cannot find the thread is if we have just
693         // received a new thread notification. This is indicated by GetSignalInfo() returning
694         // si_code == SI_USER and si_pid == 0
695         if (log)
696             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
697 
698         if (info_err.Fail())
699         {
700             if (log)
701                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
702             return;
703         }
704 
705         if (log && (info.si_code != SI_USER || info.si_pid != 0))
706             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
707 
708         auto thread_sp = AddThread(pid);
709         // Resume the newly created thread.
710         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
711         ThreadWasCreated(*thread_sp);
712         return;
713     }
714 
715     // Get details on the signal raised.
716     if (info_err.Success())
717     {
718         // We have retrieved the signal info.  Dispatch appropriately.
719         if (info.si_signo == SIGTRAP)
720             MonitorSIGTRAP(info, *thread_sp);
721         else
722             MonitorSignal(info, *thread_sp, exited);
723     }
724     else
725     {
726         if (info_err.GetError() == EINVAL)
727         {
728             // This is a group stop reception for this tid.
729             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
730             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
731             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
732             // generally not needed (one use case is debugging background task being managed by a
733             // shell). For general use, it is sufficient to stop the process in a signal-delivery
734             // stop which happens before the group stop. This done by MonitorSignal and works
735             // correctly for all signals.
736             if (log)
737                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
738             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
739         }
740         else
741         {
742             // ptrace(GETSIGINFO) failed (but not due to group-stop).
743 
744             // A return value of ESRCH means the thread/process is no longer on the system,
745             // so it was killed somehow outside of our control.  Either way, we can't do anything
746             // with it anymore.
747 
748             // Stop tracking the metadata for the thread since it's entirely off the system now.
749             const bool thread_found = StopTrackingThread (pid);
750 
751             if (log)
752                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
753                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
754 
755             if (is_main_thread)
756             {
757                 // Notify the delegate - our process is not available but appears to have been killed outside
758                 // our control.  Is eStateExited the right exit state in this case?
759                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
760                 SetState (StateType::eStateExited, true);
761             }
762             else
763             {
764                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
765                 if (log)
766                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
767             }
768         }
769     }
770 }
771 
772 void
773 NativeProcessLinux::WaitForNewThread(::pid_t tid)
774 {
775     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
776 
777     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
778 
779     if (new_thread_sp)
780     {
781         // We are already tracking the thread - we got the event on the new thread (see
782         // MonitorSignal) before this one. We are done.
783         return;
784     }
785 
786     // The thread is not tracked yet, let's wait for it to appear.
787     int status = -1;
788     ::pid_t wait_pid;
789     do
790     {
791         if (log)
792             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
793         wait_pid = waitpid(tid, &status, __WALL);
794     }
795     while (wait_pid == -1 && errno == EINTR);
796     // Since we are waiting on a specific tid, this must be the creation event. But let's do
797     // some checks just in case.
798     if (wait_pid != tid) {
799         if (log)
800             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
801         // The only way I know of this could happen is if the whole process was
802         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
803         return;
804     }
805     if (WIFEXITED(status))
806     {
807         if (log)
808             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
809         // Also a very improbable event.
810         return;
811     }
812 
813     siginfo_t info;
814     Error error = GetSignalInfo(tid, &info);
815     if (error.Fail())
816     {
817         if (log)
818             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
819         return;
820     }
821 
822     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
823     {
824         // We should be getting a thread creation signal here, but we received something
825         // else. There isn't much we can do about it now, so we will just log that. Since the
826         // thread is alive and we are receiving events from it, we shall pretend that it was
827         // created properly.
828         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
829     }
830 
831     if (log)
832         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
833                  __FUNCTION__, GetID (), tid);
834 
835     new_thread_sp = AddThread(tid);
836     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
837     ThreadWasCreated(*new_thread_sp);
838 }
839 
840 void
841 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
842 {
843     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
844     const bool is_main_thread = (thread.GetID() == GetID ());
845 
846     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
847 
848     switch (info.si_code)
849     {
850     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
851     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
852     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
853 
854     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
855     {
856         // This is the notification on the parent thread which informs us of new thread
857         // creation.
858         // We don't want to do anything with the parent thread so we just resume it. In case we
859         // want to implement "break on thread creation" functionality, we would need to stop
860         // here.
861 
862         unsigned long event_message = 0;
863         if (GetEventMessage(thread.GetID(), &event_message).Fail())
864         {
865             if (log)
866                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
867         } else
868             WaitForNewThread(event_message);
869 
870         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
871         break;
872     }
873 
874     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
875     {
876         NativeThreadLinuxSP main_thread_sp;
877         if (log)
878             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
879 
880         // Exec clears any pending notifications.
881         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
882 
883         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.
884         if (log)
885             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
886 
887         for (auto thread_sp : m_threads)
888         {
889             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
890             if (is_main_thread)
891             {
892                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
893                 if (log)
894                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
895             }
896             else
897             {
898                 if (log)
899                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
900             }
901         }
902 
903         m_threads.clear ();
904 
905         if (main_thread_sp)
906         {
907             m_threads.push_back (main_thread_sp);
908             SetCurrentThreadID (main_thread_sp->GetID ());
909             main_thread_sp->SetStoppedByExec();
910         }
911         else
912         {
913             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
914             if (log)
915                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
916         }
917 
918         // Tell coordinator about about the "new" (since exec) stopped main thread.
919         ThreadWasCreated(*main_thread_sp);
920 
921         // Let our delegate know we have just exec'd.
922         NotifyDidExec ();
923 
924         // If we have a main thread, indicate we are stopped.
925         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
926 
927         // Let the process know we're stopped.
928         StopRunningThreads(main_thread_sp->GetID());
929 
930         break;
931     }
932 
933     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
934     {
935         // The inferior process or one of its threads is about to exit.
936         // We don't want to do anything with the thread so we just resume it. In case we
937         // want to implement "break on thread exit" functionality, we would need to stop
938         // here.
939 
940         unsigned long data = 0;
941         if (GetEventMessage(thread.GetID(), &data).Fail())
942             data = -1;
943 
944         if (log)
945         {
946             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
947                          __FUNCTION__,
948                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
949                          thread.GetID(),
950                     is_main_thread ? "is main thread" : "not main thread");
951         }
952 
953         if (is_main_thread)
954         {
955             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
956         }
957 
958         StateType state = thread.GetState();
959         if (! StateIsRunningState(state))
960         {
961             // Due to a kernel bug, we may sometimes get this stop after the inferior gets a
962             // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
963             // we should not be receiving any ptrace events while the inferior is stopped. This
964             // makes sure that the inferior is resumed and exits normally.
965             state = eStateRunning;
966         }
967         ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
968 
969         break;
970     }
971 
972     case 0:
973     case TRAP_TRACE:  // We receive this on single stepping.
