1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/State.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StringExtractor.h" 44 #include "llvm/ADT/ScopeExit.h" 45 #include "llvm/Support/Errno.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/Threading.h" 48 49 #include <linux/unistd.h> 50 #include <sys/socket.h> 51 #include <sys/syscall.h> 52 #include <sys/types.h> 53 #include <sys/user.h> 54 #include <sys/wait.h> 55 56 #ifdef __aarch64__ 57 #include <asm/hwcap.h> 58 #include <sys/auxv.h> 59 #endif 60 61 // Support hardware breakpoints in case it has not been defined 62 #ifndef TRAP_HWBKPT 63 #define TRAP_HWBKPT 4 64 #endif 65 66 #ifndef HWCAP2_MTE 67 #define HWCAP2_MTE (1 << 18) 68 #endif 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace lldb_private::process_linux; 73 using namespace llvm; 74 75 // Private bits we only need internally. 76 77 static bool ProcessVmReadvSupported() { 78 static bool is_supported; 79 static llvm::once_flag flag; 80 81 llvm::call_once(flag, [] { 82 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 83 84 uint32_t source = 0x47424742; 85 uint32_t dest = 0; 86 87 struct iovec local, remote; 88 remote.iov_base = &source; 89 local.iov_base = &dest; 90 remote.iov_len = local.iov_len = sizeof source; 91 92 // We shall try if cross-process-memory reads work by attempting to read a 93 // value from our own process. 94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 95 is_supported = (res == sizeof(source) && source == dest); 96 if (is_supported) 97 LLDB_LOG(log, 98 "Detected kernel support for process_vm_readv syscall. " 99 "Fast memory reads enabled."); 100 else 101 LLDB_LOG(log, 102 "syscall process_vm_readv failed (error: {0}). Fast memory " 103 "reads disabled.", 104 llvm::sys::StrError()); 105 }); 106 107 return is_supported; 108 } 109 110 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 112 if (!log) 113 return; 114 115 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 116 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 117 else 118 LLDB_LOG(log, "leaving STDIN as is"); 119 120 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 121 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 122 else 123 LLDB_LOG(log, "leaving STDOUT as is"); 124 125 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 126 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 127 else 128 LLDB_LOG(log, "leaving STDERR as is"); 129 130 int i = 0; 131 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 132 ++args, ++i) 133 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 134 } 135 136 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 137 uint8_t *ptr = (uint8_t *)bytes; 138 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 139 for (uint32_t i = 0; i < loop_count; i++) { 140 s.Printf("[%x]", *ptr); 141 ptr++; 142 } 143 } 144 145 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 146 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 147 if (!log) 148 return; 149 StreamString buf; 150 151 switch (req) { 152 case PTRACE_POKETEXT: { 153 DisplayBytes(buf, &data, 8); 154 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 155 break; 156 } 157 case PTRACE_POKEDATA: { 158 DisplayBytes(buf, &data, 8); 159 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 160 break; 161 } 162 case PTRACE_POKEUSER: { 163 DisplayBytes(buf, &data, 8); 164 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 165 break; 166 } 167 case PTRACE_SETREGS: { 168 DisplayBytes(buf, data, data_size); 169 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 170 break; 171 } 172 case PTRACE_SETFPREGS: { 173 DisplayBytes(buf, data, data_size); 174 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 175 break; 176 } 177 case PTRACE_SETSIGINFO: { 178 DisplayBytes(buf, data, sizeof(siginfo_t)); 179 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 180 break; 181 } 182 case PTRACE_SETREGSET: { 183 // Extract iov_base from data, which is a pointer to the struct iovec 184 DisplayBytes(buf, *(void **)data, data_size); 185 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 186 break; 187 } 188 default: {} 189 } 190 } 191 192 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 193 static_assert(sizeof(long) >= k_ptrace_word_size, 194 "Size of long must be larger than ptrace word size"); 195 196 // Simple helper function to ensure flags are enabled on the given file 197 // descriptor. 198 static Status EnsureFDFlags(int fd, int flags) { 199 Status error; 200 201 int status = fcntl(fd, F_GETFL); 202 if (status == -1) { 203 error.SetErrorToErrno(); 204 return error; 205 } 206 207 if (fcntl(fd, F_SETFL, status | flags) == -1) { 208 error.SetErrorToErrno(); 209 return error; 210 } 211 212 return error; 213 } 214 215 // Public Static Methods 216 217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 219 NativeDelegate &native_delegate, 220 MainLoop &mainloop) const { 221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 222 223 MaybeLogLaunchInfo(launch_info); 224 225 Status status; 226 ::pid_t pid = ProcessLauncherPosixFork() 227 .LaunchProcess(launch_info, status) 228 .GetProcessId(); 229 LLDB_LOG(log, "pid = {0:x}", pid); 230 if (status.Fail()) { 231 LLDB_LOG(log, "failed to launch process: {0}", status); 232 return status.ToError(); 233 } 234 235 // Wait for the child process to trap on its call to execve. 236 int wstatus; 237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 238 assert(wpid == pid); 239 (void)wpid; 240 if (!WIFSTOPPED(wstatus)) { 241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 242 WaitStatus::Decode(wstatus)); 243 return llvm::make_error<StringError>("Could not sync with inferior process", 244 llvm::inconvertibleErrorCode()); 245 } 246 LLDB_LOG(log, "inferior started, now in stopped state"); 247 248 ProcessInstanceInfo Info; 249 if (!Host::GetProcessInfo(pid, Info)) { 250 return llvm::make_error<StringError>("Cannot get process architecture", 251 llvm::inconvertibleErrorCode()); 252 } 253 254 // Set the architecture to the exe architecture. 255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 256 Info.GetArchitecture().GetArchitectureName()); 257 258 status = SetDefaultPtraceOpts(pid); 259 if (status.Fail()) { 260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 261 return status.ToError(); 262 } 263 264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 265 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 266 Info.GetArchitecture(), mainloop, {pid})); 267 } 268 269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 270 NativeProcessLinux::Factory::Attach( 271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 272 MainLoop &mainloop) const { 273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 274 LLDB_LOG(log, "pid = {0:x}", pid); 275 276 // Retrieve the architecture for the running process. 277 ProcessInstanceInfo Info; 278 if (!Host::GetProcessInfo(pid, Info)) { 279 return llvm::make_error<StringError>("Cannot get process architecture", 280 llvm::inconvertibleErrorCode()); 281 } 282 283 auto tids_or = NativeProcessLinux::Attach(pid); 284 if (!tids_or) 285 return tids_or.takeError(); 286 287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or)); 289 } 290 291 NativeProcessLinux::Extension 292 NativeProcessLinux::Factory::GetSupportedExtensions() const { 293 NativeProcessLinux::Extension supported = 294 Extension::multiprocess | Extension::fork | Extension::vfork | 295 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4; 296 297 #ifdef __aarch64__ 298 // At this point we do not have a process so read auxv directly. 