1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <stdint.h>
15 #include <string.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Core/RegisterValue.h"
29 #include "lldb/Core/State.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostProcess.h"
32 #include "lldb/Host/PseudoTerminal.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/Ptrace.h"
37 #include "lldb/Host/linux/Uio.h"
38 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
39 #include "lldb/Symbol/ObjectFile.h"
40 #include "lldb/Target/Process.h"
41 #include "lldb/Target/ProcessLaunchInfo.h"
42 #include "lldb/Target/Target.h"
43 #include "lldb/Utility/LLDBAssert.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include "NativeThreadLinux.h"
51 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
52 #include "Procfs.h"
53 
54 #include <linux/unistd.h>
55 #include <sys/socket.h>
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65 
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace lldb_private::process_linux;
69 using namespace llvm;
70 
71 // Private bits we only need internally.
72 
73 static bool ProcessVmReadvSupported() {
74   static bool is_supported;
75   static llvm::once_flag flag;
76 
77   llvm::call_once(flag, [] {
78     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
79 
80     uint32_t source = 0x47424742;
81     uint32_t dest = 0;
82 
83     struct iovec local, remote;
84     remote.iov_base = &source;
85     local.iov_base = &dest;
86     remote.iov_len = local.iov_len = sizeof source;
87 
88     // We shall try if cross-process-memory reads work by attempting to read a
89     // value from our own process.
90     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
91     is_supported = (res == sizeof(source) && source == dest);
92     if (is_supported)
93       LLDB_LOG(log,
94                "Detected kernel support for process_vm_readv syscall. "
95                "Fast memory reads enabled.");
96     else
97       LLDB_LOG(log,
98                "syscall process_vm_readv failed (error: {0}). Fast memory "
99                "reads disabled.",
100                llvm::sys::StrError());
101   });
102 
103   return is_supported;
104 }
105 
106 namespace {
107 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
108   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
109   if (!log)
110     return;
111 
112   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
113     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
114   else
115     LLDB_LOG(log, "leaving STDIN as is");
116 
117   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
118     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
119   else
120     LLDB_LOG(log, "leaving STDOUT as is");
121 
122   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
123     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
124   else
125     LLDB_LOG(log, "leaving STDERR as is");
126 
127   int i = 0;
128   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
129        ++args, ++i)
130     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
131 }
132 
133 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
134   uint8_t *ptr = (uint8_t *)bytes;
135   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
136   for (uint32_t i = 0; i < loop_count; i++) {
137     s.Printf("[%x]", *ptr);
138     ptr++;
139   }
140 }
141 
142 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
143   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
144   if (!log)
145     return;
146   StreamString buf;
147 
148   switch (req) {
149   case PTRACE_POKETEXT: {
150     DisplayBytes(buf, &data, 8);
151     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
152     break;
153   }
154   case PTRACE_POKEDATA: {
155     DisplayBytes(buf, &data, 8);
156     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
157     break;
158   }
159   case PTRACE_POKEUSER: {
160     DisplayBytes(buf, &data, 8);
161     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
162     break;
163   }
164   case PTRACE_SETREGS: {
165     DisplayBytes(buf, data, data_size);
166     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
167     break;
168   }
169   case PTRACE_SETFPREGS: {
170     DisplayBytes(buf, data, data_size);
171     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
172     break;
173   }
174   case PTRACE_SETSIGINFO: {
175     DisplayBytes(buf, data, sizeof(siginfo_t));
176     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
177     break;
178   }
179   case PTRACE_SETREGSET: {
180     // Extract iov_base from data, which is a pointer to the struct IOVEC
181     DisplayBytes(buf, *(void **)data, data_size);
182     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
183     break;
184   }
185   default: {}
186   }
187 }
188 
189 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
190 static_assert(sizeof(long) >= k_ptrace_word_size,
191               "Size of long must be larger than ptrace word size");
192 } // end of anonymous namespace
193 
194 // Simple helper function to ensure flags are enabled on the given file
195 // descriptor.
196 static Status EnsureFDFlags(int fd, int flags) {
197   Status error;
198 
199   int status = fcntl(fd, F_GETFL);
200   if (status == -1) {
201     error.SetErrorToErrno();
202     return error;
203   }
204 
205   if (fcntl(fd, F_SETFL, status | flags) == -1) {
206     error.SetErrorToErrno();
207     return error;
208   }
209 
210   return error;
211 }
212 
213 // -----------------------------------------------------------------------------
214 // Public Static Methods
215 // -----------------------------------------------------------------------------
216 
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219                                     NativeDelegate &native_delegate,
220                                     MainLoop &mainloop) const {
221   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222 
223   MaybeLogLaunchInfo(launch_info);
224 
225   Status status;
226   ::pid_t pid = ProcessLauncherPosixFork()
227                     .LaunchProcess(launch_info, status)
228                     .GetProcessId();
229   LLDB_LOG(log, "pid = {0:x}", pid);
230   if (status.Fail()) {
231     LLDB_LOG(log, "failed to launch process: {0}", status);
232     return status.ToError();
233   }
234 
235   // Wait for the child process to trap on its call to execve.
236   int wstatus;
237   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238   assert(wpid == pid);
239   (void)wpid;
240   if (!WIFSTOPPED(wstatus)) {
241     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242              WaitStatus::Decode(wstatus));
243     return llvm::make_error<StringError>("Could not sync with inferior process",
244                                          llvm::inconvertibleErrorCode());
245   }
246   LLDB_LOG(log, "inferior started, now in stopped state");
247 
248   ArchSpec arch;
249   if ((status = ResolveProcessArchitecture(pid, arch)).Fail())
250     return status.ToError();
251 
252   // Set the architecture to the exe architecture.
253   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
254            arch.GetArchitectureName());
255 
256   status = SetDefaultPtraceOpts(pid);
257   if (status.Fail()) {
258     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
259     return status.ToError();
260   }
261 
262   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
263       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
264       arch, mainloop, {pid}));
265 }
266 
267 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
268 NativeProcessLinux::Factory::Attach(
269     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
270     MainLoop &mainloop) const {
271   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
272   LLDB_LOG(log, "pid = {0:x}", pid);
273 
274   // Retrieve the architecture for the running process.
275   ArchSpec arch;
276   Status status = ResolveProcessArchitecture(pid, arch);
277   if (!status.Success())
278     return status.ToError();
279 
280   auto tids_or = NativeProcessLinux::Attach(pid);
281   if (!tids_or)
282     return tids_or.takeError();
283 
284   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
285       pid, -1, native_delegate, arch, mainloop, *tids_or));
286 }
287 
288 // -----------------------------------------------------------------------------
289 // Public Instance Methods
290 // -----------------------------------------------------------------------------
291 
292 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
293                                        NativeDelegate &delegate,
294                                        const ArchSpec &arch, MainLoop &mainloop,
295                                        llvm::ArrayRef<::pid_t> tids)
296     : NativeProcessProtocol(pid, terminal_fd, delegate), m_arch(arch) {
297   if (m_terminal_fd != -1) {
298     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
299     assert(status.Success());
300   }
301 
302   Status status;
303   m_sigchld_handle = mainloop.RegisterSignal(
304       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
305   assert(m_sigchld_handle && status.Success());
306 
307   for (const auto &tid : tids) {
308     NativeThreadLinuxSP thread_sp = AddThread(tid);
309     assert(thread_sp && "AddThread() returned a nullptr thread");
310     thread_sp->SetStoppedBySignal(SIGSTOP);
311     ThreadWasCreated(*thread_sp);
312   }
313 
314   // Let our process instance know the thread has stopped.
315   SetCurrentThreadID(tids[0]);
316   SetState(StateType::eStateStopped, false);
317 
318   // Proccess any signals we received before installing our handler
319   SigchldHandler();
320 }
321 
322 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
323   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
324 
325   Status status;
326   // Use a map to keep track of the threads which we have attached/need to
327   // attach.
328   Host::TidMap tids_to_attach;
329   while (Host::FindProcessThreads(pid, tids_to_attach)) {
330     for (Host::TidMap::iterator it = tids_to_attach.begin();
331          it != tids_to_attach.end();) {
332       if (it->second == false) {
333         lldb::tid_t tid = it->first;
334 
335         // Attach to the requested process.
336         // An attach will cause the thread to stop with a SIGSTOP.
337         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
338           // No such thread. The thread may have exited.
339           // More error handling may be needed.
340           if (status.GetError() == ESRCH) {
341             it = tids_to_attach.erase(it);
342             continue;
343           }
344           return status.ToError();
345         }
346 
347         int wpid =
348             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
349         // Need to use __WALL otherwise we receive an error with errno=ECHLD
350         // At this point we should have a thread stopped if waitpid succeeds.
351         if (wpid < 0) {
352           // No such thread. The thread may have exited.
353           // More error handling may be needed.
354           if (errno == ESRCH) {
355             it = tids_to_attach.erase(it);
356             continue;
357           }
358           return llvm::errorCodeToError(
359               std::error_code(errno, std::generic_category()));
360         }
361 
362         if ((status = SetDefaultPtraceOpts(tid)).Fail())
363           return status.ToError();
364 
365         LLDB_LOG(log, "adding tid = {0}", tid);
366         it->second = true;
367       }
368 
369       // move the loop forward
370       ++it;
371     }
372   }
373 
374   size_t tid_count = tids_to_attach.size();
375   if (tid_count == 0)
376     return llvm::make_error<StringError>("No such process",
377                                          llvm::inconvertibleErrorCode());
378 
379   std::vector<::pid_t> tids;
380   tids.reserve(tid_count);
381   for (const auto &p : tids_to_attach)
382     tids.push_back(p.first);
383   return std::move(tids);
384 }
385 
386 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
387   long ptrace_opts = 0;
388 
389   // Have the child raise an event on exit.  This is used to keep the child in
390   // limbo until it is destroyed.
