1 //===-- ObjectFileMachO.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/StringRef.h" 10 11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 15 #include "lldb/Core/Debugger.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Core/StreamFile.h" 22 #include "lldb/Host/Host.h" 23 #include "lldb/Symbol/DWARFCallFrameInfo.h" 24 #include "lldb/Symbol/ObjectFile.h" 25 #include "lldb/Target/DynamicLoader.h" 26 #include "lldb/Target/MemoryRegionInfo.h" 27 #include "lldb/Target/Platform.h" 28 #include "lldb/Target/Process.h" 29 #include "lldb/Target/SectionLoadList.h" 30 #include "lldb/Target/Target.h" 31 #include "lldb/Target/Thread.h" 32 #include "lldb/Target/ThreadList.h" 33 #include "lldb/Utility/ArchSpec.h" 34 #include "lldb/Utility/DataBuffer.h" 35 #include "lldb/Utility/FileSpec.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RangeMap.h" 38 #include "lldb/Utility/RegisterValue.h" 39 #include "lldb/Utility/Status.h" 40 #include "lldb/Utility/StreamString.h" 41 #include "lldb/Utility/Timer.h" 42 #include "lldb/Utility/UUID.h" 43 44 #include "lldb/Host/SafeMachO.h" 45 46 #include "llvm/Support/MemoryBuffer.h" 47 48 #include "ObjectFileMachO.h" 49 50 #if defined(__APPLE__) 51 #include <TargetConditionals.h> 52 // GetLLDBSharedCacheUUID() needs to call dlsym() 53 #include <dlfcn.h> 54 #endif 55 56 #ifndef __APPLE__ 57 #include "Utility/UuidCompatibility.h" 58 #else 59 #include <uuid/uuid.h> 60 #endif 61 62 #include <memory> 63 64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 65 using namespace lldb; 66 using namespace lldb_private; 67 using namespace llvm::MachO; 68 69 LLDB_PLUGIN_DEFINE(ObjectFileMachO) 70 71 // Some structure definitions needed for parsing the dyld shared cache files 72 // found on iOS devices. 73 74 struct lldb_copy_dyld_cache_header_v1 { 75 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 76 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 77 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 78 uint32_t imagesOffset; 79 uint32_t imagesCount; 80 uint64_t dyldBaseAddress; 81 uint64_t codeSignatureOffset; 82 uint64_t codeSignatureSize; 83 uint64_t slideInfoOffset; 84 uint64_t slideInfoSize; 85 uint64_t localSymbolsOffset; 86 uint64_t localSymbolsSize; 87 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 88 // and later 89 }; 90 91 struct lldb_copy_dyld_cache_mapping_info { 92 uint64_t address; 93 uint64_t size; 94 uint64_t fileOffset; 95 uint32_t maxProt; 96 uint32_t initProt; 97 }; 98 99 struct lldb_copy_dyld_cache_local_symbols_info { 100 uint32_t nlistOffset; 101 uint32_t nlistCount; 102 uint32_t stringsOffset; 103 uint32_t stringsSize; 104 uint32_t entriesOffset; 105 uint32_t entriesCount; 106 }; 107 struct lldb_copy_dyld_cache_local_symbols_entry { 108 uint32_t dylibOffset; 109 uint32_t nlistStartIndex; 110 uint32_t nlistCount; 111 }; 112 113 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name, 114 const char *alt_name, size_t reg_byte_size, 115 Stream &data) { 116 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 117 if (reg_info == nullptr) 118 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 119 if (reg_info) { 120 lldb_private::RegisterValue reg_value; 121 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 122 if (reg_info->byte_size >= reg_byte_size) 123 data.Write(reg_value.GetBytes(), reg_byte_size); 124 else { 125 data.Write(reg_value.GetBytes(), reg_info->byte_size); 126 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) 127 data.PutChar(0); 128 } 129 return; 130 } 131 } 132 // Just write zeros if all else fails 133 for (size_t i = 0; i < reg_byte_size; ++i) 134 data.PutChar(0); 135 } 136 137 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { 138 public: 139 RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread, 140 const DataExtractor &data) 141 : RegisterContextDarwin_x86_64(thread, 0) { 142 SetRegisterDataFrom_LC_THREAD(data); 143 } 144 145 void InvalidateAllRegisters() override { 146 // Do nothing... registers are always valid... 147 } 148 149 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 150 lldb::offset_t offset = 0; 151 SetError(GPRRegSet, Read, -1); 152 SetError(FPURegSet, Read, -1); 153 SetError(EXCRegSet, Read, -1); 154 bool done = false; 155 156 while (!done) { 157 int flavor = data.GetU32(&offset); 158 if (flavor == 0) 159 done = true; 160 else { 161 uint32_t i; 162 uint32_t count = data.GetU32(&offset); 163 switch (flavor) { 164 case GPRRegSet: 165 for (i = 0; i < count; ++i) 166 (&gpr.rax)[i] = data.GetU64(&offset); 167 SetError(GPRRegSet, Read, 0); 168 done = true; 169 170 break; 171 case FPURegSet: 172 // TODO: fill in FPU regs.... 173 // SetError (FPURegSet, Read, -1); 174 done = true; 175 176 break; 177 case EXCRegSet: 178 exc.trapno = data.GetU32(&offset); 179 exc.err = data.GetU32(&offset); 180 exc.faultvaddr = data.GetU64(&offset); 181 SetError(EXCRegSet, Read, 0); 182 done = true; 183 break; 184 case 7: 185 case 8: 186 case 9: 187 // fancy flavors that encapsulate of the above flavors... 