1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Core/RegisterValue.h" 29 #include "lldb/Core/State.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostProcess.h" 32 #include "lldb/Host/PseudoTerminal.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/Ptrace.h" 37 #include "lldb/Host/linux/Uio.h" 38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 39 #include "lldb/Symbol/ObjectFile.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/ProcessLaunchInfo.h" 42 #include "lldb/Target/Target.h" 43 #include "lldb/Utility/LLDBAssert.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include "NativeThreadLinux.h" 51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 52 #include "Procfs.h" 53 54 #include <linux/unistd.h> 55 #include <sys/socket.h> 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 using namespace lldb; 67 using namespace lldb_private; 68 using namespace lldb_private::process_linux; 69 using namespace llvm; 70 71 // Private bits we only need internally. 72 73 static bool ProcessVmReadvSupported() { 74 static bool is_supported; 75 static llvm::once_flag flag; 76 77 llvm::call_once(flag, [] { 78 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 79 80 uint32_t source = 0x47424742; 81 uint32_t dest = 0; 82 83 struct iovec local, remote; 84 remote.iov_base = &source; 85 local.iov_base = &dest; 86 remote.iov_len = local.iov_len = sizeof source; 87 88 // We shall try if cross-process-memory reads work by attempting to read a 89 // value from our own process. 90 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 91 is_supported = (res == sizeof(source) && source == dest); 92 if (is_supported) 93 LLDB_LOG(log, 94 "Detected kernel support for process_vm_readv syscall. " 95 "Fast memory reads enabled."); 96 else 97 LLDB_LOG(log, 98 "syscall process_vm_readv failed (error: {0}). Fast memory " 99 "reads disabled.", 100 llvm::sys::StrError()); 101 }); 102 103 return is_supported; 104 } 105 106 namespace { 107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 108 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 109 if (!log) 110 return; 111 112 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 113 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 114 else 115 LLDB_LOG(log, "leaving STDIN as is"); 116 117 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 118 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 119 else 120 LLDB_LOG(log, "leaving STDOUT as is"); 121 122 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 123 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 124 else 125 LLDB_LOG(log, "leaving STDERR as is"); 126 127 int i = 0; 128 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 129 ++args, ++i) 130 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 131 } 132 133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 134 uint8_t *ptr = (uint8_t *)bytes; 135 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 136 for (uint32_t i = 0; i < loop_count; i++) { 137 s.Printf("[%x]", *ptr); 138 ptr++; 139 } 140 } 141 142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 143 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 144 if (!log) 145 return; 146 StreamString buf; 147 148 switch (req) { 149 case PTRACE_POKETEXT: { 150 DisplayBytes(buf, &data, 8); 151 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 152 break; 153 } 154 case PTRACE_POKEDATA: { 155 DisplayBytes(buf, &data, 8); 156 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 157 break; 158 } 159 case PTRACE_POKEUSER: { 160 DisplayBytes(buf, &data, 8); 161 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 162 break; 163 } 164 case PTRACE_SETREGS: { 165 DisplayBytes(buf, data, data_size); 166 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 167 break; 168 } 169 case PTRACE_SETFPREGS: { 170 DisplayBytes(buf, data, data_size); 171 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 172 break; 173 } 174 case PTRACE_SETSIGINFO: { 175 DisplayBytes(buf, data, sizeof(siginfo_t)); 176 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 177 break; 178 } 179 case PTRACE_SETREGSET: { 180 // Extract iov_base from data, which is a pointer to the struct IOVEC 181 DisplayBytes(buf, *(void **)data, data_size); 182 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 183 break; 184 } 185 default: {} 186 } 187 } 188 189 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 190 static_assert(sizeof(long) >= k_ptrace_word_size, 191 "Size of long must be larger than ptrace word size"); 192 } // end of anonymous namespace 193 194 // Simple helper function to ensure flags are enabled on the given file 195 // descriptor. 196 static Status EnsureFDFlags(int fd, int flags) { 197 Status error; 198 199 int status = fcntl(fd, F_GETFL); 200 if (status == -1) { 201 error.SetErrorToErrno(); 202 return error; 203 } 204 205 if (fcntl(fd, F_SETFL, status | flags) == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 return error; 211 } 212 213 // ----------------------------------------------------------------------------- 214 // Public Static Methods 215 // ----------------------------------------------------------------------------- 216 217 Status NativeProcessProtocol::Launch( 218 ProcessLaunchInfo &launch_info, 219 NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, 220 NativeProcessProtocolSP &native_process_sp) { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 Status error; 224 225 // Verify the working directory is valid if one was specified. 226 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 227 if (working_dir && (!working_dir.ResolvePath() || 228 !llvm::sys::fs::is_directory(working_dir.GetPath()))) { 229 error.SetErrorStringWithFormat("No such file or directory: %s", 230 working_dir.GetCString()); 231 return error; 232 } 233 234 // Create the NativeProcessLinux in launch mode. 235 native_process_sp.reset(new NativeProcessLinux()); 236 237 if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { 238 native_process_sp.reset(); 239 error.SetErrorStringWithFormat("failed to register the native delegate"); 240 return error; 241 } 242 243 error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp) 244 ->LaunchInferior(mainloop, launch_info); 245 246 if (error.Fail()) { 247 native_process_sp.reset(); 248 LLDB_LOG(log, "failed to launch process: {0}", error); 249 return error; 250 } 251 252 launch_info.SetProcessID(native_process_sp->GetID()); 253 254 return error; 255 } 256 257 Status NativeProcessProtocol::Attach( 258 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 259 MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { 260 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 261 LLDB_LOG(log, "pid = {0:x}", pid); 262 263 // Retrieve the architecture for the running process. 264 ArchSpec process_arch; 265 Status error = ResolveProcessArchitecture(pid, process_arch); 266 if (!error.Success()) 267 return error; 268 269 std::shared_ptr<NativeProcessLinux> native_process_linux_sp( 270 new NativeProcessLinux()); 271 272 if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { 273 error.SetErrorStringWithFormat("failed to register the native delegate"); 274 return error; 275 } 276 277 native_process_linux_sp->AttachToInferior(mainloop, pid, error); 278 if (!error.Success()) 279 return error; 280 281 native_process_sp = native_process_linux_sp; 282 return error; 283 } 284 285 // ----------------------------------------------------------------------------- 286 // Public Instance Methods 287 // ----------------------------------------------------------------------------- 288 289 NativeProcessLinux::NativeProcessLinux() 290 : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), 291 m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), 292 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {} 293 294 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, 295 Status &error) { 296 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 297 LLDB_LOG(log, "pid = {0:x}", pid); 298 299 m_sigchld_handle = mainloop.RegisterSignal( 300 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 301 if (!m_sigchld_handle) 302 return; 303 304 error = ResolveProcessArchitecture(pid, m_arch); 305 if (!error.Success()) 306 return; 307 308 // Set the architecture to the exe architecture. 309 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 310 m_arch.GetArchitectureName()); 311 m_pid = pid; 312 SetState(eStateAttaching); 313 314 Attach(pid, error); 315 } 316 317 Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop, 318 ProcessLaunchInfo &launch_info) { 319 Status error; 320 m_sigchld_handle = mainloop.RegisterSignal( 321 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 322 if (!m_sigchld_handle) 323 return error; 324 325 SetState(eStateLaunching); 326 327 MaybeLogLaunchInfo(launch_info); 328 329 ::pid_t pid = 330 ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId(); 331 if (error.Fail()) 332 return error; 333 334 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 335 336 // Wait for the child process to trap on its call to execve. 337 ::pid_t wpid; 338 int status; 339 if ((wpid = waitpid(pid, &status, 0)) < 0) { 340 error.SetErrorToErrno(); 341 LLDB_LOG(log, "waitpid for inferior failed with %s", error); 342 343 // Mark the inferior as invalid. 344 // FIXME this could really use a new state - eStateLaunchFailure. For now, 345 // using eStateInvalid. 346 SetState(StateType::eStateInvalid); 347 348 return error; 349 } 350 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && 351 "Could not sync with inferior process."); 352 353 LLDB_LOG(log, "inferior started, now in stopped state"); 354 error = SetDefaultPtraceOpts(pid); 355 if (error.Fail()) { 356 LLDB_LOG(log, "failed to set default ptrace options: {0}", error); 357 358 // Mark the inferior as invalid. 359 // FIXME this could really use a new state - eStateLaunchFailure. For now, 360 // using eStateInvalid. 