1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/ModuleSpec.h"
29 #include "lldb/Core/RegisterValue.h"
30 #include "lldb/Core/State.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/ThreadLauncher.h"
33 #include "lldb/Host/common/NativeBreakpoint.h"
34 #include "lldb/Host/common/NativeRegisterContext.h"
35 #include "lldb/Symbol/ObjectFile.h"
36 #include "lldb/Target/Process.h"
37 #include "lldb/Target/ProcessLaunchInfo.h"
38 #include "lldb/Target/Target.h"
39 #include "lldb/Utility/LLDBAssert.h"
40 #include "lldb/Utility/PseudoTerminal.h"
41 #include "lldb/Utility/StringExtractor.h"
42 
43 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
44 #include "NativeThreadLinux.h"
45 #include "ProcFileReader.h"
46 #include "Procfs.h"
47 
48 // System includes - They have to be included after framework includes because they define some
49 // macros which collide with variable names in other modules
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 
53 #include <sys/syscall.h>
54 #include <sys/types.h>
55 #include <sys/user.h>
56 #include <sys/wait.h>
57 
58 #include "lldb/Host/linux/Personality.h"
59 #include "lldb/Host/linux/Ptrace.h"
60 #include "lldb/Host/linux/Uio.h"
61 #include "lldb/Host/android/Android.h"
62 
63 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
64 
65 // Support hardware breakpoints in case it has not been defined
66 #ifndef TRAP_HWBKPT
67   #define TRAP_HWBKPT 4
68 #endif
69 
70 using namespace lldb;
71 using namespace lldb_private;
72 using namespace lldb_private::process_linux;
73 using namespace llvm;
74 
75 // Private bits we only need internally.
76 
77 static bool ProcessVmReadvSupported()
78 {
79     static bool is_supported;
80     static std::once_flag flag;
81 
82     std::call_once(flag, [] {
83         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
84 
85         uint32_t source = 0x47424742;
86         uint32_t dest = 0;
87 
88         struct iovec local, remote;
89         remote.iov_base = &source;
90         local.iov_base = &dest;
91         remote.iov_len = local.iov_len = sizeof source;
92 
93         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
94         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
95         is_supported = (res == sizeof(source) && source == dest);
96         if (log)
97         {
98             if (is_supported)
99                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
100                         __FUNCTION__);
101             else
102                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
103                         __FUNCTION__, strerror(errno));
104         }
105     });
106 
107     return is_supported;
108 }
109 
110 namespace
111 {
112 Error
113 ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch)
114 {
115     // Grab process info for the running process.
116     ProcessInstanceInfo process_info;
117     if (!Host::GetProcessInfo(pid, process_info))
118         return Error("failed to get process info");
119 
120     // Resolve the executable module.
121     ModuleSpecList module_specs;
122     if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs))
123         return Error("failed to get module specifications");
124     assert(module_specs.GetSize() == 1);
125 
126     arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
127     if (arch.IsValid())
128         return Error();
129     else
130         return Error("failed to retrieve a valid architecture from the exe module");
131 }
132 
133 // Used to notify the parent about which part of the launch sequence failed.
134 enum LaunchCallSpecifier
135 {
136     ePtraceFailed,
137     eDupStdinFailed,
138     eDupStdoutFailed,
139     eDupStderrFailed,
140     eChdirFailed,
141     eExecFailed,
142     eSetGidFailed,
143     eSetSigMaskFailed,
144     eLaunchCallMax = eSetSigMaskFailed
145 };
146 
147 static uint8_t LLVM_ATTRIBUTE_NORETURN
148 ExitChildAbnormally(LaunchCallSpecifier spec)
149 {
150     static_assert(eLaunchCallMax < 0x8, "Have more launch calls than we are able to represent");
151     // This may truncate the topmost bits of the errno because the exit code is only 8 bits wide.
152     // However, it should still give us a pretty good indication of what went wrong. (And the
153     // most common errors have small numbers anyway).
154     _exit(unsigned(spec) | (errno << 3));
155 }
156 
157 // The second member is the errno (or its 5 lowermost bits anyway).
158 inline std::pair<LaunchCallSpecifier, uint8_t>
159 DecodeChildExitCode(int exit_code)
160 {
161     return std::make_pair(LaunchCallSpecifier(exit_code & 0x7), exit_code >> 3);
162 }
163 
164     void
165     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
166     {
167         uint8_t *ptr = (uint8_t *)bytes;
168         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
169         for(uint32_t i=0; i<loop_count; i++)
170         {
171             s.Printf ("[%x]", *ptr);
172             ptr++;
173         }
174     }
175 
176     void
177     PtraceDisplayBytes(int &req, void *data, size_t data_size)
178     {
179         StreamString buf;
180         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
181                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
182 
183         if (verbose_log)
184         {
185             switch(req)
186             {
187             case PTRACE_POKETEXT:
188             {
189                 DisplayBytes(buf, &data, 8);
190                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
191                 break;
192             }
193             case PTRACE_POKEDATA:
194             {
195                 DisplayBytes(buf, &data, 8);
196                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
197                 break;
198             }
199             case PTRACE_POKEUSER:
200             {
201                 DisplayBytes(buf, &data, 8);
202                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
203                 break;
204             }
205             case PTRACE_SETREGS:
206             {
207                 DisplayBytes(buf, data, data_size);
208                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
209                 break;
210             }
211             case PTRACE_SETFPREGS:
212             {
213                 DisplayBytes(buf, data, data_size);
214                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
215                 break;
216             }
217             case PTRACE_SETSIGINFO:
218             {
219                 DisplayBytes(buf, data, sizeof(siginfo_t));
220                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
221                 break;
222             }
223             case PTRACE_SETREGSET:
224             {
225                 // Extract iov_base from data, which is a pointer to the struct IOVEC
226                 DisplayBytes(buf, *(void **)data, data_size);
227                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
228                 break;
229             }
230             default:
231             {
232             }
233             }
234         }
235     }
236 
237     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
238     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
239 } // end of anonymous namespace
240 
241 // Simple helper function to ensure flags are enabled on the given file
242 // descriptor.
243 static Error
244 EnsureFDFlags(int fd, int flags)
245 {
246     Error error;
247 
248     int status = fcntl(fd, F_GETFL);
249     if (status == -1)
250     {
251         error.SetErrorToErrno();
252         return error;
253     }
254 
255     if (fcntl(fd, F_SETFL, status | flags) == -1)
256     {
257         error.SetErrorToErrno();
258         return error;
259     }
260 
261     return error;
262 }
263 
264 NativeProcessLinux::LaunchArgs::LaunchArgs(char const **argv, char const **envp, const FileSpec &stdin_file_spec,
265                                            const FileSpec &stdout_file_spec, const FileSpec &stderr_file_spec,
266                                            const FileSpec &working_dir, const ProcessLaunchInfo &launch_info)
267     : m_argv(argv),
268       m_envp(envp),
269       m_stdin_file_spec(stdin_file_spec),
270       m_stdout_file_spec(stdout_file_spec),
271       m_stderr_file_spec(stderr_file_spec),
272       m_working_dir(working_dir),
273       m_launch_info(launch_info)
274 {
275 }
276 
277 NativeProcessLinux::LaunchArgs::~LaunchArgs()
278 { }
279 
280 // -----------------------------------------------------------------------------
281 // Public Static Methods
282 // -----------------------------------------------------------------------------
283 
284 Error
285 NativeProcessProtocol::Launch (
286     ProcessLaunchInfo &launch_info,
287     NativeProcessProtocol::NativeDelegate &native_delegate,
288     MainLoop &mainloop,
289     NativeProcessProtocolSP &native_process_sp)
290 {
291     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
292 
293     Error error;
294 
295     // Verify the working directory is valid if one was specified.
296     FileSpec working_dir{launch_info.GetWorkingDirectory()};
297     if (working_dir &&
298             (!working_dir.ResolvePath() ||
299              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
300     {
301         error.SetErrorStringWithFormat ("No such file or directory: %s",
302                 working_dir.GetCString());
303         return error;
304     }
305 
306     const FileAction *file_action;
307 
308     // Default of empty will mean to use existing open file descriptors.
309     FileSpec stdin_file_spec{};
310     FileSpec stdout_file_spec{};
311     FileSpec stderr_file_spec{};
312 
313     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
314     if (file_action)
315         stdin_file_spec = file_action->GetFileSpec();
316 
317     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
318     if (file_action)
319         stdout_file_spec = file_action->GetFileSpec();
320 
321     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
322     if (file_action)
323         stderr_file_spec = file_action->GetFileSpec();
324 
325     if (log)
326     {
327         if (stdin_file_spec)
328             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
329                     __FUNCTION__, stdin_file_spec.GetCString());
330         else
331             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
332 
333         if (stdout_file_spec)
334             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
335                     __FUNCTION__, stdout_file_spec.GetCString());
336         else
337             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
338 
339         if (stderr_file_spec)
340             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
341                     __FUNCTION__, stderr_file_spec.GetCString());
342         else
343             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
344     }
345 
346     // Create the NativeProcessLinux in launch mode.
347     native_process_sp.reset (new NativeProcessLinux ());
348 
349     if (log)
350     {
351         int i = 0;
352         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
353         {
354             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
355             ++i;
356         }
357     }
358 
359     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
360     {
361         native_process_sp.reset ();
362         error.SetErrorStringWithFormat ("failed to register the native delegate");
363         return error;
364     }
365 
366     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
367             mainloop,
368             launch_info.GetArguments ().GetConstArgumentVector (),
369             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
370             stdin_file_spec,
371             stdout_file_spec,
372             stderr_file_spec,
373             working_dir,
374             launch_info,
375             error);
376 
377     if (error.Fail ())
378     {
379         native_process_sp.reset ();
380         if (log)
381             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
382         return error;
383     }
384 
385     launch_info.SetProcessID (native_process_sp->GetID ());
386 
387     return error;
388 }
389 
390 Error
391 NativeProcessProtocol::Attach (
392     lldb::pid_t pid,
393     NativeProcessProtocol::NativeDelegate &native_delegate,
394     MainLoop &mainloop,
395     NativeProcessProtocolSP &native_process_sp)
396 {
397     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
398     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
399         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
400 
401     // Retrieve the architecture for the running process.