974     case TRAP_HWBKPT: // We receive this on watchpoint hit
975     {
976         // If a watchpoint was hit, report it
977         uint32_t wp_index;
978         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr);
979         if (error.Fail() && log)
980             log->Printf("NativeProcessLinux::%s() "
981                         "received error while checking for watchpoint hits, "
982                         "pid = %" PRIu64 " error = %s",
983                         __FUNCTION__, thread.GetID(), error.AsCString());
984         if (wp_index != LLDB_INVALID_INDEX32)
985         {
986             MonitorWatchpoint(thread, wp_index);
987             break;
988         }
989 
990         // Otherwise, report step over
991         MonitorTrace(thread);
992         break;
993     }
994 
995     case SI_KERNEL:
996 #if defined __mips__
997         // For mips there is no special signal for watchpoint
998         // So we check for watchpoint in kernel trap
999     {
1000         // If a watchpoint was hit, report it
1001         uint32_t wp_index;
1002         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1003         if (error.Fail() && log)
1004             log->Printf("NativeProcessLinux::%s() "
1005                         "received error while checking for watchpoint hits, "
1006                         "pid = %" PRIu64 " error = %s",
1007                         __FUNCTION__, thread.GetID(), error.AsCString());
1008         if (wp_index != LLDB_INVALID_INDEX32)
1009         {
1010             MonitorWatchpoint(thread, wp_index);
1011             break;
1012         }
1013     }
1014         // NO BREAK
1015 #endif
1016     case TRAP_BRKPT:
1017         MonitorBreakpoint(thread);
1018         break;
1019 
1020     case SIGTRAP:
1021     case (SIGTRAP | 0x80):
1022         if (log)
1023             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1024 
1025         // Ignore these signals until we know more about them.
1026         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1027         break;
1028 
1029     default:
1030         assert(false && "Unexpected SIGTRAP code!");
1031         if (log)
1032             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1033                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1034         break;
1035 
1036     }
1037 }
1038 
1039 void
1040 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1041 {
1042     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1043     if (log)
1044         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1045                 __FUNCTION__, thread.GetID());
1046 
1047     // This thread is currently stopped.
1048     thread.SetStoppedByTrace();
1049 
1050     StopRunningThreads(thread.GetID());
1051 }
1052 
1053 void
1054 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1055 {
1056     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1057     if (log)
1058         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1059                 __FUNCTION__, thread.GetID());
1060 
1061     // Mark the thread as stopped at breakpoint.
1062     thread.SetStoppedByBreakpoint();
1063     Error error = FixupBreakpointPCAsNeeded(thread);
1064     if (error.Fail())
1065         if (log)
1066             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1067                     __FUNCTION__, thread.GetID(), error.AsCString());
1068 
1069     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1070         thread.SetStoppedByTrace();
1071 
1072     StopRunningThreads(thread.GetID());
1073 }
1074 
1075 void
1076 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1077 {
1078     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1079     if (log)
1080         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1081                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1082                     __FUNCTION__, thread.GetID(), wp_index);
1083 
1084     // Mark the thread as stopped at watchpoint.
1085     // The address is at (lldb::addr_t)info->si_addr if we need it.
1086     thread.SetStoppedByWatchpoint(wp_index);
1087 
1088     // We need to tell all other running threads before we notify the delegate about this stop.
1089     StopRunningThreads(thread.GetID());
1090 }
1091 
1092 void
1093 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1094 {
1095     const int signo = info.si_signo;
1096     const bool is_from_llgs = info.si_pid == getpid ();
1097 
1098     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1099 
1100     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1101     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1102     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1103     //
1104     // IOW, user generated signals never generate what we consider to be a
1105     // "crash".
1106     //
1107     // Similarly, ACK signals generated by this monitor.
1108 
1109     // Handle the signal.
1110     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1111     {
1112         if (log)
1113             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1114                             __FUNCTION__,
1115                             Host::GetSignalAsCString(signo),
1116                             signo,
1117                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1118                             info.si_pid,
1119                             is_from_llgs ? "from llgs" : "not from llgs",
1120                             thread.GetID());
1121     }
1122 
1123     // Check for thread stop notification.
1124     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1125     {
1126         // This is a tgkill()-based stop.
1127         if (log)
1128             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1129                          __FUNCTION__,
1130                          GetID (),
1131                          thread.GetID());
1132 
1133         // Check that we're not already marked with a stop reason.
1134         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1135         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1136         // and that, without an intervening resume, we received another stop.  It is more likely
1137         // that we are missing the marking of a run state somewhere if we find that the thread was
1138         // marked as stopped.
1139         const StateType thread_state = thread.GetState();
1140         if (!StateIsStoppedState (thread_state, false))
1141         {
1142             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1143             // Generally, these are not important stops and we don't want to report them as
1144             // they are just used to stop other threads when one thread (the one with the
1145             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1146             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1147             // leave the signal intact if this is the thread that was chosen as the
1148             // triggering thread.
1149             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1150             {
1151                 if (m_pending_notification_tid == thread.GetID())
1152                     thread.SetStoppedBySignal(SIGSTOP, &info);
1153                 else
1154                     thread.SetStoppedWithNoReason();
1155 
1156                 SetCurrentThreadID (thread.GetID ());
1157                 SignalIfAllThreadsStopped();
1158             }
1159             else
1160             {
1161                 // We can end up here if stop was initiated by LLGS but by this time a
1162                 // thread stop has occurred - maybe initiated by another event.
1163                 Error error = ResumeThread(thread, thread.GetState(), 0);
1164                 if (error.Fail() && log)
1165                 {
1166                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1167                             __FUNCTION__, thread.GetID(), error.AsCString());
1168                 }
1169             }
1170         }
1171         else
1172         {
1173             if (log)
1174             {
1175                 // Retrieve the signal name if the thread was stopped by a signal.
1176                 int stop_signo = 0;
1177                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1178                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1179                 if (!signal_name)
1180                     signal_name = "<no-signal-name>";
1181 
1182                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1183                              __FUNCTION__,
1184                              GetID (),
1185                              thread.GetID(),
1186                              StateAsCString (thread_state),
1187                              stop_signo,
1188                              signal_name);
1189             }
1190             SignalIfAllThreadsStopped();
1191         }
1192 
1193         // Done handling.
1194         return;
1195     }
1196 
1197     if (log)
1198         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1199 
1200     // This thread is stopped.
1201     thread.SetStoppedBySignal(signo, &info);
1202 
1203     // Send a stop to the debugger after we get all other threads to stop.
