1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Host/Host.h"
29 #include "lldb/Host/HostProcess.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeBreakpoint.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/RegisterValue.h"
43 #include "lldb/Utility/State.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct iovec
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ProcessInstanceInfo Info;
249   if (!Host::GetProcessInfo(pid, Info)) {
250     return llvm::make_error<StringError>("Cannot get process architecture",
251                                          llvm::inconvertibleErrorCode());
252   }
253 
254   // Set the architecture to the exe architecture.
255   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
256            Info.GetArchitecture().GetArchitectureName());
257 
258   status = SetDefaultPtraceOpts(pid);
259   if (status.Fail()) {
260     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
261     return status.ToError();
262   }
263 
264   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
265       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
266       Info.GetArchitecture(), mainloop, {pid}));
267 }
268 
269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
270 NativeProcessLinux::Factory::Attach(
271     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
272     MainLoop &mainloop) const {
273   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
274   LLDB_LOG(log, "pid = {0:x}", pid);
275 
276   // Retrieve the architecture for the running process.
277   ProcessInstanceInfo Info;
278   if (!Host::GetProcessInfo(pid, Info)) {
279     return llvm::make_error<StringError>("Cannot get process architecture",
280                                          llvm::inconvertibleErrorCode());
281   }
282 
283   auto tids_or = NativeProcessLinux::Attach(pid);
284   if (!tids_or)
285     return tids_or.takeError();
286 
287   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
288       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
289 }
290 
291 // -----------------------------------------------------------------------------
292 // Public Instance Methods
293 // -----------------------------------------------------------------------------
294 
295 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
296                                        NativeDelegate &delegate,
297                                        const ArchSpec &arch, MainLoop &mainloop,
298                                        llvm::ArrayRef<::pid_t> tids)
299     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
300   if (m_terminal_fd != -1) {
301     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
302     assert(status.Success());
303   }
304 
305   Status status;
306   m_sigchld_handle = mainloop.RegisterSignal(
307       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
308   assert(m_sigchld_handle && status.Success());
309 
310   for (const auto &tid : tids) {
311     NativeThreadLinux &thread = AddThread(tid);
312     thread.SetStoppedBySignal(SIGSTOP);
313     ThreadWasCreated(thread);
314   }
315 
316   // Let our process instance know the thread has stopped.
317   SetCurrentThreadID(tids[0]);
318   SetState(StateType::eStateStopped, false);
319 
320   // Proccess any signals we received before installing our handler
321   SigchldHandler();
322 }
323 
324 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
325   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
326 
327   Status status;
328   // Use a map to keep track of the threads which we have attached/need to
329   // attach.
330   Host::TidMap tids_to_attach;
331   while (Host::FindProcessThreads(pid, tids_to_attach)) {
332     for (Host::TidMap::iterator it = tids_to_attach.begin();
333          it != tids_to_attach.end();) {
334       if (it->second == false) {
335         lldb::tid_t tid = it->first;
336 
337         // Attach to the requested process.
338         // An attach will cause the thread to stop with a SIGSTOP.
339         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
340           // No such thread. The thread may have exited. More error handling
341           // may be needed.
342           if (status.GetError() == ESRCH) {
343             it = tids_to_attach.erase(it);
344             continue;
345           }
346           return status.ToError();
347         }
348 
349         int wpid =
350             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
351         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
352         // this point we should have a thread stopped if waitpid succeeds.
353         if (wpid < 0) {
354           // No such thread. The thread may have exited. More error handling
355           // may be needed.
356           if (errno == ESRCH) {
357             it = tids_to_attach.erase(it);
358             continue;
359           }
360           return llvm::errorCodeToError(
361               std::error_code(errno, std::generic_category()));
362         }
363 
364         if ((status = SetDefaultPtraceOpts(tid)).Fail())
365           return status.ToError();
366 
367         LLDB_LOG(log, "adding tid = {0}", tid);
368         it->second = true;
369       }
370 
371       // move the loop forward
372       ++it;
373     }
374   }
375 
376   size_t tid_count = tids_to_attach.size();
377   if (tid_count == 0)
378     return llvm::make_error<StringError>("No such process",
379                                          llvm::inconvertibleErrorCode());
380 
381   std::vector<::pid_t> tids;
382   tids.reserve(tid_count);
383   for (const auto &p : tids_to_attach)
384     tids.push_back(p.first);
385   return std::move(tids);
386 }
387 
388 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
389   long ptrace_opts = 0;
390 
391   // Have the child raise an event on exit.  This is used to keep the child in
392   // limbo until it is destroyed.
393   ptrace_opts |= PTRACE_O_TRACEEXIT;
394 
395   // Have the tracer trace threads which spawn in the inferior process.
396   // TODO: if we want to support tracing the inferiors' child, add the
397   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
398   ptrace_opts |= PTRACE_O_TRACECLONE;
399 
400   // Have the tracer notify us before execve returns (needed to disable legacy
401   // SIGTRAP generation)
402   ptrace_opts |= PTRACE_O_TRACEEXEC;
403 
404   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
405 }
406 
407 // Handles all waitpid events from the inferior process.
408 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
409                                          WaitStatus status) {
410   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
411 
412   // Certain activities differ based on whether the pid is the tid of the main
413   // thread.
414   const bool is_main_thread = (pid == GetID());
415 
416   // Handle when the thread exits.
417   if (exited) {
418     LLDB_LOG(log,
419              "got exit signal({0}) , tid = {1} ({2} main thread), process "
420              "state = {3}",
421              signal, pid, is_main_thread ? "is" : "is not", GetState());
422 
423     // This is a thread that exited.  Ensure we're not tracking it anymore.
424     StopTrackingThread(pid);
425 
426     if (is_main_thread) {
427       // The main thread exited.  We're done monitoring.  Report to delegate.
428       SetExitStatus(status, true);
429 
430       // Notify delegate that our process has exited.
431       SetState(StateType::eStateExited, true);
432     }
433     return;
434   }
435 
436   siginfo_t info;
437   const auto info_err = GetSignalInfo(pid, &info);
438   auto thread_sp = GetThreadByID(pid);
439 
440   if (!thread_sp) {
441     // Normally, the only situation when we cannot find the thread is if we
442     // have just received a new thread notification. This is indicated by
443     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
444     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
445 
446     if (info_err.Fail()) {
447       LLDB_LOG(log,
448                "(tid {0}) GetSignalInfo failed ({1}). "
449                "Ingoring this notification.",
450                pid, info_err);
451       return;
452     }
453 
454     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
455              info.si_pid);
456 
457     NativeThreadLinux &thread = AddThread(pid);
458 
459     // Resume the newly created thread.
460     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
461     ThreadWasCreated(thread);
462     return;
463   }
464 
465   // Get details on the signal raised.
466   if (info_err.Success()) {
467     // We have retrieved the signal info.  Dispatch appropriately.
468     if (info.si_signo == SIGTRAP)
469       MonitorSIGTRAP(info, *thread_sp);
470     else
471       MonitorSignal(info, *thread_sp, exited);
472   } else {
473     if (info_err.GetError() == EINVAL) {
474       // This is a group stop reception for this tid. We can reach here if we
475       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
476       // triggering the group-stop mechanism. Normally receiving these would
477       // stop the process, pending a SIGCONT. Simulating this state in a
478       // debugger is hard and is generally not needed (one use case is
479       // debugging background task being managed by a shell). For general use,
480       // it is sufficient to stop the process in a signal-delivery stop which
481       // happens before the group stop. This done by MonitorSignal and works
482       // correctly for all signals.
