1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 #include "llvm/Support/MachO.h" 12 13 #include "ObjectFileMachO.h" 14 15 #include "lldb/lldb-private-log.h" 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/RangeMap.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/StreamFile.h" 25 #include "lldb/Core/StreamString.h" 26 #include "lldb/Core/Timer.h" 27 #include "lldb/Core/UUID.h" 28 #include "lldb/Host/Host.h" 29 #include "lldb/Host/FileSpec.h" 30 #include "lldb/Symbol/ClangNamespaceDecl.h" 31 #include "lldb/Symbol/ObjectFile.h" 32 #include "lldb/Target/Platform.h" 33 #include "lldb/Target/Process.h" 34 #include "lldb/Target/Target.h" 35 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 36 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 37 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 38 39 using namespace lldb; 40 using namespace lldb_private; 41 using namespace llvm::MachO; 42 43 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 44 { 45 public: 46 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 47 RegisterContextDarwin_x86_64 (thread, 0) 48 { 49 SetRegisterDataFrom_LC_THREAD (data); 50 } 51 52 virtual void 53 InvalidateAllRegisters () 54 { 55 // Do nothing... registers are always valid... 56 } 57 58 void 59 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 60 { 61 lldb::offset_t offset = 0; 62 SetError (GPRRegSet, Read, -1); 63 SetError (FPURegSet, Read, -1); 64 SetError (EXCRegSet, Read, -1); 65 bool done = false; 66 67 while (!done) 68 { 69 int flavor = data.GetU32 (&offset); 70 if (flavor == 0) 71 done = true; 72 else 73 { 74 uint32_t i; 75 uint32_t count = data.GetU32 (&offset); 76 switch (flavor) 77 { 78 case GPRRegSet: 79 for (i=0; i<count; ++i) 80 (&gpr.rax)[i] = data.GetU64(&offset); 81 SetError (GPRRegSet, Read, 0); 82 done = true; 83 84 break; 85 case FPURegSet: 86 // TODO: fill in FPU regs.... 87 //SetError (FPURegSet, Read, -1); 88 done = true; 89 90 break; 91 case EXCRegSet: 92 exc.trapno = data.GetU32(&offset); 93 exc.err = data.GetU32(&offset); 94 exc.faultvaddr = data.GetU64(&offset); 95 SetError (EXCRegSet, Read, 0); 96 done = true; 97 break; 98 case 7: 99 case 8: 100 case 9: 101 // fancy flavors that encapsulate of the the above 102 // falvors... 103 break; 104 105 default: 106 done = true; 107 break; 108 } 109 } 110 } 111 } 112 protected: 113 virtual int 114 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 115 { 116 return 0; 117 } 118 119 virtual int 120 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 121 { 122 return 0; 123 } 124 125 virtual int 126 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 127 { 128 return 0; 129 } 130 131 virtual int 132 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 133 { 134 return 0; 135 } 136 137 virtual int 138 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 139 { 140 return 0; 141 } 142 143 virtual int 144 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 145 { 146 return 0; 147 } 148 }; 149 150 151 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 152 { 153 public: 154 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 155 RegisterContextDarwin_i386 (thread, 0) 156 { 157 SetRegisterDataFrom_LC_THREAD (data); 158 } 159 160 virtual void 161 InvalidateAllRegisters () 162 { 163 // Do nothing... registers are always valid... 164 } 165 166 void 167 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 168 { 169 lldb::offset_t offset = 0; 170 SetError (GPRRegSet, Read, -1); 171 SetError (FPURegSet, Read, -1); 172 SetError (EXCRegSet, Read, -1); 173 bool done = false; 174 175 while (!done) 176 { 177 int flavor = data.GetU32 (&offset); 178 if (flavor == 0) 179 done = true; 180 else 181 { 182 uint32_t i; 183 uint32_t count = data.GetU32 (&offset); 184 switch (flavor) 185 { 186 case GPRRegSet: 187 for (i=0; i<count; ++i) 188 (&gpr.eax)[i] = data.GetU32(&offset); 189 SetError (GPRRegSet, Read, 0); 190 done = true; 191 192 break; 193 case FPURegSet: 194 // TODO: fill in FPU regs.... 195 //SetError (FPURegSet, Read, -1); 196 done = true; 197 198 break; 199 case EXCRegSet: 200 exc.trapno = data.GetU32(&offset); 201 exc.err = data.GetU32(&offset); 202 exc.faultvaddr = data.GetU32(&offset); 203 SetError (EXCRegSet, Read, 0); 204 done = true; 205 break; 206 case 7: 207 case 8: 208 case 9: 209 // fancy flavors that encapsulate of the the above 210 // falvors... 211 break; 212 213 default: 214 done = true; 215 break; 216 } 217 } 218 } 219 } 220 protected: 221 virtual int 222 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 223 { 224 return 0; 225 } 226 227 virtual int 228 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 229 { 230 return 0; 231 } 232 233 virtual int 234 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 235 { 236 return 0; 237 } 238 239 virtual int 240 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 241 { 242 return 0; 243 } 244 245 virtual int 246 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 247 { 248 return 0; 249 } 250 251 virtual int 252 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 253 { 254 return 0; 255 } 256 }; 257 258 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 259 { 260 public: 261 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 262 RegisterContextDarwin_arm (thread, 0) 263 { 264 SetRegisterDataFrom_LC_THREAD (data); 265 } 266 267 virtual void 268 InvalidateAllRegisters () 269 { 270 // Do nothing... registers are always valid... 271 } 272 273 void 274 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 275 { 276 lldb::offset_t offset = 0; 277 SetError (GPRRegSet, Read, -1); 278 SetError (FPURegSet, Read, -1); 279 SetError (EXCRegSet, Read, -1); 280 int flavor = data.GetU32 (&offset); 281 uint32_t count = data.GetU32 (&offset); 282 switch (flavor) 283 { 284 case GPRRegSet: 285 for (uint32_t i=0; i<count; ++i) 286 gpr.r[i] = data.GetU32(&offset); 287 SetError (GPRRegSet, Read, 0); 288 break; 289 case FPURegSet: 290 // TODO: fill in FPU regs.... 291 //SetError (FPURegSet, Read, -1); 292 break; 293 case EXCRegSet: 294 exc.exception = data.GetU32(&offset); 295 exc.fsr = data.GetU32(&offset); 296 exc.far = data.GetU32(&offset); 297 SetError (EXCRegSet, Read, 0); 298 break; 299 } 300 } 301 protected: 302 virtual int 303 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 304 { 305 return 0; 306 } 307 308 virtual int 309 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 310 { 311 return 0; 312 } 313 314 virtual int 315 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 316 { 317 return 0; 318 } 319 320 virtual int 321 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 322 { 323 return -1; 324 } 325 326 virtual int 327 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 328 { 329 return 0; 330 } 331 332 virtual int 333 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 334 { 335 return 0; 336 } 337 338 virtual int 339 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 340 { 341 return 0; 342 } 343 344 virtual int 345 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 346 { 347 return -1; 348 } 349 }; 350 351 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 352 353 void 354 ObjectFileMachO::Initialize() 355 { 356 PluginManager::RegisterPlugin (GetPluginNameStatic(), 357 GetPluginDescriptionStatic(), 358 CreateInstance, 359 CreateMemoryInstance); 360 } 361 362 void 363 ObjectFileMachO::Terminate() 364 { 365 PluginManager::UnregisterPlugin (CreateInstance); 366 } 367 368 369 const char * 370 ObjectFileMachO::GetPluginNameStatic() 371 { 372 return "object-file.mach-o"; 373 } 374 375 const char * 376 ObjectFileMachO::GetPluginDescriptionStatic() 377 { 378 return "Mach-o object file reader (32 and 64 bit)"; 379 } 380 381 ObjectFile * 382 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 383 DataBufferSP& data_sp, 384 lldb::offset_t data_offset, 385 const FileSpec* file, 386 lldb::offset_t file_offset, 387 lldb::offset_t length) 388 { 389 if (!data_sp) 390 { 391 data_sp = file->MemoryMapFileContents(file_offset, length); 392 data_offset = 0; 393 } 394 395 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 396 { 397 // Update the data to contain the entire file if it doesn't already 398 if (data_sp->GetByteSize() < length) 399 { 400 data_sp = file->MemoryMapFileContents(file_offset, length); 401 data_offset = 0; 402 } 403 std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 404 if (objfile_ap.get() && objfile_ap->ParseHeader()) 405 return objfile_ap.release(); 406 } 407 return NULL; 408 } 409 410 ObjectFile * 411 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 412 DataBufferSP& data_sp, 413 const ProcessSP &process_sp, 414 lldb::addr_t header_addr) 415 { 416 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 417 { 418 std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 419 if (objfile_ap.get() && objfile_ap->ParseHeader()) 420 return objfile_ap.release(); 421 } 422 return NULL; 423 } 424 425 426 const ConstString & 427 ObjectFileMachO::GetSegmentNameTEXT() 428 { 429 static ConstString g_segment_name_TEXT ("__TEXT"); 430 return g_segment_name_TEXT; 431 } 432 433 const ConstString & 434 ObjectFileMachO::GetSegmentNameDATA() 435 { 436 static ConstString g_segment_name_DATA ("__DATA"); 437 return g_segment_name_DATA; 438 } 439 440 const ConstString & 441 ObjectFileMachO::GetSegmentNameOBJC() 442 { 443 static ConstString g_segment_name_OBJC ("__OBJC"); 444 return g_segment_name_OBJC; 445 } 446 447 const ConstString & 448 ObjectFileMachO::GetSegmentNameLINKEDIT() 449 { 450 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 451 return g_section_name_LINKEDIT; 452 } 453 454 const ConstString & 455 ObjectFileMachO::GetSectionNameEHFrame() 456 { 457 static ConstString g_section_name_eh_frame ("__eh_frame"); 458 return g_section_name_eh_frame; 459 } 460 461 462 463 static uint32_t 464 MachHeaderSizeFromMagic(uint32_t magic) 465 { 466 switch (magic) 467 { 468 case HeaderMagic32: 469 case HeaderMagic32Swapped: 470 return sizeof(struct mach_header); 471 472 case HeaderMagic64: 473 case HeaderMagic64Swapped: 474 return sizeof(struct mach_header_64); 475 break; 476 477 default: 478 break; 479 } 480 return 0; 481 } 482 483 484 bool 485 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 486 lldb::addr_t data_offset, 487 lldb::addr_t data_length) 488 { 489 DataExtractor data; 490 data.SetData (data_sp, data_offset, data_length); 491 lldb::offset_t offset = 0; 492 uint32_t magic = data.GetU32(&offset); 493 return MachHeaderSizeFromMagic(magic) != 0; 494 } 495 496 497 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 498 DataBufferSP& data_sp, 499 lldb::offset_t data_offset, 500 const FileSpec* file, 501 lldb::offset_t file_offset, 502 lldb::offset_t length) : 503 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 504 m_sections_ap(), 505 m_symtab_ap(), 506 m_mach_segments(), 507 m_mach_sections(), 508 m_entry_point_address(), 509 m_thread_context_offsets(), 510 m_thread_context_offsets_valid(false) 511 { 512 ::memset (&m_header, 0, sizeof(m_header)); 513 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 514 } 515 516 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 517 lldb::DataBufferSP& header_data_sp, 518 const lldb::ProcessSP &process_sp, 519 lldb::addr_t header_addr) : 520 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 521 m_sections_ap(), 522 m_symtab_ap(), 523 m_mach_segments(), 524 m_mach_sections(), 525 m_entry_point_address(), 526 m_thread_context_offsets(), 527 m_thread_context_offsets_valid(false) 528 { 529 ::memset (&m_header, 0, sizeof(m_header)); 530 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 531 } 532 533 ObjectFileMachO::~ObjectFileMachO() 534 { 535 } 536 537 538 bool 539 ObjectFileMachO::ParseHeader () 540 { 541 ModuleSP module_sp(GetModule()); 542 if (module_sp) 543 { 544 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 545 bool can_parse = false; 546 lldb::offset_t offset = 0; 547 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 548 // Leave magic in the original byte order 549 m_header.magic = m_data.GetU32(&offset); 550 switch (m_header.magic) 551 { 552 case HeaderMagic32: 553 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 554 m_data.SetAddressByteSize(4); 555 can_parse = true; 556 break; 557 558 case HeaderMagic64: 559 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 560 m_data.SetAddressByteSize(8); 561 can_parse = true; 562 break; 563 564 case HeaderMagic32Swapped: 565 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 566 m_data.SetAddressByteSize(4); 567 can_parse = true; 568 break; 569 570 case HeaderMagic64Swapped: 571 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 572 m_data.SetAddressByteSize(8); 573 can_parse = true; 574 break; 575 576 default: 577 break; 578 } 579 580 if (can_parse) 581 { 582 m_data.GetU32(&offset, &m_header.cputype, 6); 583 584 ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 585 586 // Check if the module has a required architecture 587 const ArchSpec &module_arch = module_sp->GetArchitecture(); 588 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 589 return false; 590 591 if (SetModulesArchitecture (mach_arch)) 592 { 593 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 594 if (m_data.GetByteSize() < header_and_lc_size) 595 { 596 DataBufferSP data_sp; 597 ProcessSP process_sp (m_process_wp.lock()); 598 if (process_sp) 599 { 600 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 601 } 602 else 603 { 604 // Read in all only the load command data from the file on disk 605 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 606 if (data_sp->GetByteSize() != header_and_lc_size) 607 return false; 608 } 609 if (data_sp) 610 m_data.SetData (data_sp); 611 } 612 } 613 return true; 614 } 615 else 616 { 617 memset(&m_header, 0, sizeof(struct mach_header)); 618 } 619 } 620 return false; 621 } 622 623 624 ByteOrder 625 ObjectFileMachO::GetByteOrder () const 626 { 627 return m_data.GetByteOrder (); 628 } 629 630 bool 631 ObjectFileMachO::IsExecutable() const 632 { 633 return m_header.filetype == HeaderFileTypeExecutable; 634 } 635 636 uint32_t 637 ObjectFileMachO::GetAddressByteSize () const 638 { 639 return m_data.GetAddressByteSize (); 640 } 641 642 AddressClass 643 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 644 { 645 Symtab *symtab = GetSymtab(); 646 if (symtab) 647 { 648 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 649 if (symbol) 650 { 651 if (symbol->ValueIsAddress()) 652 { 653 SectionSP section_sp (symbol->GetAddress().GetSection()); 654 if (section_sp) 655 { 656 const SectionType section_type = section_sp->GetType(); 657 switch (section_type) 658 { 659 case eSectionTypeInvalid: return eAddressClassUnknown; 660 case eSectionTypeCode: 661 if (m_header.cputype == llvm::MachO::CPUTypeARM) 662 { 663 // For ARM we have a bit in the n_desc field of the symbol 664 // that tells us ARM/Thumb which is bit 0x0008. 