391   ptrace_opts |= PTRACE_O_TRACEEXIT;
392 
393   // Have the tracer trace threads which spawn in the inferior process.
394   // TODO: if we want to support tracing the inferiors' child, add the
395   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
396   ptrace_opts |= PTRACE_O_TRACECLONE;
397 
398   // Have the tracer notify us before execve returns
399   // (needed to disable legacy SIGTRAP generation)
400   ptrace_opts |= PTRACE_O_TRACEEXEC;
401 
402   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
403 }
404 
405 // Handles all waitpid events from the inferior process.
406 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
407                                          WaitStatus status) {
408   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
409 
410   // Certain activities differ based on whether the pid is the tid of the main
411   // thread.
412   const bool is_main_thread = (pid == GetID());
413 
414   // Handle when the thread exits.
415   if (exited) {
416     LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
417              pid, is_main_thread ? "is" : "is not");
418 
419     // This is a thread that exited.  Ensure we're not tracking it anymore.
420     const bool thread_found = StopTrackingThread(pid);
421 
422     if (is_main_thread) {
423       // We only set the exit status and notify the delegate if we haven't
424       // already set the process
425       // state to an exited state.  We normally should have received a SIGTRAP |
426       // (PTRACE_EVENT_EXIT << 8)
427       // for the main thread.
428       const bool already_notified = (GetState() == StateType::eStateExited) ||
429                                     (GetState() == StateType::eStateCrashed);
430       if (!already_notified) {
431         LLDB_LOG(
432             log,
433             "tid = {0} handling main thread exit ({1}), expected exit state "
434             "already set but state was {2} instead, setting exit state now",
435             pid,
436             thread_found ? "stopped tracking thread metadata"
437                          : "thread metadata not found",
438             GetState());
439         // The main thread exited.  We're done monitoring.  Report to delegate.
440         SetExitStatus(status, true);
441 
442         // Notify delegate that our process has exited.
443         SetState(StateType::eStateExited, true);
444       } else
445         LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
446                  thread_found ? "stopped tracking thread metadata"
447                               : "thread metadata not found");
448     } else {
449       // Do we want to report to the delegate in this case?  I think not.  If
450       // this was an orderly thread exit, we would already have received the
451       // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
452       // all-stop then.
453       LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
454                thread_found ? "stopped tracking thread metadata"
455                             : "thread metadata not found");
456     }
457     return;
458   }
459 
460   siginfo_t info;
461   const auto info_err = GetSignalInfo(pid, &info);
462   auto thread_sp = GetThreadByID(pid);
463 
464   if (!thread_sp) {
465     // Normally, the only situation when we cannot find the thread is if we have
466     // just received a new thread notification. This is indicated by
467     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
468     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
469 
470     if (info_err.Fail()) {
471       LLDB_LOG(log,
472                "(tid {0}) GetSignalInfo failed ({1}). "
473                "Ingoring this notification.",
474                pid, info_err);
475       return;
476     }
477 
478     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
479              info.si_pid);
480 
481     auto thread_sp = AddThread(pid);
482 
483     // Resume the newly created thread.
484     ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
485     ThreadWasCreated(*thread_sp);
486     return;
487   }
488 
489   // Get details on the signal raised.
490   if (info_err.Success()) {
491     // We have retrieved the signal info.  Dispatch appropriately.
492     if (info.si_signo == SIGTRAP)
493       MonitorSIGTRAP(info, *thread_sp);
494     else
495       MonitorSignal(info, *thread_sp, exited);
496   } else {
497     if (info_err.GetError() == EINVAL) {
498       // This is a group stop reception for this tid.
499       // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
500       // into the tracee, triggering the group-stop mechanism. Normally
501       // receiving these would stop the process, pending a SIGCONT. Simulating
502       // this state in a debugger is hard and is generally not needed (one use
503       // case is debugging background task being managed by a shell). For
504       // general use, it is sufficient to stop the process in a signal-delivery
505       // stop which happens before the group stop. This done by MonitorSignal
506       // and works correctly for all signals.
507       LLDB_LOG(log,
508                "received a group stop for pid {0} tid {1}. Transparent "
509                "handling of group stops not supported, resuming the "
510                "thread.",
511                GetID(), pid);
512       ResumeThread(*thread_sp, thread_sp->GetState(),
513                    LLDB_INVALID_SIGNAL_NUMBER);
514     } else {
515       // ptrace(GETSIGINFO) failed (but not due to group-stop).
516 
517       // A return value of ESRCH means the thread/process is no longer on the
518       // system, so it was killed somehow outside of our control.  Either way,
519       // we can't do anything with it anymore.
520 
521       // Stop tracking the metadata for the thread since it's entirely off the
522       // system now.
523       const bool thread_found = StopTrackingThread(pid);
524 
525       LLDB_LOG(log,
526                "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
527                "status = {3}, main_thread = {4}, thread_found: {5}",
528                info_err, pid, signal, status, is_main_thread, thread_found);
529 
530       if (is_main_thread) {
531         // Notify the delegate - our process is not available but appears to
532         // have been killed outside
533         // our control.  Is eStateExited the right exit state in this case?
534         SetExitStatus(status, true);
535         SetState(StateType::eStateExited, true);
536       } else {
537         // This thread was pulled out from underneath us.  Anything to do here?
538         // Do we want to do an all stop?
539         LLDB_LOG(log,
540                  "pid {0} tid {1} non-main thread exit occurred, didn't "
541                  "tell delegate anything since thread disappeared out "
542                  "from underneath us",
543                  GetID(), pid);
544       }
545     }
546   }
547 }
548 
549 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
550   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
551 
552   NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
553 
554   if (new_thread_sp) {
555     // We are already tracking the thread - we got the event on the new thread
556     // (see
557     // MonitorSignal) before this one. We are done.
558     return;
559   }
560 
561   // The thread is not tracked yet, let's wait for it to appear.
562   int status = -1;
563   LLDB_LOG(log,
564            "received thread creation event for tid {0}. tid not tracked "
565            "yet, waiting for thread to appear...",
566            tid);
567   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
568   // Since we are waiting on a specific tid, this must be the creation event.
569   // But let's do some checks just in case.
570   if (wait_pid != tid) {
571     LLDB_LOG(log,
572              "waiting for tid {0} failed. Assuming the thread has "
573              "disappeared in the meantime",
574              tid);
575     // The only way I know of this could happen is if the whole process was
576     // SIGKILLed in the mean time. In any case, we can't do anything about that
577     // now.
578     return;
579   }
580   if (WIFEXITED(status)) {
581     LLDB_LOG(log,
582              "waiting for tid {0} returned an 'exited' event. Not "
583              "tracking the thread.",
584              tid);
585     // Also a very improbable event.
586     return;
587   }
588 
589   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
590   new_thread_sp = AddThread(tid);
591 
592   ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
593   ThreadWasCreated(*new_thread_sp);
594 }
595 
596 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
597                                         NativeThreadLinux &thread) {
598   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
599   const bool is_main_thread = (thread.GetID() == GetID());
600 
601   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
602 
603   switch (info.si_code) {
604   // TODO: these two cases are required if we want to support tracing of the
605   // inferiors' children.  We'd need this to debug a monitor.
606   // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
607   // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
608 
609   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
610     // This is the notification on the parent thread which informs us of new
611     // thread
612     // creation.
613     // We don't want to do anything with the parent thread so we just resume it.
614     // In case we
615     // want to implement "break on thread creation" functionality, we would need
616     // to stop
617     // here.
618 
619     unsigned long event_message = 0;
620     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
621       LLDB_LOG(log,
622                "pid {0} received thread creation event but "
623                "GetEventMessage failed so we don't know the new tid",
624                thread.GetID());
625     } else
626       WaitForNewThread(event_message);
627 
628     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
629     break;
630   }
631 
632   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
633     NativeThreadLinuxSP main_thread_sp;
634     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
635 
636     // Exec clears any pending notifications.
637     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
638 
639     // Remove all but the main thread here.  Linux fork creates a new process
640     // which only copies the main thread.
641     LLDB_LOG(log, "exec received, stop tracking all but main thread");
642 
643     for (auto thread_sp : m_threads) {
644       const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
645       if (is_main_thread) {
646         main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
647         LLDB_LOG(log, "found main thread with tid {0}, keeping",
648                  main_thread_sp->GetID());
649       } else {
650         LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
651                  thread_sp->GetID());
652       }
653     }
654 
655     m_threads.clear();
656 
657     if (main_thread_sp) {
658       m_threads.push_back(main_thread_sp);
659       SetCurrentThreadID(main_thread_sp->GetID());
660       main_thread_sp->SetStoppedByExec();
661     } else {
662       SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
663       LLDB_LOG(log,
664                "pid {0} no main thread found, discarded all threads, "
665                "we're in a no-thread state!",
666                GetID());
667     }
668 
669     // Tell coordinator about about the "new" (since exec) stopped main thread.
670     ThreadWasCreated(*main_thread_sp);
671 
672     // Let our delegate know we have just exec'd.
673     NotifyDidExec();
674 
675     // If we have a main thread, indicate we are stopped.
676     assert(main_thread_sp && "exec called during ptraced process but no main "
677                              "thread metadata tracked");
678 
679     // Let the process know we're stopped.
680     StopRunningThreads(main_thread_sp->GetID());
681 
682     break;
683   }
684 
685   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
686     // The inferior process or one of its threads is about to exit.
687     // We don't want to do anything with the thread so we just resume it. In
688     // case we
689     // want to implement "break on thread exit" functionality, we would need to
690     // stop
691     // here.