483       LLDB_LOG(log,
484                "received a group stop for pid {0} tid {1}. Transparent "
485                "handling of group stops not supported, resuming the "
486                "thread.",
487                GetID(), pid);
488       ResumeThread(*thread_sp, thread_sp->GetState(),
489                    LLDB_INVALID_SIGNAL_NUMBER);
490     } else {
491       // ptrace(GETSIGINFO) failed (but not due to group-stop).
492 
493       // A return value of ESRCH means the thread/process is no longer on the
494       // system, so it was killed somehow outside of our control.  Either way,
495       // we can't do anything with it anymore.
496 
497       // Stop tracking the metadata for the thread since it's entirely off the
498       // system now.
499       const bool thread_found = StopTrackingThread(pid);
500 
501       LLDB_LOG(log,
502                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
503                "status = {3}, main_thread = {4}, thread_found: {5}",
504                info_err, pid, signal, status, is_main_thread, thread_found);
505 
506       if (is_main_thread) {
507         // Notify the delegate - our process is not available but appears to
508         // have been killed outside our control.  Is eStateExited the right
509         // exit state in this case?
510         SetExitStatus(status, true);
511         SetState(StateType::eStateExited, true);
512       } else {
513         // This thread was pulled out from underneath us.  Anything to do here?
514         // Do we want to do an all stop?
515         LLDB_LOG(log,
516                  "pid {0} tid {1} non-main thread exit occurred, didn't "
517                  "tell delegate anything since thread disappeared out "
518                  "from underneath us",
519                  GetID(), pid);
520       }
521     }
522   }
523 }
524 
525 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
526   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
527 
528   if (GetThreadByID(tid)) {
529     // We are already tracking the thread - we got the event on the new thread
530     // (see MonitorSignal) before this one. We are done.
531     return;
532   }
533 
534   // The thread is not tracked yet, let's wait for it to appear.
535   int status = -1;
536   LLDB_LOG(log,
537            "received thread creation event for tid {0}. tid not tracked "
538            "yet, waiting for thread to appear...",
539            tid);
540   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
541   // Since we are waiting on a specific tid, this must be the creation event.
542   // But let's do some checks just in case.
543   if (wait_pid != tid) {
544     LLDB_LOG(log,
545              "waiting for tid {0} failed. Assuming the thread has "
546              "disappeared in the meantime",
547              tid);
548     // The only way I know of this could happen is if the whole process was
549     // SIGKILLed in the mean time. In any case, we can't do anything about that
550     // now.
551     return;
552   }
553   if (WIFEXITED(status)) {
554     LLDB_LOG(log,
555              "waiting for tid {0} returned an 'exited' event. Not "
556              "tracking the thread.",
557              tid);
558     // Also a very improbable event.
559     return;
560   }
561 
562   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
563   NativeThreadLinux &new_thread = AddThread(tid);
564 
565   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
566   ThreadWasCreated(new_thread);
567 }
568 
569 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
570                                         NativeThreadLinux &thread) {
571   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
572   const bool is_main_thread = (thread.GetID() == GetID());
573 
574   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
575 
576   switch (info.si_code) {
577   // TODO: these two cases are required if we want to support tracing of the
578   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
579   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
580 
581   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
582     // This is the notification on the parent thread which informs us of new
583     // thread creation. We don't want to do anything with the parent thread so
584     // we just resume it. In case we want to implement "break on thread
585     // creation" functionality, we would need to stop here.
586 
587     unsigned long event_message = 0;
588     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
589       LLDB_LOG(log,
590                "pid {0} received thread creation event but "
591                "GetEventMessage failed so we don't know the new tid",
592                thread.GetID());
593     } else
594       WaitForNewThread(event_message);
595 
596     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
597     break;
598   }
599 
600   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
601     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
602 
603     // Exec clears any pending notifications.
604     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
605 
606     // Remove all but the main thread here.  Linux fork creates a new process
607     // which only copies the main thread.
608     LLDB_LOG(log, "exec received, stop tracking all but main thread");
609 
610     for (auto i = m_threads.begin(); i != m_threads.end();) {
611       if ((*i)->GetID() == GetID())
612         i = m_threads.erase(i);
613       else
614         ++i;
615     }
616     assert(m_threads.size() == 1);
617     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
618 
619     SetCurrentThreadID(main_thread->GetID());
620     main_thread->SetStoppedByExec();
621 
622     // Tell coordinator about about the "new" (since exec) stopped main thread.
623     ThreadWasCreated(*main_thread);
624 
625     // Let our delegate know we have just exec'd.
626     NotifyDidExec();
627 
628     // Let the process know we're stopped.
629     StopRunningThreads(main_thread->GetID());
630 
631     break;
632   }
633 
634   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
635     // The inferior process or one of its threads is about to exit. We don't
636     // want to do anything with the thread so we just resume it. In case we
637     // want to implement "break on thread exit" functionality, we would need to
638     // stop here.
639 
640     unsigned long data = 0;
641     if (GetEventMessage(thread.GetID(), &data).Fail())
642       data = -1;
643 
644     LLDB_LOG(log,
645              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
646              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
647              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
648              is_main_thread);
649 
650 
651     StateType state = thread.GetState();
652     if (!StateIsRunningState(state)) {
653       // Due to a kernel bug, we may sometimes get this stop after the inferior
654       // gets a SIGKILL. This confuses our state tracking logic in
655       // ResumeThread(), since normally, we should not be receiving any ptrace
656       // events while the inferior is stopped. This makes sure that the
657       // inferior is resumed and exits normally.
658       state = eStateRunning;
659     }
660     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
661 
662     break;
663   }
664 
665   case 0:
666   case TRAP_TRACE:  // We receive this on single stepping.
667   case TRAP_HWBKPT: // We receive this on watchpoint hit
668   {
669     // If a watchpoint was hit, report it
670     uint32_t wp_index;
671     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
672         wp_index, (uintptr_t)info.si_addr);
673     if (error.Fail())
674       LLDB_LOG(log,
675                "received error while checking for watchpoint hits, pid = "
676                "{0}, error = {1}",
677                thread.GetID(), error);
678     if (wp_index != LLDB_INVALID_INDEX32) {
679       MonitorWatchpoint(thread, wp_index);
680       break;
681     }
682 
683     // If a breakpoint was hit, report it
684     uint32_t bp_index;
685     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
686         bp_index, (uintptr_t)info.si_addr);
687     if (error.Fail())
688       LLDB_LOG(log, "received error while checking for hardware "
689                     "breakpoint hits, pid = {0}, error = {1}",
690                thread.GetID(), error);
691     if (bp_index != LLDB_INVALID_INDEX32) {
692       MonitorBreakpoint(thread);
693       break;
694     }
695 
696     // Otherwise, report step over
697     MonitorTrace(thread);
698     break;
699   }
700 
701   case SI_KERNEL:
702 #if defined __mips__
703     // For mips there is no special signal for watchpoint So we check for
704     // watchpoint in kernel trap
705     {
706       // If a watchpoint was hit, report it
707       uint32_t wp_index;
708       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
709           wp_index, LLDB_INVALID_ADDRESS);
710       if (error.Fail())
711         LLDB_LOG(log,
712                  "received error while checking for watchpoint hits, pid = "
713                  "{0}, error = {1}",
714                  thread.GetID(), error);
715       if (wp_index != LLDB_INVALID_INDEX32) {
716         MonitorWatchpoint(thread, wp_index);
717         break;
718       }
719     }
720 // NO BREAK
721 #endif
722   case TRAP_BRKPT:
723     MonitorBreakpoint(thread);
724     break;
725 
726   case SIGTRAP:
727   case (SIGTRAP | 0x80):
728     LLDB_LOG(
729         log,
730         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
731         info.si_code, GetID(), thread.GetID());
732 
733     // Ignore these signals until we know more about them.