402     ArchSpec process_arch;
403     Error error = ResolveProcessArchitecture(pid, process_arch);
404     if (!error.Success ())
405         return error;
406 
407     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
408 
409     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
410     {
411         error.SetErrorStringWithFormat ("failed to register the native delegate");
412         return error;
413     }
414 
415     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
416     if (!error.Success ())
417         return error;
418 
419     native_process_sp = native_process_linux_sp;
420     return error;
421 }
422 
423 // -----------------------------------------------------------------------------
424 // Public Instance Methods
425 // -----------------------------------------------------------------------------
426 
427 NativeProcessLinux::NativeProcessLinux () :
428     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
429     m_arch (),
430     m_supports_mem_region (eLazyBoolCalculate),
431     m_mem_region_cache (),
432     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
433 {
434 }
435 
436 void
437 NativeProcessLinux::LaunchInferior (
438     MainLoop &mainloop,
439     const char *argv[],
440     const char *envp[],
441     const FileSpec &stdin_file_spec,
442     const FileSpec &stdout_file_spec,
443     const FileSpec &stderr_file_spec,
444     const FileSpec &working_dir,
445     const ProcessLaunchInfo &launch_info,
446     Error &error)
447 {
448     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
449             [this] (MainLoopBase &) { SigchldHandler(); }, error);
450     if (! m_sigchld_handle)
451         return;
452 
453     SetState (eStateLaunching);
454 
455     std::unique_ptr<LaunchArgs> args(
456         new LaunchArgs(argv, envp, stdin_file_spec, stdout_file_spec, stderr_file_spec, working_dir, launch_info));
457 
458     Launch(args.get(), error);
459 }
460 
461 void
462 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
463 {
464     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
465     if (log)
466         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
467 
468     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
469             [this] (MainLoopBase &) { SigchldHandler(); }, error);
470     if (! m_sigchld_handle)
471         return;
472 
473     error = ResolveProcessArchitecture(pid, m_arch);
474     if (!error.Success())
475         return;
476 
477     // Set the architecture to the exe architecture.
478     if (log)
479         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
480 
481     m_pid = pid;
482     SetState(eStateAttaching);
483 
484     Attach(pid, error);
485 }
486 
487 void
488 NativeProcessLinux::ChildFunc(const LaunchArgs &args)
489 {
490     // Start tracing this child that is about to exec.
491     if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) == -1)
492         ExitChildAbnormally(ePtraceFailed);
493 
494     // Do not inherit setgid powers.
495     if (setgid(getgid()) != 0)
496         ExitChildAbnormally(eSetGidFailed);
497 
498     // Attempt to have our own process group.
499     if (setpgid(0, 0) != 0)
500     {
501         // FIXME log that this failed. This is common.
502         // Don't allow this to prevent an inferior exec.
503     }
504 
505     // Dup file descriptors if needed.
506     if (args.m_stdin_file_spec)
507         if (!DupDescriptor(args.m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
508             ExitChildAbnormally(eDupStdinFailed);
509 
510     if (args.m_stdout_file_spec)
511         if (!DupDescriptor(args.m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
512             ExitChildAbnormally(eDupStdoutFailed);
513 
514     if (args.m_stderr_file_spec)
515         if (!DupDescriptor(args.m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
516             ExitChildAbnormally(eDupStderrFailed);
517 
518     // Close everything besides stdin, stdout, and stderr that has no file
519     // action to avoid leaking
520     for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
521         if (!args.m_launch_info.GetFileActionForFD(fd))
522             close(fd);
523 
524     // Change working directory
525     if (args.m_working_dir && 0 != ::chdir(args.m_working_dir.GetCString()))
526         ExitChildAbnormally(eChdirFailed);
527 
528     // Disable ASLR if requested.
529     if (args.m_launch_info.GetFlags().Test(lldb::eLaunchFlagDisableASLR))
530     {
531         const int old_personality = personality(LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
532         if (old_personality == -1)
533         {
534             // Can't retrieve Linux personality.  Cannot disable ASLR.
535         }
536         else
537         {
538             const int new_personality = personality(ADDR_NO_RANDOMIZE | old_personality);
539             if (new_personality == -1)
540             {
541                 // Disabling ASLR failed.
542             }
543             else
544             {
545                 // Disabling ASLR succeeded.
546             }
547         }
548     }
549 
550     // Clear the signal mask to prevent the child from being affected by
551     // any masking done by the parent.
552     sigset_t set;
553     if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
554         ExitChildAbnormally(eSetSigMaskFailed);
555 
556     // Propagate the environment if one is not supplied.
557     const char **envp = args.m_envp;
558     if (envp == NULL || envp[0] == NULL)
559         envp = const_cast<const char **>(environ);
560 
561     // Execute.  We should never return...
562     execve(args.m_argv[0], const_cast<char *const *>(args.m_argv), const_cast<char *const *>(envp));
563 
564     // ...unless exec fails.  In which case we definitely need to end the child here.
565     ExitChildAbnormally(eExecFailed);
566 }
567 
568 ::pid_t
569 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
570 {
571     assert (args && "null args");
572 
573     lldb_utility::PseudoTerminal terminal;
574     const size_t err_len = 1024;
575     char err_str[err_len];
576     lldb::pid_t pid;
577 
578     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
579     {
580         error.SetErrorToGenericError();
581         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
582         return -1;
583     }
584 
585     // Child process.
586     if (pid == 0)
587     {
588         // First, make sure we disable all logging. If we are logging to stdout, our logs can be
589         // mistaken for inferior output.
590         Log::DisableAllLogChannels(nullptr);
591 
592         // terminal has already dupped the tty descriptors to stdin/out/err.
593         // This closes original fd from which they were copied (and avoids
594         // leaking descriptors to the debugged process.
595         terminal.CloseSlaveFileDescriptor();
596 
597         ChildFunc(*args);
598     }
599 
600     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
601 
602     // Wait for the child process to trap on its call to execve.
603     ::pid_t wpid;
604     int status;
605     if ((wpid = waitpid(pid, &status, 0)) < 0)
606     {
607         error.SetErrorToErrno();
608         if (log)
609             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
610                     __FUNCTION__, error.AsCString ());
611 
612         // Mark the inferior as invalid.
613         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
614         SetState (StateType::eStateInvalid);
615 
616         return -1;
617     }
618     else if (WIFEXITED(status))
619     {
620         auto p = DecodeChildExitCode(WEXITSTATUS(status));
621         Error child_error(p.second, eErrorTypePOSIX);
622         const char *failure_reason;
623         switch (p.first)
624         {
625             case ePtraceFailed:
626                 failure_reason = "Child ptrace failed";
627                 break;
628             case eDupStdinFailed:
629                 failure_reason = "Child open stdin failed";
630                 break;
631             case eDupStdoutFailed:
632                 failure_reason = "Child open stdout failed";
633                 break;
634             case eDupStderrFailed:
635                 failure_reason = "Child open stderr failed";
636                 break;
637             case eChdirFailed:
638                 failure_reason = "Child failed to set working directory";
639                 break;
640             case eExecFailed:
641                 failure_reason = "Child exec failed";
642                 break;
643             case eSetGidFailed:
644                 failure_reason = "Child setgid failed";
645                 break;
646             case eSetSigMaskFailed:
647                 failure_reason = "Child failed to set signal mask";
648                 break;
649         }
650         error.SetErrorStringWithFormat("%s: %d - %s (error code truncated)", failure_reason, child_error.GetError(), child_error.AsCString());
651 
652         if (log)
653         {
654             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
655                     __FUNCTION__,
656                     WEXITSTATUS(status));
657         }
658 
659         // Mark the inferior as invalid.
660         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
661         SetState (StateType::eStateInvalid);
662 
663         return -1;
664     }
665     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
666            "Could not sync with inferior process.");
667 
668     if (log)
669         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
670 
671     error = SetDefaultPtraceOpts(pid);
672     if (error.Fail())
673     {
674         if (log)
675             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
676                     __FUNCTION__, error.AsCString ());
677 
678         // Mark the inferior as invalid.
679         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
680         SetState (StateType::eStateInvalid);
681 
682         return -1;
683     }
684 
685     // Release the master terminal descriptor and pass it off to the
686     // NativeProcessLinux instance.  Similarly stash the inferior pid.
687     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
688     m_pid = pid;
689 
690     // Set the terminal fd to be in non blocking mode (it simplifies the
691     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
692     // descriptor to read from).
693     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
694     if (error.Fail())
695     {
696         if (log)
697             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
698                     __FUNCTION__, error.AsCString ());
699 
700         // Mark the inferior as invalid.
701         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
702         SetState (StateType::eStateInvalid);
703 
704         return -1;
705     }
706 
707     if (log)
708         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
709 
710     ResolveProcessArchitecture(m_pid, m_arch);
711     NativeThreadLinuxSP thread_sp = AddThread(pid);
712     assert (thread_sp && "AddThread() returned a nullptr thread");
713     thread_sp->SetStoppedBySignal(SIGSTOP);
714     ThreadWasCreated(*thread_sp);
715 
716     // Let our process instance know the thread has stopped.
717     SetCurrentThreadID (thread_sp->GetID ());
718     SetState (StateType::eStateStopped);
719 
720     if (log)
721     {
722         if (error.Success ())
723         {
724             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
725         }
726         else
727         {
728             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
729                 __FUNCTION__, error.AsCString ());
730             return -1;
731         }
732     }
733     return pid;
734 }
735 
736 ::pid_t
737 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
738 {
739     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
740 
741     // Use a map to keep track of the threads which we have attached/need to attach.