665 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 666 return eAddressClassCodeAlternateISA; 667 } 668 return eAddressClassCode; 669 670 case eSectionTypeContainer: return eAddressClassUnknown; 671 case eSectionTypeData: 672 case eSectionTypeDataCString: 673 case eSectionTypeDataCStringPointers: 674 case eSectionTypeDataSymbolAddress: 675 case eSectionTypeData4: 676 case eSectionTypeData8: 677 case eSectionTypeData16: 678 case eSectionTypeDataPointers: 679 case eSectionTypeZeroFill: 680 case eSectionTypeDataObjCMessageRefs: 681 case eSectionTypeDataObjCCFStrings: 682 return eAddressClassData; 683 case eSectionTypeDebug: 684 case eSectionTypeDWARFDebugAbbrev: 685 case eSectionTypeDWARFDebugAranges: 686 case eSectionTypeDWARFDebugFrame: 687 case eSectionTypeDWARFDebugInfo: 688 case eSectionTypeDWARFDebugLine: 689 case eSectionTypeDWARFDebugLoc: 690 case eSectionTypeDWARFDebugMacInfo: 691 case eSectionTypeDWARFDebugPubNames: 692 case eSectionTypeDWARFDebugPubTypes: 693 case eSectionTypeDWARFDebugRanges: 694 case eSectionTypeDWARFDebugStr: 695 case eSectionTypeDWARFAppleNames: 696 case eSectionTypeDWARFAppleTypes: 697 case eSectionTypeDWARFAppleNamespaces: 698 case eSectionTypeDWARFAppleObjC: 699 return eAddressClassDebug; 700 case eSectionTypeEHFrame: return eAddressClassRuntime; 701 case eSectionTypeOther: return eAddressClassUnknown; 702 } 703 } 704 } 705 706 const SymbolType symbol_type = symbol->GetType(); 707 switch (symbol_type) 708 { 709 case eSymbolTypeAny: return eAddressClassUnknown; 710 case eSymbolTypeAbsolute: return eAddressClassUnknown; 711 712 case eSymbolTypeCode: 713 case eSymbolTypeTrampoline: 714 if (m_header.cputype == llvm::MachO::CPUTypeARM) 715 { 716 // For ARM we have a bit in the n_desc field of the symbol 717 // that tells us ARM/Thumb which is bit 0x0008. 718 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 719 return eAddressClassCodeAlternateISA; 720 } 721 return eAddressClassCode; 722 723 case eSymbolTypeData: return eAddressClassData; 724 case eSymbolTypeRuntime: return eAddressClassRuntime; 725 case eSymbolTypeException: return eAddressClassRuntime; 726 case eSymbolTypeSourceFile: return eAddressClassDebug; 727 case eSymbolTypeHeaderFile: return eAddressClassDebug; 728 case eSymbolTypeObjectFile: return eAddressClassDebug; 729 case eSymbolTypeCommonBlock: return eAddressClassDebug; 730 case eSymbolTypeBlock: return eAddressClassDebug; 731 case eSymbolTypeLocal: return eAddressClassData; 732 case eSymbolTypeParam: return eAddressClassData; 733 case eSymbolTypeVariable: return eAddressClassData; 734 case eSymbolTypeVariableType: return eAddressClassDebug; 735 case eSymbolTypeLineEntry: return eAddressClassDebug; 736 case eSymbolTypeLineHeader: return eAddressClassDebug; 737 case eSymbolTypeScopeBegin: return eAddressClassDebug; 738 case eSymbolTypeScopeEnd: return eAddressClassDebug; 739 case eSymbolTypeAdditional: return eAddressClassUnknown; 740 case eSymbolTypeCompiler: return eAddressClassDebug; 741 case eSymbolTypeInstrumentation:return eAddressClassDebug; 742 case eSymbolTypeUndefined: return eAddressClassUnknown; 743 case eSymbolTypeObjCClass: return eAddressClassRuntime; 744 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 745 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 746 } 747 } 748 } 749 return eAddressClassUnknown; 750 } 751 752 Symtab * 753 ObjectFileMachO::GetSymtab() 754 { 755 ModuleSP module_sp(GetModule()); 756 if (module_sp) 757 { 758 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 759 if (m_symtab_ap.get() == NULL) 760 { 761 m_symtab_ap.reset(new Symtab(this)); 762 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 763 ParseSymtab (true); 764 m_symtab_ap->Finalize (); 765 } 766 } 767 return m_symtab_ap.get(); 768 } 769 770 771 SectionList * 772 ObjectFileMachO::GetSectionList() 773 { 774 ModuleSP module_sp(GetModule()); 775 if (module_sp) 776 { 777 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 778 if (m_sections_ap.get() == NULL) 779 { 780 m_sections_ap.reset(new SectionList()); 781 ParseSections(); 782 } 783 } 784 return m_sections_ap.get(); 785 } 786 787 788 size_t 789 ObjectFileMachO::ParseSections () 790 { 791 lldb::user_id_t segID = 0; 792 lldb::user_id_t sectID = 0; 793 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 794 uint32_t i; 795 const bool is_core = GetType() == eTypeCoreFile; 796 //bool dump_sections = false; 797 ModuleSP module_sp (GetModule()); 798 // First look up any LC_ENCRYPTION_INFO load commands 799 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 800 EncryptedFileRanges encrypted_file_ranges; 801 encryption_info_command encryption_cmd; 802 for (i=0; i<m_header.ncmds; ++i) 803 { 804 const lldb::offset_t load_cmd_offset = offset; 805 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 806 break; 807 808 if (encryption_cmd.cmd == LoadCommandEncryptionInfo) 809 { 810 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 811 { 812 if (encryption_cmd.cryptid != 0) 813 { 814 EncryptedFileRanges::Entry entry; 815 entry.SetRangeBase(encryption_cmd.cryptoff); 816 entry.SetByteSize(encryption_cmd.cryptsize); 817 encrypted_file_ranges.Append(entry); 818 } 819 } 820 } 821 offset = load_cmd_offset + encryption_cmd.cmdsize; 822 } 823 824 offset = MachHeaderSizeFromMagic(m_header.magic); 825 826 struct segment_command_64 load_cmd; 827 for (i=0; i<m_header.ncmds; ++i) 828 { 829 const lldb::offset_t load_cmd_offset = offset; 830 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 831 break; 832 833 if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64) 834 { 835 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 836 { 837 load_cmd.vmaddr = m_data.GetAddress(&offset); 838 load_cmd.vmsize = m_data.GetAddress(&offset); 839 load_cmd.fileoff = m_data.GetAddress(&offset); 840 load_cmd.filesize = m_data.GetAddress(&offset); 841 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 842 { 843 844 const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0; 845 846 // Keep a list of mach segments around in case we need to 847 // get at data that isn't stored in the abstracted Sections. 848 m_mach_segments.push_back (load_cmd); 849 850 ConstString segment_name (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 851 // Use a segment ID of the segment index shifted left by 8 so they 852 // never conflict with any of the sections. 853 SectionSP segment_sp; 854 if (segment_name || is_core) 855 { 856 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 857 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 858 segment_name, // Name of this section 859 eSectionTypeContainer, // This section is a container of other sections. 860 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 861 load_cmd.vmsize, // VM size in bytes of this section 862 load_cmd.fileoff, // Offset to the data for this section in the file 863 load_cmd.filesize, // Size in bytes of this section as found in the the file 864 load_cmd.flags)); // Flags for this section 865 866 segment_sp->SetIsEncrypted (segment_is_encrypted); 867 m_sections_ap->AddSection(segment_sp); 868 } 869 870 struct section_64 sect64; 871 ::memset (§64, 0, sizeof(sect64)); 872 // Push a section into our mach sections for the section at 873 // index zero (NListSectionNoSection) if we don't have any 874 // mach sections yet... 875 if (m_mach_sections.empty()) 876 m_mach_sections.push_back(sect64); 877 uint32_t segment_sect_idx; 878 const lldb::user_id_t first_segment_sectID = sectID + 1; 879 880 881 const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8; 882 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 883 { 884 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 885 break; 886 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 887 break; 888 sect64.addr = m_data.GetAddress(&offset); 889 sect64.size = m_data.GetAddress(&offset); 890 891 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 892 break; 893 894 // Keep a list of mach sections around in case we need to 895 // get at data that isn't stored in the abstracted Sections. 896 m_mach_sections.push_back (sect64); 897 898 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 899 if (!segment_name) 900 { 901 // We have a segment with no name so we need to conjure up 902 // segments that correspond to the section's segname if there 903 // isn't already such a section. If there is such a section, 904 // we resize the section so that it spans all sections. 905 // We also mark these sections as fake so address matches don't 906 // hit if they land in the gaps between the child sections. 907 segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 908 segment_sp = m_sections_ap->FindSectionByName (segment_name); 909 if (segment_sp.get()) 910 { 911 Section *segment = segment_sp.get(); 912 // Grow the section size as needed. 913 const lldb::addr_t sect64_min_addr = sect64.addr; 914 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 915 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 916 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 917 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 918 if (sect64_min_addr >= curr_seg_min_addr) 919 { 920 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 921 // Only grow the section size if needed 922 if (new_seg_byte_size > curr_seg_byte_size) 923 segment->SetByteSize (new_seg_byte_size); 924 } 925 else 926 { 927 // We need to change the base address of the segment and 928 // adjust the child section offsets for all existing children. 929 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 930 segment->Slide(slide_amount, false); 931 segment->GetChildren().Slide(-slide_amount, false); 932 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 933 } 934 935 // Grow the section size as needed. 936 if (sect64.offset) 937 { 938 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 939 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 940 941 const lldb::addr_t section_min_file_offset = sect64.offset; 942 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 943 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 944 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 945 segment->SetFileOffset (new_file_offset); 946 segment->SetFileSize (new_file_size); 947 } 948 } 949 else 950 { 951 // Create a fake section for the section's named segment 952 segment_sp.reset(new Section (segment_sp, // Parent section 953 module_sp, // Module to which this section belongs 954 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 955 segment_name, // Name of this section 956 eSectionTypeContainer, // This section is a container of other sections. 957 sect64.addr, // File VM address == addresses as they are found in the object file 958 sect64.size, // VM size in bytes of this section 959 sect64.offset, // Offset to the data for this section in the file 960 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file 961 load_cmd.flags)); // Flags for this section 962 segment_sp->SetIsFake(true); 963 m_sections_ap->AddSection(segment_sp); 964 segment_sp->SetIsEncrypted (segment_is_encrypted); 965 } 966 } 967 assert (segment_sp.get()); 968 969 uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType; 970 static ConstString g_sect_name_objc_data ("__objc_data"); 971 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 972 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 973 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 974 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 975 static ConstString g_sect_name_objc_const ("__objc_const"); 976 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 977 static ConstString g_sect_name_cfstring ("__cfstring"); 978 979 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 980 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 981 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 982 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 983 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 984 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 985 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 986 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 987 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 988 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 989 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 990 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 991 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 992 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 993 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 994 static ConstString g_sect_name_eh_frame ("__eh_frame"); 995 static ConstString g_sect_name_DATA ("__DATA"); 996 static ConstString g_sect_name_TEXT ("__TEXT"); 997 998 SectionType sect_type = eSectionTypeOther; 999 1000 if (section_name == g_sect_name_dwarf_debug_abbrev) 1001 sect_type = eSectionTypeDWARFDebugAbbrev; 1002 else if (section_name == g_sect_name_dwarf_debug_aranges) 1003 sect_type = eSectionTypeDWARFDebugAranges; 1004 else if (section_name == g_sect_name_dwarf_debug_frame) 1005 sect_type = eSectionTypeDWARFDebugFrame; 1006 else if (section_name == g_sect_name_dwarf_debug_info) 1007 sect_type = eSectionTypeDWARFDebugInfo; 1008 else if (section_name == g_sect_name_dwarf_debug_line) 1009 sect_type = eSectionTypeDWARFDebugLine; 1010 else if (section_name == g_sect_name_dwarf_debug_loc) 1011 sect_type = eSectionTypeDWARFDebugLoc; 1012 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1013 sect_type = eSectionTypeDWARFDebugMacInfo; 1014 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1015 sect_type = eSectionTypeDWARFDebugPubNames; 1016 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1017 sect_type = eSectionTypeDWARFDebugPubTypes; 1018 else if (section_name == g_sect_name_dwarf_debug_ranges) 1019 sect_type = eSectionTypeDWARFDebugRanges; 1020 else if (section_name == g_sect_name_dwarf_debug_str) 1021 sect_type = eSectionTypeDWARFDebugStr; 1022 else if (section_name == g_sect_name_dwarf_apple_names) 1023 sect_type = eSectionTypeDWARFAppleNames; 1024 else if (section_name == g_sect_name_dwarf_apple_types) 1025 sect_type = eSectionTypeDWARFAppleTypes; 1026 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1027 sect_type = eSectionTypeDWARFAppleNamespaces; 1028 else if (section_name == g_sect_name_dwarf_apple_objc) 1029 sect_type = eSectionTypeDWARFAppleObjC; 1030 else if (section_name == g_sect_name_objc_selrefs) 1031 sect_type = eSectionTypeDataCStringPointers; 1032 else if (section_name == g_sect_name_objc_msgrefs) 1033 sect_type = eSectionTypeDataObjCMessageRefs; 1034 else if (section_name == g_sect_name_eh_frame) 1035 sect_type = eSectionTypeEHFrame; 1036 else if (section_name == g_sect_name_cfstring) 1037 sect_type = eSectionTypeDataObjCCFStrings; 1038 else if (section_name == g_sect_name_objc_data || 1039 section_name == g_sect_name_objc_classrefs || 1040 section_name == g_sect_name_objc_superrefs || 1041 section_name == g_sect_name_objc_const || 1042 section_name == g_sect_name_objc_classlist) 1043 { 1044 sect_type = eSectionTypeDataPointers; 1045 } 1046 1047 if (sect_type == eSectionTypeOther) 1048 { 1049 switch (mach_sect_type) 1050 { 1051 // TODO: categorize sections by other flags for regular sections 1052 case SectionTypeRegular: 1053 if (segment_sp->GetName() == g_sect_name_TEXT) 1054 sect_type = eSectionTypeCode; 1055 else if (segment_sp->GetName() == g_sect_name_DATA) 1056 sect_type = eSectionTypeData; 1057 else 1058 sect_type = eSectionTypeOther; 1059 break; 1060 case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break; 1061 case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1062 case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1063 case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1064 case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1065 case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1066 case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1067 case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1068 case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1069 case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1070 case SectionTypeCoalesced: sect_type = eSectionTypeOther; break; 1071 case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break; 1072 case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1073 case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1074 case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break; 1075 case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break; 1076 default: break; 1077 } 1078 } 1079 1080 SectionSP section_sp(new Section (segment_sp, 1081 module_sp, 1082 ++sectID, 1083 section_name, 1084 sect_type, 1085 sect64.addr - segment_sp->GetFileAddress(), 1086 sect64.size, 1087 sect64.offset, 1088 sect64.offset == 0 ? 