1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/lldb-python.h"
11 
12 #include "NativeProcessLinux.h"
13 
14 // C Includes
15 #include <errno.h>
16 #include <poll.h>
17 #include <string.h>
18 #include <stdint.h>
19 #include <unistd.h>
20 
21 // C++ Includes
22 #include <fstream>
23 #include <sstream>
24 #include <string>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/Debugger.h"
28 #include "lldb/Core/EmulateInstruction.h"
29 #include "lldb/Core/Error.h"
30 #include "lldb/Core/Module.h"
31 #include "lldb/Core/ModuleSpec.h"
32 #include "lldb/Core/RegisterValue.h"
33 #include "lldb/Core/Scalar.h"
34 #include "lldb/Core/State.h"
35 #include "lldb/Host/common/NativeBreakpoint.h"
36 #include "lldb/Host/common/NativeRegisterContext.h"
37 #include "lldb/Host/Host.h"
38 #include "lldb/Host/HostInfo.h"
39 #include "lldb/Host/HostNativeThread.h"
40 #include "lldb/Host/ThreadLauncher.h"
41 #include "lldb/Symbol/ObjectFile.h"
42 #include "lldb/Target/Process.h"
43 #include "lldb/Target/ProcessLaunchInfo.h"
44 #include "lldb/Utility/LLDBAssert.h"
45 #include "lldb/Utility/PseudoTerminal.h"
46 
47 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
48 #include "Plugins/Process/Utility/LinuxSignals.h"
49 #include "Utility/StringExtractor.h"
50 #include "NativeThreadLinux.h"
51 #include "ProcFileReader.h"
52 #include "Procfs.h"
53 
54 // System includes - They have to be included after framework includes because they define some
55 // macros which collide with variable names in other modules
56 #include <linux/unistd.h>
57 #include <sys/socket.h>
58 
59 #include <sys/types.h>
60 #include <sys/uio.h>
61 #include <sys/user.h>
62 #include <sys/wait.h>
63 
64 #if defined (__arm64__) || defined (__aarch64__)
65 // NT_PRSTATUS and NT_FPREGSET definition
66 #include <elf.h>
67 #endif
68 
69 #include "lldb/Host/linux/Personality.h"
70 #include "lldb/Host/linux/Ptrace.h"
71 #include "lldb/Host/linux/Signalfd.h"
72 #include "lldb/Host/android/Android.h"
73 
74 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
75 
76 // Support hardware breakpoints in case it has not been defined
77 #ifndef TRAP_HWBKPT
78   #define TRAP_HWBKPT 4
79 #endif
80 
81 // We disable the tracing of ptrace calls for integration builds to
82 // avoid the additional indirection and checks.
83 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
84 #define PTRACE(req, pid, addr, data, data_size, error) \
85     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error), #req, __FILE__, __LINE__)
86 #else
87 #define PTRACE(req, pid, addr, data, data_size, error) \
88     PtraceWrapper((req), (pid), (addr), (data), (data_size), (error))
89 #endif
90 
91 using namespace lldb;
92 using namespace lldb_private;
93 using namespace lldb_private::process_linux;
94 using namespace llvm;
95 
96 // Private bits we only need internally.
97 namespace
98 {
99     const UnixSignals&
100     GetUnixSignals ()
101     {
102         static process_linux::LinuxSignals signals;
103         return signals;
104     }
105 
106     Error
107     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
108     {
109         // Grab process info for the running process.
110         ProcessInstanceInfo process_info;
111         if (!platform.GetProcessInfo (pid, process_info))
112             return Error("failed to get process info");
113 
114         // Resolve the executable module.
115         ModuleSP exe_module_sp;
116         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
117         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
118         Error error = platform.ResolveExecutable(
119             exe_module_spec,
120             exe_module_sp,
121             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
122 
123         if (!error.Success ())
124             return error;
125 
126         // Check if we've got our architecture from the exe_module.
127         arch = exe_module_sp->GetArchitecture ();
128         if (arch.IsValid ())
129             return Error();
130         else
131             return Error("failed to retrieve a valid architecture from the exe module");
132     }
133 
134     void
135     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
136     {
137         uint8_t *ptr = (uint8_t *)bytes;
138         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
139         for(uint32_t i=0; i<loop_count; i++)
140         {
141             s.Printf ("[%x]", *ptr);
142             ptr++;
143         }
144     }
145 
146     void
147     PtraceDisplayBytes(int &req, void *data, size_t data_size)
148     {
149         StreamString buf;
150         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
151                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
152 
153         if (verbose_log)
154         {
155             switch(req)
156             {
157             case PTRACE_POKETEXT:
158             {
159                 DisplayBytes(buf, &data, 8);
160                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
161                 break;
162             }
163             case PTRACE_POKEDATA:
164             {
165                 DisplayBytes(buf, &data, 8);
166                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
167                 break;
168             }
169             case PTRACE_POKEUSER:
170             {
171                 DisplayBytes(buf, &data, 8);
172                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
173                 break;
174             }
175             case PTRACE_SETREGS:
176             {
177                 DisplayBytes(buf, data, data_size);
178                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
179                 break;
180             }
181             case PTRACE_SETFPREGS:
182             {
183                 DisplayBytes(buf, data, data_size);
184                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
185                 break;
186             }
187             case PTRACE_SETSIGINFO:
188             {
189                 DisplayBytes(buf, data, sizeof(siginfo_t));
190                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
191                 break;
192             }
193             case PTRACE_SETREGSET:
194             {
195                 // Extract iov_base from data, which is a pointer to the struct IOVEC
196                 DisplayBytes(buf, *(void **)data, data_size);
197                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
198                 break;
199             }
200             default:
201             {
202             }
203             }
204         }
205     }
206 
207     // Wrapper for ptrace to catch errors and log calls.
208     // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
209     long
210     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error,
211                   const char* reqName, const char* file, int line)
212     {
213         long int result;
214 
215         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
216 
217         PtraceDisplayBytes(req, data, data_size);
218 
219         error.Clear();
220         errno = 0;
221         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
222             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
223         else
224             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
225 
226         if (result == -1)
227             error.SetErrorToErrno();
228 
229         if (log)
230             log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
231                     reqName, pid, addr, data, data_size, result, file, line);
232 
233         PtraceDisplayBytes(req, data, data_size);
234 
235         if (log && error.GetError() != 0)
236         {
237             const char* str;
238             switch (error.GetError())
239             {
240             case ESRCH:  str = "ESRCH"; break;
241             case EINVAL: str = "EINVAL"; break;
242             case EBUSY:  str = "EBUSY"; break;
243             case EPERM:  str = "EPERM"; break;
244             default:     str = error.AsCString();
245             }
246             log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
247         }
248 
249         return result;
250     }
251 
252 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
253     // Wrapper for ptrace when logging is not required.
254     // Sets errno to 0 prior to calling ptrace.
255     long
256     PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
257     {
258         long result = 0;
259 
260         error.Clear();
261         errno = 0;
262         if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
263             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
264         else
265             result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
266 
267         if (result == -1)
268             error.SetErrorToErrno();
269         return result;
270     }
271 #endif
272 
273     //------------------------------------------------------------------------------
274     // Static implementations of NativeProcessLinux::ReadMemory and
275     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
276     // functions without needed to go thru the thread funnel.
277 
278     size_t
279     DoReadMemory(
280         lldb::pid_t pid,
281         lldb::addr_t vm_addr,
282         void *buf,
283         size_t size,
284         Error &error)
285     {
286         // ptrace word size is determined by the host, not the child
287         static const unsigned word_size = sizeof(void*);
288         unsigned char *dst = static_cast<unsigned char*>(buf);
289         size_t bytes_read;
290         size_t remainder;
291         long data;
292 
293         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
294         if (log)
295             ProcessPOSIXLog::IncNestLevel();
296         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
297             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
298                     pid, word_size, (void*)vm_addr, buf, size);
299 
300         assert(sizeof(data) >= word_size);
301         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
302         {
303             data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
304             if (error.Fail())
305             {
306                 if (log)
307                     ProcessPOSIXLog::DecNestLevel();
308                 return bytes_read;
309             }
310 
311             remainder = size - bytes_read;
312             remainder = remainder > word_size ? word_size : remainder;
313 
314             // Copy the data into our buffer
315             for (unsigned i = 0; i < remainder; ++i)
316                 dst[i] = ((data >> i*8) & 0xFF);
317 
318             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
319                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
320                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
321                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
322             {
323                 uintptr_t print_dst = 0;
324                 // Format bytes from data by moving into print_dst for log output
325                 for (unsigned i = 0; i < remainder; ++i)
326                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
327                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
328                         (void*)vm_addr, print_dst, (unsigned long)data);
329             }
330 
331             vm_addr += word_size;
332             dst += word_size;
333         }
334 
335         if (log)
336             ProcessPOSIXLog::DecNestLevel();
337         return bytes_read;
338     }
339 
340     size_t
341     DoWriteMemory(
342         lldb::pid_t pid,
343         lldb::addr_t vm_addr,
344         const void *buf,
345         size_t size,
346         Error &error)
347     {
348         // ptrace word size is determined by the host, not the child
349         static const unsigned word_size = sizeof(void*);
350         const unsigned char *src = static_cast<const unsigned char*>(buf);
351         size_t bytes_written = 0;
352         size_t remainder;
353 
354         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
355         if (log)
356             ProcessPOSIXLog::IncNestLevel();
357         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
358             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
359                     pid, word_size, (void*)vm_addr, buf, size);
360 
361         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
362         {
363             remainder = size - bytes_written;
364             remainder = remainder > word_size ? word_size : remainder;
365 
366             if (remainder == word_size)
367             {
368                 unsigned long data = 0;
369                 assert(sizeof(data) >= word_size);
370                 for (unsigned i = 0; i < word_size; ++i)
371                     data |= (unsigned long)src[i] << i*8;
372 
373                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
374                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
375                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
376                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
377                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
378                             (void*)vm_addr, *(const unsigned long*)src, data);
379 
380                 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
381                 {
382                     if (log)
383                         ProcessPOSIXLog::DecNestLevel();
384                     return bytes_written;
385                 }
386             }
387             else
388             {
389                 unsigned char buff[8];
390                 if (DoReadMemory(pid, vm_addr,
391                                 buff, word_size, error) != word_size)
392                 {
393                     if (log)
394                         ProcessPOSIXLog::DecNestLevel();
395                     return bytes_written;
396                 }
397 
398                 memcpy(buff, src, remainder);
399 
400                 if (DoWriteMemory(pid, vm_addr,
401                                 buff, word_size, error) != word_size)
402                 {
403                     if (log)
404                         ProcessPOSIXLog::DecNestLevel();
405                     return bytes_written;
406                 }
407 
408                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
409                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
410                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
411                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
412                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
413                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
414             }
415 
416             vm_addr += word_size;
417             src += word_size;
418         }
419         if (log)
420             ProcessPOSIXLog::DecNestLevel();
421         return bytes_written;
422     }
423 
424     //------------------------------------------------------------------------------
425     /// @class Operation
426     /// @brief Represents a NativeProcessLinux operation.
427     ///
428     /// Under Linux, it is not possible to ptrace() from any other thread but the
429     /// one that spawned or attached to the process from the start.  Therefore, when
430     /// a NativeProcessLinux is asked to deliver or change the state of an inferior
431     /// process the operation must be "funneled" to a specific thread to perform the
432     /// task.  The Operation class provides an abstract base for all services the
433     /// NativeProcessLinux must perform via the single virtual function Execute, thus
434     /// encapsulating the code that needs to run in the privileged context.
435     class Operation
436     {
437     public:
438         Operation () : m_error() { }
439 
440         virtual
441         ~Operation() {}
442 
443         virtual void
444         Execute (NativeProcessLinux *process) = 0;
445 
446         const Error &
447         GetError () const { return m_error; }
448 
449     protected:
450         Error m_error;
451     };
452 
453     //------------------------------------------------------------------------------
454     /// @class ReadOperation
455     /// @brief Implements NativeProcessLinux::ReadMemory.
456     class ReadOperation : public Operation
457     {
458     public:
459         ReadOperation(
460             lldb::addr_t addr,
461             void *buff,
462             size_t size,
463             size_t &result) :
464             Operation (),
465             m_addr (addr),
466             m_buff (buff),
467             m_size (size),
468             m_result (result)
469             {
470             }
471 
472         void Execute (NativeProcessLinux *process) override;
473 
474     private:
475         lldb::addr_t m_addr;
476         void *m_buff;
477         size_t m_size;
478         size_t &m_result;
479     };
480 
481     void
482     ReadOperation::Execute (NativeProcessLinux *process)
483     {
484         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
485     }
486 
487     //------------------------------------------------------------------------------
488     /// @class WriteOperation
489     /// @brief Implements NativeProcessLinux::WriteMemory.
490     class WriteOperation : public Operation
491     {
492     public:
493         WriteOperation(
494             lldb::addr_t addr,
495             const void *buff,
496             size_t size,
497             size_t &result) :
498             Operation (),
499             m_addr (addr),
500             m_buff (buff),
501             m_size (size),
502             m_result (result)
503             {
504             }
505 
506         void Execute (NativeProcessLinux *process) override;
507 
508     private:
509         lldb::addr_t m_addr;
510         const void *m_buff;
511         size_t m_size;
512         size_t &m_result;
513     };
514 
515     void
516     WriteOperation::Execute(NativeProcessLinux *process)
517     {
518         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
519     }
520 
521     //------------------------------------------------------------------------------
522     /// @class ReadRegOperation
523     /// @brief Implements NativeProcessLinux::ReadRegisterValue.
524     class ReadRegOperation : public Operation
525     {
526     public:
527         ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
528                 RegisterValue &value)
529             : m_tid(tid),
530               m_offset(static_cast<uintptr_t> (offset)),
531               m_reg_name(reg_name),
532               m_value(value)
533             { }
534 
535         void Execute(NativeProcessLinux *monitor) override;
536 
537     private:
538         lldb::tid_t m_tid;
539         uintptr_t m_offset;
540         const char *m_reg_name;
541         RegisterValue &m_value;
542     };
543 
544     void
545     ReadRegOperation::Execute(NativeProcessLinux *monitor)
546     {
547 #if defined (__arm64__) || defined (__aarch64__)
548         if (m_offset > sizeof(struct user_pt_regs))
549         {
550             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
551             if (offset > sizeof(struct user_fpsimd_state))
552             {
553                 m_error.SetErrorString("invalid offset value");
554                 return;
555             }
556             elf_fpregset_t regs;
557             int regset = NT_FPREGSET;
558             struct iovec ioVec;
559 
560             ioVec.iov_base = &regs;
561             ioVec.iov_len = sizeof regs;
562             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
563             if (m_error.Success())
564             {
565                 ArchSpec arch;
566                 if (monitor->GetArchitecture(arch))
567                     m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, arch.GetByteOrder());
568                 else
569                     m_error.SetErrorString("failed to get architecture");
570             }
571         }
572         else
573         {
574             elf_gregset_t regs;
575             int regset = NT_PRSTATUS;
576             struct iovec ioVec;
577 
578             ioVec.iov_base = &regs;
579             ioVec.iov_len = sizeof regs;
580             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
581             if (m_error.Success())
582             {
583                 ArchSpec arch;
584                 if (monitor->GetArchitecture(arch))
585                     m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
586                 else
587                     m_error.SetErrorString("failed to get architecture");
588             }
589         }
590 #elif defined (__mips__)
591         elf_gregset_t regs;
592         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
593         if (m_error.Success())
594         {
595             lldb_private::ArchSpec arch;
596             if (monitor->GetArchitecture(arch))
597                 m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, arch.GetByteOrder());
598             else
599                 m_error.SetErrorString("failed to get architecture");
600         }
601 #else
602         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
603 
604         lldb::addr_t data = static_cast<unsigned long>(PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, nullptr, 0, m_error));
605         if (m_error.Success())
606             m_value = data;
607 
608         if (log)
609             log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
610                     m_reg_name, data);
611 #endif
612     }
613 
614     //------------------------------------------------------------------------------
615     /// @class WriteRegOperation
616     /// @brief Implements NativeProcessLinux::WriteRegisterValue.