734     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
735     break;
736 
737   default:
738     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
739              info.si_code, GetID(), thread.GetID());
740     MonitorSignal(info, thread, false);
741     break;
742   }
743 }
744 
745 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
746   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
747   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
748 
749   // This thread is currently stopped.
750   thread.SetStoppedByTrace();
751 
752   StopRunningThreads(thread.GetID());
753 }
754 
755 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
756   Log *log(
757       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
758   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
759 
760   // Mark the thread as stopped at breakpoint.
761   thread.SetStoppedByBreakpoint();
762   FixupBreakpointPCAsNeeded(thread);
763 
764   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
765       m_threads_stepping_with_breakpoint.end())
766     thread.SetStoppedByTrace();
767 
768   StopRunningThreads(thread.GetID());
769 }
770 
771 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
772                                            uint32_t wp_index) {
773   Log *log(
774       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
775   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
776            thread.GetID(), wp_index);
777 
778   // Mark the thread as stopped at watchpoint. The address is at
779   // (lldb::addr_t)info->si_addr if we need it.
780   thread.SetStoppedByWatchpoint(wp_index);
781 
782   // We need to tell all other running threads before we notify the delegate
783   // about this stop.
784   StopRunningThreads(thread.GetID());
785 }
786 
787 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
788                                        NativeThreadLinux &thread, bool exited) {
789   const int signo = info.si_signo;
790   const bool is_from_llgs = info.si_pid == getpid();
791 
792   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
793 
794   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
795   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
796   // or raise(3).  Similarly for tgkill(2) on Linux.
797   //
798   // IOW, user generated signals never generate what we consider to be a
799   // "crash".
800   //
801   // Similarly, ACK signals generated by this monitor.
802 
803   // Handle the signal.
804   LLDB_LOG(log,
805            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
806            "waitpid pid = {4})",
807            Host::GetSignalAsCString(signo), signo, info.si_code,
808            thread.GetID());
809 
810   // Check for thread stop notification.
811   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
812     // This is a tgkill()-based stop.
813     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
814 
815     // Check that we're not already marked with a stop reason. Note this thread
816     // really shouldn't already be marked as stopped - if we were, that would
817     // imply that the kernel signaled us with the thread stopping which we
818     // handled and marked as stopped, and that, without an intervening resume,
819     // we received another stop.  It is more likely that we are missing the
820     // marking of a run state somewhere if we find that the thread was marked
821     // as stopped.
822     const StateType thread_state = thread.GetState();
823     if (!StateIsStoppedState(thread_state, false)) {
824       // An inferior thread has stopped because of a SIGSTOP we have sent it.
825       // Generally, these are not important stops and we don't want to report
826       // them as they are just used to stop other threads when one thread (the
827       // one with the *real* stop reason) hits a breakpoint (watchpoint,
828       // etc...). However, in the case of an asynchronous Interrupt(), this
829       // *is* the real stop reason, so we leave the signal intact if this is
830       // the thread that was chosen as the triggering thread.
831       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
832         if (m_pending_notification_tid == thread.GetID())
833           thread.SetStoppedBySignal(SIGSTOP, &info);
834         else
835           thread.SetStoppedWithNoReason();
836 
837         SetCurrentThreadID(thread.GetID());
838         SignalIfAllThreadsStopped();
839       } else {
840         // We can end up here if stop was initiated by LLGS but by this time a
841         // thread stop has occurred - maybe initiated by another event.
842         Status error = ResumeThread(thread, thread.GetState(), 0);
843         if (error.Fail())
844           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
845                    error);
846       }
847     } else {
848       LLDB_LOG(log,
849                "pid {0} tid {1}, thread was already marked as a stopped "
850                "state (state={2}), leaving stop signal as is",
851                GetID(), thread.GetID(), thread_state);
852       SignalIfAllThreadsStopped();
853     }
854 
855     // Done handling.
856     return;
857   }
858 
859   // Check if debugger should stop at this signal or just ignore it and resume
860   // the inferior.
861   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
862      ResumeThread(thread, thread.GetState(), signo);
863      return;
864   }
865 
866   // This thread is stopped.
867   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
868   thread.SetStoppedBySignal(signo, &info);
869 
870   // Send a stop to the debugger after we get all other threads to stop.
871   StopRunningThreads(thread.GetID());
872 }
873 
874 namespace {
875 
876 struct EmulatorBaton {
877   NativeProcessLinux &m_process;
878   NativeRegisterContext &m_reg_context;
879 
880   // eRegisterKindDWARF -> RegsiterValue
881   std::unordered_map<uint32_t, RegisterValue> m_register_values;
882 
883   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
884       : m_process(process), m_reg_context(reg_context) {}
885 };
886 
887 } // anonymous namespace
888 
889 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
890                                  const EmulateInstruction::Context &context,
891                                  lldb::addr_t addr, void *dst, size_t length) {
892   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
893 
894   size_t bytes_read;
895   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
896   return bytes_read;
897 }
898 
899 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
900                                  const RegisterInfo *reg_info,
901                                  RegisterValue &reg_value) {
902   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
903 
904   auto it = emulator_baton->m_register_values.find(
905       reg_info->kinds[eRegisterKindDWARF]);
906   if (it != emulator_baton->m_register_values.end()) {
907     reg_value = it->second;
908     return true;
909   }
910 
911   // The emulator only fill in the dwarf regsiter numbers (and in some case the
912   // generic register numbers). Get the full register info from the register
913   // context based on the dwarf register numbers.
914   const RegisterInfo *full_reg_info =
915       emulator_baton->m_reg_context.GetRegisterInfo(
916           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
917 
918   Status error =
919       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
920   if (error.Success())
921     return true;
922 
923   return false;
924 }
925 
926 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
927                                   const EmulateInstruction::Context &context,
928                                   const RegisterInfo *reg_info,
929                                   const RegisterValue &reg_value) {
930   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
931   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
932       reg_value;
933   return true;
934 }
935 
936 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
937                                   const EmulateInstruction::Context &context,
938                                   lldb::addr_t addr, const void *dst,
939                                   size_t length) {
940   return length;
941 }
942 
943 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
944   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
945       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
946   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
947                                                  LLDB_INVALID_ADDRESS);
948 }
949 
950 Status
951 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
952   Status error;
953   NativeRegisterContext& register_context = thread.GetRegisterContext();
954 
955   std::unique_ptr<EmulateInstruction> emulator_ap(
956       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
957                                      nullptr));
958 
959   if (emulator_ap == nullptr)
960     return Status("Instruction emulator not found!");
961 
962   EmulatorBaton baton(*this, register_context);
963   emulator_ap->SetBaton(&baton);
964   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
965   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
966   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
967   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
968 
969   if (!emulator_ap->ReadInstruction())
970     return Status("Read instruction failed!");
971 
972   bool emulation_result =
973       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
974 
975   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
976       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
977   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
978       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
979 
980   auto pc_it =
981       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
982   auto flags_it =
983       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
984 
985   lldb::addr_t next_pc;
986   lldb::addr_t next_flags;
987   if (emulation_result) {
988     assert(pc_it != baton.m_register_values.end() &&
989            "Emulation was successfull but PC wasn't updated");
990     next_pc = pc_it->second.GetAsUInt64();
991 
992     if (flags_it != baton.m_register_values.end())
993       next_flags = flags_it->second.GetAsUInt64();
994     else
995       next_flags = ReadFlags(register_context);
996   } else if (pc_it == baton.m_register_values.end()) {
997     // Emulate instruction failed and it haven't changed PC. Advance PC with
998     // the size of the current opcode because the emulation of all
999     // PC modifying instruction should be successful. The failure most
1000     // likely caused by a not supported instruction which don't modify PC.