692 
693     unsigned long data = 0;
694     if (GetEventMessage(thread.GetID(), &data).Fail())
695       data = -1;
696 
697     LLDB_LOG(log,
698              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
699              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
700              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
701              is_main_thread);
702 
703     if (is_main_thread)
704       SetExitStatus(WaitStatus::Decode(data), true);
705 
706     StateType state = thread.GetState();
707     if (!StateIsRunningState(state)) {
708       // Due to a kernel bug, we may sometimes get this stop after the inferior
709       // gets a
710       // SIGKILL. This confuses our state tracking logic in ResumeThread(),
711       // since normally,
712       // we should not be receiving any ptrace events while the inferior is
713       // stopped. This
714       // makes sure that the inferior is resumed and exits normally.
715       state = eStateRunning;
716     }
717     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
718 
719     break;
720   }
721 
722   case 0:
723   case TRAP_TRACE:  // We receive this on single stepping.
724   case TRAP_HWBKPT: // We receive this on watchpoint hit
725   {
726     // If a watchpoint was hit, report it
727     uint32_t wp_index;
728     Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
729         wp_index, (uintptr_t)info.si_addr);
730     if (error.Fail())
731       LLDB_LOG(log,
732                "received error while checking for watchpoint hits, pid = "
733                "{0}, error = {1}",
734                thread.GetID(), error);
735     if (wp_index != LLDB_INVALID_INDEX32) {
736       MonitorWatchpoint(thread, wp_index);
737       break;
738     }
739 
740     // If a breakpoint was hit, report it
741     uint32_t bp_index;
742     error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
743         bp_index, (uintptr_t)info.si_addr);
744     if (error.Fail())
745       LLDB_LOG(log, "received error while checking for hardware "
746                     "breakpoint hits, pid = {0}, error = {1}",
747                thread.GetID(), error);
748     if (bp_index != LLDB_INVALID_INDEX32) {
749       MonitorBreakpoint(thread);
750       break;
751     }
752 
753     // Otherwise, report step over
754     MonitorTrace(thread);
755     break;
756   }
757 
758   case SI_KERNEL:
759 #if defined __mips__
760     // For mips there is no special signal for watchpoint
761     // So we check for watchpoint in kernel trap
762     {
763       // If a watchpoint was hit, report it
764       uint32_t wp_index;
765       Status error = thread.GetRegisterContext()->GetWatchpointHitIndex(
766           wp_index, LLDB_INVALID_ADDRESS);
767       if (error.Fail())
768         LLDB_LOG(log,
769                  "received error while checking for watchpoint hits, pid = "
770                  "{0}, error = {1}",
771                  thread.GetID(), error);
772       if (wp_index != LLDB_INVALID_INDEX32) {
773         MonitorWatchpoint(thread, wp_index);
774         break;
775       }
776     }
777 // NO BREAK
778 #endif
779   case TRAP_BRKPT:
780     MonitorBreakpoint(thread);
781     break;
782 
783   case SIGTRAP:
784   case (SIGTRAP | 0x80):
785     LLDB_LOG(
786         log,
787         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
788         info.si_code, GetID(), thread.GetID());
789 
790     // Ignore these signals until we know more about them.
791     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
792     break;
793 
794   default:
795     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
796              info.si_code, GetID(), thread.GetID());
797     MonitorSignal(info, thread, false);
798     break;
799   }
800 }
801 
802 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
803   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
804   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
805 
806   // This thread is currently stopped.
807   thread.SetStoppedByTrace();
808 
809   StopRunningThreads(thread.GetID());
810 }
811 
812 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
813   Log *log(
814       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
815   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
816 
817   // Mark the thread as stopped at breakpoint.
818   thread.SetStoppedByBreakpoint();
819   Status error = FixupBreakpointPCAsNeeded(thread);
820   if (error.Fail())
821     LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
822 
823   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
824       m_threads_stepping_with_breakpoint.end())
825     thread.SetStoppedByTrace();
826 
827   StopRunningThreads(thread.GetID());
828 }
829 
830 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
831                                            uint32_t wp_index) {
832   Log *log(
833       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
834   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
835            thread.GetID(), wp_index);
836 
837   // Mark the thread as stopped at watchpoint.
838   // The address is at (lldb::addr_t)info->si_addr if we need it.
839   thread.SetStoppedByWatchpoint(wp_index);
840 
841   // We need to tell all other running threads before we notify the delegate
842   // about this stop.
843   StopRunningThreads(thread.GetID());
844 }
845 
846 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
847                                        NativeThreadLinux &thread, bool exited) {
848   const int signo = info.si_signo;
849   const bool is_from_llgs = info.si_pid == getpid();
850 
851   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
852 
853   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
854   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
855   // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
856   //
857   // IOW, user generated signals never generate what we consider to be a
858   // "crash".
859   //
860   // Similarly, ACK signals generated by this monitor.
861 
862   // Handle the signal.
863   LLDB_LOG(log,
864            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
865            "waitpid pid = {4})",
866            Host::GetSignalAsCString(signo), signo, info.si_code,
867            thread.GetID());
868 
869   // Check for thread stop notification.
870   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
871     // This is a tgkill()-based stop.
872     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
873 
874     // Check that we're not already marked with a stop reason.
875     // Note this thread really shouldn't already be marked as stopped - if we
876     // were, that would imply that the kernel signaled us with the thread
877     // stopping which we handled and marked as stopped, and that, without an
878     // intervening resume, we received another stop.  It is more likely that we
879     // are missing the marking of a run state somewhere if we find that the
880     // thread was marked as stopped.
881     const StateType thread_state = thread.GetState();
882     if (!StateIsStoppedState(thread_state, false)) {
883       // An inferior thread has stopped because of a SIGSTOP we have sent it.
884       // Generally, these are not important stops and we don't want to report
885       // them as they are just used to stop other threads when one thread (the
886       // one with the *real* stop reason) hits a breakpoint (watchpoint,
887       // etc...). However, in the case of an asynchronous Interrupt(), this *is*
888       // the real stop reason, so we leave the signal intact if this is the
889       // thread that was chosen as the triggering thread.
890       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
891         if (m_pending_notification_tid == thread.GetID())
892           thread.SetStoppedBySignal(SIGSTOP, &info);
893         else
894           thread.SetStoppedWithNoReason();
895 
896         SetCurrentThreadID(thread.GetID());
897         SignalIfAllThreadsStopped();
898       } else {
899         // We can end up here if stop was initiated by LLGS but by this time a
900         // thread stop has occurred - maybe initiated by another event.
901         Status error = ResumeThread(thread, thread.GetState(), 0);
902         if (error.Fail())
903           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
904                    error);
905       }
906     } else {
907       LLDB_LOG(log,
908                "pid {0} tid {1}, thread was already marked as a stopped "
909                "state (state={2}), leaving stop signal as is",
910                GetID(), thread.GetID(), thread_state);
911       SignalIfAllThreadsStopped();
912     }
913 
914     // Done handling.
915     return;
916   }
917 
918   // Check if debugger should stop at this signal or just ignore it
919   // and resume the inferior.
920   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
921      ResumeThread(thread, thread.GetState(), signo);
922      return;
923   }
924 
925   // This thread is stopped.
926   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
927   thread.SetStoppedBySignal(signo, &info);
928 
929   // Send a stop to the debugger after we get all other threads to stop.
930   StopRunningThreads(thread.GetID());
931 }
932 
933 namespace {
934 
935 struct EmulatorBaton {
936   NativeProcessLinux *m_process;
937   NativeRegisterContext *m_reg_context;
938 
939   // eRegisterKindDWARF -> RegsiterValue
940   std::unordered_map<uint32_t, RegisterValue> m_register_values;
941 
942   EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
943       : m_process(process), m_reg_context(reg_context) {}
944 };
945 
946 } // anonymous namespace
947 
948 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
949                                  const EmulateInstruction::Context &context,
950                                  lldb::addr_t addr, void *dst, size_t length) {
951   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
952 
953   size_t bytes_read;
954   emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
955   return bytes_read;
956 }
957 
958 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
959                                  const RegisterInfo *reg_info,
960                                  RegisterValue &reg_value) {
961   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
962 
963   auto it = emulator_baton->m_register_values.find(
964       reg_info->kinds[eRegisterKindDWARF]);
965   if (it != emulator_baton->m_register_values.end()) {
966     reg_value = it->second;
967     return true;
968   }
969 
970   // The emulator only fill in the dwarf regsiter numbers (and in some case
971   // the generic register numbers). Get the full register info from the
972   // register context based on the dwarf register numbers.
