1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 #include "llvm/ADT/StringRef.h"
14 
15 // Project includes
16 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
17 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
18 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
19 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
20 #include "lldb/Core/ArchSpec.h"
21 #include "lldb/Core/Debugger.h"
22 #include "lldb/Core/FileSpecList.h"
23 #include "lldb/Core/Module.h"
24 #include "lldb/Core/ModuleSpec.h"
25 #include "lldb/Core/PluginManager.h"
26 #include "lldb/Core/RangeMap.h"
27 #include "lldb/Core/RegisterValue.h"
28 #include "lldb/Core/Section.h"
29 #include "lldb/Core/StreamFile.h"
30 #include "lldb/Core/Timer.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Symbol/DWARFCallFrameInfo.h"
33 #include "lldb/Symbol/ObjectFile.h"
34 #include "lldb/Target/DynamicLoader.h"
35 #include "lldb/Target/MemoryRegionInfo.h"
36 #include "lldb/Target/Platform.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/SectionLoadList.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Target/Thread.h"
41 #include "lldb/Target/ThreadList.h"
42 #include "lldb/Utility/DataBufferLLVM.h"
43 #include "lldb/Utility/Error.h"
44 #include "lldb/Utility/FileSpec.h"
45 #include "lldb/Utility/Log.h"
46 #include "lldb/Utility/StreamString.h"
47 #include "lldb/Utility/UUID.h"
48 
49 #include "lldb/Utility/SafeMachO.h"
50 
51 #include "llvm/Support/MemoryBuffer.h"
52 
53 #include "ObjectFileMachO.h"
54 
55 #if defined(__APPLE__) &&                                                      \
56     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
57 // GetLLDBSharedCacheUUID() needs to call dlsym()
58 #include <dlfcn.h>
59 #endif
60 
61 #ifndef __APPLE__
62 #include "Utility/UuidCompatibility.h"
63 #endif
64 
65 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
66 using namespace lldb;
67 using namespace lldb_private;
68 using namespace llvm::MachO;
69 
70 // Some structure definitions needed for parsing the dyld shared cache files
71 // found on iOS devices.
72 
73 struct lldb_copy_dyld_cache_header_v1 {
74   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
75   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
76   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
77   uint32_t imagesOffset;
78   uint32_t imagesCount;
79   uint64_t dyldBaseAddress;
80   uint64_t codeSignatureOffset;
81   uint64_t codeSignatureSize;
82   uint64_t slideInfoOffset;
83   uint64_t slideInfoSize;
84   uint64_t localSymbolsOffset;
85   uint64_t localSymbolsSize;
86   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
87                     // and later
88 };
89 
90 struct lldb_copy_dyld_cache_mapping_info {
91   uint64_t address;
92   uint64_t size;
93   uint64_t fileOffset;
94   uint32_t maxProt;
95   uint32_t initProt;
96 };
97 
98 struct lldb_copy_dyld_cache_local_symbols_info {
99   uint32_t nlistOffset;
100   uint32_t nlistCount;
101   uint32_t stringsOffset;
102   uint32_t stringsSize;
103   uint32_t entriesOffset;
104   uint32_t entriesCount;
105 };
106 struct lldb_copy_dyld_cache_local_symbols_entry {
107   uint32_t dylibOffset;
108   uint32_t nlistStartIndex;
109   uint32_t nlistCount;
110 };
111 
112 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
113 public:
114   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
115                                     const DataExtractor &data)
116       : RegisterContextDarwin_x86_64(thread, 0) {
117     SetRegisterDataFrom_LC_THREAD(data);
118   }
119 
120   void InvalidateAllRegisters() override {
121     // Do nothing... registers are always valid...
122   }
123 
124   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
125     lldb::offset_t offset = 0;
126     SetError(GPRRegSet, Read, -1);
127     SetError(FPURegSet, Read, -1);
128     SetError(EXCRegSet, Read, -1);
129     bool done = false;
130 
131     while (!done) {
132       int flavor = data.GetU32(&offset);
133       if (flavor == 0)
134         done = true;
135       else {
136         uint32_t i;
137         uint32_t count = data.GetU32(&offset);
138         switch (flavor) {
139         case GPRRegSet:
140           for (i = 0; i < count; ++i)
141             (&gpr.rax)[i] = data.GetU64(&offset);
142           SetError(GPRRegSet, Read, 0);
143           done = true;
144 
145           break;
146         case FPURegSet:
147           // TODO: fill in FPU regs....
148           // SetError (FPURegSet, Read, -1);
149           done = true;
150 
151           break;
152         case EXCRegSet:
153           exc.trapno = data.GetU32(&offset);
154           exc.err = data.GetU32(&offset);
155           exc.faultvaddr = data.GetU64(&offset);
156           SetError(EXCRegSet, Read, 0);
157           done = true;
158           break;
159         case 7:
160         case 8:
161         case 9:
162           // fancy flavors that encapsulate of the above
163           // flavors...
164           break;
165 
166         default:
167           done = true;
168           break;
169         }
170       }
171     }
172   }
173 
174   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
175                               const char *alt_name, size_t reg_byte_size,
176                               Stream &data) {
177     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
178     if (reg_info == NULL)
179       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
180     if (reg_info) {
181       lldb_private::RegisterValue reg_value;
182       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
183         if (reg_info->byte_size >= reg_byte_size)
184           data.Write(reg_value.GetBytes(), reg_byte_size);
185         else {
186           data.Write(reg_value.GetBytes(), reg_info->byte_size);
187           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
188                ++i)
189             data.PutChar(0);
190         }
191         return reg_byte_size;
192       }
193     }
194     // Just write zeros if all else fails
195     for (size_t i = 0; i < reg_byte_size; ++i)
196       data.PutChar(0);
197     return reg_byte_size;
198   }
199 
200   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
201     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
202     if (reg_ctx_sp) {
203       RegisterContext *reg_ctx = reg_ctx_sp.get();
204 
205       data.PutHex32(GPRRegSet); // Flavor
206       data.PutHex32(GPRWordCount);
207       WriteRegister(reg_ctx, "rax", NULL, 8, data);
208       WriteRegister(reg_ctx, "rbx", NULL, 8, data);
209       WriteRegister(reg_ctx, "rcx", NULL, 8, data);
210       WriteRegister(reg_ctx, "rdx", NULL, 8, data);
211       WriteRegister(reg_ctx, "rdi", NULL, 8, data);
212       WriteRegister(reg_ctx, "rsi", NULL, 8, data);
213       WriteRegister(reg_ctx, "rbp", NULL, 8, data);
214       WriteRegister(reg_ctx, "rsp", NULL, 8, data);
215       WriteRegister(reg_ctx, "r8", NULL, 8, data);
216       WriteRegister(reg_ctx, "r9", NULL, 8, data);
217       WriteRegister(reg_ctx, "r10", NULL, 8, data);
218       WriteRegister(reg_ctx, "r11", NULL, 8, data);
219       WriteRegister(reg_ctx, "r12", NULL, 8, data);
220       WriteRegister(reg_ctx, "r13", NULL, 8, data);
221       WriteRegister(reg_ctx, "r14", NULL, 8, data);
222       WriteRegister(reg_ctx, "r15", NULL, 8, data);
223       WriteRegister(reg_ctx, "rip", NULL, 8, data);
224       WriteRegister(reg_ctx, "rflags", NULL, 8, data);
225       WriteRegister(reg_ctx, "cs", NULL, 8, data);
226       WriteRegister(reg_ctx, "fs", NULL, 8, data);
227       WriteRegister(reg_ctx, "gs", NULL, 8, data);
228 
229       //            // Write out the FPU registers
230       //            const size_t fpu_byte_size = sizeof(FPU);
231       //            size_t bytes_written = 0;
232       //            data.PutHex32 (FPURegSet);
233       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
234       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
235       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
236       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
237       //            data);   // uint16_t    fcw;    // "fctrl"
238       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
239       //            data);  // uint16_t    fsw;    // "fstat"
240       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
241       //            data);   // uint8_t     ftw;    // "ftag"
242       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
243       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
244       //            data);     // uint16_t    fop;    // "fop"
245       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
246       //            data);    // uint32_t    ip;     // "fioff"
247       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
248       //            data);    // uint16_t    cs;     // "fiseg"
249       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
250       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
251       //            data);   // uint32_t    dp;     // "fooff"
252       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
253       //            data);    // uint16_t    ds;     // "foseg"
254       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
255       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
256       //            data);    // uint32_t    mxcsr;
257       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
258       //            4, data);// uint32_t    mxcsrmask;
259       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
274       //            sizeof(MMSReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
304       //            sizeof(XMMReg), data);
305       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
306       //            sizeof(XMMReg), data);
307       //
308       //            // Fill rest with zeros
309       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
310       //            i)
311       //                data.PutChar(0);
312 
313       // Write out the EXC registers
314       data.PutHex32(EXCRegSet);
315       data.PutHex32(EXCWordCount);
316       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
317       WriteRegister(reg_ctx, "err", NULL, 4, data);
318       WriteRegister(reg_ctx, "faultvaddr", NULL, 8, data);
319       return true;
320     }
321     return false;
322   }
323 
324 protected:
325   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
326 
327   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
328 
329   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
330 
331   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
332     return 0;
333   }
334 
335   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
336     return 0;
337   }
338 
339   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
340     return 0;
341   }
342 };
343 
344 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
345 public:
346   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
347                                   const DataExtractor &data)
348       : RegisterContextDarwin_i386(thread, 0) {
349     SetRegisterDataFrom_LC_THREAD(data);
350   }
351 
352   void InvalidateAllRegisters() override {
353     // Do nothing... registers are always valid...
354   }
355 
356   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
357     lldb::offset_t offset = 0;
358     SetError(GPRRegSet, Read, -1);
359     SetError(FPURegSet, Read, -1);
360     SetError(EXCRegSet, Read, -1);
361     bool done = false;
362 
363     while (!done) {
364       int flavor = data.GetU32(&offset);
365       if (flavor == 0)
366         done = true;
367       else {
368         uint32_t i;
369         uint32_t count = data.GetU32(&offset);
370         switch (flavor) {
371         case GPRRegSet:
372           for (i = 0; i < count; ++i)
373             (&gpr.eax)[i] = data.GetU32(&offset);
374           SetError(GPRRegSet, Read, 0);
375           done = true;
376 
377           break;
378         case FPURegSet:
379           // TODO: fill in FPU regs....
380           // SetError (FPURegSet, Read, -1);
381           done = true;
382 
383           break;
384         case EXCRegSet:
385           exc.trapno = data.GetU32(&offset);
386           exc.err = data.GetU32(&offset);
387           exc.faultvaddr = data.GetU32(&offset);
388           SetError(EXCRegSet, Read, 0);
389           done = true;
390           break;
391         case 7:
392         case 8:
393         case 9:
394           // fancy flavors that encapsulate of the above
395           // flavors...
396           break;
397 
398         default:
399           done = true;
400           break;
401         }
402       }
403     }
404   }
405 
406   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
407                               const char *alt_name, size_t reg_byte_size,
408                               Stream &data) {
409     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
410     if (reg_info == NULL)
411       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
412     if (reg_info) {
413       lldb_private::RegisterValue reg_value;
414       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
415         if (reg_info->byte_size >= reg_byte_size)
416           data.Write(reg_value.GetBytes(), reg_byte_size);
417         else {
418           data.Write(reg_value.GetBytes(), reg_info->byte_size);
419           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
420                ++i)
421             data.PutChar(0);
422         }
423         return reg_byte_size;
424       }
425     }
426     // Just write zeros if all else fails
427     for (size_t i = 0; i < reg_byte_size; ++i)
428       data.PutChar(0);
429     return reg_byte_size;
430   }
431 
432   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
433     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
434     if (reg_ctx_sp) {
435       RegisterContext *reg_ctx = reg_ctx_sp.get();
436 
437       data.PutHex32(GPRRegSet); // Flavor
438       data.PutHex32(GPRWordCount);
439       WriteRegister(reg_ctx, "eax", NULL, 4, data);
440       WriteRegister(reg_ctx, "ebx", NULL, 4, data);
441       WriteRegister(reg_ctx, "ecx", NULL, 4, data);
442       WriteRegister(reg_ctx, "edx", NULL, 4, data);
443       WriteRegister(reg_ctx, "edi", NULL, 4, data);
444       WriteRegister(reg_ctx, "esi", NULL, 4, data);
445       WriteRegister(reg_ctx, "ebp", NULL, 4, data);
446       WriteRegister(reg_ctx, "esp", NULL, 4, data);
447       WriteRegister(reg_ctx, "ss", NULL, 4, data);
448       WriteRegister(reg_ctx, "eflags", NULL, 4, data);
449       WriteRegister(reg_ctx, "eip", NULL, 4, data);
450       WriteRegister(reg_ctx, "cs", NULL, 4, data);
451       WriteRegister(reg_ctx, "ds", NULL, 4, data);
452       WriteRegister(reg_ctx, "es", NULL, 4, data);
453       WriteRegister(reg_ctx, "fs", NULL, 4, data);
454       WriteRegister(reg_ctx, "gs", NULL, 4, data);
455 
456       // Write out the EXC registers
457       data.PutHex32(EXCRegSet);
458       data.PutHex32(EXCWordCount);
459       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
460       WriteRegister(reg_ctx, "err", NULL, 4, data);
461       WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data);
462       return true;
463     }
464     return false;
465   }
466 
467 protected:
468   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
469 
470   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
471 
472   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
473 
474   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
475     return 0;
476   }
477 
478   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
479     return 0;
480   }
481 
482   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
483     return 0;
484   }
485 };
486 
487 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
488 public:
489   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
490                                  const DataExtractor &data)
491       : RegisterContextDarwin_arm(thread, 0) {
492     SetRegisterDataFrom_LC_THREAD(data);
493   }
494 
495   void InvalidateAllRegisters() override {
496     // Do nothing... registers are always valid...
497   }
498 
499   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
500     lldb::offset_t offset = 0;
501     SetError(GPRRegSet, Read, -1);
502     SetError(FPURegSet, Read, -1);
503     SetError(EXCRegSet, Read, -1);
504     bool done = false;
505 
506     while (!done) {
507       int flavor = data.GetU32(&offset);
508       uint32_t count = data.GetU32(&offset);
509       lldb::offset_t next_thread_state = offset + (count * 4);
510       switch (flavor) {
511       case GPRAltRegSet:
512       case GPRRegSet:
513         for (uint32_t i = 0; i < count; ++i) {
514           gpr.r[i] = data.GetU32(&offset);
515         }
516 
517         // Note that gpr.cpsr is also copied by the above loop; this loop
518         // technically extends
519         // one element past the end of the gpr.r[] array.
520 
521         SetError(GPRRegSet, Read, 0);
522         offset = next_thread_state;
523         break;
524 
525       case FPURegSet: {
526         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
527         const int fpu_reg_buf_size = sizeof(fpu.floats);
528         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
529                               fpu_reg_buf) == fpu_reg_buf_size) {
530           offset += fpu_reg_buf_size;
531           fpu.fpscr = data.GetU32(&offset);
532           SetError(FPURegSet, Read, 0);
533         } else {
534           done = true;
535         }
536       }
537         offset = next_thread_state;
538         break;
539 
540       case EXCRegSet:
541         if (count == 3) {
542           exc.exception = data.GetU32(&offset);
543           exc.fsr = data.GetU32(&offset);
544           exc.far = data.GetU32(&offset);
545           SetError(EXCRegSet, Read, 0);
546         }
547         done = true;
548         offset = next_thread_state;
549         break;
550 
551       // Unknown register set flavor, stop trying to parse.
552       default:
553         done = true;
554       }
555     }
556   }
557 
558   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
559                               const char *alt_name, size_t reg_byte_size,
560                               Stream &data) {
561     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
562     if (reg_info == NULL)
563       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
564     if (reg_info) {
565       lldb_private::RegisterValue reg_value;
566       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
567         if (reg_info->byte_size >= reg_byte_size)
568           data.Write(reg_value.GetBytes(), reg_byte_size);
569         else {
570           data.Write(reg_value.GetBytes(), reg_info->byte_size);
571           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
572                ++i)
573             data.PutChar(0);
574         }
575         return reg_byte_size;
576       }
577     }
578     // Just write zeros if all else fails
579     for (size_t i = 0; i < reg_byte_size; ++i)
580       data.PutChar(0);
581     return reg_byte_size;
582   }
583 
584   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
585     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
586     if (reg_ctx_sp) {
587       RegisterContext *reg_ctx = reg_ctx_sp.get();
588 
589       data.PutHex32(GPRRegSet); // Flavor
590       data.PutHex32(GPRWordCount);
591       WriteRegister(reg_ctx, "r0", NULL, 4, data);
592       WriteRegister(reg_ctx, "r1", NULL, 4, data);
593       WriteRegister(reg_ctx, "r2", NULL, 4, data);
594       WriteRegister(reg_ctx, "r3", NULL, 4, data);
595       WriteRegister(reg_ctx, "r4", NULL, 4, data);
596       WriteRegister(reg_ctx, "r5", NULL, 4, data);
597       WriteRegister(reg_ctx, "r6", NULL, 4, data);
598       WriteRegister(reg_ctx, "r7", NULL, 4, data);
599       WriteRegister(reg_ctx, "r8", NULL, 4, data);
600       WriteRegister(reg_ctx, "r9", NULL, 4, data);
601       WriteRegister(reg_ctx, "r10", NULL, 4, data);
602       WriteRegister(reg_ctx, "r11", NULL, 4, data);
603       WriteRegister(reg_ctx, "r12", NULL, 4, data);
604       WriteRegister(reg_ctx, "sp", NULL, 4, data);
605       WriteRegister(reg_ctx, "lr", NULL, 4, data);
606       WriteRegister(reg_ctx, "pc", NULL, 4, data);
607       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
608 
609       // Write out the EXC registers
610       //            data.PutHex32 (EXCRegSet);
611       //            data.PutHex32 (EXCWordCount);
612       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
613       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
614       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
615       return true;
616     }
617     return false;
618   }
619 
620 protected:
621   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
622 
623   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
624 
625   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
626 
627   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
628 
629   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
630     return 0;
631   }
632 
633   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
634     return 0;
635   }
636 
637   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
638     return 0;
639   }
640 
641   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
642     return -1;
643   }
644 };
645 
646 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
647 public:
648   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
649                                    const DataExtractor &data)
650       : RegisterContextDarwin_arm64(thread, 0) {
651     SetRegisterDataFrom_LC_THREAD(data);
652   }
653 
654   void InvalidateAllRegisters() override {
655     // Do nothing... registers are always valid...
656   }
657 
658   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
659     lldb::offset_t offset = 0;
660     SetError(GPRRegSet, Read, -1);
661     SetError(FPURegSet, Read, -1);
662     SetError(EXCRegSet, Read, -1);
663     bool done = false;
664     while (!done) {
665       int flavor = data.GetU32(&offset);
666       uint32_t count = data.GetU32(&offset);
667       lldb::offset_t next_thread_state = offset + (count * 4);
668       switch (flavor) {
669       case GPRRegSet:
670         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
671         // 32-bit register)
672         if (count >= (33 * 2) + 1) {
673           for (uint32_t i = 0; i < 29; ++i)
674             gpr.x[i] = data.GetU64(&offset);
675           gpr.fp = data.GetU64(&offset);
676           gpr.lr = data.GetU64(&offset);
677           gpr.sp = data.GetU64(&offset);
678           gpr.pc = data.GetU64(&offset);
679           gpr.cpsr = data.GetU32(&offset);
680           SetError(GPRRegSet, Read, 0);
681         }
682         offset = next_thread_state;
683         break;
684       case FPURegSet: {
685         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
686         const int fpu_reg_buf_size = sizeof(fpu);
687         if (fpu_reg_buf_size == count &&
688             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
689                               fpu_reg_buf) == fpu_reg_buf_size) {
690           SetError(FPURegSet, Read, 0);
691         } else {
692           done = true;
693         }
694       }
695         offset = next_thread_state;
696         break;
697       case EXCRegSet:
698         if (count == 4) {
699           exc.far = data.GetU64(&offset);
700           exc.esr = data.GetU32(&offset);
701           exc.exception = data.GetU32(&offset);
702           SetError(EXCRegSet, Read, 0);
703         }
704         offset = next_thread_state;
705         break;
706       default:
707         done = true;
708         break;
709       }
710     }
711   }
712 
713   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
714                               const char *alt_name, size_t reg_byte_size,
715                               Stream &data) {
716     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
717     if (reg_info == NULL)
718       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
719     if (reg_info) {
720       lldb_private::RegisterValue reg_value;
721       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
722         if (reg_info->byte_size >= reg_byte_size)
723           data.Write(reg_value.GetBytes(), reg_byte_size);
724         else {
725           data.Write(reg_value.GetBytes(), reg_info->byte_size);
726           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
727                ++i)
728             data.PutChar(0);
729         }
730         return reg_byte_size;
731       }
732     }
733     // Just write zeros if all else fails
734     for (size_t i = 0; i < reg_byte_size; ++i)
735       data.PutChar(0);
736     return reg_byte_size;
737   }
738 
739   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
740     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
741     if (reg_ctx_sp) {
742       RegisterContext *reg_ctx = reg_ctx_sp.get();
743 
744       data.PutHex32(GPRRegSet); // Flavor
745       data.PutHex32(GPRWordCount);
746       WriteRegister(reg_ctx, "x0", NULL, 8, data);
747       WriteRegister(reg_ctx, "x1", NULL, 8, data);
748       WriteRegister(reg_ctx, "x2", NULL, 8, data);
749       WriteRegister(reg_ctx, "x3", NULL, 8, data);
750       WriteRegister(reg_ctx, "x4", NULL, 8, data);
751       WriteRegister(reg_ctx, "x5", NULL, 8, data);
752       WriteRegister(reg_ctx, "x6", NULL, 8, data);
753       WriteRegister(reg_ctx, "x7", NULL, 8, data);
754       WriteRegister(reg_ctx, "x8", NULL, 8, data);
755       WriteRegister(reg_ctx, "x9", NULL, 8, data);
756       WriteRegister(reg_ctx, "x10", NULL, 8, data);
757       WriteRegister(reg_ctx, "x11", NULL, 8, data);
758       WriteRegister(reg_ctx, "x12", NULL, 8, data);
759       WriteRegister(reg_ctx, "x13", NULL, 8, data);
760       WriteRegister(reg_ctx, "x14", NULL, 8, data);
761       WriteRegister(reg_ctx, "x15", NULL, 8, data);
762       WriteRegister(reg_ctx, "x16", NULL, 8, data);
763       WriteRegister(reg_ctx, "x17", NULL, 8, data);
764       WriteRegister(reg_ctx, "x18", NULL, 8, data);
765       WriteRegister(reg_ctx, "x19", NULL, 8, data);
766       WriteRegister(reg_ctx, "x20", NULL, 8, data);
767       WriteRegister(reg_ctx, "x21", NULL, 8, data);
768       WriteRegister(reg_ctx, "x22", NULL, 8, data);
769       WriteRegister(reg_ctx, "x23", NULL, 8, data);
770       WriteRegister(reg_ctx, "x24", NULL, 8, data);
771       WriteRegister(reg_ctx, "x25", NULL, 8, data);
772       WriteRegister(reg_ctx, "x26", NULL, 8, data);
773       WriteRegister(reg_ctx, "x27", NULL, 8, data);
774       WriteRegister(reg_ctx, "x28", NULL, 8, data);
775       WriteRegister(reg_ctx, "fp", NULL, 8, data);
776       WriteRegister(reg_ctx, "lr", NULL, 8, data);
777       WriteRegister(reg_ctx, "sp", NULL, 8, data);
778       WriteRegister(reg_ctx, "pc", NULL, 8, data);
779       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
780 
781       // Write out the EXC registers
782       //            data.PutHex32 (EXCRegSet);
783       //            data.PutHex32 (EXCWordCount);
784       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
785       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
786       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
787       return true;
788     }
789     return false;
790   }
791 
792 protected:
793   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
794 
795   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
796 
797   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
798 
799   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
800 
801   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
802     return 0;
803   }
804 
805   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
806     return 0;
807   }
808 
809   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
810     return 0;
811   }
812 
813   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
814     return -1;
815   }
816 };
817 
818 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
819   switch (magic) {
820   case MH_MAGIC:
821   case MH_CIGAM:
822     return sizeof(struct mach_header);
823 
824   case MH_MAGIC_64:
825   case MH_CIGAM_64:
826     return sizeof(struct mach_header_64);
827     break;
828 
829   default:
830     break;
831   }
832   return 0;
833 }
834 
835 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
836 
837 void ObjectFileMachO::Initialize() {
838   PluginManager::RegisterPlugin(
839       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
840       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
841 }
842 
843 void ObjectFileMachO::Terminate() {
844   PluginManager::UnregisterPlugin(CreateInstance);
845 }
846 
847 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
848   static ConstString g_name("mach-o");
849   return g_name;
850 }
851 
852 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
853   return "Mach-o object file reader (32 and 64 bit)";
854 }
855 
856 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
857                                             DataBufferSP &data_sp,
858                                             lldb::offset_t data_offset,
859                                             const FileSpec *file,
860                                             lldb::offset_t file_offset,
861                                             lldb::offset_t length) {
862   if (!data_sp) {
863     data_sp =
864         DataBufferLLVM::CreateSliceFromPath(file->GetPath(), length, file_offset);
865     if (!data_sp)
866       return nullptr;
867     data_offset = 0;
868   }
869 
870   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
871     return nullptr;
872 
873   // Update the data to contain the entire file if it doesn't already
874   if (data_sp->GetByteSize() < length) {
875     data_sp =
876         DataBufferLLVM::CreateSliceFromPath(file->GetPath(), length, file_offset);
877     if (!data_sp)
878       return nullptr;
879     data_offset = 0;
880   }
881   auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
882       module_sp, data_sp, data_offset, file, file_offset, length);
883   if (!objfile_ap || !objfile_ap->ParseHeader())
884     return nullptr;
885 
886   return objfile_ap.release();
887 }
888 
889 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
890     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
891     const ProcessSP &process_sp, lldb::addr_t header_addr) {
892   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
893     std::unique_ptr<ObjectFile> objfile_ap(
894         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
895     if (objfile_ap.get() && objfile_ap->ParseHeader())
896       return objfile_ap.release();
897   }
898   return NULL;
899 }
900 
901 size_t ObjectFileMachO::GetModuleSpecifications(
902     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
903     lldb::offset_t data_offset, lldb::offset_t file_offset,
904     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
905   const size_t initial_count = specs.GetSize();
906 
907   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
908     DataExtractor data;
909     data.SetData(data_sp);
910     llvm::MachO::mach_header header;
911     if (ParseHeader(data, &data_offset, header)) {
912       size_t header_and_load_cmds =
913           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
914       if (header_and_load_cmds >= data_sp->GetByteSize()) {
915         data_sp = DataBufferLLVM::CreateSliceFromPath(
916             file.GetPath(), header_and_load_cmds, file_offset);
917         data.SetData(data_sp);
918         data_offset = MachHeaderSizeFromMagic(header.magic);
919       }
920       if (data_sp) {
921         ModuleSpec spec;
922         spec.GetFileSpec() = file;
923         spec.SetObjectOffset(file_offset);
924         spec.SetObjectSize(length);
925 
926         if (GetArchitecture(header, data, data_offset,
927                             spec.GetArchitecture())) {
928           if (spec.GetArchitecture().IsValid()) {
929             GetUUID(header, data, data_offset, spec.GetUUID());
930             specs.Append(spec);
931           }
932         }
933       }
934     }
935   }
936   return specs.GetSize() - initial_count;
937 }
938 
939 const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
940   static ConstString g_segment_name_TEXT("__TEXT");
941   return g_segment_name_TEXT;
942 }
943 
944 const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
945   static ConstString g_segment_name_DATA("__DATA");
946   return g_segment_name_DATA;
947 }
948 
949 const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
950   static ConstString g_segment_name("__DATA_DIRTY");
951   return g_segment_name;
952 }
953 
954 const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
955   static ConstString g_segment_name("__DATA_CONST");
956   return g_segment_name;
957 }
958 
959 const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
960   static ConstString g_segment_name_OBJC("__OBJC");
961   return g_segment_name_OBJC;
962 }
963 
964 const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
965   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
966   return g_section_name_LINKEDIT;
967 }
968 
969 const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
970   static ConstString g_section_name_eh_frame("__eh_frame");
971   return g_section_name_eh_frame;
972 }
973 
974 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
975                                       lldb::addr_t data_offset,
976                                       lldb::addr_t data_length) {
977   DataExtractor data;
978   data.SetData(data_sp, data_offset, data_length);
979   lldb::offset_t offset = 0;
980   uint32_t magic = data.GetU32(&offset);
981   return MachHeaderSizeFromMagic(magic) != 0;
982 }
983 
984 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
985                                  DataBufferSP &data_sp,
986                                  lldb::offset_t data_offset,
987                                  const FileSpec *file,
988                                  lldb::offset_t file_offset,
989                                  lldb::offset_t length)
990     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
991       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
992       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
993       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
994   ::memset(&m_header, 0, sizeof(m_header));
995   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
996 }
997 
998 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
999                                  lldb::DataBufferSP &header_data_sp,
1000                                  const lldb::ProcessSP &process_sp,
1001                                  lldb::addr_t header_addr)
1002     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
1003       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1004       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1005       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1006   ::memset(&m_header, 0, sizeof(m_header));
1007   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1008 }
1009 
1010 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1011                                   lldb::offset_t *data_offset_ptr,
1012                                   llvm::MachO::mach_header &header) {
1013   data.SetByteOrder(endian::InlHostByteOrder());
1014   // Leave magic in the original byte order
1015   header.magic = data.GetU32(data_offset_ptr);
1016   bool can_parse = false;
1017   bool is_64_bit = false;
1018   switch (header.magic) {
1019   case MH_MAGIC:
1020     data.SetByteOrder(endian::InlHostByteOrder());
1021     data.SetAddressByteSize(4);
1022     can_parse = true;
1023     break;
1024 
1025   case MH_MAGIC_64:
1026     data.SetByteOrder(endian::InlHostByteOrder());
1027     data.SetAddressByteSize(8);
1028     can_parse = true;
1029     is_64_bit = true;
1030     break;
1031 
1032   case MH_CIGAM:
1033     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1034                           ? eByteOrderLittle
1035                           : eByteOrderBig);
1036     data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_CIGAM_64:
1041     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1042                           ? eByteOrderLittle
1043                           : eByteOrderBig);
1044     data.SetAddressByteSize(8);
1045     is_64_bit = true;
1046     can_parse = true;
1047     break;
1048 
1049   default:
1050     break;
1051   }
1052 
1053   if (can_parse) {
1054     data.GetU32(data_offset_ptr, &header.cputype, 6);
1055     if (is_64_bit)
1056       *data_offset_ptr += 4;
1057     return true;
1058   } else {
1059     memset(&header, 0, sizeof(header));
1060   }
1061   return false;
1062 }
1063 
1064 bool ObjectFileMachO::ParseHeader() {
1065   ModuleSP module_sp(GetModule());
1066   if (module_sp) {
1067     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1068     bool can_parse = false;
1069     lldb::offset_t offset = 0;
1070     m_data.SetByteOrder(endian::InlHostByteOrder());
1071     // Leave magic in the original byte order
1072     m_header.magic = m_data.GetU32(&offset);
1073     switch (m_header.magic) {
1074     case MH_MAGIC:
1075       m_data.SetByteOrder(endian::InlHostByteOrder());
1076       m_data.SetAddressByteSize(4);
1077       can_parse = true;
1078       break;
1079 
1080     case MH_MAGIC_64:
1081       m_data.SetByteOrder(endian::InlHostByteOrder());
1082       m_data.SetAddressByteSize(8);
1083       can_parse = true;
1084       break;
1085 
1086     case MH_CIGAM:
1087       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1088                               ? eByteOrderLittle
1089                               : eByteOrderBig);
1090       m_data.SetAddressByteSize(4);
1091       can_parse = true;
1092       break;
1093 
1094     case MH_CIGAM_64:
1095       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1096                               ? eByteOrderLittle
1097                               : eByteOrderBig);
1098       m_data.SetAddressByteSize(8);
1099       can_parse = true;
1100       break;
1101 
1102     default:
1103       break;
1104     }
1105 
1106     if (can_parse) {
1107       m_data.GetU32(&offset, &m_header.cputype, 6);
1108 
1109       ArchSpec mach_arch;
1110 
1111       if (GetArchitecture(mach_arch)) {
1112         // Check if the module has a required architecture
1113         const ArchSpec &module_arch = module_sp->GetArchitecture();
1114         if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1115           return false;
1116 
1117         if (SetModulesArchitecture(mach_arch)) {
1118           const size_t header_and_lc_size =
1119               m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1120           if (m_data.GetByteSize() < header_and_lc_size) {
1121             DataBufferSP data_sp;
1122             ProcessSP process_sp(m_process_wp.lock());
1123             if (process_sp) {
1124               data_sp =
1125                   ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1126             } else {
1127               // Read in all only the load command data from the file on disk
1128               data_sp = DataBufferLLVM::CreateSliceFromPath(
1129                   m_file.GetPath(), header_and_lc_size, m_file_offset);
1130               if (data_sp->GetByteSize() != header_and_lc_size)
1131                 return false;
1132             }
1133             if (data_sp)
1134               m_data.SetData(data_sp);
1135           }
1136         }
1137         return true;
1138       }
1139     } else {
1140       memset(&m_header, 0, sizeof(struct mach_header));
1141     }
1142   }
1143   return false;
1144 }
1145 
1146 ByteOrder ObjectFileMachO::GetByteOrder() const {
1147   return m_data.GetByteOrder();
1148 }
1149 
1150 bool ObjectFileMachO::IsExecutable() const {
1151   return m_header.filetype == MH_EXECUTE;
1152 }
1153 
1154 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1155   return m_data.GetAddressByteSize();
1156 }
1157 
1158 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1159   Symtab *symtab = GetSymtab();
1160   if (symtab) {
1161     Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1162     if (symbol) {
1163       if (symbol->ValueIsAddress()) {
1164         SectionSP section_sp(symbol->GetAddressRef().GetSection());
1165         if (section_sp) {
1166           const lldb::SectionType section_type = section_sp->GetType();
1167           switch (section_type) {
1168           case eSectionTypeInvalid:
1169             return eAddressClassUnknown;
1170 
1171           case eSectionTypeCode:
1172             if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1173               // For ARM we have a bit in the n_desc field of the symbol
1174               // that tells us ARM/Thumb which is bit 0x0008.