617     class WriteRegOperation : public Operation
618     {
619     public:
620         WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
621                 const RegisterValue &value)
622             : m_tid(tid),
623               m_offset(offset),
624               m_reg_name(reg_name),
625               m_value(value)
626             { }
627 
628         void Execute(NativeProcessLinux *monitor) override;
629 
630     private:
631         lldb::tid_t m_tid;
632         uintptr_t m_offset;
633         const char *m_reg_name;
634         const RegisterValue &m_value;
635     };
636 
637     void
638     WriteRegOperation::Execute(NativeProcessLinux *monitor)
639     {
640 #if defined (__arm64__) || defined (__aarch64__)
641         if (m_offset > sizeof(struct user_pt_regs))
642         {
643             uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
644             if (offset > sizeof(struct user_fpsimd_state))
645             {
646                 m_error.SetErrorString("invalid offset value");
647                 return;
648             }
649             elf_fpregset_t regs;
650             int regset = NT_FPREGSET;
651             struct iovec ioVec;
652 
653             ioVec.iov_base = &regs;
654             ioVec.iov_len = sizeof regs;
655             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
656             if (m_error.Success())
657             {
658                 ::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
659                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
660             }
661         }
662         else
663         {
664             elf_gregset_t regs;
665             int regset = NT_PRSTATUS;
666             struct iovec ioVec;
667 
668             ioVec.iov_base = &regs;
669             ioVec.iov_len = sizeof regs;
670             PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
671             if (m_error.Success())
672             {
673                 ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
674                 PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs, m_error);
675             }
676         }
677 #elif defined (__mips__)
678         elf_gregset_t regs;
679         PTRACE(PTRACE_GETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
680         if (m_error.Success())
681         {
682             ::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
683             PTRACE(PTRACE_SETREGS, m_tid, NULL, &regs, sizeof regs, m_error);
684         }
685 #else
686         void* buf;
687         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
688 
689         buf = (void*) m_value.GetAsUInt64();
690 
691         if (log)
692             log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
693         PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0, m_error);
694 #endif
695     }
696 
697     //------------------------------------------------------------------------------
698     /// @class ReadGPROperation
699     /// @brief Implements NativeProcessLinux::ReadGPR.
700     class ReadGPROperation : public Operation
701     {
702     public:
703         ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
704             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
705             { }
706 
707         void Execute(NativeProcessLinux *monitor) override;
708 
709     private:
710         lldb::tid_t m_tid;
711         void *m_buf;
712         size_t m_buf_size;
713     };
714 
715     void
716     ReadGPROperation::Execute(NativeProcessLinux *monitor)
717     {
718 #if defined (__arm64__) || defined (__aarch64__)
719         int regset = NT_PRSTATUS;
720         struct iovec ioVec;
721 
722         ioVec.iov_base = m_buf;
723         ioVec.iov_len = m_buf_size;
724         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
725 #else
726         PTRACE(PTRACE_GETREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
727 #endif
728     }
729 
730     //------------------------------------------------------------------------------
731     /// @class ReadFPROperation
732     /// @brief Implements NativeProcessLinux::ReadFPR.
733     class ReadFPROperation : public Operation
734     {
735     public:
736         ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
737             : m_tid(tid),
738               m_buf(buf),
739               m_buf_size(buf_size)
740             { }
741 
742         void Execute(NativeProcessLinux *monitor) override;
743 
744     private:
745         lldb::tid_t m_tid;
746         void *m_buf;
747         size_t m_buf_size;
748     };
749 
750     void
751     ReadFPROperation::Execute(NativeProcessLinux *monitor)
752     {
753 #if defined (__arm64__) || defined (__aarch64__)
754         int regset = NT_FPREGSET;
755         struct iovec ioVec;
756 
757         ioVec.iov_base = m_buf;
758         ioVec.iov_len = m_buf_size;
759         PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
760 #else
761         PTRACE(PTRACE_GETFPREGS, m_tid, nullptr, m_buf, m_buf_size, m_error);
762 #endif
763     }
764 
765     //------------------------------------------------------------------------------
766     /// @class ReadRegisterSetOperation
767     /// @brief Implements NativeProcessLinux::ReadRegisterSet.
768     class ReadRegisterSetOperation : public Operation
769     {
770     public:
771         ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
772             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
773             { }
774 
775         void Execute(NativeProcessLinux *monitor) override;
776 
777     private:
778         lldb::tid_t m_tid;
779         void *m_buf;
780         size_t m_buf_size;
781         const unsigned int m_regset;
782     };
783 
784     void
785     ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
786     {
787         PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
788     }
789 
790     //------------------------------------------------------------------------------
791     /// @class WriteGPROperation
792     /// @brief Implements NativeProcessLinux::WriteGPR.
793     class WriteGPROperation : public Operation
794     {
795     public:
796         WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
797             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
798             { }
799 
800         void Execute(NativeProcessLinux *monitor) override;
801 
802     private:
803         lldb::tid_t m_tid;
804         void *m_buf;
805         size_t m_buf_size;
806     };
807 
808     void
809     WriteGPROperation::Execute(NativeProcessLinux *monitor)
810     {
811 #if defined (__arm64__) || defined (__aarch64__)
812         int regset = NT_PRSTATUS;
813         struct iovec ioVec;
814 
815         ioVec.iov_base = m_buf;
816         ioVec.iov_len = m_buf_size;
817         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
818 #else
819         PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
820 #endif
821     }
822 
823     //------------------------------------------------------------------------------
824     /// @class WriteFPROperation
825     /// @brief Implements NativeProcessLinux::WriteFPR.
826     class WriteFPROperation : public Operation
827     {
828     public:
829         WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size)
830             : m_tid(tid), m_buf(buf), m_buf_size(buf_size)
831             { }
832 
833         void Execute(NativeProcessLinux *monitor) override;
834 
835     private:
836         lldb::tid_t m_tid;
837         void *m_buf;
838         size_t m_buf_size;
839     };
840 
841     void
842     WriteFPROperation::Execute(NativeProcessLinux *monitor)
843     {
844 #if defined (__arm64__) || defined (__aarch64__)
845         int regset = NT_FPREGSET;
846         struct iovec ioVec;
847 
848         ioVec.iov_base = m_buf;
849         ioVec.iov_len = m_buf_size;
850         PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size, m_error);
851 #else
852         PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size, m_error);
853 #endif
854     }
855 
856     //------------------------------------------------------------------------------
857     /// @class WriteRegisterSetOperation
858     /// @brief Implements NativeProcessLinux::WriteRegisterSet.
859     class WriteRegisterSetOperation : public Operation
860     {
861     public:
862         WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
863             : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset)
864             { }
865 
866         void Execute(NativeProcessLinux *monitor) override;
867 
868     private:
869         lldb::tid_t m_tid;
870         void *m_buf;
871         size_t m_buf_size;
872         const unsigned int m_regset;
873     };
874 
875     void
876     WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
877     {
878         PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size, m_error);
879     }
880 
881     //------------------------------------------------------------------------------
882     /// @class ResumeOperation
883     /// @brief Implements NativeProcessLinux::Resume.
884     class ResumeOperation : public Operation
885     {
886     public:
887         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
888             m_tid(tid), m_signo(signo) { }
889 
890         void Execute(NativeProcessLinux *monitor) override;
891 
892     private:
893         lldb::tid_t m_tid;
894         uint32_t m_signo;
895     };
896 
897     void
898     ResumeOperation::Execute(NativeProcessLinux *monitor)
899     {
900         intptr_t data = 0;
901 
902         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
903             data = m_signo;
904 
905         PTRACE(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
906         if (m_error.Fail())
907         {
908             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
909 
910             if (log)
911                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
912         }
913     }
914 
915     //------------------------------------------------------------------------------
916     /// @class SingleStepOperation
917     /// @brief Implements NativeProcessLinux::SingleStep.
918     class SingleStepOperation : public Operation
919     {
920     public:
921         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
922             : m_tid(tid), m_signo(signo) { }
923 
924         void Execute(NativeProcessLinux *monitor) override;
925 
926     private:
927         lldb::tid_t m_tid;
928         uint32_t m_signo;
929     };
930 
931     void
932     SingleStepOperation::Execute(NativeProcessLinux *monitor)
933     {
934         intptr_t data = 0;
935 
936         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
937             data = m_signo;
938 
939         PTRACE(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
940     }
941 
942     //------------------------------------------------------------------------------
943     /// @class SiginfoOperation
944     /// @brief Implements NativeProcessLinux::GetSignalInfo.
945     class SiginfoOperation : public Operation
946     {
947     public:
948         SiginfoOperation(lldb::tid_t tid, void *info)
949             : m_tid(tid), m_info(info) { }
950 
951         void Execute(NativeProcessLinux *monitor) override;
952 
953     private:
954         lldb::tid_t m_tid;
955         void *m_info;
956     };
957 
958     void
959     SiginfoOperation::Execute(NativeProcessLinux *monitor)
960     {
961         PTRACE(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
962     }
963 
964     //------------------------------------------------------------------------------
965     /// @class EventMessageOperation
966     /// @brief Implements NativeProcessLinux::GetEventMessage.
967     class EventMessageOperation : public Operation
968     {
969     public:
970         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
971             : m_tid(tid), m_message(message) { }
972 
973         void Execute(NativeProcessLinux *monitor) override;
974 
975     private:
976         lldb::tid_t m_tid;
977         unsigned long *m_message;
978     };
979 
980     void
981     EventMessageOperation::Execute(NativeProcessLinux *monitor)
982     {
983         PTRACE(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
984     }
985 
986     class DetachOperation : public Operation
987     {
988     public:
989         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
990 
991         void Execute(NativeProcessLinux *monitor) override;
992 
993     private:
994         lldb::tid_t m_tid;
995     };
996 
997     void
998     DetachOperation::Execute(NativeProcessLinux *monitor)
999     {
1000         PTRACE(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
1001     }
1002 } // end of anonymous namespace
1003 
1004 // Simple helper function to ensure flags are enabled on the given file
1005 // descriptor.
1006 static Error
1007 EnsureFDFlags(int fd, int flags)
1008 {
1009     Error error;
1010 
1011     int status = fcntl(fd, F_GETFL);
1012     if (status == -1)
1013     {
1014         error.SetErrorToErrno();
1015         return error;
1016     }
1017 
1018     if (fcntl(fd, F_SETFL, status | flags) == -1)
1019     {
1020         error.SetErrorToErrno();
1021         return error;
1022     }
1023 
1024     return error;
1025 }
1026 
1027 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
1028 // the inferior. The thread consists of a main loop which waits for events and processes them
1029 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
1030 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
1031 //     and dispatch to NativeProcessLinux::MonitorCallback.
1032 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
1033 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
1034 //     pipe, and the completion of the operation is signalled over the semaphore.
1035 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
1036 //     of the command pipe.
1037 class NativeProcessLinux::Monitor
1038 {
1039 private:
1040     // The initial monitor operation (launch or attach). It returns a inferior process id.
1041     std::unique_ptr<InitialOperation> m_initial_operation_up;
1042 
1043     ::pid_t                           m_child_pid = -1;
1044     NativeProcessLinux              * m_native_process;
1045 
1046     enum { READ, WRITE };
1047     int        m_pipefd[2] = {-1, -1};
1048     int        m_signal_fd = -1;
1049     HostThread m_thread;
1050 
1051     // current operation which must be executed on the priviliged thread
1052     Mutex      m_operation_mutex;
1053     Operation *m_operation = nullptr;
1054     sem_t      m_operation_sem;
1055     Error      m_operation_error;
1056 
1057     unsigned   m_operation_nesting_level = 0;
1058 
1059     static constexpr char operation_command   = 'o';
1060     static constexpr char begin_block_command = '{';
1061     static constexpr char end_block_command   = '}';
1062 
1063     void
1064     HandleSignals();
1065 
1066     void
1067     HandleWait();
1068 
1069     // Returns true if the thread should exit.
1070     bool
1071     HandleCommands();
1072 
1073     void
1074     MainLoop();
1075 
1076     static void *
1077     RunMonitor(void *arg);
1078 
1079     Error
1080     WaitForAck();
1081 
1082     void
1083     BeginOperationBlock()
1084     {
1085         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
1086         WaitForAck();
1087     }
1088 
1089     void
1090     EndOperationBlock()
1091     {
1092         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
1093         WaitForAck();
1094     }
1095 
1096 public:
1097     Monitor(const InitialOperation &initial_operation,
1098             NativeProcessLinux *native_process)
1099         : m_initial_operation_up(new InitialOperation(initial_operation)),
1100           m_native_process(native_process)
1101     {
1102         sem_init(&m_operation_sem, 0, 0);
1103     }
1104 
1105     ~Monitor();
1106 
1107     Error
1108     Initialize();
1109 
1110     void
1111     Terminate();
1112 
1113     void
1114     DoOperation(Operation *op);
1115 
1116     class ScopedOperationLock {
1117         Monitor &m_monitor;
1118 
1119     public:
1120         ScopedOperationLock(Monitor &monitor)
1121             : m_monitor(monitor)
1122         { m_monitor.BeginOperationBlock(); }
1123 
1124         ~ScopedOperationLock()
1125         { m_monitor.EndOperationBlock(); }
1126     };
1127 };
1128 constexpr char NativeProcessLinux::Monitor::operation_command;
1129 constexpr char NativeProcessLinux::Monitor::begin_block_command;
1130 constexpr char NativeProcessLinux::Monitor::end_block_command;
1131 
1132 Error
1133 NativeProcessLinux::Monitor::Initialize()
1134 {
1135     Error error;
1136 
1137     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
1138     // listening for these signals over a signalfd file descriptors. This allows us to wait for
1139     // multiple kinds of events with select.
