1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <semaphore.h>
15 #include <string.h>
16 #include <stdint.h>
17 #include <unistd.h>
18 
19 // C++ Includes
20 #include <fstream>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/Module.h"
29 #include "lldb/Core/ModuleSpec.h"
30 #include "lldb/Core/RegisterValue.h"
31 #include "lldb/Core/State.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/Host.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/ProcessLaunchInfo.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/PseudoTerminal.h"
42 
43 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
44 #include "Plugins/Process/Utility/LinuxSignals.h"
45 #include "Utility/StringExtractor.h"
46 #include "NativeThreadLinux.h"
47 #include "ProcFileReader.h"
48 #include "Procfs.h"
49 
50 // System includes - They have to be included after framework includes because they define some
51 // macros which collide with variable names in other modules
52 #include <linux/unistd.h>
53 #include <sys/socket.h>
54 
55 #include <sys/types.h>
56 #include <sys/uio.h>
57 #include <sys/user.h>
58 #include <sys/wait.h>
59 
60 #include "lldb/Host/linux/Personality.h"
61 #include "lldb/Host/linux/Ptrace.h"
62 #include "lldb/Host/linux/Signalfd.h"
63 #include "lldb/Host/android/Android.h"
64 
65 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
66 
67 // Support hardware breakpoints in case it has not been defined
68 #ifndef TRAP_HWBKPT
69   #define TRAP_HWBKPT 4
70 #endif
71 
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace lldb_private::process_linux;
75 using namespace llvm;
76 
77 // Private bits we only need internally.
78 namespace
79 {
80     const UnixSignals&
81     GetUnixSignals ()
82     {
83         static process_linux::LinuxSignals signals;
84         return signals;
85     }
86 
87     Error
88     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
89     {
90         // Grab process info for the running process.
91         ProcessInstanceInfo process_info;
92         if (!platform.GetProcessInfo (pid, process_info))
93             return Error("failed to get process info");
94 
95         // Resolve the executable module.
96         ModuleSP exe_module_sp;
97         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
98         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
99         Error error = platform.ResolveExecutable(
100             exe_module_spec,
101             exe_module_sp,
102             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
103 
104         if (!error.Success ())
105             return error;
106 
107         // Check if we've got our architecture from the exe_module.
108         arch = exe_module_sp->GetArchitecture ();
109         if (arch.IsValid ())
110             return Error();
111         else
112             return Error("failed to retrieve a valid architecture from the exe module");
113     }
114 
115     void
116     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
117     {
118         uint8_t *ptr = (uint8_t *)bytes;
119         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
120         for(uint32_t i=0; i<loop_count; i++)
121         {
122             s.Printf ("[%x]", *ptr);
123             ptr++;
124         }
125     }
126 
127     void
128     PtraceDisplayBytes(int &req, void *data, size_t data_size)
129     {
130         StreamString buf;
131         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
132                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
133 
134         if (verbose_log)
135         {
136             switch(req)
137             {
138             case PTRACE_POKETEXT:
139             {
140                 DisplayBytes(buf, &data, 8);
141                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
142                 break;
143             }
144             case PTRACE_POKEDATA:
145             {
146                 DisplayBytes(buf, &data, 8);
147                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
148                 break;
149             }
150             case PTRACE_POKEUSER:
151             {
152                 DisplayBytes(buf, &data, 8);
153                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
154                 break;
155             }
156             case PTRACE_SETREGS:
157             {
158                 DisplayBytes(buf, data, data_size);
159                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
160                 break;
161             }
162             case PTRACE_SETFPREGS:
163             {
164                 DisplayBytes(buf, data, data_size);
165                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
166                 break;
167             }
168             case PTRACE_SETSIGINFO:
169             {
170                 DisplayBytes(buf, data, sizeof(siginfo_t));
171                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
172                 break;
173             }
174             case PTRACE_SETREGSET:
175             {
176                 // Extract iov_base from data, which is a pointer to the struct IOVEC
177                 DisplayBytes(buf, *(void **)data, data_size);
178                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
179                 break;
180             }
181             default:
182             {
183             }
184             }
185         }
186     }
187 
188     //------------------------------------------------------------------------------
189     // Static implementations of NativeProcessLinux::ReadMemory and
190     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
191     // functions without needed to go thru the thread funnel.
192 
193     size_t
194     DoReadMemory(
195         lldb::pid_t pid,
196         lldb::addr_t vm_addr,
197         void *buf,
198         size_t size,
199         Error &error)
200     {
201         // ptrace word size is determined by the host, not the child
202         static const unsigned word_size = sizeof(void*);
203         unsigned char *dst = static_cast<unsigned char*>(buf);
204         size_t bytes_read;
205         size_t remainder;
206         long data;
207 
208         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
209         if (log)
210             ProcessPOSIXLog::IncNestLevel();
211         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
212             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
213                     pid, word_size, (void*)vm_addr, buf, size);
214 
215         assert(sizeof(data) >= word_size);
216         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
217         {
218             data = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, error);
219             if (error.Fail())
220             {
221                 if (log)
222                     ProcessPOSIXLog::DecNestLevel();
223                 return bytes_read;
224             }
225 
226             remainder = size - bytes_read;
227             remainder = remainder > word_size ? word_size : remainder;
228 
229             // Copy the data into our buffer
230             for (unsigned i = 0; i < remainder; ++i)
231                 dst[i] = ((data >> i*8) & 0xFF);
232 
233             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
234                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
235                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
236                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
237             {
238                 uintptr_t print_dst = 0;
239                 // Format bytes from data by moving into print_dst for log output
240                 for (unsigned i = 0; i < remainder; ++i)
241                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
242                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
243                         (void*)vm_addr, print_dst, (unsigned long)data);
244             }
245 
246             vm_addr += word_size;
247             dst += word_size;
248         }
249 
250         if (log)
251             ProcessPOSIXLog::DecNestLevel();
252         return bytes_read;
253     }
254 
255     size_t
256     DoWriteMemory(
257         lldb::pid_t pid,
258         lldb::addr_t vm_addr,
259         const void *buf,
260         size_t size,
261         Error &error)
262     {
263         // ptrace word size is determined by the host, not the child
264         static const unsigned word_size = sizeof(void*);
265         const unsigned char *src = static_cast<const unsigned char*>(buf);
266         size_t bytes_written = 0;
267         size_t remainder;
268 
269         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
270         if (log)
271             ProcessPOSIXLog::IncNestLevel();
272         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
273             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
274                     pid, word_size, (void*)vm_addr, buf, size);
275 
276         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
277         {
278             remainder = size - bytes_written;
279             remainder = remainder > word_size ? word_size : remainder;
280 
281             if (remainder == word_size)
282             {
283                 unsigned long data = 0;
284                 assert(sizeof(data) >= word_size);
285                 for (unsigned i = 0; i < word_size; ++i)
286                     data |= (unsigned long)src[i] << i*8;
287 
288                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
289                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
290                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
291                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
292                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
293                             (void*)vm_addr, *(const unsigned long*)src, data);
294 
295                 if (NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0, error))
296                 {
297                     if (log)
298                         ProcessPOSIXLog::DecNestLevel();
299                     return bytes_written;
300                 }
301             }
302             else
303             {
304                 unsigned char buff[8];
305                 if (DoReadMemory(pid, vm_addr,
306                                 buff, word_size, error) != word_size)
307                 {
308                     if (log)
309                         ProcessPOSIXLog::DecNestLevel();
310                     return bytes_written;
311                 }
312 
313                 memcpy(buff, src, remainder);
314 
315                 if (DoWriteMemory(pid, vm_addr,
316                                 buff, word_size, error) != word_size)
317                 {
318                     if (log)
319                         ProcessPOSIXLog::DecNestLevel();
320                     return bytes_written;
321                 }
322 
323                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
324                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
325                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
326                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
327                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
328                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
329             }
330 
331             vm_addr += word_size;
332             src += word_size;
333         }
334         if (log)
335             ProcessPOSIXLog::DecNestLevel();
336         return bytes_written;
337     }
338 
339     //------------------------------------------------------------------------------
340     /// @class ReadOperation
341     /// @brief Implements NativeProcessLinux::ReadMemory.
342     class ReadOperation : public NativeProcessLinux::Operation
343     {
344     public:
345         ReadOperation(
346             lldb::addr_t addr,
347             void *buff,
348             size_t size,
349             size_t &result) :
350             Operation (),
351             m_addr (addr),
352             m_buff (buff),
353             m_size (size),
354             m_result (result)
355             {
356             }
357 
358         void Execute (NativeProcessLinux *process) override;
359 
360     private:
361         lldb::addr_t m_addr;
362         void *m_buff;
363         size_t m_size;
364         size_t &m_result;
365     };
366 
367     void
368     ReadOperation::Execute (NativeProcessLinux *process)
369     {
370         m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
371     }
372 
373     //------------------------------------------------------------------------------
374     /// @class WriteOperation
375     /// @brief Implements NativeProcessLinux::WriteMemory.
376     class WriteOperation : public NativeProcessLinux::Operation
377     {
378     public:
379         WriteOperation(
380             lldb::addr_t addr,
381             const void *buff,
382             size_t size,
383             size_t &result) :
384             Operation (),
385             m_addr (addr),
386             m_buff (buff),
387             m_size (size),
388             m_result (result)
389             {
390             }
391 
392         void Execute (NativeProcessLinux *process) override;
393 
394     private:
395         lldb::addr_t m_addr;
396         const void *m_buff;
397         size_t m_size;
398         size_t &m_result;
399     };
400 
401     void
402     WriteOperation::Execute(NativeProcessLinux *process)
403     {
404         m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
405     }
406 
407     //------------------------------------------------------------------------------
408     /// @class ResumeOperation
409     /// @brief Implements NativeProcessLinux::Resume.
410     class ResumeOperation : public NativeProcessLinux::Operation
411     {
412     public:
413         ResumeOperation(lldb::tid_t tid, uint32_t signo) :
414             m_tid(tid), m_signo(signo) { }
415 
416         void Execute(NativeProcessLinux *monitor) override;
417 
418     private:
419         lldb::tid_t m_tid;
420         uint32_t m_signo;
421     };
422 
423     void
424     ResumeOperation::Execute(NativeProcessLinux *monitor)
425     {
426         intptr_t data = 0;
427 
428         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
429             data = m_signo;
430 
431         NativeProcessLinux::PtraceWrapper(PTRACE_CONT, m_tid, nullptr, (void*)data, 0, m_error);
432         if (m_error.Fail())
433         {
434             Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
435 
436             if (log)
437                 log->Printf ("ResumeOperation (%"  PRIu64 ") failed: %s", m_tid, m_error.AsCString());
438         }
439     }
440 
441     //------------------------------------------------------------------------------
442     /// @class SingleStepOperation
443     /// @brief Implements NativeProcessLinux::SingleStep.
444     class SingleStepOperation : public NativeProcessLinux::Operation
445     {
446     public:
447         SingleStepOperation(lldb::tid_t tid, uint32_t signo)
448             : m_tid(tid), m_signo(signo) { }
449 
450         void Execute(NativeProcessLinux *monitor) override;
451 
452     private:
453         lldb::tid_t m_tid;
454         uint32_t m_signo;
455     };
456 
457     void
458     SingleStepOperation::Execute(NativeProcessLinux *monitor)
459     {
460         intptr_t data = 0;
461 
462         if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
463             data = m_signo;
464 
465         NativeProcessLinux::PtraceWrapper(PTRACE_SINGLESTEP, m_tid, nullptr, (void*)data, 0, m_error);
466     }
467 
468     //------------------------------------------------------------------------------
469     /// @class SiginfoOperation
470     /// @brief Implements NativeProcessLinux::GetSignalInfo.
471     class SiginfoOperation : public NativeProcessLinux::Operation
472     {
473     public:
474         SiginfoOperation(lldb::tid_t tid, void *info)
475             : m_tid(tid), m_info(info) { }
476 
477         void Execute(NativeProcessLinux *monitor) override;
478 
479     private:
480         lldb::tid_t m_tid;
481         void *m_info;
482     };
483 
484     void
485     SiginfoOperation::Execute(NativeProcessLinux *monitor)
486     {
487         NativeProcessLinux::PtraceWrapper(PTRACE_GETSIGINFO, m_tid, nullptr, m_info, 0, m_error);
488     }
489 
490     //------------------------------------------------------------------------------
491     /// @class EventMessageOperation
492     /// @brief Implements NativeProcessLinux::GetEventMessage.