1204     StopRunningThreads(thread.GetID());
1205 }
1206 
1207 namespace {
1208 
1209 struct EmulatorBaton
1210 {
1211     NativeProcessLinux* m_process;
1212     NativeRegisterContext* m_reg_context;
1213 
1214     // eRegisterKindDWARF -> RegsiterValue
1215     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1216 
1217     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1218             m_process(process), m_reg_context(reg_context) {}
1219 };
1220 
1221 } // anonymous namespace
1222 
1223 static size_t
1224 ReadMemoryCallback (EmulateInstruction *instruction,
1225                     void *baton,
1226                     const EmulateInstruction::Context &context,
1227                     lldb::addr_t addr,
1228                     void *dst,
1229                     size_t length)
1230 {
1231     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1232 
1233     size_t bytes_read;
1234     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1235     return bytes_read;
1236 }
1237 
1238 static bool
1239 ReadRegisterCallback (EmulateInstruction *instruction,
1240                       void *baton,
1241                       const RegisterInfo *reg_info,
1242                       RegisterValue &reg_value)
1243 {
1244     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1245 
1246     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1247     if (it != emulator_baton->m_register_values.end())
1248     {
1249         reg_value = it->second;
1250         return true;
1251     }
1252 
1253     // The emulator only fill in the dwarf regsiter numbers (and in some case
1254     // the generic register numbers). Get the full register info from the
1255     // register context based on the dwarf register numbers.
1256     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1257             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1258 
1259     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1260     if (error.Success())
1261         return true;
1262 
1263     return false;
1264 }
1265 
1266 static bool
1267 WriteRegisterCallback (EmulateInstruction *instruction,
1268                        void *baton,
1269                        const EmulateInstruction::Context &context,
1270                        const RegisterInfo *reg_info,
1271                        const RegisterValue &reg_value)
1272 {
1273     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1274     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1275     return true;
1276 }
1277 
1278 static size_t
1279 WriteMemoryCallback (EmulateInstruction *instruction,
1280                      void *baton,
1281                      const EmulateInstruction::Context &context,
1282                      lldb::addr_t addr,
1283                      const void *dst,
1284                      size_t length)
1285 {
1286     return length;
1287 }
1288 
1289 static lldb::addr_t
1290 ReadFlags (NativeRegisterContext* regsiter_context)
1291 {
1292     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1293             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1294     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1295 }
1296 
1297 Error
1298 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1299 {
1300     Error error;
1301     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1302 
1303     std::unique_ptr<EmulateInstruction> emulator_ap(
1304         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1305 
1306     if (emulator_ap == nullptr)
1307         return Error("Instruction emulator not found!");
1308 
1309     EmulatorBaton baton(this, register_context_sp.get());
1310     emulator_ap->SetBaton(&baton);
1311     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1312     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1313     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1314     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1315 
1316     if (!emulator_ap->ReadInstruction())
1317         return Error("Read instruction failed!");
1318 
1319     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1320 
1321     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1322     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1323 
1324     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1325     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1326 
1327     lldb::addr_t next_pc;
1328     lldb::addr_t next_flags;
1329     if (emulation_result)
1330     {
1331         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1332         next_pc = pc_it->second.GetAsUInt64();
1333 
1334         if (flags_it != baton.m_register_values.end())
1335             next_flags = flags_it->second.GetAsUInt64();
1336         else
1337             next_flags = ReadFlags (register_context_sp.get());
1338     }
1339     else if (pc_it == baton.m_register_values.end())
1340     {
1341         // Emulate instruction failed and it haven't changed PC. Advance PC
1342         // with the size of the current opcode because the emulation of all
1343         // PC modifying instruction should be successful. The failure most
1344         // likely caused by a not supported instruction which don't modify PC.
1345         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1346         next_flags = ReadFlags (register_context_sp.get());
1347     }
1348     else
1349     {
1350         // The instruction emulation failed after it modified the PC. It is an
1351         // unknown error where we can't continue because the next instruction is
1352         // modifying the PC but we don't  know how.
1353         return Error ("Instruction emulation failed unexpectedly.");
1354     }
1355 
1356     if (m_arch.GetMachine() == llvm::Triple::arm)
1357     {
1358         if (next_flags & 0x20)
1359         {
1360             // Thumb mode
1361             error = SetSoftwareBreakpoint(next_pc, 2);
1362         }
1363         else
1364         {
1365             // Arm mode
1366             error = SetSoftwareBreakpoint(next_pc, 4);
1367         }
1368     }
1369     else if (m_arch.GetMachine() == llvm::Triple::mips64
1370             || m_arch.GetMachine() == llvm::Triple::mips64el
1371             || m_arch.GetMachine() == llvm::Triple::mips
1372             || m_arch.GetMachine() == llvm::Triple::mipsel)
1373         error = SetSoftwareBreakpoint(next_pc, 4);
1374     else
1375     {
1376         // No size hint is given for the next breakpoint
1377         error = SetSoftwareBreakpoint(next_pc, 0);
1378     }
1379 
1380     if (error.Fail())
1381         return error;
1382 
1383     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1384 
1385     return Error();
1386 }
1387 
1388 bool
1389 NativeProcessLinux::SupportHardwareSingleStepping() const
1390 {
1391     if (m_arch.GetMachine() == llvm::Triple::arm
1392         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1393         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1394         return false;
1395     return true;
1396 }
1397 
1398 Error
1399 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1400 {
1401     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1402     if (log)
1403         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1404 
1405     bool software_single_step = !SupportHardwareSingleStepping();
1406 
1407     if (software_single_step)
1408     {
1409         for (auto thread_sp : m_threads)
1410         {
1411             assert (thread_sp && "thread list should not contain NULL threads");
1412 
1413             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1414             if (action == nullptr)
1415                 continue;
1416 
1417             if (action->state == eStateStepping)
1418             {
1419                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1420                 if (error.Fail())
1421                     return error;
1422             }
1423         }
1424     }
1425 
1426     for (auto thread_sp : m_threads)
1427     {
1428         assert (thread_sp && "thread list should not contain NULL threads");
1429 
1430         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1431 
1432         if (action == nullptr)
1433         {
1434             if (log)
1435                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1436                     __FUNCTION__, GetID (), thread_sp->GetID ());
1437             continue;
1438         }
1439 
1440         if (log)
1441         {
1442             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1443                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1444         }
1445 
1446         switch (action->state)
1447         {
1448         case eStateRunning:
1449         case eStateStepping:
1450         {
1451             // Run the thread, possibly feeding it the signal.
1452             const int signo = action->signal;
1453             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1454             break;
1455         }
1456 
1457         case eStateSuspended:
1458         case eStateStopped:
1459             lldbassert(0 && "Unexpected state");
1460 
1461         default:
1462             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1463                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1464         }
1465     }
1466 
1467     return Error();
1468 }
1469 
1470 Error
1471 NativeProcessLinux::Halt ()
1472 {
1473     Error error;
1474 
1475     if (kill (GetID (), SIGSTOP) != 0)
1476         error.SetErrorToErrno ();
1477 
1478     return error;
1479 }
1480 
1481 Error
1482 NativeProcessLinux::Detach ()
1483 {
1484     Error error;
1485 
1486     // Stop monitoring the inferior.
1487     m_sigchld_handle.reset();
1488 
1489     // Tell ptrace to detach from the process.