299 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 300 supported |= Extension::memory_tagging; 301 #endif 302 303 return supported; 304 } 305 306 // Public Instance Methods 307 308 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 309 NativeDelegate &delegate, 310 const ArchSpec &arch, MainLoop &mainloop, 311 llvm::ArrayRef<::pid_t> tids) 312 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 313 m_main_loop(mainloop), m_intel_pt_manager(pid) { 314 if (m_terminal_fd != -1) { 315 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 316 assert(status.Success()); 317 } 318 319 Status status; 320 m_sigchld_handle = mainloop.RegisterSignal( 321 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 322 assert(m_sigchld_handle && status.Success()); 323 324 for (const auto &tid : tids) { 325 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 326 ThreadWasCreated(thread); 327 } 328 329 // Let our process instance know the thread has stopped. 330 SetCurrentThreadID(tids[0]); 331 SetState(StateType::eStateStopped, false); 332 333 // Proccess any signals we received before installing our handler 334 SigchldHandler(); 335 } 336 337 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 338 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 339 340 Status status; 341 // Use a map to keep track of the threads which we have attached/need to 342 // attach. 343 Host::TidMap tids_to_attach; 344 while (Host::FindProcessThreads(pid, tids_to_attach)) { 345 for (Host::TidMap::iterator it = tids_to_attach.begin(); 346 it != tids_to_attach.end();) { 347 if (it->second == false) { 348 lldb::tid_t tid = it->first; 349 350 // Attach to the requested process. 351 // An attach will cause the thread to stop with a SIGSTOP. 352 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 353 // No such thread. The thread may have exited. More error handling 354 // may be needed. 355 if (status.GetError() == ESRCH) { 356 it = tids_to_attach.erase(it); 357 continue; 358 } 359 return status.ToError(); 360 } 361 362 int wpid = 363 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 364 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 365 // this point we should have a thread stopped if waitpid succeeds. 366 if (wpid < 0) { 367 // No such thread. The thread may have exited. More error handling 368 // may be needed. 369 if (errno == ESRCH) { 370 it = tids_to_attach.erase(it); 371 continue; 372 } 373 return llvm::errorCodeToError( 374 std::error_code(errno, std::generic_category())); 375 } 376 377 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 378 return status.ToError(); 379 380 LLDB_LOG(log, "adding tid = {0}", tid); 381 it->second = true; 382 } 383 384 // move the loop forward 385 ++it; 386 } 387 } 388 389 size_t tid_count = tids_to_attach.size(); 390 if (tid_count == 0) 391 return llvm::make_error<StringError>("No such process", 392 llvm::inconvertibleErrorCode()); 393 394 std::vector<::pid_t> tids; 395 tids.reserve(tid_count); 396 for (const auto &p : tids_to_attach) 397 tids.push_back(p.first); 398 return std::move(tids); 399 } 400 401 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 402 long ptrace_opts = 0; 403 404 // Have the child raise an event on exit. This is used to keep the child in 405 // limbo until it is destroyed. 406 ptrace_opts |= PTRACE_O_TRACEEXIT; 407 408 // Have the tracer trace threads which spawn in the inferior process. 409 ptrace_opts |= PTRACE_O_TRACECLONE; 410 411 // Have the tracer notify us before execve returns (needed to disable legacy 412 // SIGTRAP generation) 413 ptrace_opts |= PTRACE_O_TRACEEXEC; 414 415 // Have the tracer trace forked children. 416 ptrace_opts |= PTRACE_O_TRACEFORK; 417 418 // Have the tracer trace vforks. 419 ptrace_opts |= PTRACE_O_TRACEVFORK; 420 421 // Have the tracer trace vfork-done in order to restore breakpoints after 422 // the child finishes sharing memory. 423 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 424 425 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 426 } 427 428 // Handles all waitpid events from the inferior process. 429 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 430 WaitStatus status) { 431 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 432 433 // Certain activities differ based on whether the pid is the tid of the main 434 // thread. 435 const bool is_main_thread = (thread.GetID() == GetID()); 436 437 // Handle when the thread exits. 438 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 439 LLDB_LOG(log, 440 "got exit status({0}) , tid = {1} ({2} main thread), process " 441 "state = {3}", 442 status, thread.GetID(), is_main_thread ? "is" : "is not", 443 GetState()); 444 445 // This is a thread that exited. Ensure we're not tracking it anymore. 446 StopTrackingThread(thread); 447 448 if (is_main_thread) { 449 // The main thread exited. We're done monitoring. Report to delegate. 450 SetExitStatus(status, true); 451 452 // Notify delegate that our process has exited. 453 SetState(StateType::eStateExited, true); 454 } 455 return; 456 } 457 458 siginfo_t info; 459 const auto info_err = GetSignalInfo(thread.GetID(), &info); 460 461 // Get details on the signal raised. 462 if (info_err.Success()) { 463 // We have retrieved the signal info. Dispatch appropriately. 464 if (info.si_signo == SIGTRAP) 465 MonitorSIGTRAP(info, thread); 466 else 467 MonitorSignal(info, thread); 468 } else { 469 if (info_err.GetError() == EINVAL) { 470 // This is a group stop reception for this tid. We can reach here if we 471 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 472 // triggering the group-stop mechanism. Normally receiving these would 473 // stop the process, pending a SIGCONT. Simulating this state in a 474 // debugger is hard and is generally not needed (one use case is 475 // debugging background task being managed by a shell). For general use, 476 // it is sufficient to stop the process in a signal-delivery stop which 477 // happens before the group stop. This done by MonitorSignal and works 478 // correctly for all signals. 479 LLDB_LOG(log, 480 "received a group stop for pid {0} tid {1}. Transparent " 481 "handling of group stops not supported, resuming the " 482 "thread.", 483 GetID(), thread.GetID()); 484 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 485 } else { 486 // ptrace(GETSIGINFO) failed (but not due to group-stop). 487 488 // A return value of ESRCH means the thread/process has died in the mean 489 // time. This can (e.g.) happen when another thread does an exit_group(2) 490 // or the entire process get SIGKILLed. 491 // We can't do anything with this thread anymore, but we keep it around 492 // until we get the WIFEXITED event. 493 494 LLDB_LOG(log, 495 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 496 "{3}. Expecting WIFEXITED soon.", 497 thread.GetID(), info_err, status, is_main_thread); 498 } 499 } 500 } 501 502 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 503 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 504 505 // The PID is not tracked yet, let's wait for it to appear. 506 int status = -1; 507 LLDB_LOG(log, 508 "received clone event for pid {0}. pid not tracked yet, " 509 "waiting for it to appear...", 510 pid); 511 ::pid_t wait_pid = 512 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 513 514 // It's theoretically possible to get other events if the entire process was 515 // SIGKILLed before we got a chance to check this. In that case, we'll just 516 // clean everything up when we get the process exit event. 517 518 LLDB_LOG(log, 519 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 520 pid, wait_pid, errno, WaitStatus::Decode(status)); 521 } 522 523 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 524 NativeThreadLinux &thread) { 525 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 526 const bool is_main_thread = (thread.GetID() == GetID()); 527 528 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 529 530 switch (info.si_code) { 531 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 532 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 533 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 534 // This can either mean a new thread or a new process spawned via 535 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 536 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 537 // of these flags are passed. 