1175               if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1176                 return eAddressClassCodeAlternateISA;
1177             }
1178             return eAddressClassCode;
1179 
1180           case eSectionTypeContainer:
1181             return eAddressClassUnknown;
1182 
1183           case eSectionTypeData:
1184           case eSectionTypeDataCString:
1185           case eSectionTypeDataCStringPointers:
1186           case eSectionTypeDataSymbolAddress:
1187           case eSectionTypeData4:
1188           case eSectionTypeData8:
1189           case eSectionTypeData16:
1190           case eSectionTypeDataPointers:
1191           case eSectionTypeZeroFill:
1192           case eSectionTypeDataObjCMessageRefs:
1193           case eSectionTypeDataObjCCFStrings:
1194           case eSectionTypeGoSymtab:
1195             return eAddressClassData;
1196 
1197           case eSectionTypeDebug:
1198           case eSectionTypeDWARFDebugAbbrev:
1199           case eSectionTypeDWARFDebugAddr:
1200           case eSectionTypeDWARFDebugAranges:
1201           case eSectionTypeDWARFDebugFrame:
1202           case eSectionTypeDWARFDebugInfo:
1203           case eSectionTypeDWARFDebugLine:
1204           case eSectionTypeDWARFDebugLoc:
1205           case eSectionTypeDWARFDebugMacInfo:
1206           case eSectionTypeDWARFDebugMacro:
1207           case eSectionTypeDWARFDebugPubNames:
1208           case eSectionTypeDWARFDebugPubTypes:
1209           case eSectionTypeDWARFDebugRanges:
1210           case eSectionTypeDWARFDebugStr:
1211           case eSectionTypeDWARFDebugStrOffsets:
1212           case eSectionTypeDWARFAppleNames:
1213           case eSectionTypeDWARFAppleTypes:
1214           case eSectionTypeDWARFAppleNamespaces:
1215           case eSectionTypeDWARFAppleObjC:
1216             return eAddressClassDebug;
1217 
1218           case eSectionTypeEHFrame:
1219           case eSectionTypeARMexidx:
1220           case eSectionTypeARMextab:
1221           case eSectionTypeCompactUnwind:
1222             return eAddressClassRuntime;
1223 
1224           case eSectionTypeAbsoluteAddress:
1225           case eSectionTypeELFSymbolTable:
1226           case eSectionTypeELFDynamicSymbols:
1227           case eSectionTypeELFRelocationEntries:
1228           case eSectionTypeELFDynamicLinkInfo:
1229           case eSectionTypeOther:
1230             return eAddressClassUnknown;
1231           }
1232         }
1233       }
1234 
1235       const SymbolType symbol_type = symbol->GetType();
1236       switch (symbol_type) {
1237       case eSymbolTypeAny:
1238         return eAddressClassUnknown;
1239       case eSymbolTypeAbsolute:
1240         return eAddressClassUnknown;
1241 
1242       case eSymbolTypeCode:
1243       case eSymbolTypeTrampoline:
1244       case eSymbolTypeResolver:
1245         if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1246           // For ARM we have a bit in the n_desc field of the symbol
1247           // that tells us ARM/Thumb which is bit 0x0008.
1248           if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1249             return eAddressClassCodeAlternateISA;
1250         }
1251         return eAddressClassCode;
1252 
1253       case eSymbolTypeData:
1254         return eAddressClassData;
1255       case eSymbolTypeRuntime:
1256         return eAddressClassRuntime;
1257       case eSymbolTypeException:
1258         return eAddressClassRuntime;
1259       case eSymbolTypeSourceFile:
1260         return eAddressClassDebug;
1261       case eSymbolTypeHeaderFile:
1262         return eAddressClassDebug;
1263       case eSymbolTypeObjectFile:
1264         return eAddressClassDebug;
1265       case eSymbolTypeCommonBlock:
1266         return eAddressClassDebug;
1267       case eSymbolTypeBlock:
1268         return eAddressClassDebug;
1269       case eSymbolTypeLocal:
1270         return eAddressClassData;
1271       case eSymbolTypeParam:
1272         return eAddressClassData;
1273       case eSymbolTypeVariable:
1274         return eAddressClassData;
1275       case eSymbolTypeVariableType:
1276         return eAddressClassDebug;
1277       case eSymbolTypeLineEntry:
1278         return eAddressClassDebug;
1279       case eSymbolTypeLineHeader:
1280         return eAddressClassDebug;
1281       case eSymbolTypeScopeBegin:
1282         return eAddressClassDebug;
1283       case eSymbolTypeScopeEnd:
1284         return eAddressClassDebug;
1285       case eSymbolTypeAdditional:
1286         return eAddressClassUnknown;
1287       case eSymbolTypeCompiler:
1288         return eAddressClassDebug;
1289       case eSymbolTypeInstrumentation:
1290         return eAddressClassDebug;
1291       case eSymbolTypeUndefined:
1292         return eAddressClassUnknown;
1293       case eSymbolTypeObjCClass:
1294         return eAddressClassRuntime;
1295       case eSymbolTypeObjCMetaClass:
1296         return eAddressClassRuntime;
1297       case eSymbolTypeObjCIVar:
1298         return eAddressClassRuntime;
1299       case eSymbolTypeReExported:
1300         return eAddressClassRuntime;
1301       }
1302     }
1303   }
1304   return eAddressClassUnknown;
1305 }
1306 
1307 Symtab *ObjectFileMachO::GetSymtab() {
1308   ModuleSP module_sp(GetModule());
1309   if (module_sp) {
1310     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1311     if (m_symtab_ap.get() == NULL) {
1312       m_symtab_ap.reset(new Symtab(this));
1313       std::lock_guard<std::recursive_mutex> symtab_guard(
1314           m_symtab_ap->GetMutex());
1315       ParseSymtab();
1316       m_symtab_ap->Finalize();
1317     }
1318   }
1319   return m_symtab_ap.get();
1320 }
1321 
1322 bool ObjectFileMachO::IsStripped() {
1323   if (m_dysymtab.cmd == 0) {
1324     ModuleSP module_sp(GetModule());
1325     if (module_sp) {
1326       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1327       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1328         const lldb::offset_t load_cmd_offset = offset;
1329 
1330         load_command lc;
1331         if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
1332           break;
1333         if (lc.cmd == LC_DYSYMTAB) {
1334           m_dysymtab.cmd = lc.cmd;
1335           m_dysymtab.cmdsize = lc.cmdsize;
1336           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1337                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1338               NULL) {
1339             // Clear m_dysymtab if we were unable to read all items from the
1340             // load command
1341             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1342           }
1343         }
1344         offset = load_cmd_offset + lc.cmdsize;
1345       }
1346     }
1347   }
1348   if (m_dysymtab.cmd)
1349     return m_dysymtab.nlocalsym <= 1;
1350   return false;
1351 }
1352 
1353 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1354   if (!m_sections_ap.get()) {
1355     m_sections_ap.reset(new SectionList());
1356 
1357     const bool is_dsym = (m_header.filetype == MH_DSYM);
1358     lldb::user_id_t segID = 0;
1359     lldb::user_id_t sectID = 0;
1360     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1361     uint32_t i;
1362     const bool is_core = GetType() == eTypeCoreFile;
1363     // bool dump_sections = false;
1364     ModuleSP module_sp(GetModule());
1365     // First look up any LC_ENCRYPTION_INFO load commands
1366     typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges;
1367     EncryptedFileRanges encrypted_file_ranges;
1368     encryption_info_command encryption_cmd;
1369     for (i = 0; i < m_header.ncmds; ++i) {
1370       const lldb::offset_t load_cmd_offset = offset;
1371       if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
1372         break;
1373 
1374       // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for
1375       // the 3 fields we care about, so treat them the same.
1376       if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1377           encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1378         if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1379           if (encryption_cmd.cryptid != 0) {
1380             EncryptedFileRanges::Entry entry;
1381             entry.SetRangeBase(encryption_cmd.cryptoff);
1382             entry.SetByteSize(encryption_cmd.cryptsize);
1383             encrypted_file_ranges.Append(entry);
1384           }
1385         }
1386       }
1387       offset = load_cmd_offset + encryption_cmd.cmdsize;
1388     }
1389 
1390     bool section_file_addresses_changed = false;
1391 
1392     offset = MachHeaderSizeFromMagic(m_header.magic);
1393 
1394     struct segment_command_64 load_cmd;
1395     for (i = 0; i < m_header.ncmds; ++i) {
1396       const lldb::offset_t load_cmd_offset = offset;
1397       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
1398         break;
1399 
1400       if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) {
1401         if (m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) {
1402           bool add_section = true;
1403           bool add_to_unified = true;
1404           ConstString const_segname(load_cmd.segname,
1405                                     std::min<size_t>(strlen(load_cmd.segname),
1406                                                      sizeof(load_cmd.segname)));
1407 
1408           SectionSP unified_section_sp(
1409               unified_section_list.FindSectionByName(const_segname));
1410           if (is_dsym && unified_section_sp) {
1411             if (const_segname == GetSegmentNameLINKEDIT()) {
1412               // We need to keep the __LINKEDIT segment private to this object
1413               // file only
1414               add_to_unified = false;
1415             } else {
1416               // This is the dSYM file and this section has already been created
1417               // by
1418               // the object file, no need to create it.
1419               add_section = false;
1420             }
1421           }
1422           load_cmd.vmaddr = m_data.GetAddress(&offset);
1423           load_cmd.vmsize = m_data.GetAddress(&offset);
1424           load_cmd.fileoff = m_data.GetAddress(&offset);
1425           load_cmd.filesize = m_data.GetAddress(&offset);
1426           if (m_length != 0 && load_cmd.filesize != 0) {
1427             if (load_cmd.fileoff > m_length) {
1428               // We have a load command that says it extends past the end of the
1429               // file.  This is likely
1430               // a corrupt file.  We don't have any way to return an error
1431               // condition here (this method
1432               // was likely invoked from something like
1433               // ObjectFile::GetSectionList()) -- all we can do
1434               // is null out the SectionList vector and if a process has been
1435               // set up, dump a message
1436               // to stdout.  The most common case here is core file debugging
1437               // with a truncated file.
1438               const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64
1439                                                 ? "LC_SEGMENT_64"
1440                                                 : "LC_SEGMENT";
1441               module_sp->ReportWarning(
1442                   "load command %u %s has a fileoff (0x%" PRIx64
1443                   ") that extends beyond the end of the file (0x%" PRIx64
1444                   "), ignoring this section",
1445                   i, lc_segment_name, load_cmd.fileoff, m_length);
1446 
1447               load_cmd.fileoff = 0;
1448               load_cmd.filesize = 0;
1449             }
1450 
1451             if (load_cmd.fileoff + load_cmd.filesize > m_length) {
1452               // We have a load command that says it extends past the end of the
1453               // file.  This is likely
1454               // a corrupt file.  We don't have any way to return an error
1455               // condition here (this method
1456               // was likely invoked from something like
1457               // ObjectFile::GetSectionList()) -- all we can do
1458               // is null out the SectionList vector and if a process has been
1459               // set up, dump a message
1460               // to stdout.  The most common case here is core file debugging
1461               // with a truncated file.
1462               const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64
1463                                                 ? "LC_SEGMENT_64"
1464                                                 : "LC_SEGMENT";
1465               GetModule()->ReportWarning(
1466                   "load command %u %s has a fileoff + filesize (0x%" PRIx64
1467                   ") that extends beyond the end of the file (0x%" PRIx64
1468                   "), the segment will be truncated to match",
1469                   i, lc_segment_name, load_cmd.fileoff + load_cmd.filesize,
1470                   m_length);
1471 
1472               // Tuncase the length
1473               load_cmd.filesize = m_length - load_cmd.fileoff;
1474             }
1475           }
1476           if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) {
1477             uint32_t segment_permissions = 0;
1478             if (load_cmd.initprot & VM_PROT_READ)
1479               segment_permissions |= ePermissionsReadable;
1480             if (load_cmd.initprot & VM_PROT_WRITE)
1481               segment_permissions |= ePermissionsWritable;
1482             if (load_cmd.initprot & VM_PROT_EXECUTE)
1483               segment_permissions |= ePermissionsExecutable;
1484 
1485             const bool segment_is_encrypted =
1486                 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1487 
1488             // Keep a list of mach segments around in case we need to
1489             // get at data that isn't stored in the abstracted Sections.
1490             m_mach_segments.push_back(load_cmd);
1491 
1492             // Use a segment ID of the segment index shifted left by 8 so they
1493             // never conflict with any of the sections.
1494             SectionSP segment_sp;
1495             if (add_section && (const_segname || is_core)) {
1496               segment_sp.reset(new Section(
1497                   module_sp,     // Module to which this section belongs
1498                   this,          // Object file to which this sections belongs
1499                   ++segID << 8,  // Section ID is the 1 based segment index
1500                                  // shifted right by 8 bits as not to collide
1501                                  // with any of the 256 section IDs that are
1502                                  // possible
1503                   const_segname, // Name of this section
1504                   eSectionTypeContainer, // This section is a container of other
1505                                          // sections.
1506                   load_cmd.vmaddr,   // File VM address == addresses as they are
1507                                      // found in the object file
1508                   load_cmd.vmsize,   // VM size in bytes of this section
1509                   load_cmd.fileoff,  // Offset to the data for this section in
1510                                      // the file
1511                   load_cmd.filesize, // Size in bytes of this section as found
1512                                      // in the file
1513                   0,                 // Segments have no alignment information
1514                   load_cmd.flags));  // Flags for this section
1515 
1516               segment_sp->SetIsEncrypted(segment_is_encrypted);
1517               m_sections_ap->AddSection(segment_sp);
1518               segment_sp->SetPermissions(segment_permissions);
1519               if (add_to_unified)
1520                 unified_section_list.AddSection(segment_sp);
1521             } else if (unified_section_sp) {
1522               if (is_dsym &&
1523                   unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1524                 // Check to see if the module was read from memory?
1525                 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
1526                   // We have a module that is in memory and needs to have its
1527                   // file address adjusted. We need to do this because when we
1528                   // load a file from memory, its addresses will be slid
1529                   // already,
1530                   // yet the addresses in the new symbol file will still be
1531                   // unslid.
1532                   // Since everything is stored as section offset, this
1533                   // shouldn't
1534                   // cause any problems.
1535 
1536                   // Make sure we've parsed the symbol table from the
1537                   // ObjectFile before we go around changing its Sections.
1538                   module_sp->GetObjectFile()->GetSymtab();
1539                   // eh_frame would present the same problems but we parse that
1540                   // on
1541                   // a per-function basis as-needed so it's more difficult to
1542                   // remove its use of the Sections.  Realistically, the
1543                   // environments
1544                   // where this code path will be taken will not have eh_frame
1545                   // sections.
1546 
1547                   unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1548 
1549                   // Notify the module that the section addresses have been
1550                   // changed once
1551                   // we're done so any file-address caches can be updated.
1552                   section_file_addresses_changed = true;
1553                 }
1554               }
1555               m_sections_ap->AddSection(unified_section_sp);
1556             }
1557 
1558             struct section_64 sect64;
1559             ::memset(&sect64, 0, sizeof(sect64));
1560             // Push a section into our mach sections for the section at
1561             // index zero (NO_SECT) if we don't have any mach sections yet...
1562             if (m_mach_sections.empty())
1563               m_mach_sections.push_back(sect64);
1564             uint32_t segment_sect_idx;
1565             const lldb::user_id_t first_segment_sectID = sectID + 1;
1566 
1567             const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1568             for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1569                  ++segment_sect_idx) {
1570               if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1571                                sizeof(sect64.sectname)) == NULL)
1572                 break;
1573               if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1574                                sizeof(sect64.segname)) == NULL)
1575                 break;
1576               sect64.addr = m_data.GetAddress(&offset);
1577               sect64.size = m_data.GetAddress(&offset);
1578 
1579               if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
1580                 break;
1581 
1582               // Keep a list of mach sections around in case we need to
1583               // get at data that isn't stored in the abstracted Sections.
1584               m_mach_sections.push_back(sect64);
1585 
1586               if (add_section) {
1587                 ConstString section_name(
1588                     sect64.sectname, std::min<size_t>(strlen(sect64.sectname),
1589                                                       sizeof(sect64.sectname)));
1590                 if (!const_segname) {
1591                   // We have a segment with no name so we need to conjure up
1592                   // segments that correspond to the section's segname if there
1593                   // isn't already such a section. If there is such a section,
1594                   // we resize the section so that it spans all sections.
1595                   // We also mark these sections as fake so address matches
1596                   // don't
1597                   // hit if they land in the gaps between the child sections.
1598                   const_segname.SetTrimmedCStringWithLength(
1599                       sect64.segname, sizeof(sect64.segname));
1600                   segment_sp =
1601                       unified_section_list.FindSectionByName(const_segname);
1602                   if (segment_sp.get()) {
1603                     Section *segment = segment_sp.get();
1604                     // Grow the section size as needed.
1605                     const lldb::addr_t sect64_min_addr = sect64.addr;
1606                     const lldb::addr_t sect64_max_addr =
1607                         sect64_min_addr + sect64.size;
1608                     const lldb::addr_t curr_seg_byte_size =
1609                         segment->GetByteSize();
1610                     const lldb::addr_t curr_seg_min_addr =
1611                         segment->GetFileAddress();
1612                     const lldb::addr_t curr_seg_max_addr =
1613                         curr_seg_min_addr + curr_seg_byte_size;
1614                     if (sect64_min_addr >= curr_seg_min_addr) {
1615                       const lldb::addr_t new_seg_byte_size =
1616                           sect64_max_addr - curr_seg_min_addr;
1617                       // Only grow the section size if needed
1618                       if (new_seg_byte_size > curr_seg_byte_size)
1619                         segment->SetByteSize(new_seg_byte_size);
1620                     } else {
1621                       // We need to change the base address of the segment and
1622                       // adjust the child section offsets for all existing
1623                       // children.
1624                       const lldb::addr_t slide_amount =
1625                           sect64_min_addr - curr_seg_min_addr;
1626                       segment->Slide(slide_amount, false);
1627                       segment->GetChildren().Slide(-slide_amount, false);
1628                       segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1629                     }
1630 
1631                     // Grow the section size as needed.
1632                     if (sect64.offset) {
1633                       const lldb::addr_t segment_min_file_offset =
1634                           segment->GetFileOffset();
1635                       const lldb::addr_t segment_max_file_offset =
1636                           segment_min_file_offset + segment->GetFileSize();
1637 
1638                       const lldb::addr_t section_min_file_offset =
1639                           sect64.offset;
1640                       const lldb::addr_t section_max_file_offset =
1641                           section_min_file_offset + sect64.size;
1642                       const lldb::addr_t new_file_offset = std::min(
1643                           section_min_file_offset, segment_min_file_offset);
1644                       const lldb::addr_t new_file_size =
1645                           std::max(section_max_file_offset,
1646                                    segment_max_file_offset) -
1647                           new_file_offset;
1648                       segment->SetFileOffset(new_file_offset);
1649                       segment->SetFileSize(new_file_size);
1650                     }
1651                   } else {
1652                     // Create a fake section for the section's named segment
1653                     segment_sp.reset(new Section(
1654                         segment_sp, // Parent section
1655                         module_sp,  // Module to which this section belongs
1656                         this,       // Object file to which this section belongs
1657                         ++segID << 8, // Section ID is the 1 based segment index
1658                                       // shifted right by 8 bits as not to
1659                                       // collide with any of the 256 section IDs
1660                                       // that are possible
1661                         const_segname,         // Name of this section
1662                         eSectionTypeContainer, // This section is a container of
1663                                                // other sections.