493     class EventMessageOperation : public NativeProcessLinux::Operation
494     {
495     public:
496         EventMessageOperation(lldb::tid_t tid, unsigned long *message)
497             : m_tid(tid), m_message(message) { }
498 
499         void Execute(NativeProcessLinux *monitor) override;
500 
501     private:
502         lldb::tid_t m_tid;
503         unsigned long *m_message;
504     };
505 
506     void
507     EventMessageOperation::Execute(NativeProcessLinux *monitor)
508     {
509         NativeProcessLinux::PtraceWrapper(PTRACE_GETEVENTMSG, m_tid, nullptr, m_message, 0, m_error);
510     }
511 
512     class DetachOperation : public NativeProcessLinux::Operation
513     {
514     public:
515         DetachOperation(lldb::tid_t tid) : m_tid(tid) { }
516 
517         void Execute(NativeProcessLinux *monitor) override;
518 
519     private:
520         lldb::tid_t m_tid;
521     };
522 
523     void
524     DetachOperation::Execute(NativeProcessLinux *monitor)
525     {
526         NativeProcessLinux::PtraceWrapper(PTRACE_DETACH, m_tid, nullptr, 0, 0, m_error);
527     }
528 } // end of anonymous namespace
529 
530 // Simple helper function to ensure flags are enabled on the given file
531 // descriptor.
532 static Error
533 EnsureFDFlags(int fd, int flags)
534 {
535     Error error;
536 
537     int status = fcntl(fd, F_GETFL);
538     if (status == -1)
539     {
540         error.SetErrorToErrno();
541         return error;
542     }
543 
544     if (fcntl(fd, F_SETFL, status | flags) == -1)
545     {
546         error.SetErrorToErrno();
547         return error;
548     }
549 
550     return error;
551 }
552 
553 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
554 // the inferior. The thread consists of a main loop which waits for events and processes them
555 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
556 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
557 //     and dispatch to NativeProcessLinux::MonitorCallback.
558 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
559 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
560 //     pipe, and the completion of the operation is signalled over the semaphore.
561 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
562 //     of the command pipe.
563 class NativeProcessLinux::Monitor
564 {
565 private:
566     // The initial monitor operation (launch or attach). It returns a inferior process id.
567     std::unique_ptr<InitialOperation> m_initial_operation_up;
568 
569     ::pid_t                           m_child_pid = -1;
570     NativeProcessLinux              * m_native_process;
571 
572     enum { READ, WRITE };
573     int        m_pipefd[2] = {-1, -1};
574     int        m_signal_fd = -1;
575     HostThread m_thread;
576 
577     // current operation which must be executed on the priviliged thread
578     Mutex      m_operation_mutex;
579     Operation *m_operation = nullptr;
580     sem_t      m_operation_sem;
581     Error      m_operation_error;
582 
583     unsigned   m_operation_nesting_level = 0;
584 
585     static constexpr char operation_command   = 'o';
586     static constexpr char begin_block_command = '{';
587     static constexpr char end_block_command   = '}';
588 
589     void
590     HandleSignals();
591 
592     void
593     HandleWait();
594 
595     // Returns true if the thread should exit.
596     bool
597     HandleCommands();
598 
599     void
600     MainLoop();
601 
602     static void *
603     RunMonitor(void *arg);
604 
605     Error
606     WaitForAck();
607 
608     void
609     BeginOperationBlock()
610     {
611         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
612         WaitForAck();
613     }
614 
615     void
616     EndOperationBlock()
617     {
618         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
619         WaitForAck();
620     }
621 
622 public:
623     Monitor(const InitialOperation &initial_operation,
624             NativeProcessLinux *native_process)
625         : m_initial_operation_up(new InitialOperation(initial_operation)),
626           m_native_process(native_process)
627     {
628         sem_init(&m_operation_sem, 0, 0);
629     }
630 
631     ~Monitor();
632 
633     Error
634     Initialize();
635 
636     void
637     Terminate();
638 
639     void
640     DoOperation(Operation *op);
641 
642     class ScopedOperationLock {
643         Monitor &m_monitor;
644 
645     public:
646         ScopedOperationLock(Monitor &monitor)
647             : m_monitor(monitor)
648         { m_monitor.BeginOperationBlock(); }
649 
650         ~ScopedOperationLock()
651         { m_monitor.EndOperationBlock(); }
652     };
653 };
654 constexpr char NativeProcessLinux::Monitor::operation_command;
655 constexpr char NativeProcessLinux::Monitor::begin_block_command;
656 constexpr char NativeProcessLinux::Monitor::end_block_command;
657 
658 Error
659 NativeProcessLinux::Monitor::Initialize()
660 {
661     Error error;
662 
663     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
664     // listening for these signals over a signalfd file descriptors. This allows us to wait for
665     // multiple kinds of events with select.
666     sigset_t signals;
667     sigemptyset(&signals);
668     sigaddset(&signals, SIGCHLD);
669     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
670     if (m_signal_fd < 0)
671     {
672         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
673                     __FUNCTION__, strerror(errno));
674 
675     }
676 
677     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
678     {
679         error.SetErrorToErrno();
680         return error;
681     }
682 
683     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
684         return error;
685     }
686 
687     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
688     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
689     if (!m_thread.IsJoinable())
690         return Error("Failed to create monitor thread for NativeProcessLinux.");
691 
692     // Wait for initial operation to complete.
693     return WaitForAck();
694 }
695 
696 void
697 NativeProcessLinux::Monitor::DoOperation(Operation *op)
698 {
699     if (m_thread.EqualsThread(pthread_self())) {
700         // If we're on the Monitor thread, we can simply execute the operation.
701         op->Execute(m_native_process);
702         return;
703     }
704 
705     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
706     Mutex::Locker lock(m_operation_mutex);
707 
708     m_operation = op;
709 
710     // notify the thread that an operation is ready to be processed
711     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
712 
713     WaitForAck();
714 }
715 
716 void
717 NativeProcessLinux::Monitor::Terminate()
718 {
719     if (m_pipefd[WRITE] >= 0)
720     {
721         close(m_pipefd[WRITE]);
722         m_pipefd[WRITE] = -1;
723     }
724     if (m_thread.IsJoinable())
725         m_thread.Join(nullptr);
726 }
727 
728 NativeProcessLinux::Monitor::~Monitor()
729 {
730     Terminate();
731     if (m_pipefd[READ] >= 0)
732         close(m_pipefd[READ]);
733     if (m_signal_fd >= 0)
734         close(m_signal_fd);
735     sem_destroy(&m_operation_sem);
736 }
737 
738 void
739 NativeProcessLinux::Monitor::HandleSignals()
740 {
741     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
742 
743     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
744     // all the information from waitpid(). We just need to read all the signals so that we can
745     // sleep next time we reach select().
746     while (true)
747     {
748         signalfd_siginfo info;
749         ssize_t size = read(m_signal_fd, &info, sizeof info);
750         if (size == -1)
751         {
752             if (errno == EAGAIN || errno == EWOULDBLOCK)
753                 break; // We are done.
754             if (errno == EINTR)
755                 continue;
756             if (log)
757                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
758                         __FUNCTION__, strerror(errno));
759             break;
760         }
761         if (size != sizeof info)
762         {
763             // We got incomplete information structure. This should not happen, let's just log
764             // that.
765             if (log)
766                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
767                         "structure size is %zd, read returned %zd bytes",
768                         __FUNCTION__, sizeof info, size);
769             break;
770         }
771         if (log)
772             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
773                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
774     }
775 }
776 
777 void
778 NativeProcessLinux::Monitor::HandleWait()
779 {
780     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
781     // Process all pending waitpid notifications.
782     while (true)
783     {
784         int status = -1;
785         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
786 
787         if (wait_pid == 0)
788             break; // We are done.
789 
790         if (wait_pid == -1)
791         {
792             if (errno == EINTR)
793                 continue;
794 
795             if (log)
796               log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
797                       __FUNCTION__, strerror(errno));
798             break;
799         }
800 
801         bool exited = false;
802         int signal = 0;
803         int exit_status = 0;
804         const char *status_cstr = NULL;
805         if (WIFSTOPPED(status))
806         {
807             signal = WSTOPSIG(status);
808             status_cstr = "STOPPED";
809         }
810         else if (WIFEXITED(status))
811         {
812             exit_status = WEXITSTATUS(status);
813             status_cstr = "EXITED";
814             exited = true;
815         }
816         else if (WIFSIGNALED(status))
817         {
818             signal = WTERMSIG(status);
819             status_cstr = "SIGNALED";
820             if (wait_pid == m_child_pid) {
821                 exited = true;
822                 exit_status = -1;
823             }
824         }
825         else
826             status_cstr = "(\?\?\?)";
827 
828         if (log)
829             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
830                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
831                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
832 
833         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
834     }
835 }
836 
837 bool
838 NativeProcessLinux::Monitor::HandleCommands()
839 {
840     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
841 
842     while (true)
843     {
844         char command = 0;
845         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
846         if (size == -1)
847         {
848             if (errno == EAGAIN || errno == EWOULDBLOCK)
849                 return false;
850             if (errno == EINTR)
851                 continue;
852             if (log)
853                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
854             return true;
855         }
856         if (size == 0) // end of file - write end closed
857         {
858             if (log)
859                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
860             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
861             return true; // We are done.
862         }
863 
864         switch (command)
865         {
866         case operation_command:
867             m_operation->Execute(m_native_process);
868             break;
869         case begin_block_command:
870             ++m_operation_nesting_level;
871             break;
872         case end_block_command:
873             assert(m_operation_nesting_level > 0);
874             --m_operation_nesting_level;
875             break;
876         default:
877             if (log)
878                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
879                         __FUNCTION__, command);
880         }
881 
882         // notify calling thread that the command has been processed
883         sem_post(&m_operation_sem);
884     }
885 }
886 
887 void
888 NativeProcessLinux::Monitor::MainLoop()
889 {
890     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
891     m_initial_operation_up.reset();
892     m_child_pid = child_pid;
893     sem_post(&m_operation_sem);
894 
895     while (true)
896     {
897         fd_set fds;
898         FD_ZERO(&fds);
899         // Only process waitpid events if we are outside of an operation block. Any pending
900         // events will be processed after we leave the block.
901         if (m_operation_nesting_level == 0)
902             FD_SET(m_signal_fd, &fds);
903         FD_SET(m_pipefd[READ], &fds);
904 
905         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
906         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
907         if (r < 0)
908         {
909             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
910             if (log)
911                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
912                         __FUNCTION__, strerror(errno));
913             return;
914         }
915 
916         if (FD_ISSET(m_pipefd[READ], &fds))
917         {
918             if (HandleCommands())
919                 return;
920         }
921 
922         if (FD_ISSET(m_signal_fd, &fds))
923         {
924             HandleSignals();
925             HandleWait();
926         }
927     }
928 }
929 
930 Error
931 NativeProcessLinux::Monitor::WaitForAck()
932 {
933     Error error;
934     while (sem_wait(&m_operation_sem) != 0)
935     {
936         if (errno == EINTR)
937             continue;
938 
939         error.SetErrorToErrno();
940         return error;
941     }
942 
943     return m_operation_error;
944 }
945 
946 void *
947 NativeProcessLinux::Monitor::RunMonitor(void *arg)
948 {
949     static_cast<Monitor *>(arg)->MainLoop();
950     return nullptr;
951 }
952 
953 
954 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
955                                        char const **argv,
956                                        char const **envp,
957                                        const std::string &stdin_path,
958                                        const std::string &stdout_path,
959                                        const std::string &stderr_path,
960                                        const char *working_dir,
961                                        const ProcessLaunchInfo &launch_info)
962     : m_module(module),
963       m_argv(argv),
964       m_envp(envp),
965       m_stdin_path(stdin_path),
966       m_stdout_path(stdout_path),
967       m_stderr_path(stderr_path),
968       m_working_dir(working_dir),
969       m_launch_info(launch_info)
970 {
971 }
972 
973 NativeProcessLinux::LaunchArgs::~LaunchArgs()
974 { }
975 
976 // -----------------------------------------------------------------------------
977 // Public Static Methods
978 // -----------------------------------------------------------------------------
979 
980 Error
981 NativeProcessLinux::LaunchProcess (
982     Module *exe_module,
983     ProcessLaunchInfo &launch_info,
984     NativeProcessProtocol::NativeDelegate &native_delegate,
985     NativeProcessProtocolSP &native_process_sp)
986 {
987     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
988 
989     Error error;
990 
991     // Verify the working directory is valid if one was specified.