538 539 unsigned long event_message = 0; 540 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 541 LLDB_LOG(log, 542 "pid {0} received clone() event but GetEventMessage failed " 543 "so we don't know the new pid/tid", 544 thread.GetID()); 545 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 546 } else { 547 MonitorClone(thread, event_message, info.si_code >> 8); 548 } 549 550 break; 551 } 552 553 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 554 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 555 556 // Exec clears any pending notifications. 557 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 558 559 // Remove all but the main thread here. Linux fork creates a new process 560 // which only copies the main thread. 561 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 562 563 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 564 return t->GetID() != GetID(); 565 }); 566 assert(m_threads.size() == 1); 567 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 568 569 SetCurrentThreadID(main_thread->GetID()); 570 main_thread->SetStoppedByExec(); 571 572 // Tell coordinator about about the "new" (since exec) stopped main thread. 573 ThreadWasCreated(*main_thread); 574 575 // Let our delegate know we have just exec'd. 576 NotifyDidExec(); 577 578 // Let the process know we're stopped. 579 StopRunningThreads(main_thread->GetID()); 580 581 break; 582 } 583 584 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 585 // The inferior process or one of its threads is about to exit. We don't 586 // want to do anything with the thread so we just resume it. In case we 587 // want to implement "break on thread exit" functionality, we would need to 588 // stop here. 589 590 unsigned long data = 0; 591 if (GetEventMessage(thread.GetID(), &data).Fail()) 592 data = -1; 593 594 LLDB_LOG(log, 595 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 596 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 597 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 598 is_main_thread); 599 600 601 StateType state = thread.GetState(); 602 if (!StateIsRunningState(state)) { 603 // Due to a kernel bug, we may sometimes get this stop after the inferior 604 // gets a SIGKILL. This confuses our state tracking logic in 605 // ResumeThread(), since normally, we should not be receiving any ptrace 606 // events while the inferior is stopped. This makes sure that the 607 // inferior is resumed and exits normally. 608 state = eStateRunning; 609 } 610 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 611 612 break; 613 } 614 615 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 616 if (bool(m_enabled_extensions & Extension::vfork)) { 617 thread.SetStoppedByVForkDone(); 618 StopRunningThreads(thread.GetID()); 619 } 620 else 621 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 622 break; 623 } 624 625 case 0: 626 case TRAP_TRACE: // We receive this on single stepping. 627 case TRAP_HWBKPT: // We receive this on watchpoint hit 628 { 629 // If a watchpoint was hit, report it 630 uint32_t wp_index; 631 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 632 wp_index, (uintptr_t)info.si_addr); 633 if (error.Fail()) 634 LLDB_LOG(log, 635 "received error while checking for watchpoint hits, pid = " 636 "{0}, error = {1}", 637 thread.GetID(), error); 638 if (wp_index != LLDB_INVALID_INDEX32) { 639 MonitorWatchpoint(thread, wp_index); 640 break; 641 } 642 643 // If a breakpoint was hit, report it 644 uint32_t bp_index; 645 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 646 bp_index, (uintptr_t)info.si_addr); 647 if (error.Fail()) 648 LLDB_LOG(log, "received error while checking for hardware " 649 "breakpoint hits, pid = {0}, error = {1}", 650 thread.GetID(), error); 651 if (bp_index != LLDB_INVALID_INDEX32) { 652 MonitorBreakpoint(thread); 653 break; 654 } 655 656 // Otherwise, report step over 657 MonitorTrace(thread); 658 break; 659 } 660 661 case SI_KERNEL: 662 #if defined __mips__ 663 // For mips there is no special signal for watchpoint So we check for 664 // watchpoint in kernel trap 665 { 666 // If a watchpoint was hit, report it 667 uint32_t wp_index; 668 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 669 wp_index, LLDB_INVALID_ADDRESS); 670 if (error.Fail()) 671 LLDB_LOG(log, 672 "received error while checking for watchpoint hits, pid = " 673 "{0}, error = {1}", 674 thread.GetID(), error); 675 if (wp_index != LLDB_INVALID_INDEX32) { 676 MonitorWatchpoint(thread, wp_index); 677 break; 678 } 679 } 680 // NO BREAK 681 #endif 682 case TRAP_BRKPT: 683 MonitorBreakpoint(thread); 684 break; 685 686 case SIGTRAP: 687 case (SIGTRAP | 0x80): 688 LLDB_LOG( 689 log, 690 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 691 info.si_code, GetID(), thread.GetID()); 692 693 // Ignore these signals until we know more about them. 694 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 695 break; 696 697 default: 698 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 699 info.si_code, GetID(), thread.GetID()); 700 MonitorSignal(info, thread); 701 break; 702 } 703 } 704 705 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 706 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 707 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 708 709 // This thread is currently stopped. 710 thread.SetStoppedByTrace(); 711 712 StopRunningThreads(thread.GetID()); 713 } 714 715 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 716 Log *log( 717 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 718 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 719 720 // Mark the thread as stopped at breakpoint. 721 thread.SetStoppedByBreakpoint(); 722 FixupBreakpointPCAsNeeded(thread); 723 724 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 725 m_threads_stepping_with_breakpoint.end()) 726 thread.SetStoppedByTrace(); 727 728 StopRunningThreads(thread.GetID()); 729 } 730 731 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 732 uint32_t wp_index) { 733 Log *log( 734 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 735 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 736 thread.GetID(), wp_index); 737 738 // Mark the thread as stopped at watchpoint. The address is at 739 // (lldb::addr_t)info->si_addr if we need it. 740 thread.SetStoppedByWatchpoint(wp_index); 741 742 // We need to tell all other running threads before we notify the delegate 743 // about this stop. 744 StopRunningThreads(thread.GetID()); 745 } 746 747 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 748 NativeThreadLinux &thread) { 749 const int signo = info.si_signo; 750 const bool is_from_llgs = info.si_pid == getpid(); 751 752 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 753 754 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 755 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 756 // or raise(3). Similarly for tgkill(2) on Linux. 757 // 758 // IOW, user generated signals never generate what we consider to be a 759 // "crash". 760 // 761 // Similarly, ACK signals generated by this monitor. 762 763 // Handle the signal. 764 LLDB_LOG(log, 765 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 766 "waitpid pid = {4})", 767 Host::GetSignalAsCString(signo), signo, info.si_code, 768 thread.GetID()); 769 770 // Check for thread stop notification. 771 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 772 // This is a tgkill()-based stop. 773 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 774 775 // Check that we're not already marked with a stop reason. Note this thread 776 // really shouldn't already be marked as stopped - if we were, that would 777 // imply that the kernel signaled us with the thread stopping which we 778 // handled and marked as stopped, and that, without an intervening resume, 779 // we received another stop. It is more likely that we are missing the 780 // marking of a run state somewhere if we find that the thread was marked 781 // as stopped. 