1140     sigset_t signals;
1141     sigemptyset(&signals);
1142     sigaddset(&signals, SIGCHLD);
1143     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
1144     if (m_signal_fd < 0)
1145     {
1146         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
1147                     __FUNCTION__, strerror(errno));
1148 
1149     }
1150 
1151     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
1152     {
1153         error.SetErrorToErrno();
1154         return error;
1155     }
1156 
1157     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
1158         return error;
1159     }
1160 
1161     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
1162     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
1163     if (!m_thread.IsJoinable())
1164         return Error("Failed to create monitor thread for NativeProcessLinux.");
1165 
1166     // Wait for initial operation to complete.
1167     return WaitForAck();
1168 }
1169 
1170 void
1171 NativeProcessLinux::Monitor::DoOperation(Operation *op)
1172 {
1173     if (m_thread.EqualsThread(pthread_self())) {
1174         // If we're on the Monitor thread, we can simply execute the operation.
1175         op->Execute(m_native_process);
1176         return;
1177     }
1178 
1179     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
1180     Mutex::Locker lock(m_operation_mutex);
1181 
1182     m_operation = op;
1183 
1184     // notify the thread that an operation is ready to be processed
1185     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
1186 
1187     WaitForAck();
1188 }
1189 
1190 void
1191 NativeProcessLinux::Monitor::Terminate()
1192 {
1193     if (m_pipefd[WRITE] >= 0)
1194     {
1195         close(m_pipefd[WRITE]);
1196         m_pipefd[WRITE] = -1;
1197     }
1198     if (m_thread.IsJoinable())
1199         m_thread.Join(nullptr);
1200 }
1201 
1202 NativeProcessLinux::Monitor::~Monitor()
1203 {
1204     Terminate();
1205     if (m_pipefd[READ] >= 0)
1206         close(m_pipefd[READ]);
1207     if (m_signal_fd >= 0)
1208         close(m_signal_fd);
1209     sem_destroy(&m_operation_sem);
1210 }
1211 
1212 void
1213 NativeProcessLinux::Monitor::HandleSignals()
1214 {
1215     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1216 
1217     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
1218     // all the information from waitpid(). We just need to read all the signals so that we can
1219     // sleep next time we reach select().
1220     while (true)
1221     {
1222         signalfd_siginfo info;
1223         ssize_t size = read(m_signal_fd, &info, sizeof info);
1224         if (size == -1)
1225         {
1226             if (errno == EAGAIN || errno == EWOULDBLOCK)
1227                 break; // We are done.
1228             if (errno == EINTR)
1229                 continue;
1230             if (log)
1231                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
1232                         __FUNCTION__, strerror(errno));
1233             break;
1234         }
1235         if (size != sizeof info)
1236         {
1237             // We got incomplete information structure. This should not happen, let's just log
1238             // that.
1239             if (log)
1240                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
1241                         "structure size is %zd, read returned %zd bytes",
1242                         __FUNCTION__, sizeof info, size);
1243             break;
1244         }
1245         if (log)
1246             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
1247                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
1248     }
1249 }
1250 
1251 void
1252 NativeProcessLinux::Monitor::HandleWait()
1253 {
1254     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1255     // Process all pending waitpid notifications.
1256     while (true)
1257     {
1258         int status = -1;
1259         ::pid_t wait_pid = waitpid(m_child_pid, &status, __WALL | WNOHANG);
1260 
1261         if (wait_pid == 0)
1262             break; // We are done.
1263 
1264         if (wait_pid == -1)
1265         {
1266             if (errno == EINTR)
1267                 continue;
1268 
1269             if (log)
1270               log->Printf("NativeProcessLinux::Monitor::%s waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG) failed: %s",
1271                       __FUNCTION__, m_child_pid, strerror(errno));
1272             break;
1273         }
1274 
1275         bool exited = false;
1276         int signal = 0;
1277         int exit_status = 0;
1278         const char *status_cstr = NULL;
1279         if (WIFSTOPPED(status))
1280         {
1281             signal = WSTOPSIG(status);
1282             status_cstr = "STOPPED";
1283         }
1284         else if (WIFEXITED(status))
1285         {
1286             exit_status = WEXITSTATUS(status);
1287             status_cstr = "EXITED";
1288             exited = true;
1289         }
1290         else if (WIFSIGNALED(status))
1291         {
1292             signal = WTERMSIG(status);
1293             status_cstr = "SIGNALED";
1294             if (wait_pid == abs(m_child_pid)) {
1295                 exited = true;
1296                 exit_status = -1;
1297             }
1298         }
1299         else
1300             status_cstr = "(\?\?\?)";
1301 
1302         if (log)
1303             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (pid = %" PRIi32 ", &status, __WALL | WNOHANG)"
1304                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
1305                 __FUNCTION__, m_child_pid, wait_pid, status, status_cstr, signal, exit_status);
1306 
1307         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
1308     }
1309 }
1310 
1311 bool
1312 NativeProcessLinux::Monitor::HandleCommands()
1313 {
1314     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1315 
1316     while (true)
1317     {
1318         char command = 0;
1319         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
1320         if (size == -1)
1321         {
1322             if (errno == EAGAIN || errno == EWOULDBLOCK)
1323                 return false;
1324             if (errno == EINTR)
1325                 continue;
1326             if (log)
1327                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
1328             return true;
1329         }
1330         if (size == 0) // end of file - write end closed
1331         {
1332             if (log)
1333                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
1334             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
1335             return true; // We are done.
1336         }
1337 
1338         switch (command)
1339         {
1340         case operation_command:
1341             m_operation->Execute(m_native_process);
1342             break;
1343         case begin_block_command:
1344             ++m_operation_nesting_level;
1345             break;
1346         case end_block_command:
1347             assert(m_operation_nesting_level > 0);
1348             --m_operation_nesting_level;
1349             break;
1350         default:
1351             if (log)
1352                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
1353                         __FUNCTION__, command);
1354         }
1355 
1356         // notify calling thread that the command has been processed
1357         sem_post(&m_operation_sem);
1358     }
1359 }
1360 
1361 void
1362 NativeProcessLinux::Monitor::MainLoop()
1363 {
1364     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
1365     m_initial_operation_up.reset();
1366     m_child_pid = -getpgid(child_pid),
1367     sem_post(&m_operation_sem);
1368 
1369     while (true)
1370     {
1371         fd_set fds;
1372         FD_ZERO(&fds);
1373         // Only process waitpid events if we are outside of an operation block. Any pending
1374         // events will be processed after we leave the block.
1375         if (m_operation_nesting_level == 0)
1376             FD_SET(m_signal_fd, &fds);
1377         FD_SET(m_pipefd[READ], &fds);
1378 
1379         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
1380         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
1381         if (r < 0)
1382         {
1383             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1384             if (log)
1385                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
1386                         __FUNCTION__, strerror(errno));
1387             return;
1388         }
1389 
1390         if (FD_ISSET(m_pipefd[READ], &fds))
1391         {
1392             if (HandleCommands())
1393                 return;
1394         }
1395 
1396         if (FD_ISSET(m_signal_fd, &fds))
1397         {
1398             HandleSignals();
1399             HandleWait();
1400         }
1401     }
1402 }
1403 
1404 Error
1405 NativeProcessLinux::Monitor::WaitForAck()
1406 {
1407     Error error;
1408     while (sem_wait(&m_operation_sem) != 0)
1409     {
1410         if (errno == EINTR)
1411             continue;
1412 
1413         error.SetErrorToErrno();
1414         return error;
1415     }
1416 
1417     return m_operation_error;
1418 }
1419 
1420 void *
1421 NativeProcessLinux::Monitor::RunMonitor(void *arg)
1422 {
1423     static_cast<Monitor *>(arg)->MainLoop();
1424     return nullptr;
1425 }
1426 
1427 
1428 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
1429                                        char const **argv,
1430                                        char const **envp,
1431                                        const std::string &stdin_path,
1432                                        const std::string &stdout_path,
1433                                        const std::string &stderr_path,
1434                                        const char *working_dir,
1435                                        const ProcessLaunchInfo &launch_info)
1436     : m_module(module),
1437       m_argv(argv),
1438       m_envp(envp),
1439       m_stdin_path(stdin_path),
1440       m_stdout_path(stdout_path),
1441       m_stderr_path(stderr_path),
1442       m_working_dir(working_dir),
1443       m_launch_info(launch_info)
1444 {
1445 }
1446 
1447 NativeProcessLinux::LaunchArgs::~LaunchArgs()
1448 { }
1449 
1450 // -----------------------------------------------------------------------------
1451 // Public Static Methods
1452 // -----------------------------------------------------------------------------
1453 
1454 Error
1455 NativeProcessLinux::LaunchProcess (
1456     Module *exe_module,
1457     ProcessLaunchInfo &launch_info,
1458     NativeProcessProtocol::NativeDelegate &native_delegate,
1459     NativeProcessProtocolSP &native_process_sp)
1460 {
1461     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1462 
1463     Error error;
1464 
1465     // Verify the working directory is valid if one was specified.
1466     const char* working_dir = launch_info.GetWorkingDirectory ();
1467     if (working_dir)
1468     {
1469       FileSpec working_dir_fs (working_dir, true);
1470       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1471       {
1472           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1473           return error;
1474       }
1475     }
1476 
1477     const FileAction *file_action;
1478 
1479     // Default of NULL will mean to use existing open file descriptors.
1480     std::string stdin_path;
1481     std::string stdout_path;
1482     std::string stderr_path;
1483 
1484     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1485     if (file_action)
1486         stdin_path = file_action->GetPath ();
1487 
1488     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1489     if (file_action)
1490         stdout_path = file_action->GetPath ();
1491 
1492     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1493     if (file_action)
1494         stderr_path = file_action->GetPath ();
1495 
1496     if (log)
1497     {
1498         if (!stdin_path.empty ())
1499             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1500         else
1501             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1502 
1503         if (!stdout_path.empty ())
1504             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1505         else
1506             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1507 
1508         if (!stderr_path.empty ())
1509             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1510         else
1511             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1512     }
1513 
1514     // Create the NativeProcessLinux in launch mode.
1515     native_process_sp.reset (new NativeProcessLinux ());
1516 
1517     if (log)
1518     {
1519         int i = 0;
1520         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1521         {
1522             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1523             ++i;
1524         }
1525     }
1526 
1527     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1528     {
1529         native_process_sp.reset ();
1530         error.SetErrorStringWithFormat ("failed to register the native delegate");
1531         return error;
1532     }
1533 
1534     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1535             exe_module,
1536             launch_info.GetArguments ().GetConstArgumentVector (),
1537             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1538             stdin_path,
1539             stdout_path,
1540             stderr_path,
1541             working_dir,
1542             launch_info,
1543             error);
1544 
1545     if (error.Fail ())
1546     {
1547         native_process_sp.reset ();
1548         if (log)
1549             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1550         return error;
1551     }
1552 
1553     launch_info.SetProcessID (native_process_sp->GetID ());
1554 
1555     return error;
1556 }
1557 
1558 Error
1559 NativeProcessLinux::AttachToProcess (
1560     lldb::pid_t pid,
1561     NativeProcessProtocol::NativeDelegate &native_delegate,
1562     NativeProcessProtocolSP &native_process_sp)
1563 {
1564     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1565     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1566         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1567 
1568     // Grab the current platform architecture.  This should be Linux,
1569     // since this code is only intended to run on a Linux host.
1570     PlatformSP platform_sp (Platform::GetHostPlatform ());
1571     if (!platform_sp)
1572         return Error("failed to get a valid default platform");
1573 
1574     // Retrieve the architecture for the running process.
1575     ArchSpec process_arch;
1576     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1577     if (!error.Success ())
1578         return error;
1579 
1580     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1581 
1582     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1583     {
1584         error.SetErrorStringWithFormat ("failed to register the native delegate");
1585         return error;
1586     }
1587 
1588     native_process_linux_sp->AttachToInferior (pid, error);
1589     if (!error.Success ())
1590         return error;
1591 
1592     native_process_sp = native_process_linux_sp;
1593     return error;
1594 }
1595 
1596 // -----------------------------------------------------------------------------
1597 // Public Instance Methods
1598 // -----------------------------------------------------------------------------
1599 
1600 NativeProcessLinux::NativeProcessLinux () :
1601     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1602     m_arch (),
1603     m_supports_mem_region (eLazyBoolCalculate),
1604     m_mem_region_cache (),
1605     m_mem_region_cache_mutex ()
1606 {
1607 }
1608 
1609 //------------------------------------------------------------------------------
1610 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1611 // Refer to Monitor and Operation classes to see why this is necessary.
1612 //------------------------------------------------------------------------------
1613 void
1614 NativeProcessLinux::LaunchInferior (
1615     Module *module,
1616     const char *argv[],
1617     const char *envp[],
1618     const std::string &stdin_path,
1619     const std::string &stdout_path,
1620     const std::string &stderr_path,
1621     const char *working_dir,
1622     const ProcessLaunchInfo &launch_info,
1623     Error &error)
1624 {
1625     if (module)
1626         m_arch = module->GetArchitecture ();
1627 
1628     SetState (eStateLaunching);
1629 
1630     std::unique_ptr<LaunchArgs> args(
1631         new LaunchArgs(
1632             module, argv, envp,
1633             stdin_path, stdout_path, stderr_path,
1634             working_dir, launch_info));
1635 
1636     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1637     if (!error.Success ())
1638         return;
1639 }
1640 
1641 void
1642 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1643 {
1644     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1645     if (log)
1646         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1647 
1648     // We can use the Host for everything except the ResolveExecutable portion.
1649     PlatformSP platform_sp = Platform::GetHostPlatform ();
1650     if (!platform_sp)
1651     {
1652         if (log)
1653             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1654         error.SetErrorString ("no default platform available");
1655         return;
1656     }
1657 
1658     // Gather info about the process.
1659     ProcessInstanceInfo process_info;
1660     if (!platform_sp->GetProcessInfo (pid, process_info))
1661     {
1662         if (log)
1663             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1664         error.SetErrorString ("failed to get process info");
1665         return;
1666     }
1667 
1668     // Resolve the executable module
1669     ModuleSP exe_module_sp;
1670     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1671     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1672     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1673                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1674     if (!error.Success())
1675         return;
1676 
1677     // Set the architecture to the exe architecture.
1678     m_arch = exe_module_sp->GetArchitecture();
1679     if (log)
1680         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1681 
1682     m_pid = pid;
1683     SetState(eStateAttaching);
1684 
1685     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1686     if (!error.Success ())
1687         return;
1688 }
1689 
1690 void
1691 NativeProcessLinux::Terminate ()
1692 {
1693     m_monitor_up->Terminate();
1694 }
1695 
1696 ::pid_t
1697 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1698 {
1699     assert (args && "null args");
1700 
1701     const char **argv = args->m_argv;
1702     const char **envp = args->m_envp;
1703     const char *working_dir = args->m_working_dir;
1704 
1705     lldb_utility::PseudoTerminal terminal;
1706     const size_t err_len = 1024;
1707     char err_str[err_len];
1708     lldb::pid_t pid;
1709     NativeThreadProtocolSP thread_sp;
1710 
1711     lldb::ThreadSP inferior;
1712 
1713     // Propagate the environment if one is not supplied.