0 : sect64.size, 1089 sect64.flags)); 1090 // Set the section to be encrypted to match the segment 1091 1092 bool section_is_encrypted = false; 1093 if (!segment_is_encrypted && load_cmd.filesize != 0) 1094 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1095 1096 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1097 segment_sp->GetChildren().AddSection(section_sp); 1098 1099 if (segment_sp->IsFake()) 1100 { 1101 segment_sp.reset(); 1102 segment_name.Clear(); 1103 } 1104 } 1105 if (segment_sp && m_header.filetype == HeaderFileTypeDSYM) 1106 { 1107 if (first_segment_sectID <= sectID) 1108 { 1109 lldb::user_id_t sect_uid; 1110 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1111 { 1112 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1113 SectionSP next_section_sp; 1114 if (sect_uid + 1 <= sectID) 1115 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1116 1117 if (curr_section_sp.get()) 1118 { 1119 if (curr_section_sp->GetByteSize() == 0) 1120 { 1121 if (next_section_sp.get() != NULL) 1122 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1123 else 1124 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1125 } 1126 } 1127 } 1128 } 1129 } 1130 } 1131 } 1132 } 1133 else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo) 1134 { 1135 m_dysymtab.cmd = load_cmd.cmd; 1136 m_dysymtab.cmdsize = load_cmd.cmdsize; 1137 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1138 } 1139 1140 offset = load_cmd_offset + load_cmd.cmdsize; 1141 } 1142 // if (dump_sections) 1143 // { 1144 // StreamFile s(stdout); 1145 // m_sections_ap->Dump(&s, true); 1146 // } 1147 return sectID; // Return the number of sections we registered with the module 1148 } 1149 1150 class MachSymtabSectionInfo 1151 { 1152 public: 1153 1154 MachSymtabSectionInfo (SectionList *section_list) : 1155 m_section_list (section_list), 1156 m_section_infos() 1157 { 1158 // Get the number of sections down to a depth of 1 to include 1159 // all segments and their sections, but no other sections that 1160 // may be added for debug map or 1161 m_section_infos.resize(section_list->GetNumSections(1)); 1162 } 1163 1164 1165 SectionSP 1166 GetSection (uint8_t n_sect, addr_t file_addr) 1167 { 1168 if (n_sect == 0) 1169 return SectionSP(); 1170 if (n_sect < m_section_infos.size()) 1171 { 1172 if (!m_section_infos[n_sect].section_sp) 1173 { 1174 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1175 m_section_infos[n_sect].section_sp = section_sp; 1176 if (section_sp) 1177 { 1178 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1179 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1180 } 1181 else 1182 { 1183 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1184 } 1185 } 1186 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1187 { 1188 // Symbol is in section. 1189 return m_section_infos[n_sect].section_sp; 1190 } 1191 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1192 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1193 { 1194 // Symbol is in section with zero size, but has the same start 1195 // address as the section. This can happen with linker symbols 1196 // (symbols that start with the letter 'l' or 'L'. 1197 return m_section_infos[n_sect].section_sp; 1198 } 1199 } 1200 return m_section_list->FindSectionContainingFileAddress(file_addr); 1201 } 1202 1203 protected: 1204 struct SectionInfo 1205 { 1206 SectionInfo () : 1207 vm_range(), 1208 section_sp () 1209 { 1210 } 1211 1212 VMRange vm_range; 1213 SectionSP section_sp; 1214 }; 1215 SectionList *m_section_list; 1216 std::vector<SectionInfo> m_section_infos; 1217 }; 1218 1219 size_t 1220 ObjectFileMachO::ParseSymtab (bool minimize) 1221 { 1222 Timer scoped_timer(__PRETTY_FUNCTION__, 1223 "ObjectFileMachO::ParseSymtab () module = %s", 1224 m_file.GetFilename().AsCString("")); 1225 ModuleSP module_sp (GetModule()); 1226 if (!module_sp) 1227 return 0; 1228 1229 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 1230 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 1231 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 1232 FunctionStarts function_starts; 1233 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1234 uint32_t i; 1235 1236 LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 1237 1238 for (i=0; i<m_header.ncmds; ++i) 1239 { 1240 const lldb::offset_t cmd_offset = offset; 1241 // Read in the load command and load command size 1242 struct load_command lc; 1243 if (m_data.GetU32(&offset, &lc, 2) == NULL) 1244 break; 1245 // Watch for the symbol table load command 1246 switch (lc.cmd) 1247 { 1248 case LoadCommandSymtab: 1249 symtab_load_command.cmd = lc.cmd; 1250 symtab_load_command.cmdsize = lc.cmdsize; 1251 // Read in the rest of the symtab load command 1252 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 1253 return 0; 1254 if (symtab_load_command.symoff == 0) 1255 { 1256 if (log) 1257 module_sp->LogMessage(log.get(), "LC_SYMTAB.symoff == 0"); 1258 return 0; 1259 } 1260 1261 if (symtab_load_command.stroff == 0) 1262 { 1263 if (log) 1264 module_sp->LogMessage(log.get(), "LC_SYMTAB.stroff == 0"); 1265 return 0; 1266 } 1267 1268 if (symtab_load_command.nsyms == 0) 1269 { 1270 if (log) 1271 module_sp->LogMessage(log.get(), "LC_SYMTAB.nsyms == 0"); 1272 return 0; 1273 } 1274 1275 if (symtab_load_command.strsize == 0) 1276 { 1277 if (log) 1278 module_sp->LogMessage(log.get(), "LC_SYMTAB.strsize == 0"); 1279 return 0; 1280 } 1281 break; 1282 1283 case LoadCommandFunctionStarts: 1284 function_starts_load_command.cmd = lc.cmd; 1285 function_starts_load_command.cmdsize = lc.cmdsize; 1286 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 1287 bzero (&function_starts_load_command, sizeof(function_starts_load_command)); 1288 break; 1289 1290 default: 1291 break; 1292 } 1293 offset = cmd_offset + lc.cmdsize; 1294 } 1295 1296 if (symtab_load_command.cmd) 1297 { 1298 Symtab *symtab = m_symtab_ap.get(); 1299 SectionList *section_list = GetSectionList(); 1300 if (section_list == NULL) 1301 return 0; 1302 1303 ProcessSP process_sp (m_process_wp.lock()); 1304 Process *process = process_sp.get(); 1305 1306 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 1307 const ByteOrder byte_order = m_data.GetByteOrder(); 1308 bool bit_width_32 = addr_byte_size == 4; 1309 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 1310 1311 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 1312 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 1313 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 1314 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 1315 1316 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 1317 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 1318 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 1319 if (process) 1320 { 1321 Target &target = process->GetTarget(); 1322 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 1323 // Reading mach file from memory in a process or core file... 1324 1325 if (linkedit_section_sp) 1326 { 1327 const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 1328 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 1329 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 1330 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 1331 1332 bool data_was_read = false; 1333 1334 #if defined (__APPLE__) && defined (__arm__) 1335 if (m_header.flags & 0x80000000u) 1336 { 1337 // This mach-o memory file is in the dyld shared cache. If this 1338 // program is not remote and this is iOS, then this process will 1339 // share the same shared cache as the process we are debugging and 1340 // we can read the entire __LINKEDIT from the address space in this 1341 // process. This is a needed optimization that is used for local iOS 1342 // debugging only since all shared libraries in the shared cache do 1343 // not have corresponding files that exist in the file system of the 1344 // device. They have been combined into a single file. This means we 1345 // always have to load these files from memory. All of the symbol and 1346 // string tables from all of the __LINKEDIT sections from the shared 1347 // libraries in the shared cache have been merged into a single large 1348 // symbol and string table. Reading all of this symbol and string table 1349 // data across can slow down debug launch times, so we optimize this by 1350 // reading the memory for the __LINKEDIT section from this process. 1351 PlatformSP platform_sp (target.GetPlatform()); 1352 if (platform_sp && platform_sp->IsHost()) 1353 { 1354 data_was_read = true; 1355 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 1356 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 1357 if (function_starts_load_command.cmd) 1358 { 1359 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1360 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 1361 } 1362 } 1363 } 1364 #endif 1365 1366 if (!data_was_read) 1367 { 1368 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 1369 if (nlist_data_sp) 1370 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 1371 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 1372 //if (strtab_data_sp) 1373 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 1374 if (m_dysymtab.nindirectsyms != 0) 1375 { 1376 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 1377 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 1378 if (indirect_syms_data_sp) 1379 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 1380 } 1381 if (function_starts_load_command.cmd) 1382 { 1383 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1384 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 1385 if (func_start_data_sp) 1386 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 1387 } 1388 } 1389 } 1390 } 1391 else 1392 { 1393 nlist_data.SetData (m_data, 1394 symtab_load_command.symoff, 1395 nlist_data_byte_size); 1396 strtab_data.SetData (m_data, 1397 symtab_load_command.stroff, 1398 strtab_data_byte_size); 1399 if (m_dysymtab.nindirectsyms != 0) 1400 { 1401 indirect_symbol_index_data.SetData (m_data, 1402 m_dysymtab.indirectsymoff, 1403 m_dysymtab.nindirectsyms * 4); 1404 } 1405 if (function_starts_load_command.cmd) 1406 { 1407 function_starts_data.SetData (m_data, 1408 function_starts_load_command.dataoff, 1409 function_starts_load_command.datasize); 1410 } 1411 } 1412 1413 if (nlist_data.GetByteSize() == 0) 1414 { 1415 if (log) 1416 module_sp->LogMessage(log.get(), "failed to read nlist data"); 1417 return 0; 1418 } 1419 1420 1421 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 1422 if (!have_strtab_data) 1423 { 1424 if (process) 1425 { 1426 if (strtab_addr == LLDB_INVALID_ADDRESS) 1427 { 1428 if (log) 1429 module_sp->LogMessage(log.get(), "failed to locate the strtab in memory"); 1430 return 0; 1431 } 1432 } 1433 else 1434 { 1435 if (log) 1436 module_sp->LogMessage(log.get(), "failed to read strtab data"); 1437 return 0; 1438 } 1439 } 1440 1441 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 1442 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 1443 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 1444 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 1445 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 1446 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 1447 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 1448 SectionSP eh_frame_section_sp; 1449 if (text_section_sp.get()) 1450 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 1451 else 1452 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 1453 1454 const bool is_arm = (m_header.cputype == llvm::MachO::CPUTypeARM); 1455 if (text_section_sp && function_starts_data.GetByteSize()) 1456 { 1457 FunctionStarts::Entry function_start_entry; 1458 function_start_entry.data = false; 1459 lldb::offset_t function_start_offset = 0; 1460 function_start_entry.addr = text_section_sp->GetFileAddress(); 1461 uint64_t delta; 1462 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 1463 { 1464 // Now append the current entry 1465 function_start_entry.addr += delta; 1466 function_starts.Append(function_start_entry); 1467 } 1468 } 1469 1470 const size_t function_starts_count = function_starts.GetSize(); 1471 1472 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection; 1473 1474 lldb::offset_t nlist_data_offset = 0; 1475 1476 uint32_t N_SO_index = UINT32_MAX; 1477 1478 MachSymtabSectionInfo section_info (section_list); 1479 std::vector<uint32_t> N_FUN_indexes; 1480 std::vector<uint32_t> N_NSYM_indexes; 1481 std::vector<uint32_t> N_INCL_indexes; 1482 std::vector<uint32_t> N_BRAC_indexes; 1483 std::vector<uint32_t> N_COMM_indexes; 1484 typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap; 1485 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 1486 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 1487 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 1488 // Any symbols that get merged into another will get an entry 1489 // in this map so we know 1490 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 1491 uint32_t nlist_idx = 0; 1492 Symbol *symbol_ptr = NULL; 1493 1494 uint32_t sym_idx = 0; 1495 Symbol *sym = NULL; 1496 size_t num_syms = 0; 1497 std::string memory_symbol_name; 1498 uint32_t unmapped_local_symbols_found = 0; 1499 1500 #if defined (__APPLE__) && defined (__arm__) 1501 1502 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 1503 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 1504 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 1505 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 1506 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 1507 // nlist parser to ignore all LOCAL symbols. 