1001     next_pc = register_context.GetPC() + emulator_ap->GetOpcode().GetByteSize();
1002     next_flags = ReadFlags(register_context);
1003   } else {
1004     // The instruction emulation failed after it modified the PC. It is an
1005     // unknown error where we can't continue because the next instruction is
1006     // modifying the PC but we don't  know how.
1007     return Status("Instruction emulation failed unexpectedly.");
1008   }
1009 
1010   if (m_arch.GetMachine() == llvm::Triple::arm) {
1011     if (next_flags & 0x20) {
1012       // Thumb mode
1013       error = SetSoftwareBreakpoint(next_pc, 2);
1014     } else {
1015       // Arm mode
1016       error = SetSoftwareBreakpoint(next_pc, 4);
1017     }
1018   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1019              m_arch.GetMachine() == llvm::Triple::mips64el ||
1020              m_arch.GetMachine() == llvm::Triple::mips ||
1021              m_arch.GetMachine() == llvm::Triple::mipsel ||
1022              m_arch.GetMachine() == llvm::Triple::ppc64le)
1023     error = SetSoftwareBreakpoint(next_pc, 4);
1024   else {
1025     // No size hint is given for the next breakpoint
1026     error = SetSoftwareBreakpoint(next_pc, 0);
1027   }
1028 
1029   // If setting the breakpoint fails because next_pc is out of the address
1030   // space, ignore it and let the debugee segfault.
1031   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1032     return Status();
1033   } else if (error.Fail())
1034     return error;
1035 
1036   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1037 
1038   return Status();
1039 }
1040 
1041 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1042   if (m_arch.GetMachine() == llvm::Triple::arm ||
1043       m_arch.GetMachine() == llvm::Triple::mips64 ||
1044       m_arch.GetMachine() == llvm::Triple::mips64el ||
1045       m_arch.GetMachine() == llvm::Triple::mips ||
1046       m_arch.GetMachine() == llvm::Triple::mipsel)
1047     return false;
1048   return true;
1049 }
1050 
1051 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1052   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1053   LLDB_LOG(log, "pid {0}", GetID());
1054 
1055   bool software_single_step = !SupportHardwareSingleStepping();
1056 
1057   if (software_single_step) {
1058     for (const auto &thread : m_threads) {
1059       assert(thread && "thread list should not contain NULL threads");
1060 
1061       const ResumeAction *const action =
1062           resume_actions.GetActionForThread(thread->GetID(), true);
1063       if (action == nullptr)
1064         continue;
1065 
1066       if (action->state == eStateStepping) {
1067         Status error = SetupSoftwareSingleStepping(
1068             static_cast<NativeThreadLinux &>(*thread));
1069         if (error.Fail())
1070           return error;
1071       }
1072     }
1073   }
1074 
1075   for (const auto &thread : m_threads) {
1076     assert(thread && "thread list should not contain NULL threads");
1077 
1078     const ResumeAction *const action =
1079         resume_actions.GetActionForThread(thread->GetID(), true);
1080 
1081     if (action == nullptr) {
1082       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1083                thread->GetID());
1084       continue;
1085     }
1086 
1087     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1088              action->state, GetID(), thread->GetID());
1089 
1090     switch (action->state) {
1091     case eStateRunning:
1092     case eStateStepping: {
1093       // Run the thread, possibly feeding it the signal.
1094       const int signo = action->signal;
1095       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1096                    signo);
1097       break;
1098     }
1099 
1100     case eStateSuspended:
1101     case eStateStopped:
1102       llvm_unreachable("Unexpected state");
1103 
1104     default:
1105       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1106                     "for pid %" PRIu64 ", tid %" PRIu64,
1107                     __FUNCTION__, StateAsCString(action->state), GetID(),
1108                     thread->GetID());
1109     }
1110   }
1111 
1112   return Status();
1113 }
1114 
1115 Status NativeProcessLinux::Halt() {
1116   Status error;
1117 
1118   if (kill(GetID(), SIGSTOP) != 0)
1119     error.SetErrorToErrno();
1120 
1121   return error;
1122 }
1123 
1124 Status NativeProcessLinux::Detach() {
1125   Status error;
1126 
1127   // Stop monitoring the inferior.
1128   m_sigchld_handle.reset();
1129 
1130   // Tell ptrace to detach from the process.
1131   if (GetID() == LLDB_INVALID_PROCESS_ID)
1132     return error;
1133 
1134   for (const auto &thread : m_threads) {
1135     Status e = Detach(thread->GetID());
1136     if (e.Fail())
1137       error =
1138           e; // Save the error, but still attempt to detach from other threads.
1139   }
1140 
1141   m_processor_trace_monitor.clear();
1142   m_pt_proces_trace_id = LLDB_INVALID_UID;
1143 
1144   return error;
1145 }
1146 
1147 Status NativeProcessLinux::Signal(int signo) {
1148   Status error;
1149 
1150   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1151   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1152            Host::GetSignalAsCString(signo), GetID());
1153 
1154   if (kill(GetID(), signo))
1155     error.SetErrorToErrno();
1156 
1157   return error;
1158 }
1159 
1160 Status NativeProcessLinux::Interrupt() {
1161   // Pick a running thread (or if none, a not-dead stopped thread) as the
1162   // chosen thread that will be the stop-reason thread.
1163   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1164 
1165   NativeThreadProtocol *running_thread = nullptr;
1166   NativeThreadProtocol *stopped_thread = nullptr;
1167 
1168   LLDB_LOG(log, "selecting running thread for interrupt target");
1169   for (const auto &thread : m_threads) {
1170     // If we have a running or stepping thread, we'll call that the target of
1171     // the interrupt.
1172     const auto thread_state = thread->GetState();
1173     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1174       running_thread = thread.get();
1175       break;
1176     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1177       // Remember the first non-dead stopped thread.  We'll use that as a
1178       // backup if there are no running threads.