973   const RegisterInfo *full_reg_info =
974       emulator_baton->m_reg_context->GetRegisterInfo(
975           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
976 
977   Status error =
978       emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
979   if (error.Success())
980     return true;
981 
982   return false;
983 }
984 
985 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
986                                   const EmulateInstruction::Context &context,
987                                   const RegisterInfo *reg_info,
988                                   const RegisterValue &reg_value) {
989   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
990   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
991       reg_value;
992   return true;
993 }
994 
995 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
996                                   const EmulateInstruction::Context &context,
997                                   lldb::addr_t addr, const void *dst,
998                                   size_t length) {
999   return length;
1000 }
1001 
1002 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
1003   const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
1004       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1005   return regsiter_context->ReadRegisterAsUnsigned(flags_info,
1006                                                   LLDB_INVALID_ADDRESS);
1007 }
1008 
1009 Status
1010 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
1011   Status error;
1012   NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1013 
1014   std::unique_ptr<EmulateInstruction> emulator_ap(
1015       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
1016                                      nullptr));
1017 
1018   if (emulator_ap == nullptr)
1019     return Status("Instruction emulator not found!");
1020 
1021   EmulatorBaton baton(this, register_context_sp.get());
1022   emulator_ap->SetBaton(&baton);
1023   emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1024   emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1025   emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1026   emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1027 
1028   if (!emulator_ap->ReadInstruction())
1029     return Status("Read instruction failed!");
1030 
1031   bool emulation_result =
1032       emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1033 
1034   const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
1035       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1036   const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
1037       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1038 
1039   auto pc_it =
1040       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1041   auto flags_it =
1042       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1043 
1044   lldb::addr_t next_pc;
1045   lldb::addr_t next_flags;
1046   if (emulation_result) {
1047     assert(pc_it != baton.m_register_values.end() &&
1048            "Emulation was successfull but PC wasn't updated");
1049     next_pc = pc_it->second.GetAsUInt64();
1050 
1051     if (flags_it != baton.m_register_values.end())
1052       next_flags = flags_it->second.GetAsUInt64();
1053     else
1054       next_flags = ReadFlags(register_context_sp.get());
1055   } else if (pc_it == baton.m_register_values.end()) {
1056     // Emulate instruction failed and it haven't changed PC. Advance PC
1057     // with the size of the current opcode because the emulation of all
1058     // PC modifying instruction should be successful. The failure most
1059     // likely caused by a not supported instruction which don't modify PC.
1060     next_pc =
1061         register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1062     next_flags = ReadFlags(register_context_sp.get());
1063   } else {
1064     // The instruction emulation failed after it modified the PC. It is an
1065     // unknown error where we can't continue because the next instruction is
1066     // modifying the PC but we don't  know how.
1067     return Status("Instruction emulation failed unexpectedly.");
1068   }
1069 
1070   if (m_arch.GetMachine() == llvm::Triple::arm) {
1071     if (next_flags & 0x20) {
1072       // Thumb mode
1073       error = SetSoftwareBreakpoint(next_pc, 2);
1074     } else {
1075       // Arm mode
1076       error = SetSoftwareBreakpoint(next_pc, 4);
1077     }
1078   } else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
1079              m_arch.GetMachine() == llvm::Triple::mips64el ||
1080              m_arch.GetMachine() == llvm::Triple::mips ||
1081              m_arch.GetMachine() == llvm::Triple::mipsel)
1082     error = SetSoftwareBreakpoint(next_pc, 4);
1083   else {
1084     // No size hint is given for the next breakpoint
1085     error = SetSoftwareBreakpoint(next_pc, 0);
1086   }
1087 
1088   // If setting the breakpoint fails because next_pc is out of
1089   // the address space, ignore it and let the debugee segfault.
1090   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1091     return Status();
1092   } else if (error.Fail())
1093     return error;
1094 
1095   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1096 
1097   return Status();
1098 }
1099 
1100 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1101   if (m_arch.GetMachine() == llvm::Triple::arm ||
1102       m_arch.GetMachine() == llvm::Triple::mips64 ||
1103       m_arch.GetMachine() == llvm::Triple::mips64el ||
1104       m_arch.GetMachine() == llvm::Triple::mips ||
1105       m_arch.GetMachine() == llvm::Triple::mipsel)
1106     return false;
1107   return true;
1108 }
1109 
1110 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1111   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1112   LLDB_LOG(log, "pid {0}", GetID());
1113 
1114   bool software_single_step = !SupportHardwareSingleStepping();
1115 
1116   if (software_single_step) {
1117     for (auto thread_sp : m_threads) {
1118       assert(thread_sp && "thread list should not contain NULL threads");
1119 
1120       const ResumeAction *const action =
1121           resume_actions.GetActionForThread(thread_sp->GetID(), true);
1122       if (action == nullptr)
1123         continue;
1124 
1125       if (action->state == eStateStepping) {
1126         Status error = SetupSoftwareSingleStepping(
1127             static_cast<NativeThreadLinux &>(*thread_sp));
1128         if (error.Fail())
1129           return error;
1130       }
1131     }
1132   }
1133 
1134   for (auto thread_sp : m_threads) {
1135     assert(thread_sp && "thread list should not contain NULL threads");
1136 
1137     const ResumeAction *const action =
1138         resume_actions.GetActionForThread(thread_sp->GetID(), true);
1139 
1140     if (action == nullptr) {
1141       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1142                thread_sp->GetID());
1143       continue;
1144     }
1145 
1146     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1147              action->state, GetID(), thread_sp->GetID());
1148 
1149     switch (action->state) {
1150     case eStateRunning:
1151     case eStateStepping: {
1152       // Run the thread, possibly feeding it the signal.
1153       const int signo = action->signal;
1154       ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
1155                    signo);
1156       break;
1157     }
1158 
1159     case eStateSuspended:
1160     case eStateStopped:
1161       llvm_unreachable("Unexpected state");
1162 
1163     default:
1164       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1165                     "for pid %" PRIu64 ", tid %" PRIu64,
1166                     __FUNCTION__, StateAsCString(action->state), GetID(),
1167                     thread_sp->GetID());
1168     }
1169   }
1170 
1171   return Status();
1172 }
1173 
1174 Status NativeProcessLinux::Halt() {
1175   Status error;
1176 
1177   if (kill(GetID(), SIGSTOP) != 0)
1178     error.SetErrorToErrno();
1179 
1180   return error;
1181 }
1182 
1183 Status NativeProcessLinux::Detach() {
1184   Status error;
1185 
1186   // Stop monitoring the inferior.
1187   m_sigchld_handle.reset();
1188 
1189   // Tell ptrace to detach from the process.
1190   if (GetID() == LLDB_INVALID_PROCESS_ID)
1191     return error;
1192 
1193   for (auto thread_sp : m_threads) {
1194     Status e = Detach(thread_sp->GetID());
1195     if (e.Fail())
1196       error =
1197           e; // Save the error, but still attempt to detach from other threads.
1198   }
1199 
1200   m_processor_trace_monitor.clear();
1201   m_pt_proces_trace_id = LLDB_INVALID_UID;
1202 
1203   return error;
1204 }
1205 
1206 Status NativeProcessLinux::Signal(int signo) {
1207   Status error;
1208 
1209   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1210   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1211            Host::GetSignalAsCString(signo), GetID());
1212 
1213   if (kill(GetID(), signo))
1214     error.SetErrorToErrno();
1215 
1216   return error;
1217 }
1218 
1219 Status NativeProcessLinux::Interrupt() {
1220   // Pick a running thread (or if none, a not-dead stopped thread) as
1221   // the chosen thread that will be the stop-reason thread.
1222   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1223 
1224   NativeThreadProtocolSP running_thread_sp;
1225   NativeThreadProtocolSP stopped_thread_sp;
1226 
1227   LLDB_LOG(log, "selecting running thread for interrupt target");
1228   for (auto thread_sp : m_threads) {
1229     // The thread shouldn't be null but lets just cover that here.
1230     if (!thread_sp)
1231       continue;
1232 
1233     // If we have a running or stepping thread, we'll call that the
1234     // target of the interrupt.
1235     const auto thread_state = thread_sp->GetState();
1236     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1237       running_thread_sp = thread_sp;
1238       break;
1239     } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
1240       // Remember the first non-dead stopped thread.  We'll use that as a backup
1241       // if there are no running threads.
1242       stopped_thread_sp = thread_sp;
1243     }
1244   }
1245 
1246   if (!running_thread_sp && !stopped_thread_sp) {
1247     Status error("found no running/stepping or live stopped threads as target "
1248                  "for interrupt");
1249     LLDB_LOG(log, "skipping due to error: {0}", error);
1250 
1251     return error;
1252   }
1253 
1254   NativeThreadProtocolSP deferred_signal_thread_sp =
1255       running_thread_sp ? running_thread_sp : stopped_thread_sp;
1256 
1257   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1258            running_thread_sp ? "running" : "stopped",
1259            deferred_signal_thread_sp->GetID());
1260 
1261   StopRunningThreads(deferred_signal_thread_sp->GetID());
1262 
1263   return Status();
1264 }
1265 
1266 Status NativeProcessLinux::Kill() {
1267   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1268   LLDB_LOG(log, "pid {0}", GetID());
1269 
1270   Status error;
1271 
1272   switch (m_state) {
1273   case StateType::eStateInvalid:
1274   case StateType::eStateExited:
1275   case StateType::eStateCrashed:
1276   case StateType::eStateDetached:
1277   case StateType::eStateUnloaded:
1278     // Nothing to do - the process is already dead.
1279     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1280              m_state);
1281     return error;
1282 
1283   case StateType::eStateConnected:
1284   case StateType::eStateAttaching:
1285   case StateType::eStateLaunching:
1286   case StateType::eStateStopped:
1287   case StateType::eStateRunning:
1288   case StateType::eStateStepping:
1289   case StateType::eStateSuspended:
1290     // We can try to kill a process in these states.
1291     break;
1292   }
1293 
1294   if (kill(GetID(), SIGKILL) != 0) {
1295     error.SetErrorToErrno();
1296     return error;
1297   }
1298 
1299   return error;
1300 }
1301 
1302 static Status
1303 ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line,
1304                                       MemoryRegionInfo &memory_region_info) {
1305   memory_region_info.Clear();
1306 
1307   StringExtractor line_extractor(maps_line);
1308 
1309   // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode
1310   // pathname
1311   // perms: rwxp   (letter is present if set, '-' if not, final character is
1312   // p=private, s=shared).
1313 
1314   // Parse out the starting address
1315   lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
1316 
1317   // Parse out hyphen separating start and end address from range.
1318   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
1319     return Status(
1320         "malformed /proc/{pid}/maps entry, missing dash between address range");
1321 
1322   // Parse out the ending address
1323   lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
1324 
1325   // Parse out the space after the address.