992     const char* working_dir = launch_info.GetWorkingDirectory ();
993     if (working_dir)
994     {
995       FileSpec working_dir_fs (working_dir, true);
996       if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
997       {
998           error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
999           return error;
1000       }
1001     }
1002 
1003     const FileAction *file_action;
1004 
1005     // Default of NULL will mean to use existing open file descriptors.
1006     std::string stdin_path;
1007     std::string stdout_path;
1008     std::string stderr_path;
1009 
1010     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1011     if (file_action)
1012         stdin_path = file_action->GetPath ();
1013 
1014     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1015     if (file_action)
1016         stdout_path = file_action->GetPath ();
1017 
1018     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1019     if (file_action)
1020         stderr_path = file_action->GetPath ();
1021 
1022     if (log)
1023     {
1024         if (!stdin_path.empty ())
1025             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", __FUNCTION__, stdin_path.c_str ());
1026         else
1027             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
1028 
1029         if (!stdout_path.empty ())
1030             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", __FUNCTION__, stdout_path.c_str ());
1031         else
1032             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
1033 
1034         if (!stderr_path.empty ())
1035             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", __FUNCTION__, stderr_path.c_str ());
1036         else
1037             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
1038     }
1039 
1040     // Create the NativeProcessLinux in launch mode.
1041     native_process_sp.reset (new NativeProcessLinux ());
1042 
1043     if (log)
1044     {
1045         int i = 0;
1046         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1047         {
1048             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1049             ++i;
1050         }
1051     }
1052 
1053     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1054     {
1055         native_process_sp.reset ();
1056         error.SetErrorStringWithFormat ("failed to register the native delegate");
1057         return error;
1058     }
1059 
1060     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
1061             exe_module,
1062             launch_info.GetArguments ().GetConstArgumentVector (),
1063             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1064             stdin_path,
1065             stdout_path,
1066             stderr_path,
1067             working_dir,
1068             launch_info,
1069             error);
1070 
1071     if (error.Fail ())
1072     {
1073         native_process_sp.reset ();
1074         if (log)
1075             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1076         return error;
1077     }
1078 
1079     launch_info.SetProcessID (native_process_sp->GetID ());
1080 
1081     return error;
1082 }
1083 
1084 Error
1085 NativeProcessLinux::AttachToProcess (
1086     lldb::pid_t pid,
1087     NativeProcessProtocol::NativeDelegate &native_delegate,
1088     NativeProcessProtocolSP &native_process_sp)
1089 {
1090     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1091     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1092         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1093 
1094     // Grab the current platform architecture.  This should be Linux,
1095     // since this code is only intended to run on a Linux host.
1096     PlatformSP platform_sp (Platform::GetHostPlatform ());
1097     if (!platform_sp)
1098         return Error("failed to get a valid default platform");
1099 
1100     // Retrieve the architecture for the running process.
1101     ArchSpec process_arch;
1102     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1103     if (!error.Success ())
1104         return error;
1105 
1106     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
1107 
1108     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
1109     {
1110         error.SetErrorStringWithFormat ("failed to register the native delegate");
1111         return error;
1112     }
1113 
1114     native_process_linux_sp->AttachToInferior (pid, error);
1115     if (!error.Success ())
1116         return error;
1117 
1118     native_process_sp = native_process_linux_sp;
1119     return error;
1120 }
1121 
1122 // -----------------------------------------------------------------------------
1123 // Public Instance Methods
1124 // -----------------------------------------------------------------------------
1125 
1126 NativeProcessLinux::NativeProcessLinux () :
1127     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1128     m_arch (),
1129     m_supports_mem_region (eLazyBoolCalculate),
1130     m_mem_region_cache (),
1131     m_mem_region_cache_mutex ()
1132 {
1133 }
1134 
1135 //------------------------------------------------------------------------------
1136 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
1137 // Refer to Monitor and Operation classes to see why this is necessary.
1138 //------------------------------------------------------------------------------
1139 void
1140 NativeProcessLinux::LaunchInferior (
1141     Module *module,
1142     const char *argv[],
1143     const char *envp[],
1144     const std::string &stdin_path,
1145     const std::string &stdout_path,
1146     const std::string &stderr_path,
1147     const char *working_dir,
1148     const ProcessLaunchInfo &launch_info,
1149     Error &error)
1150 {
1151     if (module)
1152         m_arch = module->GetArchitecture ();
1153 
1154     SetState (eStateLaunching);
1155 
1156     std::unique_ptr<LaunchArgs> args(
1157         new LaunchArgs(
1158             module, argv, envp,
1159             stdin_path, stdout_path, stderr_path,
1160             working_dir, launch_info));
1161 
1162     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1163     if (!error.Success ())
1164         return;
1165 }
1166 
1167 void
1168 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1169 {
1170     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1171     if (log)
1172         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1173 
1174     // We can use the Host for everything except the ResolveExecutable portion.
1175     PlatformSP platform_sp = Platform::GetHostPlatform ();
1176     if (!platform_sp)
1177     {
1178         if (log)
1179             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1180         error.SetErrorString ("no default platform available");
1181         return;
1182     }
1183 
1184     // Gather info about the process.
1185     ProcessInstanceInfo process_info;
1186     if (!platform_sp->GetProcessInfo (pid, process_info))
1187     {
1188         if (log)
1189             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1190         error.SetErrorString ("failed to get process info");
1191         return;
1192     }
1193 
1194     // Resolve the executable module
1195     ModuleSP exe_module_sp;
1196     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1197     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1198     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1199                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1200     if (!error.Success())
1201         return;
1202 
1203     // Set the architecture to the exe architecture.
1204     m_arch = exe_module_sp->GetArchitecture();
1205     if (log)
1206         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1207 
1208     m_pid = pid;
1209     SetState(eStateAttaching);
1210 
1211     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1212     if (!error.Success ())
1213         return;
1214 }
1215 
1216 void
1217 NativeProcessLinux::Terminate ()
1218 {
1219     m_monitor_up->Terminate();
1220 }
1221 
1222 ::pid_t
1223 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1224 {
1225     assert (args && "null args");
1226 
1227     const char **argv = args->m_argv;
1228     const char **envp = args->m_envp;
1229     const char *working_dir = args->m_working_dir;
1230 
1231     lldb_utility::PseudoTerminal terminal;
1232     const size_t err_len = 1024;
1233     char err_str[err_len];
1234     lldb::pid_t pid;
1235     NativeThreadProtocolSP thread_sp;
1236 
1237     lldb::ThreadSP inferior;
1238 
1239     // Propagate the environment if one is not supplied.
1240     if (envp == NULL || envp[0] == NULL)
1241         envp = const_cast<const char **>(environ);
1242 
1243     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1244     {
1245         error.SetErrorToGenericError();
1246         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1247         return -1;
1248     }
1249 
1250     // Recognized child exit status codes.
1251     enum {
1252         ePtraceFailed = 1,
1253         eDupStdinFailed,
1254         eDupStdoutFailed,
1255         eDupStderrFailed,
1256         eChdirFailed,
1257         eExecFailed,
1258         eSetGidFailed
1259     };
1260 
1261     // Child process.
1262     if (pid == 0)
1263     {
1264         // FIXME consider opening a pipe between parent/child and have this forked child
1265         // send log info to parent re: launch status, in place of the log lines removed here.
1266 
1267         // Start tracing this child that is about to exec.
1268         NativeProcessLinux::PtraceWrapper(PTRACE_TRACEME, 0, nullptr, nullptr, 0, error);
1269         if (error.Fail())
1270             exit(ePtraceFailed);
1271 
1272         // terminal has already dupped the tty descriptors to stdin/out/err.
1273         // This closes original fd from which they were copied (and avoids
1274         // leaking descriptors to the debugged process.
1275         terminal.CloseSlaveFileDescriptor();
1276 
1277         // Do not inherit setgid powers.
1278         if (setgid(getgid()) != 0)
1279             exit(eSetGidFailed);
1280 
1281         // Attempt to have our own process group.
1282         if (setpgid(0, 0) != 0)
1283         {
1284             // FIXME log that this failed. This is common.
1285             // Don't allow this to prevent an inferior exec.
1286         }
1287 
1288         // Dup file descriptors if needed.
1289         if (!args->m_stdin_path.empty ())
1290             if (!DupDescriptor(args->m_stdin_path.c_str (), STDIN_FILENO, O_RDONLY))
1291                 exit(eDupStdinFailed);
1292 
1293         if (!args->m_stdout_path.empty ())
1294             if (!DupDescriptor(args->m_stdout_path.c_str (), STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1295                 exit(eDupStdoutFailed);
1296 
1297         if (!args->m_stderr_path.empty ())
1298             if (!DupDescriptor(args->m_stderr_path.c_str (), STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1299                 exit(eDupStderrFailed);
1300 
1301         // Close everything besides stdin, stdout, and stderr that has no file
1302         // action to avoid leaking
1303         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1304             if (!args->m_launch_info.GetFileActionForFD(fd))
1305                 close(fd);
1306 
1307         // Change working directory
1308         if (working_dir != NULL && working_dir[0])
1309           if (0 != ::chdir(working_dir))
1310               exit(eChdirFailed);
1311 
1312         // Disable ASLR if requested.
1313         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1314         {
1315             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1316             if (old_personality == -1)
1317             {
1318                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1319             }
1320             else
1321             {
1322                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1323                 if (new_personality == -1)
1324                 {
1325                     // Disabling ASLR failed.
1326                 }
1327                 else
1328                 {
1329                     // Disabling ASLR succeeded.
1330                 }
1331             }
1332         }
1333 
1334         // Execute.  We should never return...
1335         execve(argv[0],
1336                const_cast<char *const *>(argv),
1337                const_cast<char *const *>(envp));
1338 
1339         // ...unless exec fails.  In which case we definitely need to end the child here.
1340         exit(eExecFailed);
1341     }
1342 
1343     //
1344     // This is the parent code here.
1345     //
1346     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1347 
1348     // Wait for the child process to trap on its call to execve.
1349     ::pid_t wpid;
1350     int status;
1351     if ((wpid = waitpid(pid, &status, 0)) < 0)
1352     {
1353         error.SetErrorToErrno();
1354         if (log)
1355             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1356                     __FUNCTION__, error.AsCString ());
1357 
1358         // Mark the inferior as invalid.
1359         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1360         SetState (StateType::eStateInvalid);
1361 
1362         return -1;
1363     }
1364     else if (WIFEXITED(status))
1365     {
1366         // open, dup or execve likely failed for some reason.
1367         error.SetErrorToGenericError();
1368         switch (WEXITSTATUS(status))
1369         {
1370             case ePtraceFailed:
1371                 error.SetErrorString("Child ptrace failed.");
1372                 break;
1373             case eDupStdinFailed:
1374                 error.SetErrorString("Child open stdin failed.");
1375                 break;
1376             case eDupStdoutFailed:
1377                 error.SetErrorString("Child open stdout failed.");
1378                 break;
1379             case eDupStderrFailed:
1380                 error.SetErrorString("Child open stderr failed.");
1381                 break;
1382             case eChdirFailed:
1383                 error.SetErrorString("Child failed to set working directory.");
1384                 break;
1385             case eExecFailed:
1386                 error.SetErrorString("Child exec failed.");
1387                 break;
1388             case eSetGidFailed:
1389                 error.SetErrorString("Child setgid failed.");
1390                 break;
1391             default:
1392                 error.SetErrorString("Child returned unknown exit status.");
1393                 break;
1394         }
1395 
1396         if (log)
1397         {
1398             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1399                     __FUNCTION__,
1400                     WEXITSTATUS(status));
1401         }
1402 
1403         // Mark the inferior as invalid.
1404         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1405         SetState (StateType::eStateInvalid);
1406 
1407         return -1;
1408     }
1409     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1410            "Could not sync with inferior process.");
1411 
1412     if (log)
1413         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1414 
1415     error = SetDefaultPtraceOpts(pid);
1416     if (error.Fail())
1417     {
1418         if (log)
1419             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1420                     __FUNCTION__, error.AsCString ());
1421 
1422         // Mark the inferior as invalid.
1423         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1424         SetState (StateType::eStateInvalid);
1425 
1426         return -1;
1427     }
1428 
1429     // Release the master terminal descriptor and pass it off to the
1430     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1431     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1432     m_pid = pid;
1433 
1434     // Set the terminal fd to be in non blocking mode (it simplifies the
1435     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1436     // descriptor to read from).