361 SetState(StateType::eStateInvalid); 362 363 return error; 364 } 365 366 // Release the master terminal descriptor and pass it off to the 367 // NativeProcessLinux instance. Similarly stash the inferior pid. 368 m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); 369 m_pid = pid; 370 launch_info.SetProcessID(pid); 371 372 if (m_terminal_fd != -1) { 373 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 374 if (error.Fail()) { 375 LLDB_LOG(log, 376 "inferior EnsureFDFlags failed for ensuring terminal " 377 "O_NONBLOCK setting: {0}", 378 error); 379 380 // Mark the inferior as invalid. 381 // FIXME this could really use a new state - eStateLaunchFailure. For 382 // now, using eStateInvalid. 383 SetState(StateType::eStateInvalid); 384 385 return error; 386 } 387 } 388 389 LLDB_LOG(log, "adding pid = {0}", pid); 390 ResolveProcessArchitecture(m_pid, m_arch); 391 NativeThreadLinuxSP thread_sp = AddThread(pid); 392 assert(thread_sp && "AddThread() returned a nullptr thread"); 393 thread_sp->SetStoppedBySignal(SIGSTOP); 394 ThreadWasCreated(*thread_sp); 395 396 // Let our process instance know the thread has stopped. 397 SetCurrentThreadID(thread_sp->GetID()); 398 SetState(StateType::eStateStopped); 399 400 if (error.Fail()) 401 LLDB_LOG(log, "inferior launching failed {0}", error); 402 return error; 403 } 404 405 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) { 406 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 407 408 // Use a map to keep track of the threads which we have attached/need to 409 // attach. 410 Host::TidMap tids_to_attach; 411 if (pid <= 1) { 412 error.SetErrorToGenericError(); 413 error.SetErrorString("Attaching to process 1 is not allowed."); 414 return -1; 415 } 416 417 while (Host::FindProcessThreads(pid, tids_to_attach)) { 418 for (Host::TidMap::iterator it = tids_to_attach.begin(); 419 it != tids_to_attach.end();) { 420 if (it->second == false) { 421 lldb::tid_t tid = it->first; 422 423 // Attach to the requested process. 424 // An attach will cause the thread to stop with a SIGSTOP. 425 error = PtraceWrapper(PTRACE_ATTACH, tid); 426 if (error.Fail()) { 427 // No such thread. The thread may have exited. 428 // More error handling may be needed. 429 if (error.GetError() == ESRCH) { 430 it = tids_to_attach.erase(it); 431 continue; 432 } else 433 return -1; 434 } 435 436 int status; 437 // Need to use __WALL otherwise we receive an error with errno=ECHLD 438 // At this point we should have a thread stopped if waitpid succeeds. 439 if ((status = waitpid(tid, NULL, __WALL)) < 0) { 440 // No such thread. The thread may have exited. 441 // More error handling may be needed. 442 if (errno == ESRCH) { 443 it = tids_to_attach.erase(it); 444 continue; 445 } else { 446 error.SetErrorToErrno(); 447 return -1; 448 } 449 } 450 451 error = SetDefaultPtraceOpts(tid); 452 if (error.Fail()) 453 return -1; 454 455 LLDB_LOG(log, "adding tid = {0}", tid); 456 it->second = true; 457 458 // Create the thread, mark it as stopped. 459 NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid))); 460 assert(thread_sp && "AddThread() returned a nullptr"); 461 462 // This will notify this is a new thread and tell the system it is 463 // stopped. 464 thread_sp->SetStoppedBySignal(SIGSTOP); 465 ThreadWasCreated(*thread_sp); 466 SetCurrentThreadID(thread_sp->GetID()); 467 } 468 469 // move the loop forward 470 ++it; 471 } 472 } 473 474 if (tids_to_attach.size() > 0) { 475 m_pid = pid; 476 // Let our process instance know the thread has stopped. 477 SetState(StateType::eStateStopped); 478 } else { 479 error.SetErrorToGenericError(); 480 error.SetErrorString("No such process."); 481 return -1; 482 } 483 484 return pid; 485 } 486 487 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 488 long ptrace_opts = 0; 489 490 // Have the child raise an event on exit. This is used to keep the child in 491 // limbo until it is destroyed. 492 ptrace_opts |= PTRACE_O_TRACEEXIT; 493 494 // Have the tracer trace threads which spawn in the inferior process. 495 // TODO: if we want to support tracing the inferiors' child, add the 496 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 497 ptrace_opts |= PTRACE_O_TRACECLONE; 498 499 // Have the tracer notify us before execve returns 500 // (needed to disable legacy SIGTRAP generation) 501 ptrace_opts |= PTRACE_O_TRACEEXEC; 502 503 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 504 } 505 506 static ExitType convert_pid_status_to_exit_type(int status) { 507 if (WIFEXITED(status)) 508 return ExitType::eExitTypeExit; 509 else if (WIFSIGNALED(status)) 510 return ExitType::eExitTypeSignal; 511 else if (WIFSTOPPED(status)) 512 return ExitType::eExitTypeStop; 513 else { 514 // We don't know what this is. 515 return ExitType::eExitTypeInvalid; 516 } 517 } 518 519 static int convert_pid_status_to_return_code(int status) { 520 if (WIFEXITED(status)) 521 return WEXITSTATUS(status); 522 else if (WIFSIGNALED(status)) 523 return WTERMSIG(status); 524 else if (WIFSTOPPED(status)) 525 return WSTOPSIG(status); 526 else { 527 // We don't know what this is. 528 return ExitType::eExitTypeInvalid; 529 } 530 } 531 532 // Handles all waitpid events from the inferior process. 533 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 534 int signal, int status) { 535 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 536 537 // Certain activities differ based on whether the pid is the tid of the main 538 // thread. 539 const bool is_main_thread = (pid == GetID()); 540 541 // Handle when the thread exits. 542 if (exited) { 543 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 544 pid, is_main_thread ? "is" : "is not"); 545 546 // This is a thread that exited. Ensure we're not tracking it anymore. 547 const bool thread_found = StopTrackingThread(pid); 548 549 if (is_main_thread) { 550 // We only set the exit status and notify the delegate if we haven't 551 // already set the process 552 // state to an exited state. We normally should have received a SIGTRAP | 553 // (PTRACE_EVENT_EXIT << 8) 554 // for the main thread. 555 const bool already_notified = (GetState() == StateType::eStateExited) || 556 (GetState() == StateType::eStateCrashed); 557 if (!already_notified) { 558 LLDB_LOG( 559 log, 560 "tid = {0} handling main thread exit ({1}), expected exit state " 561 "already set but state was {2} instead, setting exit state now", 562 pid, 563 thread_found ? "stopped tracking thread metadata" 564 : "thread metadata not found", 565 GetState()); 566 // The main thread exited. We're done monitoring. Report to delegate. 567 SetExitStatus(convert_pid_status_to_exit_type(status), 568 convert_pid_status_to_return_code(status), nullptr, true); 569 570 // Notify delegate that our process has exited. 571 SetState(StateType::eStateExited, true); 572 } else 573 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 574 thread_found ? "stopped tracking thread metadata" 575 : "thread metadata not found"); 576 } else { 577 // Do we want to report to the delegate in this case? I think not. If 578 // this was an orderly thread exit, we would already have received the 579 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 580 // all-stop then. 581 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 582 thread_found ? "stopped tracking thread metadata" 583 : "thread metadata not found"); 584 } 585 return; 586 } 587 588 siginfo_t info; 589 const auto info_err = GetSignalInfo(pid, &info); 590 auto thread_sp = GetThreadByID(pid); 591 592 if (!thread_sp) { 593 // Normally, the only situation when we cannot find the thread is if we have 594 // just received a new thread notification. This is indicated by 595 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 596 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 597 598 if (info_err.Fail()) { 599 LLDB_LOG(log, 600 "(tid {0}) GetSignalInfo failed ({1}). " 601 "Ingoring this notification.", 602 pid, info_err); 603 return; 604 } 605 606 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 607 info.si_pid); 608 609 auto thread_sp = AddThread(pid); 610 // Resume the newly created thread. 611 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 612 ThreadWasCreated(*thread_sp); 613 return; 614 } 615 616 // Get details on the signal raised. 617 if (info_err.Success()) { 618 // We have retrieved the signal info. Dispatch appropriately. 619 if (info.si_signo == SIGTRAP) 620 MonitorSIGTRAP(info, *thread_sp); 621 else 622 MonitorSignal(info, *thread_sp, exited); 623 } else { 624 if (info_err.GetError() == EINVAL) { 625 // This is a group stop reception for this tid. 626 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 627 // into the tracee, triggering the group-stop mechanism. Normally 628 // receiving these would stop the process, pending a SIGCONT. Simulating 629 // this state in a debugger is hard and is generally not needed (one use 630 // case is debugging background task being managed by a shell). For 631 // general use, it is sufficient to stop the process in a signal-delivery 632 // stop which happens before the group stop. This done by MonitorSignal 633 // and works correctly for all signals. 634 LLDB_LOG(log, 635 "received a group stop for pid {0} tid {1}. Transparent " 636 "handling of group stops not supported, resuming the " 637 "thread.", 638 GetID(), pid); 639 ResumeThread(*thread_sp, thread_sp->GetState(), 640 LLDB_INVALID_SIGNAL_NUMBER); 641 } else { 642 // ptrace(GETSIGINFO) failed (but not due to group-stop). 643 644 // A return value of ESRCH means the thread/process is no longer on the 645 // system, so it was killed somehow outside of our control. Either way, 646 // we can't do anything with it anymore. 