1664                         sect64.addr, // File VM address == addresses as they are
1665                                      // found in the object file
1666                         sect64.size, // VM size in bytes of this section
1667                         sect64.offset, // Offset to the data for this section in
1668                                        // the file
1669                         sect64.offset ? sect64.size : 0, // Size in bytes of
1670                                                          // this section as
1671                                                          // found in the file
1672                         sect64.align,
1673                         load_cmd.flags)); // Flags for this section
1674                     segment_sp->SetIsFake(true);
1675                     segment_sp->SetPermissions(segment_permissions);
1676                     m_sections_ap->AddSection(segment_sp);
1677                     if (add_to_unified)
1678                       unified_section_list.AddSection(segment_sp);
1679                     segment_sp->SetIsEncrypted(segment_is_encrypted);
1680                   }
1681                 }
1682                 assert(segment_sp.get());
1683 
1684                 lldb::SectionType sect_type = eSectionTypeOther;
1685 
1686                 if (sect64.flags &
1687                     (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1688                   sect_type = eSectionTypeCode;
1689                 else {
1690                   uint32_t mach_sect_type = sect64.flags & SECTION_TYPE;
1691                   static ConstString g_sect_name_objc_data("__objc_data");
1692                   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1693                   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1694                   static ConstString g_sect_name_objc_classrefs(
1695                       "__objc_classrefs");
1696                   static ConstString g_sect_name_objc_superrefs(
1697                       "__objc_superrefs");
1698                   static ConstString g_sect_name_objc_const("__objc_const");
1699                   static ConstString g_sect_name_objc_classlist(
1700                       "__objc_classlist");
1701                   static ConstString g_sect_name_cfstring("__cfstring");
1702 
1703                   static ConstString g_sect_name_dwarf_debug_abbrev(
1704                       "__debug_abbrev");
1705                   static ConstString g_sect_name_dwarf_debug_aranges(
1706                       "__debug_aranges");
1707                   static ConstString g_sect_name_dwarf_debug_frame(
1708                       "__debug_frame");
1709                   static ConstString g_sect_name_dwarf_debug_info(
1710                       "__debug_info");
1711                   static ConstString g_sect_name_dwarf_debug_line(
1712                       "__debug_line");
1713                   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1714                   static ConstString g_sect_name_dwarf_debug_macinfo(
1715                       "__debug_macinfo");
1716                   static ConstString g_sect_name_dwarf_debug_pubnames(
1717                       "__debug_pubnames");
1718                   static ConstString g_sect_name_dwarf_debug_pubtypes(
1719                       "__debug_pubtypes");
1720                   static ConstString g_sect_name_dwarf_debug_ranges(
1721                       "__debug_ranges");
1722                   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1723                   static ConstString g_sect_name_dwarf_apple_names(
1724                       "__apple_names");
1725                   static ConstString g_sect_name_dwarf_apple_types(
1726                       "__apple_types");
1727                   static ConstString g_sect_name_dwarf_apple_namespaces(
1728                       "__apple_namespac");
1729                   static ConstString g_sect_name_dwarf_apple_objc(
1730                       "__apple_objc");
1731                   static ConstString g_sect_name_eh_frame("__eh_frame");
1732                   static ConstString g_sect_name_compact_unwind(
1733                       "__unwind_info");
1734                   static ConstString g_sect_name_text("__text");
1735                   static ConstString g_sect_name_data("__data");
1736                   static ConstString g_sect_name_go_symtab("__gosymtab");
1737 
1738                   if (section_name == g_sect_name_dwarf_debug_abbrev)
1739                     sect_type = eSectionTypeDWARFDebugAbbrev;
1740                   else if (section_name == g_sect_name_dwarf_debug_aranges)
1741                     sect_type = eSectionTypeDWARFDebugAranges;
1742                   else if (section_name == g_sect_name_dwarf_debug_frame)
1743                     sect_type = eSectionTypeDWARFDebugFrame;
1744                   else if (section_name == g_sect_name_dwarf_debug_info)
1745                     sect_type = eSectionTypeDWARFDebugInfo;
1746                   else if (section_name == g_sect_name_dwarf_debug_line)
1747                     sect_type = eSectionTypeDWARFDebugLine;
1748                   else if (section_name == g_sect_name_dwarf_debug_loc)
1749                     sect_type = eSectionTypeDWARFDebugLoc;
1750                   else if (section_name == g_sect_name_dwarf_debug_macinfo)
1751                     sect_type = eSectionTypeDWARFDebugMacInfo;
1752                   else if (section_name == g_sect_name_dwarf_debug_pubnames)
1753                     sect_type = eSectionTypeDWARFDebugPubNames;
1754                   else if (section_name == g_sect_name_dwarf_debug_pubtypes)
1755                     sect_type = eSectionTypeDWARFDebugPubTypes;
1756                   else if (section_name == g_sect_name_dwarf_debug_ranges)
1757                     sect_type = eSectionTypeDWARFDebugRanges;
1758                   else if (section_name == g_sect_name_dwarf_debug_str)
1759                     sect_type = eSectionTypeDWARFDebugStr;
1760                   else if (section_name == g_sect_name_dwarf_apple_names)
1761                     sect_type = eSectionTypeDWARFAppleNames;
1762                   else if (section_name == g_sect_name_dwarf_apple_types)
1763                     sect_type = eSectionTypeDWARFAppleTypes;
1764                   else if (section_name == g_sect_name_dwarf_apple_namespaces)
1765                     sect_type = eSectionTypeDWARFAppleNamespaces;
1766                   else if (section_name == g_sect_name_dwarf_apple_objc)
1767                     sect_type = eSectionTypeDWARFAppleObjC;
1768                   else if (section_name == g_sect_name_objc_selrefs)
1769                     sect_type = eSectionTypeDataCStringPointers;
1770                   else if (section_name == g_sect_name_objc_msgrefs)
1771                     sect_type = eSectionTypeDataObjCMessageRefs;
1772                   else if (section_name == g_sect_name_eh_frame)
1773                     sect_type = eSectionTypeEHFrame;
1774                   else if (section_name == g_sect_name_compact_unwind)
1775                     sect_type = eSectionTypeCompactUnwind;
1776                   else if (section_name == g_sect_name_cfstring)
1777                     sect_type = eSectionTypeDataObjCCFStrings;
1778                   else if (section_name == g_sect_name_go_symtab)
1779                     sect_type = eSectionTypeGoSymtab;
1780                   else if (section_name == g_sect_name_objc_data ||
1781                            section_name == g_sect_name_objc_classrefs ||
1782                            section_name == g_sect_name_objc_superrefs ||
1783                            section_name == g_sect_name_objc_const ||
1784                            section_name == g_sect_name_objc_classlist) {
1785                     sect_type = eSectionTypeDataPointers;
1786                   }
1787 
1788                   if (sect_type == eSectionTypeOther) {
1789                     switch (mach_sect_type) {
1790                     // TODO: categorize sections by other flags for regular
1791                     // sections
1792                     case S_REGULAR:
1793                       if (section_name == g_sect_name_text)
1794                         sect_type = eSectionTypeCode;
1795                       else if (section_name == g_sect_name_data)
1796                         sect_type = eSectionTypeData;
1797                       else
1798                         sect_type = eSectionTypeOther;
1799                       break;
1800                     case S_ZEROFILL:
1801                       sect_type = eSectionTypeZeroFill;
1802                       break;
1803                     case S_CSTRING_LITERALS:
1804                       sect_type = eSectionTypeDataCString;
1805                       break; // section with only literal C strings
1806                     case S_4BYTE_LITERALS:
1807                       sect_type = eSectionTypeData4;
1808                       break; // section with only 4 byte literals
1809                     case S_8BYTE_LITERALS:
1810                       sect_type = eSectionTypeData8;
1811                       break; // section with only 8 byte literals
1812                     case S_LITERAL_POINTERS:
1813                       sect_type = eSectionTypeDataPointers;
1814                       break; // section with only pointers to literals
1815                     case S_NON_LAZY_SYMBOL_POINTERS:
1816                       sect_type = eSectionTypeDataPointers;
1817                       break; // section with only non-lazy symbol pointers
1818                     case S_LAZY_SYMBOL_POINTERS:
1819                       sect_type = eSectionTypeDataPointers;
1820                       break; // section with only lazy symbol pointers
1821                     case S_SYMBOL_STUBS:
1822                       sect_type = eSectionTypeCode;
1823                       break; // section with only symbol stubs, byte size of
1824                              // stub in the reserved2 field
1825                     case S_MOD_INIT_FUNC_POINTERS:
1826                       sect_type = eSectionTypeDataPointers;
1827                       break; // section with only function pointers for
1828                              // initialization
1829                     case S_MOD_TERM_FUNC_POINTERS:
1830                       sect_type = eSectionTypeDataPointers;
1831                       break; // section with only function pointers for
1832                              // termination
1833                     case S_COALESCED:
1834                       sect_type = eSectionTypeOther;
1835                       break;
1836                     case S_GB_ZEROFILL:
1837                       sect_type = eSectionTypeZeroFill;
1838                       break;
1839                     case S_INTERPOSING:
1840                       sect_type = eSectionTypeCode;
1841                       break; // section with only pairs of function pointers for
1842                              // interposing
1843                     case S_16BYTE_LITERALS:
1844                       sect_type = eSectionTypeData16;
1845                       break; // section with only 16 byte literals
1846                     case S_DTRACE_DOF:
1847                       sect_type = eSectionTypeDebug;
1848                       break;
1849                     case S_LAZY_DYLIB_SYMBOL_POINTERS:
1850                       sect_type = eSectionTypeDataPointers;
1851                       break;
1852                     default:
1853                       break;
1854                     }
1855                   }
1856                 }
1857 
1858                 SectionSP section_sp(new Section(
1859                     segment_sp, module_sp, this, ++sectID, section_name,
1860                     sect_type, sect64.addr - segment_sp->GetFileAddress(),
1861                     sect64.size, sect64.offset,
1862                     sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1863                     sect64.flags));
1864                 // Set the section to be encrypted to match the segment
1865 
1866                 bool section_is_encrypted = false;
1867                 if (!segment_is_encrypted && load_cmd.filesize != 0)
1868                   section_is_encrypted =
1869                       encrypted_file_ranges.FindEntryThatContains(
1870                           sect64.offset) != NULL;
1871 
1872                 section_sp->SetIsEncrypted(segment_is_encrypted ||
1873                                            section_is_encrypted);
1874                 section_sp->SetPermissions(segment_permissions);
1875                 segment_sp->GetChildren().AddSection(section_sp);
1876 
1877                 if (segment_sp->IsFake()) {
1878                   segment_sp.reset();
1879                   const_segname.Clear();
1880                 }
1881               }
1882             }
1883             if (segment_sp && is_dsym) {
1884               if (first_segment_sectID <= sectID) {
1885                 lldb::user_id_t sect_uid;
1886                 for (sect_uid = first_segment_sectID; sect_uid <= sectID;
1887                      ++sect_uid) {
1888                   SectionSP curr_section_sp(
1889                       segment_sp->GetChildren().FindSectionByID(sect_uid));
1890                   SectionSP next_section_sp;
1891                   if (sect_uid + 1 <= sectID)
1892                     next_section_sp =
1893                         segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1894 
1895                   if (curr_section_sp.get()) {
1896                     if (curr_section_sp->GetByteSize() == 0) {
1897                       if (next_section_sp.get() != NULL)
1898                         curr_section_sp->SetByteSize(
1899                             next_section_sp->GetFileAddress() -
1900                             curr_section_sp->GetFileAddress());
1901                       else
1902                         curr_section_sp->SetByteSize(load_cmd.vmsize);
1903                     }
1904                   }
1905                 }
1906               }
1907             }
1908           }
1909         }
1910       } else if (load_cmd.cmd == LC_DYSYMTAB) {
1911         m_dysymtab.cmd = load_cmd.cmd;
1912         m_dysymtab.cmdsize = load_cmd.cmdsize;
1913         m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1914                       (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1915       }
1916 
1917       offset = load_cmd_offset + load_cmd.cmdsize;
1918     }
1919 
1920     if (section_file_addresses_changed && module_sp.get()) {
1921       module_sp->SectionFileAddressesChanged();
1922     }
1923   }
1924 }
1925 
1926 class MachSymtabSectionInfo {
1927 public:
1928   MachSymtabSectionInfo(SectionList *section_list)
1929       : m_section_list(section_list), m_section_infos() {
1930     // Get the number of sections down to a depth of 1 to include
1931     // all segments and their sections, but no other sections that
1932     // may be added for debug map or
1933     m_section_infos.resize(section_list->GetNumSections(1));
1934   }
1935 
1936   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1937     if (n_sect == 0)
1938       return SectionSP();
1939     if (n_sect < m_section_infos.size()) {
1940       if (!m_section_infos[n_sect].section_sp) {
1941         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1942         m_section_infos[n_sect].section_sp = section_sp;
1943         if (section_sp) {
1944           m_section_infos[n_sect].vm_range.SetBaseAddress(
1945               section_sp->GetFileAddress());
1946           m_section_infos[n_sect].vm_range.SetByteSize(
1947               section_sp->GetByteSize());
1948         } else {
1949           Host::SystemLog(Host::eSystemLogError,
1950                           "error: unable to find section for section %u\n",
1951                           n_sect);
1952         }
1953       }
1954       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1955         // Symbol is in section.
1956         return m_section_infos[n_sect].section_sp;
1957       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1958                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1959                      file_addr) {
1960         // Symbol is in section with zero size, but has the same start
1961         // address as the section. This can happen with linker symbols
1962         // (symbols that start with the letter 'l' or 'L'.
1963         return m_section_infos[n_sect].section_sp;
1964       }
1965     }
1966     return m_section_list->FindSectionContainingFileAddress(file_addr);
1967   }
1968 
1969 protected:
1970   struct SectionInfo {
1971     SectionInfo() : vm_range(), section_sp() {}
1972 
1973     VMRange vm_range;
1974     SectionSP section_sp;
1975   };
1976   SectionList *m_section_list;
1977   std::vector<SectionInfo> m_section_infos;
1978 };
1979 
1980 struct TrieEntry {
1981   TrieEntry()
1982       : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
1983         import_name() {}
1984 
1985   void Clear() {
1986     name.Clear();
1987     address = LLDB_INVALID_ADDRESS;
1988     flags = 0;
1989     other = 0;
1990     import_name.Clear();
1991   }
1992 
1993   void Dump() const {
1994     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1995            static_cast<unsigned long long>(address),
1996            static_cast<unsigned long long>(flags),
1997            static_cast<unsigned long long>(other), name.GetCString());
1998     if (import_name)
1999       printf(" -> \"%s\"\n", import_name.GetCString());
2000     else
2001       printf("\n");
2002   }
2003   ConstString name;
2004   uint64_t address;
2005   uint64_t flags;
2006   uint64_t other;
2007   ConstString import_name;
2008 };
2009 
2010 struct TrieEntryWithOffset {
2011   lldb::offset_t nodeOffset;
2012   TrieEntry entry;
2013 
2014   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2015 
2016   void Dump(uint32_t idx) const {
2017     printf("[%3u] 0x%16.16llx: ", idx,
2018            static_cast<unsigned long long>(nodeOffset));
2019     entry.Dump();
2020   }
2021 
2022   bool operator<(const TrieEntryWithOffset &other) const {
2023     return (nodeOffset < other.nodeOffset);
2024   }
2025 };
2026 
2027 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2028                              const bool is_arm,
2029                              std::vector<llvm::StringRef> &nameSlices,
2030                              std::set<lldb::addr_t> &resolver_addresses,
2031                              std::vector<TrieEntryWithOffset> &output) {
2032   if (!data.ValidOffset(offset))
2033     return true;
2034 
2035   const uint64_t terminalSize = data.GetULEB128(&offset);
2036   lldb::offset_t children_offset = offset + terminalSize;
2037   if (terminalSize != 0) {
2038     TrieEntryWithOffset e(offset);
2039     e.entry.flags = data.GetULEB128(&offset);
2040     const char *import_name = NULL;
2041     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2042       e.entry.address = 0;
2043       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2044       import_name = data.GetCStr(&offset);
2045     } else {
2046       e.entry.address = data.GetULEB128(&offset);
2047       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2048         e.entry.other = data.GetULEB128(&offset);
2049         uint64_t resolver_addr = e.entry.other;
2050         if (is_arm)
2051           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2052         resolver_addresses.insert(resolver_addr);
2053       } else
2054         e.entry.other = 0;
2055     }
2056     // Only add symbols that are reexport symbols with a valid import name
2057     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2058         import_name[0]) {
2059       std::string name;
2060       if (!nameSlices.empty()) {
2061         for (auto name_slice : nameSlices)
2062           name.append(name_slice.data(), name_slice.size());
2063       }
2064       if (name.size() > 1) {
2065         // Skip the leading '_'
2066         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2067       }
2068       if (import_name) {
2069         // Skip the leading '_'
2070         e.entry.import_name.SetCString(import_name + 1);
2071       }
2072       output.push_back(e);
2073     }
2074   }
2075 
2076   const uint8_t childrenCount = data.GetU8(&children_offset);
2077   for (uint8_t i = 0; i < childrenCount; ++i) {
2078     const char *cstr = data.GetCStr(&children_offset);
2079     if (cstr)
2080       nameSlices.push_back(llvm::StringRef(cstr));
2081     else
2082       return false; // Corrupt data
2083     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2084     if (childNodeOffset) {
2085       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2086                             resolver_addresses, output)) {
2087         return false;
2088       }
2089     }
2090     nameSlices.pop_back();
2091   }
2092   return true;
2093 }
2094 
2095 // Read the UUID out of a dyld_shared_cache file on-disk.
2096 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2097                                          const ByteOrder byte_order,
2098                                          const uint32_t addr_byte_size) {
2099   UUID dsc_uuid;
2100   DataBufferSP DscData = DataBufferLLVM::CreateSliceFromPath(
2101       dyld_shared_cache.GetPath(),
2102       sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2103   if (!DscData)
2104     return dsc_uuid;
2105   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2106 
2107   char version_str[7];
2108   lldb::offset_t offset = 0;
2109   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2110   version_str[6] = '\0';
2111   if (strcmp(version_str, "dyld_v") == 0) {
2112     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2113     uint8_t uuid_bytes[sizeof(uuid_t)];
2114     memcpy(uuid_bytes, dsc_header_data.GetData(&offset, sizeof(uuid_t)),
2115            sizeof(uuid_t));
2116     dsc_uuid.SetBytes(uuid_bytes);
2117   }
2118   return dsc_uuid;
2119 }
2120 
2121 size_t ObjectFileMachO::ParseSymtab() {
2122   Timer scoped_timer(LLVM_PRETTY_FUNCTION,
2123                      "ObjectFileMachO::ParseSymtab () module = %s",
2124                      m_file.GetFilename().AsCString(""));
2125   ModuleSP module_sp(GetModule());
2126   if (!module_sp)
2127     return 0;
2128 
2129   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2130   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2131   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2132   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2133   FunctionStarts function_starts;
2134   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2135   uint32_t i;
2136   FileSpecList dylib_files;
2137   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2138   static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2139   static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2140   static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2141 
2142   for (i = 0; i < m_header.ncmds; ++i) {
2143     const lldb::offset_t cmd_offset = offset;
2144     // Read in the load command and load command size
2145     struct load_command lc;
2146     if (m_data.GetU32(&offset, &lc, 2) == NULL)
2147       break;
2148     // Watch for the symbol table load command
2149     switch (lc.cmd) {
2150     case LC_SYMTAB:
2151       symtab_load_command.cmd = lc.cmd;
2152       symtab_load_command.cmdsize = lc.cmdsize;
2153       // Read in the rest of the symtab load command
2154       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2155           0) // fill in symoff, nsyms, stroff, strsize fields
2156         return 0;
2157       if (symtab_load_command.symoff == 0) {
2158         if (log)
2159           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2160         return 0;
2161       }
2162 
2163       if (symtab_load_command.stroff == 0) {
2164         if (log)
2165           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2166         return 0;
2167       }
2168 
2169       if (symtab_load_command.nsyms == 0) {
2170         if (log)
2171           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2172         return 0;
2173       }
2174 
2175       if (symtab_load_command.strsize == 0) {
2176         if (log)
2177           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2178         return 0;
2179       }
2180       break;
2181 
2182     case LC_DYLD_INFO:
2183     case LC_DYLD_INFO_ONLY:
2184       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2185         dyld_info.cmd = lc.cmd;
2186         dyld_info.cmdsize = lc.cmdsize;
2187       } else {
2188         memset(&dyld_info, 0, sizeof(dyld_info));
2189       }
2190       break;
2191 
2192     case LC_LOAD_DYLIB:
2193     case LC_LOAD_WEAK_DYLIB:
2194     case LC_REEXPORT_DYLIB:
2195     case LC_LOADFVMLIB:
2196     case LC_LOAD_UPWARD_DYLIB: {
2197       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2198       const char *path = m_data.PeekCStr(name_offset);
2199       if (path) {
2200         FileSpec file_spec(path, false);
2201         // Strip the path if there is @rpath, @executable, etc so we just use
2202         // the basename
2203         if (path[0] == '@')
2204           file_spec.GetDirectory().Clear();
2205 
2206         if (lc.cmd == LC_REEXPORT_DYLIB) {
2207           m_reexported_dylibs.AppendIfUnique(file_spec);
2208         }
2209 
2210         dylib_files.Append(file_spec);
2211       }
2212     } break;
2213 
2214     case LC_FUNCTION_STARTS:
2215       function_starts_load_command.cmd = lc.cmd;
2216       function_starts_load_command.cmdsize = lc.cmdsize;
2217       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2218           NULL) // fill in symoff, nsyms, stroff, strsize fields
2219         memset(&function_starts_load_command, 0,
2220                sizeof(function_starts_load_command));
2221       break;
2222 
2223     default:
2224       break;
2225     }
2226     offset = cmd_offset + lc.cmdsize;
2227   }
2228 
2229   if (symtab_load_command.cmd) {
2230     Symtab *symtab = m_symtab_ap.get();
2231     SectionList *section_list = GetSectionList();
2232     if (section_list == NULL)
2233       return 0;
2234 
2235     const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2236     const ByteOrder byte_order = m_data.GetByteOrder();
2237     bool bit_width_32 = addr_byte_size == 4;
2238     const size_t nlist_byte_size =
2239         bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2240 
2241     DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size);
2242     DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size);
2243     DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size);
2244     DataExtractor indirect_symbol_index_data(NULL, 0, byte_order,
2245                                              addr_byte_size);
2246     DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size);
2247 
2248     const addr_t nlist_data_byte_size =
2249         symtab_load_command.nsyms * nlist_byte_size;
2250     const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2251     addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2252 
2253     ProcessSP process_sp(m_process_wp.lock());
2254     Process *process = process_sp.get();
2255 
2256     uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2257 
2258     if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2259       Target &target = process->GetTarget();
2260 
2261       memory_module_load_level = target.GetMemoryModuleLoadLevel();
2262 
2263       SectionSP linkedit_section_sp(
2264           section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2265       // Reading mach file from memory in a process or core file...
2266 
2267       if (linkedit_section_sp) {
2268         addr_t linkedit_load_addr =
2269             linkedit_section_sp->GetLoadBaseAddress(&target);
2270         if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2271           // We might be trying to access the symbol table before the
2272           // __LINKEDIT's load
2273           // address has been set in the target. We can't fail to read the
2274           // symbol table,
2275           // so calculate the right address manually
2276           linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2277               m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2278         }
2279 
2280         const addr_t linkedit_file_offset =
2281             linkedit_section_sp->GetFileOffset();
2282         const addr_t symoff_addr = linkedit_load_addr +
2283                                    symtab_load_command.symoff -
2284                                    linkedit_file_offset;
2285         strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2286                       linkedit_file_offset;
2287 
2288         bool data_was_read = false;
2289 
2290 #if defined(__APPLE__) &&                                                      \
2291     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2292         if (m_header.flags & 0x80000000u &&
2293             process->GetAddressByteSize() == sizeof(void *)) {
2294           // This mach-o memory file is in the dyld shared cache. If this
2295           // program is not remote and this is iOS, then this process will
2296           // share the same shared cache as the process we are debugging and
2297           // we can read the entire __LINKEDIT from the address space in this
2298           // process. This is a needed optimization that is used for local iOS
2299           // debugging only since all shared libraries in the shared cache do
2300           // not have corresponding files that exist in the file system of the
2301           // device. They have been combined into a single file. This means we
2302           // always have to load these files from memory. All of the symbol and
2303           // string tables from all of the __LINKEDIT sections from the shared
2304           // libraries in the shared cache have been merged into a single large
2305           // symbol and string table. Reading all of this symbol and string
2306           // table
2307           // data across can slow down debug launch times, so we optimize this
2308           // by
2309           // reading the memory for the __LINKEDIT section from this process.
2310 
2311           UUID lldb_shared_cache(GetLLDBSharedCacheUUID());
2312           UUID process_shared_cache(GetProcessSharedCacheUUID(process));
2313           bool use_lldb_cache = true;
2314           if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2315               lldb_shared_cache != process_shared_cache) {
2316             use_lldb_cache = false;
2317             ModuleSP module_sp(GetModule());
2318             if (module_sp)
2319               module_sp->ReportWarning("shared cache in process does not match "
2320                                        "lldb's own shared cache, startup will "
2321                                        "be slow.");
2322           }
2323 
2324           PlatformSP platform_sp(target.GetPlatform());
2325           if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2326             data_was_read = true;
2327             nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2328                                eByteOrderLittle);
2329             strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2330                                 eByteOrderLittle);
2331             if (function_starts_load_command.cmd) {
2332               const addr_t func_start_addr =
2333                   linkedit_load_addr + function_starts_load_command.dataoff -
2334                   linkedit_file_offset;
2335               function_starts_data.SetData(
2336                   (void *)func_start_addr,
2337                   function_starts_load_command.datasize, eByteOrderLittle);
2338             }
2339           }
2340         }
2341 #endif
2342 
2343         if (!data_was_read) {
2344           // Always load dyld - the dynamic linker - from memory if we didn't
2345           // find a binary anywhere else.
2346           // lldb will not register dylib/framework/bundle loads/unloads if we
2347           // don't have the dyld symbols,
2348           // we force dyld to load from memory despite the user's
2349           // target.memory-module-load-level setting.