1714     if (envp == NULL || envp[0] == NULL)
1715         envp = const_cast<const char **>(environ);
1716 
1717     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1718     {
1719         error.SetErrorToGenericError();
1720         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1721         return -1;
1722     }
1723 
1724     // Recognized child exit status codes.
1725     enum {
1726         ePtraceFailed = 1,
1727         eDupStdinFailed,
1728         eDupStdoutFailed,
1729         eDupStderrFailed,
1730         eChdirFailed,
1731         eExecFailed,
1732         eSetGidFailed
1733     };
1734 
1735     // Child process.
1736     if (pid == 0)
1737     {
1738         // FIXME consider opening a pipe between parent/child and have this forked child
1739         // send log info to parent re: launch status, in place of the log lines removed here.
1740 
1741         // Start tracing this child that is about to exec.
1742         PTRACE(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1743         if (error.Fail())
1744             exit(ePtraceFailed);
1745 
1746         // terminal has already dupped the tty descriptors to stdin/out/err.
1747         // This closes original fd from which they were copied (and avoids
1748         // leaking descriptors to the debugged process.
1749         terminal.CloseSlaveFileDescriptor();
1750 
1751         // Do not inherit setgid powers.
1752         if (setgid(getgid()) != 0)
1753             exit(eSetGidFailed);
1754 
1755         // Attempt to have our own process group.
1756         if (setpgid(0, 0) != 0)
1757         {
1758             // FIXME log that this failed. This is common.
1759             // Don't allow this to prevent an inferior exec.
1760         }
1761 
1762         // Dup file descriptors if needed.
1763         if (!args->m_stdin_path.empty ())
1764             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1765                 exit(eDupStdinFailed);
1766 
1767         if (!args->m_stdout_path.empty ())
1768             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1769                 exit(eDupStdoutFailed);
1770 
1771         if (!args->m_stderr_path.empty ())
1772             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1773                 exit(eDupStderrFailed);
1774 
1775         // Close everything besides stdin, stdout, and stderr that has no file
1776         // action to avoid leaking
1777         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1778             if (!args->m_launch_info.GetFileActionForFD(fd))
1779                 close(fd);
1780 
1781         // Change working directory
1782         if (working_dir != NULL && working_dir[0])
1783           if (0 != ::chdir(working_dir))
1784               exit(eChdirFailed);
1785 
1786         // Disable ASLR if requested.
1787         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1788         {
1789             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1790             if (old_personality == -1)
1791             {
1792                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1793             }
1794             else
1795             {
1796                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1797                 if (new_personality == -1)
1798                 {
1799                     // Disabling ASLR failed.
1800                 }
1801                 else
1802                 {
1803                     // Disabling ASLR succeeded.
1804                 }
1805             }
1806         }
1807 
1808         // Execute.  We should never return...
1809         execve(argv[0],
1810                const_cast<char *const *>(argv),
1811                const_cast<char *const *>(envp));
1812 
1813         // ...unless exec fails.  In which case we definitely need to end the child here.
1814         exit(eExecFailed);
1815     }
1816 
1817     //
1818     // This is the parent code here.
1819     //
1820     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1821 
1822     // Wait for the child process to trap on its call to execve.
1823     ::pid_t wpid;
1824     int status;
1825     if ((wpid = waitpid(pid, &status, 0)) < 0)
1826     {
1827         error.SetErrorToErrno();
1828         if (log)
1829             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1830                     __FUNCTION__, error.AsCString ());
1831 
1832         // Mark the inferior as invalid.
1833         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1834         SetState (StateType::eStateInvalid);
1835 
1836         return -1;
1837     }
1838     else if (WIFEXITED(status))
1839     {
1840         // open, dup or execve likely failed for some reason.
1841         error.SetErrorToGenericError();
1842         switch (WEXITSTATUS(status))
1843         {
1844             case ePtraceFailed:
1845                 error.SetErrorString("Child ptrace failed.");
1846                 break;
1847             case eDupStdinFailed:
1848                 error.SetErrorString("Child open stdin failed.");
1849                 break;
1850             case eDupStdoutFailed:
1851                 error.SetErrorString("Child open stdout failed.");
1852                 break;
1853             case eDupStderrFailed:
1854                 error.SetErrorString("Child open stderr failed.");
1855                 break;
1856             case eChdirFailed:
1857                 error.SetErrorString("Child failed to set working directory.");
1858                 break;
1859             case eExecFailed:
1860                 error.SetErrorString("Child exec failed.");
1861                 break;
1862             case eSetGidFailed:
1863                 error.SetErrorString("Child setgid failed.");
1864                 break;
1865             default:
1866                 error.SetErrorString("Child returned unknown exit status.");
1867                 break;
1868         }
1869 
1870         if (log)
1871         {
1872             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1873                     __FUNCTION__,
1874                     WEXITSTATUS(status));
1875         }
1876 
1877         // Mark the inferior as invalid.
1878         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1879         SetState (StateType::eStateInvalid);
1880 
1881         return -1;
1882     }
1883     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1884            "Could not sync with inferior process.");
1885 
1886     if (log)
1887         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1888 
1889     error = SetDefaultPtraceOpts(pid);
1890     if (error.Fail())
1891     {
1892         if (log)
1893             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1894                     __FUNCTION__, error.AsCString ());
1895 
1896         // Mark the inferior as invalid.
1897         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1898         SetState (StateType::eStateInvalid);
1899 
1900         return -1;
1901     }
1902 
1903     // Release the master terminal descriptor and pass it off to the
1904     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1905     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1906     m_pid = pid;
1907 
1908     // Set the terminal fd to be in non blocking mode (it simplifies the
1909     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1910     // descriptor to read from).
1911     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1912     if (error.Fail())
1913     {
1914         if (log)
1915             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1916                     __FUNCTION__, error.AsCString ());
1917 
1918         // Mark the inferior as invalid.
1919         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1920         SetState (StateType::eStateInvalid);
1921 
1922         return -1;
1923     }
1924 
1925     if (log)
1926         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1927 
1928     thread_sp = AddThread (pid);
1929     assert (thread_sp && "AddThread() returned a nullptr thread");
1930     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1931     ThreadWasCreated(pid);
1932 
1933     // Let our process instance know the thread has stopped.
1934     SetCurrentThreadID (thread_sp->GetID ());
1935     SetState (StateType::eStateStopped);
1936 
1937     if (log)
1938     {
1939         if (error.Success ())
1940         {
1941             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1942         }
1943         else
1944         {
1945             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1946                 __FUNCTION__, error.AsCString ());
1947             return -1;
1948         }
1949     }
1950     return pid;
1951 }
1952 
1953 ::pid_t
1954 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1955 {
1956     lldb::ThreadSP inferior;
1957     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1958 
1959     // Use a map to keep track of the threads which we have attached/need to attach.
1960     Host::TidMap tids_to_attach;
1961     if (pid <= 1)
1962     {
1963         error.SetErrorToGenericError();
1964         error.SetErrorString("Attaching to process 1 is not allowed.");
1965         return -1;
1966     }
1967 
1968     while (Host::FindProcessThreads(pid, tids_to_attach))
1969     {
1970         for (Host::TidMap::iterator it = tids_to_attach.begin();
1971              it != tids_to_attach.end();)
1972         {
1973             if (it->second == false)
1974             {
1975                 lldb::tid_t tid = it->first;
1976 
1977                 // Attach to the requested process.
1978                 // An attach will cause the thread to stop with a SIGSTOP.
1979                 PTRACE(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
1980                 if (error.Fail())
1981                 {
1982                     // No such thread. The thread may have exited.
1983                     // More error handling may be needed.
1984                     if (error.GetError() == ESRCH)
1985                     {
1986                         it = tids_to_attach.erase(it);
1987                         continue;
1988                     }
1989                     else
1990                         return -1;
1991                 }
1992 
1993                 int status;
1994                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1995                 // At this point we should have a thread stopped if waitpid succeeds.
1996                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1997                 {
1998                     // No such thread. The thread may have exited.
1999                     // More error handling may be needed.
2000                     if (errno == ESRCH)
2001                     {
2002                         it = tids_to_attach.erase(it);
2003                         continue;
2004                     }
2005                     else
2006                     {
2007                         error.SetErrorToErrno();
2008                         return -1;
2009                     }
2010                 }
2011 
2012                 error = SetDefaultPtraceOpts(tid);
2013                 if (error.Fail())
2014                     return -1;
2015 
2016                 if (log)
2017                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
2018 
2019                 it->second = true;
2020 
2021                 // Create the thread, mark it as stopped.
2022                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
2023                 assert (thread_sp && "AddThread() returned a nullptr");
2024 
2025                 // This will notify this is a new thread and tell the system it is stopped.
2026                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
2027                 ThreadWasCreated(tid);
2028                 SetCurrentThreadID (thread_sp->GetID ());
2029             }
2030 
2031             // move the loop forward
2032             ++it;
2033         }
2034     }
2035 
2036     if (tids_to_attach.size() > 0)
2037     {
2038         m_pid = pid;
2039         // Let our process instance know the thread has stopped.
2040         SetState (StateType::eStateStopped);
2041     }
2042     else
2043     {
2044         error.SetErrorToGenericError();
2045         error.SetErrorString("No such process.");
2046         return -1;
2047     }
2048 
2049     return pid;
2050 }
2051 
2052 Error
2053 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
2054 {
2055     long ptrace_opts = 0;
2056 
2057     // Have the child raise an event on exit.  This is used to keep the child in
2058     // limbo until it is destroyed.
2059     ptrace_opts |= PTRACE_O_TRACEEXIT;
2060 
2061     // Have the tracer trace threads which spawn in the inferior process.
2062     // TODO: if we want to support tracing the inferiors' child, add the
2063     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
2064     ptrace_opts |= PTRACE_O_TRACECLONE;
2065 
2066     // Have the tracer notify us before execve returns
2067     // (needed to disable legacy SIGTRAP generation)
2068     ptrace_opts |= PTRACE_O_TRACEEXEC;
2069 
2070     Error error;
2071     PTRACE(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
2072     return error;
2073 }
2074 
2075 static ExitType convert_pid_status_to_exit_type (int status)
2076 {
2077     if (WIFEXITED (status))
2078         return ExitType::eExitTypeExit;
2079     else if (WIFSIGNALED (status))
2080         return ExitType::eExitTypeSignal;
2081     else if (WIFSTOPPED (status))
2082         return ExitType::eExitTypeStop;
2083     else
2084     {
2085         // We don't know what this is.
2086         return ExitType::eExitTypeInvalid;
2087     }
2088 }
2089 
2090 static int convert_pid_status_to_return_code (int status)
2091 {
2092     if (WIFEXITED (status))
2093         return WEXITSTATUS (status);
2094     else if (WIFSIGNALED (status))
2095         return WTERMSIG (status);
2096     else if (WIFSTOPPED (status))
2097         return WSTOPSIG (status);
2098     else
2099     {
2100         // We don't know what this is.
2101         return ExitType::eExitTypeInvalid;
2102     }
2103 }
2104 
2105 // Handles all waitpid events from the inferior process.
2106 void
2107 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
2108                                     bool exited,
2109                                     int signal,
2110                                     int status)
2111 {
2112     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
2113 
2114     // Certain activities differ based on whether the pid is the tid of the main thread.
2115     const bool is_main_thread = (pid == GetID ());
2116 
2117     // Handle when the thread exits.
2118     if (exited)
2119     {
2120         if (log)
2121             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
2122 
2123         // This is a thread that exited.  Ensure we're not tracking it anymore.
2124         const bool thread_found = StopTrackingThread (pid);
2125 
2126         if (is_main_thread)
2127         {
2128             // We only set the exit status and notify the delegate if we haven't already set the process
2129             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
2130             // for the main thread.
2131             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
2132             if (!already_notified)
2133             {
2134                 if (log)
2135                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
2136                 // The main thread exited.  We're done monitoring.  Report to delegate.
2137                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2138 
2139                 // Notify delegate that our process has exited.
2140                 SetState (StateType::eStateExited, true);
2141             }
2142             else
2143             {
2144                 if (log)
2145                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2146             }
2147         }
2148         else
2149         {
2150             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
2151             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
2152             // and we would have done an all-stop then.
2153             if (log)
2154                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
2155         }
2156         return;
2157     }
2158 
2159     // Get details on the signal raised.
2160     siginfo_t info;
2161     const auto err = GetSignalInfo(pid, &info);
2162     if (err.Success())
2163     {
2164         // We have retrieved the signal info.  Dispatch appropriately.
2165         if (info.si_signo == SIGTRAP)
2166             MonitorSIGTRAP(&info, pid);
2167         else
2168             MonitorSignal(&info, pid, exited);
2169     }
2170     else
2171     {
2172         if (err.GetError() == EINVAL)
2173         {
2174             // This is a group stop reception for this tid.
2175             if (log)
2176                 log->Printf ("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64, __FUNCTION__, GetID (), pid);
2177             ThreadDidStop(pid, false);
2178         }
2179         else
2180         {
2181             // ptrace(GETSIGINFO) failed (but not due to group-stop).
2182 
2183             // A return value of ESRCH means the thread/process is no longer on the system,
2184             // so it was killed somehow outside of our control.  Either way, we can't do anything
2185             // with it anymore.
2186 
2187             // Stop tracking the metadata for the thread since it's entirely off the system now.
2188             const bool thread_found = StopTrackingThread (pid);
2189 
2190             if (log)
2191                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
2192                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
2193 
2194             if (is_main_thread)
2195             {
2196                 // Notify the delegate - our process is not available but appears to have been killed outside
2197                 // our control.  Is eStateExited the right exit state in this case?
2198                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
2199                 SetState (StateType::eStateExited, true);
2200             }
2201             else
2202             {
2203                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
2204                 if (log)
2205                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
2206             }
2207         }
2208     }
2209 }
2210 
2211 void
2212 NativeProcessLinux::WaitForNewThread(::pid_t tid)
2213 {
2214     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2215 
2216     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
2217 
2218     if (new_thread_sp)
2219     {
2220         // We are already tracking the thread - we got the event on the new thread (see
2221         // MonitorSignal) before this one. We are done.
2222         return;
2223     }
2224 
2225     // The thread is not tracked yet, let's wait for it to appear.
2226     int status = -1;
2227     ::pid_t wait_pid;
2228     do
2229     {
2230         if (log)
2231             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
2232         wait_pid = waitpid(tid, &status, __WALL);
2233     }
2234     while (wait_pid == -1 && errno == EINTR);
2235     // Since we are waiting on a specific tid, this must be the creation event. But let's do
2236     // some checks just in case.
2237     if (wait_pid != tid) {
2238         if (log)
2239             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
2240         // The only way I know of this could happen is if the whole process was
2241         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
2242         return;
2243     }
2244     if (WIFEXITED(status))
2245     {
2246         if (log)
2247             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
2248         // Also a very improbable event.