1437     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1438     if (error.Fail())
1439     {
1440         if (log)
1441             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1442                     __FUNCTION__, error.AsCString ());
1443 
1444         // Mark the inferior as invalid.
1445         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1446         SetState (StateType::eStateInvalid);
1447 
1448         return -1;
1449     }
1450 
1451     if (log)
1452         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1453 
1454     thread_sp = AddThread (pid);
1455     assert (thread_sp && "AddThread() returned a nullptr thread");
1456     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1457     ThreadWasCreated(pid);
1458 
1459     // Let our process instance know the thread has stopped.
1460     SetCurrentThreadID (thread_sp->GetID ());
1461     SetState (StateType::eStateStopped);
1462 
1463     if (log)
1464     {
1465         if (error.Success ())
1466         {
1467             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1468         }
1469         else
1470         {
1471             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1472                 __FUNCTION__, error.AsCString ());
1473             return -1;
1474         }
1475     }
1476     return pid;
1477 }
1478 
1479 ::pid_t
1480 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1481 {
1482     lldb::ThreadSP inferior;
1483     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1484 
1485     // Use a map to keep track of the threads which we have attached/need to attach.
1486     Host::TidMap tids_to_attach;
1487     if (pid <= 1)
1488     {
1489         error.SetErrorToGenericError();
1490         error.SetErrorString("Attaching to process 1 is not allowed.");
1491         return -1;
1492     }
1493 
1494     while (Host::FindProcessThreads(pid, tids_to_attach))
1495     {
1496         for (Host::TidMap::iterator it = tids_to_attach.begin();
1497              it != tids_to_attach.end();)
1498         {
1499             if (it->second == false)
1500             {
1501                 lldb::tid_t tid = it->first;
1502 
1503                 // Attach to the requested process.
1504                 // An attach will cause the thread to stop with a SIGSTOP.
1505                 NativeProcessLinux::PtraceWrapper(PTRACE_ATTACH, tid, nullptr, nullptr, 0, error);
1506                 if (error.Fail())
1507                 {
1508                     // No such thread. The thread may have exited.
1509                     // More error handling may be needed.
1510                     if (error.GetError() == ESRCH)
1511                     {
1512                         it = tids_to_attach.erase(it);
1513                         continue;
1514                     }
1515                     else
1516                         return -1;
1517                 }
1518 
1519                 int status;
1520                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1521                 // At this point we should have a thread stopped if waitpid succeeds.
1522                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1523                 {
1524                     // No such thread. The thread may have exited.
1525                     // More error handling may be needed.
1526                     if (errno == ESRCH)
1527                     {
1528                         it = tids_to_attach.erase(it);
1529                         continue;
1530                     }
1531                     else
1532                     {
1533                         error.SetErrorToErrno();
1534                         return -1;
1535                     }
1536                 }
1537 
1538                 error = SetDefaultPtraceOpts(tid);
1539                 if (error.Fail())
1540                     return -1;
1541 
1542                 if (log)
1543                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1544 
1545                 it->second = true;
1546 
1547                 // Create the thread, mark it as stopped.
1548                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
1549                 assert (thread_sp && "AddThread() returned a nullptr");
1550 
1551                 // This will notify this is a new thread and tell the system it is stopped.
1552                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1553                 ThreadWasCreated(tid);
1554                 SetCurrentThreadID (thread_sp->GetID ());
1555             }
1556 
1557             // move the loop forward
1558             ++it;
1559         }
1560     }
1561 
1562     if (tids_to_attach.size() > 0)
1563     {
1564         m_pid = pid;
1565         // Let our process instance know the thread has stopped.
1566         SetState (StateType::eStateStopped);
1567     }
1568     else
1569     {
1570         error.SetErrorToGenericError();
1571         error.SetErrorString("No such process.");
1572         return -1;
1573     }
1574 
1575     return pid;
1576 }
1577 
1578 Error
1579 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1580 {
1581     long ptrace_opts = 0;
1582 
1583     // Have the child raise an event on exit.  This is used to keep the child in
1584     // limbo until it is destroyed.
1585     ptrace_opts |= PTRACE_O_TRACEEXIT;
1586 
1587     // Have the tracer trace threads which spawn in the inferior process.
1588     // TODO: if we want to support tracing the inferiors' child, add the
1589     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1590     ptrace_opts |= PTRACE_O_TRACECLONE;
1591 
1592     // Have the tracer notify us before execve returns
1593     // (needed to disable legacy SIGTRAP generation)
1594     ptrace_opts |= PTRACE_O_TRACEEXEC;
1595 
1596     Error error;
1597     NativeProcessLinux::PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts, 0, error);
1598     return error;
1599 }
1600 
1601 static ExitType convert_pid_status_to_exit_type (int status)
1602 {
1603     if (WIFEXITED (status))
1604         return ExitType::eExitTypeExit;
1605     else if (WIFSIGNALED (status))
1606         return ExitType::eExitTypeSignal;
1607     else if (WIFSTOPPED (status))
1608         return ExitType::eExitTypeStop;
1609     else
1610     {
1611         // We don't know what this is.
1612         return ExitType::eExitTypeInvalid;
1613     }
1614 }
1615 
1616 static int convert_pid_status_to_return_code (int status)
1617 {
1618     if (WIFEXITED (status))
1619         return WEXITSTATUS (status);
1620     else if (WIFSIGNALED (status))
1621         return WTERMSIG (status);
1622     else if (WIFSTOPPED (status))
1623         return WSTOPSIG (status);
1624     else
1625     {
1626         // We don't know what this is.
1627         return ExitType::eExitTypeInvalid;
1628     }
1629 }
1630 
1631 // Handles all waitpid events from the inferior process.
1632 void
1633 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
1634                                     bool exited,
1635                                     int signal,
1636                                     int status)
1637 {
1638     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1639 
1640     // Certain activities differ based on whether the pid is the tid of the main thread.
1641     const bool is_main_thread = (pid == GetID ());
1642 
1643     // Handle when the thread exits.
1644     if (exited)
1645     {
1646         if (log)
1647             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1648 
1649         // This is a thread that exited.  Ensure we're not tracking it anymore.
1650         const bool thread_found = StopTrackingThread (pid);
1651 
1652         if (is_main_thread)
1653         {
1654             // We only set the exit status and notify the delegate if we haven't already set the process
1655             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1656             // for the main thread.
1657             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
1658             if (!already_notified)
1659             {
1660                 if (log)
1661                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
1662                 // The main thread exited.  We're done monitoring.  Report to delegate.
1663                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1664 
1665                 // Notify delegate that our process has exited.
1666                 SetState (StateType::eStateExited, true);
1667             }
1668             else
1669             {
1670                 if (log)
1671                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1672             }
1673         }
1674         else
1675         {
1676             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1677             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1678             // and we would have done an all-stop then.
1679             if (log)
1680                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1681         }
1682         return;
1683     }
1684 
1685     // Get details on the signal raised.
1686     siginfo_t info;
1687     const auto err = GetSignalInfo(pid, &info);
1688     if (err.Success())
1689     {
1690         // We have retrieved the signal info.  Dispatch appropriately.
1691         if (info.si_signo == SIGTRAP)
1692             MonitorSIGTRAP(&info, pid);
1693         else
1694             MonitorSignal(&info, pid, exited);
1695     }
1696     else
1697     {
1698         if (err.GetError() == EINVAL)
1699         {
1700             // This is a group stop reception for this tid.
1701             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1702             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1703             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1704             // generally not needed (one use case is debugging background task being managed by a
1705             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1706             // stop which happens before the group stop. This done by MonitorSignal and works
1707             // correctly for all signals.
1708             if (log)
1709                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1710             Resume(pid, signal);
1711         }
1712         else
1713         {
1714             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1715 
1716             // A return value of ESRCH means the thread/process is no longer on the system,
1717             // so it was killed somehow outside of our control.  Either way, we can't do anything
1718             // with it anymore.
1719 
1720             // Stop tracking the metadata for the thread since it's entirely off the system now.
1721             const bool thread_found = StopTrackingThread (pid);
1722 
1723             if (log)
1724                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1725                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1726 
1727             if (is_main_thread)
1728             {
1729                 // Notify the delegate - our process is not available but appears to have been killed outside
1730                 // our control.  Is eStateExited the right exit state in this case?
1731                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1732                 SetState (StateType::eStateExited, true);
1733             }
1734             else
1735             {
1736                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1737                 if (log)
1738                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1739             }
1740         }
1741     }
1742 }
1743 
1744 void
1745 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1746 {
1747     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1748 
1749     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1750 
1751     if (new_thread_sp)
1752     {
1753         // We are already tracking the thread - we got the event on the new thread (see
1754         // MonitorSignal) before this one. We are done.
1755         return;
1756     }
1757 
1758     // The thread is not tracked yet, let's wait for it to appear.
1759     int status = -1;
1760     ::pid_t wait_pid;
1761     do
1762     {
1763         if (log)
1764             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1765         wait_pid = waitpid(tid, &status, __WALL);
1766     }
1767     while (wait_pid == -1 && errno == EINTR);
1768     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1769     // some checks just in case.
1770     if (wait_pid != tid) {
1771         if (log)
1772             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1773         // The only way I know of this could happen is if the whole process was
1774         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1775         return;
1776     }
1777     if (WIFEXITED(status))
1778     {
1779         if (log)
1780             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1781         // Also a very improbable event.
1782         return;
1783     }
1784 
1785     siginfo_t info;
1786     Error error = GetSignalInfo(tid, &info);
1787     if (error.Fail())
1788     {
1789         if (log)
1790             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1791         return;
1792     }
1793 
1794     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1795     {
1796         // We should be getting a thread creation signal here, but we received something
1797         // else. There isn't much we can do about it now, so we will just log that. Since the
1798         // thread is alive and we are receiving events from it, we shall pretend that it was
1799         // created properly.
1800         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1801     }
1802 
1803     if (log)
1804         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1805                  __FUNCTION__, GetID (), tid);
1806 
1807     new_thread_sp = AddThread(tid);
1808     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1809     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1810     ThreadWasCreated(tid);
1811 }
1812 
1813 void
1814 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1815 {
1816     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1817     const bool is_main_thread = (pid == GetID ());
1818 
1819     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1820     if (!info)
1821         return;
1822 
1823     Mutex::Locker locker (m_threads_mutex);
1824 
1825     // See if we can find a thread for this signal.
1826     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1827     if (!thread_sp)
1828     {
1829         if (log)
1830             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1831     }
1832 
1833     switch (info->si_code)
1834     {
1835     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1836     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1837     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1838 
1839     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1840     {
1841         // This is the notification on the parent thread which informs us of new thread
1842         // creation.
1843         // We don't want to do anything with the parent thread so we just resume it. In case we
1844         // want to implement "break on thread creation" functionality, we would need to stop
1845         // here.
1846 
1847         unsigned long event_message = 0;
1848         if (GetEventMessage (pid, &event_message).Fail())
1849         {
1850             if (log)
1851                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1852         } else
1853             WaitForNewThread(event_message);
1854 
1855         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1856         break;
1857     }
1858 
1859     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1860     {
1861         NativeThreadProtocolSP main_thread_sp;
1862         if (log)
1863             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1864 
1865         // Exec clears any pending notifications.
1866         m_pending_notification_up.reset ();
1867 
1868         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1869         if (log)
1870             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1871 
1872         for (auto thread_sp : m_threads)
1873         {
1874             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1875             if (is_main_thread)
1876             {
1877                 main_thread_sp = thread_sp;
1878                 if (log)
1879                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1880             }
1881             else
1882             {
1883                 // Tell thread coordinator this thread is dead.
1884                 if (log)
1885                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1886             }
1887         }
1888 
1889         m_threads.clear ();
1890 
1891         if (main_thread_sp)
1892         {
1893             m_threads.push_back (main_thread_sp);
1894             SetCurrentThreadID (main_thread_sp->GetID ());
1895             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1896         }
1897         else
1898         {
1899             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1900             if (log)
1901                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1902         }
1903 
1904         // Tell coordinator about about the "new" (since exec) stopped main thread.
1905         const lldb::tid_t main_thread_tid = GetID ();
1906         ThreadWasCreated(main_thread_tid);
1907 
1908         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1909         // Consider a handler that can execute when that happens.
1910         // Let our delegate know we have just exec'd.