647 648 // Stop tracking the metadata for the thread since it's entirely off the 649 // system now. 650 const bool thread_found = StopTrackingThread(pid); 651 652 LLDB_LOG(log, 653 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 654 "status = {3}, main_thread = {4}, thread_found: {5}", 655 info_err, pid, signal, status, is_main_thread, thread_found); 656 657 if (is_main_thread) { 658 // Notify the delegate - our process is not available but appears to 659 // have been killed outside 660 // our control. Is eStateExited the right exit state in this case? 661 SetExitStatus(convert_pid_status_to_exit_type(status), 662 convert_pid_status_to_return_code(status), nullptr, true); 663 SetState(StateType::eStateExited, true); 664 } else { 665 // This thread was pulled out from underneath us. Anything to do here? 666 // Do we want to do an all stop? 667 LLDB_LOG(log, 668 "pid {0} tid {1} non-main thread exit occurred, didn't " 669 "tell delegate anything since thread disappeared out " 670 "from underneath us", 671 GetID(), pid); 672 } 673 } 674 } 675 } 676 677 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 678 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 679 680 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 681 682 if (new_thread_sp) { 683 // We are already tracking the thread - we got the event on the new thread 684 // (see 685 // MonitorSignal) before this one. We are done. 686 return; 687 } 688 689 // The thread is not tracked yet, let's wait for it to appear. 690 int status = -1; 691 ::pid_t wait_pid; 692 do { 693 LLDB_LOG(log, 694 "received thread creation event for tid {0}. tid not tracked " 695 "yet, waiting for thread to appear...", 696 tid); 697 wait_pid = waitpid(tid, &status, __WALL); 698 } while (wait_pid == -1 && errno == EINTR); 699 // Since we are waiting on a specific tid, this must be the creation event. 700 // But let's do some checks just in case. 701 if (wait_pid != tid) { 702 LLDB_LOG(log, 703 "waiting for tid {0} failed. Assuming the thread has " 704 "disappeared in the meantime", 705 tid); 706 // The only way I know of this could happen is if the whole process was 707 // SIGKILLed in the mean time. In any case, we can't do anything about that 708 // now. 709 return; 710 } 711 if (WIFEXITED(status)) { 712 LLDB_LOG(log, 713 "waiting for tid {0} returned an 'exited' event. Not " 714 "tracking the thread.", 715 tid); 716 // Also a very improbable event. 717 return; 718 } 719 720 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 721 new_thread_sp = AddThread(tid); 722 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 723 ThreadWasCreated(*new_thread_sp); 724 } 725 726 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 727 NativeThreadLinux &thread) { 728 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 729 const bool is_main_thread = (thread.GetID() == GetID()); 730 731 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 732 733 switch (info.si_code) { 734 // TODO: these two cases are required if we want to support tracing of the 735 // inferiors' children. We'd need this to debug a monitor. 736 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 737 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 738 739 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 740 // This is the notification on the parent thread which informs us of new 741 // thread 742 // creation. 743 // We don't want to do anything with the parent thread so we just resume it. 744 // In case we 745 // want to implement "break on thread creation" functionality, we would need 746 // to stop 747 // here. 748 749 unsigned long event_message = 0; 750 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 751 LLDB_LOG(log, 752 "pid {0} received thread creation event but " 753 "GetEventMessage failed so we don't know the new tid", 754 thread.GetID()); 755 } else 756 WaitForNewThread(event_message); 757 758 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 759 break; 760 } 761 762 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 763 NativeThreadLinuxSP main_thread_sp; 764 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 765 766 // Exec clears any pending notifications. 767 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 768 769 // Remove all but the main thread here. Linux fork creates a new process 770 // which only copies the main thread. 771 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 772 773 for (auto thread_sp : m_threads) { 774 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 775 if (is_main_thread) { 776 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 777 LLDB_LOG(log, "found main thread with tid {0}, keeping", 778 main_thread_sp->GetID()); 779 } else { 780 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 781 thread_sp->GetID()); 782 } 783 } 784 785 m_threads.clear(); 786 787 if (main_thread_sp) { 788 m_threads.push_back(main_thread_sp); 789 SetCurrentThreadID(main_thread_sp->GetID()); 790 main_thread_sp->SetStoppedByExec(); 791 } else { 792 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 793 LLDB_LOG(log, 794 "pid {0} no main thread found, discarded all threads, " 795 "we're in a no-thread state!", 796 GetID()); 797 } 798 799 // Tell coordinator about about the "new" (since exec) stopped main thread. 800 ThreadWasCreated(*main_thread_sp); 801 802 // Let our delegate know we have just exec'd. 803 NotifyDidExec(); 804 805 // If we have a main thread, indicate we are stopped. 806 assert(main_thread_sp && "exec called during ptraced process but no main " 807 "thread metadata tracked"); 808 809 // Let the process know we're stopped. 810 StopRunningThreads(main_thread_sp->GetID()); 811 812 break; 813 } 814 815 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 816 // The inferior process or one of its threads is about to exit. 817 // We don't want to do anything with the thread so we just resume it. In 818 // case we 819 // want to implement "break on thread exit" functionality, we would need to 820 // stop 821 // here. 822 823 unsigned long data = 0; 824 if (GetEventMessage(thread.GetID(), &data).Fail()) 825 data = -1; 826 827 LLDB_LOG(log, 828 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 829 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 830 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 831 is_main_thread); 832 833 if (is_main_thread) { 834 SetExitStatus(convert_pid_status_to_exit_type(data), 835 convert_pid_status_to_return_code(data), nullptr, true); 836 } 837 838 StateType state = thread.GetState(); 839 if (!StateIsRunningState(state)) { 840 // Due to a kernel bug, we may sometimes get this stop after the inferior 841 // gets a 842 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 843 // since normally, 844 // we should not be receiving any ptrace events while the inferior is 845 // stopped. This 846 // makes sure that the inferior is resumed and exits normally. 847 state = eStateRunning; 848 } 849 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 850 851 break; 852 } 853 854 case 0: 855 case TRAP_TRACE: // We receive this on single stepping. 856 case TRAP_HWBKPT: // We receive this on watchpoint hit 857 { 858 // If a watchpoint was hit, report it 859 uint32_t wp_index; 860 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 861 wp_index, (uintptr_t)info.si_addr); 862 if (error.Fail()) 863 LLDB_LOG(log, 864 "received error while checking for watchpoint hits, pid = " 865 "{0}, error = {1}", 866 thread.GetID(), error); 867 if (wp_index != LLDB_INVALID_INDEX32) { 868 MonitorWatchpoint(thread, wp_index); 869 break; 870 } 871 872 // If a breakpoint was hit, report it 873 uint32_t bp_index; 874 error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( 875 bp_index, (uintptr_t)info.si_addr); 876 if (error.Fail()) 877 LLDB_LOG(log, "received error while checking for hardware " 878 "breakpoint hits, pid = {0}, error = {1}", 879 thread.GetID(), error); 880 if (bp_index != LLDB_INVALID_INDEX32) { 881 MonitorBreakpoint(thread); 882 break; 883 } 884 885 // Otherwise, report step over 886 MonitorTrace(thread); 887 break; 888 } 889 890 case SI_KERNEL: 891 #if defined __mips__ 892 // For mips there is no special signal for watchpoint 893 // So we check for watchpoint in kernel trap 894 { 895 // If a watchpoint was hit, report it 896 uint32_t wp_index; 897 Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( 898 wp_index, LLDB_INVALID_ADDRESS); 899 if (error.Fail()) 900 LLDB_LOG(log, 901 "received error while checking for watchpoint hits, pid = " 902 "{0}, error = {1}", 903 thread.GetID(), error); 904 if (wp_index != LLDB_INVALID_INDEX32) { 905 MonitorWatchpoint(thread, wp_index); 906 break; 907 } 908 } 909 // NO BREAK 910 #endif 911 case TRAP_BRKPT: 912 MonitorBreakpoint(thread); 913 break; 914 915 case SIGTRAP: 916 case (SIGTRAP | 0x80): 917 LLDB_LOG( 918 log, 919 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 920 info.si_code, GetID(), thread.GetID()); 921 922 // Ignore these signals until we know more about them. 923 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 924 break; 925 926 default: 927 LLDB_LOG( 928 log, 929 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 930 info.si_code, GetID(), thread.GetID()); 931 llvm_unreachable("Unexpected SIGTRAP code!"); 932 break; 933 } 934 } 935 936 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 937 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 938 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 939 940 // This thread is currently stopped. 941 thread.SetStoppedByTrace(); 942 943 StopRunningThreads(thread.GetID()); 944 } 945 946 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 947 Log *log( 948 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 949 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 950 951 // Mark the thread as stopped at breakpoint. 