2249         return;
2250     }
2251 
2252     siginfo_t info;
2253     Error error = GetSignalInfo(tid, &info);
2254     if (error.Fail())
2255     {
2256         if (log)
2257             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
2258         return;
2259     }
2260 
2261     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
2262     {
2263         // We should be getting a thread creation signal here, but we received something
2264         // else. There isn't much we can do about it now, so we will just log that. Since the
2265         // thread is alive and we are receiving events from it, we shall pretend that it was
2266         // created properly.
2267         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
2268     }
2269 
2270     if (log)
2271         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
2272                  __FUNCTION__, GetID (), tid);
2273 
2274     new_thread_sp = AddThread(tid);
2275     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
2276     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
2277     ThreadWasCreated(tid);
2278 }
2279 
2280 void
2281 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
2282 {
2283     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2284     const bool is_main_thread = (pid == GetID ());
2285 
2286     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
2287     if (!info)
2288         return;
2289 
2290     Mutex::Locker locker (m_threads_mutex);
2291 
2292     // See if we can find a thread for this signal.
2293     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2294     if (!thread_sp)
2295     {
2296         if (log)
2297             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2298     }
2299 
2300     switch (info->si_code)
2301     {
2302     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
2303     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
2304     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
2305 
2306     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
2307     {
2308         // This is the notification on the parent thread which informs us of new thread
2309         // creation.
2310         // We don't want to do anything with the parent thread so we just resume it. In case we
2311         // want to implement "break on thread creation" functionality, we would need to stop
2312         // here.
2313 
2314         unsigned long event_message = 0;
2315         if (GetEventMessage (pid, &event_message).Fail())
2316         {
2317             if (log)
2318                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
2319         } else
2320             WaitForNewThread(event_message);
2321 
2322         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2323         break;
2324     }
2325 
2326     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
2327     {
2328         NativeThreadProtocolSP main_thread_sp;
2329         if (log)
2330             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
2331 
2332         // Exec clears any pending notifications.
2333         m_pending_notification_up.reset ();
2334 
2335         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
2336         if (log)
2337             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
2338 
2339         for (auto thread_sp : m_threads)
2340         {
2341             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
2342             if (is_main_thread)
2343             {
2344                 main_thread_sp = thread_sp;
2345                 if (log)
2346                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
2347             }
2348             else
2349             {
2350                 // Tell thread coordinator this thread is dead.
2351                 if (log)
2352                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
2353             }
2354         }
2355 
2356         m_threads.clear ();
2357 
2358         if (main_thread_sp)
2359         {
2360             m_threads.push_back (main_thread_sp);
2361             SetCurrentThreadID (main_thread_sp->GetID ());
2362             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
2363         }
2364         else
2365         {
2366             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
2367             if (log)
2368                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
2369         }
2370 
2371         // Tell coordinator about about the "new" (since exec) stopped main thread.
2372         const lldb::tid_t main_thread_tid = GetID ();
2373         ThreadWasCreated(main_thread_tid);
2374 
2375         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
2376         // Consider a handler that can execute when that happens.
2377         // Let our delegate know we have just exec'd.
2378         NotifyDidExec ();
2379 
2380         // If we have a main thread, indicate we are stopped.
2381         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
2382 
2383         // Let the process know we're stopped.
2384         StopRunningThreads (pid);
2385 
2386         break;
2387     }
2388 
2389     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
2390     {
2391         // The inferior process or one of its threads is about to exit.
2392         if (! thread_sp)
2393             break;
2394 
2395         // This thread is currently stopped.  It's not actually dead yet, just about to be.
2396         ThreadDidStop (pid, false);
2397         // The actual stop reason does not matter much, as we are going to resume the thread a
2398         // few lines down. If we ever want to report this state to the debugger, then we should
2399         // invent a new stop reason.
2400         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedBySignal(LLDB_INVALID_SIGNAL_NUMBER);
2401 
2402         unsigned long data = 0;
2403         if (GetEventMessage(pid, &data).Fail())
2404             data = -1;
2405 
2406         if (log)
2407         {
2408             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2409                          __FUNCTION__,
2410                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2411                          pid,
2412                     is_main_thread ? "is main thread" : "not main thread");
2413         }
2414 
2415         if (is_main_thread)
2416         {
2417             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2418         }
2419 
2420         const int signo = static_cast<int> (data);
2421         ResumeThread(pid,
2422                 [=](lldb::tid_t tid_to_resume, bool supress_signal)
2423                 {
2424                     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2425                     return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2426                 },
2427                 true);
2428 
2429         break;
2430     }
2431 
2432     case 0:
2433     case TRAP_TRACE:  // We receive this on single stepping.
2434     case TRAP_HWBKPT: // We receive this on watchpoint hit
2435         if (thread_sp)
2436         {
2437             // If a watchpoint was hit, report it
2438             uint32_t wp_index;
2439             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index);
2440             if (error.Fail() && log)
2441                 log->Printf("NativeProcessLinux::%s() "
2442                             "received error while checking for watchpoint hits, "
2443                             "pid = %" PRIu64 " error = %s",
2444                             __FUNCTION__, pid, error.AsCString());
2445             if (wp_index != LLDB_INVALID_INDEX32)
2446             {
2447                 MonitorWatchpoint(pid, thread_sp, wp_index);
2448                 break;
2449             }
2450         }
2451         // Otherwise, report step over
2452         MonitorTrace(pid, thread_sp);
2453         break;
2454 
2455     case SI_KERNEL:
2456     case TRAP_BRKPT:
2457         MonitorBreakpoint(pid, thread_sp);
2458         break;
2459 
2460     case SIGTRAP:
2461     case (SIGTRAP | 0x80):
2462         if (log)
2463             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
2464 
2465         // This thread is currently stopped.
2466         ThreadDidStop (pid, false);
2467         if (thread_sp)
2468             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGTRAP);
2469 
2470 
2471         // Ignore these signals until we know more about them.
2472         ResumeThread(pid,
2473                 [=](lldb::tid_t tid_to_resume, bool supress_signal)
2474                 {
2475                     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2476                     return Resume (tid_to_resume, LLDB_INVALID_SIGNAL_NUMBER);
2477                 },
2478                 true);
2479         break;
2480 
2481     default:
2482         assert(false && "Unexpected SIGTRAP code!");
2483         if (log)
2484             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2485         break;
2486 
2487     }
2488 }
2489 
2490 void
2491 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2492 {
2493     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2494     if (log)
2495         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2496                 __FUNCTION__, pid);
2497 
2498     if (thread_sp)
2499         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2500 
2501     // This thread is currently stopped.
2502     ThreadDidStop(pid, false);
2503 
2504     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2505     // This would have already happened at the time the Resume() with step operation was signaled.
2506     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2507     // once all running threads have checked in as stopped.
2508     SetCurrentThreadID(pid);
2509     // Tell the process we have a stop (from software breakpoint).
2510     StopRunningThreads(pid);
2511 }
2512 
2513 void
2514 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2515 {
2516     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2517     if (log)
2518         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2519                 __FUNCTION__, pid);
2520 
2521     // This thread is currently stopped.
2522     ThreadDidStop(pid, false);
2523 
2524     // Mark the thread as stopped at breakpoint.
2525     if (thread_sp)
2526     {
2527         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2528         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2529         if (error.Fail())
2530             if (log)
2531                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2532                         __FUNCTION__, pid, error.AsCString());
2533 
2534         auto it = m_threads_stepping_with_breakpoint.find(pid);
2535         if (it != m_threads_stepping_with_breakpoint.end())
2536         {
2537             Error error = RemoveBreakpoint (it->second);
2538             if (error.Fail())
2539                 if (log)
2540                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2541                             __FUNCTION__, pid, error.AsCString());
2542 
2543             m_threads_stepping_with_breakpoint.erase(it);
2544             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2545         }
2546     }
2547     else
2548         if (log)
2549             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2550                     "warning, cannot process software breakpoint since no thread metadata",
2551                     __FUNCTION__, pid);
2552 
2553 
2554     // We need to tell all other running threads before we notify the delegate about this stop.
2555     StopRunningThreads(pid);
2556 }
2557 
2558 void
2559 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2560 {
2561     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2562     if (log)
2563         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2564                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2565                     __FUNCTION__, pid, wp_index);
2566 
2567     // This thread is currently stopped.
2568     ThreadDidStop(pid, false);
2569 
2570     // Mark the thread as stopped at watchpoint.
2571     // The address is at (lldb::addr_t)info->si_addr if we need it.
2572     lldbassert(thread_sp && "thread_sp cannot be NULL");
2573     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2574 
2575     // We need to tell all other running threads before we notify the delegate about this stop.
2576     StopRunningThreads(pid);
2577 }
2578 
2579 void
2580 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2581 {
2582     assert (info && "null info");
2583     if (!info)
2584         return;
2585 
2586     const int signo = info->si_signo;
2587     const bool is_from_llgs = info->si_pid == getpid ();
2588 
2589     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2590 
2591     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2592     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2593     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2594     //
2595     // IOW, user generated signals never generate what we consider to be a
2596     // "crash".
2597     //
2598     // Similarly, ACK signals generated by this monitor.
2599 
2600     Mutex::Locker locker (m_threads_mutex);
2601 
2602     // See if we can find a thread for this signal.
2603     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2604     if (!thread_sp)
2605     {
2606         if (log)
2607             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2608     }
2609 
2610     // Handle the signal.
2611     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2612     {
2613         if (log)
2614             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2615                             __FUNCTION__,
2616                             GetUnixSignals ().GetSignalAsCString (signo),
2617                             signo,
2618                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2619                             info->si_pid,
2620                             is_from_llgs ? "from llgs" : "not from llgs",
2621                             pid);
2622     }
2623 
2624     // Check for new thread notification.
2625     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2626     {
2627         // A new thread creation is being signaled. This is one of two parts that come in
2628         // a non-deterministic order. This code handles the case where the new thread event comes
2629         // before the event on the parent thread. For the opposite case see code in
2630         // MonitorSIGTRAP.
2631         if (log)
2632             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2633                      __FUNCTION__, GetID (), pid);
2634 
2635         thread_sp = AddThread(pid);
2636         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2637         // We can now resume the newly created thread.
2638         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2639         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2640         ThreadWasCreated(pid);
2641         // Done handling.
2642         return;
2643     }
2644 
2645     // Check for thread stop notification.
2646     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2647     {
2648         // This is a tgkill()-based stop.
2649         if (thread_sp)
2650         {
2651             if (log)
2652                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2653                              __FUNCTION__,
2654                              GetID (),
2655                              pid);
2656 
2657             // Check that we're not already marked with a stop reason.
2658             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2659             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2660             // and that, without an intervening resume, we received another stop.  It is more likely
2661             // that we are missing the marking of a run state somewhere if we find that the thread was
2662             // marked as stopped.
2663             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2664             assert (linux_thread_sp && "linux_thread_sp is null!");
2665 
2666             const StateType thread_state = linux_thread_sp->GetState ();
2667             if (!StateIsStoppedState (thread_state, false))
2668             {
2669                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2670                 // Generally, these are not important stops and we don't want to report them as
2671                 // they are just used to stop other threads when one thread (the one with the
2672                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2673                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2674                 // leave the signal intact if this is the thread that was chosen as the
2675                 // triggering thread.
2676                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2677                     linux_thread_sp->SetStoppedBySignal(SIGSTOP);
2678                 else
2679                     linux_thread_sp->SetStoppedBySignal(0);
2680 
2681                 SetCurrentThreadID (thread_sp->GetID ());
2682                 ThreadDidStop (thread_sp->GetID (), true);
2683             }
2684             else
2685             {
2686                 if (log)
2687                 {
2688                     // Retrieve the signal name if the thread was stopped by a signal.
2689                     int stop_signo = 0;
2690                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2691                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2692                     if (!signal_name)
2693                         signal_name = "<no-signal-name>";
2694 
2695                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2696                                  __FUNCTION__,
2697                                  GetID (),
2698                                  linux_thread_sp->GetID (),
2699                                  StateAsCString (thread_state),
2700                                  stop_signo,
2701                                  signal_name);
2702                 }
2703                 ThreadDidStop (thread_sp->GetID (), false);
2704             }
2705         }
2706 
2707         // Done handling.
2708         return;
2709     }
2710 
2711     if (log)
2712         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2713 
2714     // This thread is stopped.
2715     ThreadDidStop (pid, false);
2716 
2717     switch (signo)
2718     {
2719     case SIGSTOP:
2720         {
2721             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo);
2722             if (log)
2723             {
2724                 if (is_from_llgs)
2725                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from llgs, most likely an interrupt", __FUNCTION__, GetID (), pid);
2726                 else
2727                     log->Printf ("NativeProcessLinux::%s pid = %" PRIu64 " tid %" PRIu64 " received SIGSTOP from outside of debugger", __FUNCTION__, GetID (), pid);
2728             }
2729 
2730             // Resume this thread to get the group-stop mechanism to fire off the true group stops.
2731             // This thread will get stopped again as part of the group-stop completion.
2732             ResumeThread(pid,
2733                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2734                     {
2735                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2736                         // Pass this signal number on to the inferior to handle.
2737                         return Resume (tid_to_resume, (supress_signal) ? LLDB_INVALID_SIGNAL_NUMBER : signo);
2738                     },
2739                     true);
2740         }
2741         break;
2742     case SIGSEGV:
2743     case SIGILL:
2744     case SIGFPE:
2745     case SIGBUS:
2746         if (thread_sp)
2747             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetCrashedWithException (*info);
2748         break;
2749     default:
2750         // This is just a pre-signal-delivery notification of the incoming signal.
2751         if (thread_sp)
2752             std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (signo);
2753 
2754         break;
2755     }
2756 
2757     // Send a stop to the debugger after we get all other threads to stop.
2758     StopRunningThreads (pid);
2759 }
2760 
2761 namespace {
2762 
2763 struct EmulatorBaton
2764 {
2765     NativeProcessLinux* m_process;
2766     NativeRegisterContext* m_reg_context;
2767 
2768     // eRegisterKindDWARF -> RegsiterValue
2769     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2770 
2771     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2772             m_process(process), m_reg_context(reg_context) {}
2773 };
2774 
2775 } // anonymous namespace
2776 
2777 static size_t
2778 ReadMemoryCallback (EmulateInstruction *instruction,
2779                     void *baton,
2780                     const EmulateInstruction::Context &context,
2781                     lldb::addr_t addr,
2782                     void *dst,
2783                     size_t length)
2784 {
2785     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2786 
2787     size_t bytes_read;
2788     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2789     return bytes_read;
2790 }
2791 
2792 static bool
2793 ReadRegisterCallback (EmulateInstruction *instruction,
2794                       void *baton,
2795                       const RegisterInfo *reg_info,
2796                       RegisterValue &reg_value)
2797 {
2798     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2799 
2800     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2801     if (it != emulator_baton->m_register_values.end())
2802     {
2803         reg_value = it->second;
2804         return true;
2805     }
2806 
2807     // The emulator only fill in the dwarf regsiter numbers (and in some case
2808     // the generic register numbers). Get the full register info from the
2809     // register context based on the dwarf register numbers.