1508 1509 if (m_header.flags & 0x80000000u) 1510 { 1511 // Before we can start mapping the DSC, we need to make certain the target process is actually 1512 // using the cache we can find. 1513 1514 /* 1515 * TODO (FIXME!) 1516 * 1517 * Consider the case of testing with a separate DSC file. 1518 * If we go through the normal code paths, we will give symbols for the wrong DSC, and 1519 * that is bad. We need to read the target process' all_image_infos struct, and look 1520 * at the values of the processDetachedFromSharedRegion field. If that is set, we should skip 1521 * this code section. 1522 */ 1523 1524 // Next we need to determine the correct path for the dyld shared cache. 1525 1526 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 1527 char dsc_path[PATH_MAX]; 1528 1529 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 1530 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 1531 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 1532 header_arch.GetArchitectureName()); 1533 1534 FileSpec dsc_filespec(dsc_path, false); 1535 1536 // We need definitions of two structures in the on-disk DSC, copy them here manually 1537 struct lldb_copy_dyld_cache_header 1538 { 1539 char magic[16]; 1540 uint32_t mappingOffset; 1541 uint32_t mappingCount; 1542 uint32_t imagesOffset; 1543 uint32_t imagesCount; 1544 uint64_t dyldBaseAddress; 1545 uint64_t codeSignatureOffset; 1546 uint64_t codeSignatureSize; 1547 uint64_t slideInfoOffset; 1548 uint64_t slideInfoSize; 1549 uint64_t localSymbolsOffset; 1550 uint64_t localSymbolsSize; 1551 }; 1552 struct lldb_copy_dyld_cache_local_symbols_info 1553 { 1554 uint32_t nlistOffset; 1555 uint32_t nlistCount; 1556 uint32_t stringsOffset; 1557 uint32_t stringsSize; 1558 uint32_t entriesOffset; 1559 uint32_t entriesCount; 1560 }; 1561 struct lldb_copy_dyld_cache_local_symbols_entry 1562 { 1563 uint32_t dylibOffset; 1564 uint32_t nlistStartIndex; 1565 uint32_t nlistCount; 1566 }; 1567 1568 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 1569 The dyld_cache_local_symbols_info structure gives us three things: 1570 1. The start and count of the nlist records in the dyld_shared_cache file 1571 2. The start and size of the strings for these nlist records 1572 3. The start and count of dyld_cache_local_symbols_entry entries 1573 1574 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 1575 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 1576 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 1577 and the count of how many nlist records there are for this dylib/framework. 1578 */ 1579 1580 // Process the dsc header to find the unmapped symbols 1581 // 1582 // Save some VM space, do not map the entire cache in one shot. 1583 1584 if (DataBufferSP dsc_data_sp = dsc_filespec.MemoryMapFileContents(0, sizeof(struct lldb_copy_dyld_cache_header))) 1585 { 1586 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 1587 1588 lldb::offset_t offset = offsetof (struct lldb_copy_dyld_cache_header, mappingOffset); 1589 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 1590 1591 // If the mappingOffset points to a location inside the header, we've 1592 // opened an old dyld shared cache, and should not proceed further. 1593 if (mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header)) 1594 { 1595 1596 offset = offsetof (struct lldb_copy_dyld_cache_header, localSymbolsOffset); 1597 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 1598 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 1599 1600 if (localSymbolsOffset && localSymbolsSize) 1601 { 1602 // Map the local symbols 1603 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContents(localSymbolsOffset, localSymbolsSize)) 1604 { 1605 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 1606 1607 offset = 0; 1608 1609 // Read the local_symbols_infos struct in one shot 1610 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 1611 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 1612 1613 // The local_symbols_infos offsets are offsets into local symbols memory, NOT file offsets! 1614 // We first need to identify the local "entry" that matches the current header. 1615 // The "entry" is stored as a file offset in the dyld_shared_cache, so we need to 1616 // adjust the raw m_header value by slide and 0x30000000. 1617 1618 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 1619 1620 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - 0x30000000); 1621 1622 offset = local_symbols_info.entriesOffset; 1623 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 1624 { 1625 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 1626 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 1627 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 1628 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 1629 1630 if (header_file_offset == local_symbols_entry.dylibOffset) 1631 { 1632 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 1633 1634 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 1635 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 1636 num_syms = symtab->GetNumSymbols(); 1637 1638 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 1639 uint32_t string_table_offset = local_symbols_info.stringsOffset; 1640 1641 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 1642 { 1643 ///////////////////////////// 1644 { 1645 struct nlist_64 nlist; 1646 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 1647 break; 1648 1649 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 1650 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 1651 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 1652 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 1653 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 1654 1655 SymbolType type = eSymbolTypeInvalid; 1656 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 1657 1658 if (symbol_name == NULL) 1659 { 1660 // No symbol should be NULL, even the symbols with no 1661 // string values should have an offset zero which points 1662 // to an empty C-string 1663 Host::SystemLog (Host::eSystemLogError, 1664 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n", 1665 entry_index, 1666 nlist.n_strx, 1667 module_sp->GetFileSpec().GetDirectory().GetCString(), 1668 module_sp->GetFileSpec().GetFilename().GetCString()); 1669 continue; 1670 } 1671 if (symbol_name[0] == '\0') 1672 symbol_name = NULL; 1673 1674 const char *symbol_name_non_abi_mangled = NULL; 1675 1676 SectionSP symbol_section; 1677 uint32_t symbol_byte_size = 0; 1678 bool add_nlist = true; 1679 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 1680 bool demangled_is_synthesized = false; 1681 1682 assert (sym_idx < num_syms); 1683 1684 sym[sym_idx].SetDebug (is_debug); 1685 1686 if (is_debug) 1687 { 1688 switch (nlist.n_type) 1689 { 1690 case StabGlobalSymbol: 1691 // N_GSYM -- global symbol: name,,NO_SECT,type,0 1692 // Sometimes the N_GSYM value contains the address. 1693 1694 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 1695 // have the same address, but we want to ensure that we always find only the real symbol, 1696 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 1697 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 1698 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 1699 // same address. 1700 1701 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 1702 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 1703 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 1704 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 1705 add_nlist = false; 1706 else 1707 { 1708 sym[sym_idx].SetExternal(true); 1709 if (nlist.n_value != 0) 1710 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1711 type = eSymbolTypeData; 1712 } 1713 break; 1714 1715 case StabFunctionName: 1716 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 1717 type = eSymbolTypeCompiler; 1718 break; 1719 1720 case StabFunction: 1721 // N_FUN -- procedure: name,,n_sect,linenumber,address 1722 if (symbol_name) 1723 { 1724 type = eSymbolTypeCode; 1725 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1726 1727 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 1728 // We use the current number of symbols in the symbol table in lieu of 1729 // using nlist_idx in case we ever start trimming entries out 1730 N_FUN_indexes.push_back(sym_idx); 1731 } 1732 else 1733 { 1734 type = eSymbolTypeCompiler; 1735 1736 if ( !N_FUN_indexes.empty() ) 1737 { 1738 // Copy the size of the function into the original STAB entry so we don't have 1739 // to hunt for it later 1740 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 1741 N_FUN_indexes.pop_back(); 1742 // We don't really need the end function STAB as it contains the size which 1743 // we already placed with the original symbol, so don't add it if we want a 1744 // minimal symbol table 1745 if (minimize) 1746 add_nlist = false; 1747 } 1748 } 1749 break; 1750 1751 case StabStaticSymbol: 1752 // N_STSYM -- static symbol: name,,n_sect,type,address 1753 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 1754 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1755 type = eSymbolTypeData; 1756 break; 1757 1758 case StabLocalCommon: 1759 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 1760 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1761 type = eSymbolTypeCommonBlock; 1762 break; 1763 1764 case StabBeginSymbol: 1765 // N_BNSYM 1766 // We use the current number of symbols in the symbol table in lieu of 1767 // using nlist_idx in case we ever start trimming entries out 1768 if (minimize) 1769 { 1770 // Skip these if we want minimal symbol tables 1771 add_nlist = false; 1772 } 1773 else 1774 { 1775 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1776 N_NSYM_indexes.push_back(sym_idx); 1777 type = eSymbolTypeScopeBegin; 1778 } 1779 break; 1780 1781 case StabEndSymbol: 1782 // N_ENSYM 1783 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 1784 // so that we can always skip the entire symbol if we need to navigate 1785 // more quickly at the source level when parsing STABS 1786 if (minimize) 1787 { 1788 // Skip these if we want minimal symbol tables 1789 add_nlist = false; 1790 } 1791 else 1792 { 1793 if ( !N_NSYM_indexes.empty() ) 1794 { 1795 symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back()); 1796 symbol_ptr->SetByteSize(sym_idx + 1); 1797 symbol_ptr->SetSizeIsSibling(true); 1798 N_NSYM_indexes.pop_back(); 1799 } 1800 type = eSymbolTypeScopeEnd; 1801 } 1802 break; 1803 1804 1805 case StabSourceFileOptions: 1806 // N_OPT - emitted with gcc2_compiled and in gcc source 1807 type = eSymbolTypeCompiler; 1808 break; 1809 1810 case StabRegisterSymbol: 1811 // N_RSYM - register sym: name,,NO_SECT,type,register 1812 type = eSymbolTypeVariable; 1813 break; 1814 1815 case StabSourceLine: 1816 // N_SLINE - src line: 0,,n_sect,linenumber,address 1817 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1818 type = eSymbolTypeLineEntry; 1819 break; 1820 1821 case StabStructureType: 1822 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 1823 type = eSymbolTypeVariableType; 1824 break; 1825 1826 case StabSourceFileName: 1827 // N_SO - source file name 1828 type = eSymbolTypeSourceFile; 1829 if (symbol_name == NULL) 1830 { 1831 if (minimize) 1832 add_nlist = false; 1833 if (N_SO_index != UINT32_MAX) 1834 { 1835 // Set the size of the N_SO to the terminating index of this N_SO 1836 // so that we can always skip the entire N_SO if we need to navigate 1837 // more quickly at the source level when parsing STABS 1838 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 1839 symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1)); 1840 symbol_ptr->SetSizeIsSibling(true); 1841 } 1842 N_NSYM_indexes.clear(); 1843 N_INCL_indexes.clear(); 1844 N_BRAC_indexes.clear(); 1845 N_COMM_indexes.clear(); 1846 N_FUN_indexes.clear(); 1847 N_SO_index = UINT32_MAX; 1848 } 1849 else 1850 { 1851 // We use the current number of symbols in the symbol table in lieu of 1852 // using nlist_idx in case we ever start trimming entries out 1853 const bool N_SO_has_full_path = symbol_name[0] == '/'; 1854 if (N_SO_has_full_path) 1855 { 1856 if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 1857 { 1858 // We have two consecutive N_SO entries where the first contains a directory 1859 // and the second contains a full path. 1860 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 1861 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 1862 add_nlist = false; 1863 } 1864 else 1865 { 1866 // This is the first entry in a N_SO that contains a directory or 1867 // a full path to the source file 1868 N_SO_index = sym_idx; 1869 } 1870 } 1871 else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 1872 { 1873 // This is usually the second N_SO entry that contains just the filename, 1874 // so here we combine it with the first one if we are minimizing the symbol table 1875 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 1876 if (so_path && so_path[0]) 1877 { 1878 std::string full_so_path (so_path); 1879 const size_t double_slash_pos = full_so_path.find("//"); 1880 if (double_slash_pos != std::string::npos) 1881 { 1882 // The linker has been generating bad N_SO entries with doubled up paths 1883 // in the format "%s%s" where the first stirng in the DW_AT_comp_dir, 1884 // and the second is the directory for the source file so you end up with 1885 // a path that looks like "/tmp/src//tmp/src/" 1886 FileSpec so_dir(so_path, false); 1887 if (!so_dir.Exists()) 1888 { 1889 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 1890 if (so_dir.Exists()) 1891 { 1892 // Trim off the incorrect path 1893 full_so_path.erase(0, double_slash_pos + 1); 1894 } 1895 } 1896 } 1897 if (*full_so_path.rbegin() != '/') 1898 full_so_path += '/'; 1899 full_so_path += symbol_name; 1900 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 1901 add_nlist = false; 1902 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 1903 } 1904 } 1905 else 1906 { 1907 // This could be a relative path to a N_SO 1908 N_SO_index = sym_idx; 1909 } 1910 } 1911 break; 1912 1913 case StabObjectFileName: 1914 // N_OSO - object file name: name,,0,0,st_mtime 1915 type = eSymbolTypeObjectFile; 1916 break; 1917 1918 case StabLocalSymbol: 1919 // N_LSYM - local sym: name,,NO_SECT,type,offset 1920 type = eSymbolTypeLocal; 1921 break; 1922 1923 //---------------------------------------------------------------------- 1924 // INCL scopes 1925 //---------------------------------------------------------------------- 1926 case StabBeginIncludeFileName: 1927 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 1928 // We use the current number of symbols in the symbol table in lieu of 1929 // using nlist_idx in case we ever start trimming entries out 1930 N_INCL_indexes.push_back(sym_idx); 1931 type = eSymbolTypeScopeBegin; 1932 break; 1933 1934 case StabEndIncludeFile: 1935 // N_EINCL - include file end: name,,NO_SECT,0,0 1936 // Set the size of the N_BINCL to the terminating index of this N_EINCL 1937 // so that we can always skip the entire symbol if we need to navigate 1938 // more quickly at the source level when parsing STABS 1939 if ( !N_INCL_indexes.empty() ) 1940 { 1941 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 1942 symbol_ptr->SetByteSize(sym_idx + 1); 1943 symbol_ptr->SetSizeIsSibling(true); 1944 N_INCL_indexes.pop_back(); 1945 } 1946 type = eSymbolTypeScopeEnd; 1947 break; 1948 1949 case StabIncludeFileName: 1950 // N_SOL - #included file name: name,,n_sect,0,address 1951 type = eSymbolTypeHeaderFile; 1952 1953 // We currently don't use the header files on darwin 1954 if (minimize) 1955 add_nlist = false; 1956 break; 1957 1958 case StabCompilerParameters: 1959 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 1960 type = eSymbolTypeCompiler; 1961 break; 1962 1963 case StabCompilerVersion: 1964 // N_VERSION - compiler version: name,,NO_SECT,0,0 1965 type = eSymbolTypeCompiler; 1966 break; 1967 1968 case StabCompilerOptLevel: 1969 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 1970 type = eSymbolTypeCompiler; 1971 break; 1972 1973 case StabParameter: 1974 // N_PSYM - parameter: name,,NO_SECT,type,offset 1975 type = eSymbolTypeVariable; 1976 break; 1977 1978 case StabAlternateEntry: 1979 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 1980 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1981 type = eSymbolTypeLineEntry; 1982 break; 1983 1984 //---------------------------------------------------------------------- 1985 // Left and Right Braces 1986 //---------------------------------------------------------------------- 1987 case StabLeftBracket: 1988 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 1989 // We use the current number of symbols in the symbol table in lieu of 1990 // using nlist_idx in case we ever start trimming entries out 1991 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1992 N_BRAC_indexes.push_back(sym_idx); 1993 type = eSymbolTypeScopeBegin; 1994 break; 1995 1996 case StabRightBracket: 1997 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 1998 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 1999 // so that we can always skip the entire symbol if we need to navigate 2000 // more quickly at the source level when parsing STABS 2001 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2002 if ( !N_BRAC_indexes.empty() ) 2003 { 2004 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 2005 symbol_ptr->SetByteSize(sym_idx + 1); 2006 symbol_ptr->SetSizeIsSibling(true); 2007 N_BRAC_indexes.pop_back(); 2008 } 2009 type = eSymbolTypeScopeEnd; 2010 break; 2011 2012 case StabDeletedIncludeFile: 2013 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 2014 type = eSymbolTypeHeaderFile; 2015 break; 2016 2017 //---------------------------------------------------------------------- 2018 // COMM scopes 2019 //---------------------------------------------------------------------- 2020 case StabBeginCommon: 2021 // N_BCOMM - begin common: name,,NO_SECT,0,0 2022 // We use the current number of symbols in the symbol table in lieu of 2023 // using nlist_idx in case we ever start trimming entries out 2024 type = eSymbolTypeScopeBegin; 2025 N_COMM_indexes.push_back(sym_idx); 2026 break; 2027 2028 case StabEndCommonLocal: 2029 // N_ECOML - end common (local name): 0,,n_sect,0,address 2030 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2031 // Fall through 2032 2033 case StabEndCommon: 2034 // N_ECOMM - end common: name,,n_sect,0,0 2035 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 2036 // so that we can always skip the entire symbol if we need to navigate 2037 // more quickly at the source level when parsing STABS 2038 if ( !N_COMM_indexes.empty() ) 2039 { 2040 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 2041 symbol_ptr->SetByteSize(sym_idx + 1); 2042 symbol_ptr->SetSizeIsSibling(true); 2043 N_COMM_indexes.pop_back(); 2044 } 2045 type = eSymbolTypeScopeEnd; 2046 break; 2047 2048 case StabLength: 2049 // N_LENG - second stab entry with length information 2050 type = eSymbolTypeAdditional; 2051 break; 2052 2053 default: break; 2054 } 2055 } 2056 else 2057 { 2058 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 2059 uint8_t n_type = NlistMaskType & nlist.n_type; 2060 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 2061 2062 switch (n_type) 2063 { 2064 case NListTypeIndirect: // N_INDR - Fall through 2065 case NListTypePreboundUndefined:// N_PBUD - Fall through 2066 case NListTypeUndefined: // N_UNDF 2067 type = eSymbolTypeUndefined; 2068 break; 2069 2070 case NListTypeAbsolute: // N_ABS 2071 type = eSymbolTypeAbsolute; 2072 break; 2073 2074 case NListTypeSection: // N_SECT 2075 { 2076 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2077 2078 if (symbol_section == NULL) 2079 { 2080 // TODO: warn about this? 2081 add_nlist = false; 2082 break; 2083 } 2084 2085 if (TEXT_eh_frame_sectID == nlist.n_sect) 2086 { 2087 type = eSymbolTypeException; 2088 } 2089 else 2090 { 2091 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 2092 2093 switch (section_type) 2094 { 2095 case SectionTypeRegular: break; // regular section 2096 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 2097 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 2098 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 2099 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 2100 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 2101 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 2102 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 2103 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 2104 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 2105 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 2106 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 2107 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 2108 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 2109 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 2110 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 2111 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 2112 default: break; 2113 } 2114 2115 if (type == eSymbolTypeInvalid) 2116 { 2117 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2118 if (symbol_section->IsDescendant (text_section_sp.get())) 2119 { 2120 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 2121 SectionAttrUserSelfModifyingCode | 2122 SectionAttrSytemSomeInstructions)) 2123 type = eSymbolTypeData; 2124 else 2125 type = eSymbolTypeCode; 2126 } 2127 else if (symbol_section->IsDescendant(data_section_sp.get())) 2128 { 2129 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 2130 { 2131 type = eSymbolTypeRuntime; 2132 2133 if (symbol_name && 2134 symbol_name[0] == '_' && 2135 symbol_name[1] == 'O' && 2136 symbol_name[2] == 'B') 2137 { 2138 llvm::StringRef symbol_name_ref(symbol_name); 2139 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2140 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2141 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2142 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2143 { 2144 symbol_name_non_abi_mangled = symbol_name + 1; 2145 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2146 type = eSymbolTypeObjCClass; 2147 demangled_is_synthesized = true; 2148 } 2149 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2150 { 2151 symbol_name_non_abi_mangled = symbol_name + 1; 2152 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2153 type = eSymbolTypeObjCMetaClass; 2154 demangled_is_synthesized = true; 2155 } 2156 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2157 { 2158 symbol_name_non_abi_mangled = symbol_name + 1; 2159 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2160 type = eSymbolTypeObjCIVar; 2161 demangled_is_synthesized = true; 2162 } 2163 } 2164 } 2165 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 2166 { 2167 type = eSymbolTypeException; 2168 } 2169 else 2170 { 2171 type = eSymbolTypeData; 2172 } 2173 } 2174 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 2175 { 2176 type = eSymbolTypeTrampoline; 2177 } 2178 else if (symbol_section->IsDescendant(objc_section_sp.get())) 2179 { 2180 type = eSymbolTypeRuntime; 2181 if (symbol_name && symbol_name[0] == '.') 2182 { 2183 llvm::StringRef symbol_name_ref(symbol_name); 2184 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 2185 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 2186 { 2187 symbol_name_non_abi_mangled = symbol_name; 2188 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 2189 type = eSymbolTypeObjCClass; 2190 demangled_is_synthesized = true; 2191 } 2192 } 2193 } 2194 } 2195 } 2196 } 2197 break; 2198 } 2199 } 2200 2201 if (add_nlist) 2202 { 2203 uint64_t symbol_value = nlist.n_value; 2204 bool symbol_name_is_mangled = false; 2205 2206 if (symbol_name_non_abi_mangled) 2207 { 2208 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 2209 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 2210 } 2211 else 2212 { 2213 if (symbol_name && symbol_name[0] == '_') 2214 { 2215 symbol_name_is_mangled = symbol_name[1] == '_'; 2216 symbol_name++; // Skip the leading underscore 2217 } 2218 2219 if (symbol_name) 2220 { 2221 sym[sym_idx].GetMangled().SetValue(ConstString(symbol_name), symbol_name_is_mangled); 2222 } 2223 } 2224 2225 if (is_debug == false) 2226 { 2227 if (type == eSymbolTypeCode) 2228 { 2229 // See if we can find a N_FUN entry for any code symbols. 2230 // If we do find a match, and the name matches, then we 2231 // can merge the two into just the function symbol to avoid 2232 // duplicate entries in the symbol table 2233 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 2234 if (pos != N_FUN_addr_to_sym_idx.end()) 2235 { 2236 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 2237 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 2238 { 2239 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 2240 // We just need the flags from the linker symbol, so put these flags 2241 // into the N_FUN flags to avoid duplicate symbols in the symbol table 2242 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2243 sym[sym_idx].Clear(); 2244 continue; 2245 } 2246 } 2247 } 2248 else if (type == eSymbolTypeData) 2249 { 2250 // See if we can find a N_STSYM entry for any data symbols. 2251 // If we do find a match, and the name matches, then we 2252 // can merge the two into just the Static symbol to avoid 2253 // duplicate entries in the symbol table 2254 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 2255 if (pos != N_STSYM_addr_to_sym_idx.end()) 2256 { 2257 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 2258 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 2259 { 2260 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 2261 // We just need the flags from the linker symbol, so put these flags 2262 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 2263 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2264 sym[sym_idx].Clear(); 2265 continue; 2266 } 2267 } 2268 } 2269 } 2270 if (symbol_section) 2271 { 2272 const addr_t section_file_addr = symbol_section->GetFileAddress(); 2273 if (symbol_byte_size == 0 && function_starts_count > 0) 2274 { 2275 addr_t symbol_lookup_file_addr = nlist.n_value; 2276 // Do an exact address match for non-ARM addresses, else get the closest since 2277 // the symbol might be a thumb symbol which has an address with bit zero set 2278 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 2279 if (is_arm && func_start_entry) 2280 { 2281 // Verify that the function start address is the symbol address (ARM) 2282 // or the symbol address + 1 (thumb) 2283 if (func_start_entry->addr != symbol_lookup_file_addr && 2284 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 2285 { 2286 // Not the right entry, NULL it out... 2287 func_start_entry = NULL; 2288 } 2289 } 2290 if (func_start_entry) 2291 { 2292 func_start_entry->data = true; 2293 2294 addr_t symbol_file_addr = func_start_entry->addr; 2295 uint32_t symbol_flags = 0; 2296 if (is_arm) 2297 { 2298 if (symbol_file_addr & 1) 2299 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 2300 symbol_file_addr &= 0xfffffffffffffffeull; 2301 } 2302 2303 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 2304 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 2305 if (next_func_start_entry) 2306 { 2307 addr_t next_symbol_file_addr = next_func_start_entry->addr; 2308 // Be sure the clear the Thumb address bit when we calculate the size 2309 // from the current and next address 2310 if (is_arm) 2311 next_symbol_file_addr &= 0xfffffffffffffffeull; 2312 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 2313 } 2314 else 2315 { 2316 symbol_byte_size = section_end_file_addr - symbol_file_addr; 2317 } 2318 } 2319 } 2320 symbol_value -= section_file_addr; 2321 } 2322 2323 sym[sym_idx].SetID (nlist_idx); 2324 sym[sym_idx].SetType (type); 2325 sym[sym_idx].GetAddress().SetSection (symbol_section); 2326 sym[sym_idx].GetAddress().SetOffset (symbol_value); 2327 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2328 2329 if (symbol_byte_size > 0) 2330 sym[sym_idx].SetByteSize(symbol_byte_size); 2331 2332 if (demangled_is_synthesized) 2333 sym[sym_idx].SetDemangledNameIsSynthesized(true); 2334 ++sym_idx; 2335 } 2336 else 2337 { 2338 sym[sym_idx].Clear(); 2339 } 2340 2341 } 2342 ///////////////////////////// 2343 } 2344 break; // No more entries to consider 2345 } 2346 } 2347 } 2348 } 2349 } 2350 } 2351 } 2352 2353 // Must reset this in case it was mutated above! 2354 nlist_data_offset = 0; 2355 #endif 2356 2357 // If the sym array was not created while parsing the DSC unmapped 2358 // symbols, create it now. 2359 if (sym == NULL) 2360 { 2361 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 2362 num_syms = symtab->GetNumSymbols(); 2363 } 2364 2365 if (unmapped_local_symbols_found) 2366 { 2367 assert(m_dysymtab.ilocalsym == 0); 2368 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 2369 nlist_idx = m_dysymtab.nlocalsym; 2370 } 2371 else 2372 { 2373 nlist_idx = 0; 2374 } 2375 2376 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 2377 { 2378 struct nlist_64 nlist; 2379 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2380 break; 2381 2382 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 2383 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 2384 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 2385 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 2386 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 2387 2388 SymbolType type = eSymbolTypeInvalid; 2389 const char *symbol_name = NULL; 2390 2391 if (have_strtab_data) 2392 { 2393 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 2394 2395 if (symbol_name == NULL) 2396 { 2397 // No symbol should be NULL, even the symbols with no 2398 // string values should have an offset zero which points 2399 // to an empty C-string 2400 Host::SystemLog (Host::eSystemLogError, 2401 "error: symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n", 2402 nlist_idx, 2403 nlist.n_strx, 2404 module_sp->GetFileSpec().GetDirectory().GetCString(), 2405 module_sp->GetFileSpec().GetFilename().GetCString()); 2406 continue; 2407 } 2408 if (symbol_name[0] == '\0') 2409 symbol_name = NULL; 2410 } 2411 else 2412 { 2413 const addr_t str_addr = strtab_addr + nlist.n_strx; 2414 Error str_error; 2415 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 2416 symbol_name = memory_symbol_name.c_str(); 2417 } 2418 const char *symbol_name_non_abi_mangled = NULL; 2419 2420 SectionSP symbol_section; 2421 lldb::addr_t symbol_byte_size = 0; 2422 bool add_nlist = true; 2423 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 2424 bool demangled_is_synthesized = false; 2425 2426 assert (sym_idx < num_syms); 2427 2428 sym[sym_idx].SetDebug (is_debug); 2429 2430 if (is_debug) 2431 { 2432 switch (nlist.n_type) 2433 { 2434 case StabGlobalSymbol: 2435 // N_GSYM -- global symbol: name,,NO_SECT,type,0 2436 // Sometimes the N_GSYM value contains the address. 