1490     if (GetID () == LLDB_INVALID_PROCESS_ID)
1491         return error;
1492 
1493     for (auto thread_sp : m_threads)
1494     {
1495         Error e = Detach(thread_sp->GetID());
1496         if (e.Fail())
1497             error = e; // Save the error, but still attempt to detach from other threads.
1498     }
1499 
1500     return error;
1501 }
1502 
1503 Error
1504 NativeProcessLinux::Signal (int signo)
1505 {
1506     Error error;
1507 
1508     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1509     if (log)
1510         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1511                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1512 
1513     if (kill(GetID(), signo))
1514         error.SetErrorToErrno();
1515 
1516     return error;
1517 }
1518 
1519 Error
1520 NativeProcessLinux::Interrupt ()
1521 {
1522     // Pick a running thread (or if none, a not-dead stopped thread) as
1523     // the chosen thread that will be the stop-reason thread.
1524     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1525 
1526     NativeThreadProtocolSP running_thread_sp;
1527     NativeThreadProtocolSP stopped_thread_sp;
1528 
1529     if (log)
1530         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1531 
1532     for (auto thread_sp : m_threads)
1533     {
1534         // The thread shouldn't be null but lets just cover that here.
1535         if (!thread_sp)
1536             continue;
1537 
1538         // If we have a running or stepping thread, we'll call that the
1539         // target of the interrupt.
1540         const auto thread_state = thread_sp->GetState ();
1541         if (thread_state == eStateRunning ||
1542             thread_state == eStateStepping)
1543         {
1544             running_thread_sp = thread_sp;
1545             break;
1546         }
1547         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1548         {
1549             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1550             stopped_thread_sp = thread_sp;
1551         }
1552     }
1553 
1554     if (!running_thread_sp && !stopped_thread_sp)
1555     {
1556         Error error("found no running/stepping or live stopped threads as target for interrupt");
1557         if (log)
1558             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1559 
1560         return error;
1561     }
1562 
1563     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1564 
1565     if (log)
1566         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1567                      __FUNCTION__,
1568                      GetID (),
1569                      running_thread_sp ? "running" : "stopped",
1570                      deferred_signal_thread_sp->GetID ());
1571 
1572     StopRunningThreads(deferred_signal_thread_sp->GetID());
1573 
1574     return Error();
1575 }
1576 
1577 Error
1578 NativeProcessLinux::Kill ()
1579 {
1580     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1581     if (log)
1582         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1583 
1584     Error error;
1585 
1586     switch (m_state)
1587     {
1588         case StateType::eStateInvalid:
1589         case StateType::eStateExited:
1590         case StateType::eStateCrashed:
1591         case StateType::eStateDetached:
1592         case StateType::eStateUnloaded:
1593             // Nothing to do - the process is already dead.
1594             if (log)
1595                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1596             return error;
1597 
1598         case StateType::eStateConnected:
1599         case StateType::eStateAttaching:
1600         case StateType::eStateLaunching:
1601         case StateType::eStateStopped:
1602         case StateType::eStateRunning:
1603         case StateType::eStateStepping:
1604         case StateType::eStateSuspended:
1605             // We can try to kill a process in these states.
1606             break;
1607     }
1608 
1609     if (kill (GetID (), SIGKILL) != 0)
1610     {
1611         error.SetErrorToErrno ();
1612         return error;
1613     }
1614 
1615     return error;
1616 }
1617 
1618 static Error
1619 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1620 {
1621     memory_region_info.Clear();
1622 
1623     StringExtractor line_extractor (maps_line);
1624 
1625     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1626     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1627 
1628     // Parse out the starting address
1629     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1630 
1631     // Parse out hyphen separating start and end address from range.
1632     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1633         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1634 
1635     // Parse out the ending address
1636     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1637 
1638     // Parse out the space after the address.
1639     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1640         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1641 
1642     // Save the range.
1643     memory_region_info.GetRange ().SetRangeBase (start_address);
1644     memory_region_info.GetRange ().SetRangeEnd (end_address);
1645 
1646     // Any memory region in /proc/{pid}/maps is by definition mapped into the process.
1647     memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1648 
1649     // Parse out each permission entry.
1650     if (line_extractor.GetBytesLeft () < 4)
1651         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1652 
1653     // Handle read permission.
1654     const char read_perm_char = line_extractor.GetChar ();
1655     if (read_perm_char == 'r')
1656         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1657     else if (read_perm_char == '-')
1658         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1659     else
1660         return Error ("unexpected /proc/{pid}/maps read permission char");
1661 
1662     // Handle write permission.
1663     const char write_perm_char = line_extractor.GetChar ();
1664     if (write_perm_char == 'w')
1665         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1666     else if (write_perm_char == '-')
1667         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1668     else
1669         return Error ("unexpected /proc/{pid}/maps write permission char");
1670 
1671     // Handle execute permission.
1672     const char exec_perm_char = line_extractor.GetChar ();
1673     if (exec_perm_char == 'x')
1674         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1675     else if (exec_perm_char == '-')
1676         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1677     else
1678         return Error ("unexpected /proc/{pid}/maps exec permission char");
1679 
1680     line_extractor.GetChar();              // Read the private bit
1681     line_extractor.SkipSpaces();           // Skip the separator
1682     line_extractor.GetHexMaxU64(false, 0); // Read the offset
1683     line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1684     line_extractor.GetChar();              // Read the device id separator
1685     line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1686     line_extractor.SkipSpaces();           // Skip the separator
1687     line_extractor.GetU64(0, 10);          // Read the inode number
1688 
1689     line_extractor.SkipSpaces();
1690     memory_region_info.SetName(line_extractor.Peek().str().c_str());
1691 
1692     return Error ();
1693 }
1694 
1695 Error
1696 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1697 {
1698     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1699     // with no perms if it is not mapped.
1700 
1701     // Use an approach that reads memory regions from /proc/{pid}/maps.
1702     // Assume proc maps entries are in ascending order.
1703     // FIXME assert if we find differently.
1704 
1705     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1706     Error error;
1707 
1708     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
1709     {
1710         // We're done.
1711         error.SetErrorString ("unsupported");
1712         return error;
1713     }
1714 
1715     // If our cache is empty, pull the latest.  There should always be at least one memory region
1716     // if memory region handling is supported.
1717     if (m_mem_region_cache.empty ())
1718     {
1719         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
1720              [&] (const std::string &line) -> bool
1721              {
1722                  MemoryRegionInfo info;
1723                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
1724                  if (parse_error.Success ())
1725                  {
1726                      m_mem_region_cache.push_back (info);
1727                      return true;
1728                  }
1729                  else
1730                  {
1731                      if (log)
1732                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
1733                      return false;
1734                  }
1735              });
1736 
1737         // If we had an error, we'll mark unsupported.