1179       stopped_thread = thread.get();
1180     }
1181   }
1182 
1183   if (!running_thread && !stopped_thread) {
1184     Status error("found no running/stepping or live stopped threads as target "
1185                  "for interrupt");
1186     LLDB_LOG(log, "skipping due to error: {0}", error);
1187 
1188     return error;
1189   }
1190 
1191   NativeThreadProtocol *deferred_signal_thread =
1192       running_thread ? running_thread : stopped_thread;
1193 
1194   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1195            running_thread ? "running" : "stopped",
1196            deferred_signal_thread->GetID());
1197 
1198   StopRunningThreads(deferred_signal_thread->GetID());
1199 
1200   return Status();
1201 }
1202 
1203 Status NativeProcessLinux::Kill() {
1204   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1205   LLDB_LOG(log, "pid {0}", GetID());
1206 
1207   Status error;
1208 
1209   switch (m_state) {
1210   case StateType::eStateInvalid:
1211   case StateType::eStateExited:
1212   case StateType::eStateCrashed:
1213   case StateType::eStateDetached:
1214   case StateType::eStateUnloaded:
1215     // Nothing to do - the process is already dead.
1216     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1217              m_state);
1218     return error;
1219 
1220   case StateType::eStateConnected:
1221   case StateType::eStateAttaching:
1222   case StateType::eStateLaunching:
1223   case StateType::eStateStopped:
1224   case StateType::eStateRunning:
1225   case StateType::eStateStepping:
1226   case StateType::eStateSuspended:
1227     // We can try to kill a process in these states.
1228     break;
1229   }
1230 
1231   if (kill(GetID(), SIGKILL) != 0) {
1232     error.SetErrorToErrno();
1233     return error;
1234   }
1235 
1236   return error;
1237 }
1238 
1239 static Status
1240 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1241                                       MemoryRegionInfo &memory_region_info) {
1242   memory_region_info.Clear();
1243 
1244   StringExtractor line_extractor(maps_line);
1245 
1246   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1247   // pathname perms: rwxp   (letter is present if set, '-' if not, final
1248   // character is p=private, s=shared).
1249 
1250   // Parse out the starting address
1251   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1252 
1253   // Parse out hyphen separating start and end address from range.
1254   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1255     return Status(
1256         "malformed /proc/{pid}/maps entry, missing dash between address range");
1257 
1258   // Parse out the ending address
1259   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1260 
1261   // Parse out the space after the address.
1262   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1263     return Status(
1264         "malformed /proc/{pid}/maps entry, missing space after range");
1265 
1266   // Save the range.
1267   memory_region_info.GetRange().SetRangeBase(start_address);
1268   memory_region_info.GetRange().SetRangeEnd(end_address);
1269 
1270   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1271   // process.
1272   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1273 
1274   // Parse out each permission entry.
1275   if (line_extractor.GetBytesLeft() < 4)
1276     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1277                   "permissions");
1278 
1279   // Handle read permission.
1280   const char read_perm_char = line_extractor.GetChar();
1281   if (read_perm_char == 'r')
1282     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1283   else if (read_perm_char == '-')
1284     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1285   else
1286     return Status("unexpected /proc/{pid}/maps read permission char");
1287 
1288   // Handle write permission.
1289   const char write_perm_char = line_extractor.GetChar();
1290   if (write_perm_char == 'w')
1291     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1292   else if (write_perm_char == '-')
1293     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1294   else
1295     return Status("unexpected /proc/{pid}/maps write permission char");
1296 
1297   // Handle execute permission.
1298   const char exec_perm_char = line_extractor.GetChar();
1299   if (exec_perm_char == 'x')
1300     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1301   else if (exec_perm_char == '-')
1302     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1303   else
1304     return Status("unexpected /proc/{pid}/maps exec permission char");
1305 
1306   line_extractor.GetChar();              // Read the private bit
1307   line_extractor.SkipSpaces();           // Skip the separator
1308   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1309   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1310   line_extractor.GetChar();              // Read the device id separator
1311   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1312   line_extractor.SkipSpaces();           // Skip the separator
1313   line_extractor.GetU64(0, 10);          // Read the inode number
1314 
1315   line_extractor.SkipSpaces();
1316   const char *name = line_extractor.Peek();
1317   if (name)
1318     memory_region_info.SetName(name);
1319 
1320   return Status();
1321 }
1322 
1323 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1324                                                MemoryRegionInfo &range_info) {
1325   // FIXME review that the final memory region returned extends to the end of
1326   // the virtual address space,
1327   // with no perms if it is not mapped.
1328 
1329   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1330   // proc maps entries are in ascending order.
1331   // FIXME assert if we find differently.
1332 
1333   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1334     // We're done.
1335     return Status("unsupported");
1336   }
1337 
1338   Status error = PopulateMemoryRegionCache();
1339   if (error.Fail()) {
1340     return error;
1341   }
1342 
1343   lldb::addr_t prev_base_address = 0;
1344 
1345   // FIXME start by finding the last region that is <= target address using
1346   // binary search.  Data is sorted.
1347   // There can be a ton of regions on pthreads apps with lots of threads.
1348   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1349        ++it) {
1350     MemoryRegionInfo &proc_entry_info = it->first;
1351 
1352     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1353     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1354            "descending /proc/pid/maps entries detected, unexpected");
1355     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1356     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1357 
1358     // If the target address comes before this entry, indicate distance to next
1359     // region.
1360     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1361       range_info.GetRange().SetRangeBase(load_addr);
1362       range_info.GetRange().SetByteSize(
1363           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1364       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1365       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1366       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1367       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1368 
1369       return error;
1370     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1371       // The target address is within the memory region we're processing here.
1372       range_info = proc_entry_info;
1373       return error;
1374     }
1375 
1376     // The target memory address comes somewhere after the region we just
1377     // parsed.
1378   }
1379 
1380   // If we made it here, we didn't find an entry that contained the given
1381   // address. Return the load_addr as start and the amount of bytes betwwen
1382   // load address and the end of the memory as size.
1383   range_info.GetRange().SetRangeBase(load_addr);
1384   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1385   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1386   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1387   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1388   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1389   return error;
1390 }
1391 
1392 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1393   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1394 
1395   // If our cache is empty, pull the latest.  There should always be at least
1396   // one memory region if memory region handling is supported.
1397   if (!m_mem_region_cache.empty()) {
1398     LLDB_LOG(log, "reusing {0} cached memory region entries",
1399              m_mem_region_cache.size());
1400     return Status();
1401   }
1402 
1403   auto BufferOrError = getProcFile(GetID(), "maps");
1404   if (!BufferOrError) {
1405     m_supports_mem_region = LazyBool::eLazyBoolNo;
1406     return BufferOrError.getError();
1407   }
1408   StringRef Rest = BufferOrError.get()->getBuffer();
1409   while (! Rest.empty()) {
1410     StringRef Line;
1411     std::tie(Line, Rest) = Rest.split('\n');
1412     MemoryRegionInfo info;
1413     const Status parse_error =
1414         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1415     if (parse_error.Fail()) {
1416       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1417                parse_error);
1418       m_supports_mem_region = LazyBool::eLazyBoolNo;
1419       return parse_error;
1420     }
1421     FileSpec file_spec(info.GetName().GetCString());
1422     FileSystem::Instance().Resolve(file_spec);
1423     m_mem_region_cache.emplace_back(info, file_spec);
1424   }
1425 
1426   if (m_mem_region_cache.empty()) {
1427     // No entries after attempting to read them.  This shouldn't happen if
1428     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1429     // procfs.
1430     m_supports_mem_region = LazyBool::eLazyBoolNo;
1431     LLDB_LOG(log,
1432              "failed to find any procfs maps entries, assuming no support "
1433              "for memory region metadata retrieval");
1434     return Status("not supported");
1435   }
1436 
1437   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1438            m_mem_region_cache.size(), GetID());
1439 
1440   // We support memory retrieval, remember that.