2437 2438 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2439 // have the same address, but we want to ensure that we always find only the real symbol, 2440 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2441 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2442 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2443 // same address. 2444 2445 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 2446 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 2447 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 2448 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 2449 add_nlist = false; 2450 else 2451 { 2452 sym[sym_idx].SetExternal(true); 2453 if (nlist.n_value != 0) 2454 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2455 type = eSymbolTypeData; 2456 } 2457 break; 2458 2459 case StabFunctionName: 2460 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 2461 type = eSymbolTypeCompiler; 2462 break; 2463 2464 case StabFunction: 2465 // N_FUN -- procedure: name,,n_sect,linenumber,address 2466 if (symbol_name) 2467 { 2468 type = eSymbolTypeCode; 2469 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2470 2471 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 2472 // We use the current number of symbols in the symbol table in lieu of 2473 // using nlist_idx in case we ever start trimming entries out 2474 N_FUN_indexes.push_back(sym_idx); 2475 } 2476 else 2477 { 2478 type = eSymbolTypeCompiler; 2479 2480 if ( !N_FUN_indexes.empty() ) 2481 { 2482 // Copy the size of the function into the original STAB entry so we don't have 2483 // to hunt for it later 2484 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2485 N_FUN_indexes.pop_back(); 2486 // We don't really need the end function STAB as it contains the size which 2487 // we already placed with the original symbol, so don't add it if we want a 2488 // minimal symbol table 2489 if (minimize) 2490 add_nlist = false; 2491 } 2492 } 2493 break; 2494 2495 case StabStaticSymbol: 2496 // N_STSYM -- static symbol: name,,n_sect,type,address 2497 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 2498 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2499 type = eSymbolTypeData; 2500 break; 2501 2502 case StabLocalCommon: 2503 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 2504 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2505 type = eSymbolTypeCommonBlock; 2506 break; 2507 2508 case StabBeginSymbol: 2509 // N_BNSYM 2510 // We use the current number of symbols in the symbol table in lieu of 2511 // using nlist_idx in case we ever start trimming entries out 2512 if (minimize) 2513 { 2514 // Skip these if we want minimal symbol tables 2515 add_nlist = false; 2516 } 2517 else 2518 { 2519 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2520 N_NSYM_indexes.push_back(sym_idx); 2521 type = eSymbolTypeScopeBegin; 2522 } 2523 break; 2524 2525 case StabEndSymbol: 2526 // N_ENSYM 2527 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2528 // so that we can always skip the entire symbol if we need to navigate 2529 // more quickly at the source level when parsing STABS 2530 if (minimize) 2531 { 2532 // Skip these if we want minimal symbol tables 2533 add_nlist = false; 2534 } 2535 else 2536 { 2537 if ( !N_NSYM_indexes.empty() ) 2538 { 2539 symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back()); 2540 symbol_ptr->SetByteSize(sym_idx + 1); 2541 symbol_ptr->SetSizeIsSibling(true); 2542 N_NSYM_indexes.pop_back(); 2543 } 2544 type = eSymbolTypeScopeEnd; 2545 } 2546 break; 2547 2548 2549 case StabSourceFileOptions: 2550 // N_OPT - emitted with gcc2_compiled and in gcc source 2551 type = eSymbolTypeCompiler; 2552 break; 2553 2554 case StabRegisterSymbol: 2555 // N_RSYM - register sym: name,,NO_SECT,type,register 2556 type = eSymbolTypeVariable; 2557 break; 2558 2559 case StabSourceLine: 2560 // N_SLINE - src line: 0,,n_sect,linenumber,address 2561 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2562 type = eSymbolTypeLineEntry; 2563 break; 2564 2565 case StabStructureType: 2566 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 2567 type = eSymbolTypeVariableType; 2568 break; 2569 2570 case StabSourceFileName: 2571 // N_SO - source file name 2572 type = eSymbolTypeSourceFile; 2573 if (symbol_name == NULL) 2574 { 2575 if (minimize) 2576 add_nlist = false; 2577 if (N_SO_index != UINT32_MAX) 2578 { 2579 // Set the size of the N_SO to the terminating index of this N_SO 2580 // so that we can always skip the entire N_SO if we need to navigate 2581 // more quickly at the source level when parsing STABS 2582 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2583 symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1)); 2584 symbol_ptr->SetSizeIsSibling(true); 2585 } 2586 N_NSYM_indexes.clear(); 2587 N_INCL_indexes.clear(); 2588 N_BRAC_indexes.clear(); 2589 N_COMM_indexes.clear(); 2590 N_FUN_indexes.clear(); 2591 N_SO_index = UINT32_MAX; 2592 } 2593 else 2594 { 2595 // We use the current number of symbols in the symbol table in lieu of 2596 // using nlist_idx in case we ever start trimming entries out 2597 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2598 if (N_SO_has_full_path) 2599 { 2600 if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2601 { 2602 // We have two consecutive N_SO entries where the first contains a directory 2603 // and the second contains a full path. 2604 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2605 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2606 add_nlist = false; 2607 } 2608 else 2609 { 2610 // This is the first entry in a N_SO that contains a directory or 2611 // a full path to the source file 2612 N_SO_index = sym_idx; 2613 } 2614 } 2615 else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2616 { 2617 // This is usually the second N_SO entry that contains just the filename, 2618 // so here we combine it with the first one if we are minimizing the symbol table 2619 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 2620 if (so_path && so_path[0]) 2621 { 2622 std::string full_so_path (so_path); 2623 const size_t double_slash_pos = full_so_path.find("//"); 2624 if (double_slash_pos != std::string::npos) 2625 { 2626 // The linker has been generating bad N_SO entries with doubled up paths 2627 // in the format "%s%s" where the first stirng in the DW_AT_comp_dir, 2628 // and the second is the directory for the source file so you end up with 2629 // a path that looks like "/tmp/src//tmp/src/" 2630 FileSpec so_dir(so_path, false); 2631 if (!so_dir.Exists()) 2632 { 2633 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 2634 if (so_dir.Exists()) 2635 { 2636 // Trim off the incorrect path 2637 full_so_path.erase(0, double_slash_pos + 1); 2638 } 2639 } 2640 } 2641 if (*full_so_path.rbegin() != '/') 2642 full_so_path += '/'; 2643 full_so_path += symbol_name; 2644 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 2645 add_nlist = false; 2646 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2647 } 2648 } 2649 else 2650 { 2651 // This could be a relative path to a N_SO 2652 N_SO_index = sym_idx; 2653 } 2654 } 2655 2656 break; 2657 2658 case StabObjectFileName: 2659 // N_OSO - object file name: name,,0,0,st_mtime 2660 type = eSymbolTypeObjectFile; 2661 break; 2662 2663 case StabLocalSymbol: 2664 // N_LSYM - local sym: name,,NO_SECT,type,offset 2665 type = eSymbolTypeLocal; 2666 break; 2667 2668 //---------------------------------------------------------------------- 2669 // INCL scopes 2670 //---------------------------------------------------------------------- 2671 case StabBeginIncludeFileName: 2672 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 2673 // We use the current number of symbols in the symbol table in lieu of 2674 // using nlist_idx in case we ever start trimming entries out 2675 N_INCL_indexes.push_back(sym_idx); 2676 type = eSymbolTypeScopeBegin; 2677 break; 2678 2679 case StabEndIncludeFile: 2680 // N_EINCL - include file end: name,,NO_SECT,0,0 2681 // Set the size of the N_BINCL to the terminating index of this N_EINCL 2682 // so that we can always skip the entire symbol if we need to navigate 2683 // more quickly at the source level when parsing STABS 2684 if ( !N_INCL_indexes.empty() ) 2685 { 2686 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 2687 symbol_ptr->SetByteSize(sym_idx + 1); 2688 symbol_ptr->SetSizeIsSibling(true); 2689 N_INCL_indexes.pop_back(); 2690 } 2691 type = eSymbolTypeScopeEnd; 2692 break; 2693 2694 case StabIncludeFileName: 2695 // N_SOL - #included file name: name,,n_sect,0,address 2696 type = eSymbolTypeHeaderFile; 2697 2698 // We currently don't use the header files on darwin 2699 if (minimize) 2700 add_nlist = false; 2701 break; 2702 2703 case StabCompilerParameters: 2704 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 2705 type = eSymbolTypeCompiler; 2706 break; 2707 2708 case StabCompilerVersion: 2709 // N_VERSION - compiler version: name,,NO_SECT,0,0 2710 type = eSymbolTypeCompiler; 2711 break; 2712 2713 case StabCompilerOptLevel: 2714 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 2715 type = eSymbolTypeCompiler; 2716 break; 2717 2718 case StabParameter: 2719 // N_PSYM - parameter: name,,NO_SECT,type,offset 2720 type = eSymbolTypeVariable; 2721 break; 2722 2723 case StabAlternateEntry: 2724 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 2725 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2726 type = eSymbolTypeLineEntry; 2727 break; 2728 2729 //---------------------------------------------------------------------- 2730 // Left and Right Braces 2731 //---------------------------------------------------------------------- 2732 case StabLeftBracket: 2733 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 2734 // We use the current number of symbols in the symbol table in lieu of 2735 // using nlist_idx in case we ever start trimming entries out 2736 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2737 N_BRAC_indexes.push_back(sym_idx); 2738 type = eSymbolTypeScopeBegin; 2739 break; 2740 2741 case StabRightBracket: 2742 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 2743 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 2744 // so that we can always skip the entire symbol if we need to navigate 2745 // more quickly at the source level when parsing STABS 2746 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2747 if ( !N_BRAC_indexes.empty() ) 2748 { 2749 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 2750 symbol_ptr->SetByteSize(sym_idx + 1); 2751 symbol_ptr->SetSizeIsSibling(true); 2752 N_BRAC_indexes.pop_back(); 2753 } 2754 type = eSymbolTypeScopeEnd; 2755 break; 2756 2757 case StabDeletedIncludeFile: 2758 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 2759 type = eSymbolTypeHeaderFile; 2760 break; 2761 2762 //---------------------------------------------------------------------- 2763 // COMM scopes 2764 //---------------------------------------------------------------------- 2765 case StabBeginCommon: 2766 // N_BCOMM - begin common: name,,NO_SECT,0,0 2767 // We use the current number of symbols in the symbol table in lieu of 2768 // using nlist_idx in case we ever start trimming entries out 2769 type = eSymbolTypeScopeBegin; 2770 N_COMM_indexes.push_back(sym_idx); 2771 break; 2772 2773 case StabEndCommonLocal: 2774 // N_ECOML - end common (local name): 0,,n_sect,0,address 2775 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2776 // Fall through 2777 2778 case StabEndCommon: 2779 // N_ECOMM - end common: name,,n_sect,0,0 2780 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 2781 // so that we can always skip the entire symbol if we need to navigate 2782 // more quickly at the source level when parsing STABS 2783 if ( !N_COMM_indexes.empty() ) 2784 { 2785 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 2786 symbol_ptr->SetByteSize(sym_idx + 1); 2787 symbol_ptr->SetSizeIsSibling(true); 2788 N_COMM_indexes.pop_back(); 2789 } 2790 type = eSymbolTypeScopeEnd; 2791 break; 2792 2793 case StabLength: 2794 // N_LENG - second stab entry with length information 2795 type = eSymbolTypeAdditional; 2796 break; 2797 2798 default: break; 2799 } 2800 } 2801 else 2802 { 2803 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 2804 uint8_t n_type = NlistMaskType & nlist.n_type; 2805 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 2806 2807 switch (n_type) 2808 { 2809 case NListTypeIndirect: // N_INDR - Fall through 2810 case NListTypePreboundUndefined:// N_PBUD - Fall through 2811 case NListTypeUndefined: // N_UNDF 2812 type = eSymbolTypeUndefined; 2813 break; 2814 2815 case NListTypeAbsolute: // N_ABS 2816 type = eSymbolTypeAbsolute; 2817 break; 2818 2819 case NListTypeSection: // N_SECT 2820 { 2821 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2822 2823 if (!symbol_section) 2824 { 2825 // TODO: warn about this? 2826 add_nlist = false; 2827 break; 2828 } 2829 2830 if (TEXT_eh_frame_sectID == nlist.n_sect) 2831 { 2832 type = eSymbolTypeException; 2833 } 2834 else 2835 { 2836 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 2837 2838 switch (section_type) 2839 { 2840 case SectionTypeRegular: break; // regular section 2841 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 2842 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 2843 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 2844 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 2845 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 2846 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 2847 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 2848 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 2849 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 2850 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 2851 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 2852 