1738         if (error.Fail ())
1739         {
1740             m_supports_mem_region = LazyBool::eLazyBoolNo;
1741             return error;
1742         }
1743         else if (m_mem_region_cache.empty ())
1744         {
1745             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
1746             // is supported.  Assume we don't support map entries via procfs.
1747             if (log)
1748                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
1749             m_supports_mem_region = LazyBool::eLazyBoolNo;
1750             error.SetErrorString ("not supported");
1751             return error;
1752         }
1753 
1754         if (log)
1755             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
1756 
1757         // We support memory retrieval, remember that.
1758         m_supports_mem_region = LazyBool::eLazyBoolYes;
1759     }
1760     else
1761     {
1762         if (log)
1763             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
1764     }
1765 
1766     lldb::addr_t prev_base_address = 0;
1767 
1768     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
1769     // There can be a ton of regions on pthreads apps with lots of threads.
1770     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
1771     {
1772         MemoryRegionInfo &proc_entry_info = *it;
1773 
1774         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1775         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
1776         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
1777 
1778         // If the target address comes before this entry, indicate distance to next region.
1779         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
1780         {
1781             range_info.GetRange ().SetRangeBase (load_addr);
1782             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
1783             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1784             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1785             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1786             range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1787 
1788             return error;
1789         }
1790         else if (proc_entry_info.GetRange ().Contains (load_addr))
1791         {
1792             // The target address is within the memory region we're processing here.
1793             range_info = proc_entry_info;
1794             return error;
1795         }
1796 
1797         // The target memory address comes somewhere after the region we just parsed.
1798     }
1799 
1800     // If we made it here, we didn't find an entry that contained the given address. Return the
1801     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
1802     // size.
1803     range_info.GetRange ().SetRangeBase (load_addr);
1804     range_info.GetRange ().SetRangeEnd(LLDB_INVALID_ADDRESS);
1805     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1806     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1807     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1808     range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1809     return error;
1810 }
1811 
1812 void
1813 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
1814 {
1815     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1816     if (log)
1817         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
1818 
1819         if (log)
1820             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
1821         m_mem_region_cache.clear ();
1822 }
1823 
1824 Error
1825 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
1826 {
1827     // FIXME implementing this requires the equivalent of
1828     // InferiorCallPOSIX::InferiorCallMmap, which depends on
1829     // functional ThreadPlans working with Native*Protocol.
1830 #if 1
1831     return Error ("not implemented yet");
1832 #else
1833     addr = LLDB_INVALID_ADDRESS;
1834 
1835     unsigned prot = 0;
1836     if (permissions & lldb::ePermissionsReadable)
1837         prot |= eMmapProtRead;
1838     if (permissions & lldb::ePermissionsWritable)
1839         prot |= eMmapProtWrite;
1840     if (permissions & lldb::ePermissionsExecutable)
1841         prot |= eMmapProtExec;
1842 
1843     // TODO implement this directly in NativeProcessLinux
1844     // (and lift to NativeProcessPOSIX if/when that class is
1845     // refactored out).
1846     if (InferiorCallMmap(this, addr, 0, size, prot,
1847                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1848         m_addr_to_mmap_size[addr] = size;
1849         return Error ();
1850     } else {
1851         addr = LLDB_INVALID_ADDRESS;
1852         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
1853     }
1854 #endif
1855 }
1856 
1857 Error
1858 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
1859 {
1860     // FIXME see comments in AllocateMemory - required lower-level
1861     // bits not in place yet (ThreadPlans)
1862     return Error ("not implemented");
1863 }
1864 
1865 lldb::addr_t
1866 NativeProcessLinux::GetSharedLibraryInfoAddress ()
1867 {
1868     // punt on this for now
1869     return LLDB_INVALID_ADDRESS;
1870 }
1871 
1872 size_t
1873 NativeProcessLinux::UpdateThreads ()
1874 {
1875     // The NativeProcessLinux monitoring threads are always up to date
1876     // with respect to thread state and they keep the thread list
1877     // populated properly. All this method needs to do is return the
1878     // thread count.
1879     return m_threads.size ();
1880 }
1881 
1882 bool
1883 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
1884 {
1885     arch = m_arch;
1886     return true;
1887 }
1888 
1889 Error
1890 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
1891 {
1892     // FIXME put this behind a breakpoint protocol class that can be
1893     // set per architecture.  Need ARM, MIPS support here.
1894     static const uint8_t g_i386_opcode [] = { 0xCC };
1895     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
1896 
1897     switch (m_arch.GetMachine ())
1898     {
1899         case llvm::Triple::x86:
1900         case llvm::Triple::x86_64:
1901             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
1902             return Error ();
1903 
1904         case llvm::Triple::systemz:
1905             actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode));
1906             return Error ();
1907 
1908         case llvm::Triple::arm:
1909         case llvm::Triple::aarch64:
1910         case llvm::Triple::mips64:
1911         case llvm::Triple::mips64el:
1912         case llvm::Triple::mips:
1913         case llvm::Triple::mipsel:
1914             // On these architectures the PC don't get updated for breakpoint hits
1915             actual_opcode_size = 0;
1916             return Error ();
1917 
1918         default:
1919             assert(false && "CPU type not supported!");
1920             return Error ("CPU type not supported");
1921     }
1922 }
1923 
1924 Error
1925 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
1926 {
1927     if (hardware)
1928         return Error ("NativeProcessLinux does not support hardware breakpoints");
1929     else
1930         return SetSoftwareBreakpoint (addr, size);
1931 }
1932 
1933 Error
1934 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
1935                                                      size_t &actual_opcode_size,
1936                                                      const uint8_t *&trap_opcode_bytes)
1937 {
1938     // FIXME put this behind a breakpoint protocol class that can be set per
1939     // architecture.  Need MIPS support here.
1940     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
1941     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1942     // linux kernel does otherwise.