1911         NotifyDidExec ();
1912 
1913         // If we have a main thread, indicate we are stopped.
1914         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1915 
1916         // Let the process know we're stopped.
1917         StopRunningThreads (pid);
1918 
1919         break;
1920     }
1921 
1922     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1923     {
1924         // The inferior process or one of its threads is about to exit.
1925         // We don't want to do anything with the thread so we just resume it. In case we
1926         // want to implement "break on thread exit" functionality, we would need to stop
1927         // here.
1928 
1929         unsigned long data = 0;
1930         if (GetEventMessage(pid, &data).Fail())
1931             data = -1;
1932 
1933         if (log)
1934         {
1935             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1936                          __FUNCTION__,
1937                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1938                          pid,
1939                     is_main_thread ? "is main thread" : "not main thread");
1940         }
1941 
1942         if (is_main_thread)
1943         {
1944             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1945         }
1946 
1947         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1948 
1949         break;
1950     }
1951 
1952     case 0:
1953     case TRAP_TRACE:  // We receive this on single stepping.
1954     case TRAP_HWBKPT: // We receive this on watchpoint hit
1955         if (thread_sp)
1956         {
1957             // If a watchpoint was hit, report it
1958             uint32_t wp_index;
1959             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1960             if (error.Fail() && log)
1961                 log->Printf("NativeProcessLinux::%s() "
1962                             "received error while checking for watchpoint hits, "
1963                             "pid = %" PRIu64 " error = %s",
1964                             __FUNCTION__, pid, error.AsCString());
1965             if (wp_index != LLDB_INVALID_INDEX32)
1966             {
1967                 MonitorWatchpoint(pid, thread_sp, wp_index);
1968                 break;
1969             }
1970         }
1971         // Otherwise, report step over
1972         MonitorTrace(pid, thread_sp);
1973         break;
1974 
1975     case SI_KERNEL:
1976     case TRAP_BRKPT:
1977         MonitorBreakpoint(pid, thread_sp);
1978         break;
1979 
1980     case SIGTRAP:
1981     case (SIGTRAP | 0x80):
1982         if (log)
1983             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
1984 
1985         // Ignore these signals until we know more about them.
1986         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1987         break;
1988 
1989     default:
1990         assert(false && "Unexpected SIGTRAP code!");
1991         if (log)
1992             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1993                     __FUNCTION__, GetID (), pid, info->si_code);
1994         break;
1995 
1996     }
1997 }
1998 
1999 void
2000 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2001 {
2002     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2003     if (log)
2004         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
2005                 __FUNCTION__, pid);
2006 
2007     if (thread_sp)
2008         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2009 
2010     // This thread is currently stopped.
2011     ThreadDidStop(pid, false);
2012 
2013     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
2014     // This would have already happened at the time the Resume() with step operation was signaled.
2015     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
2016     // once all running threads have checked in as stopped.
2017     SetCurrentThreadID(pid);
2018     // Tell the process we have a stop (from software breakpoint).
2019     StopRunningThreads(pid);
2020 }
2021 
2022 void
2023 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
2024 {
2025     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2026     if (log)
2027         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
2028                 __FUNCTION__, pid);
2029 
2030     // This thread is currently stopped.
2031     ThreadDidStop(pid, false);
2032 
2033     // Mark the thread as stopped at breakpoint.
2034     if (thread_sp)
2035     {
2036         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
2037         Error error = FixupBreakpointPCAsNeeded(thread_sp);
2038         if (error.Fail())
2039             if (log)
2040                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
2041                         __FUNCTION__, pid, error.AsCString());
2042 
2043         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
2044             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
2045     }
2046     else
2047         if (log)
2048             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
2049                     "warning, cannot process software breakpoint since no thread metadata",
2050                     __FUNCTION__, pid);
2051 
2052 
2053     // We need to tell all other running threads before we notify the delegate about this stop.
2054     StopRunningThreads(pid);
2055 }
2056 
2057 void
2058 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
2059 {
2060     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
2061     if (log)
2062         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
2063                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
2064                     __FUNCTION__, pid, wp_index);
2065 
2066     // This thread is currently stopped.
2067     ThreadDidStop(pid, false);
2068 
2069     // Mark the thread as stopped at watchpoint.
2070     // The address is at (lldb::addr_t)info->si_addr if we need it.
2071     lldbassert(thread_sp && "thread_sp cannot be NULL");
2072     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
2073 
2074     // We need to tell all other running threads before we notify the delegate about this stop.
2075     StopRunningThreads(pid);
2076 }
2077 
2078 void
2079 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2080 {
2081     assert (info && "null info");
2082     if (!info)
2083         return;
2084 
2085     const int signo = info->si_signo;
2086     const bool is_from_llgs = info->si_pid == getpid ();
2087 
2088     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2089 
2090     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2091     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2092     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
2093     //
2094     // IOW, user generated signals never generate what we consider to be a
2095     // "crash".
2096     //
2097     // Similarly, ACK signals generated by this monitor.
2098 
2099     Mutex::Locker locker (m_threads_mutex);
2100 
2101     // See if we can find a thread for this signal.
2102     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2103     if (!thread_sp)
2104     {
2105         if (log)
2106             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2107     }
2108 
2109     // Handle the signal.
2110     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2111     {
2112         if (log)
2113             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2114                             __FUNCTION__,
2115                             GetUnixSignals ().GetSignalAsCString (signo),
2116                             signo,
2117                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2118                             info->si_pid,
2119                             is_from_llgs ? "from llgs" : "not from llgs",
2120                             pid);
2121     }
2122 
2123     // Check for new thread notification.
2124     if ((info->si_pid == 0) && (info->si_code == SI_USER))
2125     {
2126         // A new thread creation is being signaled. This is one of two parts that come in
2127         // a non-deterministic order. This code handles the case where the new thread event comes
2128         // before the event on the parent thread. For the opposite case see code in
2129         // MonitorSIGTRAP.
2130         if (log)
2131             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2132                      __FUNCTION__, GetID (), pid);
2133 
2134         thread_sp = AddThread(pid);
2135         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2136         // We can now resume the newly created thread.
2137         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2138         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2139         ThreadWasCreated(pid);
2140         // Done handling.
2141         return;
2142     }
2143 
2144     // Check for thread stop notification.
2145     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2146     {
2147         // This is a tgkill()-based stop.
2148         if (thread_sp)
2149         {
2150             if (log)
2151                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2152                              __FUNCTION__,
2153                              GetID (),
2154                              pid);
2155 
2156             // Check that we're not already marked with a stop reason.
2157             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2158             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2159             // and that, without an intervening resume, we received another stop.  It is more likely
2160             // that we are missing the marking of a run state somewhere if we find that the thread was
2161             // marked as stopped.
2162             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2163             assert (linux_thread_sp && "linux_thread_sp is null!");
2164 
2165             const StateType thread_state = linux_thread_sp->GetState ();
2166             if (!StateIsStoppedState (thread_state, false))
2167             {
2168                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2169                 // Generally, these are not important stops and we don't want to report them as
2170                 // they are just used to stop other threads when one thread (the one with the
2171                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2172                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2173                 // leave the signal intact if this is the thread that was chosen as the
2174                 // triggering thread.
2175                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2176                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
2177                 else
2178                     linux_thread_sp->SetStoppedBySignal(0);
2179 
2180                 SetCurrentThreadID (thread_sp->GetID ());
2181                 ThreadDidStop (thread_sp->GetID (), true);
2182             }
2183             else
2184             {
2185                 if (log)
2186                 {
2187                     // Retrieve the signal name if the thread was stopped by a signal.
2188                     int stop_signo = 0;
2189                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2190                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2191                     if (!signal_name)
2192                         signal_name = "<no-signal-name>";
2193 
2194                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2195                                  __FUNCTION__,
2196                                  GetID (),
2197                                  linux_thread_sp->GetID (),
2198                                  StateAsCString (thread_state),
2199                                  stop_signo,
2200                                  signal_name);
2201                 }
2202                 ThreadDidStop (thread_sp->GetID (), false);
2203             }
2204         }
2205 
2206         // Done handling.
2207         return;
2208     }
2209 
2210     if (log)
2211         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2212 
2213     // This thread is stopped.
2214     ThreadDidStop (pid, false);
2215 
2216     if (thread_sp)
2217         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
2218 
2219     // Send a stop to the debugger after we get all other threads to stop.
2220     StopRunningThreads (pid);
2221 }
2222 
2223 namespace {
2224 
2225 struct EmulatorBaton
2226 {
2227     NativeProcessLinux* m_process;
2228     NativeRegisterContext* m_reg_context;
2229 
2230     // eRegisterKindDWARF -> RegsiterValue
2231     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2232 
2233     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2234             m_process(process), m_reg_context(reg_context) {}
2235 };
2236 
2237 } // anonymous namespace
2238 
2239 static size_t
2240 ReadMemoryCallback (EmulateInstruction *instruction,
2241                     void *baton,
2242                     const EmulateInstruction::Context &context,
2243                     lldb::addr_t addr,
2244                     void *dst,
2245                     size_t length)
2246 {
2247     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2248 
2249     size_t bytes_read;
2250     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2251     return bytes_read;
2252 }
2253 
2254 static bool
2255 ReadRegisterCallback (EmulateInstruction *instruction,
2256                       void *baton,
2257                       const RegisterInfo *reg_info,
2258                       RegisterValue &reg_value)
2259 {
2260     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2261 
2262     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2263     if (it != emulator_baton->m_register_values.end())
2264     {
2265         reg_value = it->second;
2266         return true;
2267     }
2268 
2269     // The emulator only fill in the dwarf regsiter numbers (and in some case
2270     // the generic register numbers). Get the full register info from the
2271     // register context based on the dwarf register numbers.
2272     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2273             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2274 
2275     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2276     if (error.Success())
2277         return true;
2278 
2279     return false;
2280 }
2281 
2282 static bool
2283 WriteRegisterCallback (EmulateInstruction *instruction,
2284                        void *baton,
2285                        const EmulateInstruction::Context &context,
2286                        const RegisterInfo *reg_info,
2287                        const RegisterValue &reg_value)
2288 {
2289     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2290     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2291     return true;
2292 }
2293 
2294 static size_t
2295 WriteMemoryCallback (EmulateInstruction *instruction,
2296                      void *baton,
2297                      const EmulateInstruction::Context &context,
2298                      lldb::addr_t addr,
2299                      const void *dst,
2300                      size_t length)
2301 {
2302     return length;
2303 }
2304 
2305 static lldb::addr_t
2306 ReadFlags (NativeRegisterContext* regsiter_context)
2307 {
2308     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2309             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2310     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2311 }
2312 
2313 Error
2314 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2315 {
2316     Error error;
2317     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2318 
2319     std::unique_ptr<EmulateInstruction> emulator_ap(
2320         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2321 
2322     if (emulator_ap == nullptr)
2323         return Error("Instruction emulator not found!");
2324 
2325     EmulatorBaton baton(this, register_context_sp.get());
2326     emulator_ap->SetBaton(&baton);
2327     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2328     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2329     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2330     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2331 
2332     if (!emulator_ap->ReadInstruction())
2333         return Error("Read instruction failed!");
2334 
2335     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2336 
2337     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2338     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2339 
2340     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2341     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2342 
2343     lldb::addr_t next_pc;
2344     lldb::addr_t next_flags;
2345     if (emulation_result)
2346     {
2347         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2348         next_pc = pc_it->second.GetAsUInt64();
2349 
2350         if (flags_it != baton.m_register_values.end())
2351             next_flags = flags_it->second.GetAsUInt64();
2352         else
2353             next_flags = ReadFlags (register_context_sp.get());
2354     }
2355     else if (pc_it == baton.m_register_values.end())
2356     {
2357         // Emulate instruction failed and it haven't changed PC. Advance PC
2358         // with the size of the current opcode because the emulation of all
2359         // PC modifying instruction should be successful. The failure most
2360         // likely caused by a not supported instruction which don't modify PC.
2361         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2362         next_flags = ReadFlags (register_context_sp.get());
2363     }
2364     else
2365     {
2366         // The instruction emulation failed after it modified the PC. It is an
2367         // unknown error where we can't continue because the next instruction is
2368         // modifying the PC but we don't  know how.