742     Host::TidMap tids_to_attach;
743     if (pid <= 1)
744     {
745         error.SetErrorToGenericError();
746         error.SetErrorString("Attaching to process 1 is not allowed.");
747         return -1;
748     }
749 
750     while (Host::FindProcessThreads(pid, tids_to_attach))
751     {
752         for (Host::TidMap::iterator it = tids_to_attach.begin();
753              it != tids_to_attach.end();)
754         {
755             if (it->second == false)
756             {
757                 lldb::tid_t tid = it->first;
758 
759                 // Attach to the requested process.
760                 // An attach will cause the thread to stop with a SIGSTOP.
761                 error = PtraceWrapper(PTRACE_ATTACH, tid);
762                 if (error.Fail())
763                 {
764                     // No such thread. The thread may have exited.
765                     // More error handling may be needed.
766                     if (error.GetError() == ESRCH)
767                     {
768                         it = tids_to_attach.erase(it);
769                         continue;
770                     }
771                     else
772                         return -1;
773                 }
774 
775                 int status;
776                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
777                 // At this point we should have a thread stopped if waitpid succeeds.
778                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
779                 {
780                     // No such thread. The thread may have exited.
781                     // More error handling may be needed.
782                     if (errno == ESRCH)
783                     {
784                         it = tids_to_attach.erase(it);
785                         continue;
786                     }
787                     else
788                     {
789                         error.SetErrorToErrno();
790                         return -1;
791                     }
792                 }
793 
794                 error = SetDefaultPtraceOpts(tid);
795                 if (error.Fail())
796                     return -1;
797 
798                 if (log)
799                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
800 
801                 it->second = true;
802 
803                 // Create the thread, mark it as stopped.
804                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
805                 assert (thread_sp && "AddThread() returned a nullptr");
806 
807                 // This will notify this is a new thread and tell the system it is stopped.
808                 thread_sp->SetStoppedBySignal(SIGSTOP);
809                 ThreadWasCreated(*thread_sp);
810                 SetCurrentThreadID (thread_sp->GetID ());
811             }
812 
813             // move the loop forward
814             ++it;
815         }
816     }
817 
818     if (tids_to_attach.size() > 0)
819     {
820         m_pid = pid;
821         // Let our process instance know the thread has stopped.
822         SetState (StateType::eStateStopped);
823     }
824     else
825     {
826         error.SetErrorToGenericError();
827         error.SetErrorString("No such process.");
828         return -1;
829     }
830 
831     return pid;
832 }
833 
834 Error
835 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
836 {
837     long ptrace_opts = 0;
838 
839     // Have the child raise an event on exit.  This is used to keep the child in
840     // limbo until it is destroyed.
841     ptrace_opts |= PTRACE_O_TRACEEXIT;
842 
843     // Have the tracer trace threads which spawn in the inferior process.
844     // TODO: if we want to support tracing the inferiors' child, add the
845     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
846     ptrace_opts |= PTRACE_O_TRACECLONE;
847 
848     // Have the tracer notify us before execve returns
849     // (needed to disable legacy SIGTRAP generation)
850     ptrace_opts |= PTRACE_O_TRACEEXEC;
851 
852     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
853 }
854 
855 static ExitType convert_pid_status_to_exit_type (int status)
856 {
857     if (WIFEXITED (status))
858         return ExitType::eExitTypeExit;
859     else if (WIFSIGNALED (status))
860         return ExitType::eExitTypeSignal;
861     else if (WIFSTOPPED (status))
862         return ExitType::eExitTypeStop;
863     else
864     {
865         // We don't know what this is.
866         return ExitType::eExitTypeInvalid;
867     }
868 }
869 
870 static int convert_pid_status_to_return_code (int status)
871 {
872     if (WIFEXITED (status))
873         return WEXITSTATUS (status);
874     else if (WIFSIGNALED (status))
875         return WTERMSIG (status);
876     else if (WIFSTOPPED (status))
877         return WSTOPSIG (status);
878     else
879     {
880         // We don't know what this is.
881         return ExitType::eExitTypeInvalid;
882     }
883 }
884 
885 // Handles all waitpid events from the inferior process.
886 void
887 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
888                                     bool exited,
889                                     int signal,
890                                     int status)
891 {
892     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
893 
894     // Certain activities differ based on whether the pid is the tid of the main thread.
895     const bool is_main_thread = (pid == GetID ());
896 
897     // Handle when the thread exits.
898     if (exited)
899     {
900         if (log)
901             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
902 
903         // This is a thread that exited.  Ensure we're not tracking it anymore.
904         const bool thread_found = StopTrackingThread (pid);
905 
906         if (is_main_thread)
907         {
908             // We only set the exit status and notify the delegate if we haven't already set the process
909             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
910             // for the main thread.
911             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
912             if (!already_notified)
913             {
914                 if (log)
915                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
916                 // The main thread exited.  We're done monitoring.  Report to delegate.
917                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
918 
919                 // Notify delegate that our process has exited.
920                 SetState (StateType::eStateExited, true);
921             }
922             else
923             {
924                 if (log)
925                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
926             }
927         }
928         else
929         {
930             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
931             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
932             // and we would have done an all-stop then.
933             if (log)
934                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
935         }
936         return;
937     }
938 
939     siginfo_t info;
940     const auto info_err = GetSignalInfo(pid, &info);
941     auto thread_sp = GetThreadByID(pid);
942 
943     if (! thread_sp)
944     {
945         // Normally, the only situation when we cannot find the thread is if we have just
946         // received a new thread notification. This is indicated by GetSignalInfo() returning
947         // si_code == SI_USER and si_pid == 0
948         if (log)
949             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
950 
951         if (info_err.Fail())
952         {
953             if (log)
954                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
955             return;
956         }
957 
958         if (log && (info.si_code != SI_USER || info.si_pid != 0))
959             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
960 
961         auto thread_sp = AddThread(pid);
962         // Resume the newly created thread.
963         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
964         ThreadWasCreated(*thread_sp);
965         return;
966     }
967 
968     // Get details on the signal raised.
969     if (info_err.Success())
970     {
971         // We have retrieved the signal info.  Dispatch appropriately.
972         if (info.si_signo == SIGTRAP)
973             MonitorSIGTRAP(info, *thread_sp);
974         else
975             MonitorSignal(info, *thread_sp, exited);
976     }
977     else
978     {
979         if (info_err.GetError() == EINVAL)
980         {
981             // This is a group stop reception for this tid.
982             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
983             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
984             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
985             // generally not needed (one use case is debugging background task being managed by a
986             // shell). For general use, it is sufficient to stop the process in a signal-delivery
987             // stop which happens before the group stop. This done by MonitorSignal and works
988             // correctly for all signals.
989             if (log)
990                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
991             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
992         }
993         else
994         {
995             // ptrace(GETSIGINFO) failed (but not due to group-stop).
996 
997             // A return value of ESRCH means the thread/process is no longer on the system,
998             // so it was killed somehow outside of our control.  Either way, we can't do anything
999             // with it anymore.
1000 
1001             // Stop tracking the metadata for the thread since it's entirely off the system now.
1002             const bool thread_found = StopTrackingThread (pid);
1003 
1004             if (log)
1005                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1006                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1007 
1008             if (is_main_thread)
1009             {
1010                 // Notify the delegate - our process is not available but appears to have been killed outside
1011                 // our control.  Is eStateExited the right exit state in this case?
1012                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1013                 SetState (StateType::eStateExited, true);
1014             }
1015             else
1016             {
1017                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1018                 if (log)
1019                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1020             }
1021         }
1022     }
1023 }
1024 
1025 void
1026 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1027 {
1028     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1029 
1030     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
1031 
1032     if (new_thread_sp)
1033     {
1034         // We are already tracking the thread - we got the event on the new thread (see
1035         // MonitorSignal) before this one. We are done.
1036         return;
1037     }
1038 
1039     // The thread is not tracked yet, let's wait for it to appear.
1040     int status = -1;
1041     ::pid_t wait_pid;
1042     do
1043     {
1044         if (log)
1045             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1046         wait_pid = waitpid(tid, &status, __WALL);
1047     }
1048     while (wait_pid == -1 && errno == EINTR);
1049     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1050     // some checks just in case.
1051     if (wait_pid != tid) {
1052         if (log)
1053             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1054         // The only way I know of this could happen is if the whole process was
1055         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1056         return;
1057     }
1058     if (WIFEXITED(status))
1059     {
1060         if (log)
1061             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1062         // Also a very improbable event.
1063         return;
1064     }
1065 
1066     siginfo_t info;
1067     Error error = GetSignalInfo(tid, &info);
1068     if (error.Fail())
1069     {
1070         if (log)
1071             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1072         return;
1073     }
1074 
1075     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1076     {
1077         // We should be getting a thread creation signal here, but we received something
1078         // else. There isn't much we can do about it now, so we will just log that. Since the
1079         // thread is alive and we are receiving events from it, we shall pretend that it was
1080         // created properly.
1081         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1082     }
1083 
1084     if (log)
1085         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1086                  __FUNCTION__, GetID (), tid);
1087 
1088     new_thread_sp = AddThread(tid);
1089     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1090     ThreadWasCreated(*new_thread_sp);
1091 }
1092 
1093 void
1094 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
1095 {
1096     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1097     const bool is_main_thread = (thread.GetID() == GetID ());
1098 
1099     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
1100 
1101     switch (info.si_code)
1102     {
1103     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1104     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1105     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1106 
1107     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1108     {
1109         // This is the notification on the parent thread which informs us of new thread
1110         // creation.
1111         // We don't want to do anything with the parent thread so we just resume it. In case we
1112         // want to implement "break on thread creation" functionality, we would need to stop
1113         // here.
1114 
1115         unsigned long event_message = 0;
1116         if (GetEventMessage(thread.GetID(), &event_message).Fail())
1117         {
1118             if (log)
1119                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
1120         } else
1121             WaitForNewThread(event_message);
1122 
1123         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1124         break;
1125     }
1126 
1127     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1128     {
1129         NativeThreadLinuxSP main_thread_sp;
1130         if (log)
1131             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
1132 
1133         // Exec clears any pending notifications.