188 break; 189 190 default: 191 done = true; 192 break; 193 } 194 } 195 } 196 } 197 198 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 199 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 200 if (reg_ctx_sp) { 201 RegisterContext *reg_ctx = reg_ctx_sp.get(); 202 203 data.PutHex32(GPRRegSet); // Flavor 204 data.PutHex32(GPRWordCount); 205 PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data); 206 PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data); 207 PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data); 208 PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data); 209 PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data); 210 PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data); 211 PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data); 212 PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data); 213 PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data); 214 PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data); 215 PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data); 216 PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data); 217 PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data); 218 PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data); 219 PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data); 220 PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data); 221 PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data); 222 PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data); 223 PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data); 224 PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data); 225 PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data); 226 227 // // Write out the FPU registers 228 // const size_t fpu_byte_size = sizeof(FPU); 229 // size_t bytes_written = 0; 230 // data.PutHex32 (FPURegSet); 231 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 232 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 233 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 234 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, 235 // data); // uint16_t fcw; // "fctrl" 236 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, 237 // data); // uint16_t fsw; // "fstat" 238 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, 239 // data); // uint8_t ftw; // "ftag" 240 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 241 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, 242 // data); // uint16_t fop; // "fop" 243 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, 244 // data); // uint32_t ip; // "fioff" 245 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, 246 // data); // uint16_t cs; // "fiseg" 247 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 248 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, 249 // data); // uint32_t dp; // "fooff" 250 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, 251 // data); // uint16_t ds; // "foseg" 252 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 253 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, 254 // data); // uint32_t mxcsr; 255 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 256 // 4, data);// uint32_t mxcsrmask; 257 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, 258 // sizeof(MMSReg), data); 259 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, 260 // sizeof(MMSReg), data); 261 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, 262 // sizeof(MMSReg), data); 263 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, 264 // sizeof(MMSReg), data); 265 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, 266 // sizeof(MMSReg), data); 267 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, 268 // sizeof(MMSReg), data); 269 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, 270 // sizeof(MMSReg), data); 271 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, 272 // sizeof(MMSReg), data); 273 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, 274 // sizeof(XMMReg), data); 275 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, 276 // sizeof(XMMReg), data); 277 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, 278 // sizeof(XMMReg), data); 279 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, 280 // sizeof(XMMReg), data); 281 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, 282 // sizeof(XMMReg), data); 283 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, 284 // sizeof(XMMReg), data); 285 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, 286 // sizeof(XMMReg), data); 287 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, 288 // sizeof(XMMReg), data); 289 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, 290 // sizeof(XMMReg), data); 291 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, 292 // sizeof(XMMReg), data); 293 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, 294 // sizeof(XMMReg), data); 295 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, 296 // sizeof(XMMReg), data); 297 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, 298 // sizeof(XMMReg), data); 299 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, 300 // sizeof(XMMReg), data); 301 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, 302 // sizeof(XMMReg), data); 303 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, 304 // sizeof(XMMReg), data); 305 // 306 // // Fill rest with zeros 307 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ 308 // i) 309 // data.PutChar(0); 310 311 // Write out the EXC registers 312 data.PutHex32(EXCRegSet); 313 data.PutHex32(EXCWordCount); 314 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data); 315 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data); 316 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data); 317 return true; 318 } 319 return false; 320 } 321 322 protected: 323 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 324 325 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 326 327 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 328 329 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 330 return 0; 331 } 332 333 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 334 return 0; 335 } 336 337 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 338 return 0; 339 } 340 }; 341 342 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 { 343 public: 344 RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread, 345 const DataExtractor &data) 346 : RegisterContextDarwin_i386(thread, 0) { 347 SetRegisterDataFrom_LC_THREAD(data); 348 } 349 350 void InvalidateAllRegisters() override { 351 // Do nothing... registers are always valid... 