2350           if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2351               m_header.filetype == llvm::MachO::MH_DYLINKER) {
2352             DataBufferSP nlist_data_sp(
2353                 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2354             if (nlist_data_sp)
2355               nlist_data.SetData(nlist_data_sp, 0,
2356                                  nlist_data_sp->GetByteSize());
2357             // Load strings individually from memory when loading from memory
2358             // since shared cache
2359             // string tables contain strings for all symbols from all shared
2360             // cached libraries
2361             // DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr,
2362             // strtab_data_byte_size));
2363             // if (strtab_data_sp)
2364             //    strtab_data.SetData (strtab_data_sp, 0,
2365             //    strtab_data_sp->GetByteSize());
2366             if (m_dysymtab.nindirectsyms != 0) {
2367               const addr_t indirect_syms_addr = linkedit_load_addr +
2368                                                 m_dysymtab.indirectsymoff -
2369                                                 linkedit_file_offset;
2370               DataBufferSP indirect_syms_data_sp(
2371                   ReadMemory(process_sp, indirect_syms_addr,
2372                              m_dysymtab.nindirectsyms * 4));
2373               if (indirect_syms_data_sp)
2374                 indirect_symbol_index_data.SetData(
2375                     indirect_syms_data_sp, 0,
2376                     indirect_syms_data_sp->GetByteSize());
2377             }
2378           } else if (memory_module_load_level >=
2379                      eMemoryModuleLoadLevelPartial) {
2380             if (function_starts_load_command.cmd) {
2381               const addr_t func_start_addr =
2382                   linkedit_load_addr + function_starts_load_command.dataoff -
2383                   linkedit_file_offset;
2384               DataBufferSP func_start_data_sp(
2385                   ReadMemory(process_sp, func_start_addr,
2386                              function_starts_load_command.datasize));
2387               if (func_start_data_sp)
2388                 function_starts_data.SetData(func_start_data_sp, 0,
2389                                              func_start_data_sp->GetByteSize());
2390             }
2391           }
2392         }
2393       }
2394     } else {
2395       nlist_data.SetData(m_data, symtab_load_command.symoff,
2396                          nlist_data_byte_size);
2397       strtab_data.SetData(m_data, symtab_load_command.stroff,
2398                           strtab_data_byte_size);
2399 
2400       if (dyld_info.export_size > 0) {
2401         dyld_trie_data.SetData(m_data, dyld_info.export_off,
2402                                dyld_info.export_size);
2403       }
2404 
2405       if (m_dysymtab.nindirectsyms != 0) {
2406         indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2407                                            m_dysymtab.nindirectsyms * 4);
2408       }
2409       if (function_starts_load_command.cmd) {
2410         function_starts_data.SetData(m_data,
2411                                      function_starts_load_command.dataoff,
2412                                      function_starts_load_command.datasize);
2413       }
2414     }
2415 
2416     if (nlist_data.GetByteSize() == 0 &&
2417         memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2418       if (log)
2419         module_sp->LogMessage(log, "failed to read nlist data");
2420       return 0;
2421     }
2422 
2423     const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2424     if (!have_strtab_data) {
2425       if (process) {
2426         if (strtab_addr == LLDB_INVALID_ADDRESS) {
2427           if (log)
2428             module_sp->LogMessage(log, "failed to locate the strtab in memory");
2429           return 0;
2430         }
2431       } else {
2432         if (log)
2433           module_sp->LogMessage(log, "failed to read strtab data");
2434         return 0;
2435       }
2436     }
2437 
2438     const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
2439     const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
2440     const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2441     const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2442     const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
2443     const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
2444     SectionSP text_section_sp(
2445         section_list->FindSectionByName(g_segment_name_TEXT));
2446     SectionSP data_section_sp(
2447         section_list->FindSectionByName(g_segment_name_DATA));
2448     SectionSP data_dirty_section_sp(
2449         section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2450     SectionSP data_const_section_sp(
2451         section_list->FindSectionByName(g_segment_name_DATA_CONST));
2452     SectionSP objc_section_sp(
2453         section_list->FindSectionByName(g_segment_name_OBJC));
2454     SectionSP eh_frame_section_sp;
2455     if (text_section_sp.get())
2456       eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2457           g_section_name_eh_frame);
2458     else
2459       eh_frame_section_sp =
2460           section_list->FindSectionByName(g_section_name_eh_frame);
2461 
2462     const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2463 
2464     // lldb works best if it knows the start address of all functions in a
2465     // module.
2466     // Linker symbols or debug info are normally the best source of information
2467     // for start addr / size but
2468     // they may be stripped in a released binary.
2469     // Two additional sources of information exist in Mach-O binaries:
2470     //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2471     //    function's start address in the
2472     //                         binary, relative to the text section.
2473     //    eh_frame           - the eh_frame FDEs have the start addr & size of
2474     //    each function
2475     //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2476     //  all modern binaries.
2477     //  Binaries built to run on older releases may need to use eh_frame
2478     //  information.
2479 
2480     if (text_section_sp && function_starts_data.GetByteSize()) {
2481       FunctionStarts::Entry function_start_entry;
2482       function_start_entry.data = false;
2483       lldb::offset_t function_start_offset = 0;
2484       function_start_entry.addr = text_section_sp->GetFileAddress();
2485       uint64_t delta;
2486       while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2487              0) {
2488         // Now append the current entry
2489         function_start_entry.addr += delta;
2490         function_starts.Append(function_start_entry);
2491       }
2492     } else {
2493       // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2494       // load command claiming an eh_frame
2495       // but it doesn't actually have the eh_frame content.  And if we have a
2496       // dSYM, we don't need to do any
2497       // of this fill-in-the-missing-symbols works anyway - the debug info
2498       // should give us all the functions in
2499       // the module.
2500       if (text_section_sp.get() && eh_frame_section_sp.get() &&
2501           m_type != eTypeDebugInfo) {
2502         DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2503                                     eRegisterKindEHFrame, true);
2504         DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2505         eh_frame.GetFunctionAddressAndSizeVector(functions);
2506         addr_t text_base_addr = text_section_sp->GetFileAddress();
2507         size_t count = functions.GetSize();
2508         for (size_t i = 0; i < count; ++i) {
2509           const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2510               functions.GetEntryAtIndex(i);
2511           if (func) {
2512             FunctionStarts::Entry function_start_entry;
2513             function_start_entry.addr = func->base - text_base_addr;
2514             function_starts.Append(function_start_entry);
2515           }
2516         }
2517       }
2518     }
2519 
2520     const size_t function_starts_count = function_starts.GetSize();
2521 
2522     // For user process binaries (executables, dylibs, frameworks, bundles), if
2523     // we don't have
2524     // LC_FUNCTION_STARTS/eh_frame section in this binary, we're going to assume
2525     // the binary
2526     // has been stripped.  Don't allow assembly language instruction emulation
2527     // because we don't
2528     // know proper function start boundaries.
2529     //
2530     // For all other types of binaries (kernels, stand-alone bare board
2531     // binaries, kexts), they
2532     // may not have LC_FUNCTION_STARTS / eh_frame sections - we should not make
2533     // any assumptions
2534     // about them based on that.
2535     if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2536       m_allow_assembly_emulation_unwind_plans = false;
2537       Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2538           LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2539 
2540       if (unwind_or_symbol_log)
2541         module_sp->LogMessage(
2542             unwind_or_symbol_log,
2543             "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2544     }
2545 
2546     const user_id_t TEXT_eh_frame_sectID =
2547         eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2548                                   : static_cast<user_id_t>(NO_SECT);
2549 
2550     lldb::offset_t nlist_data_offset = 0;
2551 
2552     uint32_t N_SO_index = UINT32_MAX;
2553 
2554     MachSymtabSectionInfo section_info(section_list);
2555     std::vector<uint32_t> N_FUN_indexes;
2556     std::vector<uint32_t> N_NSYM_indexes;
2557     std::vector<uint32_t> N_INCL_indexes;
2558     std::vector<uint32_t> N_BRAC_indexes;
2559     std::vector<uint32_t> N_COMM_indexes;
2560     typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2561     typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2562     typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2563     ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2564     ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2565     ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2566     // Any symbols that get merged into another will get an entry
2567     // in this map so we know
2568     NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2569     uint32_t nlist_idx = 0;
2570     Symbol *symbol_ptr = NULL;
2571 
2572     uint32_t sym_idx = 0;
2573     Symbol *sym = NULL;
2574     size_t num_syms = 0;
2575     std::string memory_symbol_name;
2576     uint32_t unmapped_local_symbols_found = 0;
2577 
2578     std::vector<TrieEntryWithOffset> trie_entries;
2579     std::set<lldb::addr_t> resolver_addresses;
2580 
2581     if (dyld_trie_data.GetByteSize() > 0) {
2582       std::vector<llvm::StringRef> nameSlices;
2583       ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2584                        resolver_addresses, trie_entries);
2585 
2586       ConstString text_segment_name("__TEXT");
2587       SectionSP text_segment_sp =
2588           GetSectionList()->FindSectionByName(text_segment_name);
2589       if (text_segment_sp) {
2590         const lldb::addr_t text_segment_file_addr =
2591             text_segment_sp->GetFileAddress();
2592         if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2593           for (auto &e : trie_entries)
2594             e.entry.address += text_segment_file_addr;
2595         }
2596       }
2597     }
2598 
2599     typedef std::set<ConstString> IndirectSymbols;
2600     IndirectSymbols indirect_symbol_names;
2601 
2602 #if defined(__APPLE__) &&                                                      \
2603     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2604 
2605     // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2606     // optimized by moving LOCAL
2607     // symbols out of the memory mapped portion of the DSC. The symbol
2608     // information has all been retained,
2609     // but it isn't available in the normal nlist data. However, there *are*
2610     // duplicate entries of *some*
2611     // LOCAL symbols in the normal nlist data. To handle this situation
2612     // correctly, we must first attempt
2613     // to parse any DSC unmapped symbol information. If we find any, we set a
2614     // flag that tells the normal
2615     // nlist parser to ignore all LOCAL symbols.
2616 
2617     if (m_header.flags & 0x80000000u) {
2618       // Before we can start mapping the DSC, we need to make certain the target
2619       // process is actually
2620       // using the cache we can find.
2621 
2622       // Next we need to determine the correct path for the dyld shared cache.
2623 
2624       ArchSpec header_arch;
2625       GetArchitecture(header_arch);
2626       char dsc_path[PATH_MAX];
2627       char dsc_path_development[PATH_MAX];
2628 
2629       snprintf(
2630           dsc_path, sizeof(dsc_path), "%s%s%s",
2631           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2632                                                        */
2633           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2634           header_arch.GetArchitectureName());
2635 
2636       snprintf(
2637           dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2638           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2639                                                        */
2640           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2641           header_arch.GetArchitectureName(), ".development");
2642 
2643       FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2644       FileSpec dsc_development_filespec(dsc_path_development, false);
2645       FileSpec dsc_filespec;
2646 
2647       UUID dsc_uuid;
2648       UUID process_shared_cache_uuid;
2649 
2650       if (process) {
2651         process_shared_cache_uuid = GetProcessSharedCacheUUID(process);
2652       }
2653 
2654       // First see if we can find an exact match for the inferior process shared
2655       // cache UUID in
2656       // the development or non-development shared caches on disk.
2657       if (process_shared_cache_uuid.IsValid()) {
2658         if (dsc_development_filespec.Exists()) {
2659           UUID dsc_development_uuid = GetSharedCacheUUID(
2660               dsc_development_filespec, byte_order, addr_byte_size);
2661           if (dsc_development_uuid.IsValid() &&
2662               dsc_development_uuid == process_shared_cache_uuid) {
2663             dsc_filespec = dsc_development_filespec;
2664             dsc_uuid = dsc_development_uuid;
2665           }
2666         }
2667         if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
2668           UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2669               dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2670           if (dsc_nondevelopment_uuid.IsValid() &&
2671               dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2672             dsc_filespec = dsc_nondevelopment_filespec;
2673             dsc_uuid = dsc_nondevelopment_uuid;
2674           }
2675         }
2676       }
2677 
2678       // Failing a UUID match, prefer the development dyld_shared cache if both
2679       // are present.
2680       if (!dsc_filespec.Exists()) {
2681         if (dsc_development_filespec.Exists()) {
2682           dsc_filespec = dsc_development_filespec;
2683         } else {
2684           dsc_filespec = dsc_nondevelopment_filespec;
2685         }
2686       }
2687 
2688       /* The dyld_cache_header has a pointer to the
2689          dyld_cache_local_symbols_info structure (localSymbolsOffset).
2690          The dyld_cache_local_symbols_info structure gives us three things:
2691            1. The start and count of the nlist records in the dyld_shared_cache
2692          file
2693            2. The start and size of the strings for these nlist records
2694            3. The start and count of dyld_cache_local_symbols_entry entries
2695 
2696          There is one dyld_cache_local_symbols_entry per dylib/framework in the
2697          dyld shared cache.
2698          The "dylibOffset" field is the Mach-O header of this dylib/framework in
2699          the dyld shared cache.
2700          The dyld_cache_local_symbols_entry also lists the start of this
2701          dylib/framework's nlist records
2702          and the count of how many nlist records there are for this
2703          dylib/framework.
2704       */
2705 
2706       // Process the dyld shared cache header to find the unmapped symbols
2707 
2708       DataBufferSP dsc_data_sp = DataBufferLLVM::CreateSliceFromPath(
2709           dsc_filespec.GetPath(), sizeof(struct lldb_copy_dyld_cache_header_v1),
2710           0);
2711       if (!dsc_uuid.IsValid()) {
2712         dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2713       }
2714       if (dsc_data_sp) {
2715         DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2716 
2717         bool uuid_match = true;
2718         if (dsc_uuid.IsValid() && process) {
2719           if (process_shared_cache_uuid.IsValid() &&
2720               dsc_uuid != process_shared_cache_uuid) {
2721             // The on-disk dyld_shared_cache file is not the same as the one in
2722             // this
2723             // process' memory, don't use it.
2724             uuid_match = false;
2725             ModuleSP module_sp(GetModule());
2726             if (module_sp)
2727               module_sp->ReportWarning("process shared cache does not match "
2728                                        "on-disk dyld_shared_cache file, some "
2729                                        "symbol names will be missing.");
2730           }
2731         }
2732 
2733         offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2734 
2735         uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2736 
2737         // If the mappingOffset points to a location inside the header, we've
2738         // opened an old dyld shared cache, and should not proceed further.
2739         if (uuid_match &&
2740             mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2741 
2742           DataBufferSP dsc_mapping_info_data_sp =
2743               DataBufferLLVM::CreateSliceFromPath(
2744                   dsc_filespec.GetPath(),
2745                   sizeof(struct lldb_copy_dyld_cache_mapping_info),
2746                   mappingOffset);
2747 
2748           DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2749                                               byte_order, addr_byte_size);
2750           offset = 0;
2751 
2752           // The File addresses (from the in-memory Mach-O load commands) for
2753           // the shared libraries
2754           // in the shared library cache need to be adjusted by an offset to
2755           // match up with the
2756           // dylibOffset identifying field in the
2757           // dyld_cache_local_symbol_entry's.  This offset is
2758           // recorded in mapping_offset_value.
2759           const uint64_t mapping_offset_value =
2760               dsc_mapping_info_data.GetU64(&offset);
2761 
2762           offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
2763                             localSymbolsOffset);
2764           uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2765           uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2766 
2767           if (localSymbolsOffset && localSymbolsSize) {
2768             // Map the local symbols
2769             DataBufferSP dsc_local_symbols_data_sp =
2770                 DataBufferLLVM::CreateSliceFromPath(dsc_filespec.GetPath(),
2771                                                localSymbolsSize,
2772                                                localSymbolsOffset);
2773 
2774             if (dsc_local_symbols_data_sp) {
2775               DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2776                                                    byte_order, addr_byte_size);
2777 
2778               offset = 0;
2779 
2780               typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2781               typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2782               UndefinedNameToDescMap undefined_name_to_desc;
2783               SymbolIndexToName reexport_shlib_needs_fixup;
2784 
2785               // Read the local_symbols_infos struct in one shot
2786               struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2787               dsc_local_symbols_data.GetU32(&offset,
2788                                             &local_symbols_info.nlistOffset, 6);
2789 
2790               SectionSP text_section_sp(
2791                   section_list->FindSectionByName(GetSegmentNameTEXT()));
2792 
2793               uint32_t header_file_offset =
2794                   (text_section_sp->GetFileAddress() - mapping_offset_value);
2795 
2796               offset = local_symbols_info.entriesOffset;
2797               for (uint32_t entry_index = 0;
2798                    entry_index < local_symbols_info.entriesCount;
2799                    entry_index++) {
2800                 struct lldb_copy_dyld_cache_local_symbols_entry
2801                     local_symbols_entry;
2802                 local_symbols_entry.dylibOffset =
2803                     dsc_local_symbols_data.GetU32(&offset);
2804                 local_symbols_entry.nlistStartIndex =
2805                     dsc_local_symbols_data.GetU32(&offset);
2806                 local_symbols_entry.nlistCount =
2807                     dsc_local_symbols_data.GetU32(&offset);
2808 
2809                 if (header_file_offset == local_symbols_entry.dylibOffset) {
2810                   unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2811 
2812                   // The normal nlist code cannot correctly size the Symbols
2813                   // array, we need to allocate it here.
2814                   sym = symtab->Resize(
2815                       symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2816                       unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2817                   num_syms = symtab->GetNumSymbols();
2818 
2819                   nlist_data_offset =
2820                       local_symbols_info.nlistOffset +
2821                       (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2822                   uint32_t string_table_offset =
2823                       local_symbols_info.stringsOffset;
2824 
2825                   for (uint32_t nlist_index = 0;
2826                        nlist_index < local_symbols_entry.nlistCount;
2827                        nlist_index++) {
2828                     /////////////////////////////
2829                     {
2830                       struct nlist_64 nlist;
2831                       if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2832                               nlist_data_offset, nlist_byte_size))
2833                         break;
2834 
2835                       nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2836                           &nlist_data_offset);
2837                       nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2838                           &nlist_data_offset);
2839                       nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2840                           &nlist_data_offset);
2841                       nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2842                           &nlist_data_offset);
2843                       nlist.n_value =
2844                           dsc_local_symbols_data.GetAddress_unchecked(
2845                               &nlist_data_offset);
2846 
2847                       SymbolType type = eSymbolTypeInvalid;
2848                       const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2849                           string_table_offset + nlist.n_strx);
2850 
2851                       if (symbol_name == NULL) {
2852                         // No symbol should be NULL, even the symbols with no
2853                         // string values should have an offset zero which points
2854                         // to an empty C-string
2855                         Host::SystemLog(
2856                             Host::eSystemLogError,
2857                             "error: DSC unmapped local symbol[%u] has invalid "
2858                             "string table offset 0x%x in %s, ignoring symbol\n",
2859                             entry_index, nlist.n_strx,
2860                             module_sp->GetFileSpec().GetPath().c_str());
2861                         continue;
2862                       }
2863                       if (symbol_name[0] == '\0')
2864                         symbol_name = NULL;
2865 
2866                       const char *symbol_name_non_abi_mangled = NULL;
2867 
2868                       SectionSP symbol_section;
2869                       uint32_t symbol_byte_size = 0;
2870                       bool add_nlist = true;
2871                       bool is_debug = ((nlist.n_type & N_STAB) != 0);
2872                       bool demangled_is_synthesized = false;
2873                       bool is_gsym = false;
2874                       bool set_value = true;
2875 
2876                       assert(sym_idx < num_syms);
2877 
2878                       sym[sym_idx].SetDebug(is_debug);
2879 
2880                       if (is_debug) {
2881                         switch (nlist.n_type) {
2882                         case N_GSYM:
2883                           // global symbol: name,,NO_SECT,type,0
2884                           // Sometimes the N_GSYM value contains the address.
2885 
2886                           // FIXME: In the .o files, we have a GSYM and a debug
2887                           // symbol for all the ObjC data.  They
2888                           // have the same address, but we want to ensure that
2889                           // we always find only the real symbol,
2890                           // 'cause we don't currently correctly attribute the
2891                           // GSYM one to the ObjCClass/Ivar/MetaClass
2892                           // symbol type.  This is a temporary hack to make sure
2893                           // the ObjectiveC symbols get treated
2894                           // correctly.  To do this right, we should coalesce
2895                           // all the GSYM & global symbols that have the
2896                           // same address.
2897 
2898                           is_gsym = true;
2899                           sym[sym_idx].SetExternal(true);
2900 
2901                           if (symbol_name && symbol_name[0] == '_' &&
2902                               symbol_name[1] == 'O') {
2903                             llvm::StringRef symbol_name_ref(symbol_name);
2904                             if (symbol_name_ref.startswith(
2905                                     g_objc_v2_prefix_class)) {
2906                               symbol_name_non_abi_mangled = symbol_name + 1;
2907                               symbol_name =
2908                                   symbol_name + g_objc_v2_prefix_class.size();
2909                               type = eSymbolTypeObjCClass;
2910                               demangled_is_synthesized = true;
2911 
2912                             } else if (symbol_name_ref.startswith(
2913                                            g_objc_v2_prefix_metaclass)) {
2914                               symbol_name_non_abi_mangled = symbol_name + 1;
2915                               symbol_name = symbol_name +
2916                                             g_objc_v2_prefix_metaclass.size();
2917                               type = eSymbolTypeObjCMetaClass;
2918                               demangled_is_synthesized = true;
2919                             } else if (symbol_name_ref.startswith(
2920                                            g_objc_v2_prefix_ivar)) {
2921                               symbol_name_non_abi_mangled = symbol_name + 1;
2922                               symbol_name =
2923                                   symbol_name + g_objc_v2_prefix_ivar.size();
2924                               type = eSymbolTypeObjCIVar;
2925                               demangled_is_synthesized = true;
2926                             }
2927                           } else {
2928                             if (nlist.n_value != 0)
2929                               symbol_section = section_info.GetSection(
2930                                   nlist.n_sect, nlist.n_value);
2931                             type = eSymbolTypeData;
2932                           }
2933                           break;
2934 
2935                         case N_FNAME:
2936                           // procedure name (f77 kludge): name,,NO_SECT,0,0
2937                           type = eSymbolTypeCompiler;
2938                           break;
2939 
2940                         case N_FUN:
2941                           // procedure: name,,n_sect,linenumber,address
2942                           if (symbol_name) {
2943                             type = eSymbolTypeCode;
2944                             symbol_section = section_info.GetSection(
2945                                 nlist.n_sect, nlist.n_value);
2946 
2947                             N_FUN_addr_to_sym_idx.insert(
2948                                 std::make_pair(nlist.n_value, sym_idx));
2949                             // We use the current number of symbols in the
2950                             // symbol table in lieu of
2951                             // using nlist_idx in case we ever start trimming
2952                             // entries out
2953                             N_FUN_indexes.push_back(sym_idx);
2954                           } else {
2955                             type = eSymbolTypeCompiler;
2956 
2957                             if (!N_FUN_indexes.empty()) {
2958                               // Copy the size of the function into the original
2959                               // STAB entry so we don't have
2960                               // to hunt for it later
2961                               symtab->SymbolAtIndex(N_FUN_indexes.back())
2962                                   ->SetByteSize(nlist.n_value);
2963                               N_FUN_indexes.pop_back();
2964                               // We don't really need the end function STAB as
2965                               // it contains the size which
2966                               // we already placed with the original symbol, so
2967                               // don't add it if we want a
2968                               // minimal symbol table
2969                               add_nlist = false;
2970                             }
2971                           }
2972                           break;
2973 
2974                         case N_STSYM:
2975                           // static symbol: name,,n_sect,type,address
2976                           N_STSYM_addr_to_sym_idx.insert(
2977                               std::make_pair(nlist.n_value, sym_idx));
2978                           symbol_section = section_info.GetSection(
2979                               nlist.n_sect, nlist.n_value);
2980                           if (symbol_name && symbol_name[0]) {
2981                             type = ObjectFile::GetSymbolTypeFromName(
2982                                 symbol_name + 1, eSymbolTypeData);
2983                           }
2984                           break;
2985 
2986                         case N_LCSYM:
2987                           // .lcomm symbol: name,,n_sect,type,address
2988                           symbol_section = section_info.GetSection(
2989                               nlist.n_sect, nlist.n_value);
2990                           type = eSymbolTypeCommonBlock;
2991                           break;
2992 
2993                         case N_BNSYM:
2994                           // We use the current number of symbols in the symbol
2995                           // table in lieu of
2996                           // using nlist_idx in case we ever start trimming
2997                           // entries out
2998                           // Skip these if we want minimal symbol tables
2999                           add_nlist = false;
3000                           break;
3001 
3002                         case N_ENSYM:
3003                           // Set the size of the N_BNSYM to the terminating
3004                           // index of this N_ENSYM
3005                           // so that we can always skip the entire symbol if we
3006                           // need to navigate
3007                           // more quickly at the source level when parsing STABS
3008                           // Skip these if we want minimal symbol tables
3009                           add_nlist = false;
3010                           break;
3011 
3012                         case N_OPT:
3013                           // emitted with gcc2_compiled and in gcc source
3014                           type = eSymbolTypeCompiler;
3015                           break;
3016 
3017                         case N_RSYM:
3018                           // register sym: name,,NO_SECT,type,register
3019                           type = eSymbolTypeVariable;
3020                           break;
3021 
3022                         case N_SLINE:
3023                           // src line: 0,,n_sect,linenumber,address
3024                           symbol_section = section_info.GetSection(
3025                               nlist.n_sect, nlist.n_value);
3026                           type = eSymbolTypeLineEntry;
3027                           break;
3028 
3029                         case N_SSYM:
3030                           // structure elt: name,,NO_SECT,type,struct_offset
3031                           type = eSymbolTypeVariableType;
3032                           break;
3033 
3034                         case N_SO:
3035                           // source file name
3036                           type = eSymbolTypeSourceFile;
3037                           if (symbol_name == NULL) {
3038                             add_nlist = false;
3039                             if (N_SO_index != UINT32_MAX) {
3040                               // Set the size of the N_SO to the terminating
3041                               // index of this N_SO
3042                               // so that we can always skip the entire N_SO if
3043                               // we need to navigate
3044                               // more quickly at the source level when parsing
3045                               // STABS
3046                               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3047                               symbol_ptr->SetByteSize(sym_idx);
3048                               symbol_ptr->SetSizeIsSibling(true);
3049                             }
3050                             N_NSYM_indexes.clear();
3051                             N_INCL_indexes.clear();
3052                             N_BRAC_indexes.clear();
3053                             N_COMM_indexes.clear();
3054                             N_FUN_indexes.clear();
3055                             N_SO_index = UINT32_MAX;
3056                           } else {
3057                             // We use the current number of symbols in the
3058                             // symbol table in lieu of
3059                             // using nlist_idx in case we ever start trimming
3060                             // entries out
3061                             const bool N_SO_has_full_path =
3062                                 symbol_name[0] == '/';
3063                             if (N_SO_has_full_path) {
3064                               if ((N_SO_index == sym_idx - 1) &&
3065                                   ((sym_idx - 1) < num_syms)) {
3066                                 // We have two consecutive N_SO entries where
3067                                 // the first contains a directory
3068                                 // and the second contains a full path.