1326   if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
1327     return Status(
1328         "malformed /proc/{pid}/maps entry, missing space after range");
1329 
1330   // Save the range.
1331   memory_region_info.GetRange().SetRangeBase(start_address);
1332   memory_region_info.GetRange().SetRangeEnd(end_address);
1333 
1334   // Any memory region in /proc/{pid}/maps is by definition mapped into the
1335   // process.
1336   memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1337 
1338   // Parse out each permission entry.
1339   if (line_extractor.GetBytesLeft() < 4)
1340     return Status("malformed /proc/{pid}/maps entry, missing some portion of "
1341                   "permissions");
1342 
1343   // Handle read permission.
1344   const char read_perm_char = line_extractor.GetChar();
1345   if (read_perm_char == 'r')
1346     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
1347   else if (read_perm_char == '-')
1348     memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1349   else
1350     return Status("unexpected /proc/{pid}/maps read permission char");
1351 
1352   // Handle write permission.
1353   const char write_perm_char = line_extractor.GetChar();
1354   if (write_perm_char == 'w')
1355     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
1356   else if (write_perm_char == '-')
1357     memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1358   else
1359     return Status("unexpected /proc/{pid}/maps write permission char");
1360 
1361   // Handle execute permission.
1362   const char exec_perm_char = line_extractor.GetChar();
1363   if (exec_perm_char == 'x')
1364     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
1365   else if (exec_perm_char == '-')
1366     memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1367   else
1368     return Status("unexpected /proc/{pid}/maps exec permission char");
1369 
1370   line_extractor.GetChar();              // Read the private bit
1371   line_extractor.SkipSpaces();           // Skip the separator
1372   line_extractor.GetHexMaxU64(false, 0); // Read the offset
1373   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1374   line_extractor.GetChar();              // Read the device id separator
1375   line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1376   line_extractor.SkipSpaces();           // Skip the separator
1377   line_extractor.GetU64(0, 10);          // Read the inode number
1378 
1379   line_extractor.SkipSpaces();
1380   const char *name = line_extractor.Peek();
1381   if (name)
1382     memory_region_info.SetName(name);
1383 
1384   return Status();
1385 }
1386 
1387 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1388                                                MemoryRegionInfo &range_info) {
1389   // FIXME review that the final memory region returned extends to the end of
1390   // the virtual address space,
1391   // with no perms if it is not mapped.
1392 
1393   // Use an approach that reads memory regions from /proc/{pid}/maps.
1394   // Assume proc maps entries are in ascending order.
1395   // FIXME assert if we find differently.
1396 
1397   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1398     // We're done.
1399     return Status("unsupported");
1400   }
1401 
1402   Status error = PopulateMemoryRegionCache();
1403   if (error.Fail()) {
1404     return error;
1405   }
1406 
1407   lldb::addr_t prev_base_address = 0;
1408 
1409   // FIXME start by finding the last region that is <= target address using
1410   // binary search.  Data is sorted.
1411   // There can be a ton of regions on pthreads apps with lots of threads.
1412   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1413        ++it) {
1414     MemoryRegionInfo &proc_entry_info = it->first;
1415 
1416     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1417     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1418            "descending /proc/pid/maps entries detected, unexpected");
1419     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1420     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1421 
1422     // If the target address comes before this entry, indicate distance to next
1423     // region.
1424     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1425       range_info.GetRange().SetRangeBase(load_addr);
1426       range_info.GetRange().SetByteSize(
1427           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1428       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1429       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1430       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1431       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1432 
1433       return error;
1434     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1435       // The target address is within the memory region we're processing here.
1436       range_info = proc_entry_info;
1437       return error;
1438     }
1439 
1440     // The target memory address comes somewhere after the region we just
1441     // parsed.
1442   }
1443 
1444   // If we made it here, we didn't find an entry that contained the given
1445   // address. Return the
1446   // load_addr as start and the amount of bytes betwwen load address and the end
1447   // of the memory as
1448   // size.
1449   range_info.GetRange().SetRangeBase(load_addr);
1450   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1451   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1452   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1453   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1454   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1455   return error;
1456 }
1457 
1458 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1459   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1460 
1461   // If our cache is empty, pull the latest.  There should always be at least
1462   // one memory region if memory region handling is supported.
1463   if (!m_mem_region_cache.empty()) {
1464     LLDB_LOG(log, "reusing {0} cached memory region entries",
1465              m_mem_region_cache.size());
1466     return Status();
1467   }
1468 
1469   auto BufferOrError = getProcFile(GetID(), "maps");
1470   if (!BufferOrError) {
1471     m_supports_mem_region = LazyBool::eLazyBoolNo;
1472     return BufferOrError.getError();
1473   }
1474   StringRef Rest = BufferOrError.get()->getBuffer();
1475   while (! Rest.empty()) {
1476     StringRef Line;
1477     std::tie(Line, Rest) = Rest.split('\n');
1478     MemoryRegionInfo info;
1479     const Status parse_error =
1480         ParseMemoryRegionInfoFromProcMapsLine(Line, info);
1481     if (parse_error.Fail()) {
1482       LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line,
1483                parse_error);
1484       m_supports_mem_region = LazyBool::eLazyBoolNo;
1485       return parse_error;
1486     }
1487     m_mem_region_cache.emplace_back(
1488         info, FileSpec(info.GetName().GetCString(), true));
1489   }
1490 
1491   if (m_mem_region_cache.empty()) {
1492     // No entries after attempting to read them.  This shouldn't happen if
1493     // /proc/{pid}/maps is supported. Assume we don't support map entries
1494     // via procfs.
1495     m_supports_mem_region = LazyBool::eLazyBoolNo;
1496     LLDB_LOG(log,
1497              "failed to find any procfs maps entries, assuming no support "
1498              "for memory region metadata retrieval");
1499     return Status("not supported");
1500   }
1501 
1502   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1503            m_mem_region_cache.size(), GetID());
1504 
1505   // We support memory retrieval, remember that.
1506   m_supports_mem_region = LazyBool::eLazyBoolYes;
1507   return Status();
1508 }
1509 
1510 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1511   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1512   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1513   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1514            m_mem_region_cache.size());
1515   m_mem_region_cache.clear();
1516 }
1517 
1518 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1519                                           lldb::addr_t &addr) {
1520 // FIXME implementing this requires the equivalent of
1521 // InferiorCallPOSIX::InferiorCallMmap, which depends on
1522 // functional ThreadPlans working with Native*Protocol.
1523 #if 1
1524   return Status("not implemented yet");
1525 #else
1526   addr = LLDB_INVALID_ADDRESS;
1527 
1528   unsigned prot = 0;
1529   if (permissions & lldb::ePermissionsReadable)
1530     prot |= eMmapProtRead;
1531   if (permissions & lldb::ePermissionsWritable)
1532     prot |= eMmapProtWrite;
1533   if (permissions & lldb::ePermissionsExecutable)
1534     prot |= eMmapProtExec;
1535 
1536   // TODO implement this directly in NativeProcessLinux
1537   // (and lift to NativeProcessPOSIX if/when that class is
1538   // refactored out).
1539   if (InferiorCallMmap(this, addr, 0, size, prot,
1540                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1541     m_addr_to_mmap_size[addr] = size;
1542     return Status();
1543   } else {
1544     addr = LLDB_INVALID_ADDRESS;
1545     return Status("unable to allocate %" PRIu64
1546                   " bytes of memory with permissions %s",
1547                   size, GetPermissionsAsCString(permissions));
1548   }
1549 #endif
1550 }
1551 
1552 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1553   // FIXME see comments in AllocateMemory - required lower-level
1554   // bits not in place yet (ThreadPlans)
1555   return Status("not implemented");
1556 }
1557 
1558 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
1559   // punt on this for now
1560   return LLDB_INVALID_ADDRESS;
1561 }
1562 
1563 size_t NativeProcessLinux::UpdateThreads() {
1564   // The NativeProcessLinux monitoring threads are always up to date
1565   // with respect to thread state and they keep the thread list
1566   // populated properly. All this method needs to do is return the
1567   // thread count.
1568   return m_threads.size();
1569 }
1570 
1571 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
1572   arch = m_arch;
1573   return true;
1574 }
1575 
1576 Status NativeProcessLinux::GetSoftwareBreakpointPCOffset(
1577     uint32_t &actual_opcode_size) {
1578   // FIXME put this behind a breakpoint protocol class that can be
1579   // set per architecture.  Need ARM, MIPS support here.
1580   static const uint8_t g_i386_opcode[] = {0xCC};
1581   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1582 
1583   switch (m_arch.GetMachine()) {
1584   case llvm::Triple::x86:
1585   case llvm::Triple::x86_64:
1586     actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
1587     return Status();
1588 
1589   case llvm::Triple::systemz:
1590     actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
1591     return Status();
1592 
1593   case llvm::Triple::arm:
1594   case llvm::Triple::aarch64:
1595   case llvm::Triple::mips64:
1596   case llvm::Triple::mips64el:
1597   case llvm::Triple::mips:
1598   case llvm::Triple::mipsel:
1599     // On these architectures the PC don't get updated for breakpoint hits
1600     actual_opcode_size = 0;
1601     return Status();
1602 
1603   default:
1604     assert(false && "CPU type not supported!");
1605     return Status("CPU type not supported");
1606   }
1607 }
1608 
1609 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1610                                          bool hardware) {
1611   if (hardware)
1612     return SetHardwareBreakpoint(addr, size);
1613   else
1614     return SetSoftwareBreakpoint(addr, size);
1615 }
1616 
1617 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1618   if (hardware)
1619     return RemoveHardwareBreakpoint(addr);
1620   else
1621     return NativeProcessProtocol::RemoveBreakpoint(addr);
1622 }
1623 
1624 Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
1625     size_t trap_opcode_size_hint, size_t &actual_opcode_size,
1626     const uint8_t *&trap_opcode_bytes) {
1627   // FIXME put this behind a breakpoint protocol class that can be set per
1628   // architecture.  Need MIPS support here.