1943     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
1944     static const uint8_t g_i386_opcode [] = { 0xCC };
1945     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
1946     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
1947     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
1948     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
1949 
1950     switch (m_arch.GetMachine ())
1951     {
1952     case llvm::Triple::aarch64:
1953         trap_opcode_bytes = g_aarch64_opcode;
1954         actual_opcode_size = sizeof(g_aarch64_opcode);
1955         return Error ();
1956 
1957     case llvm::Triple::arm:
1958         switch (trap_opcode_size_hint)
1959         {
1960         case 2:
1961             trap_opcode_bytes = g_thumb_breakpoint_opcode;
1962             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1963             return Error ();
1964         case 4:
1965             trap_opcode_bytes = g_arm_breakpoint_opcode;
1966             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1967             return Error ();
1968         default:
1969             assert(false && "Unrecognised trap opcode size hint!");
1970             return Error ("Unrecognised trap opcode size hint!");
1971         }
1972 
1973     case llvm::Triple::x86:
1974     case llvm::Triple::x86_64:
1975         trap_opcode_bytes = g_i386_opcode;
1976         actual_opcode_size = sizeof(g_i386_opcode);
1977         return Error ();
1978 
1979     case llvm::Triple::mips:
1980     case llvm::Triple::mips64:
1981         trap_opcode_bytes = g_mips64_opcode;
1982         actual_opcode_size = sizeof(g_mips64_opcode);
1983         return Error ();
1984 
1985     case llvm::Triple::mipsel:
1986     case llvm::Triple::mips64el:
1987         trap_opcode_bytes = g_mips64el_opcode;
1988         actual_opcode_size = sizeof(g_mips64el_opcode);
1989         return Error ();
1990 
1991     case llvm::Triple::systemz:
1992         trap_opcode_bytes = g_s390x_opcode;
1993         actual_opcode_size = sizeof(g_s390x_opcode);
1994         return Error ();
1995 
1996     default:
1997         assert(false && "CPU type not supported!");
1998         return Error ("CPU type not supported");
1999     }
2000 }
2001 
2002 #if 0
2003 ProcessMessage::CrashReason
2004 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2005 {
2006     ProcessMessage::CrashReason reason;
2007     assert(info->si_signo == SIGSEGV);
2008 
2009     reason = ProcessMessage::eInvalidCrashReason;
2010 
2011     switch (info->si_code)
2012     {
2013     default:
2014         assert(false && "unexpected si_code for SIGSEGV");
2015         break;
2016     case SI_KERNEL:
2017         // Linux will occasionally send spurious SI_KERNEL codes.
2018         // (this is poorly documented in sigaction)
2019         // One way to get this is via unaligned SIMD loads.
2020         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2021         break;
2022     case SEGV_MAPERR:
2023         reason = ProcessMessage::eInvalidAddress;
2024         break;
2025     case SEGV_ACCERR:
2026         reason = ProcessMessage::ePrivilegedAddress;
2027         break;
2028     }
2029 
2030     return reason;
2031 }
2032 #endif
2033 
2034 
2035 #if 0
2036 ProcessMessage::CrashReason
2037 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2038 {
2039     ProcessMessage::CrashReason reason;
2040     assert(info->si_signo == SIGILL);
2041 
2042     reason = ProcessMessage::eInvalidCrashReason;
2043 
2044     switch (info->si_code)
2045     {
2046     default:
2047         assert(false && "unexpected si_code for SIGILL");
2048         break;
2049     case ILL_ILLOPC:
2050         reason = ProcessMessage::eIllegalOpcode;
2051         break;
2052     case ILL_ILLOPN:
2053         reason = ProcessMessage::eIllegalOperand;
2054         break;
2055     case ILL_ILLADR:
2056         reason = ProcessMessage::eIllegalAddressingMode;
2057         break;
2058     case ILL_ILLTRP:
2059         reason = ProcessMessage::eIllegalTrap;
2060         break;
2061     case ILL_PRVOPC:
2062         reason = ProcessMessage::ePrivilegedOpcode;
2063         break;
2064     case ILL_PRVREG:
2065         reason = ProcessMessage::ePrivilegedRegister;
2066         break;
2067     case ILL_COPROC:
2068         reason = ProcessMessage::eCoprocessorError;
2069         break;
2070     case ILL_BADSTK:
2071         reason = ProcessMessage::eInternalStackError;
2072         break;
2073     }
2074 
2075     return reason;
2076 }
2077 #endif
2078 
2079 #if 0
2080 ProcessMessage::CrashReason
2081 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2082 {
2083     ProcessMessage::CrashReason reason;
2084     assert(info->si_signo == SIGFPE);
2085 
2086     reason = ProcessMessage::eInvalidCrashReason;
2087 
2088     switch (info->si_code)
2089     {
2090     default:
2091         assert(false && "unexpected si_code for SIGFPE");
2092         break;
2093     case FPE_INTDIV:
2094         reason = ProcessMessage::eIntegerDivideByZero;
2095         break;
2096     case FPE_INTOVF:
2097         reason = ProcessMessage::eIntegerOverflow;
2098         break;
2099     case FPE_FLTDIV:
2100         reason = ProcessMessage::eFloatDivideByZero;
2101         break;
2102     case FPE_FLTOVF:
2103         reason = ProcessMessage::eFloatOverflow;
2104         break;
2105     case FPE_FLTUND:
2106         reason = ProcessMessage::eFloatUnderflow;
2107         break;
2108     case FPE_FLTRES:
2109         reason = ProcessMessage::eFloatInexactResult;
2110         break;
2111     case FPE_FLTINV:
2112         reason = ProcessMessage::eFloatInvalidOperation;
2113         break;
2114     case FPE_FLTSUB:
2115         reason = ProcessMessage::eFloatSubscriptRange;
2116         break;
2117     }
2118 
2119     return reason;
2120 }
2121 #endif
2122 
2123 #if 0
2124 ProcessMessage::CrashReason
2125 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2126 {
2127     ProcessMessage::CrashReason reason;
2128     assert(info->si_signo == SIGBUS);
2129 
2130     reason = ProcessMessage::eInvalidCrashReason;
2131 
2132     switch (info->si_code)
2133     {
2134     default:
2135         assert(false && "unexpected si_code for SIGBUS");
2136         break;
2137     case BUS_ADRALN:
2138         reason = ProcessMessage::eIllegalAlignment;
2139         break;
2140     case BUS_ADRERR:
2141         reason = ProcessMessage::eIllegalAddress;
2142         break;
2143     case BUS_OBJERR:
2144         reason = ProcessMessage::eHardwareError;
2145         break;
2146     }
2147 
2148     return reason;
2149 }
2150 #endif
2151 
2152 Error
2153 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2154 {
2155     if (ProcessVmReadvSupported()) {
2156         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2157         // this syscall if it is supported.
2158 
2159         const ::pid_t pid = GetID();
2160 
2161         struct iovec local_iov, remote_iov;
2162         local_iov.iov_base = buf;
2163         local_iov.iov_len = size;
2164         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2165         remote_iov.iov_len = size;
2166 
2167         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2168         const bool success = bytes_read == size;
2169 
2170         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2171         if (log)
2172             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2173                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2174 
2175         if (success)
2176             return Error();
2177         // else
2178         //     the call failed for some reason, let's retry the read using ptrace api.
