1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ArchSpec arch;
249   if ((status = ResolveProcessArchitecture(pid, arch)).Fail())
250     return status.ToError();
251 
252   // Set the architecture to the exe architecture.
253   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
254            arch.GetArchitectureName());
255 
256   status = SetDefaultPtraceOpts(pid);
257   if (status.Fail()) {
258     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
259     return status.ToError();
260   }
261 
262   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
263       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
264       arch, mainloop, {pid}));
265 }
266 
267 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
268 NativeProcessLinux::Factory::Attach(
269     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
270     MainLoop &mainloop) const {
271   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
272   LLDB_LOG(log, "pid = {0:x}", pid);
273 
274   // Retrieve the architecture for the running process.
275   ArchSpec arch;
276   Status status = ResolveProcessArchitecture(pid, arch);
277   if (!status.Success())
278     return status.ToError();
279 
280   auto tids_or = NativeProcessLinux::Attach(pid);
281   if (!tids_or)
282     return tids_or.takeError();
283 
284   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
285       pid, -1, native_delegate, arch, mainloop, *tids_or));
286 }
287 
288 // -----------------------------------------------------------------------------
289 // Public Instance Methods
290 // -----------------------------------------------------------------------------
291 
292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
293                                        NativeDelegate &delegate,
294                                        const ArchSpec &arch, MainLoop &mainloop,
295                                        llvm::ArrayRef<::pid_t> tids)
296     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
297   if (m_terminal_fd != -1) {
298     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
299     assert(status.Success());
300   }
301 
302   Status status;
303   m_sigchld_handle = mainloop.RegisterSignal(
304       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
305   assert(m_sigchld_handle && status.Success());
306 
307   for (const auto &tid : tids) {
308     NativeThreadLinuxSP thread_sp = AddThread(tid);
309     assert(thread_sp && "AddThread() returned a nullptr thread");
310     thread_sp->SetStoppedBySignal(SIGSTOP);
311     ThreadWasCreated(*thread_sp);
312   }
313 
314   // Let our process instance know the thread has stopped.
315   SetCurrentThreadID(tids[0]);
316   SetState(StateType::eStateStopped, false);
317 
318   // Proccess any signals we received before installing our handler
319   SigchldHandler();
320 }
321 
322 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
323   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
324 
325   Status status;
326   // Use a map to keep track of the threads which we have attached/need to
327   // attach.
328   Host::TidMap tids_to_attach;
329   while (Host::FindProcessThreads(pid, tids_to_attach)) {
330     for (Host::TidMap::iterator it = tids_to_attach.begin();
331          it != tids_to_attach.end();) {
332       if (it->second == false) {
333         lldb::tid_t tid = it->first;
334 
335         // Attach to the requested process.
336         // An attach will cause the thread to stop with a SIGSTOP.
337         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
338           // No such thread. The thread may have exited.
339           // More error handling may be needed.
340           if (status.GetError() == ESRCH) {
341             it = tids_to_attach.erase(it);
342             continue;
343           }
344           return status.ToError();
345         }
346 
347         int wpid =
348             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
349         // Need to use __WALL otherwise we receive an error with errno=ECHLD
350         // At this point we should have a thread stopped if waitpid succeeds.
351         if (wpid < 0) {
352           // No such thread. The thread may have exited.
353           // More error handling may be needed.
354           if (errno == ESRCH) {
355             it = tids_to_attach.erase(it);
356             continue;
357           }
358           return llvm::errorCodeToError(
359               std::error_code(errno, std::generic_category()));
360         }
361 
362         if ((status = SetDefaultPtraceOpts(tid)).Fail())
363           return status.ToError();
364 
365         LLDB_LOG(log, "adding tid = {0}", tid);
366         it->second = true;
367       }
368 
369       // move the loop forward
370       ++it;
371     }
372   }
373 
374   size_t tid_count = tids_to_attach.size();
375   if (tid_count == 0)
376     return llvm::make_error<StringError>("No such process",
377                                          llvm::inconvertibleErrorCode());
378 
379   std::vector<::pid_t> tids;
380   tids.reserve(tid_count);
381   for (const auto &p : tids_to_attach)
382     tids.push_back(p.first);
383   return std::move(tids);
384 }
385 
386 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
387   long ptrace_opts = 0;
388 
389   // Have the child raise an event on exit.  This is used to keep the child in
390   // limbo until it is destroyed.
391   ptrace_opts |= PTRACE_O_TRACEEXIT;
392 
393   // Have the tracer trace threads which spawn in the inferior process.
394   // TODO: if we want to support tracing the inferiors' child, add the
395   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
396   ptrace_opts |= PTRACE_O_TRACECLONE;
397 
398   // Have the tracer notify us before execve returns
399   // (needed to disable legacy SIGTRAP generation)
400   ptrace_opts |= PTRACE_O_TRACEEXEC;
401 
402   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
403 }
404 
405 // Handles all waitpid events from the inferior process.
406 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
407                                          WaitStatus status) {
408   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
409 
410   // Certain activities differ based on whether the pid is the tid of the main
411   // thread.
412   const bool is_main_thread = (pid == GetID());
413 
414   // Handle when the thread exits.
415   if (exited) {
416     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
417              pid, is_main_thread ? "is" : "is not");
418 
419     // This is a thread that exited.  Ensure we're not tracking it anymore.
420     const bool thread_found = StopTrackingThread(pid);
421 
422     if (is_main_thread) {
423       // We only set the exit status and notify the delegate if we haven't
424       // already set the process
425       // state to an exited state.  We normally should have received a SIGTRAP |
426       // (PTRACE_EVENT_EXIT << 8)
427       // for the main thread.
428       const bool already_notified = (GetState() == StateType::eStateExited) ||
429                                     (GetState() == StateType::eStateCrashed);
430       if (!already_notified) {
431         LLDB_LOG(
432             log,
433             "tid = {0} handling main thread exit ({1}), expected exit state "
434             "already set but state was {2} instead, setting exit state now",
435             pid,
436             thread_found ? "stopped tracking thread metadata"
437                          : "thread metadata not found",
438             GetState());
439         // The main thread exited.  We're done monitoring.  Report to delegate.
440         SetExitStatus(status, true);
441 
442         // Notify delegate that our process has exited.
443         SetState(StateType::eStateExited, true);
444       } else
445         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
446                  thread_found ? "stopped tracking thread metadata"
447                               : "thread metadata not found");
448     } else {
449       // Do we want to report to the delegate in this case?  I think not.  If
450       // this was an orderly thread exit, we would already have received the
451       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
452       // all-stop then.
453       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
454                thread_found ? "stopped tracking thread metadata"
455                             : "thread metadata not found");
456     }
457     return;
458   }
459 
460   siginfo_t info;
461   const auto info_err = GetSignalInfo(pid, &info);
462   auto thread_sp = GetThreadByID(pid);
463 
464   if (!thread_sp) {
465     // Normally, the only situation when we cannot find the thread is if we have
466     // just received a new thread notification. This is indicated by
467     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
468     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
469 
470     if (info_err.Fail()) {
471       LLDB_LOG(log,
472                "(tid {0}) GetSignalInfo failed ({1}). "
473                "Ingoring this notification.",
474                pid, info_err);
475       return;
476     }
477 
478     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
479              info.si_pid);
480 
481     auto thread_sp = AddThread(pid);
482 
483     // Resume the newly created thread.
484     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
485     ThreadWasCreated(*thread_sp);
486     return;
487   }
488 
489   // Get details on the signal raised.
490   if (info_err.Success()) {
491     // We have retrieved the signal info.  Dispatch appropriately.
492     if (info.si_signo == SIGTRAP)
493       MonitorSIGTRAP(info, *thread_sp);
494     else
495       MonitorSignal(info, *thread_sp, exited);
496   } else {
497     if (info_err.GetError() == EINVAL) {
498       // This is a group stop reception for this tid.
499       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
500       // into the tracee, triggering the group-stop mechanism. Normally
501       // receiving these would stop the process, pending a SIGCONT. Simulating
502       // this state in a debugger is hard and is generally not needed (one use
503       // case is debugging background task being managed by a shell). For
504       // general use, it is sufficient to stop the process in a signal-delivery
505       // stop which happens before the group stop. This done by MonitorSignal
506       // and works correctly for all signals.
507       LLDB_LOG(log,
508                "received a group stop for pid {0} tid {1}. Transparent "
509                "handling of group stops not supported, resuming the "
510                "thread.",
511                GetID(), pid);
512       ResumeThread(*thread_sp, thread_sp->GetState(),
513                    LLDB_INVALID_SIGNAL_NUMBER);
514     } else {
515       // ptrace(GETSIGINFO) failed (but not due to group-stop).
516 
517       // A return value of ESRCH means the thread/process is no longer on the
518       // system, so it was killed somehow outside of our control.  Either way,
519       // we can't do anything with it anymore.