1134         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1135 
1136         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.
1137         if (log)
1138             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1139 
1140         for (auto thread_sp : m_threads)
1141         {
1142             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1143             if (is_main_thread)
1144             {
1145                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
1146                 if (log)
1147                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1148             }
1149             else
1150             {
1151                 if (log)
1152                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1153             }
1154         }
1155 
1156         m_threads.clear ();
1157 
1158         if (main_thread_sp)
1159         {
1160             m_threads.push_back (main_thread_sp);
1161             SetCurrentThreadID (main_thread_sp->GetID ());
1162             main_thread_sp->SetStoppedByExec();
1163         }
1164         else
1165         {
1166             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1167             if (log)
1168                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1169         }
1170 
1171         // Tell coordinator about about the "new" (since exec) stopped main thread.
1172         ThreadWasCreated(*main_thread_sp);
1173 
1174         // Let our delegate know we have just exec'd.
1175         NotifyDidExec ();
1176 
1177         // If we have a main thread, indicate we are stopped.
1178         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1179 
1180         // Let the process know we're stopped.
1181         StopRunningThreads(main_thread_sp->GetID());
1182 
1183         break;
1184     }
1185 
1186     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1187     {
1188         // The inferior process or one of its threads is about to exit.
1189         // We don't want to do anything with the thread so we just resume it. In case we
1190         // want to implement "break on thread exit" functionality, we would need to stop
1191         // here.
1192 
1193         unsigned long data = 0;
1194         if (GetEventMessage(thread.GetID(), &data).Fail())
1195             data = -1;
1196 
1197         if (log)
1198         {
1199             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1200                          __FUNCTION__,
1201                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1202                          thread.GetID(),
1203                     is_main_thread ? "is main thread" : "not main thread");
1204         }
1205 
1206         if (is_main_thread)
1207         {
1208             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1209         }
1210 
1211         StateType state = thread.GetState();
1212         if (! StateIsRunningState(state))
1213         {
1214             // Due to a kernel bug, we may sometimes get this stop after the inferior gets a
1215             // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
1216             // we should not be receiving any ptrace events while the inferior is stopped. This
1217             // makes sure that the inferior is resumed and exits normally.
1218             state = eStateRunning;
1219         }
1220         ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
1221 
1222         break;
1223     }
1224 
1225     case 0:
1226     case TRAP_TRACE:  // We receive this on single stepping.
1227     case TRAP_HWBKPT: // We receive this on watchpoint hit
1228     {
1229         // If a watchpoint was hit, report it
1230         uint32_t wp_index;
1231         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr);
1232         if (error.Fail() && log)
1233             log->Printf("NativeProcessLinux::%s() "
1234                         "received error while checking for watchpoint hits, "
1235                         "pid = %" PRIu64 " error = %s",
1236                         __FUNCTION__, thread.GetID(), error.AsCString());
1237         if (wp_index != LLDB_INVALID_INDEX32)
1238         {
1239             MonitorWatchpoint(thread, wp_index);
1240             break;
1241         }
1242 
1243         // Otherwise, report step over
1244         MonitorTrace(thread);
1245         break;
1246     }
1247 
1248     case SI_KERNEL:
1249 #if defined __mips__
1250         // For mips there is no special signal for watchpoint
1251         // So we check for watchpoint in kernel trap
1252     {
1253         // If a watchpoint was hit, report it
1254         uint32_t wp_index;
1255         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1256         if (error.Fail() && log)
1257             log->Printf("NativeProcessLinux::%s() "
1258                         "received error while checking for watchpoint hits, "
1259                         "pid = %" PRIu64 " error = %s",
1260                         __FUNCTION__, thread.GetID(), error.AsCString());
1261         if (wp_index != LLDB_INVALID_INDEX32)
1262         {
1263             MonitorWatchpoint(thread, wp_index);
1264             break;
1265         }
1266     }
1267         // NO BREAK
1268 #endif
1269     case TRAP_BRKPT:
1270         MonitorBreakpoint(thread);
1271         break;
1272 
1273     case SIGTRAP:
1274     case (SIGTRAP | 0x80):
1275         if (log)
1276             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1277 
1278         // Ignore these signals until we know more about them.
1279         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1280         break;
1281 
1282     default:
1283         assert(false && "Unexpected SIGTRAP code!");
1284         if (log)
1285             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1286                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1287         break;
1288 
1289     }
1290 }
1291 
1292 void
1293 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1294 {
1295     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1296     if (log)
1297         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1298                 __FUNCTION__, thread.GetID());
1299 
1300     // This thread is currently stopped.
1301     thread.SetStoppedByTrace();
1302 
1303     StopRunningThreads(thread.GetID());
1304 }
1305 
1306 void
1307 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1308 {
1309     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1310     if (log)
1311         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1312                 __FUNCTION__, thread.GetID());
1313 
1314     // Mark the thread as stopped at breakpoint.
1315     thread.SetStoppedByBreakpoint();
1316     Error error = FixupBreakpointPCAsNeeded(thread);
1317     if (error.Fail())
1318         if (log)
1319             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1320                     __FUNCTION__, thread.GetID(), error.AsCString());
1321 
1322     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1323         thread.SetStoppedByTrace();
1324 
1325     StopRunningThreads(thread.GetID());
1326 }
1327 
1328 void
1329 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1330 {
1331     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1332     if (log)
1333         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1334                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1335                     __FUNCTION__, thread.GetID(), wp_index);
1336 
1337     // Mark the thread as stopped at watchpoint.
1338     // The address is at (lldb::addr_t)info->si_addr if we need it.
1339     thread.SetStoppedByWatchpoint(wp_index);
1340 
1341     // We need to tell all other running threads before we notify the delegate about this stop.
1342     StopRunningThreads(thread.GetID());
1343 }
1344 
1345 void
1346 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1347 {
1348     const int signo = info.si_signo;
1349     const bool is_from_llgs = info.si_pid == getpid ();
1350 
1351     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1352 
1353     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1354     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1355     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1356     //
1357     // IOW, user generated signals never generate what we consider to be a
1358     // "crash".
1359     //
1360     // Similarly, ACK signals generated by this monitor.
1361 
1362     // Handle the signal.
1363     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1364     {
1365         if (log)
1366             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1367                             __FUNCTION__,
1368                             Host::GetSignalAsCString(signo),
1369                             signo,
1370                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1371                             info.si_pid,
1372                             is_from_llgs ? "from llgs" : "not from llgs",
1373                             thread.GetID());
1374     }
1375 
1376     // Check for thread stop notification.
1377     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1378     {
1379         // This is a tgkill()-based stop.
1380         if (log)
1381             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1382                          __FUNCTION__,
1383                          GetID (),
1384                          thread.GetID());
1385 
1386         // Check that we're not already marked with a stop reason.
1387         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1388         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1389         // and that, without an intervening resume, we received another stop.  It is more likely
1390         // that we are missing the marking of a run state somewhere if we find that the thread was
1391         // marked as stopped.
1392         const StateType thread_state = thread.GetState();
1393         if (!StateIsStoppedState (thread_state, false))
1394         {
1395             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1396             // Generally, these are not important stops and we don't want to report them as
1397             // they are just used to stop other threads when one thread (the one with the
1398             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1399             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1400             // leave the signal intact if this is the thread that was chosen as the
1401             // triggering thread.
1402             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1403             {
1404                 if (m_pending_notification_tid == thread.GetID())
1405                     thread.SetStoppedBySignal(SIGSTOP, &info);
1406                 else
1407                     thread.SetStoppedWithNoReason();
1408 
1409                 SetCurrentThreadID (thread.GetID ());
1410                 SignalIfAllThreadsStopped();
1411             }
1412             else
1413             {
1414                 // We can end up here if stop was initiated by LLGS but by this time a
1415                 // thread stop has occurred - maybe initiated by another event.
1416                 Error error = ResumeThread(thread, thread.GetState(), 0);
1417                 if (error.Fail() && log)
1418                 {
1419                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1420                             __FUNCTION__, thread.GetID(), error.AsCString());
1421                 }
1422             }
1423         }
1424         else
1425         {
1426             if (log)
1427             {
1428                 // Retrieve the signal name if the thread was stopped by a signal.
1429                 int stop_signo = 0;
1430                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1431                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1432                 if (!signal_name)
1433                     signal_name = "<no-signal-name>";
1434 
1435                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1436                              __FUNCTION__,
1437                              GetID (),
1438                              thread.GetID(),
1439                              StateAsCString (thread_state),
1440                              stop_signo,
1441                              signal_name);
1442             }
1443             SignalIfAllThreadsStopped();
1444         }
1445 
1446         // Done handling.
1447         return;
1448     }
1449 
1450     if (log)
1451         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1452 
1453     // This thread is stopped.
1454     thread.SetStoppedBySignal(signo, &info);
1455 
1456     // Send a stop to the debugger after we get all other threads to stop.
1457     StopRunningThreads(thread.GetID());
1458 }
1459 
1460 namespace {
1461 
1462 struct EmulatorBaton
1463 {
1464     NativeProcessLinux* m_process;
1465     NativeRegisterContext* m_reg_context;
1466 
1467     // eRegisterKindDWARF -> RegsiterValue
1468     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1469 
1470     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1471             m_process(process), m_reg_context(reg_context) {}
1472 };
1473 
1474 } // anonymous namespace
1475 
1476 static size_t
1477 ReadMemoryCallback (EmulateInstruction *instruction,
1478                     void *baton,
1479                     const EmulateInstruction::Context &context,
1480                     lldb::addr_t addr,
1481                     void *dst,
1482                     size_t length)
1483 {
1484     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1485 
1486     size_t bytes_read;
1487     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1488     return bytes_read;
1489 }
1490 
1491 static bool
1492 ReadRegisterCallback (EmulateInstruction *instruction,
1493                       void *baton,
1494                       const RegisterInfo *reg_info,
1495                       RegisterValue &reg_value)
1496 {
1497     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1498 
1499     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1500     if (it != emulator_baton->m_register_values.end())
1501     {
1502         reg_value = it->second;
1503         return true;
1504     }
1505 
1506     // The emulator only fill in the dwarf regsiter numbers (and in some case
1507     // the generic register numbers). Get the full register info from the
1508     // register context based on the dwarf register numbers.