2369         return Error ("Instruction emulation failed unexpectedly.");
2370     }
2371 
2372     if (m_arch.GetMachine() == llvm::Triple::arm)
2373     {
2374         if (next_flags & 0x20)
2375         {
2376             // Thumb mode
2377             error = SetSoftwareBreakpoint(next_pc, 2);
2378         }
2379         else
2380         {
2381             // Arm mode
2382             error = SetSoftwareBreakpoint(next_pc, 4);
2383         }
2384     }
2385     else if (m_arch.GetMachine() == llvm::Triple::mips64
2386             || m_arch.GetMachine() == llvm::Triple::mips64el)
2387         error = SetSoftwareBreakpoint(next_pc, 4);
2388     else
2389     {
2390         // No size hint is given for the next breakpoint
2391         error = SetSoftwareBreakpoint(next_pc, 0);
2392     }
2393 
2394     if (error.Fail())
2395         return error;
2396 
2397     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2398 
2399     return Error();
2400 }
2401 
2402 bool
2403 NativeProcessLinux::SupportHardwareSingleStepping() const
2404 {
2405     if (m_arch.GetMachine() == llvm::Triple::arm
2406         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el)
2407         return false;
2408     return true;
2409 }
2410 
2411 Error
2412 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2413 {
2414     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2415     if (log)
2416         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2417 
2418     bool software_single_step = !SupportHardwareSingleStepping();
2419 
2420     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2421     Mutex::Locker locker (m_threads_mutex);
2422 
2423     if (software_single_step)
2424     {
2425         for (auto thread_sp : m_threads)
2426         {
2427             assert (thread_sp && "thread list should not contain NULL threads");
2428 
2429             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2430             if (action == nullptr)
2431                 continue;
2432 
2433             if (action->state == eStateStepping)
2434             {
2435                 Error error = SetupSoftwareSingleStepping(thread_sp);
2436                 if (error.Fail())
2437                     return error;
2438             }
2439         }
2440     }
2441 
2442     for (auto thread_sp : m_threads)
2443     {
2444         assert (thread_sp && "thread list should not contain NULL threads");
2445 
2446         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2447 
2448         if (action == nullptr)
2449         {
2450             if (log)
2451                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2452                     __FUNCTION__, GetID (), thread_sp->GetID ());
2453             continue;
2454         }
2455 
2456         if (log)
2457         {
2458             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2459                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2460         }
2461 
2462         switch (action->state)
2463         {
2464         case eStateRunning:
2465         {
2466             // Run the thread, possibly feeding it the signal.
2467             const int signo = action->signal;
2468             ResumeThread(thread_sp->GetID (),
2469                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2470                     {
2471                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2472                         // Pass this signal number on to the inferior to handle.
2473                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2474                         if (resume_result.Success())
2475                             SetState(eStateRunning, true);
2476                         return resume_result;
2477                     },
2478                     false);
2479             break;
2480         }
2481 
2482         case eStateStepping:
2483         {
2484             // Request the step.
2485             const int signo = action->signal;
2486             ResumeThread(thread_sp->GetID (),
2487                     [=](lldb::tid_t tid_to_step, bool supress_signal)
2488                     {
2489                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2490 
2491                         Error step_result;
2492                         if (software_single_step)
2493                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2494                         else
2495                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2496 
2497                         assert (step_result.Success() && "SingleStep() failed");
2498                         if (step_result.Success())
2499                             SetState(eStateStepping, true);
2500                         return step_result;
2501                     },
2502                     false);
2503             break;
2504         }
2505 
2506         case eStateSuspended:
2507         case eStateStopped:
2508             lldbassert(0 && "Unexpected state");
2509 
2510         default:
2511             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2512                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2513         }
2514     }
2515 
2516     return Error();
2517 }
2518 
2519 Error
2520 NativeProcessLinux::Halt ()
2521 {
2522     Error error;
2523 
2524     if (kill (GetID (), SIGSTOP) != 0)
2525         error.SetErrorToErrno ();
2526 
2527     return error;
2528 }
2529 
2530 Error
2531 NativeProcessLinux::Detach ()
2532 {
2533     Error error;
2534 
2535     // Tell ptrace to detach from the process.
2536     if (GetID () != LLDB_INVALID_PROCESS_ID)
2537         error = Detach (GetID ());
2538 
2539     // Stop monitoring the inferior.
2540     m_monitor_up->Terminate();
2541 
2542     // No error.
2543     return error;
2544 }
2545 
2546 Error
2547 NativeProcessLinux::Signal (int signo)
2548 {
2549     Error error;
2550 
2551     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2552     if (log)
2553         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2554                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2555 
2556     if (kill(GetID(), signo))
2557         error.SetErrorToErrno();
2558 
2559     return error;
2560 }
2561 
2562 Error
2563 NativeProcessLinux::Interrupt ()
2564 {
2565     // Pick a running thread (or if none, a not-dead stopped thread) as
2566     // the chosen thread that will be the stop-reason thread.
2567     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2568 
2569     NativeThreadProtocolSP running_thread_sp;
2570     NativeThreadProtocolSP stopped_thread_sp;
2571 
2572     if (log)
2573         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2574 
2575     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2576     Mutex::Locker locker (m_threads_mutex);
2577 
2578     for (auto thread_sp : m_threads)
2579     {
2580         // The thread shouldn't be null but lets just cover that here.
2581         if (!thread_sp)
2582             continue;
2583 
2584         // If we have a running or stepping thread, we'll call that the
2585         // target of the interrupt.
2586         const auto thread_state = thread_sp->GetState ();
2587         if (thread_state == eStateRunning ||
2588             thread_state == eStateStepping)
2589         {
2590             running_thread_sp = thread_sp;
2591             break;
2592         }
2593         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2594         {
2595             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2596             stopped_thread_sp = thread_sp;
2597         }
2598     }
2599 
2600     if (!running_thread_sp && !stopped_thread_sp)
2601     {
2602         Error error("found no running/stepping or live stopped threads as target for interrupt");
2603         if (log)
2604             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2605 
2606         return error;
2607     }
2608 
2609     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2610 
2611     if (log)
2612         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2613                      __FUNCTION__,
2614                      GetID (),
2615                      running_thread_sp ? "running" : "stopped",
2616                      deferred_signal_thread_sp->GetID ());
2617 
2618     StopRunningThreads(deferred_signal_thread_sp->GetID());
2619 
2620     return Error();
2621 }
2622 
2623 Error
2624 NativeProcessLinux::Kill ()
2625 {
2626     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2627     if (log)
2628         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2629 
2630     Error error;
2631 
2632     switch (m_state)
2633     {
2634         case StateType::eStateInvalid:
2635         case StateType::eStateExited:
2636         case StateType::eStateCrashed:
2637         case StateType::eStateDetached:
2638         case StateType::eStateUnloaded:
2639             // Nothing to do - the process is already dead.
2640             if (log)
2641                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2642             return error;
2643 
2644         case StateType::eStateConnected:
2645         case StateType::eStateAttaching:
2646         case StateType::eStateLaunching:
2647         case StateType::eStateStopped:
2648         case StateType::eStateRunning:
2649         case StateType::eStateStepping:
2650         case StateType::eStateSuspended:
2651             // We can try to kill a process in these states.
2652             break;
2653     }
2654 
2655     if (kill (GetID (), SIGKILL) != 0)
2656     {
2657         error.SetErrorToErrno ();
2658         return error;
2659     }
2660 
2661     return error;
2662 }
2663 
2664 static Error
2665 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2666 {
2667     memory_region_info.Clear();
2668 
2669     StringExtractor line_extractor (maps_line.c_str ());
2670 
2671     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2672     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2673 
2674     // Parse out the starting address
2675     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2676 
2677     // Parse out hyphen separating start and end address from range.
2678     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2679         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2680 
2681     // Parse out the ending address
2682     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2683 
2684     // Parse out the space after the address.
2685     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2686         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2687 
2688     // Save the range.
2689     memory_region_info.GetRange ().SetRangeBase (start_address);
2690     memory_region_info.GetRange ().SetRangeEnd (end_address);
2691 
2692     // Parse out each permission entry.
2693     if (line_extractor.GetBytesLeft () < 4)
2694         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2695 
2696     // Handle read permission.
2697     const char read_perm_char = line_extractor.GetChar ();
2698     if (read_perm_char == 'r')
2699         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2700     else
2701     {
2702         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2703         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2704     }
2705 
2706     // Handle write permission.
2707     const char write_perm_char = line_extractor.GetChar ();
2708     if (write_perm_char == 'w')
2709         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2710     else
2711     {
2712         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2713         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2714     }
2715 
2716     // Handle execute permission.
2717     const char exec_perm_char = line_extractor.GetChar ();
2718     if (exec_perm_char == 'x')
2719         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2720     else
2721     {
2722         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2723         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2724     }
2725 
2726     return Error ();
2727 }
2728 
2729 Error
2730 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2731 {
2732     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2733     // with no perms if it is not mapped.
2734 
2735     // Use an approach that reads memory regions from /proc/{pid}/maps.
2736     // Assume proc maps entries are in ascending order.
2737     // FIXME assert if we find differently.
2738     Mutex::Locker locker (m_mem_region_cache_mutex);
2739 
2740     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2741     Error error;
2742 
2743     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2744     {
2745         // We're done.
2746         error.SetErrorString ("unsupported");
2747         return error;
2748     }
2749 
2750     // If our cache is empty, pull the latest.  There should always be at least one memory region
2751     // if memory region handling is supported.
2752     if (m_mem_region_cache.empty ())
2753     {
2754         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2755              [&] (const std::string &line) -> bool
2756              {
2757                  MemoryRegionInfo info;
2758                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2759                  if (parse_error.Success ())
2760                  {
2761                      m_mem_region_cache.push_back (info);
2762                      return true;
2763                  }
2764                  else
2765                  {
2766                      if (log)
2767                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2768                      return false;
2769                  }
2770              });
2771 
2772         // If we had an error, we'll mark unsupported.
2773         if (error.Fail ())
2774         {
2775             m_supports_mem_region = LazyBool::eLazyBoolNo;
2776             return error;
2777         }
2778         else if (m_mem_region_cache.empty ())
2779         {
2780             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2781             // is supported.  Assume we don't support map entries via procfs.
2782             if (log)
2783                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2784             m_supports_mem_region = LazyBool::eLazyBoolNo;
2785             error.SetErrorString ("not supported");
2786             return error;
2787         }
2788 
2789         if (log)
2790             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2791 
2792         // We support memory retrieval, remember that.
2793         m_supports_mem_region = LazyBool::eLazyBoolYes;
2794     }
2795     else
2796     {
2797         if (log)
2798             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2799     }
2800 
2801     lldb::addr_t prev_base_address = 0;
2802 
2803     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2804     // There can be a ton of regions on pthreads apps with lots of threads.
2805     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2806     {
2807         MemoryRegionInfo &proc_entry_info = *it;
2808 
2809         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2810         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2811         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2812 
2813         // If the target address comes before this entry, indicate distance to next region.
2814         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2815         {
2816             range_info.GetRange ().SetRangeBase (load_addr);
2817             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2818             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2819             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2820             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2821 
2822             return error;
2823         }
2824         else if (proc_entry_info.GetRange ().Contains (load_addr))
2825         {
2826             // The target address is within the memory region we're processing here.
2827             range_info = proc_entry_info;
2828             return error;
2829         }
2830 
2831         // The target memory address comes somewhere after the region we just parsed.
2832     }
2833 
2834     // If we made it here, we didn't find an entry that contained the given address.
2835     error.SetErrorString ("address comes after final region");
2836 
2837     if (log)
2838         log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
2839 
2840     return error;
2841 }
2842 
2843 void
2844 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2845 {
2846     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2847     if (log)
2848         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2849 
2850     {
2851         Mutex::Locker locker (m_mem_region_cache_mutex);
2852         if (log)
2853             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2854         m_mem_region_cache.clear ();
2855     }
2856 }
2857 
2858 Error
2859 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2860 {
2861     // FIXME implementing this requires the equivalent of
2862     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2863     // functional ThreadPlans working with Native*Protocol.
2864 #if 1
2865     return Error ("not implemented yet");
2866 #else
2867     addr = LLDB_INVALID_ADDRESS;
2868 
2869     unsigned prot = 0;
2870     if (permissions & lldb::ePermissionsReadable)
2871         prot |= eMmapProtRead;
2872     if (permissions & lldb::ePermissionsWritable)
2873         prot |= eMmapProtWrite;
2874     if (permissions & lldb::ePermissionsExecutable)
2875         prot |= eMmapProtExec;
2876 
2877     // TODO implement this directly in NativeProcessLinux
2878     // (and lift to NativeProcessPOSIX if/when that class is
2879     // refactored out).