520 
521       // Stop tracking the metadata for the thread since it's entirely off the
522       // system now.
523       const bool thread_found = StopTrackingThread(pid);
524 
525       LLDB_LOG(log,
526                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
527                "status = {3}, main_thread = {4}, thread_found: {5}",
528                info_err, pid, signal, status, is_main_thread, thread_found);
529 
530       if (is_main_thread) {
531         // Notify the delegate - our process is not available but appears to
532         // have been killed outside
533         // our control.  Is eStateExited the right exit state in this case?
534         SetExitStatus(status, true);
535         SetState(StateType::eStateExited, true);
536       } else {
537         // This thread was pulled out from underneath us.  Anything to do here?
538         // Do we want to do an all stop?
539         LLDB_LOG(log,
540                  "pid {0} tid {1} non-main thread exit occurred, didn't "
541                  "tell delegate anything since thread disappeared out "
542                  "from underneath us",
543                  GetID(), pid);
544       }
545     }
546   }
547 }
548 
549 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
550   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
551 
552   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
553 
554   if (new_thread_sp) {
555     // We are already tracking the thread - we got the event on the new thread
556     // (see
557     // MonitorSignal) before this one. We are done.
558     return;
559   }
560 
561   // The thread is not tracked yet, let's wait for it to appear.
562   int status = -1;
563   LLDB_LOG(log,
564            "received thread creation event for tid {0}. tid not tracked "
565            "yet, waiting for thread to appear...",
566            tid);
567   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
568   // Since we are waiting on a specific tid, this must be the creation event.
569   // But let's do some checks just in case.
570   if (wait_pid != tid) {
571     LLDB_LOG(log,
572              "waiting for tid {0} failed. Assuming the thread has "
573              "disappeared in the meantime",
574              tid);
575     // The only way I know of this could happen is if the whole process was
576     // SIGKILLed in the mean time. In any case, we can't do anything about that
577     // now.
578     return;
579   }
580   if (WIFEXITED(status)) {
581     LLDB_LOG(log,
582              "waiting for tid {0} returned an 'exited' event. Not "
583              "tracking the thread.",
584              tid);
585     // Also a very improbable event.
586     return;
587   }
588 
589   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
590   new_thread_sp = AddThread(tid);
591 
592   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
593   ThreadWasCreated(*new_thread_sp);
594 }
595 
596 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
597                                         NativeThreadLinux &thread) {
598   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
599   const bool is_main_thread = (thread.GetID() == GetID());
600 
601   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
602 
603   switch (info.si_code) {
604   // TODO: these two cases are required if we want to support tracing of the
605   // inferiors' children.  We'd need this to debug a monitor.
606   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
607   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
608 
609   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
610     // This is the notification on the parent thread which informs us of new
611     // thread
612     // creation.
613     // We don't want to do anything with the parent thread so we just resume it.
614     // In case we
615     // want to implement "break on thread creation" functionality, we would need
616     // to stop
617     // here.
618 
619     unsigned long event_message = 0;
620     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
621       LLDB_LOG(log,
622                "pid {0} received thread creation event but "
623                "GetEventMessage failed so we don't know the new tid",
624                thread.GetID());
625     } else
626       WaitForNewThread(event_message);
627 
628     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
629     break;
630   }
631 
632   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
633     NativeThreadLinuxSP main_thread_sp;
634     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
635 
636     // Exec clears any pending notifications.
637     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
638 
639     // Remove all but the main thread here.  Linux fork creates a new process
640     // which only copies the main thread.
641     LLDB_LOG(log, "exec received, stop tracking all but main thread");
642 
643     for (auto thread_sp : m_threads) {
644       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
645       if (is_main_thread) {
646         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
647         LLDB_LOG(log, "found main thread with tid {0}, keeping",
648                  main_thread_sp->GetID());
649       } else {
650         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
651                  thread_sp->GetID());
652       }
653     }
654 
655     m_threads.clear();
656 
657     if (main_thread_sp) {
658       m_threads.push_back(main_thread_sp);
659       SetCurrentThreadID(main_thread_sp->GetID());
660       main_thread_sp->SetStoppedByExec();
661     } else {
662       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
663       LLDB_LOG(log,
664                "pid {0} no main thread found, discarded all threads, "
665                "we're in a no-thread state!",
666                GetID());
667     }
668 
669     // Tell coordinator about about the "new" (since exec) stopped main thread.
670     ThreadWasCreated(*main_thread_sp);
671 
672     // Let our delegate know we have just exec'd.
673     NotifyDidExec();
674 
675     // If we have a main thread, indicate we are stopped.
676     assert(main_thread_sp && "exec called during ptraced process but no main "
677                              "thread metadata tracked");
678 
679     // Let the process know we're stopped.
680     StopRunningThreads(main_thread_sp->GetID());
681 
682     break;
683   }
684 
685   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
686     // The inferior process or one of its threads is about to exit.
687     // We don't want to do anything with the thread so we just resume it. In
688     // case we
689     // want to implement "break on thread exit" functionality, we would need to
690     // stop
691     // here.
692 
693     unsigned long data = 0;
694     if (GetEventMessage(thread.GetID(), &data).Fail())
695       data = -1;
696 
697     LLDB_LOG(log,
698              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
699              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
700              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
701              is_main_thread);
702 
703     if (is_main_thread)
704       SetExitStatus(WaitStatus::Decode(data), true);
705 
706     StateType state = thread.GetState();
707     if (!StateIsRunningState(state)) {
708       // Due to a kernel bug, we may sometimes get this stop after the inferior
709       // gets a
710       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
711       // since normally,
712       // we should not be receiving any ptrace events while the inferior is
713       // stopped. This
714       // makes sure that the inferior is resumed and exits normally.
715       state = eStateRunning;
716     }
717     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
718 
719     break;
720   }
721 
722   case 0:
723   case TRAP_TRACE:  // We receive this on single stepping.
724   case TRAP_HWBKPT: // We receive this on watchpoint hit
725   {
726     // If a watchpoint was hit, report it
727     uint32_t wp_index;
728     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
729         wp_index, (uintptr_t)info.si_addr);
730     if (error.Fail())
731       LLDB_LOG(log,
732                "received error while checking for watchpoint hits, pid = "
733                "{0}, error = {1}",
734                thread.GetID(), error);
735     if (wp_index != LLDB_INVALID_INDEX32) {
736       MonitorWatchpoint(thread, wp_index);
737       break;
738     }
739 
740     // If a breakpoint was hit, report it
741     uint32_t bp_index;
742     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
743         bp_index, (uintptr_t)info.si_addr);
744     if (error.Fail())
745       LLDB_LOG(log, "received error while checking for hardware "
746                     "breakpoint hits, pid = {0}, error = {1}",
747                thread.GetID(), error);
748     if (bp_index != LLDB_INVALID_INDEX32) {
749       MonitorBreakpoint(thread);
750       break;
751     }
752 
753     // Otherwise, report step over
754     MonitorTrace(thread);
755     break;
756   }
757 
758   case SI_KERNEL:
759 #if defined __mips__
760     // For mips there is no special signal for watchpoint
761     // So we check for watchpoint in kernel trap
762     {
763       // If a watchpoint was hit, report it
764       uint32_t wp_index;
765       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
766           wp_index, LLDB_INVALID_ADDRESS);
767       if (error.Fail())
768         LLDB_LOG(log,
769                  "received error while checking for watchpoint hits, pid = "
770                  "{0}, error = {1}",
771                  thread.GetID(), error);
772       if (wp_index != LLDB_INVALID_INDEX32) {
773         MonitorWatchpoint(thread, wp_index);
774         break;
775       }
776     }
777 // NO BREAK
778 #endif
779   case TRAP_BRKPT:
780     MonitorBreakpoint(thread);
781     break;
782 
783   case SIGTRAP:
784   case (SIGTRAP | 0x80):
785     LLDB_LOG(
786         log,
787         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
788         info.si_code, GetID(), thread.GetID());
789 
790     // Ignore these signals until we know more about them.
791     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
792     break;
793 
794   default:
795     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
796              info.si_code, GetID(), thread.GetID());
797     MonitorSignal(info, thread, false);
798     break;
799   }
800 }
801 
802 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
803   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
804   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
805 
806   // This thread is currently stopped.
807   thread.SetStoppedByTrace();
808 
809   StopRunningThreads(thread.GetID());
810 }
811 
812 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
813   Log *log(
814       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
815   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
816 
817   // Mark the thread as stopped at breakpoint.
818   thread.SetStoppedByBreakpoint();
819   Status error = FixupBreakpointPCAsNeeded(thread);
820   if (error.Fail())
821     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
822 
823   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
824       m_threads_stepping_with_breakpoint.end())
825     thread.SetStoppedByTrace();
826 
827   StopRunningThreads(thread.GetID());
828 }
829 
830 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
831                                            uint32_t wp_index) {
832   Log *log(
833       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
834   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
835            thread.GetID(), wp_index);
836 
837   // Mark the thread as stopped at watchpoint.