3069                                 sym[sym_idx - 1].GetMangled().SetValue(
3070                                     ConstString(symbol_name), false);
3071                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3072                                 add_nlist = false;
3073                               } else {
3074                                 // This is the first entry in a N_SO that
3075                                 // contains a directory or
3076                                 // a full path to the source file
3077                                 N_SO_index = sym_idx;
3078                               }
3079                             } else if ((N_SO_index == sym_idx - 1) &&
3080                                        ((sym_idx - 1) < num_syms)) {
3081                               // This is usually the second N_SO entry that
3082                               // contains just the filename,
3083                               // so here we combine it with the first one if we
3084                               // are minimizing the symbol table
3085                               const char *so_path =
3086                                   sym[sym_idx - 1]
3087                                       .GetMangled()
3088                                       .GetDemangledName(
3089                                           lldb::eLanguageTypeUnknown)
3090                                       .AsCString();
3091                               if (so_path && so_path[0]) {
3092                                 std::string full_so_path(so_path);
3093                                 const size_t double_slash_pos =
3094                                     full_so_path.find("//");
3095                                 if (double_slash_pos != std::string::npos) {
3096                                   // The linker has been generating bad N_SO
3097                                   // entries with doubled up paths
3098                                   // in the format "%s%s" where the first string
3099                                   // in the DW_AT_comp_dir,
3100                                   // and the second is the directory for the
3101                                   // source file so you end up with
3102                                   // a path that looks like "/tmp/src//tmp/src/"
3103                                   FileSpec so_dir(so_path, false);
3104                                   if (!so_dir.Exists()) {
3105                                     so_dir.SetFile(
3106                                         &full_so_path[double_slash_pos + 1],
3107                                         false);
3108                                     if (so_dir.Exists()) {
3109                                       // Trim off the incorrect path
3110                                       full_so_path.erase(0,
3111                                                          double_slash_pos + 1);
3112                                     }
3113                                   }
3114                                 }
3115                                 if (*full_so_path.rbegin() != '/')
3116                                   full_so_path += '/';
3117                                 full_so_path += symbol_name;
3118                                 sym[sym_idx - 1].GetMangled().SetValue(
3119                                     ConstString(full_so_path.c_str()), false);
3120                                 add_nlist = false;
3121                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3122                               }
3123                             } else {
3124                               // This could be a relative path to a N_SO
3125                               N_SO_index = sym_idx;
3126                             }
3127                           }
3128                           break;
3129 
3130                         case N_OSO:
3131                           // object file name: name,,0,0,st_mtime
3132                           type = eSymbolTypeObjectFile;
3133                           break;
3134 
3135                         case N_LSYM:
3136                           // local sym: name,,NO_SECT,type,offset
3137                           type = eSymbolTypeLocal;
3138                           break;
3139 
3140                         //----------------------------------------------------------------------
3141                         // INCL scopes
3142                         //----------------------------------------------------------------------
3143                         case N_BINCL:
3144                           // include file beginning: name,,NO_SECT,0,sum
3145                           // We use the current number of symbols in the symbol
3146                           // table in lieu of
3147                           // using nlist_idx in case we ever start trimming
3148                           // entries out
3149                           N_INCL_indexes.push_back(sym_idx);
3150                           type = eSymbolTypeScopeBegin;
3151                           break;
3152 
3153                         case N_EINCL:
3154                           // include file end: name,,NO_SECT,0,0
3155                           // Set the size of the N_BINCL to the terminating
3156                           // index of this N_EINCL
3157                           // so that we can always skip the entire symbol if we
3158                           // need to navigate
3159                           // more quickly at the source level when parsing STABS
3160                           if (!N_INCL_indexes.empty()) {
3161                             symbol_ptr =
3162                                 symtab->SymbolAtIndex(N_INCL_indexes.back());
3163                             symbol_ptr->SetByteSize(sym_idx + 1);
3164                             symbol_ptr->SetSizeIsSibling(true);
3165                             N_INCL_indexes.pop_back();
3166                           }
3167                           type = eSymbolTypeScopeEnd;
3168                           break;
3169 
3170                         case N_SOL:
3171                           // #included file name: name,,n_sect,0,address
3172                           type = eSymbolTypeHeaderFile;
3173 
3174                           // We currently don't use the header files on darwin
3175                           add_nlist = false;
3176                           break;
3177 
3178                         case N_PARAMS:
3179                           // compiler parameters: name,,NO_SECT,0,0
3180                           type = eSymbolTypeCompiler;
3181                           break;
3182 
3183                         case N_VERSION:
3184                           // compiler version: name,,NO_SECT,0,0
3185                           type = eSymbolTypeCompiler;
3186                           break;
3187 
3188                         case N_OLEVEL:
3189                           // compiler -O level: name,,NO_SECT,0,0
3190                           type = eSymbolTypeCompiler;
3191                           break;
3192 
3193                         case N_PSYM:
3194                           // parameter: name,,NO_SECT,type,offset
3195                           type = eSymbolTypeVariable;
3196                           break;
3197 
3198                         case N_ENTRY:
3199                           // alternate entry: name,,n_sect,linenumber,address
3200                           symbol_section = section_info.GetSection(
3201                               nlist.n_sect, nlist.n_value);
3202                           type = eSymbolTypeLineEntry;
3203                           break;
3204 
3205                         //----------------------------------------------------------------------
3206                         // Left and Right Braces
3207                         //----------------------------------------------------------------------
3208                         case N_LBRAC:
3209                           // left bracket: 0,,NO_SECT,nesting level,address
3210                           // We use the current number of symbols in the symbol
3211                           // table in lieu of
3212                           // using nlist_idx in case we ever start trimming
3213                           // entries out
3214                           symbol_section = section_info.GetSection(
3215                               nlist.n_sect, nlist.n_value);
3216                           N_BRAC_indexes.push_back(sym_idx);
3217                           type = eSymbolTypeScopeBegin;
3218                           break;
3219 
3220                         case N_RBRAC:
3221                           // right bracket: 0,,NO_SECT,nesting level,address
3222                           // Set the size of the N_LBRAC to the terminating
3223                           // index of this N_RBRAC
3224                           // so that we can always skip the entire symbol if we
3225                           // need to navigate
3226                           // more quickly at the source level when parsing STABS
3227                           symbol_section = section_info.GetSection(
3228                               nlist.n_sect, nlist.n_value);
3229                           if (!N_BRAC_indexes.empty()) {
3230                             symbol_ptr =
3231                                 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3232                             symbol_ptr->SetByteSize(sym_idx + 1);
3233                             symbol_ptr->SetSizeIsSibling(true);
3234                             N_BRAC_indexes.pop_back();
3235                           }
3236                           type = eSymbolTypeScopeEnd;
3237                           break;
3238 
3239                         case N_EXCL:
3240                           // deleted include file: name,,NO_SECT,0,sum
3241                           type = eSymbolTypeHeaderFile;
3242                           break;
3243 
3244                         //----------------------------------------------------------------------
3245                         // COMM scopes
3246                         //----------------------------------------------------------------------
3247                         case N_BCOMM:
3248                           // begin common: name,,NO_SECT,0,0
3249                           // We use the current number of symbols in the symbol
3250                           // table in lieu of
3251                           // using nlist_idx in case we ever start trimming
3252                           // entries out
3253                           type = eSymbolTypeScopeBegin;
3254                           N_COMM_indexes.push_back(sym_idx);
3255                           break;
3256 
3257                         case N_ECOML:
3258                           // end common (local name): 0,,n_sect,0,address
3259                           symbol_section = section_info.GetSection(
3260                               nlist.n_sect, nlist.n_value);
3261                         // Fall through
3262 
3263                         case N_ECOMM:
3264                           // end common: name,,n_sect,0,0
3265                           // Set the size of the N_BCOMM to the terminating
3266                           // index of this N_ECOMM/N_ECOML
3267                           // so that we can always skip the entire symbol if we
3268                           // need to navigate
3269                           // more quickly at the source level when parsing STABS
3270                           if (!N_COMM_indexes.empty()) {
3271                             symbol_ptr =
3272                                 symtab->SymbolAtIndex(N_COMM_indexes.back());
3273                             symbol_ptr->SetByteSize(sym_idx + 1);
3274                             symbol_ptr->SetSizeIsSibling(true);
3275                             N_COMM_indexes.pop_back();
3276                           }
3277                           type = eSymbolTypeScopeEnd;
3278                           break;
3279 
3280                         case N_LENG:
3281                           // second stab entry with length information
3282                           type = eSymbolTypeAdditional;
3283                           break;
3284 
3285                         default:
3286                           break;
3287                         }
3288                       } else {
3289                         // uint8_t n_pext    = N_PEXT & nlist.n_type;
3290                         uint8_t n_type = N_TYPE & nlist.n_type;
3291                         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3292 
3293                         switch (n_type) {
3294                         case N_INDR: {
3295                           const char *reexport_name_cstr =
3296                               strtab_data.PeekCStr(nlist.n_value);
3297                           if (reexport_name_cstr && reexport_name_cstr[0]) {
3298                             type = eSymbolTypeReExported;
3299                             ConstString reexport_name(
3300                                 reexport_name_cstr +
3301                                 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3302                             sym[sym_idx].SetReExportedSymbolName(reexport_name);
3303                             set_value = false;
3304                             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3305                             indirect_symbol_names.insert(
3306                                 ConstString(symbol_name +
3307                                             ((symbol_name[0] == '_') ? 1 : 0)));
3308                           } else
3309                             type = eSymbolTypeUndefined;
3310                         } break;
3311 
3312                         case N_UNDF:
3313                           if (symbol_name && symbol_name[0]) {
3314                             ConstString undefined_name(
3315                                 symbol_name +
3316                                 ((symbol_name[0] == '_') ? 1 : 0));
3317                             undefined_name_to_desc[undefined_name] =
3318                                 nlist.n_desc;
3319                           }
3320                         // Fall through
3321                         case N_PBUD:
3322                           type = eSymbolTypeUndefined;
3323                           break;
3324 
3325                         case N_ABS:
3326                           type = eSymbolTypeAbsolute;
3327                           break;
3328 
3329                         case N_SECT: {
3330                           symbol_section = section_info.GetSection(
3331                               nlist.n_sect, nlist.n_value);
3332 
3333                           if (symbol_section == NULL) {
3334                             // TODO: warn about this?
3335                             add_nlist = false;
3336                             break;
3337                           }
3338 
3339                           if (TEXT_eh_frame_sectID == nlist.n_sect) {
3340                             type = eSymbolTypeException;
3341                           } else {
3342                             uint32_t section_type =
3343                                 symbol_section->Get() & SECTION_TYPE;
3344 
3345                             switch (section_type) {
3346                             case S_CSTRING_LITERALS:
3347                               type = eSymbolTypeData;
3348                               break; // section with only literal C strings
3349                             case S_4BYTE_LITERALS:
3350                               type = eSymbolTypeData;
3351                               break; // section with only 4 byte literals
3352                             case S_8BYTE_LITERALS:
3353                               type = eSymbolTypeData;
3354                               break; // section with only 8 byte literals
3355                             case S_LITERAL_POINTERS:
3356                               type = eSymbolTypeTrampoline;
3357                               break; // section with only pointers to literals
3358                             case S_NON_LAZY_SYMBOL_POINTERS:
3359                               type = eSymbolTypeTrampoline;
3360                               break; // section with only non-lazy symbol
3361                                      // pointers
3362                             case S_LAZY_SYMBOL_POINTERS:
3363                               type = eSymbolTypeTrampoline;
3364                               break; // section with only lazy symbol pointers
3365                             case S_SYMBOL_STUBS:
3366                               type = eSymbolTypeTrampoline;
3367                               break; // section with only symbol stubs, byte
3368                                      // size of stub in the reserved2 field
3369                             case S_MOD_INIT_FUNC_POINTERS:
3370                               type = eSymbolTypeCode;
3371                               break; // section with only function pointers for
3372                                      // initialization
3373                             case S_MOD_TERM_FUNC_POINTERS:
3374                               type = eSymbolTypeCode;
3375                               break; // section with only function pointers for
3376                                      // termination
3377                             case S_INTERPOSING:
3378                               type = eSymbolTypeTrampoline;
3379                               break; // section with only pairs of function
3380                                      // pointers for interposing
3381                             case S_16BYTE_LITERALS:
3382                               type = eSymbolTypeData;
3383                               break; // section with only 16 byte literals
3384                             case S_DTRACE_DOF:
3385                               type = eSymbolTypeInstrumentation;
3386                               break;
3387                             case S_LAZY_DYLIB_SYMBOL_POINTERS:
3388                               type = eSymbolTypeTrampoline;
3389                               break;
3390                             default:
3391                               switch (symbol_section->GetType()) {
3392                               case lldb::eSectionTypeCode:
3393                                 type = eSymbolTypeCode;
3394                                 break;
3395                               case eSectionTypeData:
3396                               case eSectionTypeDataCString: // Inlined C string
3397                                                             // data
3398                               case eSectionTypeDataCStringPointers: // Pointers
3399                                                                     // to C
3400                                                                     // string
3401                                                                     // data
3402                               case eSectionTypeDataSymbolAddress: // Address of
3403                                                                   // a symbol in
3404                                                                   // the symbol
3405                                                                   // table
3406                               case eSectionTypeData4:
3407                               case eSectionTypeData8:
3408                               case eSectionTypeData16:
3409                                 type = eSymbolTypeData;
3410                                 break;
3411                               default:
3412                                 break;
3413                               }
3414                               break;
3415                             }
3416 
3417                             if (type == eSymbolTypeInvalid) {
3418                               const char *symbol_sect_name =
3419                                   symbol_section->GetName().AsCString();
3420                               if (symbol_section->IsDescendant(
3421                                       text_section_sp.get())) {
3422                                 if (symbol_section->IsClear(
3423                                         S_ATTR_PURE_INSTRUCTIONS |
3424                                         S_ATTR_SELF_MODIFYING_CODE |
3425                                         S_ATTR_SOME_INSTRUCTIONS))
3426                                   type = eSymbolTypeData;
3427                                 else
3428                                   type = eSymbolTypeCode;
3429                               } else if (symbol_section->IsDescendant(
3430                                              data_section_sp.get()) ||
3431                                          symbol_section->IsDescendant(
3432                                              data_dirty_section_sp.get()) ||
3433                                          symbol_section->IsDescendant(
3434                                              data_const_section_sp.get())) {
3435                                 if (symbol_sect_name &&
3436                                     ::strstr(symbol_sect_name, "__objc") ==
3437                                         symbol_sect_name) {
3438                                   type = eSymbolTypeRuntime;
3439 
3440                                   if (symbol_name) {
3441                                     llvm::StringRef symbol_name_ref(
3442                                         symbol_name);
3443                                     if (symbol_name_ref.startswith("_OBJC_")) {
3444                                       static const llvm::StringRef
3445                                           g_objc_v2_prefix_class(
3446                                               "_OBJC_CLASS_$_");
3447                                       static const llvm::StringRef
3448                                           g_objc_v2_prefix_metaclass(
3449                                               "_OBJC_METACLASS_$_");
3450                                       static const llvm::StringRef
3451                                           g_objc_v2_prefix_ivar(
3452                                               "_OBJC_IVAR_$_");
3453                                       if (symbol_name_ref.startswith(
3454                                               g_objc_v2_prefix_class)) {
3455                                         symbol_name_non_abi_mangled =
3456                                             symbol_name + 1;
3457                                         symbol_name =
3458                                             symbol_name +
3459                                             g_objc_v2_prefix_class.size();
3460                                         type = eSymbolTypeObjCClass;
3461                                         demangled_is_synthesized = true;
3462                                       } else if (
3463                                           symbol_name_ref.startswith(
3464                                               g_objc_v2_prefix_metaclass)) {
3465                                         symbol_name_non_abi_mangled =
3466                                             symbol_name + 1;
3467                                         symbol_name =
3468                                             symbol_name +
3469                                             g_objc_v2_prefix_metaclass.size();
3470                                         type = eSymbolTypeObjCMetaClass;
3471                                         demangled_is_synthesized = true;
3472                                       } else if (symbol_name_ref.startswith(
3473                                                      g_objc_v2_prefix_ivar)) {
3474                                         symbol_name_non_abi_mangled =
3475                                             symbol_name + 1;
3476                                         symbol_name =
3477                                             symbol_name +
3478                                             g_objc_v2_prefix_ivar.size();
3479                                         type = eSymbolTypeObjCIVar;
3480                                         demangled_is_synthesized = true;
3481                                       }
3482                                     }
3483                                   }
3484                                 } else if (symbol_sect_name &&
3485                                            ::strstr(symbol_sect_name,
3486                                                     "__gcc_except_tab") ==
3487                                                symbol_sect_name) {
3488                                   type = eSymbolTypeException;
3489                                 } else {
3490                                   type = eSymbolTypeData;
3491                                 }
3492                               } else if (symbol_sect_name &&
3493                                          ::strstr(symbol_sect_name,
3494                                                   "__IMPORT") ==
3495                                              symbol_sect_name) {
3496                                 type = eSymbolTypeTrampoline;
3497                               } else if (symbol_section->IsDescendant(
3498                                              objc_section_sp.get())) {
3499                                 type = eSymbolTypeRuntime;
3500                                 if (symbol_name && symbol_name[0] == '.') {
3501                                   llvm::StringRef symbol_name_ref(symbol_name);
3502                                   static const llvm::StringRef
3503                                       g_objc_v1_prefix_class(
3504                                           ".objc_class_name_");
3505                                   if (symbol_name_ref.startswith(
3506                                           g_objc_v1_prefix_class)) {
3507                                     symbol_name_non_abi_mangled = symbol_name;
3508                                     symbol_name = symbol_name +
3509                                                   g_objc_v1_prefix_class.size();
3510                                     type = eSymbolTypeObjCClass;
3511                                     demangled_is_synthesized = true;
3512                                   }
3513                                 }
3514                               }
3515                             }
3516                           }
3517                         } break;
3518                         }
3519                       }
3520 
3521                       if (add_nlist) {
3522                         uint64_t symbol_value = nlist.n_value;
3523                         if (symbol_name_non_abi_mangled) {
3524                           sym[sym_idx].GetMangled().SetMangledName(
3525                               ConstString(symbol_name_non_abi_mangled));
3526                           sym[sym_idx].GetMangled().SetDemangledName(
3527                               ConstString(symbol_name));
3528                         } else {
3529                           bool symbol_name_is_mangled = false;
3530 
3531                           if (symbol_name && symbol_name[0] == '_') {
3532                             symbol_name_is_mangled = symbol_name[1] == '_';
3533                             symbol_name++; // Skip the leading underscore
3534                           }
3535 
3536                           if (symbol_name) {
3537                             ConstString const_symbol_name(symbol_name);
3538                             sym[sym_idx].GetMangled().SetValue(
3539                                 const_symbol_name, symbol_name_is_mangled);
3540                             if (is_gsym && is_debug) {
3541                               const char *gsym_name =
3542                                   sym[sym_idx]
3543                                       .GetMangled()
3544                                       .GetName(lldb::eLanguageTypeUnknown,
3545                                                Mangled::ePreferMangled)
3546                                       .GetCString();
3547                               if (gsym_name)
3548                                 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3549                             }
3550                           }
3551                         }
3552                         if (symbol_section) {
3553                           const addr_t section_file_addr =
3554                               symbol_section->GetFileAddress();
3555                           if (symbol_byte_size == 0 &&
3556                               function_starts_count > 0) {
3557                             addr_t symbol_lookup_file_addr = nlist.n_value;
3558                             // Do an exact address match for non-ARM addresses,
3559                             // else get the closest since
3560                             // the symbol might be a thumb symbol which has an
3561                             // address with bit zero set
3562                             FunctionStarts::Entry *func_start_entry =
3563                                 function_starts.FindEntry(
3564                                     symbol_lookup_file_addr, !is_arm);
3565                             if (is_arm && func_start_entry) {
3566                               // Verify that the function start address is the
3567                               // symbol address (ARM)
3568                               // or the symbol address + 1 (thumb)
3569                               if (func_start_entry->addr !=
3570                                       symbol_lookup_file_addr &&
3571                                   func_start_entry->addr !=
3572                                       (symbol_lookup_file_addr + 1)) {
3573                                 // Not the right entry, NULL it out...
3574                                 func_start_entry = NULL;
3575                               }
3576                             }
3577                             if (func_start_entry) {
3578                               func_start_entry->data = true;
3579 
3580                               addr_t symbol_file_addr = func_start_entry->addr;
3581                               uint32_t symbol_flags = 0;
3582                               if (is_arm) {
3583                                 if (symbol_file_addr & 1)
3584                                   symbol_flags =
3585                                       MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3586                                 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3587                               }
3588 
3589                               const FunctionStarts::Entry
3590                                   *next_func_start_entry =
3591                                       function_starts.FindNextEntry(
3592                                           func_start_entry);
3593                               const addr_t section_end_file_addr =
3594                                   section_file_addr +
3595                                   symbol_section->GetByteSize();
3596                               if (next_func_start_entry) {
3597                                 addr_t next_symbol_file_addr =
3598                                     next_func_start_entry->addr;
3599                                 // Be sure the clear the Thumb address bit when
3600                                 // we calculate the size
3601                                 // from the current and next address
3602                                 if (is_arm)
3603                                   next_symbol_file_addr &=
3604                                       THUMB_ADDRESS_BIT_MASK;
3605                                 symbol_byte_size = std::min<lldb::addr_t>(
3606                                     next_symbol_file_addr - symbol_file_addr,
3607                                     section_end_file_addr - symbol_file_addr);
3608                               } else {
3609                                 symbol_byte_size =
3610                                     section_end_file_addr - symbol_file_addr;
3611                               }
3612                             }
3613                           }
3614                           symbol_value -= section_file_addr;
3615                         }
3616 
3617                         if (is_debug == false) {
3618                           if (type == eSymbolTypeCode) {
3619                             // See if we can find a N_FUN entry for any code
3620                             // symbols.
3621                             // If we do find a match, and the name matches, then
3622                             // we
3623                             // can merge the two into just the function symbol
3624                             // to avoid
3625                             // duplicate entries in the symbol table
3626                             std::pair<ValueToSymbolIndexMap::const_iterator,
3627                                       ValueToSymbolIndexMap::const_iterator>
3628                                 range;
3629                             range = N_FUN_addr_to_sym_idx.equal_range(
3630                                 nlist.n_value);
3631                             if (range.first != range.second) {
3632                               bool found_it = false;
3633                               for (ValueToSymbolIndexMap::const_iterator pos =
3634                                        range.first;
3635                                    pos != range.second; ++pos) {
3636                                 if (sym[sym_idx].GetMangled().GetName(
3637                                         lldb::eLanguageTypeUnknown,
3638                                         Mangled::ePreferMangled) ==
3639                                     sym[pos->second].GetMangled().GetName(
3640                                         lldb::eLanguageTypeUnknown,
3641                                         Mangled::ePreferMangled)) {
3642                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3643                                       pos->second;
3644                                   // We just need the flags from the linker
3645                                   // symbol, so put these flags
3646                                   // into the N_FUN flags to avoid duplicate
3647                                   // symbols in the symbol table
3648                                   sym[pos->second].SetExternal(
3649                                       sym[sym_idx].IsExternal());
3650                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3651                                                             nlist.n_desc);
3652                                   if (resolver_addresses.find(nlist.n_value) !=
3653                                       resolver_addresses.end())
3654                                     sym[pos->second].SetType(
3655                                         eSymbolTypeResolver);
3656                                   sym[sym_idx].Clear();
3657                                   found_it = true;
3658                                   break;
3659                                 }
3660                               }
3661                               if (found_it)
3662                                 continue;
3663                             } else {
3664                               if (resolver_addresses.find(nlist.n_value) !=
3665                                   resolver_addresses.end())
3666                                 type = eSymbolTypeResolver;
3667                             }
3668                           } else if (type == eSymbolTypeData ||
3669                                      type == eSymbolTypeObjCClass ||
3670                                      type == eSymbolTypeObjCMetaClass ||
3671                                      type == eSymbolTypeObjCIVar) {
3672                             // See if we can find a N_STSYM entry for any data
3673                             // symbols.
3674                             // If we do find a match, and the name matches, then
3675                             // we
3676                             // can merge the two into just the Static symbol to
3677                             // avoid
3678                             // duplicate entries in the symbol table
3679                             std::pair<ValueToSymbolIndexMap::const_iterator,
3680                                       ValueToSymbolIndexMap::const_iterator>
3681                                 range;
3682                             range = N_STSYM_addr_to_sym_idx.equal_range(
3683                                 nlist.n_value);
3684                             if (range.first != range.second) {
3685                               bool found_it = false;
3686                               for (ValueToSymbolIndexMap::const_iterator pos =
3687                                        range.first;
3688                                    pos != range.second; ++pos) {
3689                                 if (sym[sym_idx].GetMangled().GetName(
3690                                         lldb::eLanguageTypeUnknown,
3691                                         Mangled::ePreferMangled) ==
3692                                     sym[pos->second].GetMangled().GetName(
3693                                         lldb::eLanguageTypeUnknown,
3694                                         Mangled::ePreferMangled)) {
3695                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3696                                       pos->second;
3697                                   // We just need the flags from the linker
3698                                   // symbol, so put these flags
3699                                   // into the N_STSYM flags to avoid duplicate
3700                                   // symbols in the symbol table
3701                                   sym[pos->second].SetExternal(
3702                                       sym[sym_idx].IsExternal());
3703                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3704                                                             nlist.n_desc);
3705                                   sym[sym_idx].Clear();
3706                                   found_it = true;
3707                                   break;
3708                                 }
3709                               }
3710                               if (found_it)
3711                                 continue;
3712                             } else {
3713                               const char *gsym_name =
3714                                   sym[sym_idx]
3715                                       .GetMangled()
3716                                       .GetName(lldb::eLanguageTypeUnknown,
3717                                                Mangled::ePreferMangled)
3718                                       .GetCString();
3719                               if (gsym_name) {
3720                                 // Combine N_GSYM stab entries with the non stab
3721                                 // symbol
3722                                 ConstNameToSymbolIndexMap::const_iterator pos =
3723                                     N_GSYM_name_to_sym_idx.find(gsym_name);
3724                                 if (pos != N_GSYM_name_to_sym_idx.end()) {
3725                                   const uint32_t GSYM_sym_idx = pos->second;
3726                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3727                                       GSYM_sym_idx;
3728                                   // Copy the address, because often the N_GSYM
3729                                   // address has an invalid address of zero
3730                                   // when the global is a common symbol
3731                                   sym[GSYM_sym_idx].GetAddressRef().SetSection(
3732                                       symbol_section);
3733                                   sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3734                                       symbol_value);
3735                                   // We just need the flags from the linker
3736                                   // symbol, so put these flags
3737                                   // into the N_GSYM flags to avoid duplicate
3738                                   // symbols in the symbol table
3739                                   sym[GSYM_sym_idx].SetFlags(
3740                                       nlist.n_type << 16 | nlist.n_desc);
3741                                   sym[sym_idx].Clear();
3742                                   continue;
3743                                 }
3744                               }
3745                             }
3746                           }
3747                         }
3748 
3749                         sym[sym_idx].SetID(nlist_idx);
3750                         sym[sym_idx].SetType(type);
3751                         if (set_value) {
3752                           sym[sym_idx].GetAddressRef().SetSection(
3753                               symbol_section);
3754                           sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3755                         }
3756                         sym[sym_idx].SetFlags(nlist.n_type << 16 |
3757                                               nlist.n_desc);
3758 
3759                         if (symbol_byte_size > 0)
3760                           sym[sym_idx].SetByteSize(symbol_byte_size);
3761 
3762                         if (demangled_is_synthesized)
3763                           sym[sym_idx].SetDemangledNameIsSynthesized(true);
3764                         ++sym_idx;
3765                       } else {
3766                         sym[sym_idx].Clear();
3767                       }
3768                     }
3769                     /////////////////////////////
3770                   }
3771                   break; // No more entries to consider
3772                 }
3773               }
3774 
3775               for (const auto &pos : reexport_shlib_needs_fixup) {
3776                 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3777                 if (undef_pos != undefined_name_to_desc.end()) {
3778                   const uint8_t dylib_ordinal =
3779                       llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3780                   if (dylib_ordinal > 0 &&
3781                       dylib_ordinal < dylib_files.GetSize())
3782                     sym[pos.first].SetReExportedSymbolSharedLibrary(
3783                         dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3784                 }
3785               }
3786             }
3787           }
3788         }
3789       }
3790     }
3791 
3792     // Must reset this in case it was mutated above!
3793     nlist_data_offset = 0;
3794 #endif
3795 
3796     if (nlist_data.GetByteSize() > 0) {
3797 
3798       // If the sym array was not created while parsing the DSC unmapped
3799       // symbols, create it now.