1509     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1510             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1511 
1512     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1513     if (error.Success())
1514         return true;
1515 
1516     return false;
1517 }
1518 
1519 static bool
1520 WriteRegisterCallback (EmulateInstruction *instruction,
1521                        void *baton,
1522                        const EmulateInstruction::Context &context,
1523                        const RegisterInfo *reg_info,
1524                        const RegisterValue &reg_value)
1525 {
1526     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1527     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1528     return true;
1529 }
1530 
1531 static size_t
1532 WriteMemoryCallback (EmulateInstruction *instruction,
1533                      void *baton,
1534                      const EmulateInstruction::Context &context,
1535                      lldb::addr_t addr,
1536                      const void *dst,
1537                      size_t length)
1538 {
1539     return length;
1540 }
1541 
1542 static lldb::addr_t
1543 ReadFlags (NativeRegisterContext* regsiter_context)
1544 {
1545     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1546             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1547     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1548 }
1549 
1550 Error
1551 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1552 {
1553     Error error;
1554     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1555 
1556     std::unique_ptr<EmulateInstruction> emulator_ap(
1557         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1558 
1559     if (emulator_ap == nullptr)
1560         return Error("Instruction emulator not found!");
1561 
1562     EmulatorBaton baton(this, register_context_sp.get());
1563     emulator_ap->SetBaton(&baton);
1564     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1565     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1566     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1567     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1568 
1569     if (!emulator_ap->ReadInstruction())
1570         return Error("Read instruction failed!");
1571 
1572     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1573 
1574     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1575     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1576 
1577     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1578     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1579 
1580     lldb::addr_t next_pc;
1581     lldb::addr_t next_flags;
1582     if (emulation_result)
1583     {
1584         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1585         next_pc = pc_it->second.GetAsUInt64();
1586 
1587         if (flags_it != baton.m_register_values.end())
1588             next_flags = flags_it->second.GetAsUInt64();
1589         else
1590             next_flags = ReadFlags (register_context_sp.get());
1591     }
1592     else if (pc_it == baton.m_register_values.end())
1593     {
1594         // Emulate instruction failed and it haven't changed PC. Advance PC
1595         // with the size of the current opcode because the emulation of all
1596         // PC modifying instruction should be successful. The failure most
1597         // likely caused by a not supported instruction which don't modify PC.
1598         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1599         next_flags = ReadFlags (register_context_sp.get());
1600     }
1601     else
1602     {
1603         // The instruction emulation failed after it modified the PC. It is an
1604         // unknown error where we can't continue because the next instruction is
1605         // modifying the PC but we don't  know how.
1606         return Error ("Instruction emulation failed unexpectedly.");
1607     }
1608 
1609     if (m_arch.GetMachine() == llvm::Triple::arm)
1610     {
1611         if (next_flags & 0x20)
1612         {
1613             // Thumb mode
1614             error = SetSoftwareBreakpoint(next_pc, 2);
1615         }
1616         else
1617         {
1618             // Arm mode
1619             error = SetSoftwareBreakpoint(next_pc, 4);
1620         }
1621     }
1622     else if (m_arch.GetMachine() == llvm::Triple::mips64
1623             || m_arch.GetMachine() == llvm::Triple::mips64el
1624             || m_arch.GetMachine() == llvm::Triple::mips
1625             || m_arch.GetMachine() == llvm::Triple::mipsel)
1626         error = SetSoftwareBreakpoint(next_pc, 4);
1627     else
1628     {
1629         // No size hint is given for the next breakpoint
1630         error = SetSoftwareBreakpoint(next_pc, 0);
1631     }
1632 
1633     if (error.Fail())
1634         return error;
1635 
1636     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1637 
1638     return Error();
1639 }
1640 
1641 bool
1642 NativeProcessLinux::SupportHardwareSingleStepping() const
1643 {
1644     if (m_arch.GetMachine() == llvm::Triple::arm
1645         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1646         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1647         return false;
1648     return true;
1649 }
1650 
1651 Error
1652 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1653 {
1654     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1655     if (log)
1656         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1657 
1658     bool software_single_step = !SupportHardwareSingleStepping();
1659 
1660     if (software_single_step)
1661     {
1662         for (auto thread_sp : m_threads)
1663         {
1664             assert (thread_sp && "thread list should not contain NULL threads");
1665 
1666             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1667             if (action == nullptr)
1668                 continue;
1669 
1670             if (action->state == eStateStepping)
1671             {
1672                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1673                 if (error.Fail())
1674                     return error;
1675             }
1676         }
1677     }
1678 
1679     for (auto thread_sp : m_threads)
1680     {
1681         assert (thread_sp && "thread list should not contain NULL threads");
1682 
1683         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1684 
1685         if (action == nullptr)
1686         {
1687             if (log)
1688                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1689                     __FUNCTION__, GetID (), thread_sp->GetID ());
1690             continue;
1691         }
1692 
1693         if (log)
1694         {
1695             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1696                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1697         }
1698 
1699         switch (action->state)
1700         {
1701         case eStateRunning:
1702         case eStateStepping:
1703         {
1704             // Run the thread, possibly feeding it the signal.
1705             const int signo = action->signal;
1706             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1707             break;
1708         }
1709 
1710         case eStateSuspended:
1711         case eStateStopped:
1712             lldbassert(0 && "Unexpected state");
1713 
1714         default:
1715             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1716                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1717         }
1718     }
1719 
1720     return Error();
1721 }
1722 
1723 Error
1724 NativeProcessLinux::Halt ()
1725 {
1726     Error error;
1727 
1728     if (kill (GetID (), SIGSTOP) != 0)
1729         error.SetErrorToErrno ();
1730 
1731     return error;
1732 }
1733 
1734 Error
1735 NativeProcessLinux::Detach ()
1736 {
1737     Error error;
1738 
1739     // Stop monitoring the inferior.
1740     m_sigchld_handle.reset();
1741 
1742     // Tell ptrace to detach from the process.
1743     if (GetID () == LLDB_INVALID_PROCESS_ID)
1744         return error;
1745 
1746     for (auto thread_sp : m_threads)
1747     {
1748         Error e = Detach(thread_sp->GetID());
1749         if (e.Fail())
1750             error = e; // Save the error, but still attempt to detach from other threads.
1751     }
1752 
1753     return error;
1754 }
1755 
1756 Error
1757 NativeProcessLinux::Signal (int signo)
1758 {
1759     Error error;
1760 
1761     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1762     if (log)
1763         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1764                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1765 
1766     if (kill(GetID(), signo))
1767         error.SetErrorToErrno();
1768 
1769     return error;
1770 }
1771 
1772 Error
1773 NativeProcessLinux::Interrupt ()
1774 {
1775     // Pick a running thread (or if none, a not-dead stopped thread) as
1776     // the chosen thread that will be the stop-reason thread.
1777     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1778 
1779     NativeThreadProtocolSP running_thread_sp;
1780     NativeThreadProtocolSP stopped_thread_sp;
1781 
1782     if (log)
1783         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1784 
1785     for (auto thread_sp : m_threads)
1786     {
1787         // The thread shouldn't be null but lets just cover that here.
1788         if (!thread_sp)
1789             continue;
1790 
1791         // If we have a running or stepping thread, we'll call that the
1792         // target of the interrupt.
1793         const auto thread_state = thread_sp->GetState ();
1794         if (thread_state == eStateRunning ||
1795             thread_state == eStateStepping)
1796         {
1797             running_thread_sp = thread_sp;
1798             break;
1799         }
1800         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1801         {
1802             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1803             stopped_thread_sp = thread_sp;
1804         }
1805     }
1806 
1807     if (!running_thread_sp && !stopped_thread_sp)
1808     {
1809         Error error("found no running/stepping or live stopped threads as target for interrupt");
1810         if (log)
1811             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1812 
1813         return error;
1814     }
1815 
1816     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1817 
1818     if (log)
1819         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1820                      __FUNCTION__,
1821                      GetID (),
1822                      running_thread_sp ? "running" : "stopped",
1823                      deferred_signal_thread_sp->GetID ());
1824 
1825     StopRunningThreads(deferred_signal_thread_sp->GetID());
1826 
1827     return Error();
1828 }
1829 
1830 Error
1831 NativeProcessLinux::Kill ()
1832 {
1833     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1834     if (log)
1835         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1836 
1837     Error error;
1838 
1839     switch (m_state)
1840     {
1841         case StateType::eStateInvalid:
1842         case StateType::eStateExited:
1843         case StateType::eStateCrashed:
1844         case StateType::eStateDetached:
1845         case StateType::eStateUnloaded:
1846             // Nothing to do - the process is already dead.
1847             if (log)
1848                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1849             return error;
1850 
1851         case StateType::eStateConnected:
1852         case StateType::eStateAttaching:
1853         case StateType::eStateLaunching:
1854         case StateType::eStateStopped:
1855         case StateType::eStateRunning:
1856         case StateType::eStateStepping:
1857         case StateType::eStateSuspended:
1858             // We can try to kill a process in these states.
1859             break;
1860     }
1861 
1862     if (kill (GetID (), SIGKILL) != 0)
1863     {
1864         error.SetErrorToErrno ();
1865         return error;
1866     }
1867 
1868     return error;
1869 }
1870 
1871 static Error
1872 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1873 {
1874     memory_region_info.Clear();
1875 
1876     StringExtractor line_extractor (maps_line.c_str ());
1877 
1878     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1879     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1880 
1881     // Parse out the starting address
1882     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1883 
1884     // Parse out hyphen separating start and end address from range.