2880     if (InferiorCallMmap(this, addr, 0, size, prot,
2881                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2882         m_addr_to_mmap_size[addr] = size;
2883         return Error ();
2884     } else {
2885         addr = LLDB_INVALID_ADDRESS;
2886         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2887     }
2888 #endif
2889 }
2890 
2891 Error
2892 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2893 {
2894     // FIXME see comments in AllocateMemory - required lower-level
2895     // bits not in place yet (ThreadPlans)
2896     return Error ("not implemented");
2897 }
2898 
2899 lldb::addr_t
2900 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2901 {
2902 #if 1
2903     // punt on this for now
2904     return LLDB_INVALID_ADDRESS;
2905 #else
2906     // Return the image info address for the exe module
2907 #if 1
2908     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2909 
2910     ModuleSP module_sp;
2911     Error error = GetExeModuleSP (module_sp);
2912     if (error.Fail ())
2913     {
2914          if (log)
2915             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2916         return LLDB_INVALID_ADDRESS;
2917     }
2918 
2919     if (module_sp == nullptr)
2920     {
2921          if (log)
2922             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2923          return LLDB_INVALID_ADDRESS;
2924     }
2925 
2926     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2927     if (object_file_sp == nullptr)
2928     {
2929          if (log)
2930             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2931          return LLDB_INVALID_ADDRESS;
2932     }
2933 
2934     return obj_file_sp->GetImageInfoAddress();
2935 #else
2936     Target *target = &GetTarget();
2937     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2938     Address addr = obj_file->GetImageInfoAddress(target);
2939 
2940     if (addr.IsValid())
2941         return addr.GetLoadAddress(target);
2942     return LLDB_INVALID_ADDRESS;
2943 #endif
2944 #endif // punt on this for now
2945 }
2946 
2947 size_t
2948 NativeProcessLinux::UpdateThreads ()
2949 {
2950     // The NativeProcessLinux monitoring threads are always up to date
2951     // with respect to thread state and they keep the thread list
2952     // populated properly. All this method needs to do is return the
2953     // thread count.
2954     Mutex::Locker locker (m_threads_mutex);
2955     return m_threads.size ();
2956 }
2957 
2958 bool
2959 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2960 {
2961     arch = m_arch;
2962     return true;
2963 }
2964 
2965 Error
2966 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2967 {
2968     // FIXME put this behind a breakpoint protocol class that can be
2969     // set per architecture.  Need ARM, MIPS support here.
2970     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2971     static const uint8_t g_i386_opcode [] = { 0xCC };
2972     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2973 
2974     switch (m_arch.GetMachine ())
2975     {
2976         case llvm::Triple::aarch64:
2977             actual_opcode_size = static_cast<uint32_t> (sizeof(g_aarch64_opcode));
2978             return Error ();
2979 
2980         case llvm::Triple::arm:
2981             actual_opcode_size = 0; // On arm the PC don't get updated for breakpoint hits
2982             return Error ();
2983 
2984         case llvm::Triple::x86:
2985         case llvm::Triple::x86_64:
2986             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2987             return Error ();
2988 
2989         case llvm::Triple::mips64:
2990         case llvm::Triple::mips64el:
2991             actual_opcode_size = static_cast<uint32_t> (sizeof(g_mips64_opcode));
2992             return Error ();
2993 
2994         default:
2995             assert(false && "CPU type not supported!");
2996             return Error ("CPU type not supported");
2997     }
2998 }
2999 
3000 Error
3001 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
3002 {
3003     if (hardware)
3004         return Error ("NativeProcessLinux does not support hardware breakpoints");
3005     else
3006         return SetSoftwareBreakpoint (addr, size);
3007 }
3008 
3009 Error
3010 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
3011                                                      size_t &actual_opcode_size,
3012                                                      const uint8_t *&trap_opcode_bytes)
3013 {
3014     // FIXME put this behind a breakpoint protocol class that can be set per
3015     // architecture.  Need MIPS support here.
3016     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
3017     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
3018     // linux kernel does otherwise.
3019     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
3020     static const uint8_t g_i386_opcode [] = { 0xCC };
3021     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
3022     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
3023     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
3024 
3025     switch (m_arch.GetMachine ())
3026     {
3027     case llvm::Triple::aarch64:
3028         trap_opcode_bytes = g_aarch64_opcode;
3029         actual_opcode_size = sizeof(g_aarch64_opcode);
3030         return Error ();
3031 
3032     case llvm::Triple::arm:
3033         switch (trap_opcode_size_hint)
3034         {
3035         case 2:
3036             trap_opcode_bytes = g_thumb_breakpoint_opcode;
3037             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
3038             return Error ();
3039         case 4:
3040             trap_opcode_bytes = g_arm_breakpoint_opcode;
3041             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
3042             return Error ();
3043         default:
3044             assert(false && "Unrecognised trap opcode size hint!");
3045             return Error ("Unrecognised trap opcode size hint!");
3046         }
3047 
3048     case llvm::Triple::x86:
3049     case llvm::Triple::x86_64:
3050         trap_opcode_bytes = g_i386_opcode;
3051         actual_opcode_size = sizeof(g_i386_opcode);
3052         return Error ();
3053 
3054     case llvm::Triple::mips64:
3055         trap_opcode_bytes = g_mips64_opcode;
3056         actual_opcode_size = sizeof(g_mips64_opcode);
3057         return Error ();
3058 
3059     case llvm::Triple::mips64el:
3060         trap_opcode_bytes = g_mips64el_opcode;
3061         actual_opcode_size = sizeof(g_mips64el_opcode);
3062         return Error ();
3063 
3064     default:
3065         assert(false && "CPU type not supported!");
3066         return Error ("CPU type not supported");
3067     }
3068 }
3069 
3070 #if 0
3071 ProcessMessage::CrashReason
3072 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
3073 {
3074     ProcessMessage::CrashReason reason;
3075     assert(info->si_signo == SIGSEGV);
3076 
3077     reason = ProcessMessage::eInvalidCrashReason;
3078 
3079     switch (info->si_code)
3080     {
3081     default:
3082         assert(false && "unexpected si_code for SIGSEGV");
3083         break;
3084     case SI_KERNEL:
3085         // Linux will occasionally send spurious SI_KERNEL codes.
3086         // (this is poorly documented in sigaction)
3087         // One way to get this is via unaligned SIMD loads.
3088         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
3089         break;
3090     case SEGV_MAPERR:
3091         reason = ProcessMessage::eInvalidAddress;
3092         break;
3093     case SEGV_ACCERR:
3094         reason = ProcessMessage::ePrivilegedAddress;
3095         break;
3096     }
3097 
3098     return reason;
3099 }
3100 #endif
3101 
3102 
3103 #if 0
3104 ProcessMessage::CrashReason
3105 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
3106 {
3107     ProcessMessage::CrashReason reason;
3108     assert(info->si_signo == SIGILL);
3109 
3110     reason = ProcessMessage::eInvalidCrashReason;
3111 
3112     switch (info->si_code)
3113     {
3114     default:
3115         assert(false && "unexpected si_code for SIGILL");
3116         break;
3117     case ILL_ILLOPC:
3118         reason = ProcessMessage::eIllegalOpcode;
3119         break;
3120     case ILL_ILLOPN:
3121         reason = ProcessMessage::eIllegalOperand;
3122         break;
3123     case ILL_ILLADR:
3124         reason = ProcessMessage::eIllegalAddressingMode;
3125         break;
3126     case ILL_ILLTRP:
3127         reason = ProcessMessage::eIllegalTrap;
3128         break;
3129     case ILL_PRVOPC:
3130         reason = ProcessMessage::ePrivilegedOpcode;
3131         break;
3132     case ILL_PRVREG:
3133         reason = ProcessMessage::ePrivilegedRegister;
3134         break;
3135     case ILL_COPROC:
3136         reason = ProcessMessage::eCoprocessorError;
3137         break;
3138     case ILL_BADSTK:
3139         reason = ProcessMessage::eInternalStackError;
3140         break;
3141     }
3142 
3143     return reason;
3144 }
3145 #endif
3146 
3147 #if 0
3148 ProcessMessage::CrashReason
3149 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3150 {
3151     ProcessMessage::CrashReason reason;
3152     assert(info->si_signo == SIGFPE);
3153 
3154     reason = ProcessMessage::eInvalidCrashReason;
3155 
3156     switch (info->si_code)
3157     {
3158     default:
3159         assert(false && "unexpected si_code for SIGFPE");
3160         break;
3161     case FPE_INTDIV:
3162         reason = ProcessMessage::eIntegerDivideByZero;
3163         break;
3164     case FPE_INTOVF:
3165         reason = ProcessMessage::eIntegerOverflow;
3166         break;
3167     case FPE_FLTDIV:
3168         reason = ProcessMessage::eFloatDivideByZero;
3169         break;
3170     case FPE_FLTOVF:
3171         reason = ProcessMessage::eFloatOverflow;
3172         break;
3173     case FPE_FLTUND:
3174         reason = ProcessMessage::eFloatUnderflow;
3175         break;
3176     case FPE_FLTRES:
3177         reason = ProcessMessage::eFloatInexactResult;
3178         break;
3179     case FPE_FLTINV:
3180         reason = ProcessMessage::eFloatInvalidOperation;
3181         break;
3182     case FPE_FLTSUB:
3183         reason = ProcessMessage::eFloatSubscriptRange;
3184         break;
3185     }
3186 
3187     return reason;
3188 }
3189 #endif
3190 
3191 #if 0
3192 ProcessMessage::CrashReason
3193 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3194 {
3195     ProcessMessage::CrashReason reason;
3196     assert(info->si_signo == SIGBUS);
3197 
3198     reason = ProcessMessage::eInvalidCrashReason;
3199 
3200     switch (info->si_code)
3201     {
3202     default:
3203         assert(false && "unexpected si_code for SIGBUS");
3204         break;
3205     case BUS_ADRALN:
3206         reason = ProcessMessage::eIllegalAlignment;
3207         break;
3208     case BUS_ADRERR:
3209         reason = ProcessMessage::eIllegalAddress;
3210         break;
3211     case BUS_OBJERR:
3212         reason = ProcessMessage::eHardwareError;
3213         break;
3214     }
3215 
3216     return reason;
3217 }
3218 #endif
3219 
3220 Error
3221 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3222 {
3223     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3224     // for it.
3225     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3226     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3227 }
3228 
3229 Error
3230 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3231 {
3232     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3233     // for it.
3234     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3235     return NativeProcessProtocol::RemoveWatchpoint(addr);
3236 }
3237 
3238 Error
3239 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3240 {
3241     ReadOperation op(addr, buf, size, bytes_read);
3242     m_monitor_up->DoOperation(&op);
3243     return op.GetError ();
3244 }
3245 
3246 Error
3247 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3248 {
3249     Error error = ReadMemory(addr, buf, size, bytes_read);
3250     if (error.Fail()) return error;
3251     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3252 }
3253 
3254 Error
3255 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3256 {
3257     WriteOperation op(addr, buf, size, bytes_written);
3258     m_monitor_up->DoOperation(&op);
3259     return op.GetError ();
3260 }
3261 
3262 Error
3263 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3264 {
3265     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3266 
3267     if (log)
3268         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3269                                  GetUnixSignals().GetSignalAsCString (signo));
3270     ResumeOperation op (tid, signo);
3271     m_monitor_up->DoOperation (&op);
3272     if (log)
3273         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, op.GetError().Success() ? "true" : "false");
3274     return op.GetError();
3275 }
3276 
3277 Error
3278 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3279 {
3280     SingleStepOperation op(tid, signo);
3281     m_monitor_up->DoOperation(&op);
3282     return op.GetError();
3283 }
3284 
3285 Error
3286 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3287 {
3288     SiginfoOperation op(tid, siginfo);
3289     m_monitor_up->DoOperation(&op);
3290     return op.GetError();
3291 }
3292 
3293 Error
3294 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3295 {
3296     EventMessageOperation op(tid, message);
3297     m_monitor_up->DoOperation(&op);
3298     return op.GetError();
3299 }
3300 
3301 Error
3302 NativeProcessLinux::Detach(lldb::tid_t tid)
3303 {
3304     if (tid == LLDB_INVALID_THREAD_ID)
3305         return Error();
3306 
3307     DetachOperation op(tid);
3308     m_monitor_up->DoOperation(&op);
3309     return op.GetError();
3310 }
3311 
3312 bool
3313 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3314 {
3315     int target_fd = open(path, flags, 0666);
3316 
3317     if (target_fd == -1)
3318         return false;
3319 
3320     if (dup2(target_fd, fd) == -1)
3321         return false;
3322 
3323     return (close(target_fd) == -1) ? false : true;
3324 }
3325 
3326 void
3327 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3328 {
3329     m_monitor_up.reset(new Monitor(initial_operation, this));
3330     error = m_monitor_up->Initialize();
3331     if (error.Fail()) {
3332         m_monitor_up.reset();
3333     }
3334 }
3335 
3336 bool
3337 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3338 {
3339     for (auto thread_sp : m_threads)
3340     {
3341         assert (thread_sp && "thread list should not contain NULL threads");
3342         if (thread_sp->GetID () == thread_id)
3343         {
3344             // We have this thread.