352 } 353 354 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 355 lldb::offset_t offset = 0; 356 SetError(GPRRegSet, Read, -1); 357 SetError(FPURegSet, Read, -1); 358 SetError(EXCRegSet, Read, -1); 359 bool done = false; 360 361 while (!done) { 362 int flavor = data.GetU32(&offset); 363 if (flavor == 0) 364 done = true; 365 else { 366 uint32_t i; 367 uint32_t count = data.GetU32(&offset); 368 switch (flavor) { 369 case GPRRegSet: 370 for (i = 0; i < count; ++i) 371 (&gpr.eax)[i] = data.GetU32(&offset); 372 SetError(GPRRegSet, Read, 0); 373 done = true; 374 375 break; 376 case FPURegSet: 377 // TODO: fill in FPU regs.... 378 // SetError (FPURegSet, Read, -1); 379 done = true; 380 381 break; 382 case EXCRegSet: 383 exc.trapno = data.GetU32(&offset); 384 exc.err = data.GetU32(&offset); 385 exc.faultvaddr = data.GetU32(&offset); 386 SetError(EXCRegSet, Read, 0); 387 done = true; 388 break; 389 case 7: 390 case 8: 391 case 9: 392 // fancy flavors that encapsulate of the above flavors... 393 break; 394 395 default: 396 done = true; 397 break; 398 } 399 } 400 } 401 } 402 403 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 404 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 405 if (reg_ctx_sp) { 406 RegisterContext *reg_ctx = reg_ctx_sp.get(); 407 408 data.PutHex32(GPRRegSet); // Flavor 409 data.PutHex32(GPRWordCount); 410 PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data); 411 PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data); 412 PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data); 413 PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data); 414 PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data); 415 PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data); 416 PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data); 417 PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data); 418 PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data); 419 PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data); 420 PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data); 421 PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data); 422 PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data); 423 PrintRegisterValue(reg_ctx, "es", nullptr, 4, data); 424 PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data); 425 PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data); 426 427 // Write out the EXC registers 428 data.PutHex32(EXCRegSet); 429 data.PutHex32(EXCWordCount); 430 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data); 431 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data); 432 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data); 433 return true; 434 } 435 return false; 436 } 437 438 protected: 439 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 440 441 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 442 443 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 444 445 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 446 return 0; 447 } 448 449 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 450 return 0; 451 } 452 453 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 454 return 0; 455 } 456 }; 457 458 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm { 459 public: 460 RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread, 461 const DataExtractor &data) 462 : RegisterContextDarwin_arm(thread, 0) { 463 SetRegisterDataFrom_LC_THREAD(data); 464 } 465 466 void InvalidateAllRegisters() override { 467 // Do nothing... registers are always valid... 468 } 469 470 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 471 lldb::offset_t offset = 0; 472 SetError(GPRRegSet, Read, -1); 473 SetError(FPURegSet, Read, -1); 474 SetError(EXCRegSet, Read, -1); 475 bool done = false; 476 477 while (!done) { 478 int flavor = data.GetU32(&offset); 479 uint32_t count = data.GetU32(&offset); 480 lldb::offset_t next_thread_state = offset + (count * 4); 481 switch (flavor) { 482 case GPRAltRegSet: 483 case GPRRegSet: 484 // On ARM, the CPSR register is also included in the count but it is 485 // not included in gpr.r so loop until (count-1). 486 for (uint32_t i = 0; i < (count - 1); ++i) { 487 gpr.r[i] = data.GetU32(&offset); 488 } 489 // Save cpsr explicitly. 490 gpr.cpsr = data.GetU32(&offset); 491 492 SetError(GPRRegSet, Read, 0); 493 offset = next_thread_state; 494 break; 495 496 case FPURegSet: { 497 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0]; 498 const int fpu_reg_buf_size = sizeof(fpu.floats); 499 if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 500 fpu_reg_buf) == fpu_reg_buf_size) { 501 offset += fpu_reg_buf_size; 502 fpu.fpscr = data.GetU32(&offset); 503 SetError(FPURegSet, Read, 0); 504 } else { 505 done = true; 506 } 507 } 508 offset = next_thread_state; 509 break; 510 511 case EXCRegSet: 512 if (count == 3) { 513 exc.exception = data.GetU32(&offset); 514 exc.fsr = data.GetU32(&offset); 515 exc.far = data.GetU32(&offset); 516 SetError(EXCRegSet, Read, 0); 517 } 518 done = true; 519 offset = next_thread_state; 520 break; 521 522 // Unknown register set flavor, stop trying to parse. 