1441   m_supports_mem_region = LazyBool::eLazyBoolYes;
1442   return Status();
1443 }
1444 
1445 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1446   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1447   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1448   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1449            m_mem_region_cache.size());
1450   m_mem_region_cache.clear();
1451 }
1452 
1453 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1454                                           lldb::addr_t &addr) {
1455 // FIXME implementing this requires the equivalent of
1456 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans
1457 // working with Native*Protocol.
1458 #if 1
1459   return Status("not implemented yet");
1460 #else
1461   addr = LLDB_INVALID_ADDRESS;
1462 
1463   unsigned prot = 0;
1464   if (permissions & lldb::ePermissionsReadable)
1465     prot |= eMmapProtRead;
1466   if (permissions & lldb::ePermissionsWritable)
1467     prot |= eMmapProtWrite;
1468   if (permissions & lldb::ePermissionsExecutable)
1469     prot |= eMmapProtExec;
1470 
1471   // TODO implement this directly in NativeProcessLinux
1472   // (and lift to NativeProcessPOSIX if/when that class is refactored out).
1473   if (InferiorCallMmap(this, addr, 0, size, prot,
1474                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1475     m_addr_to_mmap_size[addr] = size;
1476     return Status();
1477   } else {
1478     addr = LLDB_INVALID_ADDRESS;
1479     return Status("unable to allocate %" PRIu64
1480                   " bytes of memory with permissions %s",
1481                   size, GetPermissionsAsCString(permissions));
1482   }
1483 #endif
1484 }
1485 
1486 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1487   // FIXME see comments in AllocateMemory - required lower-level
1488   // bits not in place yet (ThreadPlans)
1489   return Status("not implemented");
1490 }
1491 
1492 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1493   // punt on this for now
1494   return LLDB_INVALID_ADDRESS;
1495 }
1496 
1497 size_t NativeProcessLinux::UpdateThreads() {
1498   // The NativeProcessLinux monitoring threads are always up to date with
1499   // respect to thread state and they keep the thread list populated properly.
1500   // All this method needs to do is return the thread count.
1501   return m_threads.size();
1502 }
1503 
1504 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1505                                          bool hardware) {
1506   if (hardware)
1507     return SetHardwareBreakpoint(addr, size);
1508   else
1509     return SetSoftwareBreakpoint(addr, size);
1510 }
1511 
1512 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1513   if (hardware)
1514     return RemoveHardwareBreakpoint(addr);
1515   else
1516     return NativeProcessProtocol::RemoveBreakpoint(addr);
1517 }
1518 
1519 llvm::Expected<llvm::ArrayRef<uint8_t>>
1520 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1521   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1522   // linux kernel does otherwise.
1523   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1524   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1525 
1526   switch (GetArchitecture().GetMachine()) {
1527   case llvm::Triple::arm:
1528     switch (size_hint) {
1529     case 2:
1530       return llvm::makeArrayRef(g_thumb_opcode);
1531     case 4:
1532       return llvm::makeArrayRef(g_arm_opcode);
1533     default:
1534       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1535                                      "Unrecognised trap opcode size hint!");
1536     }
1537   default:
1538     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1539   }
1540 }
1541 
1542 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1543                                       size_t &bytes_read) {
1544   if (ProcessVmReadvSupported()) {
1545     // The process_vm_readv path is about 50 times faster than ptrace api. We
1546     // want to use this syscall if it is supported.
1547 
1548     const ::pid_t pid = GetID();
1549 
1550     struct iovec local_iov, remote_iov;
1551     local_iov.iov_base = buf;
1552     local_iov.iov_len = size;
1553     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1554     remote_iov.iov_len = size;
1555 
1556     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1557     const bool success = bytes_read == size;
1558 
1559     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1560     LLDB_LOG(log,
1561              "using process_vm_readv to read {0} bytes from inferior "
1562              "address {1:x}: {2}",
1563              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1564 
1565     if (success)
1566       return Status();
1567     // else the call failed for some reason, let's retry the read using ptrace
1568     // api.
1569   }
1570 
1571   unsigned char *dst = static_cast<unsigned char *>(buf);
1572   size_t remainder;
1573   long data;
1574 
1575   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1576   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1577 
1578   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1579     Status error = NativeProcessLinux::PtraceWrapper(
1580         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1581     if (error.Fail())
1582       return error;
1583 
1584     remainder = size - bytes_read;
1585     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1586 
1587     // Copy the data into our buffer
1588     memcpy(dst, &data, remainder);
1589 
1590     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1591     addr += k_ptrace_word_size;
1592     dst += k_ptrace_word_size;
1593   }
1594   return Status();
1595 }
1596 
1597 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1598                                        size_t size, size_t &bytes_written) {
1599   const unsigned char *src = static_cast<const unsigned char *>(buf);
1600   size_t remainder;
1601   Status error;
1602 
1603   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1604   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1605 
1606   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1607     remainder = size - bytes_written;
1608     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1609 
1610     if (remainder == k_ptrace_word_size) {
1611       unsigned long data = 0;
1612       memcpy(&data, src, k_ptrace_word_size);
1613 
1614       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1615       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1616                                                 (void *)addr, (void *)data);
1617       if (error.Fail())
1618         return error;
1619     } else {
1620       unsigned char buff[8];
1621       size_t bytes_read;
1622       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1623       if (error.Fail())
1624         return error;
1625 
1626       memcpy(buff, src, remainder);
1627 
1628       size_t bytes_written_rec;
1629       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1630       if (error.Fail())
1631         return error;
1632 
1633       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1634                *(unsigned long *)buff);
1635     }
1636 
1637     addr += k_ptrace_word_size;
1638     src += k_ptrace_word_size;
1639   }
1640   return error;
1641 }
1642 
1643 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1644   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1645 }
1646 
1647 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1648                                            unsigned long *message) {
1649   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1650 }
1651 
1652 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1653   if (tid == LLDB_INVALID_THREAD_ID)
1654     return Status();
1655 
1656   return PtraceWrapper(PTRACE_DETACH, tid);
1657 }
1658 
1659 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1660   for (const auto &thread : m_threads) {
1661     assert(thread && "thread list should not contain NULL threads");
1662     if (thread->GetID() == thread_id) {
1663       // We have this thread.
1664       return true;
1665     }
1666   }
1667 
1668   // We don't have this thread.