2810     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2811             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2812 
2813     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2814     if (error.Success())
2815         return true;
2816 
2817     return false;
2818 }
2819 
2820 static bool
2821 WriteRegisterCallback (EmulateInstruction *instruction,
2822                        void *baton,
2823                        const EmulateInstruction::Context &context,
2824                        const RegisterInfo *reg_info,
2825                        const RegisterValue &reg_value)
2826 {
2827     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2828     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2829     return true;
2830 }
2831 
2832 static size_t
2833 WriteMemoryCallback (EmulateInstruction *instruction,
2834                      void *baton,
2835                      const EmulateInstruction::Context &context,
2836                      lldb::addr_t addr,
2837                      const void *dst,
2838                      size_t length)
2839 {
2840     return length;
2841 }
2842 
2843 static lldb::addr_t
2844 ReadFlags (NativeRegisterContext* regsiter_context)
2845 {
2846     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2847             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2848     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2849 }
2850 
2851 Error
2852 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2853 {
2854     Error error;
2855     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2856 
2857     std::unique_ptr<EmulateInstruction> emulator_ap(
2858         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2859 
2860     if (emulator_ap == nullptr)
2861         return Error("Instruction emulator not found!");
2862 
2863     EmulatorBaton baton(this, register_context_sp.get());
2864     emulator_ap->SetBaton(&baton);
2865     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2866     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2867     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2868     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2869 
2870     if (!emulator_ap->ReadInstruction())
2871         return Error("Read instruction failed!");
2872 
2873     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2874 
2875     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2876     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2877 
2878     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2879     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2880 
2881     lldb::addr_t next_pc;
2882     lldb::addr_t next_flags;
2883     if (emulation_result)
2884     {
2885         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2886         next_pc = pc_it->second.GetAsUInt64();
2887 
2888         if (flags_it != baton.m_register_values.end())
2889             next_flags = flags_it->second.GetAsUInt64();
2890         else
2891             next_flags = ReadFlags (register_context_sp.get());
2892     }
2893     else if (pc_it == baton.m_register_values.end())
2894     {
2895         // Emulate instruction failed and it haven't changed PC. Advance PC
2896         // with the size of the current opcode because the emulation of all
2897         // PC modifying instruction should be successful. The failure most
2898         // likely caused by a not supported instruction which don't modify PC.
2899         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2900         next_flags = ReadFlags (register_context_sp.get());
2901     }
2902     else
2903     {
2904         // The instruction emulation failed after it modified the PC. It is an
2905         // unknown error where we can't continue because the next instruction is
2906         // modifying the PC but we don't  know how.
2907         return Error ("Instruction emulation failed unexpectedly.");
2908     }
2909 
2910     if (m_arch.GetMachine() == llvm::Triple::arm)
2911     {
2912         if (next_flags & 0x20)
2913         {
2914             // Thumb mode
2915             error = SetSoftwareBreakpoint(next_pc, 2);
2916         }
2917         else
2918         {
2919             // Arm mode
2920             error = SetSoftwareBreakpoint(next_pc, 4);
2921         }
2922     }
2923     else if (m_arch.GetMachine() == llvm::Triple::mips64
2924             || m_arch.GetMachine() == llvm::Triple::mips64el)
2925         error = SetSoftwareBreakpoint(next_pc, 4);
2926     else
2927     {
2928         // No size hint is given for the next breakpoint
2929         error = SetSoftwareBreakpoint(next_pc, 0);
2930     }
2931 
2932     if (error.Fail())
2933         return error;
2934 
2935     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2936 
2937     return Error();
2938 }
2939 
2940 bool
2941 NativeProcessLinux::SupportHardwareSingleStepping() const
2942 {
2943     if (m_arch.GetMachine() == llvm::Triple::arm
2944         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2945         return false;
2946     return true;
2947 }
2948 
2949 Error
2950 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2951 {
2952     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2953     if (log)
2954         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2955 
2956     lldb::tid_t deferred_signal_tid = LLDB_INVALID_THREAD_ID;
2957     lldb::tid_t deferred_signal_skip_tid = LLDB_INVALID_THREAD_ID;
2958     int deferred_signo = 0;
2959     NativeThreadProtocolSP deferred_signal_thread_sp;
2960     bool stepping = false;
2961     bool software_single_step = !SupportHardwareSingleStepping();
2962 
2963     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2964     Mutex::Locker locker (m_threads_mutex);
2965 
2966     if (software_single_step)
2967     {
2968         for (auto thread_sp : m_threads)
2969         {
2970             assert (thread_sp && "thread list should not contain NULL threads");
2971 
2972             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2973             if (action == nullptr)
2974                 continue;
2975 
2976             if (action->state == eStateStepping)
2977             {
2978                 Error error = SetupSoftwareSingleStepping(thread_sp);
2979                 if (error.Fail())
2980                     return error;
2981             }
2982         }
2983     }
2984 
2985     for (auto thread_sp : m_threads)
2986     {
2987         assert (thread_sp && "thread list should not contain NULL threads");
2988 
2989         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2990 
2991         if (action == nullptr)
2992         {
2993             if (log)
2994                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2995                     __FUNCTION__, GetID (), thread_sp->GetID ());
2996             continue;
2997         }
2998 
2999         if (log)
3000         {
3001             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
3002                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3003         }
3004 
3005         switch (action->state)
3006         {
3007         case eStateRunning:
3008         {
3009             // Run the thread, possibly feeding it the signal.
3010             const int signo = action->signal;
3011             ResumeThread(thread_sp->GetID (),
3012                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
3013                     {
3014                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
3015                         // Pass this signal number on to the inferior to handle.
3016                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3017                         if (resume_result.Success())
3018                             SetState(eStateRunning, true);
3019                         return resume_result;
3020                     },
3021                     false);
3022             break;
3023         }
3024 
3025         case eStateStepping:
3026         {
3027             // Request the step.
3028             const int signo = action->signal;
3029             ResumeThread(thread_sp->GetID (),
3030                     [=](lldb::tid_t tid_to_step, bool supress_signal)
3031                     {
3032                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
3033 
3034                         Error step_result;
3035                         if (software_single_step)
3036                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3037                         else
3038                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
3039 
3040                         assert (step_result.Success() && "SingleStep() failed");
3041                         if (step_result.Success())
3042                             SetState(eStateStepping, true);
3043                         return step_result;
3044                     },
3045                     false);
3046             stepping = true;
3047             break;
3048         }
3049 
3050         case eStateSuspended:
3051         case eStateStopped:
3052             // if we haven't chosen a deferred signal tid yet, use this one.
3053             if (deferred_signal_tid == LLDB_INVALID_THREAD_ID)
3054             {
3055                 deferred_signal_tid = thread_sp->GetID ();
3056                 deferred_signal_thread_sp = thread_sp;
3057                 deferred_signo = SIGSTOP;
3058             }
3059             break;
3060 
3061         default:
3062             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
3063                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
3064         }
3065     }
3066 
3067     // If we had any thread stopping, then do a deferred notification of the chosen stop thread id and signal
3068     // after all other running threads have stopped.
3069     // If there is a stepping thread involved we'll be eventually stopped by SIGTRAP trace signal.
3070     if (deferred_signal_tid != LLDB_INVALID_THREAD_ID && !stepping)
3071         StopRunningThreadsWithSkipTID(deferred_signal_tid, deferred_signal_skip_tid);
3072 
3073     return Error();
3074 }
3075 
3076 Error
3077 NativeProcessLinux::Halt ()
3078 {
3079     Error error;
3080 
3081     if (kill (GetID (), SIGSTOP) != 0)
3082         error.SetErrorToErrno ();
3083 
3084     return error;
3085 }
3086 
3087 Error
3088 NativeProcessLinux::Detach ()
3089 {
3090     Error error;
3091 
3092     // Tell ptrace to detach from the process.
3093     if (GetID () != LLDB_INVALID_PROCESS_ID)
3094         error = Detach (GetID ());
3095 
3096     // Stop monitoring the inferior.
3097     m_monitor_up->Terminate();
3098 
3099     // No error.
3100     return error;
3101 }
3102 
3103 Error
3104 NativeProcessLinux::Signal (int signo)
3105 {
3106     Error error;
3107 
3108     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3109     if (log)
3110         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
3111                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
3112 
3113     if (kill(GetID(), signo))
3114         error.SetErrorToErrno();
3115 
3116     return error;
3117 }
3118 
3119 Error
3120 NativeProcessLinux::Interrupt ()
3121 {
3122     // Pick a running thread (or if none, a not-dead stopped thread) as
3123     // the chosen thread that will be the stop-reason thread.
3124     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3125 
3126     NativeThreadProtocolSP running_thread_sp;
3127     NativeThreadProtocolSP stopped_thread_sp;
3128 
3129     if (log)
3130         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
3131 
3132     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3133     Mutex::Locker locker (m_threads_mutex);
3134 
3135     for (auto thread_sp : m_threads)
3136     {
3137         // The thread shouldn't be null but lets just cover that here.
3138         if (!thread_sp)
3139             continue;
3140 
3141         // If we have a running or stepping thread, we'll call that the
3142         // target of the interrupt.
3143         const auto thread_state = thread_sp->GetState ();
3144         if (thread_state == eStateRunning ||
3145             thread_state == eStateStepping)
3146         {
3147             running_thread_sp = thread_sp;
3148             break;
3149         }
3150         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
3151         {
3152             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
3153             stopped_thread_sp = thread_sp;
3154         }
3155     }
3156 
3157     if (!running_thread_sp && !stopped_thread_sp)
3158     {
3159         Error error("found no running/stepping or live stopped threads as target for interrupt");
3160         if (log)
3161             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
3162 
3163         return error;
3164     }
3165 
3166     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
3167 
3168     if (log)
3169         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
3170                      __FUNCTION__,
3171                      GetID (),
3172                      running_thread_sp ? "running" : "stopped",
3173                      deferred_signal_thread_sp->GetID ());
3174 
3175     StopRunningThreads(deferred_signal_thread_sp->GetID());
3176 
3177     return Error();
3178 }
3179 
3180 Error
3181 NativeProcessLinux::Kill ()
3182 {
3183     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3184     if (log)
3185         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
3186 
3187     Error error;
3188 
3189     switch (m_state)
3190     {
3191         case StateType::eStateInvalid:
3192         case StateType::eStateExited:
3193         case StateType::eStateCrashed:
3194         case StateType::eStateDetached:
3195         case StateType::eStateUnloaded:
3196             // Nothing to do - the process is already dead.
3197             if (log)
3198                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
3199             return error;
3200 
3201         case StateType::eStateConnected:
3202         case StateType::eStateAttaching:
3203         case StateType::eStateLaunching:
3204         case StateType::eStateStopped:
3205         case StateType::eStateRunning:
3206         case StateType::eStateStepping:
3207         case StateType::eStateSuspended:
3208             // We can try to kill a process in these states.
3209             break;
3210     }
3211 
3212     if (kill (GetID (), SIGKILL) != 0)
3213     {
3214         error.SetErrorToErrno ();
3215         return error;
3216     }
3217 
3218     return error;
3219 }
3220 
3221 static Error
3222 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
3223 {
3224     memory_region_info.Clear();
3225 
3226     StringExtractor line_extractor (maps_line.c_str ());
3227 
3228     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
3229     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
3230 
3231     // Parse out the starting address
3232     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
3233 
3234     // Parse out hyphen separating start and end address from range.
3235     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
3236         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
3237 
3238     // Parse out the ending address
3239     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
3240 
3241     // Parse out the space after the address.
3242     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
3243         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
3244 
3245     // Save the range.
3246     memory_region_info.GetRange ().SetRangeBase (start_address);
3247     memory_region_info.GetRange ().SetRangeEnd (end_address);
3248 
3249     // Parse out each permission entry.
3250     if (line_extractor.GetBytesLeft () < 4)
3251         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
3252 
3253     // Handle read permission.
3254     const char read_perm_char = line_extractor.GetChar ();
3255     if (read_perm_char == 'r')
3256         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
3257     else
3258     {
3259         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
3260         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3261     }
3262 
3263     // Handle write permission.
3264     const char write_perm_char = line_extractor.GetChar ();
3265     if (write_perm_char == 'w')
3266         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
3267     else
3268     {
3269         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
3270         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3271     }
3272 
3273     // Handle execute permission.
3274     const char exec_perm_char = line_extractor.GetChar ();
3275     if (exec_perm_char == 'x')
3276         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
3277     else
3278     {
3279         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
3280         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3281     }
3282 
3283     return Error ();
3284 }
3285 
3286 Error
3287 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
3288 {
3289     // FIXME review that the final memory region returned extends to the end of the virtual address space,
3290     // with no perms if it is not mapped.
3291 
3292     // Use an approach that reads memory regions from /proc/{pid}/maps.
3293     // Assume proc maps entries are in ascending order.
3294     // FIXME assert if we find differently.
3295     Mutex::Locker locker (m_mem_region_cache_mutex);
3296 
3297     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3298     Error error;
3299 
3300     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
3301     {
3302         // We're done.
3303         error.SetErrorString ("unsupported");
3304         return error;
3305     }
3306 
3307     // If our cache is empty, pull the latest.  There should always be at least one memory region
3308     // if memory region handling is supported.
3309     if (m_mem_region_cache.empty ())
3310     {
3311         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3312              [&] (const std::string &line) -> bool
3313              {
3314                  MemoryRegionInfo info;
3315                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
3316                  if (parse_error.Success ())
3317                  {
3318                      m_mem_region_cache.push_back (info);
3319                      return true;
3320                  }
3321                  else
3322                  {
3323                      if (log)
3324                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
3325                      return false;
3326                  }
3327              });
3328 
3329         // If we had an error, we'll mark unsupported.
3330         if (error.Fail ())
3331         {
3332             m_supports_mem_region = LazyBool::eLazyBoolNo;
3333             return error;
3334         }
3335         else if (m_mem_region_cache.empty ())
3336         {
3337             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
3338             // is supported.  Assume we don't support map entries via procfs.
3339             if (log)
3340                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
3341             m_supports_mem_region = LazyBool::eLazyBoolNo;
3342             error.SetErrorString ("not supported");
3343             return error;
3344         }
3345 
3346         if (log)
3347             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
3348 
3349         // We support memory retrieval, remember that.
3350         m_supports_mem_region = LazyBool::eLazyBoolYes;
3351     }
3352     else
3353     {
3354         if (log)
3355             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3356     }
3357 
3358     lldb::addr_t prev_base_address = 0;
3359 
3360     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
3361     // There can be a ton of regions on pthreads apps with lots of threads.
3362     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
3363     {
3364         MemoryRegionInfo &proc_entry_info = *it;
3365 
3366         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
3367         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
3368         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
3369 
3370         // If the target address comes before this entry, indicate distance to next region.