782 const StateType thread_state = thread.GetState(); 783 if (!StateIsStoppedState(thread_state, false)) { 784 // An inferior thread has stopped because of a SIGSTOP we have sent it. 785 // Generally, these are not important stops and we don't want to report 786 // them as they are just used to stop other threads when one thread (the 787 // one with the *real* stop reason) hits a breakpoint (watchpoint, 788 // etc...). However, in the case of an asynchronous Interrupt(), this 789 // *is* the real stop reason, so we leave the signal intact if this is 790 // the thread that was chosen as the triggering thread. 791 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 792 if (m_pending_notification_tid == thread.GetID()) 793 thread.SetStoppedBySignal(SIGSTOP, &info); 794 else 795 thread.SetStoppedWithNoReason(); 796 797 SetCurrentThreadID(thread.GetID()); 798 SignalIfAllThreadsStopped(); 799 } else { 800 // We can end up here if stop was initiated by LLGS but by this time a 801 // thread stop has occurred - maybe initiated by another event. 802 Status error = ResumeThread(thread, thread.GetState(), 0); 803 if (error.Fail()) 804 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 805 error); 806 } 807 } else { 808 LLDB_LOG(log, 809 "pid {0} tid {1}, thread was already marked as a stopped " 810 "state (state={2}), leaving stop signal as is", 811 GetID(), thread.GetID(), thread_state); 812 SignalIfAllThreadsStopped(); 813 } 814 815 // Done handling. 816 return; 817 } 818 819 // Check if debugger should stop at this signal or just ignore it and resume 820 // the inferior. 821 if (m_signals_to_ignore.contains(signo)) { 822 ResumeThread(thread, thread.GetState(), signo); 823 return; 824 } 825 826 // This thread is stopped. 827 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 828 thread.SetStoppedBySignal(signo, &info); 829 830 // Send a stop to the debugger after we get all other threads to stop. 831 StopRunningThreads(thread.GetID()); 832 } 833 834 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 835 lldb::pid_t child_pid, int event) { 836 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 837 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 838 child_pid, event); 839 840 WaitForCloneNotification(child_pid); 841 842 switch (event) { 843 case PTRACE_EVENT_CLONE: { 844 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 845 // Try to grab the new process' PGID to figure out which one it is. 846 // If PGID is the same as the PID, then it's a new process. Otherwise, 847 // it's a thread. 848 auto tgid_ret = getPIDForTID(child_pid); 849 if (tgid_ret != child_pid) { 850 // A new thread should have PGID matching our process' PID. 851 assert(!tgid_ret || tgid_ret.getValue() == GetID()); 852 853 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 854 ThreadWasCreated(child_thread); 855 856 // Resume the parent. 857 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 858 break; 859 } 860 } 861 LLVM_FALLTHROUGH; 862 case PTRACE_EVENT_FORK: 863 case PTRACE_EVENT_VFORK: { 864 bool is_vfork = event == PTRACE_EVENT_VFORK; 865 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 866 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 867 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 868 if (!is_vfork) 869 child_process->m_software_breakpoints = m_software_breakpoints; 870 871 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 872 if (bool(m_enabled_extensions & expected_ext)) { 873 m_delegate.NewSubprocess(this, std::move(child_process)); 874 // NB: non-vfork clone() is reported as fork 875 parent.SetStoppedByFork(is_vfork, child_pid); 876 StopRunningThreads(parent.GetID()); 877 } else { 878 child_process->Detach(); 879 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 880 } 881 break; 882 } 883 default: 884 llvm_unreachable("unknown clone_info.event"); 885 } 886 887 return true; 888 } 889 890 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 891 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS()) 892 return false; 893 return true; 894 } 895 896 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 897 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 898 LLDB_LOG(log, "pid {0}", GetID()); 899 900 bool software_single_step = !SupportHardwareSingleStepping(); 901 902 if (software_single_step) { 903 for (const auto &thread : m_threads) { 904 assert(thread && "thread list should not contain NULL threads"); 905 906 const ResumeAction *const action = 907 resume_actions.GetActionForThread(thread->GetID(), true); 908 if (action == nullptr) 909 continue; 910 911 if (action->state == eStateStepping) { 912 Status error = SetupSoftwareSingleStepping( 913 static_cast<NativeThreadLinux &>(*thread)); 914 if (error.Fail()) 915 return error; 916 } 917 } 918 } 919 920 for (const auto &thread : m_threads) { 921 assert(thread && "thread list should not contain NULL threads"); 922 923 const ResumeAction *const action = 924 resume_actions.GetActionForThread(thread->GetID(), true); 925 926 if (action == nullptr) { 927 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 928 thread->GetID()); 929 continue; 930 } 931 932 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 933 action->state, GetID(), thread->GetID()); 934 935 switch (action->state) { 936 case eStateRunning: 937 case eStateStepping: { 938 // Run the thread, possibly feeding it the signal. 939 const int signo = action->signal; 940 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state, 941 signo); 942 break; 943 } 944 945 case eStateSuspended: 946 case eStateStopped: 947 llvm_unreachable("Unexpected state"); 948 949 default: 950 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 951 "for pid %" PRIu64 ", tid %" PRIu64, 952 __FUNCTION__, StateAsCString(action->state), GetID(), 953 thread->GetID()); 954 } 955 } 956 957 return Status(); 958 } 959 960 Status NativeProcessLinux::Halt() { 961 Status error; 962 963 if (kill(GetID(), SIGSTOP) != 0) 964 error.SetErrorToErrno(); 965 966 return error; 967 } 968 969 Status NativeProcessLinux::Detach() { 970 Status error; 971 972 // Stop monitoring the inferior. 973 m_sigchld_handle.reset(); 974 975 // Tell ptrace to detach from the process. 976 if (GetID() == LLDB_INVALID_PROCESS_ID) 977 return error; 978 979 for (const auto &thread : m_threads) { 980 Status e = Detach(thread->GetID()); 981 if (e.Fail()) 982 error = 983 e; // Save the error, but still attempt to detach from other threads. 984 } 985 986 m_intel_pt_manager.Clear(); 987 988 return error; 989 } 990 991 Status NativeProcessLinux::Signal(int signo) { 992 Status error; 993 994 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 995 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 996 Host::GetSignalAsCString(signo), GetID()); 997 998 if (kill(GetID(), signo)) 999 error.SetErrorToErrno(); 1000 1001 return error; 1002 } 1003 1004 Status NativeProcessLinux::Interrupt() { 1005 // Pick a running thread (or if none, a not-dead stopped thread) as the 1006 // chosen thread that will be the stop-reason thread. 1007 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1008 1009 NativeThreadProtocol *running_thread = nullptr; 1010 NativeThreadProtocol *stopped_thread = nullptr; 1011 1012 LLDB_LOG(log, "selecting running thread for interrupt target"); 1013 for (const auto &thread : m_threads) { 1014 // If we have a running or stepping thread, we'll call that the target of 1015 // the interrupt. 1016 const auto thread_state = thread->GetState(); 1017 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1018 running_thread = thread.get(); 1019 break; 1020 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1021 // Remember the first non-dead stopped thread. We'll use that as a 1022 // backup if there are no running threads. 