838   // The address is at (lldb::addr_t)info->si_addr if we need it.
839   thread.SetStoppedByWatchpoint(wp_index);
840 
841   // We need to tell all other running threads before we notify the delegate
842   // about this stop.
843   StopRunningThreads(thread.GetID());
844 }
845 
846 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
847                                        NativeThreadLinux &thread, bool exited) {
848   const int signo = info.si_signo;
849   const bool is_from_llgs = info.si_pid == getpid();
850 
851   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
852 
853   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
854   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
855   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
856   //
857   // IOW, user generated signals never generate what we consider to be a
858   // "crash".
859   //
860   // Similarly, ACK signals generated by this monitor.
861 
862   // Handle the signal.
863   LLDB_LOG(log,
864            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
865            "waitpid pid = {4})",
866            Host::GetSignalAsCString(signo), signo, info.si_code,
867            thread.GetID());
868 
869   // Check for thread stop notification.
870   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
871     // This is a tgkill()-based stop.
872     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
873 
874     // Check that we're not already marked with a stop reason.
875     // Note this thread really shouldn't already be marked as stopped - if we
876     // were, that would imply that the kernel signaled us with the thread
877     // stopping which we handled and marked as stopped, and that, without an
878     // intervening resume, we received another stop.  It is more likely that we
879     // are missing the marking of a run state somewhere if we find that the
880     // thread was marked as stopped.
881     const StateType thread_state = thread.GetState();
882     if (!StateIsStoppedState(thread_state, false)) {
883       // An inferior thread has stopped because of a SIGSTOP we have sent it.
884       // Generally, these are not important stops and we don't want to report
885       // them as they are just used to stop other threads when one thread (the
886       // one with the *real* stop reason) hits a breakpoint (watchpoint,
887       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
888       // the real stop reason, so we leave the signal intact if this is the
889       // thread that was chosen as the triggering thread.
890       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
891         if (m_pending_notification_tid == thread.GetID())
892           thread.SetStoppedBySignal(SIGSTOP, &info);
893         else
894           thread.SetStoppedWithNoReason();
895 
896         SetCurrentThreadID(thread.GetID());
897         SignalIfAllThreadsStopped();
898       } else {
899         // We can end up here if stop was initiated by LLGS but by this time a
900         // thread stop has occurred - maybe initiated by another event.
901         Status error = ResumeThread(thread, thread.GetState(), 0);
902         if (error.Fail())
903           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
904                    error);
905       }
906     } else {
907       LLDB_LOG(log,
908                "pid {0} tid {1}, thread was already marked as a stopped "
909                "state (state={2}), leaving stop signal as is",
910                GetID(), thread.GetID(), thread_state);
911       SignalIfAllThreadsStopped();
912     }
913 
914     // Done handling.
915     return;
916   }
917 
918   // Check if debugger should stop at this signal or just ignore it
919   // and resume the inferior.
920   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
921      ResumeThread(thread, thread.GetState(), signo);
922      return;
923   }
924 
925   // This thread is stopped.
926   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
927   thread.SetStoppedBySignal(signo, &info);
928 
929   // Send a stop to the debugger after we get all other threads to stop.
930   StopRunningThreads(thread.GetID());
931 }
932 
933 namespace {
934 
935 struct EmulatorBaton {
936   NativeProcessLinux *m_process;
937   NativeRegisterContext *m_reg_context;
938 
939   // eRegisterKindDWARF -> RegsiterValue
940   std::unordered_map<uint32_t, RegisterValue> m_register_values;
941 
942   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
943       : m_process(process), m_reg_context(reg_context) {}
944 };
945 
946 } // anonymous namespace
947 
948 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
949                                  const EmulateInstruction::Context &context,
950                                  lldb::addr_t addr, void *dst, size_t length) {
951   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
952 
953   size_t bytes_read;
954   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
955   return bytes_read;
956 }
957 
958 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
959                                  const RegisterInfo *reg_info,
960                                  RegisterValue &reg_value) {
961   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
962 
963   auto it = emulator_baton->m_register_values.find(
964       reg_info->kinds[eRegisterKindDWARF]);
965   if (it != emulator_baton->m_register_values.end()) {
966     reg_value = it->second;
967     return true;
968   }
969 
970   // The emulator only fill in the dwarf regsiter numbers (and in some case
971   // the generic register numbers). Get the full register info from the
972   // register context based on the dwarf register numbers.
973   const RegisterInfo *full_reg_info =
974       emulator_baton->m_reg_context->GetRegisterInfo(
975           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
976 
977   Status error =
978       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
979   if (error.Success())
980     return true;
981 
982   return false;
983 }
984 
985 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
986                                   const EmulateInstruction::Context &context,
987                                   const RegisterInfo *reg_info,
988                                   const RegisterValue &reg_value) {
989   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
990   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
991       reg_value;
992   return true;
993 }
994 
995 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
996                                   const EmulateInstruction::Context &context,
997                                   lldb::addr_t addr, const void *dst,
998                                   size_t length) {
999   return length;
1000 }
1001 
1002 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1003   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1004       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1005   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1006                                                   LLDB_INVALID_ADDRESS);
1007 }
1008 
1009 Status
1010 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
1011   Status error;
1012   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1013 
1014   std::unique_ptr<EmulateInstruction> emulator_ap(
1015       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1016                                      nullptr));
1017 
1018   if (emulator_ap == nullptr)
1019     return Status("Instruction emulator not found!");
1020 
1021   EmulatorBaton baton(this, register_context_sp.get());
1022   emulator_ap->SetBaton(&baton);
1023   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1024   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1025   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1026   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1027 
1028   if (!emulator_ap->ReadInstruction())
1029     return Status("Read instruction failed!");
1030 
1031   bool emulation_result =
1032       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1033 
1034   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1035       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1036   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1037       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1038 
1039   auto pc_it =
1040       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1041   auto flags_it =
1042       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1043 
1044   lldb::addr_t next_pc;
1045   lldb::addr_t next_flags;
1046   if (emulation_result) {
1047     assert(pc_it != baton.m_register_values.end() &&
1048            "Emulation was successfull but PC wasn't updated");
1049     next_pc = pc_it->second.GetAsUInt64();
1050 
1051     if (flags_it != baton.m_register_values.end())
1052       next_flags = flags_it->second.GetAsUInt64();
1053     else
1054       next_flags = ReadFlags(register_context_sp.get());
1055   } else if (pc_it == baton.m_register_values.end()) {
1056     // Emulate instruction failed and it haven't changed PC. Advance PC
1057     // with the size of the current opcode because the emulation of all
1058     // PC modifying instruction should be successful. The failure most
1059     // likely caused by a not supported instruction which don't modify PC.
1060     next_pc =
1061         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1062     next_flags = ReadFlags(register_context_sp.get());
1063   } else {
1064     // The instruction emulation failed after it modified the PC. It is an
1065     // unknown error where we can't continue because the next instruction is
1066     // modifying the PC but we don't  know how.
1067     return Status("Instruction emulation failed unexpectedly.");
1068   }
1069 
1070   if (m_arch.GetMachine() == llvm::Triple::arm) {
1071     if (next_flags & 0x20) {
1072       // Thumb mode
1073       error = SetSoftwareBreakpoint(next_pc, 2);
1074     } else {
1075       // Arm mode
1076       error = SetSoftwareBreakpoint(next_pc, 4);
1077     }
1078   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1079              m_arch.GetMachine() == llvm::Triple::mips64el ||
1080              m_arch.GetMachine() == llvm::Triple::mips ||
1081              m_arch.GetMachine() == llvm::Triple::mipsel ||
1082              m_arch.GetMachine() == llvm::Triple::ppc64le)
1083     error = SetSoftwareBreakpoint(next_pc, 4);
1084   else {
1085     // No size hint is given for the next breakpoint
1086     error = SetSoftwareBreakpoint(next_pc, 0);
1087   }
1088 
1089   // If setting the breakpoint fails because next_pc is out of
1090   // the address space, ignore it and let the debugee segfault.