3371         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
3372         {
3373             range_info.GetRange ().SetRangeBase (load_addr);
3374             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
3375             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
3376             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
3377             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
3378 
3379             return error;
3380         }
3381         else if (proc_entry_info.GetRange ().Contains (load_addr))
3382         {
3383             // The target address is within the memory region we're processing here.
3384             range_info = proc_entry_info;
3385             return error;
3386         }
3387 
3388         // The target memory address comes somewhere after the region we just parsed.
3389     }
3390 
3391     // If we made it here, we didn't find an entry that contained the given address.
3392     error.SetErrorString ("address comes after final region");
3393 
3394     if (log)
3395         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
3396 
3397     return error;
3398 }
3399 
3400 void
3401 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
3402 {
3403     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3404     if (log)
3405         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
3406 
3407     {
3408         Mutex::Locker locker (m_mem_region_cache_mutex);
3409         if (log)
3410             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
3411         m_mem_region_cache.clear ();
3412     }
3413 }
3414 
3415 Error
3416 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
3417 {
3418     // FIXME implementing this requires the equivalent of
3419     // InferiorCallPOSIX::InferiorCallMmap, which depends on
3420     // functional ThreadPlans working with Native*Protocol.
3421 #if 1
3422     return Error ("not implemented yet");
3423 #else
3424     addr = LLDB_INVALID_ADDRESS;
3425 
3426     unsigned prot = 0;
3427     if (permissions & lldb::ePermissionsReadable)
3428         prot |= eMmapProtRead;
3429     if (permissions & lldb::ePermissionsWritable)
3430         prot |= eMmapProtWrite;
3431     if (permissions & lldb::ePermissionsExecutable)
3432         prot |= eMmapProtExec;
3433 
3434     // TODO implement this directly in NativeProcessLinux
3435     // (and lift to NativeProcessPOSIX if/when that class is
3436     // refactored out).
3437     if (InferiorCallMmap(this, addr, 0, size, prot,
3438                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
3439         m_addr_to_mmap_size[addr] = size;
3440         return Error ();
3441     } else {
3442         addr = LLDB_INVALID_ADDRESS;
3443         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
3444     }
3445 #endif
3446 }
3447 
3448 Error
3449 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
3450 {
3451     // FIXME see comments in AllocateMemory - required lower-level
3452     // bits not in place yet (ThreadPlans)
3453     return Error ("not implemented");
3454 }
3455 
3456 lldb::addr_t
3457 NativeProcessLinux::GetSharedLibraryInfoAddress ()
3458 {
3459 #if 1
3460     // punt on this for now
3461     return LLDB_INVALID_ADDRESS;
3462 #else
3463     // Return the image info address for the exe module
3464 #if 1
3465     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3466 
3467     ModuleSP module_sp;
3468     Error error = GetExeModuleSP (module_sp);
3469     if (error.Fail ())
3470     {
3471          if (log)
3472             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
3473         return LLDB_INVALID_ADDRESS;
3474     }
3475 
3476     if (module_sp == nullptr)
3477     {
3478          if (log)
3479             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
3480          return LLDB_INVALID_ADDRESS;
3481     }
3482 
3483     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
3484     if (object_file_sp == nullptr)
3485     {
3486          if (log)
3487             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
3488          return LLDB_INVALID_ADDRESS;
3489     }
3490 
3491     return obj_file_sp->GetImageInfoAddress();
3492 #else
3493     Target *target = &GetTarget();
3494     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
3495     Address addr = obj_file->GetImageInfoAddress(target);
3496 
3497     if (addr.IsValid())
3498         return addr.GetLoadAddress(target);
3499     return LLDB_INVALID_ADDRESS;
3500 #endif
3501 #endif // punt on this for now
3502 }
3503 
3504 size_t
3505 NativeProcessLinux::UpdateThreads ()
3506 {
3507     // The NativeProcessLinux monitoring threads are always up to date
3508     // with respect to thread state and they keep the thread list
3509     // populated properly. All this method needs to do is return the
3510     // thread count.
3511     Mutex::Locker locker (m_threads_mutex);
3512     return m_threads.size ();
3513 }
3514 
3515 bool
3516 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
3517 {
3518     arch = m_arch;
3519     return true;
3520 }
3521 
3522 Error
3523 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
3524 {
3525     // FIXME put this behind a breakpoint protocol class that can be
3526     // set per architecture.  Need ARM, MIPS support here.
3527     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3528     static const uint8_t g_i386_opcode [] = { 0xCC };
3529     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3530 
3531     switch (m_arch.GetMachine ())
3532     {
3533         case llvm::Triple::aarch64:
3534             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
3535             return Error ();
3536 
3537         case llvm::Triple::arm:
3538             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
3539             return Error ();
3540 
3541         case llvm::Triple::x86:
3542         case llvm::Triple::x86_64:
3543             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
3544             return Error ();
3545 
3546         case llvm::Triple::mips64:
3547         case llvm::Triple::mips64el:
3548             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
3549             return Error ();
3550 
3551         default:
3552             assert(false && "CPU type not supported!");
3553             return Error ("CPU type not supported");
3554     }
3555 }
3556 
3557 Error
3558 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3559 {
3560     if (hardware)
3561         return Error ("NativeProcessLinux does not support hardware breakpoints");
3562     else
3563         return SetSoftwareBreakpoint (addr, size);
3564 }
3565 
3566 Error
3567 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3568                                                      size_t &actual_opcode_size,
3569                                                      const uint8_t *&trap_opcode_bytes)
3570 {
3571     // FIXME put this behind a breakpoint protocol class that can be set per
3572     // architecture.  Need MIPS support here.
3573     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3574     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3575     // linux kernel does otherwise.
3576     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3577     static const uint8_t g_i386_opcode [] = { 0xCC };
3578     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3579     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3580     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3581 
3582     switch (m_arch.GetMachine ())
3583     {
3584     case llvm::Triple::aarch64:
3585         trap_opcode_bytes = g_aarch64_opcode;
3586         actual_opcode_size = sizeof(g_aarch64_opcode);
3587         return Error ();
3588 
3589     case llvm::Triple::arm:
3590         switch (trap_opcode_size_hint)
3591         {
3592         case 2:
3593             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3594             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3595             return Error ();
3596         case 4:
3597             trap_opcode_bytes = g_arm_breakpoint_opcode;
3598             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3599             return Error ();
3600         default:
3601             assert(false && "Unrecognised trap opcode size hint!");
3602             return Error ("Unrecognised trap opcode size hint!");
3603         }
3604 
3605     case llvm::Triple::x86:
3606     case llvm::Triple::x86_64:
3607         trap_opcode_bytes = g_i386_opcode;
3608         actual_opcode_size = sizeof(g_i386_opcode);
3609         return Error ();
3610 
3611     case llvm::Triple::mips64:
3612         trap_opcode_bytes = g_mips64_opcode;
3613         actual_opcode_size = sizeof(g_mips64_opcode);
3614         return Error ();
3615 
3616     case llvm::Triple::mips64el:
3617         trap_opcode_bytes = g_mips64el_opcode;
3618         actual_opcode_size = sizeof(g_mips64el_opcode);
3619         return Error ();
3620 
3621     default:
3622         assert(false && "CPU type not supported!");
3623         return Error ("CPU type not supported");
3624     }
3625 }
3626 
3627 #if 0
3628 ProcessMessage::CrashReason
3629 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3630 {
3631     ProcessMessage::CrashReason reason;
3632     assert(info->si_signo == SIGSEGV);
3633 
3634     reason = ProcessMessage::eInvalidCrashReason;
3635 
3636     switch (info->si_code)
3637     {
3638     default:
3639         assert(false && "unexpected si_code for SIGSEGV");
3640         break;
3641     case SI_KERNEL:
3642         // Linux will occasionally send spurious SI_KERNEL codes.
3643         // (this is poorly documented in sigaction)
3644         // One way to get this is via unaligned SIMD loads.
3645         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3646         break;
3647     case SEGV_MAPERR:
3648         reason = ProcessMessage::eInvalidAddress;
3649         break;
3650     case SEGV_ACCERR:
3651         reason = ProcessMessage::ePrivilegedAddress;
3652         break;
3653     }
3654 
3655     return reason;
3656 }
3657 #endif
3658 
3659 
3660 #if 0
3661 ProcessMessage::CrashReason
3662 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3663 {
3664     ProcessMessage::CrashReason reason;
3665     assert(info->si_signo == SIGILL);
3666 
3667     reason = ProcessMessage::eInvalidCrashReason;
3668 
3669     switch (info->si_code)
3670     {
3671     default:
3672         assert(false && "unexpected si_code for SIGILL");
3673         break;
3674     case ILL_ILLOPC:
3675         reason = ProcessMessage::eIllegalOpcode;
3676         break;
3677     case ILL_ILLOPN:
3678         reason = ProcessMessage::eIllegalOperand;
3679         break;
3680     case ILL_ILLADR:
3681         reason = ProcessMessage::eIllegalAddressingMode;
3682         break;
3683     case ILL_ILLTRP:
3684         reason = ProcessMessage::eIllegalTrap;
3685         break;
3686     case ILL_PRVOPC:
3687         reason = ProcessMessage::ePrivilegedOpcode;
3688         break;
3689     case ILL_PRVREG:
3690         reason = ProcessMessage::ePrivilegedRegister;
3691         break;
3692     case ILL_COPROC:
3693         reason = ProcessMessage::eCoprocessorError;
3694         break;
3695     case ILL_BADSTK:
3696         reason = ProcessMessage::eInternalStackError;
3697         break;
3698     }
3699 
3700     return reason;
3701 }
3702 #endif
3703 
3704 #if 0
3705 ProcessMessage::CrashReason
3706 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3707 {
3708     ProcessMessage::CrashReason reason;
3709     assert(info->si_signo == SIGFPE);
3710 
3711     reason = ProcessMessage::eInvalidCrashReason;
3712 
3713     switch (info->si_code)
3714     {
3715     default:
3716         assert(false && "unexpected si_code for SIGFPE");
3717         break;
3718     case FPE_INTDIV:
3719         reason = ProcessMessage::eIntegerDivideByZero;
3720         break;
3721     case FPE_INTOVF:
3722         reason = ProcessMessage::eIntegerOverflow;
3723         break;
3724     case FPE_FLTDIV:
3725         reason = ProcessMessage::eFloatDivideByZero;
3726         break;
3727     case FPE_FLTOVF:
3728         reason = ProcessMessage::eFloatOverflow;
3729         break;
3730     case FPE_FLTUND:
3731         reason = ProcessMessage::eFloatUnderflow;
3732         break;
3733     case FPE_FLTRES:
3734         reason = ProcessMessage::eFloatInexactResult;
3735         break;
3736     case FPE_FLTINV:
3737         reason = ProcessMessage::eFloatInvalidOperation;
3738         break;
3739     case FPE_FLTSUB:
3740         reason = ProcessMessage::eFloatSubscriptRange;
3741         break;
3742     }
3743 
3744     return reason;
3745 }
3746 #endif
3747 
3748 #if 0
3749 ProcessMessage::CrashReason
3750 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3751 {
3752     ProcessMessage::CrashReason reason;
3753     assert(info->si_signo == SIGBUS);
3754 
3755     reason = ProcessMessage::eInvalidCrashReason;
3756 
3757     switch (info->si_code)
3758     {
3759     default:
3760         assert(false && "unexpected si_code for SIGBUS");
3761         break;
3762     case BUS_ADRALN:
3763         reason = ProcessMessage::eIllegalAlignment;
3764         break;
3765     case BUS_ADRERR:
3766         reason = ProcessMessage::eIllegalAddress;
3767         break;
3768     case BUS_OBJERR:
3769         reason = ProcessMessage::eHardwareError;
3770         break;
3771     }
3772 
3773     return reason;
3774 }
3775 #endif
3776 
3777 Error
3778 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3779 {
3780     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3781     // for it.
3782     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3783     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3784 }
3785 
3786 Error
3787 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3788 {
3789     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3790     // for it.
3791     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3792     return NativeProcessProtocol::RemoveWatchpoint(addr);
3793 }
3794 
3795 Error
3796 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3797 {
3798     ReadOperation op(addr, buf, size, bytes_read);
3799     m_monitor_up->DoOperation(&op);
3800     return op.GetError ();
3801 }
3802 
3803 Error
3804 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3805 {
3806     Error error = ReadMemory(addr, buf, size, bytes_read);
3807     if (error.Fail()) return error;
3808     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3809 }
3810 
3811 Error
3812 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3813 {
3814     WriteOperation op(addr, buf, size, bytes_written);
3815     m_monitor_up->DoOperation(&op);
3816     return op.GetError ();
3817 }
3818 
3819 Error
3820 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3821                                       uint32_t size, RegisterValue &value)
3822 {
3823     ReadRegOperation op(tid, offset, reg_name, value);
3824     m_monitor_up->DoOperation(&op);
3825     return op.GetError();
3826 }
3827 
3828 Error
3829 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3830                                    const char* reg_name, const RegisterValue &value)
3831 {
3832     WriteRegOperation op(tid, offset, reg_name, value);
3833     m_monitor_up->DoOperation(&op);
3834     return op.GetError();
3835 }
3836 
3837 Error
3838 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3839 {
3840     ReadGPROperation op(tid, buf, buf_size);
3841     m_monitor_up->DoOperation(&op);
3842     return op.GetError();
3843 }
3844 
3845 Error
3846 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3847 {
3848     ReadFPROperation op(tid, buf, buf_size);
3849     m_monitor_up->DoOperation(&op);
3850     return op.GetError();
3851 }
3852 
3853 Error
3854 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3855 {
3856     ReadRegisterSetOperation op(tid, buf, buf_size, regset);
3857     m_monitor_up->DoOperation(&op);
3858     return op.GetError();
3859 }
3860 
3861 Error
3862 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3863 {
3864     WriteGPROperation op(tid, buf, buf_size);
3865     m_monitor_up->DoOperation(&op);
3866     return op.GetError();
3867 }
3868 
3869 Error
3870 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3871 {
3872     WriteFPROperation op(tid, buf, buf_size);
3873     m_monitor_up->DoOperation(&op);
3874     return op.GetError();
3875 }
3876 
3877 Error
3878 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3879 {
3880     WriteRegisterSetOperation op(tid, buf, buf_size, regset);
3881     m_monitor_up->DoOperation(&op);
3882     return op.GetError();
3883 }
3884 
3885 Error
3886 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3887 {
3888     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3889 
3890     if (log)
3891         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3892                                  GetUnixSignals().GetSignalAsCString (signo));
3893     ResumeOperation op (tid, signo);
3894     m_monitor_up->DoOperation (&op);
3895     if (log)
3896         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3897     return op.GetError();
3898 }
3899 
3900 Error
3901 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3902 {
3903     SingleStepOperation op(tid, signo);
3904     m_monitor_up->DoOperation(&op);
3905     return op.GetError();
3906 }
3907 
3908 Error
3909 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3910 {
3911     SiginfoOperation op(tid, siginfo);
3912     m_monitor_up->DoOperation(&op);
3913     return op.GetError();
3914 }
3915 
3916 Error
3917 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3918 {
3919     EventMessageOperation op(tid, message);
3920     m_monitor_up->DoOperation(&op);
3921     return op.GetError();
3922 }
3923 
3924 Error
3925 NativeProcessLinux::Detach(lldb::tid_t tid)
3926 {
3927     if (tid == LLDB_INVALID_THREAD_ID)
3928         return Error();
3929 
3930     DetachOperation op(tid);
3931     m_monitor_up->DoOperation(&op);
3932     return op.GetError();
3933 }
3934 
3935 bool
3936 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3937 {
3938     int target_fd = open(path, flags, 0666);
3939 
3940     if (target_fd == -1)
3941         return false;
3942 
3943     if (dup2(target_fd, fd) == -1)
3944         return false;
3945 
3946     return (close(target_fd) == -1) ? false : true;
3947 }
3948 
3949 void
3950 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3951 {
3952     m_monitor_up.reset(new Monitor(initial_operation, this));
3953     error = m_monitor_up->Initialize();
3954     if (error.Fail()) {
3955         m_monitor_up.reset();
3956     }
3957 }
3958 
3959 bool
3960 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3961 {
3962     for (auto thread_sp : m_threads)
3963     {
3964         assert (thread_sp && "thread list should not contain NULL threads");
3965         if (thread_sp->GetID () == thread_id)
3966         {
3967             // We have this thread.