1885     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1886         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1887 
1888     // Parse out the ending address
1889     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1890 
1891     // Parse out the space after the address.
1892     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1893         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1894 
1895     // Save the range.
1896     memory_region_info.GetRange ().SetRangeBase (start_address);
1897     memory_region_info.GetRange ().SetRangeEnd (end_address);
1898 
1899     // Parse out each permission entry.
1900     if (line_extractor.GetBytesLeft () < 4)
1901         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1902 
1903     // Handle read permission.
1904     const char read_perm_char = line_extractor.GetChar ();
1905     if (read_perm_char == 'r')
1906         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1907     else
1908     {
1909         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
1910         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1911     }
1912 
1913     // Handle write permission.
1914     const char write_perm_char = line_extractor.GetChar ();
1915     if (write_perm_char == 'w')
1916         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1917     else
1918     {
1919         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
1920         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1921     }
1922 
1923     // Handle execute permission.
1924     const char exec_perm_char = line_extractor.GetChar ();
1925     if (exec_perm_char == 'x')
1926         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1927     else
1928     {
1929         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
1930         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1931     }
1932 
1933     return Error ();
1934 }
1935 
1936 Error
1937 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1938 {
1939     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1940     // with no perms if it is not mapped.
1941 
1942     // Use an approach that reads memory regions from /proc/{pid}/maps.
1943     // Assume proc maps entries are in ascending order.
1944     // FIXME assert if we find differently.
1945 
1946     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1947     Error error;
1948 
1949     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
1950     {
1951         // We're done.
1952         error.SetErrorString ("unsupported");
1953         return error;
1954     }
1955 
1956     // If our cache is empty, pull the latest.  There should always be at least one memory region
1957     // if memory region handling is supported.
1958     if (m_mem_region_cache.empty ())
1959     {
1960         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
1961              [&] (const std::string &line) -> bool
1962              {
1963                  MemoryRegionInfo info;
1964                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
1965                  if (parse_error.Success ())
1966                  {
1967                      m_mem_region_cache.push_back (info);
1968                      return true;
1969                  }
1970                  else
1971                  {
1972                      if (log)
1973                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
1974                      return false;
1975                  }
1976              });
1977 
1978         // If we had an error, we'll mark unsupported.
1979         if (error.Fail ())
1980         {
1981             m_supports_mem_region = LazyBool::eLazyBoolNo;
1982             return error;
1983         }
1984         else if (m_mem_region_cache.empty ())
1985         {
1986             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
1987             // is supported.  Assume we don't support map entries via procfs.
1988             if (log)
1989                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
1990             m_supports_mem_region = LazyBool::eLazyBoolNo;
1991             error.SetErrorString ("not supported");
1992             return error;
1993         }
1994 
1995         if (log)
1996             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
1997 
1998         // We support memory retrieval, remember that.
1999         m_supports_mem_region = LazyBool::eLazyBoolYes;
2000     }
2001     else
2002     {
2003         if (log)
2004             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2005     }
2006 
2007     lldb::addr_t prev_base_address = 0;
2008 
2009     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2010     // There can be a ton of regions on pthreads apps with lots of threads.
2011     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2012     {
2013         MemoryRegionInfo &proc_entry_info = *it;
2014 
2015         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2016         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2017         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2018 
2019         // If the target address comes before this entry, indicate distance to next region.
2020         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2021         {
2022             range_info.GetRange ().SetRangeBase (load_addr);
2023             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2024             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2025             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2026             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2027 
2028             return error;
2029         }
2030         else if (proc_entry_info.GetRange ().Contains (load_addr))
2031         {
2032             // The target address is within the memory region we're processing here.
2033             range_info = proc_entry_info;
2034             return error;
2035         }
2036 
2037         // The target memory address comes somewhere after the region we just parsed.
2038     }
2039 
2040     // If we made it here, we didn't find an entry that contained the given address. Return the
2041     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2042     // size.
2043     range_info.GetRange ().SetRangeBase (load_addr);
2044     switch (m_arch.GetAddressByteSize())
2045     {
2046         case 4:
2047             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2048             break;
2049         case 8:
2050             range_info.GetRange ().SetByteSize (0ull - load_addr);
2051             break;
2052         default:
2053             assert(false && "Unrecognized data byte size");
2054             break;
2055     }
2056     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2057     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2058     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2059     return error;
2060 }
2061 
2062 void
2063 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2064 {
2065     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2066     if (log)
2067         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2068 
2069         if (log)
2070             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2071         m_mem_region_cache.clear ();
2072 }
2073 
2074 Error
2075 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2076 {
2077     // FIXME implementing this requires the equivalent of
2078     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2079     // functional ThreadPlans working with Native*Protocol.
2080 #if 1
2081     return Error ("not implemented yet");
2082 #else
2083     addr = LLDB_INVALID_ADDRESS;
2084 
2085     unsigned prot = 0;
2086     if (permissions & lldb::ePermissionsReadable)
2087         prot |= eMmapProtRead;
2088     if (permissions & lldb::ePermissionsWritable)
2089         prot |= eMmapProtWrite;
2090     if (permissions & lldb::ePermissionsExecutable)
2091         prot |= eMmapProtExec;
2092 
2093     // TODO implement this directly in NativeProcessLinux
2094     // (and lift to NativeProcessPOSIX if/when that class is
2095     // refactored out).
2096     if (InferiorCallMmap(this, addr, 0, size, prot,
2097                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2098         m_addr_to_mmap_size[addr] = size;
2099         return Error ();
2100     } else {
2101         addr = LLDB_INVALID_ADDRESS;
2102         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2103     }
2104 #endif
2105 }
2106 
2107 Error
2108 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2109 {
2110     // FIXME see comments in AllocateMemory - required lower-level
2111     // bits not in place yet (ThreadPlans)
2112     return Error ("not implemented");
2113 }
2114 
2115 lldb::addr_t
2116 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2117 {
2118     // punt on this for now
2119     return LLDB_INVALID_ADDRESS;
2120 }
2121 
2122 size_t
2123 NativeProcessLinux::UpdateThreads ()
2124 {
2125     // The NativeProcessLinux monitoring threads are always up to date
2126     // with respect to thread state and they keep the thread list
2127     // populated properly. All this method needs to do is return the
2128     // thread count.
2129     return m_threads.size ();
2130 }
2131 
2132 bool
2133 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2134 {
2135     arch = m_arch;
2136     return true;
2137 }
2138 
2139 Error
2140 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
2141 {
2142     // FIXME put this behind a breakpoint protocol class that can be
2143     // set per architecture.  Need ARM, MIPS support here.
2144     static const uint8_t g_i386_opcode [] = { 0xCC };
2145     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
2146 
2147     switch (m_arch.GetMachine ())
2148     {
2149         case llvm::Triple::x86:
2150         case llvm::Triple::x86_64:
2151             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2152             return Error ();
2153 
2154         case llvm::Triple::systemz:
2155             actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode));
2156             return Error ();
2157 
2158         case llvm::Triple::arm:
2159         case llvm::Triple::aarch64:
2160         case llvm::Triple::mips64:
2161         case llvm::Triple::mips64el:
2162         case llvm::Triple::mips:
2163         case llvm::Triple::mipsel:
2164             // On these architectures the PC don't get updated for breakpoint hits
2165             actual_opcode_size = 0;
2166             return Error ();
2167 
2168         default:
2169             assert(false && "CPU type not supported!");
2170             return Error ("CPU type not supported");
2171     }
2172 }
2173 
2174 Error
2175 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2176 {
2177     if (hardware)
2178         return Error ("NativeProcessLinux does not support hardware breakpoints");
2179     else
2180         return SetSoftwareBreakpoint (addr, size);
2181 }
2182 
2183 Error
2184 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2185                                                      size_t &actual_opcode_size,
2186                                                      const uint8_t *&trap_opcode_bytes)
2187 {
2188     // FIXME put this behind a breakpoint protocol class that can be set per
2189     // architecture.  Need MIPS support here.
2190     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2191     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2192     // linux kernel does otherwise.
2193     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2194     static const uint8_t g_i386_opcode [] = { 0xCC };
2195     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2196     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2197     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
2198     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2199 
2200     switch (m_arch.GetMachine ())
2201     {
2202     case llvm::Triple::aarch64:
2203         trap_opcode_bytes = g_aarch64_opcode;
2204         actual_opcode_size = sizeof(g_aarch64_opcode);
2205         return Error ();
2206 
2207     case llvm::Triple::arm:
2208         switch (trap_opcode_size_hint)
2209         {
2210         case 2:
2211             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2212             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2213             return Error ();
2214         case 4:
2215             trap_opcode_bytes = g_arm_breakpoint_opcode;
2216             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2217             return Error ();
2218         default:
2219             assert(false && "Unrecognised trap opcode size hint!");
2220             return Error ("Unrecognised trap opcode size hint!");
2221         }
2222 
2223     case llvm::Triple::x86:
2224     case llvm::Triple::x86_64:
2225         trap_opcode_bytes = g_i386_opcode;
2226         actual_opcode_size = sizeof(g_i386_opcode);
2227         return Error ();
2228 
2229     case llvm::Triple::mips:
2230     case llvm::Triple::mips64:
2231         trap_opcode_bytes = g_mips64_opcode;
2232         actual_opcode_size = sizeof(g_mips64_opcode);
2233         return Error ();
2234 
2235     case llvm::Triple::mipsel:
2236     case llvm::Triple::mips64el:
2237         trap_opcode_bytes = g_mips64el_opcode;
2238         actual_opcode_size = sizeof(g_mips64el_opcode);
2239         return Error ();
2240 
2241     case llvm::Triple::systemz:
2242         trap_opcode_bytes = g_s390x_opcode;
2243         actual_opcode_size = sizeof(g_s390x_opcode);
2244         return Error ();
2245 
2246     default:
2247         assert(false && "CPU type not supported!");
2248         return Error ("CPU type not supported");
2249     }
2250 }
2251 
2252 #if 0
2253 ProcessMessage::CrashReason
2254 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2255 {
2256     ProcessMessage::CrashReason reason;
2257     assert(info->si_signo == SIGSEGV);
2258 
2259     reason = ProcessMessage::eInvalidCrashReason;
2260 
2261     switch (info->si_code)
2262     {
2263     default:
2264         assert(false && "unexpected si_code for SIGSEGV");
2265         break;
2266     case SI_KERNEL:
2267         // Linux will occasionally send spurious SI_KERNEL codes.