3800       if (sym == NULL) {
3801         sym = symtab->Resize(symtab_load_command.nsyms +
3802                              m_dysymtab.nindirectsyms);
3803         num_syms = symtab->GetNumSymbols();
3804       }
3805 
3806       if (unmapped_local_symbols_found) {
3807         assert(m_dysymtab.ilocalsym == 0);
3808         nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3809         nlist_idx = m_dysymtab.nlocalsym;
3810       } else {
3811         nlist_idx = 0;
3812       }
3813 
3814       typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3815       typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3816       UndefinedNameToDescMap undefined_name_to_desc;
3817       SymbolIndexToName reexport_shlib_needs_fixup;
3818       for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3819         struct nlist_64 nlist;
3820         if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3821                                                  nlist_byte_size))
3822           break;
3823 
3824         nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3825         nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3826         nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3827         nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3828         nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3829 
3830         SymbolType type = eSymbolTypeInvalid;
3831         const char *symbol_name = NULL;
3832 
3833         if (have_strtab_data) {
3834           symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3835 
3836           if (symbol_name == NULL) {
3837             // No symbol should be NULL, even the symbols with no
3838             // string values should have an offset zero which points
3839             // to an empty C-string
3840             Host::SystemLog(Host::eSystemLogError,
3841                             "error: symbol[%u] has invalid string table offset "
3842                             "0x%x in %s, ignoring symbol\n",
3843                             nlist_idx, nlist.n_strx,
3844                             module_sp->GetFileSpec().GetPath().c_str());
3845             continue;
3846           }
3847           if (symbol_name[0] == '\0')
3848             symbol_name = NULL;
3849         } else {
3850           const addr_t str_addr = strtab_addr + nlist.n_strx;
3851           Error str_error;
3852           if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3853                                              str_error))
3854             symbol_name = memory_symbol_name.c_str();
3855         }
3856         const char *symbol_name_non_abi_mangled = NULL;
3857 
3858         SectionSP symbol_section;
3859         lldb::addr_t symbol_byte_size = 0;
3860         bool add_nlist = true;
3861         bool is_gsym = false;
3862         bool is_debug = ((nlist.n_type & N_STAB) != 0);
3863         bool demangled_is_synthesized = false;
3864         bool set_value = true;
3865         assert(sym_idx < num_syms);
3866 
3867         sym[sym_idx].SetDebug(is_debug);
3868 
3869         if (is_debug) {
3870           switch (nlist.n_type) {
3871           case N_GSYM:
3872             // global symbol: name,,NO_SECT,type,0
3873             // Sometimes the N_GSYM value contains the address.
3874 
3875             // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3876             // the ObjC data.  They
3877             // have the same address, but we want to ensure that we always find
3878             // only the real symbol,
3879             // 'cause we don't currently correctly attribute the GSYM one to the
3880             // ObjCClass/Ivar/MetaClass
3881             // symbol type.  This is a temporary hack to make sure the
3882             // ObjectiveC symbols get treated
3883             // correctly.  To do this right, we should coalesce all the GSYM &
3884             // global symbols that have the
3885             // same address.
3886             is_gsym = true;
3887             sym[sym_idx].SetExternal(true);
3888 
3889             if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3890               llvm::StringRef symbol_name_ref(symbol_name);
3891               if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3892                 symbol_name_non_abi_mangled = symbol_name + 1;
3893                 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3894                 type = eSymbolTypeObjCClass;
3895                 demangled_is_synthesized = true;
3896 
3897               } else if (symbol_name_ref.startswith(
3898                              g_objc_v2_prefix_metaclass)) {
3899                 symbol_name_non_abi_mangled = symbol_name + 1;
3900                 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3901                 type = eSymbolTypeObjCMetaClass;
3902                 demangled_is_synthesized = true;
3903               } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3904                 symbol_name_non_abi_mangled = symbol_name + 1;
3905                 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3906                 type = eSymbolTypeObjCIVar;
3907                 demangled_is_synthesized = true;
3908               }
3909             } else {
3910               if (nlist.n_value != 0)
3911                 symbol_section =
3912                     section_info.GetSection(nlist.n_sect, nlist.n_value);
3913               type = eSymbolTypeData;
3914             }
3915             break;
3916 
3917           case N_FNAME:
3918             // procedure name (f77 kludge): name,,NO_SECT,0,0
3919             type = eSymbolTypeCompiler;
3920             break;
3921 
3922           case N_FUN:
3923             // procedure: name,,n_sect,linenumber,address
3924             if (symbol_name) {
3925               type = eSymbolTypeCode;
3926               symbol_section =
3927                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3928 
3929               N_FUN_addr_to_sym_idx.insert(
3930                   std::make_pair(nlist.n_value, sym_idx));
3931               // We use the current number of symbols in the symbol table in
3932               // lieu of
3933               // using nlist_idx in case we ever start trimming entries out
3934               N_FUN_indexes.push_back(sym_idx);
3935             } else {
3936               type = eSymbolTypeCompiler;
3937 
3938               if (!N_FUN_indexes.empty()) {
3939                 // Copy the size of the function into the original STAB entry so
3940                 // we don't have
3941                 // to hunt for it later
3942                 symtab->SymbolAtIndex(N_FUN_indexes.back())
3943                     ->SetByteSize(nlist.n_value);
3944                 N_FUN_indexes.pop_back();
3945                 // We don't really need the end function STAB as it contains the
3946                 // size which
3947                 // we already placed with the original symbol, so don't add it
3948                 // if we want a
3949                 // minimal symbol table
3950                 add_nlist = false;
3951               }
3952             }
3953             break;
3954 
3955           case N_STSYM:
3956             // static symbol: name,,n_sect,type,address
3957             N_STSYM_addr_to_sym_idx.insert(
3958                 std::make_pair(nlist.n_value, sym_idx));
3959             symbol_section =
3960                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3961             if (symbol_name && symbol_name[0]) {
3962               type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3963                                                        eSymbolTypeData);
3964             }
3965             break;
3966 
3967           case N_LCSYM:
3968             // .lcomm symbol: name,,n_sect,type,address
3969             symbol_section =
3970                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3971             type = eSymbolTypeCommonBlock;
3972             break;
3973 
3974           case N_BNSYM:
3975             // We use the current number of symbols in the symbol table in lieu
3976             // of
3977             // using nlist_idx in case we ever start trimming entries out
3978             // Skip these if we want minimal symbol tables
3979             add_nlist = false;
3980             break;
3981 
3982           case N_ENSYM:
3983             // Set the size of the N_BNSYM to the terminating index of this
3984             // N_ENSYM
3985             // so that we can always skip the entire symbol if we need to
3986             // navigate
3987             // more quickly at the source level when parsing STABS
3988             // Skip these if we want minimal symbol tables
3989             add_nlist = false;
3990             break;
3991 
3992           case N_OPT:
3993             // emitted with gcc2_compiled and in gcc source
3994             type = eSymbolTypeCompiler;
3995             break;
3996 
3997           case N_RSYM:
3998             // register sym: name,,NO_SECT,type,register
3999             type = eSymbolTypeVariable;
4000             break;
4001 
4002           case N_SLINE:
4003             // src line: 0,,n_sect,linenumber,address
4004             symbol_section =
4005                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4006             type = eSymbolTypeLineEntry;
4007             break;
4008 
4009           case N_SSYM:
4010             // structure elt: name,,NO_SECT,type,struct_offset
4011             type = eSymbolTypeVariableType;
4012             break;
4013 
4014           case N_SO:
4015             // source file name
4016             type = eSymbolTypeSourceFile;
4017             if (symbol_name == NULL) {
4018               add_nlist = false;
4019               if (N_SO_index != UINT32_MAX) {
4020                 // Set the size of the N_SO to the terminating index of this
4021                 // N_SO
4022                 // so that we can always skip the entire N_SO if we need to
4023                 // navigate
4024                 // more quickly at the source level when parsing STABS
4025                 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
4026                 symbol_ptr->SetByteSize(sym_idx);
4027                 symbol_ptr->SetSizeIsSibling(true);
4028               }
4029               N_NSYM_indexes.clear();
4030               N_INCL_indexes.clear();
4031               N_BRAC_indexes.clear();
4032               N_COMM_indexes.clear();
4033               N_FUN_indexes.clear();
4034               N_SO_index = UINT32_MAX;
4035             } else {
4036               // We use the current number of symbols in the symbol table in
4037               // lieu of
4038               // using nlist_idx in case we ever start trimming entries out
4039               const bool N_SO_has_full_path = symbol_name[0] == '/';
4040               if (N_SO_has_full_path) {
4041                 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
4042                   // We have two consecutive N_SO entries where the first
4043                   // contains a directory
4044                   // and the second contains a full path.
4045                   sym[sym_idx - 1].GetMangled().SetValue(
4046                       ConstString(symbol_name), false);
4047                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4048                   add_nlist = false;
4049                 } else {
4050                   // This is the first entry in a N_SO that contains a directory
4051                   // or
4052                   // a full path to the source file
4053                   N_SO_index = sym_idx;
4054                 }
4055               } else if ((N_SO_index == sym_idx - 1) &&
4056                          ((sym_idx - 1) < num_syms)) {
4057                 // This is usually the second N_SO entry that contains just the
4058                 // filename,
4059                 // so here we combine it with the first one if we are minimizing
4060                 // the symbol table
4061                 const char *so_path =
4062                     sym[sym_idx - 1]
4063                         .GetMangled()
4064                         .GetDemangledName(lldb::eLanguageTypeUnknown)
4065                         .AsCString();
4066                 if (so_path && so_path[0]) {
4067                   std::string full_so_path(so_path);
4068                   const size_t double_slash_pos = full_so_path.find("//");
4069                   if (double_slash_pos != std::string::npos) {
4070                     // The linker has been generating bad N_SO entries with
4071                     // doubled up paths
4072                     // in the format "%s%s" where the first string in the
4073                     // DW_AT_comp_dir,
4074                     // and the second is the directory for the source file so
4075                     // you end up with
4076                     // a path that looks like "/tmp/src//tmp/src/"
4077                     FileSpec so_dir(so_path, false);
4078                     if (!so_dir.Exists()) {
4079                       so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4080                                      false);
4081                       if (so_dir.Exists()) {
4082                         // Trim off the incorrect path
4083                         full_so_path.erase(0, double_slash_pos + 1);
4084                       }
4085                     }
4086                   }
4087                   if (*full_so_path.rbegin() != '/')
4088                     full_so_path += '/';
4089                   full_so_path += symbol_name;
4090                   sym[sym_idx - 1].GetMangled().SetValue(
4091                       ConstString(full_so_path.c_str()), false);
4092                   add_nlist = false;
4093                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4094                 }
4095               } else {
4096                 // This could be a relative path to a N_SO
4097                 N_SO_index = sym_idx;
4098               }
4099             }
4100             break;
4101 
4102           case N_OSO:
4103             // object file name: name,,0,0,st_mtime
4104             type = eSymbolTypeObjectFile;
4105             break;
4106 
4107           case N_LSYM:
4108             // local sym: name,,NO_SECT,type,offset
4109             type = eSymbolTypeLocal;
4110             break;
4111 
4112           //----------------------------------------------------------------------
4113           // INCL scopes
4114           //----------------------------------------------------------------------
4115           case N_BINCL:
4116             // include file beginning: name,,NO_SECT,0,sum
4117             // We use the current number of symbols in the symbol table in lieu
4118             // of
4119             // using nlist_idx in case we ever start trimming entries out
4120             N_INCL_indexes.push_back(sym_idx);
4121             type = eSymbolTypeScopeBegin;
4122             break;
4123 
4124           case N_EINCL:
4125             // include file end: name,,NO_SECT,0,0
4126             // Set the size of the N_BINCL to the terminating index of this
4127             // N_EINCL
4128             // so that we can always skip the entire symbol if we need to
4129             // navigate
4130             // more quickly at the source level when parsing STABS
4131             if (!N_INCL_indexes.empty()) {
4132               symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4133               symbol_ptr->SetByteSize(sym_idx + 1);
4134               symbol_ptr->SetSizeIsSibling(true);
4135               N_INCL_indexes.pop_back();
4136             }
4137             type = eSymbolTypeScopeEnd;
4138             break;
4139 
4140           case N_SOL:
4141             // #included file name: name,,n_sect,0,address
4142             type = eSymbolTypeHeaderFile;
4143 
4144             // We currently don't use the header files on darwin
4145             add_nlist = false;
4146             break;
4147 
4148           case N_PARAMS:
4149             // compiler parameters: name,,NO_SECT,0,0
4150             type = eSymbolTypeCompiler;
4151             break;
4152 
4153           case N_VERSION:
4154             // compiler version: name,,NO_SECT,0,0
4155             type = eSymbolTypeCompiler;
4156             break;
4157 
4158           case N_OLEVEL:
4159             // compiler -O level: name,,NO_SECT,0,0
4160             type = eSymbolTypeCompiler;
4161             break;
4162 
4163           case N_PSYM:
4164             // parameter: name,,NO_SECT,type,offset
4165             type = eSymbolTypeVariable;
4166             break;
4167 
4168           case N_ENTRY:
4169             // alternate entry: name,,n_sect,linenumber,address
4170             symbol_section =
4171                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4172             type = eSymbolTypeLineEntry;
4173             break;
4174 
4175           //----------------------------------------------------------------------
4176           // Left and Right Braces
4177           //----------------------------------------------------------------------
4178           case N_LBRAC:
4179             // left bracket: 0,,NO_SECT,nesting level,address
4180             // We use the current number of symbols in the symbol table in lieu
4181             // of
4182             // using nlist_idx in case we ever start trimming entries out
4183             symbol_section =
4184                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4185             N_BRAC_indexes.push_back(sym_idx);
4186             type = eSymbolTypeScopeBegin;
4187             break;
4188 
4189           case N_RBRAC:
4190             // right bracket: 0,,NO_SECT,nesting level,address
4191             // Set the size of the N_LBRAC to the terminating index of this
4192             // N_RBRAC
4193             // so that we can always skip the entire symbol if we need to
4194             // navigate
4195             // more quickly at the source level when parsing STABS
4196             symbol_section =
4197                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4198             if (!N_BRAC_indexes.empty()) {
4199               symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4200               symbol_ptr->SetByteSize(sym_idx + 1);
4201               symbol_ptr->SetSizeIsSibling(true);
4202               N_BRAC_indexes.pop_back();
4203             }
4204             type = eSymbolTypeScopeEnd;
4205             break;
4206 
4207           case N_EXCL:
4208             // deleted include file: name,,NO_SECT,0,sum
4209             type = eSymbolTypeHeaderFile;
4210             break;
4211 
4212           //----------------------------------------------------------------------
4213           // COMM scopes
4214           //----------------------------------------------------------------------
4215           case N_BCOMM:
4216             // begin common: name,,NO_SECT,0,0
4217             // We use the current number of symbols in the symbol table in lieu
4218             // of
4219             // using nlist_idx in case we ever start trimming entries out
4220             type = eSymbolTypeScopeBegin;
4221             N_COMM_indexes.push_back(sym_idx);
4222             break;
4223 
4224           case N_ECOML:
4225             // end common (local name): 0,,n_sect,0,address
4226             symbol_section =
4227                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4228             LLVM_FALLTHROUGH;
4229 
4230           case N_ECOMM:
4231             // end common: name,,n_sect,0,0
4232             // Set the size of the N_BCOMM to the terminating index of this
4233             // N_ECOMM/N_ECOML
4234             // so that we can always skip the entire symbol if we need to
4235             // navigate
4236             // more quickly at the source level when parsing STABS
4237             if (!N_COMM_indexes.empty()) {
4238               symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4239               symbol_ptr->SetByteSize(sym_idx + 1);
4240               symbol_ptr->SetSizeIsSibling(true);
4241               N_COMM_indexes.pop_back();
4242             }
4243             type = eSymbolTypeScopeEnd;
4244             break;
4245 
4246           case N_LENG:
4247             // second stab entry with length information
4248             type = eSymbolTypeAdditional;
4249             break;
4250 
4251           default:
4252             break;
4253           }
4254         } else {
4255           // uint8_t n_pext    = N_PEXT & nlist.n_type;
4256           uint8_t n_type = N_TYPE & nlist.n_type;
4257           sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4258 
4259           switch (n_type) {
4260           case N_INDR: {
4261             const char *reexport_name_cstr =
4262                 strtab_data.PeekCStr(nlist.n_value);
4263             if (reexport_name_cstr && reexport_name_cstr[0]) {
4264               type = eSymbolTypeReExported;
4265               ConstString reexport_name(
4266                   reexport_name_cstr +
4267                   ((reexport_name_cstr[0] == '_') ? 1 : 0));
4268               sym[sym_idx].SetReExportedSymbolName(reexport_name);
4269               set_value = false;
4270               reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4271               indirect_symbol_names.insert(
4272                   ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4273             } else
4274               type = eSymbolTypeUndefined;
4275           } break;
4276 
4277           case N_UNDF:
4278             if (symbol_name && symbol_name[0]) {
4279               ConstString undefined_name(symbol_name +
4280                                          ((symbol_name[0] == '_') ? 1 : 0));
4281               undefined_name_to_desc[undefined_name] = nlist.n_desc;
4282             }
4283             LLVM_FALLTHROUGH;
4284 
4285           case N_PBUD:
4286             type = eSymbolTypeUndefined;
4287             break;
4288 
4289           case N_ABS:
4290             type = eSymbolTypeAbsolute;
4291             break;
4292 
4293           case N_SECT: {
4294             symbol_section =
4295                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4296 
4297             if (!symbol_section) {
4298               // TODO: warn about this?
4299               add_nlist = false;
4300               break;
4301             }
4302 
4303             if (TEXT_eh_frame_sectID == nlist.n_sect) {
4304               type = eSymbolTypeException;
4305             } else {
4306               uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4307 
4308               switch (section_type) {
4309               case S_CSTRING_LITERALS:
4310                 type = eSymbolTypeData;
4311                 break; // section with only literal C strings
4312               case S_4BYTE_LITERALS:
4313                 type = eSymbolTypeData;
4314                 break; // section with only 4 byte literals
4315               case S_8BYTE_LITERALS:
4316                 type = eSymbolTypeData;
4317                 break; // section with only 8 byte literals
4318               case S_LITERAL_POINTERS:
4319                 type = eSymbolTypeTrampoline;
4320                 break; // section with only pointers to literals
4321               case S_NON_LAZY_SYMBOL_POINTERS:
4322                 type = eSymbolTypeTrampoline;
4323                 break; // section with only non-lazy symbol pointers
4324               case S_LAZY_SYMBOL_POINTERS:
4325                 type = eSymbolTypeTrampoline;
4326                 break; // section with only lazy symbol pointers
4327               case S_SYMBOL_STUBS:
4328                 type = eSymbolTypeTrampoline;
4329                 break; // section with only symbol stubs, byte size of stub in
4330                        // the reserved2 field
4331               case S_MOD_INIT_FUNC_POINTERS:
4332                 type = eSymbolTypeCode;
4333                 break; // section with only function pointers for initialization
4334               case S_MOD_TERM_FUNC_POINTERS:
4335                 type = eSymbolTypeCode;
4336                 break; // section with only function pointers for termination
4337               case S_INTERPOSING:
4338                 type = eSymbolTypeTrampoline;
4339                 break; // section with only pairs of function pointers for
4340                        // interposing
4341               case S_16BYTE_LITERALS:
4342                 type = eSymbolTypeData;
4343                 break; // section with only 16 byte literals
4344               case S_DTRACE_DOF:
4345                 type = eSymbolTypeInstrumentation;
4346                 break;
4347               case S_LAZY_DYLIB_SYMBOL_POINTERS:
4348                 type = eSymbolTypeTrampoline;
4349                 break;
4350               default:
4351                 switch (symbol_section->GetType()) {
4352                 case lldb::eSectionTypeCode:
4353                   type = eSymbolTypeCode;
4354                   break;
4355                 case eSectionTypeData:
4356                 case eSectionTypeDataCString:         // Inlined C string data
4357                 case eSectionTypeDataCStringPointers: // Pointers to C string
4358                                                       // data
4359                 case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4360                                                       // the symbol table
4361                 case eSectionTypeData4:
4362                 case eSectionTypeData8:
4363                 case eSectionTypeData16:
4364                   type = eSymbolTypeData;
4365                   break;
4366                 default:
4367                   break;
4368                 }
4369                 break;
4370               }
4371 
4372               if (type == eSymbolTypeInvalid) {
4373                 const char *symbol_sect_name =
4374                     symbol_section->GetName().AsCString();
4375                 if (symbol_section->IsDescendant(text_section_sp.get())) {
4376                   if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4377                                               S_ATTR_SELF_MODIFYING_CODE |
4378                                               S_ATTR_SOME_INSTRUCTIONS))
4379                     type = eSymbolTypeData;
4380                   else
4381                     type = eSymbolTypeCode;
4382                 } else if (symbol_section->IsDescendant(
4383                                data_section_sp.get()) ||
4384                            symbol_section->IsDescendant(
4385                                data_dirty_section_sp.get()) ||
4386                            symbol_section->IsDescendant(
4387                                data_const_section_sp.get())) {
4388                   if (symbol_sect_name &&
4389                       ::strstr(symbol_sect_name, "__objc") ==
4390                           symbol_sect_name) {
4391                     type = eSymbolTypeRuntime;
4392 
4393                     if (symbol_name) {
4394                       llvm::StringRef symbol_name_ref(symbol_name);
4395                       if (symbol_name_ref.startswith("_OBJC_")) {
4396                         static const llvm::StringRef g_objc_v2_prefix_class(
4397                             "_OBJC_CLASS_$_");
4398                         static const llvm::StringRef g_objc_v2_prefix_metaclass(
4399                             "_OBJC_METACLASS_$_");
4400                         static const llvm::StringRef g_objc_v2_prefix_ivar(
4401                             "_OBJC_IVAR_$_");
4402                         if (symbol_name_ref.startswith(
4403                                 g_objc_v2_prefix_class)) {
4404                           symbol_name_non_abi_mangled = symbol_name + 1;
4405                           symbol_name =
4406                               symbol_name + g_objc_v2_prefix_class.size();
4407                           type = eSymbolTypeObjCClass;
4408                           demangled_is_synthesized = true;
4409                         } else if (symbol_name_ref.startswith(
4410                                        g_objc_v2_prefix_metaclass)) {
4411                           symbol_name_non_abi_mangled = symbol_name + 1;
4412                           symbol_name =
4413                               symbol_name + g_objc_v2_prefix_metaclass.size();
4414                           type = eSymbolTypeObjCMetaClass;
4415                           demangled_is_synthesized = true;
4416                         } else if (symbol_name_ref.startswith(
4417                                        g_objc_v2_prefix_ivar)) {
4418                           symbol_name_non_abi_mangled = symbol_name + 1;
4419                           symbol_name =
4420                               symbol_name + g_objc_v2_prefix_ivar.size();
4421                           type = eSymbolTypeObjCIVar;
4422                           demangled_is_synthesized = true;
4423                         }
4424                       }
4425                     }
4426                   } else if (symbol_sect_name &&
4427                              ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4428                                  symbol_sect_name) {
4429                     type = eSymbolTypeException;
4430                   } else {
4431                     type = eSymbolTypeData;
4432                   }
4433                 } else if (symbol_sect_name &&
4434                            ::strstr(symbol_sect_name, "__IMPORT") ==
4435                                symbol_sect_name) {
4436                   type = eSymbolTypeTrampoline;
4437                 } else if (symbol_section->IsDescendant(
4438                                objc_section_sp.get())) {
4439                   type = eSymbolTypeRuntime;
4440                   if (symbol_name && symbol_name[0] == '.') {
4441                     llvm::StringRef symbol_name_ref(symbol_name);
4442                     static const llvm::StringRef g_objc_v1_prefix_class(
4443                         ".objc_class_name_");
4444                     if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4445                       symbol_name_non_abi_mangled = symbol_name;
4446                       symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4447                       type = eSymbolTypeObjCClass;
4448                       demangled_is_synthesized = true;
4449                     }
4450                   }
4451                 }
4452               }
4453             }
4454           } break;
4455           }
4456         }
4457 
4458         if (add_nlist) {
4459           uint64_t symbol_value = nlist.n_value;
4460 
4461           if (symbol_name_non_abi_mangled) {
4462             sym[sym_idx].GetMangled().SetMangledName(
4463                 ConstString(symbol_name_non_abi_mangled));
4464             sym[sym_idx].GetMangled().SetDemangledName(
4465                 ConstString(symbol_name));
4466           } else {
4467             bool symbol_name_is_mangled = false;
4468 
4469             if (symbol_name && symbol_name[0] == '_') {
4470               symbol_name_is_mangled = symbol_name[1] == '_';
4471               symbol_name++; // Skip the leading underscore
4472             }
4473 
4474             if (symbol_name) {
4475               ConstString const_symbol_name(symbol_name);
4476               sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4477                                                  symbol_name_is_mangled);
4478             }
4479           }
4480 
4481           if (is_gsym) {
4482             const char *gsym_name = sym[sym_idx]
4483                                         .GetMangled()
4484                                         .GetName(lldb::eLanguageTypeUnknown,
4485                                                  Mangled::ePreferMangled)
4486                                         .GetCString();
4487             if (gsym_name)
4488               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4489           }
4490 
4491           if (symbol_section) {
4492             const addr_t section_file_addr = symbol_section->GetFileAddress();
4493             if (symbol_byte_size == 0 && function_starts_count > 0) {
4494               addr_t symbol_lookup_file_addr = nlist.n_value;
4495               // Do an exact address match for non-ARM addresses, else get the
4496               // closest since
4497               // the symbol might be a thumb symbol which has an address with
4498               // bit zero set
4499               FunctionStarts::Entry *func_start_entry =
4500                   function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4501               if (is_arm && func_start_entry) {
4502                 // Verify that the function start address is the symbol address
4503                 // (ARM)
4504                 // or the symbol address + 1 (thumb)
4505                 if (func_start_entry->addr != symbol_lookup_file_addr &&
4506                     func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4507                   // Not the right entry, NULL it out...
4508                   func_start_entry = NULL;
4509                 }
4510               }
4511               if (func_start_entry) {
4512                 func_start_entry->data = true;
4513 
4514                 addr_t symbol_file_addr = func_start_entry->addr;
4515                 if (is_arm)
4516                   symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4517 
4518                 const FunctionStarts::Entry *next_func_start_entry =
4519                     function_starts.FindNextEntry(func_start_entry);
4520                 const addr_t section_end_file_addr =
4521                     section_file_addr + symbol_section->GetByteSize();
4522                 if (next_func_start_entry) {
4523                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4524                   // Be sure the clear the Thumb address bit when we calculate
4525                   // the size
4526                   // from the current and next address
4527                   if (is_arm)
4528                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4529                   symbol_byte_size = std::min<lldb::addr_t>(
4530                       next_symbol_file_addr - symbol_file_addr,
4531                       section_end_file_addr - symbol_file_addr);
4532                 } else {
4533                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4534                 }
4535               }
4536             }
4537             symbol_value -= section_file_addr;
4538           }
4539 
4540           if (is_debug == false) {
4541             if (type == eSymbolTypeCode) {
4542               // See if we can find a N_FUN entry for any code symbols.
4543               // If we do find a match, and the name matches, then we
4544               // can merge the two into just the function symbol to avoid
4545               // duplicate entries in the symbol table
4546               std::pair<ValueToSymbolIndexMap::const_iterator,
4547                         ValueToSymbolIndexMap::const_iterator>
4548                   range;
4549               range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4550               if (range.first != range.second) {
4551                 bool found_it = false;
4552                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4553                      pos != range.second; ++pos) {
4554                   if (sym[sym_idx].GetMangled().GetName(
4555                           lldb::eLanguageTypeUnknown,
4556                           Mangled::ePreferMangled) ==
4557                       sym[pos->second].GetMangled().GetName(
4558                           lldb::eLanguageTypeUnknown,
4559                           Mangled::ePreferMangled)) {
4560                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4561                     // We just need the flags from the linker symbol, so put
4562                     // these flags
4563                     // into the N_FUN flags to avoid duplicate symbols in the
4564                     // symbol table
4565                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4566                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4567                                               nlist.n_desc);
4568                     if (resolver_addresses.find(nlist.n_value) !=
4569                         resolver_addresses.end())
4570                       sym[pos->second].SetType(eSymbolTypeResolver);
4571                     sym[sym_idx].Clear();
4572                     found_it = true;
4573                     break;
4574                   }
4575                 }
4576                 if (found_it)
4577                   continue;
4578               } else {
4579                 if (resolver_addresses.find(nlist.n_value) !=
4580                     resolver_addresses.end())
4581                   type = eSymbolTypeResolver;
4582               }
4583             } else if (type == eSymbolTypeData ||
4584                        type == eSymbolTypeObjCClass ||
4585                        type == eSymbolTypeObjCMetaClass ||
4586                        type == eSymbolTypeObjCIVar) {
4587               // See if we can find a N_STSYM entry for any data symbols.