1091   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1092     return Status();
1093   } else if (error.Fail())
1094     return error;
1095 
1096   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1097 
1098   return Status();
1099 }
1100 
1101 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1102   if (m_arch.GetMachine() == llvm::Triple::arm ||
1103       m_arch.GetMachine() == llvm::Triple::mips64 ||
1104       m_arch.GetMachine() == llvm::Triple::mips64el ||
1105       m_arch.GetMachine() == llvm::Triple::mips ||
1106       m_arch.GetMachine() == llvm::Triple::mipsel)
1107     return false;
1108   return true;
1109 }
1110 
1111 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1112   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1113   LLDB_LOG(log, "pid {0}", GetID());
1114 
1115   bool software_single_step = !SupportHardwareSingleStepping();
1116 
1117   if (software_single_step) {
1118     for (auto thread_sp : m_threads) {
1119       assert(thread_sp && "thread list should not contain NULL threads");
1120 
1121       const ResumeAction *const action =
1122           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1123       if (action == nullptr)
1124         continue;
1125 
1126       if (action->state == eStateStepping) {
1127         Status error = SetupSoftwareSingleStepping(
1128             static_cast<NativeThreadLinux &>(*thread_sp));
1129         if (error.Fail())
1130           return error;
1131       }
1132     }
1133   }
1134 
1135   for (auto thread_sp : m_threads) {
1136     assert(thread_sp && "thread list should not contain NULL threads");
1137 
1138     const ResumeAction *const action =
1139         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1140 
1141     if (action == nullptr) {
1142       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1143                thread_sp->GetID());
1144       continue;
1145     }
1146 
1147     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1148              action->state, GetID(), thread_sp->GetID());
1149 
1150     switch (action->state) {
1151     case eStateRunning:
1152     case eStateStepping: {
1153       // Run the thread, possibly feeding it the signal.
1154       const int signo = action->signal;
1155       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1156                    signo);
1157       break;
1158     }
1159 
1160     case eStateSuspended:
1161     case eStateStopped:
1162       llvm_unreachable("Unexpected state");
1163 
1164     default:
1165       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1166                     "for pid %" PRIu64 ", tid %" PRIu64,
1167                     __FUNCTION__, StateAsCString(action->state), GetID(),
1168                     thread_sp->GetID());
1169     }
1170   }
1171 
1172   return Status();
1173 }
1174 
1175 Status NativeProcessLinux::Halt() {
1176   Status error;
1177 
1178   if (kill(GetID(), SIGSTOP) != 0)
1179     error.SetErrorToErrno();
1180 
1181   return error;
1182 }
1183 
1184 Status NativeProcessLinux::Detach() {
1185   Status error;
1186 
1187   // Stop monitoring the inferior.
1188   m_sigchld_handle.reset();
1189 
1190   // Tell ptrace to detach from the process.
1191   if (GetID() == LLDB_INVALID_PROCESS_ID)
1192     return error;
1193 
1194   for (auto thread_sp : m_threads) {
1195     Status e = Detach(thread_sp->GetID());
1196     if (e.Fail())
1197       error =
1198           e; // Save the error, but still attempt to detach from other threads.
1199   }
1200 
1201   m_processor_trace_monitor.clear();
1202   m_pt_proces_trace_id = LLDB_INVALID_UID;
1203 
1204   return error;
1205 }
1206 
1207 Status NativeProcessLinux::Signal(int signo) {
1208   Status error;
1209 
1210   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1211   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1212            Host::GetSignalAsCString(signo), GetID());
1213 
1214   if (kill(GetID(), signo))
1215     error.SetErrorToErrno();
1216 
1217   return error;
1218 }
1219 
1220 Status NativeProcessLinux::Interrupt() {
1221   // Pick a running thread (or if none, a not-dead stopped thread) as
1222   // the chosen thread that will be the stop-reason thread.
1223   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1224 
1225   NativeThreadProtocolSP running_thread_sp;
1226   NativeThreadProtocolSP stopped_thread_sp;
1227 
1228   LLDB_LOG(log, "selecting running thread for interrupt target");
1229   for (auto thread_sp : m_threads) {
1230     // The thread shouldn't be null but lets just cover that here.
1231     if (!thread_sp)
1232       continue;
1233 
1234     // If we have a running or stepping thread, we'll call that the
1235     // target of the interrupt.
1236     const auto thread_state = thread_sp->GetState();
1237     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1238       running_thread_sp = thread_sp;
1239       break;
1240     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1241       // Remember the first non-dead stopped thread.  We'll use that as a backup
1242       // if there are no running threads.
1243       stopped_thread_sp = thread_sp;
1244     }
1245   }
1246 
1247   if (!running_thread_sp && !stopped_thread_sp) {
1248     Status error("found no running/stepping or live stopped threads as target "
1249                  "for interrupt");
1250     LLDB_LOG(log, "skipping due to error: {0}", error);
1251 
1252     return error;
1253   }
1254 
1255   NativeThreadProtocolSP deferred_signal_thread_sp =
1256       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1257 
1258   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1259            running_thread_sp ? "running" : "stopped",
1260            deferred_signal_thread_sp->GetID());
1261 
1262   StopRunningThreads(deferred_signal_thread_sp->GetID());
1263 
1264   return Status();
1265 }
1266 
1267 Status NativeProcessLinux::Kill() {
1268   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1269   LLDB_LOG(log, "pid {0}", GetID());
1270 
1271   Status error;
1272 
1273   switch (m_state) {
1274   case StateType::eStateInvalid:
1275   case StateType::eStateExited:
1276   case StateType::eStateCrashed:
1277   case StateType::eStateDetached:
1278   case StateType::eStateUnloaded:
1279     // Nothing to do - the process is already dead.
1280     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1281              m_state);
1282     return error;
1283 
1284   case StateType::eStateConnected:
1285   case StateType::eStateAttaching:
1286   case StateType::eStateLaunching:
1287   case StateType::eStateStopped:
1288   case StateType::eStateRunning:
1289   case StateType::eStateStepping:
1290   case StateType::eStateSuspended:
1291     // We can try to kill a process in these states.
1292     break;
1293   }
1294 
1295   if (kill(GetID(), SIGKILL) != 0) {
1296     error.SetErrorToErrno();
1297     return error;
1298   }
1299 
1300   return error;
1301 }
1302 
1303 static Status
1304 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1305                                       MemoryRegionInfo &memory_region_info) {
1306   memory_region_info.Clear();
1307 
1308   StringExtractor line_extractor(maps_line);
1309 
1310   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1311   // pathname
1312   // perms: rwxp   (letter is present if set, '-' if not, final character is
1313   // p=private, s=shared).
1314 
1315   // Parse out the starting address
1316   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1317 
1318   // Parse out hyphen separating start and end address from range.
1319   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1320     return Status(
1321         "malformed /proc/{pid}/maps entry, missing dash between address range");
1322 
1323   // Parse out the ending address
1324   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1325 
1326   // Parse out the space after the address.
1327   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1328     return Status(
1329         "malformed /proc/{pid}/maps entry, missing space after range");
1330 
1331   // Save the range.
1332   memory_region_info.GetRange().SetRangeBase(start_address);
1333   memory_region_info.GetRange().SetRangeEnd(end_address);
1334 
1335   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1336   // process.
1337   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1338 
1339   // Parse out each permission entry.
1340   if (line_extractor.GetBytesLeft() < 4)
1341     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1342                   "permissions");
1343 
1344   // Handle read permission.
1345   const char read_perm_char = line_extractor.GetChar();
1346   if (read_perm_char == 'r')
1347     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1348   else if (read_perm_char == '-')
1349     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1350   else
1351     return Status("unexpected /proc/{pid}/maps read permission char");
1352 
1353   // Handle write permission.
1354   const char write_perm_char = line_extractor.GetChar();
1355   if (write_perm_char == 'w')
1356     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1357   else if (write_perm_char == '-')
1358     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1359   else
1360     return Status("unexpected /proc/{pid}/maps write permission char");
1361 
1362   // Handle execute permission.
1363   const char exec_perm_char = line_extractor.GetChar();
1364   if (exec_perm_char == 'x')
1365     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1366   else if (exec_perm_char == '-')
1367     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1368   else
1369     return Status("unexpected /proc/{pid}/maps exec permission char");
1370 
1371   line_extractor.GetChar();              // Read the private bit
1372   line_extractor.SkipSpaces();           // Skip the separator
1373   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1374   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1375   line_extractor.GetChar();              // Read the device id separator
1376   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1377   line_extractor.SkipSpaces();           // Skip the separator
1378   line_extractor.GetU64(0, 10);          // Read the inode number
1379 
1380   line_extractor.SkipSpaces();
1381   const char *name = line_extractor.Peek();
1382   if (name)
1383     memory_region_info.SetName(name);
1384 
1385   return Status();
1386 }
1387 
1388 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1389                                                MemoryRegionInfo &range_info) {
1390   // FIXME review that the final memory region returned extends to the end of
1391   // the virtual address space,
1392   // with no perms if it is not mapped.
1393 
1394   // Use an approach that reads memory regions from /proc/{pid}/maps.
1395   // Assume proc maps entries are in ascending order.
1396   // FIXME assert if we find differently.
1397 
1398   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1399     // We're done.
1400     return Status("unsupported");
1401   }
1402 
1403   Status error = PopulateMemoryRegionCache();
1404   if (error.Fail()) {
1405     return error;
1406   }
1407 
1408   lldb::addr_t prev_base_address = 0;
1409 
1410   // FIXME start by finding the last region that is <= target address using
1411   // binary search.  Data is sorted.