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 2853 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 2854 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 2855 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 2856 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 2857 default: break; 2858 } 2859 2860 if (type == eSymbolTypeInvalid) 2861 { 2862 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2863 if (symbol_section->IsDescendant (text_section_sp.get())) 2864 { 2865 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 2866 SectionAttrUserSelfModifyingCode | 2867 SectionAttrSytemSomeInstructions)) 2868 type = eSymbolTypeData; 2869 else 2870 type = eSymbolTypeCode; 2871 } 2872 else 2873 if (symbol_section->IsDescendant(data_section_sp.get())) 2874 { 2875 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 2876 { 2877 type = eSymbolTypeRuntime; 2878 2879 if (symbol_name && 2880 symbol_name[0] == '_' && 2881 symbol_name[1] == 'O' && 2882 symbol_name[2] == 'B') 2883 { 2884 llvm::StringRef symbol_name_ref(symbol_name); 2885 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2886 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2887 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2888 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2889 { 2890 symbol_name_non_abi_mangled = symbol_name + 1; 2891 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2892 type = eSymbolTypeObjCClass; 2893 demangled_is_synthesized = true; 2894 } 2895 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2896 { 2897 symbol_name_non_abi_mangled = symbol_name + 1; 2898 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2899 type = eSymbolTypeObjCMetaClass; 2900 demangled_is_synthesized = true; 2901 } 2902 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2903 { 2904 symbol_name_non_abi_mangled = symbol_name + 1; 2905 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2906 type = eSymbolTypeObjCIVar; 2907 demangled_is_synthesized = true; 2908 } 2909 } 2910 } 2911 else 2912 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 2913 { 2914 type = eSymbolTypeException; 2915 } 2916 else 2917 { 2918 type = eSymbolTypeData; 2919 } 2920 } 2921 else 2922 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 2923 { 2924 type = eSymbolTypeTrampoline; 2925 } 2926 else 2927 if (symbol_section->IsDescendant(objc_section_sp.get())) 2928 { 2929 type = eSymbolTypeRuntime; 2930 if (symbol_name && symbol_name[0] == '.') 2931 { 2932 llvm::StringRef symbol_name_ref(symbol_name); 2933 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 2934 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 2935 { 2936 symbol_name_non_abi_mangled = symbol_name; 2937 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 2938 type = eSymbolTypeObjCClass; 2939 demangled_is_synthesized = true; 2940 } 2941 } 2942 } 2943 } 2944 } 2945 } 2946 break; 2947 } 2948 } 2949 2950 if (add_nlist) 2951 { 2952 uint64_t symbol_value = nlist.n_value; 2953 bool symbol_name_is_mangled = false; 2954 2955 if (symbol_name_non_abi_mangled) 2956 { 2957 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 2958 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 2959 } 2960 else 2961 { 2962 if (symbol_name && symbol_name[0] == '_') 2963 { 2964 symbol_name_is_mangled = symbol_name[1] == '_'; 2965 symbol_name++; // Skip the leading underscore 2966 } 2967 2968 if (symbol_name) 2969 { 2970 sym[sym_idx].GetMangled().SetValue(ConstString(symbol_name), symbol_name_is_mangled); 2971 } 2972 } 2973 2974 if (is_debug == false) 2975 { 2976 if (type == eSymbolTypeCode) 2977 { 2978 // See if we can find a N_FUN entry for any code symbols. 2979 // If we do find a match, and the name matches, then we 2980 // can merge the two into just the function symbol to avoid 2981 // duplicate entries in the symbol table 2982 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 2983 if (pos != N_FUN_addr_to_sym_idx.end()) 2984 { 2985 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 2986 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 2987 { 2988 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 2989 // We just need the flags from the linker symbol, so put these flags 2990 // into the N_FUN flags to avoid duplicate symbols in the symbol table 2991 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2992 sym[sym_idx].Clear(); 2993 continue; 2994 } 2995 } 2996 } 2997 else if (type == eSymbolTypeData) 2998 { 2999 // See if we can find a N_STSYM entry for any data symbols. 3000 // If we do find a match, and the name matches, then we 3001 // can merge the two into just the Static symbol to avoid 3002 // duplicate entries in the symbol table 3003 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 3004 if (pos != N_STSYM_addr_to_sym_idx.end()) 3005 { 3006 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 3007 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 3008 { 3009 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3010 // We just need the flags from the linker symbol, so put these flags 3011 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3012 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3013 sym[sym_idx].Clear(); 3014 continue; 3015 } 3016 } 3017 } 3018 } 3019 if (symbol_section) 3020 { 3021 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3022 if (symbol_byte_size == 0 && function_starts_count > 0) 3023 { 3024 addr_t symbol_lookup_file_addr = nlist.n_value; 3025 // Do an exact address match for non-ARM addresses, else get the closest since 3026 // the symbol might be a thumb symbol which has an address with bit zero set 3027 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3028 if (is_arm && func_start_entry) 3029 { 3030 // Verify that the function start address is the symbol address (ARM) 3031 // or the symbol address + 1 (thumb) 3032 if (func_start_entry->addr != symbol_lookup_file_addr && 3033 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3034 { 3035 // Not the right entry, NULL it out... 3036 func_start_entry = NULL; 3037 } 3038 } 3039 if (func_start_entry) 3040 { 3041 func_start_entry->data = true; 3042 3043 addr_t symbol_file_addr = func_start_entry->addr; 3044 if (is_arm) 3045 symbol_file_addr &= 0xfffffffffffffffeull; 3046 3047 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3048 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3049 if (next_func_start_entry) 3050 { 3051 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3052 // Be sure the clear the Thumb address bit when we calculate the size 3053 // from the current and next address 3054 if (is_arm) 3055 next_symbol_file_addr &= 0xfffffffffffffffeull; 3056 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3057 } 3058 else 3059 { 3060 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3061 } 3062 } 3063 } 3064 symbol_value -= section_file_addr; 3065 } 3066 3067 sym[sym_idx].SetID (nlist_idx); 3068 sym[sym_idx].SetType (type); 3069 sym[sym_idx].GetAddress().SetSection (symbol_section); 3070 sym[sym_idx].GetAddress().SetOffset (symbol_value); 3071 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3072 3073 if (symbol_byte_size > 0) 3074 sym[sym_idx].SetByteSize(symbol_byte_size); 3075 3076 if (demangled_is_synthesized) 3077 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3078 3079 ++sym_idx; 3080 } 3081 else 3082 { 3083 sym[sym_idx].Clear(); 3084 } 3085 3086 } 3087 3088 // STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value 3089 // is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all 3090 // such entries by figuring out what the address for the global is by looking up this non-STAB 3091 // entry and copying the value into the debug symbol's value to save us the hassle in the 3092 // debug symbol parser. 3093 3094 Symbol *global_symbol = NULL; 3095 for (nlist_idx = 0; 3096 nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL; 3097 nlist_idx++) 3098 { 3099 if (global_symbol->GetAddress().GetFileAddress() == 0) 3100 { 3101 std::vector<uint32_t> indexes; 3102 if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0) 3103 { 3104 std::vector<uint32_t>::const_iterator pos; 3105 std::vector<uint32_t>::const_iterator end = indexes.end(); 3106 for (pos = indexes.begin(); pos != end; ++pos) 3107 { 3108 symbol_ptr = symtab->SymbolAtIndex(*pos); 3109 if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false) 3110 { 3111 global_symbol->GetAddress() = symbol_ptr->GetAddress(); 3112 break; 3113 } 3114 } 3115 } 3116 } 3117 } 3118 3119 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 3120 3121 if (function_starts_count > 0) 3122 { 3123 char synthetic_function_symbol[PATH_MAX]; 3124 uint32_t num_synthetic_function_symbols = 0; 3125 for (i=0; i<function_starts_count; ++i) 3126 { 3127 if (function_starts.GetEntryRef (i).data == false) 3128 ++num_synthetic_function_symbols; 3129 } 3130 3131 if (num_synthetic_function_symbols > 0) 3132 { 3133 if (num_syms < sym_idx + num_synthetic_function_symbols) 3134 { 3135 num_syms = sym_idx + num_synthetic_function_symbols; 3136 sym = symtab->Resize (num_syms); 3137 } 3138 uint32_t synthetic_function_symbol_idx = 0; 3139 for (i=0; i<function_starts_count; ++i) 3140 { 3141 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 3142 if (func_start_entry->data == false) 3143 { 3144 addr_t symbol_file_addr = func_start_entry->addr; 3145 uint32_t symbol_flags = 0; 3146 if (is_arm) 3147 { 3148 if (symbol_file_addr & 1) 3149 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3150 symbol_file_addr &= 0xfffffffffffffffeull; 3151 } 3152 Address symbol_addr; 3153 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 3154 { 3155 SectionSP symbol_section (symbol_addr.GetSection()); 3156 uint32_t symbol_byte_size = 0; 3157 if (symbol_section) 3158 { 3159 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3160 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3161 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3162 if (next_func_start_entry) 3163 { 3164 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3165 if (is_arm) 3166 next_symbol_file_addr &= 0xfffffffffffffffeull; 3167 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3168 } 3169 else 3170 { 3171 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3172 } 3173 snprintf (synthetic_function_symbol, 3174 sizeof(synthetic_function_symbol), 3175 "___lldb_unnamed_function%u$$%s", 3176 ++synthetic_function_symbol_idx, 3177 module_sp->GetFileSpec().GetFilename().GetCString()); 3178 sym[sym_idx].SetID (synthetic_sym_id++); 3179 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 3180 sym[sym_idx].SetType (eSymbolTypeCode); 3181 sym[sym_idx].SetIsSynthetic (true); 3182 sym[sym_idx].GetAddress() = symbol_addr; 3183 if (symbol_flags) 3184 sym[sym_idx].SetFlags (symbol_flags); 3185 if (symbol_byte_size) 3186 sym[sym_idx].SetByteSize (symbol_byte_size); 3187 ++sym_idx; 3188 } 3189 } 3190 } 3191 } 3192 } 3193 } 3194 3195 // Trim our symbols down to just what we ended up with after 3196 // removing any symbols. 3197 if (sym_idx < num_syms) 3198 { 3199 num_syms = sym_idx; 3200 sym = symtab->Resize (num_syms); 3201 } 3202 3203 // Now synthesize indirect symbols 3204 if (m_dysymtab.nindirectsyms != 0) 3205 { 3206 if (indirect_symbol_index_data.GetByteSize()) 3207 { 3208 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 3209 3210 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 3211 { 3212 if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs) 3213 { 3214 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 3215 if (symbol_stub_byte_size == 0) 3216 continue; 3217 3218 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 3219 3220 if (num_symbol_stubs == 0) 3221 continue; 3222 3223 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 3224 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 3225 { 3226 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 3227 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 3228 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 3229 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 3230 { 3231 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 3232 if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal)) 3233 continue; 3234 3235 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 3236 Symbol *stub_symbol = NULL; 3237 if (index_pos != end_index_pos) 3238 { 3239 // We have a remapping from the original nlist index to 3240 // a current symbol index, so just look this up by index 3241 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 3242 } 3243 else 3244 { 3245 // We need to lookup a symbol using the original nlist 3246 // symbol index since this index is coming from the 3247 // S_SYMBOL_STUBS 3248 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 3249 } 3250 3251 if (stub_symbol) 3252 { 3253 Address so_addr(symbol_stub_addr, section_list); 3254 3255 if (stub_symbol->GetType() == eSymbolTypeUndefined) 3256 { 3257 // Change the external symbol into a trampoline that makes sense 3258 // These symbols were N_UNDF N_EXT, and are useless to us, so we 3259 // can re-use them so we don't have to make up a synthetic symbol 3260 // for no good reason. 3261 stub_symbol->SetType (eSymbolTypeTrampoline); 3262 stub_symbol->SetExternal (false); 3263 stub_symbol->GetAddress() = so_addr; 3264 stub_symbol->SetByteSize (symbol_stub_byte_size); 3265 } 3266 else 3267 { 3268 // Make a synthetic symbol to describe the trampoline stub 3269 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 3270 if (sym_idx >= num_syms) 3271 { 3272 sym = symtab->Resize (++num_syms); 3273 stub_symbol = NULL; // this pointer no longer valid 3274 } 3275 sym[sym_idx].SetID (synthetic_sym_id++); 3276 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 3277 sym[sym_idx].SetType (eSymbolTypeTrampoline); 3278 sym[sym_idx].SetIsSynthetic (true); 3279 sym[sym_idx].GetAddress() = so_addr; 3280 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 3281 ++sym_idx; 3282 } 3283 } 3284 else 3285 { 3286 if (log) 3287 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 3288 } 3289 } 3290 } 3291 } 3292 } 3293 } 3294 } 3295 return symtab->GetNumSymbols(); 3296 } 3297 return 0; 3298 } 3299 3300 3301 void 3302 ObjectFileMachO::Dump (Stream *s) 3303 { 3304 ModuleSP module_sp(GetModule()); 3305 if (module_sp) 3306 { 3307 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3308 s->Printf("%p: ", this); 3309 s->Indent(); 3310 if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped) 3311 s->PutCString("ObjectFileMachO64"); 3312 else 3313 s->PutCString("ObjectFileMachO32"); 3314 3315 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 3316 3317 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 3318 3319 if (m_sections_ap.get()) 3320 m_sections_ap->Dump(s, NULL, true, UINT32_MAX); 3321 3322 if (m_symtab_ap.get()) 3323 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 3324 } 3325 } 3326 3327 3328 bool 3329 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 3330 { 3331 ModuleSP module_sp(GetModule()); 3332 if (module_sp) 3333 { 3334 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3335 struct uuid_command load_cmd; 3336 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3337 uint32_t i; 3338 for (i=0; i<m_header.ncmds; ++i) 3339 { 3340 const lldb::offset_t cmd_offset = offset; 3341 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3342 break; 3343 3344 if (load_cmd.cmd == LoadCommandUUID) 3345 { 3346 const uint8_t *uuid_bytes = m_data.PeekData(offset, 16); 3347 3348 if (uuid_bytes) 3349 { 3350 // OpenCL on Mac OS X uses the same UUID for each of its object files. 