4588               // If we do find a match, and the name matches, then we
4589               // can merge the two into just the Static symbol to avoid
4590               // duplicate entries in the symbol table
4591               std::pair<ValueToSymbolIndexMap::const_iterator,
4592                         ValueToSymbolIndexMap::const_iterator>
4593                   range;
4594               range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4595               if (range.first != range.second) {
4596                 bool found_it = false;
4597                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4598                      pos != range.second; ++pos) {
4599                   if (sym[sym_idx].GetMangled().GetName(
4600                           lldb::eLanguageTypeUnknown,
4601                           Mangled::ePreferMangled) ==
4602                       sym[pos->second].GetMangled().GetName(
4603                           lldb::eLanguageTypeUnknown,
4604                           Mangled::ePreferMangled)) {
4605                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4606                     // We just need the flags from the linker symbol, so put
4607                     // these flags
4608                     // into the N_STSYM flags to avoid duplicate symbols in the
4609                     // symbol table
4610                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4611                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4612                                               nlist.n_desc);
4613                     sym[sym_idx].Clear();
4614                     found_it = true;
4615                     break;
4616                   }
4617                 }
4618                 if (found_it)
4619                   continue;
4620               } else {
4621                 // Combine N_GSYM stab entries with the non stab symbol
4622                 const char *gsym_name = sym[sym_idx]
4623                                             .GetMangled()
4624                                             .GetName(lldb::eLanguageTypeUnknown,
4625                                                      Mangled::ePreferMangled)
4626                                             .GetCString();
4627                 if (gsym_name) {
4628                   ConstNameToSymbolIndexMap::const_iterator pos =
4629                       N_GSYM_name_to_sym_idx.find(gsym_name);
4630                   if (pos != N_GSYM_name_to_sym_idx.end()) {
4631                     const uint32_t GSYM_sym_idx = pos->second;
4632                     m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4633                     // Copy the address, because often the N_GSYM address has an
4634                     // invalid address of zero
4635                     // when the global is a common symbol
4636                     sym[GSYM_sym_idx].GetAddressRef().SetSection(
4637                         symbol_section);
4638                     sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4639                     // We just need the flags from the linker symbol, so put
4640                     // these flags
4641                     // into the N_GSYM flags to avoid duplicate symbols in the
4642                     // symbol table
4643                     sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4644                                                nlist.n_desc);
4645                     sym[sym_idx].Clear();
4646                     continue;
4647                   }
4648                 }
4649               }
4650             }
4651           }
4652 
4653           sym[sym_idx].SetID(nlist_idx);
4654           sym[sym_idx].SetType(type);
4655           if (set_value) {
4656             sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4657             sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4658           }
4659           sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4660 
4661           if (symbol_byte_size > 0)
4662             sym[sym_idx].SetByteSize(symbol_byte_size);
4663 
4664           if (demangled_is_synthesized)
4665             sym[sym_idx].SetDemangledNameIsSynthesized(true);
4666 
4667           ++sym_idx;
4668         } else {
4669           sym[sym_idx].Clear();
4670         }
4671       }
4672 
4673       for (const auto &pos : reexport_shlib_needs_fixup) {
4674         const auto undef_pos = undefined_name_to_desc.find(pos.second);
4675         if (undef_pos != undefined_name_to_desc.end()) {
4676           const uint8_t dylib_ordinal =
4677               llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4678           if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4679             sym[pos.first].SetReExportedSymbolSharedLibrary(
4680                 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4681         }
4682       }
4683     }
4684 
4685     uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4686 
4687     if (function_starts_count > 0) {
4688       uint32_t num_synthetic_function_symbols = 0;
4689       for (i = 0; i < function_starts_count; ++i) {
4690         if (function_starts.GetEntryRef(i).data == false)
4691           ++num_synthetic_function_symbols;
4692       }
4693 
4694       if (num_synthetic_function_symbols > 0) {
4695         if (num_syms < sym_idx + num_synthetic_function_symbols) {
4696           num_syms = sym_idx + num_synthetic_function_symbols;
4697           sym = symtab->Resize(num_syms);
4698         }
4699         for (i = 0; i < function_starts_count; ++i) {
4700           const FunctionStarts::Entry *func_start_entry =
4701               function_starts.GetEntryAtIndex(i);
4702           if (func_start_entry->data == false) {
4703             addr_t symbol_file_addr = func_start_entry->addr;
4704             uint32_t symbol_flags = 0;
4705             if (is_arm) {
4706               if (symbol_file_addr & 1)
4707                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4708               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4709             }
4710             Address symbol_addr;
4711             if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4712               SectionSP symbol_section(symbol_addr.GetSection());
4713               uint32_t symbol_byte_size = 0;
4714               if (symbol_section) {
4715                 const addr_t section_file_addr =
4716                     symbol_section->GetFileAddress();
4717                 const FunctionStarts::Entry *next_func_start_entry =
4718                     function_starts.FindNextEntry(func_start_entry);
4719                 const addr_t section_end_file_addr =
4720                     section_file_addr + symbol_section->GetByteSize();
4721                 if (next_func_start_entry) {
4722                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4723                   if (is_arm)
4724                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4725                   symbol_byte_size = std::min<lldb::addr_t>(
4726                       next_symbol_file_addr - symbol_file_addr,
4727                       section_end_file_addr - symbol_file_addr);
4728                 } else {
4729                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4730                 }
4731                 sym[sym_idx].SetID(synthetic_sym_id++);
4732                 sym[sym_idx].GetMangled().SetDemangledName(
4733                     GetNextSyntheticSymbolName());
4734                 sym[sym_idx].SetType(eSymbolTypeCode);
4735                 sym[sym_idx].SetIsSynthetic(true);
4736                 sym[sym_idx].GetAddressRef() = symbol_addr;
4737                 if (symbol_flags)
4738                   sym[sym_idx].SetFlags(symbol_flags);
4739                 if (symbol_byte_size)
4740                   sym[sym_idx].SetByteSize(symbol_byte_size);
4741                 ++sym_idx;
4742               }
4743             }
4744           }
4745         }
4746       }
4747     }
4748 
4749     // Trim our symbols down to just what we ended up with after
4750     // removing any symbols.
4751     if (sym_idx < num_syms) {
4752       num_syms = sym_idx;
4753       sym = symtab->Resize(num_syms);
4754     }
4755 
4756     // Now synthesize indirect symbols
4757     if (m_dysymtab.nindirectsyms != 0) {
4758       if (indirect_symbol_index_data.GetByteSize()) {
4759         NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4760             m_nlist_idx_to_sym_idx.end();
4761 
4762         for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4763              ++sect_idx) {
4764           if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4765               S_SYMBOL_STUBS) {
4766             uint32_t symbol_stub_byte_size =
4767                 m_mach_sections[sect_idx].reserved2;
4768             if (symbol_stub_byte_size == 0)
4769               continue;
4770 
4771             const uint32_t num_symbol_stubs =
4772                 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4773 
4774             if (num_symbol_stubs == 0)
4775               continue;
4776 
4777             const uint32_t symbol_stub_index_offset =
4778                 m_mach_sections[sect_idx].reserved1;
4779             for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4780                  ++stub_idx) {
4781               const uint32_t symbol_stub_index =
4782                   symbol_stub_index_offset + stub_idx;
4783               const lldb::addr_t symbol_stub_addr =
4784                   m_mach_sections[sect_idx].addr +
4785                   (stub_idx * symbol_stub_byte_size);
4786               lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4787               if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4788                       symbol_stub_offset, 4)) {
4789                 const uint32_t stub_sym_id =
4790                     indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4791                 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4792                   continue;
4793 
4794                 NListIndexToSymbolIndexMap::const_iterator index_pos =
4795                     m_nlist_idx_to_sym_idx.find(stub_sym_id);
4796                 Symbol *stub_symbol = NULL;
4797                 if (index_pos != end_index_pos) {
4798                   // We have a remapping from the original nlist index to
4799                   // a current symbol index, so just look this up by index
4800                   stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4801                 } else {
4802                   // We need to lookup a symbol using the original nlist
4803                   // symbol index since this index is coming from the
4804                   // S_SYMBOL_STUBS
4805                   stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4806                 }
4807 
4808                 if (stub_symbol) {
4809                   Address so_addr(symbol_stub_addr, section_list);
4810 
4811                   if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4812                     // Change the external symbol into a trampoline that makes
4813                     // sense
4814                     // These symbols were N_UNDF N_EXT, and are useless to us,
4815                     // so we
4816                     // can re-use them so we don't have to make up a synthetic
4817                     // symbol
4818                     // for no good reason.
4819                     if (resolver_addresses.find(symbol_stub_addr) ==
4820                         resolver_addresses.end())
4821                       stub_symbol->SetType(eSymbolTypeTrampoline);
4822                     else
4823                       stub_symbol->SetType(eSymbolTypeResolver);
4824                     stub_symbol->SetExternal(false);
4825                     stub_symbol->GetAddressRef() = so_addr;
4826                     stub_symbol->SetByteSize(symbol_stub_byte_size);
4827                   } else {
4828                     // Make a synthetic symbol to describe the trampoline stub
4829                     Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4830                     if (sym_idx >= num_syms) {
4831                       sym = symtab->Resize(++num_syms);
4832                       stub_symbol = NULL; // this pointer no longer valid
4833                     }
4834                     sym[sym_idx].SetID(synthetic_sym_id++);
4835                     sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4836                     if (resolver_addresses.find(symbol_stub_addr) ==
4837                         resolver_addresses.end())
4838                       sym[sym_idx].SetType(eSymbolTypeTrampoline);
4839                     else
4840                       sym[sym_idx].SetType(eSymbolTypeResolver);
4841                     sym[sym_idx].SetIsSynthetic(true);
4842                     sym[sym_idx].GetAddressRef() = so_addr;
4843                     sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4844                     ++sym_idx;
4845                   }
4846                 } else {
4847                   if (log)
4848                     log->Warning("symbol stub referencing symbol table symbol "
4849                                  "%u that isn't in our minimal symbol table, "
4850                                  "fix this!!!",
4851                                  stub_sym_id);
4852                 }
4853               }
4854             }
4855           }
4856         }
4857       }
4858     }
4859 
4860     if (!trie_entries.empty()) {
4861       for (const auto &e : trie_entries) {
4862         if (e.entry.import_name) {
4863           // Only add indirect symbols from the Trie entries if we
4864           // didn't have a N_INDR nlist entry for this already
4865           if (indirect_symbol_names.find(e.entry.name) ==
4866               indirect_symbol_names.end()) {
4867             // Make a synthetic symbol to describe re-exported symbol.
4868             if (sym_idx >= num_syms)
4869               sym = symtab->Resize(++num_syms);
4870             sym[sym_idx].SetID(synthetic_sym_id++);
4871             sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4872             sym[sym_idx].SetType(eSymbolTypeReExported);
4873             sym[sym_idx].SetIsSynthetic(true);
4874             sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4875             if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4876               sym[sym_idx].SetReExportedSymbolSharedLibrary(
4877                   dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4878             }
4879             ++sym_idx;
4880           }
4881         }
4882       }
4883     }
4884 
4885     //        StreamFile s(stdout, false);
4886     //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4887     //        symtab->Dump(&s, NULL, eSortOrderNone);
4888     // Set symbol byte sizes correctly since mach-o nlist entries don't have
4889     // sizes
4890     symtab->CalculateSymbolSizes();
4891 
4892     //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4893     //        symtab->Dump(&s, NULL, eSortOrderNone);
4894 
4895     return symtab->GetNumSymbols();
4896   }
4897   return 0;
4898 }
4899 
4900 void ObjectFileMachO::Dump(Stream *s) {
4901   ModuleSP module_sp(GetModule());
4902   if (module_sp) {
4903     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4904     s->Printf("%p: ", static_cast<void *>(this));
4905     s->Indent();
4906     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4907       s->PutCString("ObjectFileMachO64");
4908     else
4909       s->PutCString("ObjectFileMachO32");
4910 
4911     ArchSpec header_arch;
4912     GetArchitecture(header_arch);
4913 
4914     *s << ", file = '" << m_file
4915        << "', arch = " << header_arch.GetArchitectureName() << "\n";
4916 
4917     SectionList *sections = GetSectionList();
4918     if (sections)
4919       sections->Dump(s, NULL, true, UINT32_MAX);
4920 
4921     if (m_symtab_ap.get())
4922       m_symtab_ap->Dump(s, NULL, eSortOrderNone);
4923   }
4924 }
4925 
4926 bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4927                               const lldb_private::DataExtractor &data,
4928                               lldb::offset_t lc_offset,
4929                               lldb_private::UUID &uuid) {
4930   uint32_t i;
4931   struct uuid_command load_cmd;
4932 
4933   lldb::offset_t offset = lc_offset;
4934   for (i = 0; i < header.ncmds; ++i) {
4935     const lldb::offset_t cmd_offset = offset;
4936     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4937       break;
4938 
4939     if (load_cmd.cmd == LC_UUID) {
4940       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4941 
4942       if (uuid_bytes) {
4943         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4944         // We pretend these object files have no UUID to prevent crashing.
4945 
4946         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4947                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4948                                        0xbb, 0x14, 0xf0, 0x0d};
4949 
4950         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4951           return false;
4952 
4953         uuid.SetBytes(uuid_bytes);
4954         return true;
4955       }
4956       return false;
4957     }
4958     offset = cmd_offset + load_cmd.cmdsize;
4959   }
4960   return false;
4961 }
4962 
4963 bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4964                                       const lldb_private::DataExtractor &data,
4965                                       lldb::offset_t lc_offset,
4966                                       ArchSpec &arch) {
4967   arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4968 
4969   if (arch.IsValid()) {
4970     llvm::Triple &triple = arch.GetTriple();
4971 
4972     // Set OS to an unspecified unknown or a "*" so it can match any OS
4973     triple.setOS(llvm::Triple::UnknownOS);
4974     triple.setOSName(llvm::StringRef());
4975 
4976     if (header.filetype == MH_PRELOAD) {
4977       if (header.cputype == CPU_TYPE_ARM) {
4978         // If this is a 32-bit arm binary, and it's a standalone binary,
4979         // force the Vendor to Apple so we don't accidentally pick up
4980         // the generic armv7 ABI at runtime.  Apple's armv7 ABI always uses
4981         // r7 for the frame pointer register; most other armv7 ABIs use a
4982         // combination of r7 and r11.
4983         triple.setVendor(llvm::Triple::Apple);
4984       } else {
4985         // Set vendor to an unspecified unknown or a "*" so it can match any
4986         // vendor
4987         // This is required for correct behavior of EFI debugging on x86_64
4988         triple.setVendor(llvm::Triple::UnknownVendor);
4989         triple.setVendorName(llvm::StringRef());
4990       }
4991       return true;
4992     } else {
4993       struct load_command load_cmd;
4994 
4995       lldb::offset_t offset = lc_offset;
4996       for (uint32_t i = 0; i < header.ncmds; ++i) {
4997         const lldb::offset_t cmd_offset = offset;
4998         if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4999           break;
5000 
5001         switch (load_cmd.cmd) {
5002         case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5003           triple.setOS(llvm::Triple::IOS);
5004           return true;
5005 
5006         case llvm::MachO::LC_VERSION_MIN_MACOSX:
5007           triple.setOS(llvm::Triple::MacOSX);
5008           return true;
5009 
5010         case llvm::MachO::LC_VERSION_MIN_TVOS:
5011           triple.setOS(llvm::Triple::TvOS);
5012           return true;
5013 
5014         case llvm::MachO::LC_VERSION_MIN_WATCHOS:
5015           triple.setOS(llvm::Triple::WatchOS);
5016           return true;
5017 
5018         default:
5019           break;
5020         }
5021 
5022         offset = cmd_offset + load_cmd.cmdsize;
5023       }
5024 
5025       if (header.filetype != MH_KEXT_BUNDLE) {
5026         // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5027         // so lets not say our Vendor is Apple, leave it as an unspecified
5028         // unknown
5029         triple.setVendor(llvm::Triple::UnknownVendor);
5030         triple.setVendorName(llvm::StringRef());
5031       }
5032     }
5033   }
5034   return arch.IsValid();
5035 }
5036 
5037 bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
5038   ModuleSP module_sp(GetModule());
5039   if (module_sp) {
5040     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5041     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5042     return GetUUID(m_header, m_data, offset, *uuid);
5043   }
5044   return false;
5045 }
5046 
5047 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5048   uint32_t count = 0;
5049   ModuleSP module_sp(GetModule());
5050   if (module_sp) {
5051     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5052     struct load_command load_cmd;
5053     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5054     std::vector<std::string> rpath_paths;
5055     std::vector<std::string> rpath_relative_paths;
5056     std::vector<std::string> at_exec_relative_paths;
5057     const bool resolve_path = false; // Don't resolve the dependent file paths
5058                                      // since they may not reside on this system
5059     uint32_t i;
5060     for (i = 0; i < m_header.ncmds; ++i) {
5061       const uint32_t cmd_offset = offset;
5062       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5063         break;
5064 
5065       switch (load_cmd.cmd) {
5066       case LC_RPATH:
5067       case LC_LOAD_DYLIB:
5068       case LC_LOAD_WEAK_DYLIB:
5069       case LC_REEXPORT_DYLIB:
5070       case LC_LOAD_DYLINKER:
5071       case LC_LOADFVMLIB:
5072       case LC_LOAD_UPWARD_DYLIB: {
5073         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5074         const char *path = m_data.PeekCStr(name_offset);
5075         if (path) {
5076           if (load_cmd.cmd == LC_RPATH)
5077             rpath_paths.push_back(path);
5078           else {
5079             if (path[0] == '@') {
5080               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5081                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5082               else if (strncmp(path, "@executable_path",
5083                        strlen("@executable_path")) == 0)
5084                 at_exec_relative_paths.push_back(path
5085                                                  + strlen("@executable_path"));
5086             } else {
5087               FileSpec file_spec(path, resolve_path);
5088               if (files.AppendIfUnique(file_spec))
5089                 count++;
5090             }
5091           }
5092         }
5093       } break;
5094 
5095       default:
5096         break;
5097       }
5098       offset = cmd_offset + load_cmd.cmdsize;
5099     }
5100 
5101     FileSpec this_file_spec(m_file);
5102     this_file_spec.ResolvePath();
5103 
5104     if (!rpath_paths.empty()) {
5105       // Fixup all LC_RPATH values to be absolute paths
5106       std::string loader_path("@loader_path");
5107       std::string executable_path("@executable_path");
5108       for (auto &rpath : rpath_paths) {
5109         if (rpath.find(loader_path) == 0) {
5110           rpath.erase(0, loader_path.size());
5111           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5112         } else if (rpath.find(executable_path) == 0) {
5113           rpath.erase(0, executable_path.size());
5114           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5115         }
5116       }
5117 
5118       for (const auto &rpath_relative_path : rpath_relative_paths) {
5119         for (const auto &rpath : rpath_paths) {
5120           std::string path = rpath;
5121           path += rpath_relative_path;
5122           // It is OK to resolve this path because we must find a file on
5123           // disk for us to accept it anyway if it is rpath relative.
5124           FileSpec file_spec(path, true);
5125           // Remove any redundant parts of the path (like "../foo") since
5126           // LC_RPATH values often contain "..".
5127           file_spec = file_spec.GetNormalizedPath();
5128           if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5129             count++;
5130             break;
5131           }
5132         }
5133       }
5134     }
5135 
5136     // We may have @executable_paths but no RPATHS.  Figure those out here.
5137     // Only do this if this object file is the executable.  We have no way to
5138     // get back to the actual executable otherwise, so we won't get the right
5139     // path.
5140     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5141       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5142       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5143         FileSpec file_spec =
5144             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5145         file_spec = file_spec.GetNormalizedPath();
5146         if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5147           count++;
5148           break;
5149         }
5150       }
5151     }
5152   }
5153   return count;
5154 }
5155 
5156 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5157   // If the object file is not an executable it can't hold the entry point.
5158   // m_entry_point_address
5159   // is initialized to an invalid address, so we can just return that.
5160   // If m_entry_point_address is valid it means we've found it already, so
5161   // return the cached value.
5162 
5163   if (!IsExecutable() || m_entry_point_address.IsValid())
5164     return m_entry_point_address;
5165 
5166   // Otherwise, look for the UnixThread or Thread command.  The data for the
5167   // Thread command is given in
5168   // /usr/include/mach-o.h, but it is basically:
5169   //
5170   //  uint32_t flavor  - this is the flavor argument you would pass to
5171   //  thread_get_state
5172   //  uint32_t count   - this is the count of longs in the thread state data
5173   //  struct XXX_thread_state state - this is the structure from
5174   //  <machine/thread_status.h> corresponding to the flavor.
5175   //  <repeat this trio>
5176   //
5177   // So we just keep reading the various register flavors till we find the GPR
5178   // one, then read the PC out of there.
5179   // FIXME: We will need to have a "RegisterContext data provider" class at some
5180   // point that can get all the registers
5181   // out of data in this form & attach them to a given thread.  That should
5182   // underlie the MacOS X User process plugin,
5183   // and we'll also need it for the MacOS X Core File process plugin.  When we
5184   // have that we can also use it here.
5185   //
5186   // For now we hard-code the offsets and flavors we need:
5187   //
5188   //
5189 
5190   ModuleSP module_sp(GetModule());
5191   if (module_sp) {
5192     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5193     struct load_command load_cmd;
5194     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5195     uint32_t i;
5196     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5197     bool done = false;
5198 
5199     for (i = 0; i < m_header.ncmds; ++i) {
5200       const lldb::offset_t cmd_offset = offset;
5201       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5202         break;
5203 
5204       switch (load_cmd.cmd) {
5205       case LC_UNIXTHREAD:
5206       case LC_THREAD: {
5207         while (offset < cmd_offset + load_cmd.cmdsize) {
5208           uint32_t flavor = m_data.GetU32(&offset);
5209           uint32_t count = m_data.GetU32(&offset);
5210           if (count == 0) {
5211             // We've gotten off somehow, log and exit;
5212             return m_entry_point_address;
5213           }
5214 
5215           switch (m_header.cputype) {
5216           case llvm::MachO::CPU_TYPE_ARM:
5217             if (flavor == 1 ||
5218                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5219                              // mach/arm/thread_status.h
5220             {
5221               offset += 60; // This is the offset of pc in the GPR thread state
5222                             // data structure.
5223               start_address = m_data.GetU32(&offset);
5224               done = true;
5225             }
5226             break;
5227           case llvm::MachO::CPU_TYPE_ARM64:
5228             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5229             {
5230               offset += 256; // This is the offset of pc in the GPR thread state
5231                              // data structure.
5232               start_address = m_data.GetU64(&offset);
5233               done = true;
5234             }
5235             break;
5236           case llvm::MachO::CPU_TYPE_I386:
5237             if (flavor ==
5238                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5239             {
5240               offset += 40; // This is the offset of eip in the GPR thread state
5241                             // data structure.
5242               start_address = m_data.GetU32(&offset);
5243               done = true;
5244             }
5245             break;
5246           case llvm::MachO::CPU_TYPE_X86_64:
5247             if (flavor ==
5248                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5249             {
5250               offset += 16 * 8; // This is the offset of rip in the GPR thread
5251                                 // state data structure.
5252               start_address = m_data.GetU64(&offset);
5253               done = true;
5254             }
5255             break;
5256           default:
5257             return m_entry_point_address;
5258           }
5259           // Haven't found the GPR flavor yet, skip over the data for this
5260           // flavor:
5261           if (done)
5262             break;
5263           offset += count * 4;
5264         }
5265       } break;
5266       case LC_MAIN: {
5267         ConstString text_segment_name("__TEXT");
5268         uint64_t entryoffset = m_data.GetU64(&offset);
5269         SectionSP text_segment_sp =
5270             GetSectionList()->FindSectionByName(text_segment_name);
5271         if (text_segment_sp) {
5272           done = true;
5273           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5274         }
5275       } break;
5276 
5277       default:
5278         break;
5279       }
5280       if (done)
5281         break;
5282 
5283       // Go to the next load command:
5284       offset = cmd_offset + load_cmd.cmdsize;
5285     }
5286 
5287     if (start_address != LLDB_INVALID_ADDRESS) {
5288       // We got the start address from the load commands, so now resolve that
5289       // address in the sections
5290       // of this ObjectFile:
5291       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5292               start_address, GetSectionList())) {
5293         m_entry_point_address.Clear();
5294       }
5295     } else {
5296       // We couldn't read the UnixThread load command - maybe it wasn't there.
5297       // As a fallback look for the
5298       // "start" symbol in the main executable.
5299 
5300       ModuleSP module_sp(GetModule());
5301 
5302       if (module_sp) {
5303         SymbolContextList contexts;
5304         SymbolContext context;
5305         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5306                                                   eSymbolTypeCode, contexts)) {
5307           if (contexts.GetContextAtIndex(0, context))
5308             m_entry_point_address = context.symbol->GetAddress();
5309         }
5310       }
5311     }
5312   }
5313 
5314   return m_entry_point_address;
5315 }
5316 
5317 lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
5318   lldb_private::Address header_addr;
5319   SectionList *section_list = GetSectionList();
5320   if (section_list) {
5321     SectionSP text_segment_sp(
5322         section_list->FindSectionByName(GetSegmentNameTEXT()));
5323     if (text_segment_sp) {
5324       header_addr.SetSection(text_segment_sp);
5325       header_addr.SetOffset(0);
5326     }
5327   }
5328   return header_addr;
5329 }
5330 
5331 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5332   ModuleSP module_sp(GetModule());
5333   if (module_sp) {
5334     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5335     if (!m_thread_context_offsets_valid) {
5336       m_thread_context_offsets_valid = true;
5337       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5338       FileRangeArray::Entry file_range;
5339       thread_command thread_cmd;
5340       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5341         const uint32_t cmd_offset = offset;
5342         if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
5343           break;
5344 
5345         if (thread_cmd.cmd == LC_THREAD) {
5346           file_range.SetRangeBase(offset);
5347           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5348           m_thread_context_offsets.Append(file_range);
5349         }
5350         offset = cmd_offset + thread_cmd.cmdsize;
5351       }
5352     }
5353   }
5354   return m_thread_context_offsets.GetSize();
5355 }
5356 
5357 // The LC_IDENT load command has been obsoleted for a very
5358 // long time and it should not occur in Mach-O files.  But
5359 // if it is there, it may contain a hint about where to find
5360 // the main binary in a core file, so we'll use it.