1669   return false;
1670 }
1671 
1672 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1673   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1674   LLDB_LOG(log, "tid: {0})", thread_id);
1675 
1676   bool found = false;
1677   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1678     if (*it && ((*it)->GetID() == thread_id)) {
1679       m_threads.erase(it);
1680       found = true;
1681       break;
1682     }
1683   }
1684 
1685   if (found)
1686     StopTracingForThread(thread_id);
1687   SignalIfAllThreadsStopped();
1688   return found;
1689 }
1690 
1691 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1692   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1693   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1694 
1695   assert(!HasThreadNoLock(thread_id) &&
1696          "attempted to add a thread by id that already exists");
1697 
1698   // If this is the first thread, save it as the current thread
1699   if (m_threads.empty())
1700     SetCurrentThreadID(thread_id);
1701 
1702   m_threads.push_back(llvm::make_unique<NativeThreadLinux>(*this, thread_id));
1703 
1704   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1705     auto traceMonitor = ProcessorTraceMonitor::Create(
1706         GetID(), thread_id, m_pt_process_trace_config, true);
1707     if (traceMonitor) {
1708       m_pt_traced_thread_group.insert(thread_id);
1709       m_processor_trace_monitor.insert(
1710           std::make_pair(thread_id, std::move(*traceMonitor)));
1711     } else {
1712       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1713       Status error(traceMonitor.takeError());
1714       LLDB_LOG(log, "error {0}", error);
1715     }
1716   }
1717 
1718   return static_cast<NativeThreadLinux &>(*m_threads.back());
1719 }
1720 
1721 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1722                                                    FileSpec &file_spec) {
1723   Status error = PopulateMemoryRegionCache();
1724   if (error.Fail())
1725     return error;
1726 
1727   FileSpec module_file_spec(module_path);
1728   FileSystem::Instance().Resolve(module_file_spec);
1729 
1730   file_spec.Clear();
1731   for (const auto &it : m_mem_region_cache) {
1732     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1733       file_spec = it.second;
1734       return Status();
1735     }
1736   }
1737   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1738                 module_file_spec.GetFilename().AsCString(), GetID());
1739 }
1740 
1741 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1742                                               lldb::addr_t &load_addr) {
1743   load_addr = LLDB_INVALID_ADDRESS;
1744   Status error = PopulateMemoryRegionCache();
1745   if (error.Fail())
1746     return error;
1747 
1748   FileSpec file(file_name);
1749   for (const auto &it : m_mem_region_cache) {
1750     if (it.second == file) {
1751       load_addr = it.first.GetRange().GetRangeBase();
1752       return Status();
1753     }
1754   }
1755   return Status("No load address found for specified file.");
1756 }
1757 
1758 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1759   return static_cast<NativeThreadLinux *>(
1760       NativeProcessProtocol::GetThreadByID(tid));
1761 }
1762 
1763 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1764                                         lldb::StateType state, int signo) {
1765   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1766   LLDB_LOG(log, "tid: {0}", thread.GetID());
1767 
1768   // Before we do the resume below, first check if we have a pending stop
1769   // notification that is currently waiting for all threads to stop.  This is
1770   // potentially a buggy situation since we're ostensibly waiting for threads
1771   // to stop before we send out the pending notification, and here we are
1772   // resuming one before we send out the pending stop notification.
1773   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1774     LLDB_LOG(log,
1775              "about to resume tid {0} per explicit request but we have a "
1776              "pending stop notification (tid {1}) that is actively "
1777              "waiting for this thread to stop. Valid sequence of events?",
1778              thread.GetID(), m_pending_notification_tid);
1779   }
1780 
1781   // Request a resume.  We expect this to be synchronous and the system to
1782   // reflect it is running after this completes.
1783   switch (state) {
1784   case eStateRunning: {
1785     const auto resume_result = thread.Resume(signo);
1786     if (resume_result.Success())
1787       SetState(eStateRunning, true);
1788     return resume_result;
1789   }
1790   case eStateStepping: {
1791     const auto step_result = thread.SingleStep(signo);
1792     if (step_result.Success())
1793       SetState(eStateRunning, true);
1794     return step_result;
1795   }
1796   default:
1797     LLDB_LOG(log, "Unhandled state {0}.", state);
1798     llvm_unreachable("Unhandled state for resume");
1799   }
1800 }
1801 
1802 //===----------------------------------------------------------------------===//
1803 
1804 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1805   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1806   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1807            triggering_tid);
1808 
1809   m_pending_notification_tid = triggering_tid;
1810 
1811   // Request a stop for all the thread stops that need to be stopped and are
1812   // not already known to be stopped.
1813   for (const auto &thread : m_threads) {
1814     if (StateIsRunningState(thread->GetState()))
1815       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1816   }
1817 
1818   SignalIfAllThreadsStopped();
1819   LLDB_LOG(log, "event processing done");
1820 }
1821 
1822 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1823   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1824     return; // No pending notification. Nothing to do.
1825 
1826   for (const auto &thread_sp : m_threads) {
1827     if (StateIsRunningState(thread_sp->GetState()))
1828       return; // Some threads are still running. Don't signal yet.
1829   }
1830 
1831   // We have a pending notification and all threads have stopped.
1832   Log *log(
1833       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1834 
1835   // Clear any temporary breakpoints we used to implement software single
1836   // stepping.
1837   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1838     Status error = RemoveBreakpoint(thread_info.second);
1839     if (error.Fail())
1840       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1841                thread_info.first, error);
1842   }
1843   m_threads_stepping_with_breakpoint.clear();
1844 
1845   // Notify the delegate about the stop
1846   SetCurrentThreadID(m_pending_notification_tid);
1847   SetState(StateType::eStateStopped, true);
1848   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1849 }
1850 
1851 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1852   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1853   LLDB_LOG(log, "tid: {0}", thread.GetID());
1854 
1855   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1856       StateIsRunningState(thread.GetState())) {
1857     // We will need to wait for this new thread to stop as well before firing
1858     // the notification.
1859     thread.RequestStop();
1860   }
1861 }
1862 
1863 void NativeProcessLinux::SigchldHandler() {
1864   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1865   // Process all pending waitpid notifications.
1866   while (true) {
1867     int status = -1;
1868     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1869                                           __WALL | __WNOTHREAD | WNOHANG);
1870 
1871     if (wait_pid == 0)
1872       break; // We are done.