1023 stopped_thread = thread.get(); 1024 } 1025 } 1026 1027 if (!running_thread && !stopped_thread) { 1028 Status error("found no running/stepping or live stopped threads as target " 1029 "for interrupt"); 1030 LLDB_LOG(log, "skipping due to error: {0}", error); 1031 1032 return error; 1033 } 1034 1035 NativeThreadProtocol *deferred_signal_thread = 1036 running_thread ? running_thread : stopped_thread; 1037 1038 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1039 running_thread ? "running" : "stopped", 1040 deferred_signal_thread->GetID()); 1041 1042 StopRunningThreads(deferred_signal_thread->GetID()); 1043 1044 return Status(); 1045 } 1046 1047 Status NativeProcessLinux::Kill() { 1048 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1049 LLDB_LOG(log, "pid {0}", GetID()); 1050 1051 Status error; 1052 1053 switch (m_state) { 1054 case StateType::eStateInvalid: 1055 case StateType::eStateExited: 1056 case StateType::eStateCrashed: 1057 case StateType::eStateDetached: 1058 case StateType::eStateUnloaded: 1059 // Nothing to do - the process is already dead. 1060 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1061 m_state); 1062 return error; 1063 1064 case StateType::eStateConnected: 1065 case StateType::eStateAttaching: 1066 case StateType::eStateLaunching: 1067 case StateType::eStateStopped: 1068 case StateType::eStateRunning: 1069 case StateType::eStateStepping: 1070 case StateType::eStateSuspended: 1071 // We can try to kill a process in these states. 1072 break; 1073 } 1074 1075 if (kill(GetID(), SIGKILL) != 0) { 1076 error.SetErrorToErrno(); 1077 return error; 1078 } 1079 1080 return error; 1081 } 1082 1083 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1084 MemoryRegionInfo &range_info) { 1085 // FIXME review that the final memory region returned extends to the end of 1086 // the virtual address space, 1087 // with no perms if it is not mapped. 1088 1089 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1090 // proc maps entries are in ascending order. 1091 // FIXME assert if we find differently. 1092 1093 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1094 // We're done. 1095 return Status("unsupported"); 1096 } 1097 1098 Status error = PopulateMemoryRegionCache(); 1099 if (error.Fail()) { 1100 return error; 1101 } 1102 1103 lldb::addr_t prev_base_address = 0; 1104 1105 // FIXME start by finding the last region that is <= target address using 1106 // binary search. Data is sorted. 1107 // There can be a ton of regions on pthreads apps with lots of threads. 1108 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1109 ++it) { 1110 MemoryRegionInfo &proc_entry_info = it->first; 1111 1112 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1113 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1114 "descending /proc/pid/maps entries detected, unexpected"); 1115 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1116 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1117 1118 // If the target address comes before this entry, indicate distance to next 1119 // region. 1120 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1121 range_info.GetRange().SetRangeBase(load_addr); 1122 range_info.GetRange().SetByteSize( 1123 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1124 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1125 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1126 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1127 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1128 1129 return error; 1130 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1131 // The target address is within the memory region we're processing here. 1132 range_info = proc_entry_info; 1133 return error; 1134 } 1135 1136 // The target memory address comes somewhere after the region we just 1137 // parsed. 1138 } 1139 1140 // If we made it here, we didn't find an entry that contained the given 1141 // address. Return the load_addr as start and the amount of bytes betwwen 1142 // load address and the end of the memory as size. 1143 range_info.GetRange().SetRangeBase(load_addr); 1144 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1145 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1146 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1147 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1148 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1149 return error; 1150 } 1151 1152 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1153 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1154 1155 // If our cache is empty, pull the latest. There should always be at least 1156 // one memory region if memory region handling is supported. 1157 if (!m_mem_region_cache.empty()) { 1158 LLDB_LOG(log, "reusing {0} cached memory region entries", 1159 m_mem_region_cache.size()); 1160 return Status(); 1161 } 1162 1163 Status Result; 1164 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1165 if (Info) { 1166 FileSpec file_spec(Info->GetName().GetCString()); 1167 FileSystem::Instance().Resolve(file_spec); 1168 m_mem_region_cache.emplace_back(*Info, file_spec); 1169 return true; 1170 } 1171 1172 Result = Info.takeError(); 1173 m_supports_mem_region = LazyBool::eLazyBoolNo; 1174 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1175 return false; 1176 }; 1177 1178 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1179 // if CONFIG_PROC_PAGE_MONITOR is enabled 1180 auto BufferOrError = getProcFile(GetID(), "smaps"); 1181 if (BufferOrError) 1182 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1183 else { 1184 BufferOrError = getProcFile(GetID(), "maps"); 1185 if (!BufferOrError) { 1186 m_supports_mem_region = LazyBool::eLazyBoolNo; 1187 return BufferOrError.getError(); 1188 } 1189 1190 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1191 } 1192 1193 if (Result.Fail()) 1194 return Result; 1195 1196 if (m_mem_region_cache.empty()) { 1197 // No entries after attempting to read them. This shouldn't happen if 1198 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1199 // procfs. 1200 m_supports_mem_region = LazyBool::eLazyBoolNo; 1201 LLDB_LOG(log, 1202 "failed to find any procfs maps entries, assuming no support " 1203 "for memory region metadata retrieval"); 1204 return Status("not supported"); 1205 } 1206 1207 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1208 m_mem_region_cache.size(), GetID()); 1209 1210 // We support memory retrieval, remember that. 1211 m_supports_mem_region = LazyBool::eLazyBoolYes; 1212 return Status(); 1213 } 1214 1215 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1216 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1217 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1218 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1219 m_mem_region_cache.size()); 1220 m_mem_region_cache.clear(); 1221 } 1222 1223 llvm::Expected<uint64_t> 1224 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1225 PopulateMemoryRegionCache(); 1226 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1227 return pair.first.GetExecutable() == MemoryRegionInfo::eYes; 1228 }); 1229 if (region_it == m_mem_region_cache.end()) 1230 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1231 "No executable memory region found!"); 1232 1233 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1234 1235 NativeThreadLinux &thread = *GetThreadByID(GetID()); 1236 assert(thread.GetState() == eStateStopped); 1237 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1238 1239 NativeRegisterContextLinux::SyscallData syscall_data = 1240 *reg_ctx.GetSyscallData(); 1241 1242 DataBufferSP registers_sp; 1243 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1244 return std::move(Err); 1245 auto restore_regs = llvm::make_scope_exit( 1246 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1247 1248 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1249 size_t bytes_read; 1250 if (llvm::Error Err = 1251 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1252 .ToError()) { 1253 return std::move(Err); 1254 } 1255 1256 auto restore_mem = llvm::make_scope_exit( 1257 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1258 1259 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1260 return std::move(Err); 1261 1262 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1263 if (llvm::Error Err = 1264 reg_ctx 1265 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1266 .ToError()) { 1267 return std::move(Err); 1268 } 1269 } 1270 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1271 syscall_data.Insn.size(), bytes_read) 1272 .ToError()) 1273 return std::move(Err); 1274 1275 m_mem_region_cache.clear(); 1276 1277 // With software single stepping the syscall insn buffer must also include a 1278 // trap instruction to stop the process. 