523 default: 524 done = true; 525 } 526 } 527 } 528 529 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 530 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 531 if (reg_ctx_sp) { 532 RegisterContext *reg_ctx = reg_ctx_sp.get(); 533 534 data.PutHex32(GPRRegSet); // Flavor 535 data.PutHex32(GPRWordCount); 536 PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data); 537 PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data); 538 PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data); 539 PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data); 540 PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data); 541 PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data); 542 PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data); 543 PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data); 544 PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data); 545 PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data); 546 PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data); 547 PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data); 548 PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data); 549 PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data); 550 PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data); 551 PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data); 552 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); 553 554 // Write out the EXC registers 555 // data.PutHex32 (EXCRegSet); 556 // data.PutHex32 (EXCWordCount); 557 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 558 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 559 // WriteRegister (reg_ctx, "far", NULL, 4, data); 560 return true; 561 } 562 return false; 563 } 564 565 protected: 566 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 567 568 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 569 570 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 571 572 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 573 574 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 575 return 0; 576 } 577 578 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 579 return 0; 580 } 581 582 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 583 return 0; 584 } 585 586 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 587 return -1; 588 } 589 }; 590 591 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 { 592 public: 593 RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread, 594 const DataExtractor &data) 595 : RegisterContextDarwin_arm64(thread, 0) { 596 SetRegisterDataFrom_LC_THREAD(data); 597 } 598 599 void InvalidateAllRegisters() override { 600 // Do nothing... registers are always valid... 601 } 602 603 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 604 lldb::offset_t offset = 0; 605 SetError(GPRRegSet, Read, -1); 606 SetError(FPURegSet, Read, -1); 607 SetError(EXCRegSet, Read, -1); 608 bool done = false; 609 while (!done) { 610 int flavor = data.GetU32(&offset); 611 uint32_t count = data.GetU32(&offset); 612 lldb::offset_t next_thread_state = offset + (count * 4); 613 switch (flavor) { 614 case GPRRegSet: 615 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 616 // 32-bit register) 617 if (count >= (33 * 2) + 1) { 618 for (uint32_t i = 0; i < 29; ++i) 619 gpr.x[i] = data.GetU64(&offset); 620 gpr.fp = data.GetU64(&offset); 621 gpr.lr = data.GetU64(&offset); 622 gpr.sp = data.GetU64(&offset); 623 gpr.pc = data.GetU64(&offset); 624 gpr.cpsr = data.GetU32(&offset); 625 SetError(GPRRegSet, Read, 0); 626 } 627 offset = next_thread_state; 628 break; 629 case FPURegSet: { 630 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0]; 631 const int fpu_reg_buf_size = sizeof(fpu); 632 if (fpu_reg_buf_size == count * sizeof(uint32_t) && 633 data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 634 fpu_reg_buf) == fpu_reg_buf_size) { 635 SetError(FPURegSet, Read, 0); 636 } else { 637 done = true; 638 } 639 } 640 offset = next_thread_state; 641 break; 642 case EXCRegSet: 643 if (count == 4) { 644 exc.far = data.GetU64(&offset); 645 exc.esr = data.GetU32(&offset); 646 exc.exception = data.GetU32(&offset); 647 SetError(EXCRegSet, Read, 0); 648 } 649 offset = next_thread_state; 650 break; 651 default: 652 done = true; 653 break; 654 } 655 } 656 } 657 658 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 659 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 660 if (reg_ctx_sp) { 661 RegisterContext *reg_ctx = reg_ctx_sp.get(); 662 663 data.PutHex32(GPRRegSet); // Flavor 664 data.PutHex32(GPRWordCount); 665 PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data); 666 PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data); 667 PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data); 668 PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data); 669 PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data); 670 PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data); 671 PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data); 672 PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data); 673 PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data); 674 PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data); 675 PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data); 676 PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data); 677 PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data); 678 PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data); 679 PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data); 680 PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data); 681 PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data); 682 PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data); 683 PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data); 684 PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data); 685 PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data); 686 PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data); 687 PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data); 688 PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data); 689 PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data); 690 PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data); 691 PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data); 692 PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data); 693 PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data); 694 PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data); 695 PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data); 696 PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data); 697 PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data); 698 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); 699 700 // Write out the EXC registers 701 // data.PutHex32 (EXCRegSet); 702 // data.PutHex32 (EXCWordCount); 703 // WriteRegister (reg_ctx, "far", NULL, 8, data); 704 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 705 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 706 return true; 707 } 708 return false; 709 } 710 711 protected: 712 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 713 714 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 715 716 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 717 718 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 719 720 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 721 return 0; 722 } 723 724 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 725 return 0; 726 } 727 728 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 729 return 0; 730 } 731 732 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 733 return -1; 734 } 735 }; 736 737 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { 738 switch (magic) { 739 case MH_MAGIC: 740 case MH_CIGAM: 741 return sizeof(struct mach_header); 742 743 case MH_MAGIC_64: 744 case MH_CIGAM_64: 745 return sizeof(struct mach_header_64); 746 break; 747 748 default: 749 break; 750 } 751 return 0; 752 } 753 754 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 755 756 char ObjectFileMachO::ID; 757 758 void ObjectFileMachO::Initialize() { 759 PluginManager::RegisterPlugin( 760 GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, 761 CreateMemoryInstance, GetModuleSpecifications, SaveCore); 762 } 763 764 void ObjectFileMachO::Terminate() { 765 PluginManager::UnregisterPlugin(CreateInstance); 766 } 767 768 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() { 769 static ConstString g_name("mach-o"); 770 return g_name; 771 } 772 773 const char *ObjectFileMachO::GetPluginDescriptionStatic() { 774 return "Mach-o object file reader (32 and 64 bit)"; 775 } 776 777 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp, 778 DataBufferSP &data_sp, 779 lldb::offset_t data_offset, 780 const FileSpec *file, 781 lldb::offset_t file_offset, 782 lldb::offset_t length) { 783 if (!data_sp) { 784 data_sp = MapFileData(*file, length, file_offset); 785 if (!data_sp) 786 return nullptr; 787 data_offset = 0; 788 } 789 790 if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 791 return nullptr; 792 793 // Update the data to contain the entire file if it doesn't already 794 if (data_sp->GetByteSize() < length) { 795 data_sp = MapFileData(*file, length, file_offset); 796 if (!data_sp) 797 return nullptr; 798 data_offset = 0; 799 } 800 auto objfile_up = std::make_unique<ObjectFileMachO>( 801 module_sp, data_sp, data_offset, file, file_offset, length); 802 if (!objfile_up || !objfile_up->ParseHeader()) 803 return nullptr; 804 805 return objfile_up.release(); 806 } 807 808 ObjectFile *ObjectFileMachO::CreateMemoryInstance( 809 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 810 const ProcessSP &process_sp, lldb::addr_t header_addr) { 811 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 812 std::unique_ptr<ObjectFile> objfile_up( 813 new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr)); 814 if (objfile_up.get() && objfile_up->ParseHeader()) 815 return objfile_up.release(); 816 } 817 return nullptr; 818 } 819 820 size_t ObjectFileMachO::GetModuleSpecifications( 821 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 822 lldb::offset_t data_offset, lldb::offset_t file_offset, 823 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 824 const size_t initial_count = specs.GetSize(); 825 826 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 827 DataExtractor data; 828 data.SetData(data_sp); 829 llvm::MachO::mach_header header; 830 if (ParseHeader(data, &data_offset, header)) { 831 size_t header_and_load_cmds = 832 header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 833 if (header_and_load_cmds >= data_sp->GetByteSize()) { 834 data_sp = MapFileData(file, header_and_load_cmds, file_offset); 835 data.SetData(data_sp); 836 data_offset = MachHeaderSizeFromMagic(header.magic); 837 } 838 if (data_sp) { 839 ModuleSpec base_spec; 840 base_spec.GetFileSpec() = file; 841 