2179     }
2180 
2181     unsigned char *dst = static_cast<unsigned char*>(buf);
2182     size_t remainder;
2183     long data;
2184 
2185     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2186     if (log)
2187         ProcessPOSIXLog::IncNestLevel();
2188     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2189         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2190 
2191     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2192     {
2193         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2194         if (error.Fail())
2195         {
2196             if (log)
2197                 ProcessPOSIXLog::DecNestLevel();
2198             return error;
2199         }
2200 
2201         remainder = size - bytes_read;
2202         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2203 
2204         // Copy the data into our buffer
2205         memcpy(dst, &data, remainder);
2206 
2207         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2208                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2209                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2210                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2211         {
2212             uintptr_t print_dst = 0;
2213             // Format bytes from data by moving into print_dst for log output
2214             for (unsigned i = 0; i < remainder; ++i)
2215                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2216             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2217                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2218         }
2219         addr += k_ptrace_word_size;
2220         dst += k_ptrace_word_size;
2221     }
2222 
2223     if (log)
2224         ProcessPOSIXLog::DecNestLevel();
2225     return Error();
2226 }
2227 
2228 Error
2229 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2230 {
2231     Error error = ReadMemory(addr, buf, size, bytes_read);
2232     if (error.Fail()) return error;
2233     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2234 }
2235 
2236 Error
2237 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2238 {
2239     const unsigned char *src = static_cast<const unsigned char*>(buf);
2240     size_t remainder;
2241     Error error;
2242 
2243     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2244     if (log)
2245         ProcessPOSIXLog::IncNestLevel();
2246     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2247         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2248 
2249     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2250     {
2251         remainder = size - bytes_written;
2252         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2253 
2254         if (remainder == k_ptrace_word_size)
2255         {
2256             unsigned long data = 0;
2257             memcpy(&data, src, k_ptrace_word_size);
2258 
2259             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2260                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2261                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2262                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2263                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2264                         (void*)addr, *(const unsigned long*)src, data);
2265 
2266             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2267             if (error.Fail())
2268             {
2269                 if (log)
2270                     ProcessPOSIXLog::DecNestLevel();
2271                 return error;
2272             }
2273         }
2274         else
2275         {
2276             unsigned char buff[8];
2277             size_t bytes_read;
2278             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2279             if (error.Fail())
2280             {
2281                 if (log)
2282                     ProcessPOSIXLog::DecNestLevel();
2283                 return error;
2284             }
2285 
2286             memcpy(buff, src, remainder);
2287 
2288             size_t bytes_written_rec;
2289             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2290             if (error.Fail())
2291             {
2292                 if (log)
2293                     ProcessPOSIXLog::DecNestLevel();
2294                 return error;
2295             }
2296 
2297             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2298                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2299                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2300                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2301                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2302                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2303         }
2304 
2305         addr += k_ptrace_word_size;
2306         src += k_ptrace_word_size;
2307     }
2308     if (log)
2309         ProcessPOSIXLog::DecNestLevel();
2310     return error;
2311 }
2312 
2313 Error
2314 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2315 {
2316     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2317 }
2318 
2319 Error
2320 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2321 {
2322     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2323 }
2324 
2325 Error
2326 NativeProcessLinux::Detach(lldb::tid_t tid)
2327 {
2328     if (tid == LLDB_INVALID_THREAD_ID)
2329         return Error();
2330 
2331     return PtraceWrapper(PTRACE_DETACH, tid);
2332 }
2333 
2334 bool
2335 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2336 {
2337     for (auto thread_sp : m_threads)
2338     {
2339         assert (thread_sp && "thread list should not contain NULL threads");
2340         if (thread_sp->GetID () == thread_id)
2341         {
2342             // We have this thread.
2343             return true;
2344         }
2345     }
2346 
2347     // We don't have this thread.
2348     return false;
2349 }
2350 
2351 bool
2352 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2353 {
2354     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2355 
2356     if (log)
2357         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2358 
2359     bool found = false;
2360 
2361     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2362     {
2363         if (*it && ((*it)->GetID () == thread_id))
2364         {
2365             m_threads.erase (it);
2366             found = true;
2367             break;
2368         }
2369     }
2370 
2371     SignalIfAllThreadsStopped();
2372 
2373     return found;
2374 }
2375 
2376 NativeThreadLinuxSP
2377 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2378 {
2379     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2380 
2381     if (log)
2382     {
2383         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2384                 __FUNCTION__,
2385                 GetID (),
2386                 thread_id);
2387     }
2388 
2389     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2390 
2391     // If this is the first thread, save it as the current thread
2392     if (m_threads.empty ())
2393         SetCurrentThreadID (thread_id);
2394 
2395     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2396     m_threads.push_back (thread_sp);
2397     return thread_sp;
2398 }
2399 
2400 Error
2401 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2402 {
2403     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2404 
2405     Error error;
2406 
2407     // Find out the size of a breakpoint (might depend on where we are in the code).
2408     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2409     if (!context_sp)
2410     {
2411         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2412         if (log)
2413             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2414         return error;
2415     }
2416 
2417     uint32_t breakpoint_size = 0;
2418     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2419     if (error.Fail ())
2420     {
2421         if (log)
2422             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2423         return error;
2424     }
2425     else
2426     {
2427         if (log)
2428             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2429     }
2430 
2431     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2432     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2433     lldb::addr_t breakpoint_addr = initial_pc_addr;
2434     if (breakpoint_size > 0)
2435     {
2436         // Do not allow breakpoint probe to wrap around.
2437         if (breakpoint_addr >= breakpoint_size)
2438             breakpoint_addr -= breakpoint_size;
2439     }
2440 
2441     // Check if we stopped because of a breakpoint.
2442     NativeBreakpointSP breakpoint_sp;
2443     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2444     if (!error.Success () || !breakpoint_sp)
2445     {
2446         // We didn't find one at a software probe location.  Nothing to do.
2447         if (log)
2448             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2449         return Error ();
2450     }
2451 
2452     // If the breakpoint is not a software breakpoint, nothing to do.
2453     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2454     {
2455         if (log)
2456             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2457         return Error ();
2458     }
2459 
2460     //
2461     // We have a software breakpoint and need to adjust the PC.
2462     //
2463 
2464     // Sanity check.
2465     if (breakpoint_size == 0)
2466     {
2467         // Nothing to do!  How did we get here?
2468         if (log)
2469             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2470         return Error ();
2471     }
2472 
2473     // Change the program counter.