1279 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1280 if (llvm::Error Err = 1281 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1282 return std::move(Err); 1283 1284 int status; 1285 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1286 &status, __WALL); 1287 if (wait_pid == -1) { 1288 return llvm::errorCodeToError( 1289 std::error_code(errno, std::generic_category())); 1290 } 1291 assert((unsigned)wait_pid == thread.GetID()); 1292 1293 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1294 1295 // Values larger than this are actually negative errno numbers. 1296 uint64_t errno_threshold = 1297 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1298 if (result > errno_threshold) { 1299 return llvm::errorCodeToError( 1300 std::error_code(-result & 0xfff, std::generic_category())); 1301 } 1302 1303 return result; 1304 } 1305 1306 llvm::Expected<addr_t> 1307 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1308 1309 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1310 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1311 if (!mmap_data) 1312 return llvm::make_error<UnimplementedError>(); 1313 1314 unsigned prot = PROT_NONE; 1315 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1316 ePermissionsExecutable)) == permissions && 1317 "Unknown permission!"); 1318 if (permissions & ePermissionsReadable) 1319 prot |= PROT_READ; 1320 if (permissions & ePermissionsWritable) 1321 prot |= PROT_WRITE; 1322 if (permissions & ePermissionsExecutable) 1323 prot |= PROT_EXEC; 1324 1325 llvm::Expected<uint64_t> Result = 1326 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1327 uint64_t(-1), 0}); 1328 if (Result) 1329 m_allocated_memory.try_emplace(*Result, size); 1330 return Result; 1331 } 1332 1333 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1334 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1335 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1336 if (!mmap_data) 1337 return llvm::make_error<UnimplementedError>(); 1338 1339 auto it = m_allocated_memory.find(addr); 1340 if (it == m_allocated_memory.end()) 1341 return llvm::createStringError(llvm::errc::invalid_argument, 1342 "Memory not allocated by the debugger."); 1343 1344 llvm::Expected<uint64_t> Result = 1345 Syscall({mmap_data->SysMunmap, addr, it->second}); 1346 if (!Result) 1347 return Result.takeError(); 1348 1349 m_allocated_memory.erase(it); 1350 return llvm::Error::success(); 1351 } 1352 1353 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1354 size_t len, 1355 std::vector<uint8_t> &tags) { 1356 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1357 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1358 if (!details) 1359 return Status(details.takeError()); 1360 1361 // Ignore 0 length read 1362 if (!len) 1363 return Status(); 1364 1365 // lldb will align the range it requests but it is not required to by 1366 // the protocol so we'll do it again just in case. 1367 // Remove non address bits too. Ptrace calls may work regardless but that 1368 // is not a guarantee. 1369 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr), 1370 len); 1371 range = details->manager->ExpandToGranule(range); 1372 1373 // Allocate enough space for all tags to be read 1374 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1375 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1376 1377 struct iovec tags_iovec; 1378 uint8_t *dest = tags.data(); 1379 lldb::addr_t read_addr = range.GetRangeBase(); 1380 1381 // This call can return partial data so loop until we error or 1382 // get all tags back. 1383 while (num_tags) { 1384 tags_iovec.iov_base = dest; 1385 tags_iovec.iov_len = num_tags; 1386 1387 Status error = NativeProcessLinux::PtraceWrapper( 1388 details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr), 1389 static_cast<void *>(&tags_iovec), 0, nullptr); 1390 1391 if (error.Fail()) { 1392 // Discard partial reads 1393 tags.resize(0); 1394 return error; 1395 } 1396 1397 size_t tags_read = tags_iovec.iov_len; 1398 assert(tags_read && (tags_read <= num_tags)); 1399 1400 dest += tags_read * details->manager->GetTagSizeInBytes(); 1401 read_addr += details->manager->GetGranuleSize() * tags_read; 1402 num_tags -= tags_read; 1403 } 1404 1405 return Status(); 1406 } 1407 1408 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1409 size_t len, 1410 const std::vector<uint8_t> &tags) { 1411 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1412 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1413 if (!details) 1414 return Status(details.takeError()); 1415 1416 // Ignore 0 length write 1417 if (!len) 1418 return Status(); 1419 1420 // lldb will align the range it requests but it is not required to by 1421 // the protocol so we'll do it again just in case. 1422 // Remove non address bits too. Ptrace calls may work regardless but that 1423 // is not a guarantee. 1424 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr), 1425 len); 1426 range = details->manager->ExpandToGranule(range); 1427 1428 // Not checking number of tags here, we may repeat them below 1429 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1430 details->manager->UnpackTagsData(tags); 1431 if (!unpacked_tags_or_err) 1432 return Status(unpacked_tags_or_err.takeError()); 1433 1434 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1435 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1436 if (!repeated_tags_or_err) 1437 return Status(repeated_tags_or_err.takeError()); 1438 1439 // Repack them for ptrace to use 1440 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1441 details->manager->PackTags(*repeated_tags_or_err); 1442 if (!final_tag_data) 1443 return Status(final_tag_data.takeError()); 1444 1445 struct iovec tags_vec; 1446 uint8_t *src = final_tag_data->data(); 1447 lldb::addr_t write_addr = range.GetRangeBase(); 1448 // unpacked tags size because the number of bytes per tag might not be 1 1449 size_t num_tags = repeated_tags_or_err->size(); 1450 1451 // This call can partially write tags, so we loop until we 1452 // error or all tags have been written. 1453 while (num_tags > 0) { 1454 tags_vec.iov_base = src; 1455 tags_vec.iov_len = num_tags; 1456 1457 Status error = NativeProcessLinux::PtraceWrapper( 1458 details->ptrace_write_req, GetID(), 1459 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1460 nullptr); 1461 1462 if (error.Fail()) { 1463 // Don't attempt to restore the original values in the case of a partial 1464 // write 1465 return error; 1466 } 1467 1468 size_t tags_written = tags_vec.iov_len; 1469 assert(tags_written && (tags_written <= num_tags)); 1470 1471 src += tags_written * details->manager->GetTagSizeInBytes(); 1472 write_addr += details->manager->GetGranuleSize() * tags_written; 1473 num_tags -= tags_written; 1474 } 1475 1476 return Status(); 1477 } 1478 1479 size_t NativeProcessLinux::UpdateThreads() { 1480 // The NativeProcessLinux monitoring threads are always up to date with 1481 // respect to thread state and they keep the thread list populated properly. 1482 // All this method needs to do is return the thread count. 1483 return m_threads.size(); 1484 } 1485 1486 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1487 bool hardware) { 1488 if (hardware) 1489 return SetHardwareBreakpoint(addr, size); 1490 else 1491 return SetSoftwareBreakpoint(addr, size); 1492 } 1493 1494 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1495 if (hardware) 1496 return RemoveHardwareBreakpoint(addr); 1497 else 1498 return NativeProcessProtocol::RemoveBreakpoint(addr); 1499 } 1500 1501 llvm::Expected<llvm::ArrayRef<uint8_t>> 1502 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1503 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1504 // linux kernel does otherwise. 