1873 
1874     if (wait_pid == -1) {
1875       Status error(errno, eErrorTypePOSIX);
1876       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1877       break;
1878     }
1879 
1880     WaitStatus wait_status = WaitStatus::Decode(status);
1881     bool exited = wait_status.type == WaitStatus::Exit ||
1882                   (wait_status.type == WaitStatus::Signal &&
1883                    wait_pid == static_cast<::pid_t>(GetID()));
1884 
1885     LLDB_LOG(
1886         log,
1887         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1888         wait_pid, wait_status, exited);
1889 
1890     MonitorCallback(wait_pid, exited, wait_status);
1891   }
1892 }
1893 
1894 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1895 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1896 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1897                                          void *data, size_t data_size,
1898                                          long *result) {
1899   Status error;
1900   long int ret;
1901 
1902   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1903 
1904   PtraceDisplayBytes(req, data, data_size);
1905 
1906   errno = 0;
1907   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1908     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1909                  *(unsigned int *)addr, data);
1910   else
1911     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1912                  addr, data);
1913 
1914   if (ret == -1)
1915     error.SetErrorToErrno();
1916 
1917   if (result)
1918     *result = ret;
1919 
1920   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1921            data_size, ret);
1922 
1923   PtraceDisplayBytes(req, data, data_size);
1924 
1925   if (error.Fail())
1926     LLDB_LOG(log, "ptrace() failed: {0}", error);
1927 
1928   return error;
1929 }
1930 
1931 llvm::Expected<ProcessorTraceMonitor &>
1932 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
1933                                                  lldb::tid_t thread) {
1934   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1935   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
1936     LLDB_LOG(log, "thread not specified: {0}", traceid);
1937     return Status("tracing not active thread not specified").ToError();
1938   }
1939 
1940   for (auto& iter : m_processor_trace_monitor) {
1941     if (traceid == iter.second->GetTraceID() &&
1942         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
1943       return *(iter.second);
1944   }
1945 
1946   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1947   return Status("tracing not active for this thread").ToError();
1948 }
1949 
1950 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
1951                                        lldb::tid_t thread,
1952                                        llvm::MutableArrayRef<uint8_t> &buffer,
1953                                        size_t offset) {
1954   TraceOptions trace_options;
1955   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1956   Status error;
1957 
1958   LLDB_LOG(log, "traceid {0}", traceid);
1959 
1960   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1961   if (!perf_monitor) {
1962     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1963     buffer = buffer.slice(buffer.size());
1964     error = perf_monitor.takeError();
1965     return error;
1966   }
1967   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
1968 }
1969 
1970 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
1971                                    llvm::MutableArrayRef<uint8_t> &buffer,
1972                                    size_t offset) {
1973   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1974   Status error;
1975 
1976   LLDB_LOG(log, "traceid {0}", traceid);
1977 
1978   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1979   if (!perf_monitor) {
1980     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1981     buffer = buffer.slice(buffer.size());
1982     error = perf_monitor.takeError();
1983     return error;
1984   }
1985   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
1986 }
1987 
1988 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
1989                                           TraceOptions &config) {
1990   Status error;
1991   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
1992       m_pt_proces_trace_id == traceid) {
1993     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
1994       error.SetErrorString("tracing not active for this process");
1995       return error;
1996     }
1997     config = m_pt_process_trace_config;
1998   } else {
1999     auto perf_monitor =
2000         LookupProcessorTraceInstance(traceid, config.getThreadID());
2001     if (!perf_monitor) {
2002       error = perf_monitor.takeError();
2003       return error;
2004     }
2005     error = (*perf_monitor).GetTraceConfig(config);
2006   }
2007   return error;
2008 }
2009 
2010 lldb::user_id_t
2011 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2012                                            Status &error) {
2013 
2014   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2015   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2016     return LLDB_INVALID_UID;
2017 
2018   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2019     error.SetErrorString("tracing already active on this process");
2020     return m_pt_proces_trace_id;
2021   }
2022 
2023   for (const auto &thread_sp : m_threads) {
2024     if (auto traceInstance = ProcessorTraceMonitor::Create(
2025             GetID(), thread_sp->GetID(), config, true)) {
2026       m_pt_traced_thread_group.insert(thread_sp->GetID());
2027       m_processor_trace_monitor.insert(
2028           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2029     }
2030   }
2031 
2032   m_pt_process_trace_config = config;
2033   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2034 
2035   // Trace on Complete process will have traceid of 0
2036   m_pt_proces_trace_id = 0;
2037 
2038   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2039   return m_pt_proces_trace_id;
2040 }
2041 
2042 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2043                                                Status &error) {
2044   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2045     return NativeProcessProtocol::StartTrace(config, error);
2046 
2047   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2048 
2049   lldb::tid_t threadid = config.getThreadID();
2050 
2051   if (threadid == LLDB_INVALID_THREAD_ID)
2052     return StartTraceGroup(config, error);
2053 
2054   auto thread_sp = GetThreadByID(threadid);
2055   if (!thread_sp) {
2056     // Thread not tracked by lldb so don't trace.
2057     error.SetErrorString("invalid thread id");
2058     return LLDB_INVALID_UID;
2059   }
2060 
2061   const auto &iter = m_processor_trace_monitor.find(threadid);
2062   if (iter != m_processor_trace_monitor.end()) {
2063     LLDB_LOG(log, "Thread already being traced");
2064     error.SetErrorString("tracing already active on this thread");
2065     return LLDB_INVALID_UID;
2066   }
2067 
2068   auto traceMonitor =
2069       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2070   if (!traceMonitor) {
2071     error = traceMonitor.takeError();
2072     LLDB_LOG(log, "error {0}", error);
2073     return LLDB_INVALID_UID;
2074   }
2075   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2076   m_processor_trace_monitor.insert(
2077       std::make_pair(threadid, std::move(*traceMonitor)));
2078   return ret_trace_id;
2079 }
2080 
2081 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2082   Status error;
2083   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2084   LLDB_LOG(log, "Thread {0}", thread);
2085 
2086   const auto& iter = m_processor_trace_monitor.find(thread);
2087   if (iter == m_processor_trace_monitor.end()) {
2088     error.SetErrorString("tracing not active for this thread");
2089     return error;
2090   }
2091 
2092   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2093     // traceid maps to the whole process so we have to erase it from the thread
2094     // group.
2095     LLDB_LOG(log, "traceid maps to process");
2096     m_pt_traced_thread_group.erase(thread);
2097   }
2098   m_processor_trace_monitor.erase(iter);
2099 
2100   return error;
2101 }
2102 
2103 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2104                                      lldb::tid_t thread) {
2105   Status error;
2106 
2107   TraceOptions trace_options;
2108   trace_options.setThreadID(thread);
2109   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2110 
2111   if (error.Fail())
2112     return error;
2113 
2114   switch (trace_options.getType()) {
2115   case lldb::TraceType::eTraceTypeProcessorTrace:
2116     if (traceid == m_pt_proces_trace_id &&
2117         thread == LLDB_INVALID_THREAD_ID)
2118       StopProcessorTracingOnProcess();
2119     else
2120       error = StopProcessorTracingOnThread(traceid, thread);
2121     break;
2122   default:
2123     error.SetErrorString("trace not supported");
2124     break;
2125   }
2126 
2127   return error;
2128 }
2129 
2130 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2131   for (auto thread_id_iter : m_pt_traced_thread_group)
2132     m_processor_trace_monitor.erase(thread_id_iter);
2133   m_pt_traced_thread_group.clear();
2134   m_pt_proces_trace_id = LLDB_INVALID_UID;
2135 }
2136 
2137 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2138                                                         lldb::tid_t thread) {
2139   Status error;
2140   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2141 
2142   if (thread == LLDB_INVALID_THREAD_ID) {
2143     for (auto& iter : m_processor_trace_monitor) {
2144       if (iter.second->GetTraceID() == traceid) {
2145         // Stopping a trace instance for an individual thread hence there will
2146         // only be one traceid that can match.
2147         m_processor_trace_monitor.erase(iter.first);
2148         return error;
2149       }
2150       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2151     }
2152 
2153     LLDB_LOG(log, "Invalid TraceID");
2154     error.SetErrorString("invalid trace id");
2155     return error;
2156   }
2157 
2158   // thread is specified so we can use find function on the map.
2159   const auto& iter = m_processor_trace_monitor.find(thread);
2160   if (iter == m_processor_trace_monitor.end()) {
2161     // thread not found in our map.
2162     LLDB_LOG(log, "thread not being traced");
2163     error.SetErrorString("tracing not active for this thread");
2164     return error;
2165   }
2166   if (iter->second->GetTraceID() != traceid) {
2167     // traceid did not match so it has to be invalid.
2168     LLDB_LOG(log, "Invalid TraceID");
2169     error.SetErrorString("invalid trace id");
2170     return error;
2171   }
2172 
2173   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2174 
2175   if (traceid == m_pt_proces_trace_id) {
2176     // traceid maps to the whole process so we have to erase it from the thread
2177     // group.
2178     LLDB_LOG(log, "traceid maps to process");
2179     m_pt_traced_thread_group.erase(thread);
2180   }
2181   m_processor_trace_monitor.erase(iter);
2182 
2183   return error;
2184 }
2185