2474     if (log)
2475         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2476 
2477     error = context_sp->SetPC (breakpoint_addr);
2478     if (error.Fail ())
2479     {
2480         if (log)
2481             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2482         return error;
2483     }
2484 
2485     return error;
2486 }
2487 
2488 Error
2489 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2490 {
2491     FileSpec module_file_spec(module_path, true);
2492 
2493     bool found = false;
2494     file_spec.Clear();
2495     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2496         [&] (const std::string &line)
2497         {
2498             SmallVector<StringRef, 16> columns;
2499             StringRef(line).split(columns, " ", -1, false);
2500             if (columns.size() < 6)
2501                 return true; // continue searching
2502 
2503             FileSpec this_file_spec(columns[5].str().c_str(), false);
2504             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2505                 return true; // continue searching
2506 
2507             file_spec = this_file_spec;
2508             found = true;
2509             return false; // we are done
2510         });
2511 
2512     if (! found)
2513         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2514                 module_file_spec.GetFilename().AsCString(), GetID());
2515 
2516     return Error();
2517 }
2518 
2519 Error
2520 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2521 {
2522     load_addr = LLDB_INVALID_ADDRESS;
2523     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2524         [&] (const std::string &line) -> bool
2525         {
2526             StringRef maps_row(line);
2527 
2528             SmallVector<StringRef, 16> maps_columns;
2529             maps_row.split(maps_columns, StringRef(" "), -1, false);
2530 
2531             if (maps_columns.size() < 6)
2532             {
2533                 // Return true to continue reading the proc file
2534                 return true;
2535             }
2536 
2537             if (maps_columns[5] == file_name)
2538             {
2539                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2540                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2541 
2542                 // Return false to stop reading the proc file further
2543                 return false;
2544             }
2545 
2546             // Return true to continue reading the proc file
2547             return true;
2548         });
2549     return error;
2550 }
2551 
2552 NativeThreadLinuxSP
2553 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2554 {
2555     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2556 }
2557 
2558 Error
2559 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2560 {
2561     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2562 
2563     if (log)
2564         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2565                 __FUNCTION__, thread.GetID());
2566 
2567     // Before we do the resume below, first check if we have a pending
2568     // stop notification that is currently waiting for
2569     // all threads to stop.  This is potentially a buggy situation since
2570     // we're ostensibly waiting for threads to stop before we send out the
2571     // pending notification, and here we are resuming one before we send
2572     // out the pending stop notification.
2573     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2574     {
2575         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2576     }
2577 
2578     // Request a resume.  We expect this to be synchronous and the system
2579     // to reflect it is running after this completes.
2580     switch (state)
2581     {
2582     case eStateRunning:
2583     {
2584         const auto resume_result = thread.Resume(signo);
2585         if (resume_result.Success())
2586             SetState(eStateRunning, true);
2587         return resume_result;
2588     }
2589     case eStateStepping:
2590     {
2591         const auto step_result = thread.SingleStep(signo);
2592         if (step_result.Success())
2593             SetState(eStateRunning, true);
2594         return step_result;
2595     }
2596     default:
2597         if (log)
2598             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2599                     __FUNCTION__, StateAsCString(state));
2600         llvm_unreachable("Unhandled state for resume");
2601     }
2602 }
2603 
2604 //===----------------------------------------------------------------------===//
2605 
2606 void
2607 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
2608 {
2609     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2610 
2611     if (log)
2612     {
2613         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
2614                 __FUNCTION__, triggering_tid);
2615     }
2616 
2617     m_pending_notification_tid = triggering_tid;
2618 
2619     // Request a stop for all the thread stops that need to be stopped
2620     // and are not already known to be stopped.
2621     for (const auto &thread_sp: m_threads)
2622     {
2623         if (StateIsRunningState(thread_sp->GetState()))
2624             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2625     }
2626 
2627     SignalIfAllThreadsStopped();
2628 
2629     if (log)
2630     {
2631         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
2632     }
2633 }
2634 
2635 void
2636 NativeProcessLinux::SignalIfAllThreadsStopped()
2637 {
2638     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2639         return; // No pending notification. Nothing to do.
2640 
2641     for (const auto &thread_sp: m_threads)
2642     {
2643         if (StateIsRunningState(thread_sp->GetState()))
2644             return; // Some threads are still running. Don't signal yet.
2645     }
2646 
2647     // We have a pending notification and all threads have stopped.
2648     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2649 
2650     // Clear any temporary breakpoints we used to implement software single stepping.
2651     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
2652     {
2653         Error error = RemoveBreakpoint (thread_info.second);
2654         if (error.Fail())
2655             if (log)
2656                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2657                         __FUNCTION__, thread_info.first, error.AsCString());
2658     }
2659     m_threads_stepping_with_breakpoint.clear();
2660 
2661     // Notify the delegate about the stop
2662     SetCurrentThreadID(m_pending_notification_tid);
2663     SetState(StateType::eStateStopped, true);
2664     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2665 }
2666 
2667 void
2668 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
2669 {
2670     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2671 
2672     if (log)
2673         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
2674 
2675     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
2676     {
2677         // We will need to wait for this new thread to stop as well before firing the
2678         // notification.
2679         thread.RequestStop();
2680     }
2681 }
2682 
2683 void
2684 NativeProcessLinux::SigchldHandler()
2685 {
2686     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2687     // Process all pending waitpid notifications.
2688     while (true)
2689     {
2690         int status = -1;
2691         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2692 
2693         if (wait_pid == 0)
2694             break; // We are done.
2695 
2696         if (wait_pid == -1)
2697         {
2698             if (errno == EINTR)
2699                 continue;
2700 
2701             Error error(errno, eErrorTypePOSIX);
2702             if (log)
2703                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
2704                         __FUNCTION__, error.AsCString());
2705             break;
2706         }
2707 
2708         bool exited = false;
2709         int signal = 0;
2710         int exit_status = 0;
2711         const char *status_cstr = nullptr;
2712         if (WIFSTOPPED(status))
2713         {
2714             signal = WSTOPSIG(status);
2715             status_cstr = "STOPPED";
2716         }
2717         else if (WIFEXITED(status))
2718         {
2719             exit_status = WEXITSTATUS(status);
2720             status_cstr = "EXITED";
2721             exited = true;
2722         }
2723         else if (WIFSIGNALED(status))
2724         {
2725             signal = WTERMSIG(status);
2726             status_cstr = "SIGNALED";
2727             if (wait_pid == static_cast< ::pid_t>(GetID())) {
2728                 exited = true;
2729                 exit_status = -1;
2730             }
2731         }
2732         else
2733             status_cstr = "(\?\?\?)";
2734 
2735         if (log)
2736             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
2737                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
2738                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
2739 
2740         MonitorCallback (wait_pid, exited, signal, exit_status);
2741     }
2742 }
2743 
2744 // Wrapper for ptrace to catch errors and log calls.
2745 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
2746 Error
2747 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
2748 {
2749     Error error;
2750     long int ret;
2751 
2752     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
2753 
2754     PtraceDisplayBytes(req, data, data_size);
2755 
2756     errno = 0;
2757     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2758         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
2759     else
2760         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
2761 
2762     if (ret == -1)
2763         error.SetErrorToErrno();
2764 
2765     if (result)
2766         *result = ret;
2767 
2768     if (log)
2769         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
2770 
2771     PtraceDisplayBytes(req, data, data_size);
2772 
2773     if (log && error.GetError() != 0)
2774     {
2775         const char* str;
2776         switch (error.GetError())
2777         {
2778         case ESRCH:  str = "ESRCH"; break;
2779         case EINVAL: str = "EINVAL"; break;
2780         case EBUSY:  str = "EBUSY"; break;
2781         case EPERM:  str = "EPERM"; break;
2782         default:     str = error.AsCString();
2783         }
2784         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
2785     }
2786 
2787     return error;
2788 }
2789