1412   // There can be a ton of regions on pthreads apps with lots of threads.
1413   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1414        ++it) {
1415     MemoryRegionInfo &proc_entry_info = it->first;
1416 
1417     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1418     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1419            "descending /proc/pid/maps entries detected, unexpected");
1420     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1421     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1422 
1423     // If the target address comes before this entry, indicate distance to next
1424     // region.
1425     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1426       range_info.GetRange().SetRangeBase(load_addr);
1427       range_info.GetRange().SetByteSize(
1428           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1429       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1430       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1431       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1432       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1433 
1434       return error;
1435     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1436       // The target address is within the memory region we're processing here.
1437       range_info = proc_entry_info;
1438       return error;
1439     }
1440 
1441     // The target memory address comes somewhere after the region we just
1442     // parsed.
1443   }
1444 
1445   // If we made it here, we didn't find an entry that contained the given
1446   // address. Return the
1447   // load_addr as start and the amount of bytes betwwen load address and the end
1448   // of the memory as
1449   // size.
1450   range_info.GetRange().SetRangeBase(load_addr);
1451   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1452   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1453   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1454   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1455   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1456   return error;
1457 }
1458 
1459 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1460   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1461 
1462   // If our cache is empty, pull the latest.  There should always be at least
1463   // one memory region if memory region handling is supported.
1464   if (!m_mem_region_cache.empty()) {
1465     LLDB_LOG(log, "reusing {0} cached memory region entries",
1466              m_mem_region_cache.size());
1467     return Status();
1468   }
1469 
1470   auto BufferOrError = getProcFile(GetID(), "maps");
1471   if (!BufferOrError) {
1472     m_supports_mem_region = LazyBool::eLazyBoolNo;
1473     return BufferOrError.getError();
1474   }
1475   StringRef Rest = BufferOrError.get()->getBuffer();
1476   while (! Rest.empty()) {
1477     StringRef Line;
1478     std::tie(Line, Rest) = Rest.split('\n');
1479     MemoryRegionInfo info;
1480     const Status parse_error =
1481         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1482     if (parse_error.Fail()) {
1483       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1484                parse_error);
1485       m_supports_mem_region = LazyBool::eLazyBoolNo;
1486       return parse_error;
1487     }
1488     m_mem_region_cache.emplace_back(
1489         info, FileSpec(info.GetName().GetCString(), true));
1490   }
1491 
1492   if (m_mem_region_cache.empty()) {
1493     // No entries after attempting to read them.  This shouldn't happen if
1494     // /proc/{pid}/maps is supported. Assume we don't support map entries
1495     // via procfs.
1496     m_supports_mem_region = LazyBool::eLazyBoolNo;
1497     LLDB_LOG(log,
1498              "failed to find any procfs maps entries, assuming no support "
1499              "for memory region metadata retrieval");
1500     return Status("not supported");
1501   }
1502 
1503   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1504            m_mem_region_cache.size(), GetID());
1505 
1506   // We support memory retrieval, remember that.
1507   m_supports_mem_region = LazyBool::eLazyBoolYes;
1508   return Status();
1509 }
1510 
1511 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1512   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1513   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1514   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1515            m_mem_region_cache.size());
1516   m_mem_region_cache.clear();
1517 }
1518 
1519 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1520                                           lldb::addr_t &addr) {
1521 // FIXME implementing this requires the equivalent of
1522 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1523 // functional ThreadPlans working with Native*Protocol.
1524 #if 1
1525   return Status("not implemented yet");
1526 #else
1527   addr = LLDB_INVALID_ADDRESS;
1528 
1529   unsigned prot = 0;
1530   if (permissions & lldb::ePermissionsReadable)
1531     prot |= eMmapProtRead;
1532   if (permissions & lldb::ePermissionsWritable)
1533     prot |= eMmapProtWrite;
1534   if (permissions & lldb::ePermissionsExecutable)
1535     prot |= eMmapProtExec;
1536 
1537   // TODO implement this directly in NativeProcessLinux
1538   // (and lift to NativeProcessPOSIX if/when that class is
1539   // refactored out).
1540   if (InferiorCallMmap(this, addr, 0, size, prot,
1541                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1542     m_addr_to_mmap_size[addr] = size;
1543     return Status();
1544   } else {
1545     addr = LLDB_INVALID_ADDRESS;
1546     return Status("unable to allocate %" PRIu64
1547                   " bytes of memory with permissions %s",
1548                   size, GetPermissionsAsCString(permissions));
1549   }
1550 #endif
1551 }
1552 
1553 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1554   // FIXME see comments in AllocateMemory - required lower-level
1555   // bits not in place yet (ThreadPlans)
1556   return Status("not implemented");
1557 }
1558 
1559 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1560   // punt on this for now
1561   return LLDB_INVALID_ADDRESS;
1562 }
1563 
1564 size_t NativeProcessLinux::UpdateThreads() {
1565   // The NativeProcessLinux monitoring threads are always up to date
1566   // with respect to thread state and they keep the thread list
1567   // populated properly. All this method needs to do is return the
1568   // thread count.
1569   return m_threads.size();
1570 }
1571 
1572 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1573   arch = m_arch;
1574   return true;
1575 }
1576 
1577 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1578     uint32_t &actual_opcode_size) {
1579   // FIXME put this behind a breakpoint protocol class that can be
1580   // set per architecture.  Need ARM, MIPS support here.
1581   static const uint8_t g_i386_opcode[] = {0xCC};
1582   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1583   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1584 
1585   switch (m_arch.GetMachine()) {
1586   case llvm::Triple::x86:
1587   case llvm::Triple::x86_64:
1588     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1589     return Status();
1590 
1591   case llvm::Triple::systemz:
1592     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1593     return Status();
1594 
1595   case llvm::Triple::ppc64le:
1596     actual_opcode_size = static_cast<uint32_t>(sizeof(g_ppc64le_opcode));
1597     return Status();
1598 
1599   case llvm::Triple::arm:
1600   case llvm::Triple::aarch64:
1601   case llvm::Triple::mips64:
1602   case llvm::Triple::mips64el:
1603   case llvm::Triple::mips:
1604   case llvm::Triple::mipsel:
1605     // On these architectures the PC don't get updated for breakpoint hits
1606     actual_opcode_size = 0;
1607     return Status();
1608 
1609   default:
1610     assert(false && "CPU type not supported!");
1611     return Status("CPU type not supported");
1612   }
1613 }
1614 
1615 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1616                                          bool hardware) {
1617   if (hardware)
1618     return SetHardwareBreakpoint(addr, size);
1619   else
1620     return SetSoftwareBreakpoint(addr, size);
1621 }
1622 
1623 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1624   if (hardware)
1625     return RemoveHardwareBreakpoint(addr);
1626   else
1627     return NativeProcessProtocol::RemoveBreakpoint(addr);
1628 }
1629 
1630 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1631     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1632     const uint8_t *&trap_opcode_bytes) {
1633   // FIXME put this behind a breakpoint protocol class that can be set per
1634   // architecture.  Need MIPS support here.
1635   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1636   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1637   // linux kernel does otherwise.
1638   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1639   static const uint8_t g_i386_opcode[] = {0xCC};
1640   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1641   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1642   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1643   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1644   static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
1645 
1646   switch (m_arch.GetMachine()) {
1647   case llvm::Triple::aarch64:
1648     trap_opcode_bytes = g_aarch64_opcode;
1649     actual_opcode_size = sizeof(g_aarch64_opcode);
1650     return Status();
1651 
1652   case llvm::Triple::arm:
1653     switch (trap_opcode_size_hint) {
1654     case 2:
1655       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1656       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1657       return Status();
1658     case 4:
1659       trap_opcode_bytes = g_arm_breakpoint_opcode;
1660       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1661       return Status();
1662     default:
1663       assert(false && "Unrecognised trap opcode size hint!");
1664       return Status("Unrecognised trap opcode size hint!");
1665     }
1666 
1667   case llvm::Triple::x86:
1668   case llvm::Triple::x86_64:
1669     trap_opcode_bytes = g_i386_opcode;
1670     actual_opcode_size = sizeof(g_i386_opcode);
1671     return Status();
1672 
1673   case llvm::Triple::mips:
1674   case llvm::Triple::mips64:
1675     trap_opcode_bytes = g_mips64_opcode;
1676     actual_opcode_size = sizeof(g_mips64_opcode);
1677     return Status();
1678 
1679   case llvm::Triple::mipsel:
1680   case llvm::Triple::mips64el:
1681     trap_opcode_bytes = g_mips64el_opcode;
1682     actual_opcode_size = sizeof(g_mips64el_opcode);
1683     return Status();
1684 
1685   case llvm::Triple::systemz:
1686     trap_opcode_bytes = g_s390x_opcode;
1687     actual_opcode_size = sizeof(g_s390x_opcode);
1688     return Status();
1689 
1690   case llvm::Triple::ppc64le:
1691     trap_opcode_bytes = g_ppc64le_opcode;
1692     actual_opcode_size = sizeof(g_ppc64le_opcode);
1693     return Status();
1694 
1695   default:
1696     assert(false && "CPU type not supported!");
1697     return Status("CPU type not supported");
1698   }
1699 }
1700 
1701 #if 0
1702 ProcessMessage::CrashReason
1703 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1704 {
1705     ProcessMessage::CrashReason reason;
1706     assert(info->si_signo == SIGSEGV);
1707 
1708     reason = ProcessMessage::eInvalidCrashReason;
1709 
1710     switch (info->si_code)
1711     {
1712     default:
1713         assert(false && "unexpected si_code for SIGSEGV");
1714         break;
1715     case SI_KERNEL:
1716         // Linux will occasionally send spurious SI_KERNEL codes.