base_spec.SetObjectOffset(file_offset); 842 base_spec.SetObjectSize(length); 843 GetAllArchSpecs(header, data, data_offset, base_spec, specs); 844 } 845 } 846 } 847 return specs.GetSize() - initial_count; 848 } 849 850 ConstString ObjectFileMachO::GetSegmentNameTEXT() { 851 static ConstString g_segment_name_TEXT("__TEXT"); 852 return g_segment_name_TEXT; 853 } 854 855 ConstString ObjectFileMachO::GetSegmentNameDATA() { 856 static ConstString g_segment_name_DATA("__DATA"); 857 return g_segment_name_DATA; 858 } 859 860 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() { 861 static ConstString g_segment_name("__DATA_DIRTY"); 862 return g_segment_name; 863 } 864 865 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() { 866 static ConstString g_segment_name("__DATA_CONST"); 867 return g_segment_name; 868 } 869 870 ConstString ObjectFileMachO::GetSegmentNameOBJC() { 871 static ConstString g_segment_name_OBJC("__OBJC"); 872 return g_segment_name_OBJC; 873 } 874 875 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() { 876 static ConstString g_section_name_LINKEDIT("__LINKEDIT"); 877 return g_section_name_LINKEDIT; 878 } 879 880 ConstString ObjectFileMachO::GetSegmentNameDWARF() { 881 static ConstString g_section_name("__DWARF"); 882 return g_section_name; 883 } 884 885 ConstString ObjectFileMachO::GetSectionNameEHFrame() { 886 static ConstString g_section_name_eh_frame("__eh_frame"); 887 return g_section_name_eh_frame; 888 } 889 890 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp, 891 lldb::addr_t data_offset, 892 lldb::addr_t data_length) { 893 DataExtractor data; 894 data.SetData(data_sp, data_offset, data_length); 895 lldb::offset_t offset = 0; 896 uint32_t magic = data.GetU32(&offset); 897 return MachHeaderSizeFromMagic(magic) != 0; 898 } 899 900 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 901 DataBufferSP &data_sp, 902 lldb::offset_t data_offset, 903 const FileSpec *file, 904 lldb::offset_t file_offset, 905 lldb::offset_t length) 906 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 907 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 908 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 909 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 910 ::memset(&m_header, 0, sizeof(m_header)); 911 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 912 } 913 914 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 915 lldb::DataBufferSP &header_data_sp, 916 const lldb::ProcessSP &process_sp, 917 lldb::addr_t header_addr) 918 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 919 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 920 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 921 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 922 ::memset(&m_header, 0, sizeof(m_header)); 923 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 924 } 925 926 bool ObjectFileMachO::ParseHeader(DataExtractor &data, 927 lldb::offset_t *data_offset_ptr, 928 llvm::MachO::mach_header &header) { 929 data.SetByteOrder(endian::InlHostByteOrder()); 930 // Leave magic in the original byte order 931 header.magic = data.GetU32(data_offset_ptr); 932 bool can_parse = false; 933 bool is_64_bit = false; 934 switch (header.magic) { 935 case MH_MAGIC: 936 data.SetByteOrder(endian::InlHostByteOrder()); 937 data.SetAddressByteSize(4); 938 can_parse = true; 939 break; 940 941 case MH_MAGIC_64: 942 data.SetByteOrder(endian::InlHostByteOrder()); 943 data.SetAddressByteSize(8); 944 can_parse = true; 945 is_64_bit = true; 946 break; 947 948 case MH_CIGAM: 949 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 950 ? eByteOrderLittle 951 : eByteOrderBig); 952 data.SetAddressByteSize(4); 953 can_parse = true; 954 break; 955 956 case MH_CIGAM_64: 957 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 958 ? eByteOrderLittle 959 : eByteOrderBig); 960 data.SetAddressByteSize(8); 961 is_64_bit = true; 962 can_parse = true; 963 break; 964 965 default: 966 break; 967 } 968 969 if (can_parse) { 970 data.GetU32(data_offset_ptr, &header.cputype, 6); 971 if (is_64_bit) 972 *data_offset_ptr += 4; 973 return true; 974 } else { 975 memset(&header, 0, sizeof(header)); 976 } 977 return false; 978 } 979 980 bool ObjectFileMachO::ParseHeader() { 981 ModuleSP module_sp(GetModule()); 982 if (!module_sp) 983 return false; 984 985 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 986 bool can_parse = false; 987 lldb::offset_t offset = 0; 988 m_data.SetByteOrder(endian::InlHostByteOrder()); 989 // Leave magic in the original byte order 990 m_header.magic = m_data.GetU32(&offset); 991 switch (m_header.magic) { 992 case MH_MAGIC: 993 m_data.SetByteOrder(endian::InlHostByteOrder()); 994 m_data.SetAddressByteSize(4); 995 can_parse = true; 996 break; 997 998 case MH_MAGIC_64: 999 m_data.SetByteOrder(endian::InlHostByteOrder()); 1000 m_data.SetAddressByteSize(8); 1001 can_parse = true; 1002 break; 1003 1004 case MH_CIGAM: 1005 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1006 ? eByteOrderLittle 1007 : eByteOrderBig); 1008 m_data.SetAddressByteSize(4); 1009 can_parse = true; 1010 break; 1011 1012 case MH_CIGAM_64: 1013 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1014 ? eByteOrderLittle 1015 : eByteOrderBig); 1016 m_data.SetAddressByteSize(8); 1017 can_parse = true; 1018 break; 1019 1020 default: 1021 break; 1022 } 1023 1024 if (can_parse) { 1025 m_data.GetU32(&offset, &m_header.cputype, 6); 1026 1027 ModuleSpecList all_specs; 1028 ModuleSpec base_spec; 1029 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), 1030 base_spec, all_specs); 