1505 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1506 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1507 1508 switch (GetArchitecture().GetMachine()) { 1509 case llvm::Triple::arm: 1510 switch (size_hint) { 1511 case 2: 1512 return llvm::makeArrayRef(g_thumb_opcode); 1513 case 4: 1514 return llvm::makeArrayRef(g_arm_opcode); 1515 default: 1516 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1517 "Unrecognised trap opcode size hint!"); 1518 } 1519 default: 1520 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1521 } 1522 } 1523 1524 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1525 size_t &bytes_read) { 1526 if (ProcessVmReadvSupported()) { 1527 // The process_vm_readv path is about 50 times faster than ptrace api. We 1528 // want to use this syscall if it is supported. 1529 1530 const ::pid_t pid = GetID(); 1531 1532 struct iovec local_iov, remote_iov; 1533 local_iov.iov_base = buf; 1534 local_iov.iov_len = size; 1535 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1536 remote_iov.iov_len = size; 1537 1538 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1539 const bool success = bytes_read == size; 1540 1541 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1542 LLDB_LOG(log, 1543 "using process_vm_readv to read {0} bytes from inferior " 1544 "address {1:x}: {2}", 1545 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1546 1547 if (success) 1548 return Status(); 1549 // else the call failed for some reason, let's retry the read using ptrace 1550 // api. 1551 } 1552 1553 unsigned char *dst = static_cast<unsigned char *>(buf); 1554 size_t remainder; 1555 long data; 1556 1557 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1558 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1559 1560 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1561 Status error = NativeProcessLinux::PtraceWrapper( 1562 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1563 if (error.Fail()) 1564 return error; 1565 1566 remainder = size - bytes_read; 1567 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1568 1569 // Copy the data into our buffer 1570 memcpy(dst, &data, remainder); 1571 1572 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1573 addr += k_ptrace_word_size; 1574 dst += k_ptrace_word_size; 1575 } 1576 return Status(); 1577 } 1578 1579 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1580 size_t size, size_t &bytes_written) { 1581 const unsigned char *src = static_cast<const unsigned char *>(buf); 1582 size_t remainder; 1583 Status error; 1584 1585 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1586 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1587 1588 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1589 remainder = size - bytes_written; 1590 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1591 1592 if (remainder == k_ptrace_word_size) { 1593 unsigned long data = 0; 1594 memcpy(&data, src, k_ptrace_word_size); 1595 1596 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1597 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 1598 (void *)addr, (void *)data); 1599 if (error.Fail()) 1600 return error; 1601 } else { 1602 unsigned char buff[8]; 1603 size_t bytes_read; 1604 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1605 if (error.Fail()) 1606 return error; 1607 1608 memcpy(buff, src, remainder); 1609 1610 size_t bytes_written_rec; 1611 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1612 if (error.Fail()) 1613 return error; 1614 1615 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1616 *(unsigned long *)buff); 1617 } 1618 1619 addr += k_ptrace_word_size; 1620 src += k_ptrace_word_size; 1621 } 1622 return error; 1623 } 1624 1625 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 1626 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1627 } 1628 1629 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1630 unsigned long *message) { 1631 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1632 } 1633 1634 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1635 if (tid == LLDB_INVALID_THREAD_ID) 1636 return Status(); 1637 1638 return PtraceWrapper(PTRACE_DETACH, tid); 1639 } 1640 1641 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1642 for (const auto &thread : m_threads) { 1643 assert(thread && "thread list should not contain NULL threads"); 1644 if (thread->GetID() == thread_id) { 1645 // We have this thread. 1646 return true; 1647 } 1648 } 1649 1650 // We don't have this thread. 1651 return false; 1652 } 1653 1654 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1655 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1656 lldb::tid_t thread_id = thread.GetID(); 1657 LLDB_LOG(log, "tid: {0}", thread_id); 1658 1659 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1660 return thread_up.get() == &thread; 1661 }); 1662 assert(it != m_threads.end()); 1663 m_threads.erase(it); 1664 1665 NotifyTracersOfThreadDestroyed(thread_id); 1666 SignalIfAllThreadsStopped(); 1667 } 1668 1669 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1670 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1671 Status error(m_intel_pt_manager.OnThreadCreated(tid)); 1672 if (error.Fail()) 1673 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1674 tid, error.AsCString()); 1675 return error; 1676 } 1677 1678 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1679 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1680 Status error(m_intel_pt_manager.OnThreadDestroyed(tid)); 1681 if (error.Fail()) 1682 LLDB_LOG(log, 1683 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1684 tid, error.AsCString()); 1685 return error; 1686 } 1687 1688 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1689 bool resume) { 1690 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 1691 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1692 1693 assert(!HasThreadNoLock(thread_id) && 1694 "attempted to add a thread by id that already exists"); 1695 1696 // If this is the first thread, save it as the current thread 1697 if (m_threads.empty()) 1698 SetCurrentThreadID(thread_id); 1699 1700 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1701 NativeThreadLinux &thread = 1702 static_cast<NativeThreadLinux &>(*m_threads.back()); 1703 1704 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1705 if (tracing_error.Fail()) { 1706 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1707 StopRunningThreads(thread.GetID()); 1708 } else if (resume) 1709 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1710 else 1711 thread.SetStoppedBySignal(SIGSTOP); 1712 1713 return thread; 1714 } 1715 1716 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1717 FileSpec &file_spec) { 1718 Status error = PopulateMemoryRegionCache(); 1719 if (error.Fail()) 1720 return error; 1721 1722 FileSpec module_file_spec(module_path); 1723 FileSystem::Instance().Resolve(module_file_spec); 1724 1725 file_spec.Clear(); 1726 for (const auto &it : m_mem_region_cache) { 1727 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1728 file_spec = it.second; 1729 return Status(); 1730 } 1731 } 1732 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1733 module_file_spec.GetFilename().AsCString(), GetID()); 1734 } 1735 1736 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1737 lldb::addr_t &load_addr) { 1738 load_addr = LLDB_INVALID_ADDRESS; 1739 Status error = PopulateMemoryRegionCache(); 1740 if (error.Fail()) 1741 return error; 1742 1743 FileSpec file(file_name); 1744 for (const auto &it : m_mem_region_cache) { 1745 if (it.second == file) { 1746 load_addr = it.first.GetRange().GetRangeBase(); 1747 return Status(); 1748 } 1749 } 1750 return Status("No load address found for specified file."); 1751 } 1752 1753 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1754 return static_cast<NativeThreadLinux *>( 1755 NativeProcessProtocol::GetThreadByID(tid)); 1756 } 1757 1758 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1759 return static_cast<NativeThreadLinux *>( 1760 NativeProcessProtocol::GetCurrentThread()); 1761 } 1762 1763 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1764 lldb::StateType state, int signo) { 1765 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1766 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1767 1768 // Before we do the resume below, first check if we have a pending stop 1769 // notification that is currently waiting for all threads to stop. This is 1770 // potentially a buggy situation since we're ostensibly waiting for threads 1771 // to stop before we send out the pending notification, and here we are 1772 // resuming one before we send out the pending stop notification. 