952 thread.SetStoppedByBreakpoint(); 953 Status error = FixupBreakpointPCAsNeeded(thread); 954 if (error.Fail()) 955 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 956 957 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 958 m_threads_stepping_with_breakpoint.end()) 959 thread.SetStoppedByTrace(); 960 961 StopRunningThreads(thread.GetID()); 962 } 963 964 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 965 uint32_t wp_index) { 966 Log *log( 967 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 968 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 969 thread.GetID(), wp_index); 970 971 // Mark the thread as stopped at watchpoint. 972 // The address is at (lldb::addr_t)info->si_addr if we need it. 973 thread.SetStoppedByWatchpoint(wp_index); 974 975 // We need to tell all other running threads before we notify the delegate 976 // about this stop. 977 StopRunningThreads(thread.GetID()); 978 } 979 980 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 981 NativeThreadLinux &thread, bool exited) { 982 const int signo = info.si_signo; 983 const bool is_from_llgs = info.si_pid == getpid(); 984 985 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 986 987 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 988 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 989 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 990 // 991 // IOW, user generated signals never generate what we consider to be a 992 // "crash". 993 // 994 // Similarly, ACK signals generated by this monitor. 995 996 // Handle the signal. 997 LLDB_LOG(log, 998 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 999 "waitpid pid = {4})", 1000 Host::GetSignalAsCString(signo), signo, info.si_code, 1001 thread.GetID()); 1002 1003 // Check for thread stop notification. 1004 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 1005 // This is a tgkill()-based stop. 1006 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 1007 1008 // Check that we're not already marked with a stop reason. 1009 // Note this thread really shouldn't already be marked as stopped - if we 1010 // were, that would imply that the kernel signaled us with the thread 1011 // stopping which we handled and marked as stopped, and that, without an 1012 // intervening resume, we received another stop. It is more likely that we 1013 // are missing the marking of a run state somewhere if we find that the 1014 // thread was marked as stopped. 1015 const StateType thread_state = thread.GetState(); 1016 if (!StateIsStoppedState(thread_state, false)) { 1017 // An inferior thread has stopped because of a SIGSTOP we have sent it. 1018 // Generally, these are not important stops and we don't want to report 1019 // them as they are just used to stop other threads when one thread (the 1020 // one with the *real* stop reason) hits a breakpoint (watchpoint, 1021 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 1022 // the real stop reason, so we leave the signal intact if this is the 1023 // thread that was chosen as the triggering thread. 1024 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1025 if (m_pending_notification_tid == thread.GetID()) 1026 thread.SetStoppedBySignal(SIGSTOP, &info); 1027 else 1028 thread.SetStoppedWithNoReason(); 1029 1030 SetCurrentThreadID(thread.GetID()); 1031 SignalIfAllThreadsStopped(); 1032 } else { 1033 // We can end up here if stop was initiated by LLGS but by this time a 1034 // thread stop has occurred - maybe initiated by another event. 1035 Status error = ResumeThread(thread, thread.GetState(), 0); 1036 if (error.Fail()) 1037 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 1038 error); 1039 } 1040 } else { 1041 LLDB_LOG(log, 1042 "pid {0} tid {1}, thread was already marked as a stopped " 1043 "state (state={2}), leaving stop signal as is", 1044 GetID(), thread.GetID(), thread_state); 1045 SignalIfAllThreadsStopped(); 1046 } 1047 1048 // Done handling. 1049 return; 1050 } 1051 1052 // Check if debugger should stop at this signal or just ignore it 1053 // and resume the inferior. 1054 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { 1055 ResumeThread(thread, thread.GetState(), signo); 1056 return; 1057 } 1058 1059 // This thread is stopped. 1060 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 1061 thread.SetStoppedBySignal(signo, &info); 1062 1063 // Send a stop to the debugger after we get all other threads to stop. 1064 StopRunningThreads(thread.GetID()); 1065 } 1066 1067 namespace { 1068 1069 struct EmulatorBaton { 1070 NativeProcessLinux *m_process; 1071 NativeRegisterContext *m_reg_context; 1072 1073 // eRegisterKindDWARF -> RegsiterValue 1074 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1075 1076 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 1077 : m_process(process), m_reg_context(reg_context) {} 1078 }; 1079 1080 } // anonymous namespace 1081 1082 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 1083 const EmulateInstruction::Context &context, 1084 lldb::addr_t addr, void *dst, size_t length) { 1085 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1086 1087 size_t bytes_read; 1088 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1089 return bytes_read; 1090 } 1091 1092 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 1093 const RegisterInfo *reg_info, 1094 RegisterValue ®_value) { 1095 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1096 1097 auto it = emulator_baton->m_register_values.find( 1098 reg_info->kinds[eRegisterKindDWARF]); 1099 if (it != emulator_baton->m_register_values.end()) { 1100 reg_value = it->second; 1101 return true; 1102 } 1103 1104 // The emulator only fill in the dwarf regsiter numbers (and in some case 1105 // the generic register numbers). Get the full register info from the 1106 // register context based on the dwarf register numbers. 1107 const RegisterInfo *full_reg_info = 1108 emulator_baton->m_reg_context->GetRegisterInfo( 1109 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1110 1111 Status error = 1112 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1113 if (error.Success()) 1114 return true; 1115 1116 return false; 1117 } 1118 1119 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 1120 const EmulateInstruction::Context &context, 1121 const RegisterInfo *reg_info, 1122 const RegisterValue ®_value) { 1123 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1124 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 1125 reg_value; 1126 return true; 1127 } 1128 1129 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1130 const EmulateInstruction::Context &context, 1131 lldb::addr_t addr, const void *dst, 1132 size_t length) { 1133 return length; 1134 } 1135 1136 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1137 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1138 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1139 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1140 LLDB_INVALID_ADDRESS); 1141 } 1142 1143 Status 1144 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { 1145 Status error; 1146 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1147 1148 std::unique_ptr<EmulateInstruction> emulator_ap( 1149 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1150 nullptr)); 1151 1152 if (emulator_ap == nullptr) 1153 return Status("Instruction emulator not found!"); 1154 1155 EmulatorBaton baton(this, register_context_sp.get()); 1156 emulator_ap->SetBaton(&baton); 1157 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1158 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1159 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1160 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1161 1162 if (!emulator_ap->ReadInstruction()) 1163 return Status("Read instruction failed!"); 1164 1165 bool emulation_result = 1166 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1167 1168 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1169 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1170 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1171 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1172 1173 auto pc_it = 1174 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1175 auto flags_it = 1176 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1177 1178 lldb::addr_t next_pc; 1179 lldb::addr_t next_flags; 1180 if (emulation_result) { 1181 assert(pc_it != baton.m_register_values.end() && 1182 "Emulation was successfull but PC wasn't updated"); 1183 next_pc = pc_it->second.GetAsUInt64(); 1184 1185 if (flags_it != baton.m_register_values.end()) 1186 next_flags = flags_it->second.GetAsUInt64(); 1187 else 1188 next_flags = ReadFlags(register_context_sp.get()); 1189 } else if (pc_it == baton.m_register_values.end()) { 1190 // Emulate instruction failed and it haven't changed PC. Advance PC 1191 // with the size of the current opcode because the emulation of all 1192 // PC modifying instruction should be successful. The failure most 1193 // likely caused by a not supported instruction which don't modify PC. 1194 next_pc = 1195 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1196 next_flags = ReadFlags(register_context_sp.get()); 1197 } else { 1198 // The instruction emulation failed after it modified the PC. It is an 1199 // unknown error where we can't continue because the next instruction is 1200 // modifying the PC but we don't know how. 1201 return Status("Instruction emulation failed unexpectedly."); 1202 } 1203 1204 if (m_arch.GetMachine() == llvm::Triple::arm) { 1205 if (next_flags & 0x20) { 1206 // Thumb mode 1207 error = SetSoftwareBreakpoint(next_pc, 2); 1208 } else { 1209 // Arm mode 1210 error = SetSoftwareBreakpoint(next_pc, 4); 1211 } 1212 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1213 m_arch.GetMachine() == llvm::Triple::mips64el || 1214 m_arch.GetMachine() == llvm::Triple::mips || 1215 m_arch.GetMachine() == llvm::Triple::mipsel) 1216 error = SetSoftwareBreakpoint(next_pc, 4); 1217 else { 1218 // No size hint is given for the next breakpoint 1219 error = SetSoftwareBreakpoint(next_pc, 0); 1220 } 1221 1222 // If setting the breakpoint fails because next_pc is out of 1223 // the address space, ignore it and let the debugee segfault. 