1717         // (this is poorly documented in sigaction)
1718         // One way to get this is via unaligned SIMD loads.
1719         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1720         break;
1721     case SEGV_MAPERR:
1722         reason = ProcessMessage::eInvalidAddress;
1723         break;
1724     case SEGV_ACCERR:
1725         reason = ProcessMessage::ePrivilegedAddress;
1726         break;
1727     }
1728 
1729     return reason;
1730 }
1731 #endif
1732 
1733 #if 0
1734 ProcessMessage::CrashReason
1735 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1736 {
1737     ProcessMessage::CrashReason reason;
1738     assert(info->si_signo == SIGILL);
1739 
1740     reason = ProcessMessage::eInvalidCrashReason;
1741 
1742     switch (info->si_code)
1743     {
1744     default:
1745         assert(false && "unexpected si_code for SIGILL");
1746         break;
1747     case ILL_ILLOPC:
1748         reason = ProcessMessage::eIllegalOpcode;
1749         break;
1750     case ILL_ILLOPN:
1751         reason = ProcessMessage::eIllegalOperand;
1752         break;
1753     case ILL_ILLADR:
1754         reason = ProcessMessage::eIllegalAddressingMode;
1755         break;
1756     case ILL_ILLTRP:
1757         reason = ProcessMessage::eIllegalTrap;
1758         break;
1759     case ILL_PRVOPC:
1760         reason = ProcessMessage::ePrivilegedOpcode;
1761         break;
1762     case ILL_PRVREG:
1763         reason = ProcessMessage::ePrivilegedRegister;
1764         break;
1765     case ILL_COPROC:
1766         reason = ProcessMessage::eCoprocessorError;
1767         break;
1768     case ILL_BADSTK:
1769         reason = ProcessMessage::eInternalStackError;
1770         break;
1771     }
1772 
1773     return reason;
1774 }
1775 #endif
1776 
1777 #if 0
1778 ProcessMessage::CrashReason
1779 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1780 {
1781     ProcessMessage::CrashReason reason;
1782     assert(info->si_signo == SIGFPE);
1783 
1784     reason = ProcessMessage::eInvalidCrashReason;
1785 
1786     switch (info->si_code)
1787     {
1788     default:
1789         assert(false && "unexpected si_code for SIGFPE");
1790         break;
1791     case FPE_INTDIV:
1792         reason = ProcessMessage::eIntegerDivideByZero;
1793         break;
1794     case FPE_INTOVF:
1795         reason = ProcessMessage::eIntegerOverflow;
1796         break;
1797     case FPE_FLTDIV:
1798         reason = ProcessMessage::eFloatDivideByZero;
1799         break;
1800     case FPE_FLTOVF:
1801         reason = ProcessMessage::eFloatOverflow;
1802         break;
1803     case FPE_FLTUND:
1804         reason = ProcessMessage::eFloatUnderflow;
1805         break;
1806     case FPE_FLTRES:
1807         reason = ProcessMessage::eFloatInexactResult;
1808         break;
1809     case FPE_FLTINV:
1810         reason = ProcessMessage::eFloatInvalidOperation;
1811         break;
1812     case FPE_FLTSUB:
1813         reason = ProcessMessage::eFloatSubscriptRange;
1814         break;
1815     }
1816 
1817     return reason;
1818 }
1819 #endif
1820 
1821 #if 0
1822 ProcessMessage::CrashReason
1823 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1824 {
1825     ProcessMessage::CrashReason reason;
1826     assert(info->si_signo == SIGBUS);
1827 
1828     reason = ProcessMessage::eInvalidCrashReason;
1829 
1830     switch (info->si_code)
1831     {
1832     default:
1833         assert(false && "unexpected si_code for SIGBUS");
1834         break;
1835     case BUS_ADRALN:
1836         reason = ProcessMessage::eIllegalAlignment;
1837         break;
1838     case BUS_ADRERR:
1839         reason = ProcessMessage::eIllegalAddress;
1840         break;
1841     case BUS_OBJERR:
1842         reason = ProcessMessage::eHardwareError;
1843         break;
1844     }
1845 
1846     return reason;
1847 }
1848 #endif
1849 
1850 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1851                                       size_t &bytes_read) {
1852   if (ProcessVmReadvSupported()) {
1853     // The process_vm_readv path is about 50 times faster than ptrace api. We
1854     // want to use
1855     // this syscall if it is supported.
1856 
1857     const ::pid_t pid = GetID();
1858 
1859     struct iovec local_iov, remote_iov;
1860     local_iov.iov_base = buf;
1861     local_iov.iov_len = size;
1862     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1863     remote_iov.iov_len = size;
1864 
1865     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1866     const bool success = bytes_read == size;
1867 
1868     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1869     LLDB_LOG(log,
1870              "using process_vm_readv to read {0} bytes from inferior "
1871              "address {1:x}: {2}",
1872              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1873 
1874     if (success)
1875       return Status();
1876     // else the call failed for some reason, let's retry the read using ptrace
1877     // api.
1878   }
1879 
1880   unsigned char *dst = static_cast<unsigned char *>(buf);
1881   size_t remainder;
1882   long data;
1883 
1884   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1885   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1886 
1887   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1888     Status error = NativeProcessLinux::PtraceWrapper(
1889         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1890     if (error.Fail())
1891       return error;
1892 
1893     remainder = size - bytes_read;
1894     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1895 
1896     // Copy the data into our buffer
1897     memcpy(dst, &data, remainder);
1898 
1899     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1900     addr += k_ptrace_word_size;
1901     dst += k_ptrace_word_size;
1902   }
1903   return Status();
1904 }
1905 
1906 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1907                                                  size_t size,
1908                                                  size_t &bytes_read) {
1909   Status error = ReadMemory(addr, buf, size, bytes_read);
1910   if (error.Fail())
1911     return error;
1912   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1913 }
1914 
1915 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1916                                        size_t size, size_t &bytes_written) {
1917   const unsigned char *src = static_cast<const unsigned char *>(buf);
1918   size_t remainder;
1919   Status error;
1920 
1921   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1922   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1923 
1924   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1925     remainder = size - bytes_written;
1926     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1927 
1928     if (remainder == k_ptrace_word_size) {
1929       unsigned long data = 0;
1930       memcpy(&data, src, k_ptrace_word_size);
1931 
1932       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1933       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1934                                                 (void *)addr, (void *)data);
1935       if (error.Fail())
1936         return error;
1937     } else {
1938       unsigned char buff[8];
1939       size_t bytes_read;
1940       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1941       if (error.Fail())
1942         return error;
1943 
1944       memcpy(buff, src, remainder);
1945 
1946       size_t bytes_written_rec;
1947       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1948       if (error.Fail())
1949         return error;
1950 
1951       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1952                *(unsigned long *)buff);
1953     }
1954 
1955     addr += k_ptrace_word_size;
1956     src += k_ptrace_word_size;
1957   }
1958   return error;
1959 }
1960 
1961 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1962   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1963 }
1964 
1965 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1966                                            unsigned long *message) {
1967   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1968 }
1969 
1970 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1971   if (tid == LLDB_INVALID_THREAD_ID)
1972     return Status();
1973 
1974   return PtraceWrapper(PTRACE_DETACH, tid);
1975 }
1976 
1977 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1978   for (auto thread_sp : m_threads) {
1979     assert(thread_sp && "thread list should not contain NULL threads");
1980     if (thread_sp->GetID() == thread_id) {
1981       // We have this thread.
1982       return true;
1983     }
1984   }
1985 
1986   // We don't have this thread.