1031 1032 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 1033 ArchSpec mach_arch = 1034 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); 1035 1036 // Check if the module has a required architecture 1037 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1038 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1039 continue; 1040 1041 if (SetModulesArchitecture(mach_arch)) { 1042 const size_t header_and_lc_size = 1043 m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1044 if (m_data.GetByteSize() < header_and_lc_size) { 1045 DataBufferSP data_sp; 1046 ProcessSP process_sp(m_process_wp.lock()); 1047 if (process_sp) { 1048 data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size); 1049 } else { 1050 // Read in all only the load command data from the file on disk 1051 data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset); 1052 if (data_sp->GetByteSize() != header_and_lc_size) 1053 continue; 1054 } 1055 if (data_sp) 1056 m_data.SetData(data_sp); 1057 } 1058 } 1059 return true; 1060 } 1061 // None found. 1062 return false; 1063 } else { 1064 memset(&m_header, 0, sizeof(struct mach_header)); 1065 } 1066 return false; 1067 } 1068 1069 ByteOrder ObjectFileMachO::GetByteOrder() const { 1070 return m_data.GetByteOrder(); 1071 } 1072 1073 bool ObjectFileMachO::IsExecutable() const { 1074 return m_header.filetype == MH_EXECUTE; 1075 } 1076 1077 bool ObjectFileMachO::IsDynamicLoader() const { 1078 return m_header.filetype == MH_DYLINKER; 1079 } 1080 1081 uint32_t ObjectFileMachO::GetAddressByteSize() const { 1082 return m_data.GetAddressByteSize(); 1083 } 1084 1085 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) { 1086 Symtab *symtab = GetSymtab(); 1087 if (!symtab) 1088 return AddressClass::eUnknown; 1089 1090 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1091 if (symbol) { 1092 if (symbol->ValueIsAddress()) { 1093 SectionSP section_sp(symbol->GetAddressRef().GetSection()); 1094 if (section_sp) { 1095 const lldb::SectionType section_type = section_sp->GetType(); 1096 switch (section_type) { 1097 case eSectionTypeInvalid: 1098 return AddressClass::eUnknown; 1099 1100 case eSectionTypeCode: 1101 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1102 // For ARM we have a bit in the n_desc field of the symbol that 1103 // tells us ARM/Thumb which is bit 0x0008. 1104 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1105 return AddressClass::eCodeAlternateISA; 1106 } 1107 return AddressClass::eCode; 1108 1109 case eSectionTypeContainer: 1110 return AddressClass::eUnknown; 1111 1112 case eSectionTypeData: 1113 case eSectionTypeDataCString: 1114 case eSectionTypeDataCStringPointers: 1115 case eSectionTypeDataSymbolAddress: 1116 case eSectionTypeData4: 1117 case eSectionTypeData8: 1118 case eSectionTypeData16: 1119 case eSectionTypeDataPointers: 1120 case eSectionTypeZeroFill: 1121 case eSectionTypeDataObjCMessageRefs: 1122 case eSectionTypeDataObjCCFStrings: 1123 case eSectionTypeGoSymtab: 1124 return AddressClass::eData; 1125 1126 case eSectionTypeDebug: 1127 case eSectionTypeDWARFDebugAbbrev: 1128 case eSectionTypeDWARFDebugAbbrevDwo: 1129 case eSectionTypeDWARFDebugAddr: 1130 case eSectionTypeDWARFDebugAranges: 1131 case eSectionTypeDWARFDebugCuIndex: 1132 case eSectionTypeDWARFDebugFrame: 1133 case eSectionTypeDWARFDebugInfo: 1134 case eSectionTypeDWARFDebugInfoDwo: 1135 case eSectionTypeDWARFDebugLine: 1136 case eSectionTypeDWARFDebugLineStr: 1137 case eSectionTypeDWARFDebugLoc: 1138 case eSectionTypeDWARFDebugLocDwo: 1139 case eSectionTypeDWARFDebugLocLists: 1140 case eSectionTypeDWARFDebugLocListsDwo: 1141 case eSectionTypeDWARFDebugMacInfo: 1142 case eSectionTypeDWARFDebugMacro: 1143 case eSectionTypeDWARFDebugNames: 1144 case eSectionTypeDWARFDebugPubNames: 1145 case eSectionTypeDWARFDebugPubTypes: 1146 case eSectionTypeDWARFDebugRanges: 1147 case eSectionTypeDWARFDebugRngLists: 1148 case eSectionTypeDWARFDebugRngListsDwo: 1149 case eSectionTypeDWARFDebugStr: 1150 case eSectionTypeDWARFDebugStrDwo: 1151 case eSectionTypeDWARFDebugStrOffsets: 1152 case eSectionTypeDWARFDebugStrOffsetsDwo: 1153 case eSectionTypeDWARFDebugTuIndex: 1154 case eSectionTypeDWARFDebugTypes: 1155 case eSectionTypeDWARFDebugTypesDwo: 1156 case eSectionTypeDWARFAppleNames: 1157 case eSectionTypeDWARFAppleTypes: 1158 case eSectionTypeDWARFAppleNamespaces: 1159 case eSectionTypeDWARFAppleObjC: 1160 case eSectionTypeDWARFGNUDebugAltLink: 1161 return AddressClass::eDebug; 1162 1163 case eSectionTypeEHFrame: 1164 case eSectionTypeARMexidx: 1165 case eSectionTypeARMextab: 1166 case eSectionTypeCompactUnwind: 1167 return AddressClass::eRuntime; 1168 1169 case eSectionTypeAbsoluteAddress: 1170 case eSectionTypeELFSymbolTable: 1171 case eSectionTypeELFDynamicSymbols: 1172 case eSectionTypeELFRelocationEntries: 1173 case eSectionTypeELFDynamicLinkInfo: 1174 case eSectionTypeOther: 1175 return AddressClass::eUnknown; 1176 } 1177 } 1178 } 1179 1180 const SymbolType symbol_type = symbol->GetType(); 1181 switch (symbol_type) { 1182 case eSymbolTypeAny: 1183 return AddressClass::eUnknown; 1184 case eSymbolTypeAbsolute: 1185 return AddressClass::eUnknown; 1186 1187 case eSymbolTypeCode: 1188 case eSymbolTypeTrampoline: 1189 case eSymbolTypeResolver: 1190 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1191 // For ARM we have a bit in the n_desc field of the symbol that tells 1192 // us ARM/Thumb which is bit 0x0008. 