1629   static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
1630   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1631   // linux kernel does otherwise.
1632   static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1633   static const uint8_t g_i386_opcode[] = {0xCC};
1634   static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
1635   static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
1636   static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
1637   static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
1638 
1639   switch (m_arch.GetMachine()) {
1640   case llvm::Triple::aarch64:
1641     trap_opcode_bytes = g_aarch64_opcode;
1642     actual_opcode_size = sizeof(g_aarch64_opcode);
1643     return Status();
1644 
1645   case llvm::Triple::arm:
1646     switch (trap_opcode_size_hint) {
1647     case 2:
1648       trap_opcode_bytes = g_thumb_breakpoint_opcode;
1649       actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1650       return Status();
1651     case 4:
1652       trap_opcode_bytes = g_arm_breakpoint_opcode;
1653       actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1654       return Status();
1655     default:
1656       assert(false && "Unrecognised trap opcode size hint!");
1657       return Status("Unrecognised trap opcode size hint!");
1658     }
1659 
1660   case llvm::Triple::x86:
1661   case llvm::Triple::x86_64:
1662     trap_opcode_bytes = g_i386_opcode;
1663     actual_opcode_size = sizeof(g_i386_opcode);
1664     return Status();
1665 
1666   case llvm::Triple::mips:
1667   case llvm::Triple::mips64:
1668     trap_opcode_bytes = g_mips64_opcode;
1669     actual_opcode_size = sizeof(g_mips64_opcode);
1670     return Status();
1671 
1672   case llvm::Triple::mipsel:
1673   case llvm::Triple::mips64el:
1674     trap_opcode_bytes = g_mips64el_opcode;
1675     actual_opcode_size = sizeof(g_mips64el_opcode);
1676     return Status();
1677 
1678   case llvm::Triple::systemz:
1679     trap_opcode_bytes = g_s390x_opcode;
1680     actual_opcode_size = sizeof(g_s390x_opcode);
1681     return Status();
1682 
1683   default:
1684     assert(false && "CPU type not supported!");
1685     return Status("CPU type not supported");
1686   }
1687 }
1688 
1689 #if 0
1690 ProcessMessage::CrashReason
1691 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1692 {
1693     ProcessMessage::CrashReason reason;
1694     assert(info->si_signo == SIGSEGV);
1695 
1696     reason = ProcessMessage::eInvalidCrashReason;
1697 
1698     switch (info->si_code)
1699     {
1700     default:
1701         assert(false && "unexpected si_code for SIGSEGV");
1702         break;
1703     case SI_KERNEL:
1704         // Linux will occasionally send spurious SI_KERNEL codes.
1705         // (this is poorly documented in sigaction)
1706         // One way to get this is via unaligned SIMD loads.
1707         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
1708         break;
1709     case SEGV_MAPERR:
1710         reason = ProcessMessage::eInvalidAddress;
1711         break;
1712     case SEGV_ACCERR:
1713         reason = ProcessMessage::ePrivilegedAddress;
1714         break;
1715     }
1716 
1717     return reason;
1718 }
1719 #endif
1720 
1721 #if 0
1722 ProcessMessage::CrashReason
1723 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
1724 {
1725     ProcessMessage::CrashReason reason;
1726     assert(info->si_signo == SIGILL);
1727 
1728     reason = ProcessMessage::eInvalidCrashReason;
1729 
1730     switch (info->si_code)
1731     {
1732     default:
1733         assert(false && "unexpected si_code for SIGILL");
1734         break;
1735     case ILL_ILLOPC:
1736         reason = ProcessMessage::eIllegalOpcode;
1737         break;
1738     case ILL_ILLOPN:
1739         reason = ProcessMessage::eIllegalOperand;
1740         break;
1741     case ILL_ILLADR:
1742         reason = ProcessMessage::eIllegalAddressingMode;
1743         break;
1744     case ILL_ILLTRP:
1745         reason = ProcessMessage::eIllegalTrap;
1746         break;
1747     case ILL_PRVOPC:
1748         reason = ProcessMessage::ePrivilegedOpcode;
1749         break;
1750     case ILL_PRVREG:
1751         reason = ProcessMessage::ePrivilegedRegister;
1752         break;
1753     case ILL_COPROC:
1754         reason = ProcessMessage::eCoprocessorError;
1755         break;
1756     case ILL_BADSTK:
1757         reason = ProcessMessage::eInternalStackError;
1758         break;
1759     }
1760 
1761     return reason;
1762 }
1763 #endif
1764 
1765 #if 0
1766 ProcessMessage::CrashReason
1767 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
1768 {
1769     ProcessMessage::CrashReason reason;
1770     assert(info->si_signo == SIGFPE);
1771 
1772     reason = ProcessMessage::eInvalidCrashReason;
1773 
1774     switch (info->si_code)
1775     {
1776     default:
1777         assert(false && "unexpected si_code for SIGFPE");
1778         break;
1779     case FPE_INTDIV:
1780         reason = ProcessMessage::eIntegerDivideByZero;
1781         break;
1782     case FPE_INTOVF:
1783         reason = ProcessMessage::eIntegerOverflow;
1784         break;
1785     case FPE_FLTDIV:
1786         reason = ProcessMessage::eFloatDivideByZero;
1787         break;
1788     case FPE_FLTOVF:
1789         reason = ProcessMessage::eFloatOverflow;
1790         break;
1791     case FPE_FLTUND:
1792         reason = ProcessMessage::eFloatUnderflow;
1793         break;
1794     case FPE_FLTRES:
1795         reason = ProcessMessage::eFloatInexactResult;
1796         break;
1797     case FPE_FLTINV:
1798         reason = ProcessMessage::eFloatInvalidOperation;
1799         break;
1800     case FPE_FLTSUB:
1801         reason = ProcessMessage::eFloatSubscriptRange;
1802         break;
1803     }
1804 
1805     return reason;
1806 }
1807 #endif
1808 
1809 #if 0
1810 ProcessMessage::CrashReason
1811 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
1812 {
1813     ProcessMessage::CrashReason reason;
1814     assert(info->si_signo == SIGBUS);
1815 
1816     reason = ProcessMessage::eInvalidCrashReason;
1817 
1818     switch (info->si_code)
1819     {
1820     default:
1821         assert(false && "unexpected si_code for SIGBUS");
1822         break;
1823     case BUS_ADRALN:
1824         reason = ProcessMessage::eIllegalAlignment;
1825         break;
1826     case BUS_ADRERR:
1827         reason = ProcessMessage::eIllegalAddress;
1828         break;
1829     case BUS_OBJERR:
1830         reason = ProcessMessage::eHardwareError;
1831         break;
1832     }
1833 
1834     return reason;
1835 }
1836 #endif
1837 
1838 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1839                                       size_t &bytes_read) {
1840   if (ProcessVmReadvSupported()) {
1841     // The process_vm_readv path is about 50 times faster than ptrace api. We
1842     // want to use
1843     // this syscall if it is supported.
1844 
1845     const ::pid_t pid = GetID();
1846 
1847     struct iovec local_iov, remote_iov;
1848     local_iov.iov_base = buf;
1849     local_iov.iov_len = size;
1850     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1851     remote_iov.iov_len = size;
1852 
1853     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1854     const bool success = bytes_read == size;
1855 
1856     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1857     LLDB_LOG(log,
1858              "using process_vm_readv to read {0} bytes from inferior "
1859              "address {1:x}: {2}",
1860              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1861 
1862     if (success)
1863       return Status();
1864     // else the call failed for some reason, let's retry the read using ptrace
1865     // api.
1866   }
1867 
1868   unsigned char *dst = static_cast<unsigned char *>(buf);
1869   size_t remainder;
1870   long data;
1871 
1872   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1873   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1874 
1875   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1876     Status error = NativeProcessLinux::PtraceWrapper(
1877         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1878     if (error.Fail())
1879       return error;
1880 
1881     remainder = size - bytes_read;
1882     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1883 
1884     // Copy the data into our buffer
1885     memcpy(dst, &data, remainder);
1886 
1887     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1888     addr += k_ptrace_word_size;
1889     dst += k_ptrace_word_size;
1890   }
1891   return Status();
1892 }
1893 
1894 Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
1895                                                  size_t size,
1896                                                  size_t &bytes_read) {
1897   Status error = ReadMemory(addr, buf, size, bytes_read);
1898   if (error.Fail())
1899     return error;
1900   return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
1901 }
1902 
1903 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1904                                        size_t size, size_t &bytes_written) {
1905   const unsigned char *src = static_cast<const unsigned char *>(buf);
1906   size_t remainder;
1907   Status error;
1908 
1909   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1910   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1911 
1912   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1913     remainder = size - bytes_written;
1914     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1915 
1916     if (remainder == k_ptrace_word_size) {
1917       unsigned long data = 0;
1918       memcpy(&data, src, k_ptrace_word_size);
1919 
1920       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1921       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1922                                                 (void *)addr, (void *)data);
1923       if (error.Fail())
1924         return error;
1925     } else {
1926       unsigned char buff[8];
1927       size_t bytes_read;
1928       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1929       if (error.Fail())
1930         return error;
1931 
1932       memcpy(buff, src, remainder);
1933 
1934       size_t bytes_written_rec;
1935       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1936       if (error.Fail())
1937         return error;
1938 
1939       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1940                *(unsigned long *)buff);
1941     }
1942 
1943     addr += k_ptrace_word_size;
1944     src += k_ptrace_word_size;
1945   }
1946   return error;
1947 }
1948 
1949 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1950   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1951 }
1952 
1953 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1954                                            unsigned long *message) {
1955   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1956 }
1957 
1958 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1959   if (tid == LLDB_INVALID_THREAD_ID)
1960     return Status();
1961 
1962   return PtraceWrapper(PTRACE_DETACH, tid);
1963 }
1964 
1965 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1966   for (auto thread_sp : m_threads) {
1967     assert(thread_sp && "thread list should not contain NULL threads");
1968     if (thread_sp->GetID() == thread_id) {
1969       // We have this thread.