1987   return false;
1988 }
1989 
1990 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1991   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1992   LLDB_LOG(log, "tid: {0})", thread_id);
1993 
1994   bool found = false;
1995   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1996     if (*it && ((*it)->GetID() == thread_id)) {
1997       m_threads.erase(it);
1998       found = true;
1999       break;
2000     }
2001   }
2002 
2003   if (found)
2004     StopTracingForThread(thread_id);
2005   SignalIfAllThreadsStopped();
2006   return found;
2007 }
2008 
2009 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
2010   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
2011   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2012 
2013   assert(!HasThreadNoLock(thread_id) &&
2014          "attempted to add a thread by id that already exists");
2015 
2016   // If this is the first thread, save it as the current thread
2017   if (m_threads.empty())
2018     SetCurrentThreadID(thread_id);
2019 
2020   auto thread_sp = std::make_shared<NativeThreadLinux>(*this, thread_id);
2021   m_threads.push_back(thread_sp);
2022 
2023   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2024     auto traceMonitor = ProcessorTraceMonitor::Create(
2025         GetID(), thread_id, m_pt_process_trace_config, true);
2026     if (traceMonitor) {
2027       m_pt_traced_thread_group.insert(thread_id);
2028       m_processor_trace_monitor.insert(
2029           std::make_pair(thread_id, std::move(*traceMonitor)));
2030     } else {
2031       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
2032       Status error(traceMonitor.takeError());
2033       LLDB_LOG(log, "error {0}", error);
2034     }
2035   }
2036 
2037   return thread_sp;
2038 }
2039 
2040 Status
2041 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2042   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2043 
2044   Status error;
2045 
2046   // Find out the size of a breakpoint (might depend on where we are in the
2047   // code).
2048   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2049   if (!context_sp) {
2050     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2051     LLDB_LOG(log, "failed: {0}", error);
2052     return error;
2053   }
2054 
2055   uint32_t breakpoint_size = 0;
2056   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2057   if (error.Fail()) {
2058     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2059     return error;
2060   } else
2061     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2062 
2063   // First try probing for a breakpoint at a software breakpoint location: PC -
2064   // breakpoint size.
2065   const lldb::addr_t initial_pc_addr =
2066       context_sp->GetPCfromBreakpointLocation();
2067   lldb::addr_t breakpoint_addr = initial_pc_addr;
2068   if (breakpoint_size > 0) {
2069     // Do not allow breakpoint probe to wrap around.
2070     if (breakpoint_addr >= breakpoint_size)
2071       breakpoint_addr -= breakpoint_size;
2072   }
2073 
2074   // Check if we stopped because of a breakpoint.
2075   NativeBreakpointSP breakpoint_sp;
2076   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2077   if (!error.Success() || !breakpoint_sp) {
2078     // We didn't find one at a software probe location.  Nothing to do.
2079     LLDB_LOG(log,
2080              "pid {0} no lldb breakpoint found at current pc with "
2081              "adjustment: {1}",
2082              GetID(), breakpoint_addr);
2083     return Status();
2084   }
2085 
2086   // If the breakpoint is not a software breakpoint, nothing to do.
2087   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2088     LLDB_LOG(
2089         log,
2090         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2091         GetID(), breakpoint_addr);
2092     return Status();
2093   }
2094 
2095   //
2096   // We have a software breakpoint and need to adjust the PC.
2097   //
2098 
2099   // Sanity check.
2100   if (breakpoint_size == 0) {
2101     // Nothing to do!  How did we get here?
2102     LLDB_LOG(log,
2103              "pid {0} breakpoint found at {1:x}, it is software, but the "
2104              "size is zero, nothing to do (unexpected)",
2105              GetID(), breakpoint_addr);
2106     return Status();
2107   }
2108 
2109   // Change the program counter.
2110   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2111            thread.GetID(), initial_pc_addr, breakpoint_addr);
2112 
2113   error = context_sp->SetPC(breakpoint_addr);
2114   if (error.Fail()) {
2115     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2116              thread.GetID(), error);
2117     return error;
2118   }
2119 
2120   return error;
2121 }
2122 
2123 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2124                                                    FileSpec &file_spec) {
2125   Status error = PopulateMemoryRegionCache();
2126   if (error.Fail())
2127     return error;
2128 
2129   FileSpec module_file_spec(module_path, true);
2130 
2131   file_spec.Clear();
2132   for (const auto &it : m_mem_region_cache) {
2133     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2134       file_spec = it.second;
2135       return Status();
2136     }
2137   }
2138   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2139                 module_file_spec.GetFilename().AsCString(), GetID());
2140 }
2141 
2142 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2143                                               lldb::addr_t &load_addr) {
2144   load_addr = LLDB_INVALID_ADDRESS;
2145   Status error = PopulateMemoryRegionCache();
2146   if (error.Fail())
2147     return error;
2148 
2149   FileSpec file(file_name, false);
2150   for (const auto &it : m_mem_region_cache) {
2151     if (it.second == file) {
2152       load_addr = it.first.GetRange().GetRangeBase();
2153       return Status();
2154     }
2155   }
2156   return Status("No load address found for specified file.");
2157 }
2158 
2159 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2160   return std::static_pointer_cast<NativeThreadLinux>(
2161       NativeProcessProtocol::GetThreadByID(tid));
2162 }
2163 
2164 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2165                                         lldb::StateType state, int signo) {
2166   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2167   LLDB_LOG(log, "tid: {0}", thread.GetID());
2168 
2169   // Before we do the resume below, first check if we have a pending
2170   // stop notification that is currently waiting for
2171   // all threads to stop.  This is potentially a buggy situation since
2172   // we're ostensibly waiting for threads to stop before we send out the
2173   // pending notification, and here we are resuming one before we send
2174   // out the pending stop notification.
2175   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2176     LLDB_LOG(log,
2177              "about to resume tid {0} per explicit request but we have a "
2178              "pending stop notification (tid {1}) that is actively "
2179              "waiting for this thread to stop. Valid sequence of events?",
2180              thread.GetID(), m_pending_notification_tid);
2181   }
2182 
2183   // Request a resume.  We expect this to be synchronous and the system
2184   // to reflect it is running after this completes.
2185   switch (state) {
2186   case eStateRunning: {
2187     const auto resume_result = thread.Resume(signo);
2188     if (resume_result.Success())
2189       SetState(eStateRunning, true);
2190     return resume_result;
2191   }
2192   case eStateStepping: {
2193     const auto step_result = thread.SingleStep(signo);
2194     if (step_result.Success())
2195       SetState(eStateRunning, true);
2196     return step_result;
2197   }
2198   default:
2199     LLDB_LOG(log, "Unhandled state {0}.", state);
2200     llvm_unreachable("Unhandled state for resume");
2201   }
2202 }
2203 
2204 //===----------------------------------------------------------------------===//
2205 
2206 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2207   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2208   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2209            triggering_tid);
2210 
2211   m_pending_notification_tid = triggering_tid;
2212 
2213   // Request a stop for all the thread stops that need to be stopped
2214   // and are not already known to be stopped.
2215   for (const auto &thread_sp : m_threads) {
2216     if (StateIsRunningState(thread_sp->GetState()))
2217       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2218   }
2219 
2220   SignalIfAllThreadsStopped();
2221   LLDB_LOG(log, "event processing done");
2222 }
2223 
2224 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2225   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2226     return; // No pending notification. Nothing to do.
2227 
2228   for (const auto &thread_sp : m_threads) {
2229     if (StateIsRunningState(thread_sp->GetState()))
2230       return; // Some threads are still running. Don't signal yet.
2231   }
2232 
2233   // We have a pending notification and all threads have stopped.
2234   Log *log(
2235       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2236 
2237   // Clear any temporary breakpoints we used to implement software single
2238   // stepping.
2239   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2240     Status error = RemoveBreakpoint(thread_info.second);
2241     if (error.Fail())
2242       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2243                thread_info.first, error);
2244   }
2245   m_threads_stepping_with_breakpoint.clear();
2246 
2247   // Notify the delegate about the stop
2248   SetCurrentThreadID(m_pending_notification_tid);
2249   SetState(StateType::eStateStopped, true);
2250   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2251 }
2252 
2253 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2254   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2255   LLDB_LOG(log, "tid: {0}", thread.GetID());
2256 
2257   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2258       StateIsRunningState(thread.GetState())) {
2259     // We will need to wait for this new thread to stop as well before firing
2260     // the
2261     // notification.
2262     thread.RequestStop();
2263   }
2264 }
2265 
2266 void NativeProcessLinux::SigchldHandler() {
2267   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2268   // Process all pending waitpid notifications.
2269   while (true) {
2270     int status = -1;
2271     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2272                                           __WALL | __WNOTHREAD | WNOHANG);
2273 
2274     if (wait_pid == 0)
2275       break; // We are done.
2276 
2277     if (wait_pid == -1) {
2278       Status error(errno, eErrorTypePOSIX);
2279       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2280       break;
2281     }
2282 
2283     WaitStatus wait_status = WaitStatus::Decode(status);
2284     bool exited = wait_status.type == WaitStatus::Exit ||
2285                   (wait_status.type == WaitStatus::Signal &&
2286                    wait_pid == static_cast<::pid_t>(GetID()));
2287 
2288     LLDB_LOG(
2289         log,
2290         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2291         wait_pid, wait_status, exited);
2292 
2293     MonitorCallback(wait_pid, exited, wait_status);
2294   }
2295 }
2296 
2297 // Wrapper for ptrace to catch errors and log calls.