3968             return true;
3969         }
3970     }
3971 
3972     // We don't have this thread.
3973     return false;
3974 }
3975 
3976 NativeThreadProtocolSP
3977 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3978 {
3979     // CONSIDER organize threads by map - we can do better than linear.
3980     for (auto thread_sp : m_threads)
3981     {
3982         if (thread_sp->GetID () == thread_id)
3983             return thread_sp;
3984     }
3985 
3986     // We don't have this thread.
3987     return NativeThreadProtocolSP ();
3988 }
3989 
3990 bool
3991 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3992 {
3993     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3994 
3995     if (log)
3996         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3997 
3998     bool found = false;
3999 
4000     Mutex::Locker locker (m_threads_mutex);
4001     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
4002     {
4003         if (*it && ((*it)->GetID () == thread_id))
4004         {
4005             m_threads.erase (it);
4006             found = true;
4007             break;
4008         }
4009     }
4010 
4011     // If we have a pending notification, remove this from the set.
4012     if (m_pending_notification_up)
4013     {
4014         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
4015         SignalIfRequirementsSatisfied();
4016     }
4017 
4018     return found;
4019 }
4020 
4021 NativeThreadProtocolSP
4022 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
4023 {
4024     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
4025 
4026     Mutex::Locker locker (m_threads_mutex);
4027 
4028     if (log)
4029     {
4030         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
4031                 __FUNCTION__,
4032                 GetID (),
4033                 thread_id);
4034     }
4035 
4036     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
4037 
4038     // If this is the first thread, save it as the current thread
4039     if (m_threads.empty ())
4040         SetCurrentThreadID (thread_id);
4041 
4042     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
4043     m_threads.push_back (thread_sp);
4044 
4045     return thread_sp;
4046 }
4047 
4048 Error
4049 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
4050 {
4051     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
4052 
4053     Error error;
4054 
4055     // Get a linux thread pointer.
4056     if (!thread_sp)
4057     {
4058         error.SetErrorString ("null thread_sp");
4059         if (log)
4060             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4061         return error;
4062     }
4063     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
4064 
4065     // Find out the size of a breakpoint (might depend on where we are in the code).
4066     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
4067     if (!context_sp)
4068     {
4069         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
4070         if (log)
4071             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
4072         return error;
4073     }
4074 
4075     uint32_t breakpoint_size = 0;
4076     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
4077     if (error.Fail ())
4078     {
4079         if (log)
4080             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
4081         return error;
4082     }
4083     else
4084     {
4085         if (log)
4086             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
4087     }
4088 
4089     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
4090     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
4091     lldb::addr_t breakpoint_addr = initial_pc_addr;
4092     if (breakpoint_size > 0)
4093     {
4094         // Do not allow breakpoint probe to wrap around.
4095         if (breakpoint_addr >= breakpoint_size)
4096             breakpoint_addr -= breakpoint_size;
4097     }
4098 
4099     // Check if we stopped because of a breakpoint.
4100     NativeBreakpointSP breakpoint_sp;
4101     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
4102     if (!error.Success () || !breakpoint_sp)
4103     {
4104         // We didn't find one at a software probe location.  Nothing to do.
4105         if (log)
4106             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
4107         return Error ();
4108     }
4109 
4110     // If the breakpoint is not a software breakpoint, nothing to do.
4111     if (!breakpoint_sp->IsSoftwareBreakpoint ())
4112     {
4113         if (log)
4114             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
4115         return Error ();
4116     }
4117 
4118     //
4119     // We have a software breakpoint and need to adjust the PC.
4120     //
4121 
4122     // Sanity check.
4123     if (breakpoint_size == 0)
4124     {
4125         // Nothing to do!  How did we get here?
4126         if (log)
4127             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
4128         return Error ();
4129     }
4130 
4131     // Change the program counter.
4132     if (log)
4133         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
4134 
4135     error = context_sp->SetPC (breakpoint_addr);
4136     if (error.Fail ())
4137     {
4138         if (log)
4139             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
4140         return error;
4141     }
4142 
4143     return error;
4144 }
4145 
4146 Error
4147 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
4148 {
4149     char maps_file_name[32];
4150     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
4151 
4152     FileSpec maps_file_spec(maps_file_name, false);
4153     if (!maps_file_spec.Exists()) {
4154         file_spec.Clear();
4155         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
4156     }
4157 
4158     FileSpec module_file_spec(module_path, true);
4159 
4160     std::ifstream maps_file(maps_file_name);
4161     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
4162     StringRef maps_data(maps_data_str.c_str());
4163 
4164     while (!maps_data.empty())
4165     {
4166         StringRef maps_row;
4167         std::tie(maps_row, maps_data) = maps_data.split('\n');
4168 
4169         SmallVector<StringRef, 16> maps_columns;
4170         maps_row.split(maps_columns, StringRef(" "), -1, false);
4171 
4172         if (maps_columns.size() >= 6)
4173         {
4174             file_spec.SetFile(maps_columns[5].str().c_str(), false);
4175             if (file_spec.GetFilename() == module_file_spec.GetFilename())
4176                 return Error();
4177         }
4178     }
4179 
4180     file_spec.Clear();
4181     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
4182                  module_file_spec.GetFilename().AsCString(), GetID());
4183 }
4184 
4185 Error
4186 NativeProcessLinux::ResumeThread(
4187         lldb::tid_t tid,
4188         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
4189         bool error_when_already_running)
4190 {
4191     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4192 
4193     if (log)
4194         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
4195                 __FUNCTION__, tid, error_when_already_running?"true":"false");
4196 
4197     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
4198     lldbassert(thread_sp != nullptr);
4199 
4200     auto& context = thread_sp->GetThreadContext();
4201     // Tell the thread to resume if we don't already think it is running.
4202     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
4203 
4204     lldbassert(!(error_when_already_running && !is_stopped));
4205 
4206     if (!is_stopped)
4207     {
4208         // It's not an error, just a log, if the error_when_already_running flag is not set.
4209         // This covers cases where, for instance, we're just trying to resume all threads
4210         // from the user side.
4211         if (log)
4212             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
4213                     __FUNCTION__,
4214                     tid);
4215         return Error();
4216     }
4217 
4218     // Before we do the resume below, first check if we have a pending
4219     // stop notification this is currently or was previously waiting for
4220     // this thread to stop.  This is potentially a buggy situation since
4221     // we're ostensibly waiting for threads to stop before we send out the
4222     // pending notification, and here we are resuming one before we send
4223     // out the pending stop notification.
4224     if (m_pending_notification_up && log)
4225     {
4226         if (m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
4227         {
4228             log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
4229         }
4230         else if (m_pending_notification_up->original_wait_for_stop_tids.count (tid) > 0)
4231         {
4232             log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that hasn't fired yet and this is one of the threads we had been waiting on (and already marked satisfied for this tid). Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
4233             for (auto tid : m_pending_notification_up->wait_for_stop_tids)
4234             {
4235                 log->Printf("NativeProcessLinux::%s tid %" PRIu64 " deferred stop notification still waiting on tid  %" PRIu64,
4236                                  __FUNCTION__,
4237                                  m_pending_notification_up->triggering_tid,
4238                                  tid);
4239             }
4240         }
4241     }
4242 
4243     // Request a resume.  We expect this to be synchronous and the system
4244     // to reflect it is running after this completes.
4245     const auto error = request_thread_resume_function (tid, false);
4246     if (error.Success())
4247         context.request_resume_function = request_thread_resume_function;
4248     else if (log)
4249     {
4250         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4251                          __FUNCTION__, tid, error.AsCString ());
4252     }
4253 
4254     return error;
4255 }
4256 
4257 //===----------------------------------------------------------------------===//
4258 
4259 void
4260 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
4261 {
4262     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4263 
4264     if (log)
4265     {
4266         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
4267                 __FUNCTION__, triggering_tid);
4268     }
4269 
4270     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
4271 
4272     if (log)
4273     {
4274         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4275     }
4276 }
4277 
4278 void
4279 NativeProcessLinux::StopRunningThreadsWithSkipTID(lldb::tid_t triggering_tid,
4280                                                   lldb::tid_t skip_stop_request_tid)
4281 {
4282     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4283 
4284     if (log)
4285     {
4286         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ", skip_stop_request_tid: %" PRIu64 ")",
4287                 __FUNCTION__, triggering_tid, skip_stop_request_tid);
4288     }
4289 
4290     DoStopThreads(PendingNotificationUP(new PendingNotification(
4291                 triggering_tid,
4292                 ThreadIDSet(),
4293                 skip_stop_request_tid != LLDB_INVALID_THREAD_ID ? NativeProcessLinux::ThreadIDSet {skip_stop_request_tid} : ThreadIDSet ())));
4294 
4295     if (log)
4296     {
4297         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
4298     }
4299 }
4300 
4301 void
4302 NativeProcessLinux::SignalIfRequirementsSatisfied()
4303 {
4304     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
4305     {
4306         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
4307         SetState(StateType::eStateStopped, true);
4308         m_pending_notification_up.reset();
4309     }
4310 }
4311 
4312 bool
4313 NativeProcessLinux::RequestStopOnAllSpecifiedThreads()
4314 {
4315     // Request a stop for all the thread stops that need to be stopped
4316     // and are not already known to be stopped.  Keep a list of all the
4317     // threads from which we still need to hear a stop reply.
4318 
4319     ThreadIDSet sent_tids;
4320     for (auto tid : m_pending_notification_up->wait_for_stop_tids)
4321     {
4322         // Validate we know about all tids for which we must first receive a stop before
4323         // triggering the deferred stop notification.
4324         auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
4325         lldbassert(thread_sp != nullptr);
4326 
4327         // If the pending stop thread is currently running, we need to send it a stop request.
4328         if (StateIsRunningState(thread_sp->GetState()))
4329         {
4330             thread_sp->RequestStop();
4331             sent_tids.insert (tid);
4332         }
4333     }
4334     // We only need to wait for the sent_tids - so swap our wait set
4335     // to the sent tids.  The rest are already stopped and we won't
4336     // be receiving stop notifications for them.
4337     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
4338 
4339     // Succeeded, keep running.
4340     return true;
4341 }
4342 
4343 void
4344 NativeProcessLinux::RequestStopOnAllRunningThreads()
4345 {
4346     // Request a stop for all the thread stops that need to be stopped
4347     // and are not already known to be stopped.  Keep a list of all the
4348     // threads from which we still need to hear a stop reply.
4349 
4350     ThreadIDSet sent_tids;
4351     for (const auto &thread_sp: m_threads)
4352     {
4353         // We only care about running threads
4354         if (StateIsStoppedState(thread_sp->GetState(), true))
4355             continue;
4356 
4357         const lldb::tid_t tid = thread_sp->GetID();
4358 
4359         // Request this thread stop if the tid stop request is not explicitly ignored.
4360         const bool skip_stop_request = m_pending_notification_up->skip_stop_request_tids.count (tid) > 0;
4361         if (!skip_stop_request)
4362             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
4363 
4364         // Even if we skipped sending the stop request for other reasons (like stepping),
4365         // we still need to wait for that stepping thread to notify completion/stop.
4366         sent_tids.insert (tid);
4367     }
4368 
4369     // Set the wait list to the set of tids for which we requested stops.
4370     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
4371 }
4372 
4373 
4374 Error
4375 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
4376 {
4377     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4378 
4379     if (log)
4380         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
4381                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
4382 
4383     // Ensure we know about the thread.
4384     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
4385     lldbassert(thread_sp != nullptr);
4386 
4387     // Update the global list of known thread states.  This one is definitely stopped.
4388     auto& context = thread_sp->GetThreadContext();
4389     const auto stop_was_requested = context.stop_requested;
4390     context.stop_requested = false;
4391 
4392     // If we have a pending notification, remove this from the set.
4393     if (m_pending_notification_up)
4394     {
4395         m_pending_notification_up->wait_for_stop_tids.erase(tid);
4396         SignalIfRequirementsSatisfied();
4397     }
4398 
4399     Error error;
4400     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
4401     {
4402         // We can end up here if stop was initiated by LLGS but by this time a
4403         // thread stop has occurred - maybe initiated by another event.
4404         if (log)
4405             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
4406         error = context.request_resume_function (tid, true);
4407         if (error.Fail() && log)
4408         {
4409                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
4410                         __FUNCTION__, tid, error.AsCString ());
4411         }
4412     }
4413     return error;
4414 }
4415 
4416 void
4417 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
4418 {
4419     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4420     if (m_pending_notification_up && log)
4421     {
4422         // Yikes - we've already got a pending signal notification in progress.
4423         // Log this info.  We lose the pending notification here.
4424         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
4425                    __FUNCTION__,
4426                    m_pending_notification_up->triggering_tid,
4427                    notification_up->triggering_tid);
4428     }
4429     m_pending_notification_up = std::move(notification_up);
4430 
4431     if (m_pending_notification_up->request_stop_on_all_unstopped_threads)
4432         RequestStopOnAllRunningThreads();
4433     else
4434     {
4435         if (!RequestStopOnAllSpecifiedThreads())
4436             return;
4437     }
4438 
4439     SignalIfRequirementsSatisfied();
4440 }
4441 
4442 void
4443 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
4444 {
4445     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
4446 
4447     if (log)
4448         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
4449 
4450     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
4451     lldbassert(thread_sp != nullptr);
4452 
4453     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
4454     {
4455         // We will need to wait for this new thread to stop as well before firing the
4456         // notification.
4457         m_pending_notification_up->wait_for_stop_tids.insert(tid);
4458         thread_sp->RequestStop();
4459     }
4460 }
4461