5361 std::string ObjectFileMachO::GetIdentifierString() {
5362   std::string result;
5363   ModuleSP module_sp(GetModule());
5364   if (module_sp) {
5365     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5366     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5367     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5368       const uint32_t cmd_offset = offset;
5369       struct ident_command ident_command;
5370       if (m_data.GetU32(&offset, &ident_command, 2) == NULL)
5371         break;
5372       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5373         char *buf = (char *)malloc (ident_command.cmdsize);
5374         if (buf != nullptr
5375             && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5376           buf[ident_command.cmdsize - 1] = '\0';
5377           result = buf;
5378         }
5379         if (buf)
5380           free (buf);
5381       }
5382       offset = cmd_offset + ident_command.cmdsize;
5383     }
5384   }
5385   return result;
5386 }
5387 
5388 lldb::RegisterContextSP
5389 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5390                                          lldb_private::Thread &thread) {
5391   lldb::RegisterContextSP reg_ctx_sp;
5392 
5393   ModuleSP module_sp(GetModule());
5394   if (module_sp) {
5395     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5396     if (!m_thread_context_offsets_valid)
5397       GetNumThreadContexts();
5398 
5399     const FileRangeArray::Entry *thread_context_file_range =
5400         m_thread_context_offsets.GetEntryAtIndex(idx);
5401     if (thread_context_file_range) {
5402 
5403       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5404                          thread_context_file_range->GetByteSize());
5405 
5406       switch (m_header.cputype) {
5407       case llvm::MachO::CPU_TYPE_ARM64:
5408         reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
5409         break;
5410 
5411       case llvm::MachO::CPU_TYPE_ARM:
5412         reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
5413         break;
5414 
5415       case llvm::MachO::CPU_TYPE_I386:
5416         reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
5417         break;
5418 
5419       case llvm::MachO::CPU_TYPE_X86_64:
5420         reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
5421         break;
5422       }
5423     }
5424   }
5425   return reg_ctx_sp;
5426 }
5427 
5428 ObjectFile::Type ObjectFileMachO::CalculateType() {
5429   switch (m_header.filetype) {
5430   case MH_OBJECT: // 0x1u
5431     if (GetAddressByteSize() == 4) {
5432       // 32 bit kexts are just object files, but they do have a valid
5433       // UUID load command.
5434       UUID uuid;
5435       if (GetUUID(&uuid)) {
5436         // this checking for the UUID load command is not enough
5437         // we could eventually look for the symbol named
5438         // "OSKextGetCurrentIdentifier" as this is required of kexts
5439         if (m_strata == eStrataInvalid)
5440           m_strata = eStrataKernel;
5441         return eTypeSharedLibrary;
5442       }
5443     }
5444     return eTypeObjectFile;
5445 
5446   case MH_EXECUTE:
5447     return eTypeExecutable; // 0x2u
5448   case MH_FVMLIB:
5449     return eTypeSharedLibrary; // 0x3u
5450   case MH_CORE:
5451     return eTypeCoreFile; // 0x4u
5452   case MH_PRELOAD:
5453     return eTypeSharedLibrary; // 0x5u
5454   case MH_DYLIB:
5455     return eTypeSharedLibrary; // 0x6u
5456   case MH_DYLINKER:
5457     return eTypeDynamicLinker; // 0x7u
5458   case MH_BUNDLE:
5459     return eTypeSharedLibrary; // 0x8u
5460   case MH_DYLIB_STUB:
5461     return eTypeStubLibrary; // 0x9u
5462   case MH_DSYM:
5463     return eTypeDebugInfo; // 0xAu
5464   case MH_KEXT_BUNDLE:
5465     return eTypeSharedLibrary; // 0xBu
5466   default:
5467     break;
5468   }
5469   return eTypeUnknown;
5470 }
5471 
5472 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5473   switch (m_header.filetype) {
5474   case MH_OBJECT: // 0x1u
5475   {
5476     // 32 bit kexts are just object files, but they do have a valid
5477     // UUID load command.
5478     UUID uuid;
5479     if (GetUUID(&uuid)) {
5480       // this checking for the UUID load command is not enough
5481       // we could eventually look for the symbol named
5482       // "OSKextGetCurrentIdentifier" as this is required of kexts
5483       if (m_type == eTypeInvalid)
5484         m_type = eTypeSharedLibrary;
5485 
5486       return eStrataKernel;
5487     }
5488   }
5489     return eStrataUnknown;
5490 
5491   case MH_EXECUTE: // 0x2u
5492     // Check for the MH_DYLDLINK bit in the flags
5493     if (m_header.flags & MH_DYLDLINK) {
5494       return eStrataUser;
5495     } else {
5496       SectionList *section_list = GetSectionList();
5497       if (section_list) {
5498         static ConstString g_kld_section_name("__KLD");
5499         if (section_list->FindSectionByName(g_kld_section_name))
5500           return eStrataKernel;
5501       }
5502     }
5503     return eStrataRawImage;
5504 
5505   case MH_FVMLIB:
5506     return eStrataUser; // 0x3u
5507   case MH_CORE:
5508     return eStrataUnknown; // 0x4u
5509   case MH_PRELOAD:
5510     return eStrataRawImage; // 0x5u
5511   case MH_DYLIB:
5512     return eStrataUser; // 0x6u
5513   case MH_DYLINKER:
5514     return eStrataUser; // 0x7u
5515   case MH_BUNDLE:
5516     return eStrataUser; // 0x8u
5517   case MH_DYLIB_STUB:
5518     return eStrataUser; // 0x9u
5519   case MH_DSYM:
5520     return eStrataUnknown; // 0xAu
5521   case MH_KEXT_BUNDLE:
5522     return eStrataKernel; // 0xBu
5523   default:
5524     break;
5525   }
5526   return eStrataUnknown;
5527 }
5528 
5529 uint32_t ObjectFileMachO::GetVersion(uint32_t *versions,
5530                                      uint32_t num_versions) {
5531   ModuleSP module_sp(GetModule());
5532   if (module_sp) {
5533     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5534     struct dylib_command load_cmd;
5535     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5536     uint32_t version_cmd = 0;
5537     uint64_t version = 0;
5538     uint32_t i;
5539     for (i = 0; i < m_header.ncmds; ++i) {
5540       const lldb::offset_t cmd_offset = offset;
5541       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5542         break;
5543 
5544       if (load_cmd.cmd == LC_ID_DYLIB) {
5545         if (version_cmd == 0) {
5546           version_cmd = load_cmd.cmd;
5547           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
5548             break;
5549           version = load_cmd.dylib.current_version;
5550         }
5551         break; // Break for now unless there is another more complete version
5552                // number load command in the future.
5553       }
5554       offset = cmd_offset + load_cmd.cmdsize;
5555     }
5556 
5557     if (version_cmd == LC_ID_DYLIB) {
5558       if (versions != NULL && num_versions > 0) {
5559         if (num_versions > 0)
5560           versions[0] = (version & 0xFFFF0000ull) >> 16;
5561         if (num_versions > 1)
5562           versions[1] = (version & 0x0000FF00ull) >> 8;
5563         if (num_versions > 2)
5564           versions[2] = (version & 0x000000FFull);
5565         // Fill in an remaining version numbers with invalid values
5566         for (i = 3; i < num_versions; ++i)
5567           versions[i] = UINT32_MAX;
5568       }
5569       // The LC_ID_DYLIB load command has a version with 3 version numbers
5570       // in it, so always return 3
5571       return 3;
5572     }
5573   }
5574   return false;
5575 }
5576 
5577 bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
5578   ModuleSP module_sp(GetModule());
5579   if (module_sp) {
5580     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5581     return GetArchitecture(m_header, m_data,
5582                            MachHeaderSizeFromMagic(m_header.magic), arch);
5583   }
5584   return false;
5585 }
5586 
5587 UUID ObjectFileMachO::GetProcessSharedCacheUUID(Process *process) {
5588   UUID uuid;
5589   if (process && process->GetDynamicLoader()) {
5590     DynamicLoader *dl = process->GetDynamicLoader();
5591     addr_t load_address;
5592     LazyBool using_shared_cache;
5593     LazyBool private_shared_cache;
5594     dl->GetSharedCacheInformation(load_address, uuid, using_shared_cache,
5595                                   private_shared_cache);
5596   }
5597   return uuid;
5598 }
5599 
5600 UUID ObjectFileMachO::GetLLDBSharedCacheUUID() {
5601   UUID uuid;
5602 #if defined(__APPLE__) &&                                                      \
5603     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5604   uint8_t *(*dyld_get_all_image_infos)(void);
5605   dyld_get_all_image_infos =
5606       (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5607   if (dyld_get_all_image_infos) {
5608     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5609     if (dyld_all_image_infos_address) {
5610       uint32_t *version = (uint32_t *)
5611           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5612       if (*version >= 13) {
5613         uuid_t *sharedCacheUUID_address = 0;
5614         int wordsize = sizeof(uint8_t *);
5615         if (wordsize == 8) {
5616           sharedCacheUUID_address =
5617               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5618                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5619         } else {
5620           sharedCacheUUID_address =
5621               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5622                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5623         }
5624         uuid.SetBytes(sharedCacheUUID_address);
5625       }
5626     }
5627   }
5628 #endif
5629   return uuid;
5630 }
5631 
5632 uint32_t ObjectFileMachO::GetMinimumOSVersion(uint32_t *versions,
5633                                               uint32_t num_versions) {
5634   if (m_min_os_versions.empty()) {
5635     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5636     bool success = false;
5637     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5638       const lldb::offset_t load_cmd_offset = offset;
5639 
5640       version_min_command lc;
5641       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5642         break;
5643       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5644           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5645           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5646           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5647         if (m_data.GetU32(&offset, &lc.version,
5648                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5649           const uint32_t xxxx = lc.version >> 16;
5650           const uint32_t yy = (lc.version >> 8) & 0xffu;
5651           const uint32_t zz = lc.version & 0xffu;
5652           if (xxxx) {
5653             m_min_os_versions.push_back(xxxx);
5654             m_min_os_versions.push_back(yy);
5655             m_min_os_versions.push_back(zz);
5656           }
5657           success = true;
5658         }
5659       }
5660       offset = load_cmd_offset + lc.cmdsize;
5661     }
5662 
5663     if (success == false) {
5664       // Push an invalid value so we don't keep trying to
5665       m_min_os_versions.push_back(UINT32_MAX);
5666     }
5667   }
5668 
5669   if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) {
5670     if (versions != NULL && num_versions > 0) {
5671       for (size_t i = 0; i < num_versions; ++i) {
5672         if (i < m_min_os_versions.size())
5673           versions[i] = m_min_os_versions[i];
5674         else
5675           versions[i] = 0;
5676       }
5677     }
5678     return m_min_os_versions.size();
5679   }
5680   // Call the superclasses version that will empty out the data
5681   return ObjectFile::GetMinimumOSVersion(versions, num_versions);
5682 }
5683 
5684 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5685                                         uint32_t num_versions) {
5686   if (m_sdk_versions.empty()) {
5687     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5688     bool success = false;
5689     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5690       const lldb::offset_t load_cmd_offset = offset;
5691 
5692       version_min_command lc;
5693       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5694         break;
5695       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5696           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5697           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5698           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5699         if (m_data.GetU32(&offset, &lc.version,
5700                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5701           const uint32_t xxxx = lc.sdk >> 16;
5702           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5703           const uint32_t zz = lc.sdk & 0xffu;
5704           if (xxxx) {
5705             m_sdk_versions.push_back(xxxx);
5706             m_sdk_versions.push_back(yy);
5707             m_sdk_versions.push_back(zz);
5708           }
5709           success = true;
5710         }
5711       }
5712       offset = load_cmd_offset + lc.cmdsize;
5713     }
5714 
5715     if (success == false) {
5716       // Push an invalid value so we don't keep trying to
5717       m_sdk_versions.push_back(UINT32_MAX);
5718     }
5719   }
5720 
5721   if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) {
5722     if (versions != NULL && num_versions > 0) {
5723       for (size_t i = 0; i < num_versions; ++i) {
5724         if (i < m_sdk_versions.size())
5725           versions[i] = m_sdk_versions[i];
5726         else
5727           versions[i] = 0;
5728       }
5729     }
5730     return m_sdk_versions.size();
5731   }
5732   // Call the superclasses version that will empty out the data
5733   return ObjectFile::GetSDKVersion(versions, num_versions);
5734 }
5735 
5736 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5737   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5738 }
5739 
5740 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5741   return m_allow_assembly_emulation_unwind_plans;
5742 }
5743 
5744 //------------------------------------------------------------------
5745 // PluginInterface protocol
5746 //------------------------------------------------------------------
5747 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5748   return GetPluginNameStatic();
5749 }
5750 
5751 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5752 
5753 Section *ObjectFileMachO::GetMachHeaderSection() {
5754   // Find the first address of the mach header which is the first non-zero
5755   // file sized section whose file offset is zero. This is the base file address
5756   // of the mach-o file which can be subtracted from the vmaddr of the other
5757   // segments found in memory and added to the load address
5758   ModuleSP module_sp = GetModule();
5759   if (module_sp) {
5760     SectionList *section_list = GetSectionList();
5761     if (section_list) {
5762       lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS;
5763       const size_t num_sections = section_list->GetSize();
5764 
5765       for (size_t sect_idx = 0; sect_idx < num_sections &&
5766                                 mach_base_file_addr == LLDB_INVALID_ADDRESS;
5767            ++sect_idx) {
5768         Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5769         if (section && section->GetFileSize() > 0 &&
5770             section->GetFileOffset() == 0 &&
5771             section->IsThreadSpecific() == false &&
5772             module_sp.get() == section->GetModule().get()) {
5773           return section;
5774         }
5775       }
5776     }
5777   }
5778   return nullptr;
5779 }
5780 
5781 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5782     lldb::addr_t mach_header_load_address, const Section *mach_header_section,
5783     const Section *section) {
5784   ModuleSP module_sp = GetModule();
5785   if (module_sp && mach_header_section && section &&
5786       mach_header_load_address != LLDB_INVALID_ADDRESS) {
5787     lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
5788     if (mach_header_file_addr != LLDB_INVALID_ADDRESS) {
5789       if (section && section->GetFileSize() > 0 &&
5790           section->IsThreadSpecific() == false &&
5791           module_sp.get() == section->GetModule().get()) {
5792         // Ignore __LINKEDIT and __DWARF segments
5793         if (section->GetName() == GetSegmentNameLINKEDIT()) {
5794           // Only map __LINKEDIT if we have an in memory image and this isn't
5795           // a kernel binary like a kext or mach_kernel.
5796           const bool is_memory_image = (bool)m_process_wp.lock();
5797           const Strata strata = GetStrata();
5798           if (is_memory_image == false || strata == eStrataKernel)
5799             return LLDB_INVALID_ADDRESS;
5800         }
5801         return section->GetFileAddress() - mach_header_file_addr +
5802                mach_header_load_address;
5803       }
5804     }
5805   }
5806   return LLDB_INVALID_ADDRESS;
5807 }
5808 
5809 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5810                                      bool value_is_offset) {
5811   ModuleSP module_sp = GetModule();
5812   if (module_sp) {
5813     size_t num_loaded_sections = 0;
5814     SectionList *section_list = GetSectionList();
5815     if (section_list) {
5816       const size_t num_sections = section_list->GetSize();
5817 
5818       if (value_is_offset) {
5819         // "value" is an offset to apply to each top level segment
5820         for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5821           // Iterate through the object file sections to find all
5822           // of the sections that size on disk (to avoid __PAGEZERO)
5823           // and load them
5824           SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5825           if (section_sp && section_sp->GetFileSize() > 0 &&
5826               section_sp->IsThreadSpecific() == false &&
5827               module_sp.get() == section_sp->GetModule().get()) {
5828             // Ignore __LINKEDIT and __DWARF segments
5829             if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
5830               // Only map __LINKEDIT if we have an in memory image and this
5831               // isn't
5832               // a kernel binary like a kext or mach_kernel.
5833               const bool is_memory_image = (bool)m_process_wp.lock();
5834               const Strata strata = GetStrata();
5835               if (is_memory_image == false || strata == eStrataKernel)
5836                 continue;
5837             }
5838             if (target.GetSectionLoadList().SetSectionLoadAddress(
5839                     section_sp, section_sp->GetFileAddress() + value))
5840               ++num_loaded_sections;
5841           }
5842         }
5843       } else {
5844         // "value" is the new base address of the mach_header, adjust each
5845         // section accordingly
5846 
5847         Section *mach_header_section = GetMachHeaderSection();
5848         if (mach_header_section) {
5849           for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5850             SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5851 
5852             lldb::addr_t section_load_addr =
5853                 CalculateSectionLoadAddressForMemoryImage(
5854                     value, mach_header_section, section_sp.get());
5855             if (section_load_addr != LLDB_INVALID_ADDRESS) {
5856               if (target.GetSectionLoadList().SetSectionLoadAddress(
5857                       section_sp, section_load_addr))
5858                 ++num_loaded_sections;
5859             }
5860           }
5861         }
5862       }
5863     }
5864     return num_loaded_sections > 0;
5865   }
5866   return false;
5867 }
5868 
5869 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
5870                                const FileSpec &outfile, Error &error) {
5871   if (process_sp) {
5872     Target &target = process_sp->GetTarget();
5873     const ArchSpec target_arch = target.GetArchitecture();
5874     const llvm::Triple &target_triple = target_arch.GetTriple();
5875     if (target_triple.getVendor() == llvm::Triple::Apple &&
5876         (target_triple.getOS() == llvm::Triple::MacOSX ||
5877          target_triple.getOS() == llvm::Triple::IOS ||
5878          target_triple.getOS() == llvm::Triple::WatchOS ||
5879          target_triple.getOS() == llvm::Triple::TvOS)) {
5880       bool make_core = false;
5881       switch (target_arch.GetMachine()) {
5882       case llvm::Triple::aarch64:
5883       case llvm::Triple::arm:
5884       case llvm::Triple::thumb:
5885       case llvm::Triple::x86:
5886       case llvm::Triple::x86_64:
5887         make_core = true;
5888         break;
5889       default:
5890         error.SetErrorStringWithFormat("unsupported core architecture: %s",
5891                                        target_triple.str().c_str());
5892         break;
5893       }
5894 
5895       if (make_core) {
5896         std::vector<segment_command_64> segment_load_commands;
5897         //                uint32_t range_info_idx = 0;
5898         MemoryRegionInfo range_info;
5899         Error range_error = process_sp->GetMemoryRegionInfo(0, range_info);
5900         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
5901         const ByteOrder byte_order = target_arch.GetByteOrder();
5902         if (range_error.Success()) {
5903           while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
5904             const addr_t addr = range_info.GetRange().GetRangeBase();
5905             const addr_t size = range_info.GetRange().GetByteSize();
5906 
5907             if (size == 0)
5908               break;
5909 
5910             // Calculate correct protections
5911             uint32_t prot = 0;
5912             if (range_info.GetReadable() == MemoryRegionInfo::eYes)
5913               prot |= VM_PROT_READ;
5914             if (range_info.GetWritable() == MemoryRegionInfo::eYes)
5915               prot |= VM_PROT_WRITE;
5916             if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
5917               prot |= VM_PROT_EXECUTE;
5918 
5919             //                        printf ("[%3u] [0x%16.16" PRIx64 " -
5920             //                        0x%16.16" PRIx64 ") %c%c%c\n",
5921             //                                range_info_idx,
5922             //                                addr,
5923             //                                size,
5924             //                                (prot & VM_PROT_READ   ) ? 'r' :
5925             //                                '-',
5926             //                                (prot & VM_PROT_WRITE  ) ? 'w' :
5927             //                                '-',
5928             //                                (prot & VM_PROT_EXECUTE) ? 'x' :
5929             //                                '-');
5930 
5931             if (prot != 0) {
5932               uint32_t cmd_type = LC_SEGMENT_64;
5933               uint32_t segment_size = sizeof(segment_command_64);
5934               if (addr_byte_size == 4) {
5935                 cmd_type = LC_SEGMENT;
5936                 segment_size = sizeof(segment_command);
5937               }
5938               segment_command_64 segment = {
5939                   cmd_type,     // uint32_t cmd;
5940                   segment_size, // uint32_t cmdsize;
5941                   {0},          // char segname[16];
5942                   addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
5943                   size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
5944                   0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
5945                   size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
5946                   prot, // uint32_t maxprot;
5947                   prot, // uint32_t initprot;
5948                   0,    // uint32_t nsects;
5949                   0};   // uint32_t flags;
5950               segment_load_commands.push_back(segment);
5951             } else {
5952               // No protections and a size of 1 used to be returned from old
5953               // debugservers when we asked about a region that was past the
5954               // last memory region and it indicates the end...
5955               if (size == 1)
5956                 break;
5957             }
5958 
5959             range_error = process_sp->GetMemoryRegionInfo(
5960                 range_info.GetRange().GetRangeEnd(), range_info);
5961             if (range_error.Fail())
5962               break;
5963           }
5964 
5965           StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
5966 
5967           mach_header_64 mach_header;
5968           if (addr_byte_size == 8) {
5969             mach_header.magic = MH_MAGIC_64;
5970           } else {
5971             mach_header.magic = MH_MAGIC;
5972           }
5973           mach_header.cputype = target_arch.GetMachOCPUType();
5974           mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
5975           mach_header.filetype = MH_CORE;
5976           mach_header.ncmds = segment_load_commands.size();
5977           mach_header.flags = 0;
5978           mach_header.reserved = 0;
5979           ThreadList &thread_list = process_sp->GetThreadList();
5980           const uint32_t num_threads = thread_list.GetSize();
5981 
5982           // Make an array of LC_THREAD data items. Each one contains
5983           // the contents of the LC_THREAD load command. The data doesn't
5984           // contain the load command + load command size, we will
5985           // add the load command and load command size as we emit the data.
5986           std::vector<StreamString> LC_THREAD_datas(num_threads);
5987           for (auto &LC_THREAD_data : LC_THREAD_datas) {
5988             LC_THREAD_data.GetFlags().Set(Stream::eBinary);
5989             LC_THREAD_data.SetAddressByteSize(addr_byte_size);
5990             LC_THREAD_data.SetByteOrder(byte_order);
5991           }
5992           for (uint32_t thread_idx = 0; thread_idx < num_threads;
5993                ++thread_idx) {
5994             ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
5995             if (thread_sp) {
5996               switch (mach_header.cputype) {
5997               case llvm::MachO::CPU_TYPE_ARM64:
5998                 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
5999                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6000                 break;
6001 
6002               case llvm::MachO::CPU_TYPE_ARM:
6003                 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6004                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6005                 break;
6006 
6007               case llvm::MachO::CPU_TYPE_I386:
6008                 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6009                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6010                 break;
6011 
6012               case llvm::MachO::CPU_TYPE_X86_64:
6013                 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6014                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6015                 break;
6016               }
6017             }
6018           }
6019 
6020           // The size of the load command is the size of the segments...
6021           if (addr_byte_size == 8) {
6022             mach_header.sizeofcmds = segment_load_commands.size() *
6023                                      sizeof(struct segment_command_64);
6024           } else {
6025             mach_header.sizeofcmds =
6026                 segment_load_commands.size() * sizeof(struct segment_command);
6027           }
6028 
6029           // and the size of all LC_THREAD load command
6030           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6031             ++mach_header.ncmds;
6032             mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6033           }
6034 
6035           printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6036                  "0x%8.8x 0x%8.8x\n",
6037                  mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6038                  mach_header.filetype, mach_header.ncmds,
6039                  mach_header.sizeofcmds, mach_header.flags,
6040                  mach_header.reserved);
6041 
6042           // Write the mach header
6043           buffer.PutHex32(mach_header.magic);
6044           buffer.PutHex32(mach_header.cputype);
6045           buffer.PutHex32(mach_header.cpusubtype);
6046           buffer.PutHex32(mach_header.filetype);
6047           buffer.PutHex32(mach_header.ncmds);
6048           buffer.PutHex32(mach_header.sizeofcmds);
6049           buffer.PutHex32(mach_header.flags);
6050           if (addr_byte_size == 8) {
6051             buffer.PutHex32(mach_header.reserved);
6052           }
6053 
6054           // Skip the mach header and all load commands and align to the next
6055           // 0x1000 byte boundary
6056           addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6057           if (file_offset & 0x00000fff) {
6058             file_offset += 0x00001000ull;
6059             file_offset &= (~0x00001000ull + 1);
6060           }
6061 
6062           for (auto &segment : segment_load_commands) {
6063             segment.fileoff = file_offset;
6064             file_offset += segment.filesize;
6065           }
6066 
6067           // Write out all of the LC_THREAD load commands
6068           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6069             const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6070             buffer.PutHex32(LC_THREAD);
6071             buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6072             buffer.Write(LC_THREAD_data.GetString().data(),
6073                          LC_THREAD_data_size);
6074           }
6075 
6076           // Write out all of the segment load commands
6077           for (const auto &segment : segment_load_commands) {
6078             printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6079                    ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6080                    ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6081                    segment.cmd, segment.cmdsize, segment.vmaddr,
6082                    segment.vmaddr + segment.vmsize, segment.fileoff,
6083                    segment.filesize, segment.maxprot, segment.initprot,
6084                    segment.nsects, segment.flags);
6085 
6086             buffer.PutHex32(segment.cmd);
6087             buffer.PutHex32(segment.cmdsize);
6088             buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6089             if (addr_byte_size == 8) {
6090               buffer.PutHex64(segment.vmaddr);
6091               buffer.PutHex64(segment.vmsize);
6092               buffer.PutHex64(segment.fileoff);
6093               buffer.PutHex64(segment.filesize);
6094             } else {
6095               buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6096               buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6097               buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6098               buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6099             }
6100             buffer.PutHex32(segment.maxprot);
6101             buffer.PutHex32(segment.initprot);
6102             buffer.PutHex32(segment.nsects);
6103             buffer.PutHex32(segment.flags);
6104           }
6105 
6106           File core_file;
6107           std::string core_file_path(outfile.GetPath());
6108           error = core_file.Open(core_file_path.c_str(),
6109                                  File::eOpenOptionWrite |
6110                                      File::eOpenOptionTruncate |
6111                                      File::eOpenOptionCanCreate);
6112           if (error.Success()) {
6113             // Read 1 page at a time
6114             uint8_t bytes[0x1000];
6115             // Write the mach header and load commands out to the core file
6116             size_t bytes_written = buffer.GetString().size();
6117             error = core_file.Write(buffer.GetString().data(), bytes_written);
6118             if (error.Success()) {
6119               // Now write the file data for all memory segments in the process
6120               for (const auto &segment : segment_load_commands) {
6121                 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6122                   error.SetErrorStringWithFormat(
6123                       "unable to seek to offset 0x%" PRIx64 " in '%s'",
6124                       segment.fileoff, core_file_path.c_str());
6125                   break;
6126                 }
6127 
6128                 printf("Saving %" PRId64
6129                        " bytes of data for memory region at 0x%" PRIx64 "\n",
6130                        segment.vmsize, segment.vmaddr);
6131                 addr_t bytes_left = segment.vmsize;
6132                 addr_t addr = segment.vmaddr;
6133                 Error memory_read_error;
6134                 while (bytes_left > 0 && error.Success()) {
6135                   const size_t bytes_to_read =
6136                       bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6137                   const size_t bytes_read = process_sp->ReadMemory(
6138                       addr, bytes, bytes_to_read, memory_read_error);
6139                   if (bytes_read == bytes_to_read) {
6140                     size_t bytes_written = bytes_read;
6141                     error = core_file.Write(bytes, bytes_written);
6142                     bytes_left -= bytes_read;
6143                     addr += bytes_read;
6144                   } else {
6145                     // Some pages within regions are not readable, those
6146                     // should be zero filled
6147                     memset(bytes, 0, bytes_to_read);
6148                     size_t bytes_written = bytes_to_read;
6149                     error = core_file.Write(bytes, bytes_written);
6150                     bytes_left -= bytes_to_read;
6151                     addr += bytes_to_read;
6152                   }
6153                 }
6154               }
6155             }
6156           }
6157         } else {
6158           error.SetErrorString(
6159               "process doesn't support getting memory region info");
6160         }
6161       }
6162       return true; // This is the right plug to handle saving core files for
6163                    // this process
6164     }
6165   }
6166   return false;
6167 }
6168