2268         // (this is poorly documented in sigaction)
2269         // One way to get this is via unaligned SIMD loads.
2270         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2271         break;
2272     case SEGV_MAPERR:
2273         reason = ProcessMessage::eInvalidAddress;
2274         break;
2275     case SEGV_ACCERR:
2276         reason = ProcessMessage::ePrivilegedAddress;
2277         break;
2278     }
2279 
2280     return reason;
2281 }
2282 #endif
2283 
2284 
2285 #if 0
2286 ProcessMessage::CrashReason
2287 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2288 {
2289     ProcessMessage::CrashReason reason;
2290     assert(info->si_signo == SIGILL);
2291 
2292     reason = ProcessMessage::eInvalidCrashReason;
2293 
2294     switch (info->si_code)
2295     {
2296     default:
2297         assert(false && "unexpected si_code for SIGILL");
2298         break;
2299     case ILL_ILLOPC:
2300         reason = ProcessMessage::eIllegalOpcode;
2301         break;
2302     case ILL_ILLOPN:
2303         reason = ProcessMessage::eIllegalOperand;
2304         break;
2305     case ILL_ILLADR:
2306         reason = ProcessMessage::eIllegalAddressingMode;
2307         break;
2308     case ILL_ILLTRP:
2309         reason = ProcessMessage::eIllegalTrap;
2310         break;
2311     case ILL_PRVOPC:
2312         reason = ProcessMessage::ePrivilegedOpcode;
2313         break;
2314     case ILL_PRVREG:
2315         reason = ProcessMessage::ePrivilegedRegister;
2316         break;
2317     case ILL_COPROC:
2318         reason = ProcessMessage::eCoprocessorError;
2319         break;
2320     case ILL_BADSTK:
2321         reason = ProcessMessage::eInternalStackError;
2322         break;
2323     }
2324 
2325     return reason;
2326 }
2327 #endif
2328 
2329 #if 0
2330 ProcessMessage::CrashReason
2331 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2332 {
2333     ProcessMessage::CrashReason reason;
2334     assert(info->si_signo == SIGFPE);
2335 
2336     reason = ProcessMessage::eInvalidCrashReason;
2337 
2338     switch (info->si_code)
2339     {
2340     default:
2341         assert(false && "unexpected si_code for SIGFPE");
2342         break;
2343     case FPE_INTDIV:
2344         reason = ProcessMessage::eIntegerDivideByZero;
2345         break;
2346     case FPE_INTOVF:
2347         reason = ProcessMessage::eIntegerOverflow;
2348         break;
2349     case FPE_FLTDIV:
2350         reason = ProcessMessage::eFloatDivideByZero;
2351         break;
2352     case FPE_FLTOVF:
2353         reason = ProcessMessage::eFloatOverflow;
2354         break;
2355     case FPE_FLTUND:
2356         reason = ProcessMessage::eFloatUnderflow;
2357         break;
2358     case FPE_FLTRES:
2359         reason = ProcessMessage::eFloatInexactResult;
2360         break;
2361     case FPE_FLTINV:
2362         reason = ProcessMessage::eFloatInvalidOperation;
2363         break;
2364     case FPE_FLTSUB:
2365         reason = ProcessMessage::eFloatSubscriptRange;
2366         break;
2367     }
2368 
2369     return reason;
2370 }
2371 #endif
2372 
2373 #if 0
2374 ProcessMessage::CrashReason
2375 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2376 {
2377     ProcessMessage::CrashReason reason;
2378     assert(info->si_signo == SIGBUS);
2379 
2380     reason = ProcessMessage::eInvalidCrashReason;
2381 
2382     switch (info->si_code)
2383     {
2384     default:
2385         assert(false && "unexpected si_code for SIGBUS");
2386         break;
2387     case BUS_ADRALN:
2388         reason = ProcessMessage::eIllegalAlignment;
2389         break;
2390     case BUS_ADRERR:
2391         reason = ProcessMessage::eIllegalAddress;
2392         break;
2393     case BUS_OBJERR:
2394         reason = ProcessMessage::eHardwareError;
2395         break;
2396     }
2397 
2398     return reason;
2399 }
2400 #endif
2401 
2402 Error
2403 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2404 {
2405     if (ProcessVmReadvSupported()) {
2406         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2407         // this syscall if it is supported.
2408 
2409         const ::pid_t pid = GetID();
2410 
2411         struct iovec local_iov, remote_iov;
2412         local_iov.iov_base = buf;
2413         local_iov.iov_len = size;
2414         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2415         remote_iov.iov_len = size;
2416 
2417         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2418         const bool success = bytes_read == size;
2419 
2420         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2421         if (log)
2422             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2423                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2424 
2425         if (success)
2426             return Error();
2427         // else
2428         //     the call failed for some reason, let's retry the read using ptrace api.
2429     }
2430 
2431     unsigned char *dst = static_cast<unsigned char*>(buf);
2432     size_t remainder;
2433     long data;
2434 
2435     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2436     if (log)
2437         ProcessPOSIXLog::IncNestLevel();
2438     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2439         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2440 
2441     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2442     {
2443         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2444         if (error.Fail())
2445         {
2446             if (log)
2447                 ProcessPOSIXLog::DecNestLevel();
2448             return error;
2449         }
2450 
2451         remainder = size - bytes_read;
2452         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2453 
2454         // Copy the data into our buffer
2455         memcpy(dst, &data, remainder);
2456 
2457         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2458                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2459                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2460                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2461         {
2462             uintptr_t print_dst = 0;
2463             // Format bytes from data by moving into print_dst for log output
2464             for (unsigned i = 0; i < remainder; ++i)
2465                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2466             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2467                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2468         }
2469         addr += k_ptrace_word_size;
2470         dst += k_ptrace_word_size;
2471     }
2472 
2473     if (log)
2474         ProcessPOSIXLog::DecNestLevel();
2475     return Error();
2476 }
2477 
2478 Error
2479 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2480 {
2481     Error error = ReadMemory(addr, buf, size, bytes_read);
2482     if (error.Fail()) return error;
2483     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2484 }
2485 
2486 Error
2487 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2488 {
2489     const unsigned char *src = static_cast<const unsigned char*>(buf);
2490     size_t remainder;
2491     Error error;
2492 
2493     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2494     if (log)
2495         ProcessPOSIXLog::IncNestLevel();
2496     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2497         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2498 
2499     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2500     {
2501         remainder = size - bytes_written;
2502         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2503 
2504         if (remainder == k_ptrace_word_size)
2505         {
2506             unsigned long data = 0;
2507             memcpy(&data, src, k_ptrace_word_size);
2508 
2509             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2510                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2511                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2512                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2513                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2514                         (void*)addr, *(const unsigned long*)src, data);
2515 
2516             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2517             if (error.Fail())
2518             {
2519                 if (log)
2520                     ProcessPOSIXLog::DecNestLevel();
2521                 return error;
2522             }
2523         }
2524         else
2525         {
2526             unsigned char buff[8];
2527             size_t bytes_read;
2528             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2529             if (error.Fail())
2530             {
2531                 if (log)
2532                     ProcessPOSIXLog::DecNestLevel();
2533                 return error;
2534             }
2535 
2536             memcpy(buff, src, remainder);
2537 
2538             size_t bytes_written_rec;
2539             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2540             if (error.Fail())
2541             {
2542                 if (log)
2543                     ProcessPOSIXLog::DecNestLevel();
2544                 return error;
2545             }
2546 
2547             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2548                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2549                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2550                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2551                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2552                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2553         }
2554 
2555         addr += k_ptrace_word_size;
2556         src += k_ptrace_word_size;
2557     }
2558     if (log)
2559         ProcessPOSIXLog::DecNestLevel();
2560     return error;
2561 }
2562 
2563 Error
2564 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2565 {
2566     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2567 }
2568 
2569 Error
2570 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2571 {
2572     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2573 }
2574 
2575 Error
2576 NativeProcessLinux::Detach(lldb::tid_t tid)
2577 {
2578     if (tid == LLDB_INVALID_THREAD_ID)
2579         return Error();
2580 
2581     return PtraceWrapper(PTRACE_DETACH, tid);
2582 }
2583 
2584 bool
2585 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
2586 {
2587     int target_fd = open(file_spec.GetCString(), flags, 0666);
2588 
2589     if (target_fd == -1)
2590         return false;
2591 
2592     if (dup2(target_fd, fd) == -1)
2593         return false;
2594 
2595     return (close(target_fd) == -1) ? false : true;
2596 }
2597 
2598 bool
2599 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2600 {
2601     for (auto thread_sp : m_threads)
2602     {
2603         assert (thread_sp && "thread list should not contain NULL threads");
2604         if (thread_sp->GetID () == thread_id)
2605         {
2606             // We have this thread.
2607             return true;
2608         }
2609     }
2610 
2611     // We don't have this thread.