1224 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1225 return Status(); 1226 } else if (error.Fail()) 1227 return error; 1228 1229 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1230 1231 return Status(); 1232 } 1233 1234 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1235 if (m_arch.GetMachine() == llvm::Triple::arm || 1236 m_arch.GetMachine() == llvm::Triple::mips64 || 1237 m_arch.GetMachine() == llvm::Triple::mips64el || 1238 m_arch.GetMachine() == llvm::Triple::mips || 1239 m_arch.GetMachine() == llvm::Triple::mipsel) 1240 return false; 1241 return true; 1242 } 1243 1244 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1245 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1246 LLDB_LOG(log, "pid {0}", GetID()); 1247 1248 bool software_single_step = !SupportHardwareSingleStepping(); 1249 1250 if (software_single_step) { 1251 for (auto thread_sp : m_threads) { 1252 assert(thread_sp && "thread list should not contain NULL threads"); 1253 1254 const ResumeAction *const action = 1255 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1256 if (action == nullptr) 1257 continue; 1258 1259 if (action->state == eStateStepping) { 1260 Status error = SetupSoftwareSingleStepping( 1261 static_cast<NativeThreadLinux &>(*thread_sp)); 1262 if (error.Fail()) 1263 return error; 1264 } 1265 } 1266 } 1267 1268 for (auto thread_sp : m_threads) { 1269 assert(thread_sp && "thread list should not contain NULL threads"); 1270 1271 const ResumeAction *const action = 1272 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1273 1274 if (action == nullptr) { 1275 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1276 thread_sp->GetID()); 1277 continue; 1278 } 1279 1280 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1281 action->state, GetID(), thread_sp->GetID()); 1282 1283 switch (action->state) { 1284 case eStateRunning: 1285 case eStateStepping: { 1286 // Run the thread, possibly feeding it the signal. 1287 const int signo = action->signal; 1288 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1289 signo); 1290 break; 1291 } 1292 1293 case eStateSuspended: 1294 case eStateStopped: 1295 llvm_unreachable("Unexpected state"); 1296 1297 default: 1298 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 1299 "for pid %" PRIu64 ", tid %" PRIu64, 1300 __FUNCTION__, StateAsCString(action->state), GetID(), 1301 thread_sp->GetID()); 1302 } 1303 } 1304 1305 return Status(); 1306 } 1307 1308 Status NativeProcessLinux::Halt() { 1309 Status error; 1310 1311 if (kill(GetID(), SIGSTOP) != 0) 1312 error.SetErrorToErrno(); 1313 1314 return error; 1315 } 1316 1317 Status NativeProcessLinux::Detach() { 1318 Status error; 1319 1320 // Stop monitoring the inferior. 1321 m_sigchld_handle.reset(); 1322 1323 // Tell ptrace to detach from the process. 1324 if (GetID() == LLDB_INVALID_PROCESS_ID) 1325 return error; 1326 1327 for (auto thread_sp : m_threads) { 1328 Status e = Detach(thread_sp->GetID()); 1329 if (e.Fail()) 1330 error = 1331 e; // Save the error, but still attempt to detach from other threads. 1332 } 1333 1334 return error; 1335 } 1336 1337 Status NativeProcessLinux::Signal(int signo) { 1338 Status error; 1339 1340 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1341 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1342 Host::GetSignalAsCString(signo), GetID()); 1343 1344 if (kill(GetID(), signo)) 1345 error.SetErrorToErrno(); 1346 1347 return error; 1348 } 1349 1350 Status NativeProcessLinux::Interrupt() { 1351 // Pick a running thread (or if none, a not-dead stopped thread) as 1352 // the chosen thread that will be the stop-reason thread. 1353 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1354 1355 NativeThreadProtocolSP running_thread_sp; 1356 NativeThreadProtocolSP stopped_thread_sp; 1357 1358 LLDB_LOG(log, "selecting running thread for interrupt target"); 1359 for (auto thread_sp : m_threads) { 1360 // The thread shouldn't be null but lets just cover that here. 1361 if (!thread_sp) 1362 continue; 1363 1364 // If we have a running or stepping thread, we'll call that the 1365 // target of the interrupt. 1366 const auto thread_state = thread_sp->GetState(); 1367 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1368 running_thread_sp = thread_sp; 1369 break; 1370 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1371 // Remember the first non-dead stopped thread. We'll use that as a backup 1372 // if there are no running threads. 1373 stopped_thread_sp = thread_sp; 1374 } 1375 } 1376 1377 if (!running_thread_sp && !stopped_thread_sp) { 1378 Status error("found no running/stepping or live stopped threads as target " 1379 "for interrupt"); 1380 LLDB_LOG(log, "skipping due to error: {0}", error); 1381 1382 return error; 1383 } 1384 1385 NativeThreadProtocolSP deferred_signal_thread_sp = 1386 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1387 1388 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1389 running_thread_sp ? "running" : "stopped", 1390 deferred_signal_thread_sp->GetID()); 1391 1392 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1393 1394 return Status(); 1395 } 1396 1397 Status NativeProcessLinux::Kill() { 1398 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1399 LLDB_LOG(log, "pid {0}", GetID()); 1400 1401 Status error; 1402 1403 switch (m_state) { 1404 case StateType::eStateInvalid: 1405 case StateType::eStateExited: 1406 case StateType::eStateCrashed: 1407 case StateType::eStateDetached: 1408 case StateType::eStateUnloaded: 1409 // Nothing to do - the process is already dead. 1410 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1411 m_state); 1412 return error; 1413 1414 case StateType::eStateConnected: 1415 case StateType::eStateAttaching: 1416 case StateType::eStateLaunching: 1417 case StateType::eStateStopped: 1418 case StateType::eStateRunning: 1419 case StateType::eStateStepping: 1420 case StateType::eStateSuspended: 1421 // We can try to kill a process in these states. 1422 break; 1423 } 1424 1425 if (kill(GetID(), SIGKILL) != 0) { 1426 error.SetErrorToErrno(); 1427 return error; 1428 } 1429 1430 return error; 1431 } 1432 1433 static Status 1434 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, 1435 MemoryRegionInfo &memory_region_info) { 1436 memory_region_info.Clear(); 1437 1438 StringExtractor line_extractor(maps_line); 1439 1440 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1441 // pathname 1442 // perms: rwxp (letter is present if set, '-' if not, final character is 1443 // p=private, s=shared). 1444 1445 // Parse out the starting address 1446 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1447 1448 // Parse out hyphen separating start and end address from range. 1449 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1450 return Status( 1451 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1452 1453 // Parse out the ending address 1454 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1455 1456 // Parse out the space after the address. 1457 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1458 return Status( 1459 "malformed /proc/{pid}/maps entry, missing space after range"); 1460 1461 // Save the range. 1462 memory_region_info.GetRange().SetRangeBase(start_address); 1463 memory_region_info.GetRange().SetRangeEnd(end_address); 1464 1465 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1466 // process. 1467 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1468 1469 // Parse out each permission entry. 1470 if (line_extractor.GetBytesLeft() < 4) 1471 return Status("malformed /proc/{pid}/maps entry, missing some portion of " 1472 "permissions"); 1473 1474 // Handle read permission. 1475 const char read_perm_char = line_extractor.GetChar(); 1476 if (read_perm_char == 'r') 1477 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1478 else if (read_perm_char == '-') 1479 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1480 else 1481 return Status("unexpected /proc/{pid}/maps read permission char"); 1482 1483 // Handle write permission. 1484 const char write_perm_char = line_extractor.GetChar(); 1485 if (write_perm_char == 'w') 1486 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1487 else if (write_perm_char == '-') 1488 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1489 else 1490 return Status("unexpected /proc/{pid}/maps write permission char"); 1491 1492 // Handle execute permission. 1493 const char exec_perm_char = line_extractor.GetChar(); 1494 if (exec_perm_char == 'x') 1495 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1496 else if (exec_perm_char == '-') 1497 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1498 else 1499 return Status("unexpected /proc/{pid}/maps exec permission char"); 1500 1501 line_extractor.GetChar(); // Read the private bit 1502 line_extractor.SkipSpaces(); // Skip the separator 1503 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1504 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1505 line_extractor.GetChar(); // Read the device id separator 1506 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1507 line_extractor.SkipSpaces(); // Skip the separator 1508 line_extractor.GetU64(0, 10); // Read the inode number 1509 1510 line_extractor.SkipSpaces(); 1511 const char *name = line_extractor.Peek(); 1512 if (name) 1513 memory_region_info.SetName(name); 1514 1515 return Status(); 1516 } 1517 1518 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1519 MemoryRegionInfo &range_info) { 1520 // FIXME review that the final memory region returned extends to the end of 1521 // the virtual address space, 1522 // with no perms if it is not mapped. 