3351 // We pretend these object files have no UUID to prevent crashing. 3352 3353 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 3354 0x3b, 0xa8, 3355 0x4b, 0x16, 3356 0xb6, 0xa4, 3357 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 3358 3359 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 3360 return false; 3361 3362 uuid->SetBytes (uuid_bytes); 3363 return true; 3364 } 3365 return false; 3366 } 3367 offset = cmd_offset + load_cmd.cmdsize; 3368 } 3369 } 3370 return false; 3371 } 3372 3373 3374 uint32_t 3375 ObjectFileMachO::GetDependentModules (FileSpecList& files) 3376 { 3377 uint32_t count = 0; 3378 ModuleSP module_sp(GetModule()); 3379 if (module_sp) 3380 { 3381 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3382 struct load_command load_cmd; 3383 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3384 const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system 3385 uint32_t i; 3386 for (i=0; i<m_header.ncmds; ++i) 3387 { 3388 const uint32_t cmd_offset = offset; 3389 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3390 break; 3391 3392 switch (load_cmd.cmd) 3393 { 3394 case LoadCommandDylibLoad: 3395 case LoadCommandDylibLoadWeak: 3396 case LoadCommandDylibReexport: 3397 case LoadCommandDynamicLinkerLoad: 3398 case LoadCommandFixedVMShlibLoad: 3399 case LoadCommandDylibLoadUpward: 3400 { 3401 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 3402 const char *path = m_data.PeekCStr(name_offset); 3403 // Skip any path that starts with '@' since these are usually: 3404 // @executable_path/.../file 3405 // @rpath/.../file 3406 if (path && path[0] != '@') 3407 { 3408 FileSpec file_spec(path, resolve_path); 3409 if (files.AppendIfUnique(file_spec)) 3410 count++; 3411 } 3412 } 3413 break; 3414 3415 default: 3416 break; 3417 } 3418 offset = cmd_offset + load_cmd.cmdsize; 3419 } 3420 } 3421 return count; 3422 } 3423 3424 lldb_private::Address 3425 ObjectFileMachO::GetEntryPointAddress () 3426 { 3427 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 3428 // is initialized to an invalid address, so we can just return that. 3429 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 3430 3431 if (!IsExecutable() || m_entry_point_address.IsValid()) 3432 return m_entry_point_address; 3433 3434 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 3435 // /usr/include/mach-o.h, but it is basically: 3436 // 3437 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 3438 // uint32_t count - this is the count of longs in the thread state data 3439 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 3440 // <repeat this trio> 3441 // 3442 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 3443 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 3444 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 3445 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 3446 // 3447 // For now we hard-code the offsets and flavors we need: 3448 // 3449 // 3450 3451 ModuleSP module_sp(GetModule()); 3452 if (module_sp) 3453 { 3454 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3455 struct load_command load_cmd; 3456 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3457 uint32_t i; 3458 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 3459 bool done = false; 3460 3461 for (i=0; i<m_header.ncmds; ++i) 3462 { 3463 const lldb::offset_t cmd_offset = offset; 3464 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3465 break; 3466 3467 switch (load_cmd.cmd) 3468 { 3469 case LoadCommandUnixThread: 3470 case LoadCommandThread: 3471 { 3472 while (offset < cmd_offset + load_cmd.cmdsize) 3473 { 3474 uint32_t flavor = m_data.GetU32(&offset); 3475 uint32_t count = m_data.GetU32(&offset); 3476 if (count == 0) 3477 { 3478 // We've gotten off somehow, log and exit; 3479 return m_entry_point_address; 3480 } 3481 3482 switch (m_header.cputype) 3483 { 3484 case llvm::MachO::CPUTypeARM: 3485 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 3486 { 3487 offset += 60; // This is the offset of pc in the GPR thread state data structure. 3488 start_address = m_data.GetU32(&offset); 3489 done = true; 3490 } 3491 break; 3492 case llvm::MachO::CPUTypeI386: 3493 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 3494 { 3495 offset += 40; // This is the offset of eip in the GPR thread state data structure. 3496 start_address = m_data.GetU32(&offset); 3497 done = true; 3498 } 3499 break; 3500 case llvm::MachO::CPUTypeX86_64: 3501 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 3502 { 3503 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 3504 start_address = m_data.GetU64(&offset); 3505 done = true; 3506 } 3507 break; 3508 default: 3509 return m_entry_point_address; 3510 } 3511 // Haven't found the GPR flavor yet, skip over the data for this flavor: 3512 if (done) 3513 break; 3514 offset += count * 4; 3515 } 3516 } 3517 break; 3518 case LoadCommandMain: 3519 { 3520 ConstString text_segment_name ("__TEXT"); 3521 uint64_t entryoffset = m_data.GetU64(&offset); 3522 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 3523 if (text_segment_sp) 3524 { 3525 done = true; 3526 start_address = text_segment_sp->GetFileAddress() + entryoffset; 3527 } 3528 } 3529 3530 default: 3531 break; 3532 } 3533 if (done) 3534 break; 3535 3536 // Go to the next load command: 3537 offset = cmd_offset + load_cmd.cmdsize; 3538 } 3539 3540 if (start_address != LLDB_INVALID_ADDRESS) 3541 { 3542 // We got the start address from the load commands, so now resolve that address in the sections 3543 // of this ObjectFile: 3544 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 3545 { 3546 m_entry_point_address.Clear(); 3547 } 3548 } 3549 else 3550 { 3551 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 3552 // "start" symbol in the main executable. 3553 3554 ModuleSP module_sp (GetModule()); 3555 3556 if (module_sp) 3557 { 3558 SymbolContextList contexts; 3559 SymbolContext context; 3560 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 3561 { 3562 if (contexts.GetContextAtIndex(0, context)) 3563 m_entry_point_address = context.symbol->GetAddress(); 3564 } 3565 } 3566 } 3567 } 3568 3569 return m_entry_point_address; 3570 3571 } 3572 3573 lldb_private::Address 3574 ObjectFileMachO::GetHeaderAddress () 3575 { 3576 lldb_private::Address header_addr; 3577 SectionList *section_list = GetSectionList(); 3578 if (section_list) 3579 { 3580 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 3581 if (text_segment_sp) 3582 { 3583 header_addr.SetSection (text_segment_sp); 3584 header_addr.SetOffset (0); 3585 } 3586 } 3587 return header_addr; 3588 } 3589 3590 uint32_t 3591 ObjectFileMachO::GetNumThreadContexts () 3592 { 3593 ModuleSP module_sp(GetModule()); 3594 if (module_sp) 3595 { 3596 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3597 if (!m_thread_context_offsets_valid) 3598 { 3599 m_thread_context_offsets_valid = true; 3600 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3601 FileRangeArray::Entry file_range; 3602 thread_command thread_cmd; 3603 for (uint32_t i=0; i<m_header.ncmds; ++i) 3604 { 3605 const uint32_t cmd_offset = offset; 3606 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 3607 break; 3608 3609 if (thread_cmd.cmd == LoadCommandThread) 3610 { 3611 file_range.SetRangeBase (offset); 3612 file_range.SetByteSize (thread_cmd.cmdsize - 8); 3613 m_thread_context_offsets.Append (file_range); 3614 } 3615 offset = cmd_offset + thread_cmd.cmdsize; 3616 } 3617 } 3618 } 3619 return m_thread_context_offsets.GetSize(); 3620 } 3621 3622 lldb::RegisterContextSP 3623 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 3624 { 3625 lldb::RegisterContextSP reg_ctx_sp; 3626 3627 ModuleSP module_sp(GetModule()); 3628 if (module_sp) 3629 { 3630 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3631 if (!m_thread_context_offsets_valid) 3632 GetNumThreadContexts (); 3633 3634 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 3635 if (thread_context_file_range) 3636 { 3637 3638 DataExtractor data (m_data, 3639 thread_context_file_range->GetRangeBase(), 3640 thread_context_file_range->GetByteSize()); 3641 3642 switch (m_header.cputype) 3643 { 3644 case llvm::MachO::CPUTypeARM: 3645 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 3646 break; 3647 3648 case llvm::MachO::CPUTypeI386: 3649 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 3650 break; 3651 3652 case llvm::MachO::CPUTypeX86_64: 3653 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 3654 break; 3655 } 3656 } 3657 } 3658 return reg_ctx_sp; 3659 } 3660 3661 3662 ObjectFile::Type 3663 ObjectFileMachO::CalculateType() 3664 { 3665 switch (m_header.filetype) 3666 { 3667 case HeaderFileTypeObject: // 0x1u MH_OBJECT 3668 if (GetAddressByteSize () == 4) 3669 { 3670 // 32 bit kexts are just object files, but they do have a valid 3671 // UUID load command. 3672 UUID uuid; 3673 if (GetUUID(&uuid)) 3674 { 3675 // this checking for the UUID load command is not enough 3676 // we could eventually look for the symbol named 3677 // "OSKextGetCurrentIdentifier" as this is required of kexts 3678 if (m_strata == eStrataInvalid) 3679 m_strata = eStrataKernel; 3680 return eTypeSharedLibrary; 3681 } 3682 } 3683 return eTypeObjectFile; 3684 3685 case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE 3686 case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB 3687 case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE 3688 case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD 3689 case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB 3690 case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER 3691 case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE 3692 case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB 3693 case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM 3694 case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE 3695 default: 3696 break; 3697 } 3698 return eTypeUnknown; 3699 } 3700 3701 ObjectFile::Strata 3702 ObjectFileMachO::CalculateStrata() 3703 { 3704 switch (m_header.filetype) 3705 { 3706 case HeaderFileTypeObject: // 0x1u MH_OBJECT 3707 { 3708 // 32 bit kexts are just object files, but they do have a valid 3709 // UUID load command. 3710 UUID uuid; 3711 if (GetUUID(&uuid)) 3712 { 3713 // this checking for the UUID load command is not enough 3714 // we could eventually look for the symbol named 3715 // "OSKextGetCurrentIdentifier" as this is required of kexts 3716 if (m_type == eTypeInvalid) 3717 m_type = eTypeSharedLibrary; 3718 3719 return eStrataKernel; 3720 } 3721 } 3722 return eStrataUnknown; 3723 3724 case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE 3725 // Check for the MH_DYLDLINK bit in the flags 3726 if (m_header.flags & HeaderFlagBitIsDynamicLinkObject) 3727 { 3728 return eStrataUser; 3729 } 3730 else 3731 { 3732 SectionList *section_list = GetSectionList(); 3733 if (section_list) 3734 { 3735 static ConstString g_kld_section_name ("__KLD"); 3736 if (section_list->FindSectionByName(g_kld_section_name)) 3737 return eStrataKernel; 3738 } 3739 } 3740 return eStrataRawImage; 3741 3742 case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB 3743 case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE 3744 case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD 3745 case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB 3746 case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER 3747 case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE 3748 case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB 3749 case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM 3750 case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE 3751 default: 3752 break; 3753 } 3754 return eStrataUnknown; 3755 } 3756 3757 3758 uint32_t 3759 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 3760 { 3761 ModuleSP module_sp(GetModule()); 3762 if (module_sp) 3763 { 3764 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3765 struct dylib_command load_cmd; 3766 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3767 uint32_t version_cmd = 0; 3768 uint64_t version = 0; 3769 uint32_t i; 3770 for (i=0; i<m_header.ncmds; ++i) 3771 { 3772 const lldb::offset_t cmd_offset = offset; 3773 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3774 break; 3775 3776 if (load_cmd.cmd == LoadCommandDylibIdent) 3777 { 3778 if (version_cmd == 0) 3779 { 3780 version_cmd = load_cmd.cmd; 3781 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 3782 break; 3783 version = load_cmd.dylib.current_version; 3784 } 3785 break; // Break for now unless there is another more complete version 3786 // number load command in the future. 3787 } 3788 offset = cmd_offset + load_cmd.cmdsize; 3789 } 3790 3791 if (version_cmd == LoadCommandDylibIdent) 3792 { 3793 if (versions != NULL && num_versions > 0) 3794 { 3795 if (num_versions > 0) 3796 versions[0] = (version & 0xFFFF0000ull) >> 16; 3797 if (num_versions > 1) 3798 versions[1] = (version & 0x0000FF00ull) >> 8; 3799 if (num_versions > 2) 3800 versions[2] = (version & 0x000000FFull); 3801 // Fill in an remaining version numbers with invalid values 3802 for (i=3; i<num_versions; ++i) 3803 versions[i] = UINT32_MAX; 3804 } 3805 // The LC_ID_DYLIB load command has a version with 3 version numbers 3806 // in it, so always return 3 3807 return 3; 3808 } 3809 } 3810 return false; 3811 } 3812 3813 bool 3814 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 3815 { 3816 ModuleSP module_sp(GetModule()); 3817 if (module_sp) 3818 { 3819 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3820 arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 3821 3822 // Files with type MH_PRELOAD are currently used in cases where the image 3823 // debugs at the addresses in the file itself. Below we set the OS to 3824 // unknown to make sure we use the DynamicLoaderStatic()... 3825 if (m_header.filetype == HeaderFileTypePreloadedExecutable) 3826 { 3827 arch.GetTriple().setOS (llvm::Triple::UnknownOS); 3828 } 3829 return true; 3830 } 3831 return false; 3832 } 3833 3834 3835 //------------------------------------------------------------------ 3836 // PluginInterface protocol 3837 //------------------------------------------------------------------ 3838 const char * 3839 ObjectFileMachO::GetPluginName() 3840 { 3841 return "ObjectFileMachO"; 3842 } 3843 3844 const char * 3845 ObjectFileMachO::GetShortPluginName() 3846 { 3847 return GetPluginNameStatic(); 3848 } 3849 3850 uint32_t 3851 ObjectFileMachO::GetPluginVersion() 3852 { 3853 return 1; 3854 } 3855 3856