2612     return false;
2613 }
2614 
2615 bool
2616 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2617 {
2618     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2619 
2620     if (log)
2621         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2622 
2623     bool found = false;
2624 
2625     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2626     {
2627         if (*it && ((*it)->GetID () == thread_id))
2628         {
2629             m_threads.erase (it);
2630             found = true;
2631             break;
2632         }
2633     }
2634 
2635     SignalIfAllThreadsStopped();
2636 
2637     return found;
2638 }
2639 
2640 NativeThreadLinuxSP
2641 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2642 {
2643     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2644 
2645     if (log)
2646     {
2647         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2648                 __FUNCTION__,
2649                 GetID (),
2650                 thread_id);
2651     }
2652 
2653     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2654 
2655     // If this is the first thread, save it as the current thread
2656     if (m_threads.empty ())
2657         SetCurrentThreadID (thread_id);
2658 
2659     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2660     m_threads.push_back (thread_sp);
2661     return thread_sp;
2662 }
2663 
2664 Error
2665 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2666 {
2667     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2668 
2669     Error error;
2670 
2671     // Find out the size of a breakpoint (might depend on where we are in the code).
2672     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2673     if (!context_sp)
2674     {
2675         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2676         if (log)
2677             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2678         return error;
2679     }
2680 
2681     uint32_t breakpoint_size = 0;
2682     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2683     if (error.Fail ())
2684     {
2685         if (log)
2686             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2687         return error;
2688     }
2689     else
2690     {
2691         if (log)
2692             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2693     }
2694 
2695     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2696     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2697     lldb::addr_t breakpoint_addr = initial_pc_addr;
2698     if (breakpoint_size > 0)
2699     {
2700         // Do not allow breakpoint probe to wrap around.
2701         if (breakpoint_addr >= breakpoint_size)
2702             breakpoint_addr -= breakpoint_size;
2703     }
2704 
2705     // Check if we stopped because of a breakpoint.
2706     NativeBreakpointSP breakpoint_sp;
2707     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2708     if (!error.Success () || !breakpoint_sp)
2709     {
2710         // We didn't find one at a software probe location.  Nothing to do.
2711         if (log)
2712             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2713         return Error ();
2714     }
2715 
2716     // If the breakpoint is not a software breakpoint, nothing to do.
2717     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2718     {
2719         if (log)
2720             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2721         return Error ();
2722     }
2723 
2724     //
2725     // We have a software breakpoint and need to adjust the PC.
2726     //
2727 
2728     // Sanity check.
2729     if (breakpoint_size == 0)
2730     {
2731         // Nothing to do!  How did we get here?
2732         if (log)
2733             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2734         return Error ();
2735     }
2736 
2737     // Change the program counter.
2738     if (log)
2739         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2740 
2741     error = context_sp->SetPC (breakpoint_addr);
2742     if (error.Fail ())
2743     {
2744         if (log)
2745             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2746         return error;
2747     }
2748 
2749     return error;
2750 }
2751 
2752 Error
2753 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2754 {
2755     FileSpec module_file_spec(module_path, true);
2756 
2757     bool found = false;
2758     file_spec.Clear();
2759     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2760         [&] (const std::string &line)
2761         {
2762             SmallVector<StringRef, 16> columns;
2763             StringRef(line).split(columns, " ", -1, false);
2764             if (columns.size() < 6)
2765                 return true; // continue searching
2766 
2767             FileSpec this_file_spec(columns[5].str().c_str(), false);
2768             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2769                 return true; // continue searching
2770 
2771             file_spec = this_file_spec;
2772             found = true;
2773             return false; // we are done
2774         });
2775 
2776     if (! found)
2777         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2778                 module_file_spec.GetFilename().AsCString(), GetID());
2779 
2780     return Error();
2781 }
2782 
2783 Error
2784 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2785 {
2786     load_addr = LLDB_INVALID_ADDRESS;
2787     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2788         [&] (const std::string &line) -> bool
2789         {
2790             StringRef maps_row(line);
2791 
2792             SmallVector<StringRef, 16> maps_columns;
2793             maps_row.split(maps_columns, StringRef(" "), -1, false);
2794 
2795             if (maps_columns.size() < 6)
2796             {
2797                 // Return true to continue reading the proc file
2798                 return true;
2799             }
2800 
2801             if (maps_columns[5] == file_name)
2802             {
2803                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2804                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2805 
2806                 // Return false to stop reading the proc file further
2807                 return false;
2808             }
2809 
2810             // Return true to continue reading the proc file
2811             return true;
2812         });
2813     return error;
2814 }
2815 
2816 NativeThreadLinuxSP
2817 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2818 {
2819     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2820 }
2821 
2822 Error
2823 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2824 {
2825     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2826 
2827     if (log)
2828         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2829                 __FUNCTION__, thread.GetID());
2830 
2831     // Before we do the resume below, first check if we have a pending
2832     // stop notification that is currently waiting for
2833     // all threads to stop.  This is potentially a buggy situation since
2834     // we're ostensibly waiting for threads to stop before we send out the
2835     // pending notification, and here we are resuming one before we send
2836     // out the pending stop notification.
2837     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2838     {
2839         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2840     }
2841 
2842     // Request a resume.  We expect this to be synchronous and the system
2843     // to reflect it is running after this completes.
2844     switch (state)
2845     {
2846     case eStateRunning:
2847     {
2848         const auto resume_result = thread.Resume(signo);
2849         if (resume_result.Success())
2850             SetState(eStateRunning, true);
2851         return resume_result;
2852     }
2853     case eStateStepping:
2854     {
2855         const auto step_result = thread.SingleStep(signo);
2856         if (step_result.Success())
2857             SetState(eStateRunning, true);
2858         return step_result;
2859     }
2860     default:
2861         if (log)
2862             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2863                     __FUNCTION__, StateAsCString(state));
2864         llvm_unreachable("Unhandled state for resume");
2865     }
2866 }
2867 
2868 //===----------------------------------------------------------------------===//
2869 
2870 void
2871 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
2872 {
2873     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2874 
2875     if (log)
2876     {
2877         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
2878                 __FUNCTION__, triggering_tid);
2879     }
2880 
2881     m_pending_notification_tid = triggering_tid;
2882 
2883     // Request a stop for all the thread stops that need to be stopped
2884     // and are not already known to be stopped.
2885     for (const auto &thread_sp: m_threads)
2886     {
2887         if (StateIsRunningState(thread_sp->GetState()))
2888             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2889     }
2890 
2891     SignalIfAllThreadsStopped();
2892 
2893     if (log)
2894     {
2895         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
2896     }
2897 }
2898 
2899 void
2900 NativeProcessLinux::SignalIfAllThreadsStopped()
2901 {
2902     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2903         return; // No pending notification. Nothing to do.
2904 
2905     for (const auto &thread_sp: m_threads)
2906     {
2907         if (StateIsRunningState(thread_sp->GetState()))
2908             return; // Some threads are still running. Don't signal yet.
2909     }
2910 
2911     // We have a pending notification and all threads have stopped.
2912     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2913 
2914     // Clear any temporary breakpoints we used to implement software single stepping.
2915     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
2916     {
2917         Error error = RemoveBreakpoint (thread_info.second);
2918         if (error.Fail())
2919             if (log)
2920                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2921                         __FUNCTION__, thread_info.first, error.AsCString());
2922     }
2923     m_threads_stepping_with_breakpoint.clear();
2924 
2925     // Notify the delegate about the stop
2926     SetCurrentThreadID(m_pending_notification_tid);
2927     SetState(StateType::eStateStopped, true);
2928     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2929 }
2930 
2931 void
2932 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
2933 {
2934     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2935 
2936     if (log)
2937         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
2938 
2939     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
2940     {
2941         // We will need to wait for this new thread to stop as well before firing the
2942         // notification.
2943         thread.RequestStop();
2944     }
2945 }
2946 
2947 void
2948 NativeProcessLinux::SigchldHandler()
2949 {
2950     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2951     // Process all pending waitpid notifications.
2952     while (true)
2953     {
2954         int status = -1;
2955         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2956 
2957         if (wait_pid == 0)
2958             break; // We are done.
2959 
2960         if (wait_pid == -1)
2961         {
2962             if (errno == EINTR)
2963                 continue;
2964 
2965             Error error(errno, eErrorTypePOSIX);
2966             if (log)
2967                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
2968                         __FUNCTION__, error.AsCString());
2969             break;
2970         }
2971 
2972         bool exited = false;
2973         int signal = 0;
2974         int exit_status = 0;
2975         const char *status_cstr = nullptr;
2976         if (WIFSTOPPED(status))
2977         {
2978             signal = WSTOPSIG(status);
2979             status_cstr = "STOPPED";
2980         }
2981         else if (WIFEXITED(status))
2982         {
2983             exit_status = WEXITSTATUS(status);
2984             status_cstr = "EXITED";
2985             exited = true;
2986         }
2987         else if (WIFSIGNALED(status))
2988         {
2989             signal = WTERMSIG(status);
2990             status_cstr = "SIGNALED";
2991             if (wait_pid == static_cast< ::pid_t>(GetID())) {
2992                 exited = true;
2993                 exit_status = -1;
2994             }
2995         }
2996         else
2997             status_cstr = "(\?\?\?)";
2998 
2999         if (log)
3000             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
3001                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
3002                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
3003 
3004         MonitorCallback (wait_pid, exited, signal, exit_status);
3005     }
3006 }
3007 
3008 // Wrapper for ptrace to catch errors and log calls.
3009 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3010 Error
3011 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3012 {
3013     Error error;
3014     long int ret;
3015 
3016     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3017 
3018     PtraceDisplayBytes(req, data, data_size);
3019 
3020     errno = 0;
3021     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3022         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3023     else
3024         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3025 
3026     if (ret == -1)
3027         error.SetErrorToErrno();
3028 
3029     if (result)
3030         *result = ret;
3031 
3032     if (log)
3033         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3034 
3035     PtraceDisplayBytes(req, data, data_size);
3036 
3037     if (log && error.GetError() != 0)
3038     {
3039         const char* str;
3040         switch (error.GetError())
3041         {
3042         case ESRCH:  str = "ESRCH"; break;
3043         case EINVAL: str = "EINVAL"; break;
3044         case EBUSY:  str = "EBUSY"; break;
3045         case EPERM:  str = "EPERM"; break;
3046         default:     str = error.AsCString();
3047         }
3048         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3049     }
3050 
3051     return error;
3052 }
3053