1523 1524 // Use an approach that reads memory regions from /proc/{pid}/maps. 1525 // Assume proc maps entries are in ascending order. 1526 // FIXME assert if we find differently. 1527 1528 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1529 // We're done. 1530 return Status("unsupported"); 1531 } 1532 1533 Status error = PopulateMemoryRegionCache(); 1534 if (error.Fail()) { 1535 return error; 1536 } 1537 1538 lldb::addr_t prev_base_address = 0; 1539 1540 // FIXME start by finding the last region that is <= target address using 1541 // binary search. Data is sorted. 1542 // There can be a ton of regions on pthreads apps with lots of threads. 1543 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1544 ++it) { 1545 MemoryRegionInfo &proc_entry_info = it->first; 1546 1547 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1548 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1549 "descending /proc/pid/maps entries detected, unexpected"); 1550 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1551 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1552 1553 // If the target address comes before this entry, indicate distance to next 1554 // region. 1555 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1556 range_info.GetRange().SetRangeBase(load_addr); 1557 range_info.GetRange().SetByteSize( 1558 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1559 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1560 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1561 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1562 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1563 1564 return error; 1565 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1566 // The target address is within the memory region we're processing here. 1567 range_info = proc_entry_info; 1568 return error; 1569 } 1570 1571 // The target memory address comes somewhere after the region we just 1572 // parsed. 1573 } 1574 1575 // If we made it here, we didn't find an entry that contained the given 1576 // address. Return the 1577 // load_addr as start and the amount of bytes betwwen load address and the end 1578 // of the memory as 1579 // size. 1580 range_info.GetRange().SetRangeBase(load_addr); 1581 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1582 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1583 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1584 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1585 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1586 return error; 1587 } 1588 1589 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1590 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1591 1592 // If our cache is empty, pull the latest. There should always be at least 1593 // one memory region if memory region handling is supported. 1594 if (!m_mem_region_cache.empty()) { 1595 LLDB_LOG(log, "reusing {0} cached memory region entries", 1596 m_mem_region_cache.size()); 1597 return Status(); 1598 } 1599 1600 auto BufferOrError = getProcFile(GetID(), "maps"); 1601 if (!BufferOrError) { 1602 m_supports_mem_region = LazyBool::eLazyBoolNo; 1603 return BufferOrError.getError(); 1604 } 1605 StringRef Rest = BufferOrError.get()->getBuffer(); 1606 while (! Rest.empty()) { 1607 StringRef Line; 1608 std::tie(Line, Rest) = Rest.split('\n'); 1609 MemoryRegionInfo info; 1610 const Status parse_error = 1611 ParseMemoryRegionInfoFromProcMapsLine(Line, info); 1612 if (parse_error.Fail()) { 1613 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, 1614 parse_error); 1615 m_supports_mem_region = LazyBool::eLazyBoolNo; 1616 return parse_error; 1617 } 1618 m_mem_region_cache.emplace_back( 1619 info, FileSpec(info.GetName().GetCString(), true)); 1620 } 1621 1622 if (m_mem_region_cache.empty()) { 1623 // No entries after attempting to read them. This shouldn't happen if 1624 // /proc/{pid}/maps is supported. Assume we don't support map entries 1625 // via procfs. 1626 m_supports_mem_region = LazyBool::eLazyBoolNo; 1627 LLDB_LOG(log, 1628 "failed to find any procfs maps entries, assuming no support " 1629 "for memory region metadata retrieval"); 1630 return Status("not supported"); 1631 } 1632 1633 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1634 m_mem_region_cache.size(), GetID()); 1635 1636 // We support memory retrieval, remember that. 1637 m_supports_mem_region = LazyBool::eLazyBoolYes; 1638 return Status(); 1639 } 1640 1641 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1642 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1643 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1644 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1645 m_mem_region_cache.size()); 1646 m_mem_region_cache.clear(); 1647 } 1648 1649 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1650 lldb::addr_t &addr) { 1651 // FIXME implementing this requires the equivalent of 1652 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1653 // functional ThreadPlans working with Native*Protocol. 1654 #if 1 1655 return Status("not implemented yet"); 1656 #else 1657 addr = LLDB_INVALID_ADDRESS; 1658 1659 unsigned prot = 0; 1660 if (permissions & lldb::ePermissionsReadable) 1661 prot |= eMmapProtRead; 1662 if (permissions & lldb::ePermissionsWritable) 1663 prot |= eMmapProtWrite; 1664 if (permissions & lldb::ePermissionsExecutable) 1665 prot |= eMmapProtExec; 1666 1667 // TODO implement this directly in NativeProcessLinux 1668 // (and lift to NativeProcessPOSIX if/when that class is 1669 // refactored out). 1670 if (InferiorCallMmap(this, addr, 0, size, prot, 1671 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1672 m_addr_to_mmap_size[addr] = size; 1673 return Status(); 1674 } else { 1675 addr = LLDB_INVALID_ADDRESS; 1676 return Status("unable to allocate %" PRIu64 1677 " bytes of memory with permissions %s", 1678 size, GetPermissionsAsCString(permissions)); 1679 } 1680 #endif 1681 } 1682 1683 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1684 // FIXME see comments in AllocateMemory - required lower-level 1685 // bits not in place yet (ThreadPlans) 1686 return Status("not implemented"); 1687 } 1688 1689 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1690 // punt on this for now 1691 return LLDB_INVALID_ADDRESS; 1692 } 1693 1694 size_t NativeProcessLinux::UpdateThreads() { 1695 // The NativeProcessLinux monitoring threads are always up to date 1696 // with respect to thread state and they keep the thread list 1697 // populated properly. All this method needs to do is return the 1698 // thread count. 1699 return m_threads.size(); 1700 } 1701 1702 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1703 arch = m_arch; 1704 return true; 1705 } 1706 1707 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1708 uint32_t &actual_opcode_size) { 1709 // FIXME put this behind a breakpoint protocol class that can be 1710 // set per architecture. Need ARM, MIPS support here. 1711 static const uint8_t g_i386_opcode[] = {0xCC}; 1712 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1713 1714 switch (m_arch.GetMachine()) { 1715 case llvm::Triple::x86: 1716 case llvm::Triple::x86_64: 1717 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1718 return Status(); 1719 1720 case llvm::Triple::systemz: 1721 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1722 return Status(); 1723 1724 case llvm::Triple::arm: 1725 case llvm::Triple::aarch64: 1726 case llvm::Triple::mips64: 1727 case llvm::Triple::mips64el: 1728 case llvm::Triple::mips: 1729 case llvm::Triple::mipsel: 1730 // On these architectures the PC don't get updated for breakpoint hits 1731 actual_opcode_size = 0; 1732 return Status(); 1733 1734 default: 1735 assert(false && "CPU type not supported!"); 1736 return Status("CPU type not supported"); 1737 } 1738 } 1739 1740 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1741 bool hardware) { 1742 if (hardware) 1743 return SetHardwareBreakpoint(addr, size); 1744 else 1745 return SetSoftwareBreakpoint(addr, size); 1746 } 1747 1748 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1749 if (hardware) 1750 return RemoveHardwareBreakpoint(addr); 1751 else 1752 return NativeProcessProtocol::RemoveBreakpoint(addr); 1753 } 1754 1755 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1756 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1757 const uint8_t *&trap_opcode_bytes) { 1758 // FIXME put this behind a breakpoint protocol class that can be set per 1759 // architecture. Need MIPS support here. 1760 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1761 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1762 // linux kernel does otherwise. 1763 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1764 static const uint8_t g_i386_opcode[] = {0xCC}; 1765 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1766 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1767 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1768 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1769 1770 switch (m_arch.GetMachine()) { 1771 case llvm::Triple::aarch64: 1772 trap_opcode_bytes = g_aarch64_opcode; 1773 actual_opcode_size = sizeof(g_aarch64_opcode); 1774 return Status(); 1775 1776 case llvm::Triple::arm: 1777 switch (trap_opcode_size_hint) { 1778 case 2: 1779 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1780 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1781 return Status(); 1782 case 4: 1783 trap_opcode_bytes = g_arm_breakpoint_opcode; 1784 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1785 return Status(); 1786 default: 1787 assert(false && "Unrecognised trap opcode size hint!"); 1788 return Status("Unrecognised trap opcode size hint!"); 1789 } 1790 1791 case llvm::Triple::x86: 1792 case llvm::Triple::x86_64: 1793 trap_opcode_bytes = g_i386_opcode; 1794 actual_opcode_size = sizeof(g_i386_opcode); 1795 return Status(); 1796 1797 case llvm::Triple::mips: 1798 case llvm::Triple::mips64: 1799 trap_opcode_bytes = g_mips64_opcode; 1800 actual_opcode_size = sizeof(g_mips64_opcode); 1801 return Status(); 1802 1803 case llvm::Triple::mipsel: 1804 case llvm::Triple::mips64el: 1805 trap_opcode_bytes = g_mips64el_opcode; 1806 actual_opcode_size = sizeof(g_mips64el_opcode); 1807 return Status(); 1808 1809 case llvm::Triple::systemz: 1810 trap_opcode_bytes = g_s390x_opcode; 1811 actual_opcode_size = sizeof(g_s390x_opcode); 1812 return Status(); 1813 1814 default: 1815 assert(false && "CPU type not supported!"); 1816 return Status("CPU type not supported"); 1817 } 1818 } 1819 1820 #if 0 1821 ProcessMessage::CrashReason 1822 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1823 { 1824 ProcessMessage::CrashReason reason; 1825 assert(info->si_signo == SIGSEGV); 1826 1827 reason = ProcessMessage::eInvalidCrashReason; 1828 1829 switch (info->si_code) 1830 { 1831 default: 1832 assert(false && "unexpected si_code for SIGSEGV"); 1833 break; 1834 case SI_KERNEL: 1835 // Linux will occasionally send spurious SI_KERNEL codes. 