3345             return true;
3346         }
3347     }
3348 
3349     // We don't have this thread.
3350     return false;
3351 }
3352 
3353 NativeThreadProtocolSP
3354 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3355 {
3356     // CONSIDER organize threads by map - we can do better than linear.
3357     for (auto thread_sp : m_threads)
3358     {
3359         if (thread_sp->GetID () == thread_id)
3360             return thread_sp;
3361     }
3362 
3363     // We don't have this thread.
3364     return NativeThreadProtocolSP ();
3365 }
3366 
3367 bool
3368 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3369 {
3370     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3371 
3372     if (log)
3373         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3374 
3375     bool found = false;
3376 
3377     Mutex::Locker locker (m_threads_mutex);
3378     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3379     {
3380         if (*it && ((*it)->GetID () == thread_id))
3381         {
3382             m_threads.erase (it);
3383             found = true;
3384             break;
3385         }
3386     }
3387 
3388     // If we have a pending notification, remove this from the set.
3389     if (m_pending_notification_up)
3390     {
3391         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
3392         SignalIfAllThreadsStopped();
3393     }
3394 
3395     return found;
3396 }
3397 
3398 NativeThreadProtocolSP
3399 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3400 {
3401     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3402 
3403     Mutex::Locker locker (m_threads_mutex);
3404 
3405     if (log)
3406     {
3407         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3408                 __FUNCTION__,
3409                 GetID (),
3410                 thread_id);
3411     }
3412 
3413     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3414 
3415     // If this is the first thread, save it as the current thread
3416     if (m_threads.empty ())
3417         SetCurrentThreadID (thread_id);
3418 
3419     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3420     m_threads.push_back (thread_sp);
3421 
3422     return thread_sp;
3423 }
3424 
3425 Error
3426 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3427 {
3428     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3429 
3430     Error error;
3431 
3432     // Get a linux thread pointer.
3433     if (!thread_sp)
3434     {
3435         error.SetErrorString ("null thread_sp");
3436         if (log)
3437             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3438         return error;
3439     }
3440     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
3441 
3442     // Find out the size of a breakpoint (might depend on where we are in the code).
3443     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
3444     if (!context_sp)
3445     {
3446         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3447         if (log)
3448             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3449         return error;
3450     }
3451 
3452     uint32_t breakpoint_size = 0;
3453     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
3454     if (error.Fail ())
3455     {
3456         if (log)
3457             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3458         return error;
3459     }
3460     else
3461     {
3462         if (log)
3463             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3464     }
3465 
3466     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3467     const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3468     lldb::addr_t breakpoint_addr = initial_pc_addr;
3469     if (breakpoint_size > 0)
3470     {
3471         // Do not allow breakpoint probe to wrap around.
3472         if (breakpoint_addr >= breakpoint_size)
3473             breakpoint_addr -= breakpoint_size;
3474     }
3475 
3476     // Check if we stopped because of a breakpoint.
3477     NativeBreakpointSP breakpoint_sp;
3478     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3479     if (!error.Success () || !breakpoint_sp)
3480     {
3481         // We didn't find one at a software probe location.  Nothing to do.
3482         if (log)
3483             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3484         return Error ();
3485     }
3486 
3487     // If the breakpoint is not a software breakpoint, nothing to do.
3488     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3489     {
3490         if (log)
3491             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3492         return Error ();
3493     }
3494 
3495     //
3496     // We have a software breakpoint and need to adjust the PC.
3497     //
3498 
3499     // Sanity check.
3500     if (breakpoint_size == 0)
3501     {
3502         // Nothing to do!  How did we get here?
3503         if (log)
3504             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3505         return Error ();
3506     }
3507 
3508     // Change the program counter.
3509     if (log)
3510         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
3511 
3512     error = context_sp->SetPC (breakpoint_addr);
3513     if (error.Fail ())
3514     {
3515         if (log)
3516             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
3517         return error;
3518     }
3519 
3520     return error;
3521 }
3522 
3523 Error
3524 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
3525 {
3526     char maps_file_name[32];
3527     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
3528 
3529     FileSpec maps_file_spec(maps_file_name, false);
3530     if (!maps_file_spec.Exists()) {
3531         file_spec.Clear();
3532         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
3533     }
3534 
3535     FileSpec module_file_spec(module_path, true);
3536 
3537     std::ifstream maps_file(maps_file_name);
3538     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
3539     StringRef maps_data(maps_data_str.c_str());
3540 
3541     while (!maps_data.empty())
3542     {
3543         StringRef maps_row;
3544         std::tie(maps_row, maps_data) = maps_data.split('\n');
3545 
3546         SmallVector<StringRef, 16> maps_columns;
3547         maps_row.split(maps_columns, StringRef(" "), -1, false);
3548 
3549         if (maps_columns.size() >= 6)
3550         {
3551             file_spec.SetFile(maps_columns[5].str().c_str(), false);
3552             if (file_spec.GetFilename() == module_file_spec.GetFilename())
3553                 return Error();
3554         }
3555     }
3556 
3557     file_spec.Clear();
3558     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3559                  module_file_spec.GetFilename().AsCString(), GetID());
3560 }
3561 
3562 Error
3563 NativeProcessLinux::ResumeThread(
3564         lldb::tid_t tid,
3565         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3566         bool error_when_already_running)
3567 {
3568     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3569 
3570     if (log)
3571         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3572                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3573 
3574     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3575     lldbassert(thread_sp != nullptr);
3576 
3577     auto& context = thread_sp->GetThreadContext();
3578     // Tell the thread to resume if we don't already think it is running.
3579     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3580 
3581     lldbassert(!(error_when_already_running && !is_stopped));
3582 
3583     if (!is_stopped)
3584     {
3585         // It's not an error, just a log, if the error_when_already_running flag is not set.
3586         // This covers cases where, for instance, we're just trying to resume all threads
3587         // from the user side.
3588         if (log)
3589             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3590                     __FUNCTION__,
3591                     tid);
3592         return Error();
3593     }
3594 
3595     // Before we do the resume below, first check if we have a pending
3596     // stop notification that is currently waiting for
3597     // this thread to stop.  This is potentially a buggy situation since
3598     // we're ostensibly waiting for threads to stop before we send out the
3599     // pending notification, and here we are resuming one before we send
3600     // out the pending stop notification.
3601     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3602     {
3603         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3604     }
3605 
3606     // Request a resume.  We expect this to be synchronous and the system
3607     // to reflect it is running after this completes.
3608     const auto error = request_thread_resume_function (tid, false);
3609     if (error.Success())
3610         context.request_resume_function = request_thread_resume_function;
3611     else if (log)
3612     {
3613         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3614                          __FUNCTION__, tid, error.AsCString ());
3615     }
3616 
3617     return error;
3618 }
3619 
3620 //===----------------------------------------------------------------------===//
3621 
3622 void
3623 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3624 {
3625     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3626 
3627     if (log)
3628     {
3629         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3630                 __FUNCTION__, triggering_tid);
3631     }
3632 
3633     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3634 
3635     if (log)
3636     {
3637         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3638     }
3639 }
3640 
3641 void
3642 NativeProcessLinux::SignalIfAllThreadsStopped()
3643 {
3644     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3645     {
3646         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3647 
3648         // Clear any temporary breakpoints we used to implement software single stepping.
3649         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3650         {
3651             Error error = RemoveBreakpoint (thread_info.second);
3652             if (error.Fail())
3653                 if (log)
3654                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3655                             __FUNCTION__, thread_info.first, error.AsCString());
3656         }
3657         m_threads_stepping_with_breakpoint.clear();
3658 
3659         // Notify the delegate about the stop
3660         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3661         SetState(StateType::eStateStopped, true);
3662         m_pending_notification_up.reset();
3663     }
3664 }
3665 
3666 void
3667 NativeProcessLinux::RequestStopOnAllRunningThreads()
3668 {
3669     // Request a stop for all the thread stops that need to be stopped
3670     // and are not already known to be stopped.  Keep a list of all the
3671     // threads from which we still need to hear a stop reply.
3672 
3673     ThreadIDSet sent_tids;
3674     for (const auto &thread_sp: m_threads)
3675     {
3676         // We only care about running threads
3677         if (StateIsStoppedState(thread_sp->GetState(), true))
3678             continue;
3679 
3680         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3681         sent_tids.insert (thread_sp->GetID());
3682     }
3683 
3684     // Set the wait list to the set of tids for which we requested stops.
3685     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3686 }
3687 
3688 
3689 Error
3690 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3691 {
3692     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3693 
3694     if (log)
3695         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3696                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3697 
3698     // Ensure we know about the thread.
3699     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3700     lldbassert(thread_sp != nullptr);
3701 
3702     // Update the global list of known thread states.  This one is definitely stopped.
3703     auto& context = thread_sp->GetThreadContext();
3704     const auto stop_was_requested = context.stop_requested;
3705     context.stop_requested = false;
3706 
3707     // If we have a pending notification, remove this from the set.
3708     if (m_pending_notification_up)
3709     {
3710         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3711         SignalIfAllThreadsStopped();
3712     }
3713 
3714     Error error;
3715     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3716     {
3717         // We can end up here if stop was initiated by LLGS but by this time a
3718         // thread stop has occurred - maybe initiated by another event.
3719         if (log)
3720             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3721         error = context.request_resume_function (tid, true);
3722         if (error.Fail() && log)
3723         {
3724                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3725                         __FUNCTION__, tid, error.AsCString ());
3726         }
3727     }
3728     return error;
3729 }
3730 
3731 void
3732 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3733 {
3734     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3735     if (m_pending_notification_up && log)
3736     {
3737         // Yikes - we've already got a pending signal notification in progress.
3738         // Log this info.  We lose the pending notification here.
3739         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3740                    __FUNCTION__,
3741                    m_pending_notification_up->triggering_tid,
3742                    notification_up->triggering_tid);
3743     }
3744     m_pending_notification_up = std::move(notification_up);
3745 
3746     RequestStopOnAllRunningThreads();
3747 
3748     SignalIfAllThreadsStopped();
3749 }
3750 
3751 void
3752 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3753 {
3754     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3755 
3756     if (log)
3757         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3758 
3759     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3760     lldbassert(thread_sp != nullptr);
3761 
3762     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3763     {
3764         // We will need to wait for this new thread to stop as well before firing the
3765         // notification.
3766         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3767         thread_sp->RequestStop();
3768     }
3769 }
3770 
3771 Error
3772 NativeProcessLinux::DoOperation(Operation* op)
3773 {
3774     m_monitor_up->DoOperation(op);
3775     return op->GetError();
3776 }
3777 
3778 // Wrapper for ptrace to catch errors and log calls.
3779 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3780 long
3781 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, Error& error)
3782 {
3783     long int result;
3784 
3785     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3786 
3787     PtraceDisplayBytes(req, data, data_size);
3788 
3789     error.Clear();
3790     errno = 0;
3791     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3792         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3793     else
3794         result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3795 
3796     if (result == -1)
3797         error.SetErrorToErrno();
3798 
3799     if (log)
3800         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, result);
3801 
3802     PtraceDisplayBytes(req, data, data_size);
3803 
3804     if (log && error.GetError() != 0)
3805     {
3806         const char* str;
3807         switch (error.GetError())
3808         {
3809         case ESRCH:  str = "ESRCH"; break;
3810         case EINVAL: str = "EINVAL"; break;
3811         case EBUSY:  str = "EBUSY"; break;
3812         case EPERM:  str = "EPERM"; break;
3813         default:     str = error.AsCString();
3814         }
3815         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3816     }
3817 
3818     return result;
3819 }
3820