1773 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1774 LLDB_LOG(log, 1775 "about to resume tid {0} per explicit request but we have a " 1776 "pending stop notification (tid {1}) that is actively " 1777 "waiting for this thread to stop. Valid sequence of events?", 1778 thread.GetID(), m_pending_notification_tid); 1779 } 1780 1781 // Request a resume. We expect this to be synchronous and the system to 1782 // reflect it is running after this completes. 1783 switch (state) { 1784 case eStateRunning: { 1785 const auto resume_result = thread.Resume(signo); 1786 if (resume_result.Success()) 1787 SetState(eStateRunning, true); 1788 return resume_result; 1789 } 1790 case eStateStepping: { 1791 const auto step_result = thread.SingleStep(signo); 1792 if (step_result.Success()) 1793 SetState(eStateRunning, true); 1794 return step_result; 1795 } 1796 default: 1797 LLDB_LOG(log, "Unhandled state {0}.", state); 1798 llvm_unreachable("Unhandled state for resume"); 1799 } 1800 } 1801 1802 //===----------------------------------------------------------------------===// 1803 1804 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1805 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1806 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1807 triggering_tid); 1808 1809 m_pending_notification_tid = triggering_tid; 1810 1811 // Request a stop for all the thread stops that need to be stopped and are 1812 // not already known to be stopped. 1813 for (const auto &thread : m_threads) { 1814 if (StateIsRunningState(thread->GetState())) 1815 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1816 } 1817 1818 SignalIfAllThreadsStopped(); 1819 LLDB_LOG(log, "event processing done"); 1820 } 1821 1822 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1823 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1824 return; // No pending notification. Nothing to do. 1825 1826 for (const auto &thread_sp : m_threads) { 1827 if (StateIsRunningState(thread_sp->GetState())) 1828 return; // Some threads are still running. Don't signal yet. 1829 } 1830 1831 // We have a pending notification and all threads have stopped. 1832 Log *log( 1833 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1834 1835 // Clear any temporary breakpoints we used to implement software single 1836 // stepping. 1837 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1838 Status error = RemoveBreakpoint(thread_info.second); 1839 if (error.Fail()) 1840 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1841 thread_info.first, error); 1842 } 1843 m_threads_stepping_with_breakpoint.clear(); 1844 1845 // Notify the delegate about the stop 1846 SetCurrentThreadID(m_pending_notification_tid); 1847 SetState(StateType::eStateStopped, true); 1848 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1849 } 1850 1851 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1852 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 1853 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1854 1855 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1856 StateIsRunningState(thread.GetState())) { 1857 // We will need to wait for this new thread to stop as well before firing 1858 // the notification. 1859 thread.RequestStop(); 1860 } 1861 } 1862 1863 void NativeProcessLinux::SigchldHandler() { 1864 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1865 1866 // Threads can appear or disappear as a result of event processing, so gather 1867 // the events upfront. 1868 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1869 for (const auto &thread_up : m_threads) { 1870 int status = -1; 1871 ::pid_t wait_pid = 1872 llvm::sys::RetryAfterSignal(-1, ::waitpid, thread_up->GetID(), &status, 1873 __WALL | __WNOTHREAD | WNOHANG); 1874 1875 if (wait_pid == 0) 1876 continue; // Nothing to do for this thread. 1877 1878 if (wait_pid == -1) { 1879 Status error(errno, eErrorTypePOSIX); 1880 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", thread_up->GetID(), 1881 error); 1882 continue; 1883 } 1884 1885 assert(wait_pid == static_cast<::pid_t>(thread_up->GetID())); 1886 1887 WaitStatus wait_status = WaitStatus::Decode(status); 1888 1889 LLDB_LOG(log, "waitpid({0}) got status = {1}", thread_up->GetID(), 1890 wait_status); 1891 tid_events.try_emplace(thread_up->GetID(), wait_status); 1892 } 1893 1894 for (auto &KV : tid_events) { 1895 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1896 NativeThreadLinux *thread = GetThreadByID(KV.first); 1897 if (thread) { 1898 MonitorCallback(*thread, KV.second); 1899 } else { 1900 // This can happen if one of the events is an main thread exit. 1901 LLDB_LOG(log, "... but the thread has disappeared"); 1902 } 1903 } 1904 } 1905 1906 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1907 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1908 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1909 void *data, size_t data_size, 1910 long *result) { 1911 Status error; 1912 long int ret; 1913 1914 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 1915 1916 PtraceDisplayBytes(req, data, data_size); 1917 1918 errno = 0; 1919 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1920 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1921 *(unsigned int *)addr, data); 1922 else 1923 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1924 addr, data); 1925 1926 if (ret == -1) 1927 error.SetErrorToErrno(); 1928 1929 if (result) 1930 *result = ret; 1931 1932 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1933 data_size, ret); 1934 1935 PtraceDisplayBytes(req, data, data_size); 1936 1937 if (error.Fail()) 1938 LLDB_LOG(log, "ptrace() failed: {0}", error); 1939 1940 return error; 1941 } 1942 1943 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1944 if (IntelPTManager::IsSupported()) 1945 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1946 return NativeProcessProtocol::TraceSupported(); 1947 } 1948 1949 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1950 if (type == "intel-pt") { 1951 if (Expected<TraceIntelPTStartRequest> request = 1952 json::parse<TraceIntelPTStartRequest>(json_request, 1953 "TraceIntelPTStartRequest")) { 1954 std::vector<lldb::tid_t> process_threads; 1955 for (auto &thread : m_threads) 1956 process_threads.push_back(thread->GetID()); 1957 return m_intel_pt_manager.TraceStart(*request, process_threads); 1958 } else 1959 return request.takeError(); 1960 } 1961 1962 return NativeProcessProtocol::TraceStart(json_request, type); 1963 } 1964 1965 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1966 if (request.type == "intel-pt") 1967 return m_intel_pt_manager.TraceStop(request); 1968 return NativeProcessProtocol::TraceStop(request); 1969 } 1970 1971 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1972 if (type == "intel-pt") 1973 return m_intel_pt_manager.GetState(); 1974 return NativeProcessProtocol::TraceGetState(type); 1975 } 1976 1977 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 1978 const TraceGetBinaryDataRequest &request) { 1979 if (request.type == "intel-pt") 1980 return m_intel_pt_manager.GetBinaryData(request); 1981 return NativeProcessProtocol::TraceGetBinaryData(request); 1982 } 1983