1836 // (this is poorly documented in sigaction) 1837 // One way to get this is via unaligned SIMD loads. 1838 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1839 break; 1840 case SEGV_MAPERR: 1841 reason = ProcessMessage::eInvalidAddress; 1842 break; 1843 case SEGV_ACCERR: 1844 reason = ProcessMessage::ePrivilegedAddress; 1845 break; 1846 } 1847 1848 return reason; 1849 } 1850 #endif 1851 1852 #if 0 1853 ProcessMessage::CrashReason 1854 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1855 { 1856 ProcessMessage::CrashReason reason; 1857 assert(info->si_signo == SIGILL); 1858 1859 reason = ProcessMessage::eInvalidCrashReason; 1860 1861 switch (info->si_code) 1862 { 1863 default: 1864 assert(false && "unexpected si_code for SIGILL"); 1865 break; 1866 case ILL_ILLOPC: 1867 reason = ProcessMessage::eIllegalOpcode; 1868 break; 1869 case ILL_ILLOPN: 1870 reason = ProcessMessage::eIllegalOperand; 1871 break; 1872 case ILL_ILLADR: 1873 reason = ProcessMessage::eIllegalAddressingMode; 1874 break; 1875 case ILL_ILLTRP: 1876 reason = ProcessMessage::eIllegalTrap; 1877 break; 1878 case ILL_PRVOPC: 1879 reason = ProcessMessage::ePrivilegedOpcode; 1880 break; 1881 case ILL_PRVREG: 1882 reason = ProcessMessage::ePrivilegedRegister; 1883 break; 1884 case ILL_COPROC: 1885 reason = ProcessMessage::eCoprocessorError; 1886 break; 1887 case ILL_BADSTK: 1888 reason = ProcessMessage::eInternalStackError; 1889 break; 1890 } 1891 1892 return reason; 1893 } 1894 #endif 1895 1896 #if 0 1897 ProcessMessage::CrashReason 1898 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1899 { 1900 ProcessMessage::CrashReason reason; 1901 assert(info->si_signo == SIGFPE); 1902 1903 reason = ProcessMessage::eInvalidCrashReason; 1904 1905 switch (info->si_code) 1906 { 1907 default: 1908 assert(false && "unexpected si_code for SIGFPE"); 1909 break; 1910 case FPE_INTDIV: 1911 reason = ProcessMessage::eIntegerDivideByZero; 1912 break; 1913 case FPE_INTOVF: 1914 reason = ProcessMessage::eIntegerOverflow; 1915 break; 1916 case FPE_FLTDIV: 1917 reason = ProcessMessage::eFloatDivideByZero; 1918 break; 1919 case FPE_FLTOVF: 1920 reason = ProcessMessage::eFloatOverflow; 1921 break; 1922 case FPE_FLTUND: 1923 reason = ProcessMessage::eFloatUnderflow; 1924 break; 1925 case FPE_FLTRES: 1926 reason = ProcessMessage::eFloatInexactResult; 1927 break; 1928 case FPE_FLTINV: 1929 reason = ProcessMessage::eFloatInvalidOperation; 1930 break; 1931 case FPE_FLTSUB: 1932 reason = ProcessMessage::eFloatSubscriptRange; 1933 break; 1934 } 1935 1936 return reason; 1937 } 1938 #endif 1939 1940 #if 0 1941 ProcessMessage::CrashReason 1942 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1943 { 1944 ProcessMessage::CrashReason reason; 1945 assert(info->si_signo == SIGBUS); 1946 1947 reason = ProcessMessage::eInvalidCrashReason; 1948 1949 switch (info->si_code) 1950 { 1951 default: 1952 assert(false && "unexpected si_code for SIGBUS"); 1953 break; 1954 case BUS_ADRALN: 1955 reason = ProcessMessage::eIllegalAlignment; 1956 break; 1957 case BUS_ADRERR: 1958 reason = ProcessMessage::eIllegalAddress; 1959 break; 1960 case BUS_OBJERR: 1961 reason = ProcessMessage::eHardwareError; 1962 break; 1963 } 1964 1965 return reason; 1966 } 1967 #endif 1968 1969 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1970 size_t &bytes_read) { 1971 if (ProcessVmReadvSupported()) { 1972 // The process_vm_readv path is about 50 times faster than ptrace api. We 1973 // want to use 1974 // this syscall if it is supported. 1975 1976 const ::pid_t pid = GetID(); 1977 1978 struct iovec local_iov, remote_iov; 1979 local_iov.iov_base = buf; 1980 local_iov.iov_len = size; 1981 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1982 remote_iov.iov_len = size; 1983 1984 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1985 const bool success = bytes_read == size; 1986 1987 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1988 LLDB_LOG(log, 1989 "using process_vm_readv to read {0} bytes from inferior " 1990 "address {1:x}: {2}", 1991 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1992 1993 if (success) 1994 return Status(); 1995 // else the call failed for some reason, let's retry the read using ptrace 1996 // api. 1997 } 1998 1999 unsigned char *dst = static_cast<unsigned char *>(buf); 2000 size_t remainder; 2001 long data; 2002 2003 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2004 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2005 2006 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 2007 Status error = NativeProcessLinux::PtraceWrapper( 2008 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 2009 if (error.Fail()) 2010 return error; 2011 2012 remainder = size - bytes_read; 2013 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2014 2015 // Copy the data into our buffer 2016 memcpy(dst, &data, remainder); 2017 2018 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2019 addr += k_ptrace_word_size; 2020 dst += k_ptrace_word_size; 2021 } 2022 return Status(); 2023 } 2024 2025 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 2026 size_t size, 2027 size_t &bytes_read) { 2028 Status error = ReadMemory(addr, buf, size, bytes_read); 2029 if (error.Fail()) 2030 return error; 2031 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2032 } 2033 2034 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 2035 size_t size, size_t &bytes_written) { 2036 const unsigned char *src = static_cast<const unsigned char *>(buf); 2037 size_t remainder; 2038 Status error; 2039 2040 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2041 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2042 2043 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 2044 remainder = size - bytes_written; 2045 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2046 2047 if (remainder == k_ptrace_word_size) { 2048 unsigned long data = 0; 2049 memcpy(&data, src, k_ptrace_word_size); 2050 2051 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2052 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 2053 (void *)addr, (void *)data); 2054 if (error.Fail()) 2055 return error; 2056 } else { 2057 unsigned char buff[8]; 2058 size_t bytes_read; 2059 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2060 if (error.Fail()) 2061 return error; 2062 2063 memcpy(buff, src, remainder); 2064 2065 size_t bytes_written_rec; 2066 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2067 if (error.Fail()) 2068 return error; 2069 2070 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 2071 *(unsigned long *)buff); 2072 } 2073 2074 addr += k_ptrace_word_size; 2075 src += k_ptrace_word_size; 2076 } 2077 return error; 2078 } 2079 2080 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 2081 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2082 } 2083 2084 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 2085 unsigned long *message) { 2086 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2087 } 2088 2089 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 2090 if (tid == LLDB_INVALID_THREAD_ID) 2091 return Status(); 2092 2093 return PtraceWrapper(PTRACE_DETACH, tid); 2094 } 2095 2096 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 2097 for (auto thread_sp : m_threads) { 2098 assert(thread_sp && "thread list should not contain NULL threads"); 2099 if (thread_sp->GetID() == thread_id) { 2100 // We have this thread. 2101 return true; 2102 } 2103 } 2104 2105 // We don't have this thread. 2106 return false; 2107 } 2108 2109 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 2110 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2111 LLDB_LOG(log, "tid: {0})", thread_id); 2112 2113 bool found = false; 2114 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 2115 if (*it && ((*it)->GetID() == thread_id)) { 2116 m_threads.erase(it); 2117 found = true; 2118 break; 2119 } 2120 } 2121 2122 SignalIfAllThreadsStopped(); 2123 return found; 2124 } 2125 2126 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2127 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2128 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2129 2130 assert(!HasThreadNoLock(thread_id) && 2131 "attempted to add a thread by id that already exists"); 2132 2133 // If this is the first thread, save it as the current thread 2134 if (m_threads.empty()) 2135 SetCurrentThreadID(thread_id); 2136 2137 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2138 m_threads.push_back(thread_sp); 2139 return thread_sp; 2140 } 2141 2142 Status 2143 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2144 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2145 2146 Status error; 2147 2148 // Find out the size of a breakpoint (might depend on where we are in the 2149 // code). 