1970       return true;
1971     }
1972   }
1973 
1974   // We don't have this thread.
1975   return false;
1976 }
1977 
1978 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1979   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1980   LLDB_LOG(log, "tid: {0})", thread_id);
1981 
1982   bool found = false;
1983   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1984     if (*it && ((*it)->GetID() == thread_id)) {
1985       m_threads.erase(it);
1986       found = true;
1987       break;
1988     }
1989   }
1990 
1991   if (found)
1992     StopTracingForThread(thread_id);
1993   SignalIfAllThreadsStopped();
1994   return found;
1995 }
1996 
1997 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1998   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1999   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
2000 
2001   assert(!HasThreadNoLock(thread_id) &&
2002          "attempted to add a thread by id that already exists");
2003 
2004   // If this is the first thread, save it as the current thread
2005   if (m_threads.empty())
2006     SetCurrentThreadID(thread_id);
2007 
2008   auto thread_sp = std::make_shared<NativeThreadLinux>(*this, thread_id);
2009   m_threads.push_back(thread_sp);
2010 
2011   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2012     auto traceMonitor = ProcessorTraceMonitor::Create(
2013         GetID(), thread_id, m_pt_process_trace_config, true);
2014     if (traceMonitor) {
2015       m_pt_traced_thread_group.insert(thread_id);
2016       m_processor_trace_monitor.insert(
2017           std::make_pair(thread_id, std::move(*traceMonitor)));
2018     } else {
2019       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
2020       Status error(traceMonitor.takeError());
2021       LLDB_LOG(log, "error {0}", error);
2022     }
2023   }
2024 
2025   return thread_sp;
2026 }
2027 
2028 Status
2029 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
2030   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
2031 
2032   Status error;
2033 
2034   // Find out the size of a breakpoint (might depend on where we are in the
2035   // code).
2036   NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2037   if (!context_sp) {
2038     error.SetErrorString("cannot get a NativeRegisterContext for the thread");
2039     LLDB_LOG(log, "failed: {0}", error);
2040     return error;
2041   }
2042 
2043   uint32_t breakpoint_size = 0;
2044   error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2045   if (error.Fail()) {
2046     LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
2047     return error;
2048   } else
2049     LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
2050 
2051   // First try probing for a breakpoint at a software breakpoint location: PC -
2052   // breakpoint size.
2053   const lldb::addr_t initial_pc_addr =
2054       context_sp->GetPCfromBreakpointLocation();
2055   lldb::addr_t breakpoint_addr = initial_pc_addr;
2056   if (breakpoint_size > 0) {
2057     // Do not allow breakpoint probe to wrap around.
2058     if (breakpoint_addr >= breakpoint_size)
2059       breakpoint_addr -= breakpoint_size;
2060   }
2061 
2062   // Check if we stopped because of a breakpoint.
2063   NativeBreakpointSP breakpoint_sp;
2064   error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
2065   if (!error.Success() || !breakpoint_sp) {
2066     // We didn't find one at a software probe location.  Nothing to do.
2067     LLDB_LOG(log,
2068              "pid {0} no lldb breakpoint found at current pc with "
2069              "adjustment: {1}",
2070              GetID(), breakpoint_addr);
2071     return Status();
2072   }
2073 
2074   // If the breakpoint is not a software breakpoint, nothing to do.
2075   if (!breakpoint_sp->IsSoftwareBreakpoint()) {
2076     LLDB_LOG(
2077         log,
2078         "pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
2079         GetID(), breakpoint_addr);
2080     return Status();
2081   }
2082 
2083   //
2084   // We have a software breakpoint and need to adjust the PC.
2085   //
2086 
2087   // Sanity check.
2088   if (breakpoint_size == 0) {
2089     // Nothing to do!  How did we get here?
2090     LLDB_LOG(log,
2091              "pid {0} breakpoint found at {1:x}, it is software, but the "
2092              "size is zero, nothing to do (unexpected)",
2093              GetID(), breakpoint_addr);
2094     return Status();
2095   }
2096 
2097   // Change the program counter.
2098   LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
2099            thread.GetID(), initial_pc_addr, breakpoint_addr);
2100 
2101   error = context_sp->SetPC(breakpoint_addr);
2102   if (error.Fail()) {
2103     LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
2104              thread.GetID(), error);
2105     return error;
2106   }
2107 
2108   return error;
2109 }
2110 
2111 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
2112                                                    FileSpec &file_spec) {
2113   Status error = PopulateMemoryRegionCache();
2114   if (error.Fail())
2115     return error;
2116 
2117   FileSpec module_file_spec(module_path, true);
2118 
2119   file_spec.Clear();
2120   for (const auto &it : m_mem_region_cache) {
2121     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
2122       file_spec = it.second;
2123       return Status();
2124     }
2125   }
2126   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2127                 module_file_spec.GetFilename().AsCString(), GetID());
2128 }
2129 
2130 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
2131                                               lldb::addr_t &load_addr) {
2132   load_addr = LLDB_INVALID_ADDRESS;
2133   Status error = PopulateMemoryRegionCache();
2134   if (error.Fail())
2135     return error;
2136 
2137   FileSpec file(file_name, false);
2138   for (const auto &it : m_mem_region_cache) {
2139     if (it.second == file) {
2140       load_addr = it.first.GetRange().GetRangeBase();
2141       return Status();
2142     }
2143   }
2144   return Status("No load address found for specified file.");
2145 }
2146 
2147 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
2148   return std::static_pointer_cast<NativeThreadLinux>(
2149       NativeProcessProtocol::GetThreadByID(tid));
2150 }
2151 
2152 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
2153                                         lldb::StateType state, int signo) {
2154   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2155   LLDB_LOG(log, "tid: {0}", thread.GetID());
2156 
2157   // Before we do the resume below, first check if we have a pending
2158   // stop notification that is currently waiting for
2159   // all threads to stop.  This is potentially a buggy situation since
2160   // we're ostensibly waiting for threads to stop before we send out the
2161   // pending notification, and here we are resuming one before we send
2162   // out the pending stop notification.
2163   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
2164     LLDB_LOG(log,
2165              "about to resume tid {0} per explicit request but we have a "
2166              "pending stop notification (tid {1}) that is actively "
2167              "waiting for this thread to stop. Valid sequence of events?",
2168              thread.GetID(), m_pending_notification_tid);
2169   }
2170 
2171   // Request a resume.  We expect this to be synchronous and the system
2172   // to reflect it is running after this completes.
2173   switch (state) {
2174   case eStateRunning: {
2175     const auto resume_result = thread.Resume(signo);
2176     if (resume_result.Success())
2177       SetState(eStateRunning, true);
2178     return resume_result;
2179   }
2180   case eStateStepping: {
2181     const auto step_result = thread.SingleStep(signo);
2182     if (step_result.Success())
2183       SetState(eStateRunning, true);
2184     return step_result;
2185   }
2186   default:
2187     LLDB_LOG(log, "Unhandled state {0}.", state);
2188     llvm_unreachable("Unhandled state for resume");
2189   }
2190 }
2191 
2192 //===----------------------------------------------------------------------===//
2193 
2194 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
2195   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2196   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
2197            triggering_tid);
2198 
2199   m_pending_notification_tid = triggering_tid;
2200 
2201   // Request a stop for all the thread stops that need to be stopped
2202   // and are not already known to be stopped.
2203   for (const auto &thread_sp : m_threads) {
2204     if (StateIsRunningState(thread_sp->GetState()))
2205       static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2206   }
2207 
2208   SignalIfAllThreadsStopped();
2209   LLDB_LOG(log, "event processing done");
2210 }
2211 
2212 void NativeProcessLinux::SignalIfAllThreadsStopped() {
2213   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2214     return; // No pending notification. Nothing to do.
2215 
2216   for (const auto &thread_sp : m_threads) {
2217     if (StateIsRunningState(thread_sp->GetState()))
2218       return; // Some threads are still running. Don't signal yet.
2219   }
2220 
2221   // We have a pending notification and all threads have stopped.
2222   Log *log(
2223       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2224 
2225   // Clear any temporary breakpoints we used to implement software single
2226   // stepping.
2227   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
2228     Status error = RemoveBreakpoint(thread_info.second);
2229     if (error.Fail())
2230       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
2231                thread_info.first, error);
2232   }
2233   m_threads_stepping_with_breakpoint.clear();
2234 
2235   // Notify the delegate about the stop
2236   SetCurrentThreadID(m_pending_notification_tid);
2237   SetState(StateType::eStateStopped, true);
2238   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2239 }
2240 
2241 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
2242   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
2243   LLDB_LOG(log, "tid: {0}", thread.GetID());
2244 
2245   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
2246       StateIsRunningState(thread.GetState())) {
2247     // We will need to wait for this new thread to stop as well before firing
2248     // the
2249     // notification.
2250     thread.RequestStop();
2251   }
2252 }
2253 
2254 void NativeProcessLinux::SigchldHandler() {
2255   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
2256   // Process all pending waitpid notifications.