2298 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2299 // for PTRACE_PEEK*)
2300 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2301                                          void *data, size_t data_size,
2302                                          long *result) {
2303   Status error;
2304   long int ret;
2305 
2306   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2307 
2308   PtraceDisplayBytes(req, data, data_size);
2309 
2310   errno = 0;
2311   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2312     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2313                  *(unsigned int *)addr, data);
2314   else
2315     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2316                  addr, data);
2317 
2318   if (ret == -1)
2319     error.SetErrorToErrno();
2320 
2321   if (result)
2322     *result = ret;
2323 
2324   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2325            data_size, ret);
2326 
2327   PtraceDisplayBytes(req, data, data_size);
2328 
2329   if (error.Fail())
2330     LLDB_LOG(log, "ptrace() failed: {0}", error);
2331 
2332   return error;
2333 }
2334 
2335 llvm::Expected<ProcessorTraceMonitor &>
2336 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2337                                                  lldb::tid_t thread) {
2338   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2339   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2340     LLDB_LOG(log, "thread not specified: {0}", traceid);
2341     return Status("tracing not active thread not specified").ToError();
2342   }
2343 
2344   for (auto& iter : m_processor_trace_monitor) {
2345     if (traceid == iter.second->GetTraceID() &&
2346         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2347       return *(iter.second);
2348   }
2349 
2350   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2351   return Status("tracing not active for this thread").ToError();
2352 }
2353 
2354 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2355                                        lldb::tid_t thread,
2356                                        llvm::MutableArrayRef<uint8_t> &buffer,
2357                                        size_t offset) {
2358   TraceOptions trace_options;
2359   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2360   Status error;
2361 
2362   LLDB_LOG(log, "traceid {0}", traceid);
2363 
2364   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2365   if (!perf_monitor) {
2366     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2367     buffer = buffer.slice(buffer.size());
2368     error = perf_monitor.takeError();
2369     return error;
2370   }
2371   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2372 }
2373 
2374 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2375                                    llvm::MutableArrayRef<uint8_t> &buffer,
2376                                    size_t offset) {
2377   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2378   Status error;
2379 
2380   LLDB_LOG(log, "traceid {0}", traceid);
2381 
2382   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2383   if (!perf_monitor) {
2384     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2385     buffer = buffer.slice(buffer.size());
2386     error = perf_monitor.takeError();
2387     return error;
2388   }
2389   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2390 }
2391 
2392 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2393                                           TraceOptions &config) {
2394   Status error;
2395   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2396       m_pt_proces_trace_id == traceid) {
2397     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2398       error.SetErrorString("tracing not active for this process");
2399       return error;
2400     }
2401     config = m_pt_process_trace_config;
2402   } else {
2403     auto perf_monitor =
2404         LookupProcessorTraceInstance(traceid, config.getThreadID());
2405     if (!perf_monitor) {
2406       error = perf_monitor.takeError();
2407       return error;
2408     }
2409     error = (*perf_monitor).GetTraceConfig(config);
2410   }
2411   return error;
2412 }
2413 
2414 lldb::user_id_t
2415 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2416                                            Status &error) {
2417 
2418   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2419   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2420     return LLDB_INVALID_UID;
2421 
2422   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2423     error.SetErrorString("tracing already active on this process");
2424     return m_pt_proces_trace_id;
2425   }
2426 
2427   for (const auto &thread_sp : m_threads) {
2428     if (auto traceInstance = ProcessorTraceMonitor::Create(
2429             GetID(), thread_sp->GetID(), config, true)) {
2430       m_pt_traced_thread_group.insert(thread_sp->GetID());
2431       m_processor_trace_monitor.insert(
2432           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2433     }
2434   }
2435 
2436   m_pt_process_trace_config = config;
2437   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2438 
2439   // Trace on Complete process will have traceid of 0
2440   m_pt_proces_trace_id = 0;
2441 
2442   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2443   return m_pt_proces_trace_id;
2444 }
2445 
2446 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2447                                                Status &error) {
2448   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2449     return NativeProcessProtocol::StartTrace(config, error);
2450 
2451   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2452 
2453   lldb::tid_t threadid = config.getThreadID();
2454 
2455   if (threadid == LLDB_INVALID_THREAD_ID)
2456     return StartTraceGroup(config, error);
2457 
2458   auto thread_sp = GetThreadByID(threadid);
2459   if (!thread_sp) {
2460     // Thread not tracked by lldb so don't trace.
2461     error.SetErrorString("invalid thread id");
2462     return LLDB_INVALID_UID;
2463   }
2464 
2465   const auto &iter = m_processor_trace_monitor.find(threadid);
2466   if (iter != m_processor_trace_monitor.end()) {
2467     LLDB_LOG(log, "Thread already being traced");
2468     error.SetErrorString("tracing already active on this thread");
2469     return LLDB_INVALID_UID;
2470   }
2471 
2472   auto traceMonitor =
2473       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2474   if (!traceMonitor) {
2475     error = traceMonitor.takeError();
2476     LLDB_LOG(log, "error {0}", error);
2477     return LLDB_INVALID_UID;
2478   }
2479   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2480   m_processor_trace_monitor.insert(
2481       std::make_pair(threadid, std::move(*traceMonitor)));
2482   return ret_trace_id;
2483 }
2484 
2485 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2486   Status error;
2487   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2488   LLDB_LOG(log, "Thread {0}", thread);
2489 
2490   const auto& iter = m_processor_trace_monitor.find(thread);
2491   if (iter == m_processor_trace_monitor.end()) {
2492     error.SetErrorString("tracing not active for this thread");
2493     return error;
2494   }
2495 
2496   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2497     // traceid maps to the whole process so we have to erase it from the
2498     // thread group.
2499     LLDB_LOG(log, "traceid maps to process");
2500     m_pt_traced_thread_group.erase(thread);
2501   }
2502   m_processor_trace_monitor.erase(iter);
2503 
2504   return error;
2505 }
2506 
2507 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2508                                      lldb::tid_t thread) {
2509   Status error;
2510 
2511   TraceOptions trace_options;
2512   trace_options.setThreadID(thread);
2513   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2514 
2515   if (error.Fail())
2516     return error;
2517 
2518   switch (trace_options.getType()) {
2519   case lldb::TraceType::eTraceTypeProcessorTrace:
2520     if (traceid == m_pt_proces_trace_id &&
2521         thread == LLDB_INVALID_THREAD_ID)
2522       StopProcessorTracingOnProcess();
2523     else
2524       error = StopProcessorTracingOnThread(traceid, thread);
2525     break;
2526   default:
2527     error.SetErrorString("trace not supported");
2528     break;
2529   }
2530 
2531   return error;
2532 }
2533 
2534 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2535   for (auto thread_id_iter : m_pt_traced_thread_group)
2536     m_processor_trace_monitor.erase(thread_id_iter);
2537   m_pt_traced_thread_group.clear();
2538   m_pt_proces_trace_id = LLDB_INVALID_UID;
2539 }
2540 
2541 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2542                                                         lldb::tid_t thread) {
2543   Status error;
2544   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2545 
2546   if (thread == LLDB_INVALID_THREAD_ID) {
2547     for (auto& iter : m_processor_trace_monitor) {
2548       if (iter.second->GetTraceID() == traceid) {
2549         // Stopping a trace instance for an individual thread
2550         // hence there will only be one traceid that can match.
2551         m_processor_trace_monitor.erase(iter.first);
2552         return error;
2553       }
2554       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2555     }
2556 
2557     LLDB_LOG(log, "Invalid TraceID");
2558     error.SetErrorString("invalid trace id");
2559     return error;
2560   }
2561 
2562   // thread is specified so we can use find function on the map.
2563   const auto& iter = m_processor_trace_monitor.find(thread);
2564   if (iter == m_processor_trace_monitor.end()) {
2565     // thread not found in our map.
2566     LLDB_LOG(log, "thread not being traced");
2567     error.SetErrorString("tracing not active for this thread");
2568     return error;
2569   }
2570   if (iter->second->GetTraceID() != traceid) {
2571     // traceid did not match so it has to be invalid.
2572     LLDB_LOG(log, "Invalid TraceID");
2573     error.SetErrorString("invalid trace id");
2574     return error;
2575   }
2576 
2577   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2578 
2579   if (traceid == m_pt_proces_trace_id) {
2580     // traceid maps to the whole process so we have to erase it from the
2581     // thread group.
2582     LLDB_LOG(log, "traceid maps to process");
2583     m_pt_traced_thread_group.erase(thread);
2584   }
2585   m_processor_trace_monitor.erase(iter);
2586 
2587   return error;
2588 }
2589