2150 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2151 if (!context_sp) { 2152 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2153 LLDB_LOG(log, "failed: {0}", error); 2154 return error; 2155 } 2156 2157 uint32_t breakpoint_size = 0; 2158 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2159 if (error.Fail()) { 2160 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2161 return error; 2162 } else 2163 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2164 2165 // First try probing for a breakpoint at a software breakpoint location: PC - 2166 // breakpoint size. 2167 const lldb::addr_t initial_pc_addr = 2168 context_sp->GetPCfromBreakpointLocation(); 2169 lldb::addr_t breakpoint_addr = initial_pc_addr; 2170 if (breakpoint_size > 0) { 2171 // Do not allow breakpoint probe to wrap around. 2172 if (breakpoint_addr >= breakpoint_size) 2173 breakpoint_addr -= breakpoint_size; 2174 } 2175 2176 // Check if we stopped because of a breakpoint. 2177 NativeBreakpointSP breakpoint_sp; 2178 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2179 if (!error.Success() || !breakpoint_sp) { 2180 // We didn't find one at a software probe location. Nothing to do. 2181 LLDB_LOG(log, 2182 "pid {0} no lldb breakpoint found at current pc with " 2183 "adjustment: {1}", 2184 GetID(), breakpoint_addr); 2185 return Status(); 2186 } 2187 2188 // If the breakpoint is not a software breakpoint, nothing to do. 2189 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2190 LLDB_LOG( 2191 log, 2192 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2193 GetID(), breakpoint_addr); 2194 return Status(); 2195 } 2196 2197 // 2198 // We have a software breakpoint and need to adjust the PC. 2199 // 2200 2201 // Sanity check. 2202 if (breakpoint_size == 0) { 2203 // Nothing to do! How did we get here? 2204 LLDB_LOG(log, 2205 "pid {0} breakpoint found at {1:x}, it is software, but the " 2206 "size is zero, nothing to do (unexpected)", 2207 GetID(), breakpoint_addr); 2208 return Status(); 2209 } 2210 2211 // Change the program counter. 2212 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2213 thread.GetID(), initial_pc_addr, breakpoint_addr); 2214 2215 error = context_sp->SetPC(breakpoint_addr); 2216 if (error.Fail()) { 2217 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2218 thread.GetID(), error); 2219 return error; 2220 } 2221 2222 return error; 2223 } 2224 2225 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2226 FileSpec &file_spec) { 2227 Status error = PopulateMemoryRegionCache(); 2228 if (error.Fail()) 2229 return error; 2230 2231 FileSpec module_file_spec(module_path, true); 2232 2233 file_spec.Clear(); 2234 for (const auto &it : m_mem_region_cache) { 2235 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2236 file_spec = it.second; 2237 return Status(); 2238 } 2239 } 2240 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2241 module_file_spec.GetFilename().AsCString(), GetID()); 2242 } 2243 2244 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2245 lldb::addr_t &load_addr) { 2246 load_addr = LLDB_INVALID_ADDRESS; 2247 Status error = PopulateMemoryRegionCache(); 2248 if (error.Fail()) 2249 return error; 2250 2251 FileSpec file(file_name, false); 2252 for (const auto &it : m_mem_region_cache) { 2253 if (it.second == file) { 2254 load_addr = it.first.GetRange().GetRangeBase(); 2255 return Status(); 2256 } 2257 } 2258 return Status("No load address found for specified file."); 2259 } 2260 2261 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2262 return std::static_pointer_cast<NativeThreadLinux>( 2263 NativeProcessProtocol::GetThreadByID(tid)); 2264 } 2265 2266 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2267 lldb::StateType state, int signo) { 2268 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2269 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2270 2271 // Before we do the resume below, first check if we have a pending 2272 // stop notification that is currently waiting for 2273 // all threads to stop. This is potentially a buggy situation since 2274 // we're ostensibly waiting for threads to stop before we send out the 2275 // pending notification, and here we are resuming one before we send 2276 // out the pending stop notification. 2277 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2278 LLDB_LOG(log, 2279 "about to resume tid {0} per explicit request but we have a " 2280 "pending stop notification (tid {1}) that is actively " 2281 "waiting for this thread to stop. Valid sequence of events?", 2282 thread.GetID(), m_pending_notification_tid); 2283 } 2284 2285 // Request a resume. We expect this to be synchronous and the system 2286 // to reflect it is running after this completes. 2287 switch (state) { 2288 case eStateRunning: { 2289 const auto resume_result = thread.Resume(signo); 2290 if (resume_result.Success()) 2291 SetState(eStateRunning, true); 2292 return resume_result; 2293 } 2294 case eStateStepping: { 2295 const auto step_result = thread.SingleStep(signo); 2296 if (step_result.Success()) 2297 SetState(eStateRunning, true); 2298 return step_result; 2299 } 2300 default: 2301 LLDB_LOG(log, "Unhandled state {0}.", state); 2302 llvm_unreachable("Unhandled state for resume"); 2303 } 2304 } 2305 2306 //===----------------------------------------------------------------------===// 2307 2308 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2309 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2310 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2311 triggering_tid); 2312 2313 m_pending_notification_tid = triggering_tid; 2314 2315 // Request a stop for all the thread stops that need to be stopped 2316 // and are not already known to be stopped. 2317 for (const auto &thread_sp : m_threads) { 2318 if (StateIsRunningState(thread_sp->GetState())) 2319 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2320 } 2321 2322 SignalIfAllThreadsStopped(); 2323 LLDB_LOG(log, "event processing done"); 2324 } 2325 2326 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2327 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2328 return; // No pending notification. Nothing to do. 2329 2330 for (const auto &thread_sp : m_threads) { 2331 if (StateIsRunningState(thread_sp->GetState())) 2332 return; // Some threads are still running. Don't signal yet. 2333 } 2334 2335 // We have a pending notification and all threads have stopped. 2336 Log *log( 2337 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2338 2339 // Clear any temporary breakpoints we used to implement software single 2340 // stepping. 2341 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2342 Status error = RemoveBreakpoint(thread_info.second); 2343 if (error.Fail()) 2344 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2345 thread_info.first, error); 2346 } 2347 m_threads_stepping_with_breakpoint.clear(); 2348 2349 // Notify the delegate about the stop 2350 SetCurrentThreadID(m_pending_notification_tid); 2351 SetState(StateType::eStateStopped, true); 2352 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2353 } 2354 2355 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2356 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2357 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2358 2359 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2360 StateIsRunningState(thread.GetState())) { 2361 // We will need to wait for this new thread to stop as well before firing 2362 // the 2363 // notification. 2364 thread.RequestStop(); 2365 } 2366 } 2367 2368 void NativeProcessLinux::SigchldHandler() { 2369 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2370 // Process all pending waitpid notifications. 2371 while (true) { 2372 int status = -1; 2373 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2374 2375 if (wait_pid == 0) 2376 break; // We are done. 2377 2378 if (wait_pid == -1) { 2379 if (errno == EINTR) 2380 continue; 2381 2382 Status error(errno, eErrorTypePOSIX); 2383 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2384 break; 2385 } 2386 2387 bool exited = false; 2388 int signal = 0; 2389 int exit_status = 0; 2390 const char *status_cstr = nullptr; 2391 if (WIFSTOPPED(status)) { 2392 signal = WSTOPSIG(status); 2393 status_cstr = "STOPPED"; 2394 } else if (WIFEXITED(status)) { 2395 exit_status = WEXITSTATUS(status); 2396 status_cstr = "EXITED"; 2397 exited = true; 2398 } else if (WIFSIGNALED(status)) { 2399 signal = WTERMSIG(status); 2400 status_cstr = "SIGNALED"; 2401 if (wait_pid == static_cast<::pid_t>(GetID())) { 2402 exited = true; 2403 exit_status = -1; 2404 } 2405 } else 2406 status_cstr = "(\?\?\?)"; 2407 2408 LLDB_LOG(log, 2409 "waitpid (-1, &status, _) => pid = {0}, status = {1:x} " 2410 "({2}), signal = {3}, exit_state = {4}", 2411 wait_pid, status, status_cstr, signal, exit_status); 2412 2413 MonitorCallback(wait_pid, exited, signal, exit_status); 2414 } 2415 } 2416 2417 // Wrapper for ptrace to catch errors and log calls. 2418 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2419 // for PTRACE_PEEK*) 2420 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2421 void *data, size_t data_size, 2422 long *result) { 2423 Status error; 2424 long int ret; 2425 2426 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2427 2428 PtraceDisplayBytes(req, data, data_size); 2429 2430 errno = 0; 2431 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2432 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2433 *(unsigned int *)addr, data); 2434 else 2435 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2436 addr, data); 2437 2438 if (ret == -1) 2439 error.SetErrorToErrno(); 2440 2441 if (result) 2442 *result = ret; 2443 2444 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2445 data_size, ret); 2446 2447 PtraceDisplayBytes(req, data, data_size); 2448 2449 if (error.Fail()) 2450 LLDB_LOG(log, "ptrace() failed: {0}", error); 2451 2452 return error; 2453 } 2454