2257   while (true) {
2258     int status = -1;
2259     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
2260                                           __WALL | __WNOTHREAD | WNOHANG);
2261 
2262     if (wait_pid == 0)
2263       break; // We are done.
2264 
2265     if (wait_pid == -1) {
2266       Status error(errno, eErrorTypePOSIX);
2267       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
2268       break;
2269     }
2270 
2271     WaitStatus wait_status = WaitStatus::Decode(status);
2272     bool exited = wait_status.type == WaitStatus::Exit ||
2273                   (wait_status.type == WaitStatus::Signal &&
2274                    wait_pid == static_cast<::pid_t>(GetID()));
2275 
2276     LLDB_LOG(
2277         log,
2278         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
2279         wait_pid, wait_status, exited);
2280 
2281     MonitorCallback(wait_pid, exited, wait_status);
2282   }
2283 }
2284 
2285 // Wrapper for ptrace to catch errors and log calls.
2286 // Note that ptrace sets errno on error because -1 can be a valid result (i.e.
2287 // for PTRACE_PEEK*)
2288 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
2289                                          void *data, size_t data_size,
2290                                          long *result) {
2291   Status error;
2292   long int ret;
2293 
2294   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2295 
2296   PtraceDisplayBytes(req, data, data_size);
2297 
2298   errno = 0;
2299   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2300     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2301                  *(unsigned int *)addr, data);
2302   else
2303     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
2304                  addr, data);
2305 
2306   if (ret == -1)
2307     error.SetErrorToErrno();
2308 
2309   if (result)
2310     *result = ret;
2311 
2312   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2313            data_size, ret);
2314 
2315   PtraceDisplayBytes(req, data, data_size);
2316 
2317   if (error.Fail())
2318     LLDB_LOG(log, "ptrace() failed: {0}", error);
2319 
2320   return error;
2321 }
2322 
2323 llvm::Expected<ProcessorTraceMonitor &>
2324 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
2325                                                  lldb::tid_t thread) {
2326   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2327   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
2328     LLDB_LOG(log, "thread not specified: {0}", traceid);
2329     return Status("tracing not active thread not specified").ToError();
2330   }
2331 
2332   for (auto& iter : m_processor_trace_monitor) {
2333     if (traceid == iter.second->GetTraceID() &&
2334         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
2335       return *(iter.second);
2336   }
2337 
2338   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2339   return Status("tracing not active for this thread").ToError();
2340 }
2341 
2342 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
2343                                        lldb::tid_t thread,
2344                                        llvm::MutableArrayRef<uint8_t> &buffer,
2345                                        size_t offset) {
2346   TraceOptions trace_options;
2347   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2348   Status error;
2349 
2350   LLDB_LOG(log, "traceid {0}", traceid);
2351 
2352   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2353   if (!perf_monitor) {
2354     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2355     buffer = buffer.slice(buffer.size());
2356     error = perf_monitor.takeError();
2357     return error;
2358   }
2359   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
2360 }
2361 
2362 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
2363                                    llvm::MutableArrayRef<uint8_t> &buffer,
2364                                    size_t offset) {
2365   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2366   Status error;
2367 
2368   LLDB_LOG(log, "traceid {0}", traceid);
2369 
2370   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
2371   if (!perf_monitor) {
2372     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
2373     buffer = buffer.slice(buffer.size());
2374     error = perf_monitor.takeError();
2375     return error;
2376   }
2377   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
2378 }
2379 
2380 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
2381                                           TraceOptions &config) {
2382   Status error;
2383   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
2384       m_pt_proces_trace_id == traceid) {
2385     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
2386       error.SetErrorString("tracing not active for this process");
2387       return error;
2388     }
2389     config = m_pt_process_trace_config;
2390   } else {
2391     auto perf_monitor =
2392         LookupProcessorTraceInstance(traceid, config.getThreadID());
2393     if (!perf_monitor) {
2394       error = perf_monitor.takeError();
2395       return error;
2396     }
2397     error = (*perf_monitor).GetTraceConfig(config);
2398   }
2399   return error;
2400 }
2401 
2402 lldb::user_id_t
2403 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
2404                                            Status &error) {
2405 
2406   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2407   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2408     return LLDB_INVALID_UID;
2409 
2410   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
2411     error.SetErrorString("tracing already active on this process");
2412     return m_pt_proces_trace_id;
2413   }
2414 
2415   for (const auto &thread_sp : m_threads) {
2416     if (auto traceInstance = ProcessorTraceMonitor::Create(
2417             GetID(), thread_sp->GetID(), config, true)) {
2418       m_pt_traced_thread_group.insert(thread_sp->GetID());
2419       m_processor_trace_monitor.insert(
2420           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
2421     }
2422   }
2423 
2424   m_pt_process_trace_config = config;
2425   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
2426 
2427   // Trace on Complete process will have traceid of 0
2428   m_pt_proces_trace_id = 0;
2429 
2430   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
2431   return m_pt_proces_trace_id;
2432 }
2433 
2434 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
2435                                                Status &error) {
2436   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
2437     return NativeProcessProtocol::StartTrace(config, error);
2438 
2439   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2440 
2441   lldb::tid_t threadid = config.getThreadID();
2442 
2443   if (threadid == LLDB_INVALID_THREAD_ID)
2444     return StartTraceGroup(config, error);
2445 
2446   auto thread_sp = GetThreadByID(threadid);
2447   if (!thread_sp) {
2448     // Thread not tracked by lldb so don't trace.
2449     error.SetErrorString("invalid thread id");
2450     return LLDB_INVALID_UID;
2451   }
2452 
2453   const auto &iter = m_processor_trace_monitor.find(threadid);
2454   if (iter != m_processor_trace_monitor.end()) {
2455     LLDB_LOG(log, "Thread already being traced");
2456     error.SetErrorString("tracing already active on this thread");
2457     return LLDB_INVALID_UID;
2458   }
2459 
2460   auto traceMonitor =
2461       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
2462   if (!traceMonitor) {
2463     error = traceMonitor.takeError();
2464     LLDB_LOG(log, "error {0}", error);
2465     return LLDB_INVALID_UID;
2466   }
2467   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
2468   m_processor_trace_monitor.insert(
2469       std::make_pair(threadid, std::move(*traceMonitor)));
2470   return ret_trace_id;
2471 }
2472 
2473 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
2474   Status error;
2475   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2476   LLDB_LOG(log, "Thread {0}", thread);
2477 
2478   const auto& iter = m_processor_trace_monitor.find(thread);
2479   if (iter == m_processor_trace_monitor.end()) {
2480     error.SetErrorString("tracing not active for this thread");
2481     return error;
2482   }
2483 
2484   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
2485     // traceid maps to the whole process so we have to erase it from the
2486     // thread group.
2487     LLDB_LOG(log, "traceid maps to process");
2488     m_pt_traced_thread_group.erase(thread);
2489   }
2490   m_processor_trace_monitor.erase(iter);
2491 
2492   return error;
2493 }
2494 
2495 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
2496                                      lldb::tid_t thread) {
2497   Status error;
2498 
2499   TraceOptions trace_options;
2500   trace_options.setThreadID(thread);
2501   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2502 
2503   if (error.Fail())
2504     return error;
2505 
2506   switch (trace_options.getType()) {
2507   case lldb::TraceType::eTraceTypeProcessorTrace:
2508     if (traceid == m_pt_proces_trace_id &&
2509         thread == LLDB_INVALID_THREAD_ID)
2510       StopProcessorTracingOnProcess();
2511     else
2512       error = StopProcessorTracingOnThread(traceid, thread);
2513     break;
2514   default:
2515     error.SetErrorString("trace not supported");
2516     break;
2517   }
2518 
2519   return error;
2520 }
2521 
2522 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2523   for (auto thread_id_iter : m_pt_traced_thread_group)
2524     m_processor_trace_monitor.erase(thread_id_iter);
2525   m_pt_traced_thread_group.clear();
2526   m_pt_proces_trace_id = LLDB_INVALID_UID;
2527 }
2528 
2529 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2530                                                         lldb::tid_t thread) {
2531   Status error;
2532   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2533 
2534   if (thread == LLDB_INVALID_THREAD_ID) {
2535     for (auto& iter : m_processor_trace_monitor) {
2536       if (iter.second->GetTraceID() == traceid) {
2537         // Stopping a trace instance for an individual thread
2538         // hence there will only be one traceid that can match.
2539         m_processor_trace_monitor.erase(iter.first);
2540         return error;
2541       }
2542       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2543     }
2544 
2545     LLDB_LOG(log, "Invalid TraceID");
2546     error.SetErrorString("invalid trace id");
2547     return error;
2548   }
2549 
2550   // thread is specified so we can use find function on the map.
2551   const auto& iter = m_processor_trace_monitor.find(thread);
2552   if (iter == m_processor_trace_monitor.end()) {
2553     // thread not found in our map.
2554     LLDB_LOG(log, "thread not being traced");
2555     error.SetErrorString("tracing not active for this thread");
2556     return error;
2557   }
2558   if (iter->second->GetTraceID() != traceid) {
2559     // traceid did not match so it has to be invalid.
2560     LLDB_LOG(log, "Invalid TraceID");
2561     error.SetErrorString("invalid trace id");
2562     return error;
2563   }
2564 
2565   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2566 
2567   if (traceid == m_pt_proces_trace_id) {
2568     // traceid maps to the whole process so we have to erase it from the
2569     // thread group.
2570     LLDB_LOG(log, "traceid maps to process");
2571     m_pt_traced_thread_group.erase(thread);
2572   }
2573   m_processor_trace_monitor.erase(iter);
2574 
2575   return error;
2576 }
2577