1193 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1194 return AddressClass::eCodeAlternateISA; 1195 } 1196 return AddressClass::eCode; 1197 1198 case eSymbolTypeData: 1199 return AddressClass::eData; 1200 case eSymbolTypeRuntime: 1201 return AddressClass::eRuntime; 1202 case eSymbolTypeException: 1203 return AddressClass::eRuntime; 1204 case eSymbolTypeSourceFile: 1205 return AddressClass::eDebug; 1206 case eSymbolTypeHeaderFile: 1207 return AddressClass::eDebug; 1208 case eSymbolTypeObjectFile: 1209 return AddressClass::eDebug; 1210 case eSymbolTypeCommonBlock: 1211 return AddressClass::eDebug; 1212 case eSymbolTypeBlock: 1213 return AddressClass::eDebug; 1214 case eSymbolTypeLocal: 1215 return AddressClass::eData; 1216 case eSymbolTypeParam: 1217 return AddressClass::eData; 1218 case eSymbolTypeVariable: 1219 return AddressClass::eData; 1220 case eSymbolTypeVariableType: 1221 return AddressClass::eDebug; 1222 case eSymbolTypeLineEntry: 1223 return AddressClass::eDebug; 1224 case eSymbolTypeLineHeader: 1225 return AddressClass::eDebug; 1226 case eSymbolTypeScopeBegin: 1227 return AddressClass::eDebug; 1228 case eSymbolTypeScopeEnd: 1229 return AddressClass::eDebug; 1230 case eSymbolTypeAdditional: 1231 return AddressClass::eUnknown; 1232 case eSymbolTypeCompiler: 1233 return AddressClass::eDebug; 1234 case eSymbolTypeInstrumentation: 1235 return AddressClass::eDebug; 1236 case eSymbolTypeUndefined: 1237 return AddressClass::eUnknown; 1238 case eSymbolTypeObjCClass: 1239 return AddressClass::eRuntime; 1240 case eSymbolTypeObjCMetaClass: 1241 return AddressClass::eRuntime; 1242 case eSymbolTypeObjCIVar: 1243 return AddressClass::eRuntime; 1244 case eSymbolTypeReExported: 1245 return AddressClass::eRuntime; 1246 } 1247 } 1248 return AddressClass::eUnknown; 1249 } 1250 1251 Symtab *ObjectFileMachO::GetSymtab() { 1252 ModuleSP module_sp(GetModule()); 1253 if (module_sp) { 1254 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 1255 if (m_symtab_up == nullptr) { 1256 m_symtab_up = std::make_unique<Symtab>(this); 1257 std::lock_guard<std::recursive_mutex> symtab_guard( 1258 m_symtab_up->GetMutex()); 1259 ParseSymtab(); 1260 m_symtab_up->Finalize(); 1261 } 1262 } 1263 return m_symtab_up.get(); 1264 } 1265 1266 bool ObjectFileMachO::IsStripped() { 1267 if (m_dysymtab.cmd == 0) { 1268 ModuleSP module_sp(GetModule()); 1269 if (module_sp) { 1270 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1271 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1272 const lldb::offset_t load_cmd_offset = offset; 1273 1274 load_command lc; 1275 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 1276 break; 1277 if (lc.cmd == LC_DYSYMTAB) { 1278 m_dysymtab.cmd = lc.cmd; 1279 m_dysymtab.cmdsize = lc.cmdsize; 1280 if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1281 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == 1282 nullptr) { 1283 // Clear m_dysymtab if we were unable to read all items from the 1284 // load command 1285 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 1286 } 1287 } 1288 offset = load_cmd_offset + lc.cmdsize; 1289 } 1290 } 1291 } 1292 if (m_dysymtab.cmd) 1293 return m_dysymtab.nlocalsym <= 1; 1294 return false; 1295 } 1296 1297 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() { 1298 EncryptedFileRanges result; 1299 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1300 1301 encryption_info_command encryption_cmd; 1302 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1303 const lldb::offset_t load_cmd_offset = offset; 1304 if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr) 1305 break; 1306 1307 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the 1308 // 3 fields we care about, so treat them the same. 1309 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || 1310 encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) { 1311 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) { 1312 if (encryption_cmd.cryptid != 0) { 1313 EncryptedFileRanges::Entry entry; 1314 entry.SetRangeBase(encryption_cmd.cryptoff); 1315 entry.SetByteSize(encryption_cmd.cryptsize); 1316 result.Append(entry); 1317 } 1318 } 1319 } 1320 offset = load_cmd_offset + encryption_cmd.cmdsize; 1321 } 1322 1323 return result; 1324 } 1325 1326 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd, 1327 uint32_t cmd_idx) { 1328 if (m_length == 0 || seg_cmd.filesize == 0) 1329 return; 1330 1331 if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) { 1332 // In shared cache images, the load commands are relative to the 1333 // shared cache file, and not the the specific image we are 1334 // examining. Let's fix this up so that it looks like a normal 1335 // image. 1336 if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0) 1337 m_text_address = seg_cmd.vmaddr; 1338 if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0) 1339 m_linkedit_original_offset = seg_cmd.fileoff; 1340 1341 seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address; 1342 } 1343 1344 if (seg_cmd.fileoff > m_length) { 1345 // We have a load command that says it extends past the end of the file. 1346 // This is likely a corrupt file. We don't have any way to return an error 1347 // condition here (this method was likely invoked from something like 1348 // ObjectFile::GetSectionList()), so we just null out the section contents, 1349 // and dump a message to stdout. The most common case here is core file 1350 // debugging with a truncated file. 1351 const char *lc_segment_name = 1352 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1353 GetModule()->ReportWarning( 1354 "load command %u %s has a fileoff (0x%" PRIx64 1355 ") that extends beyond the end of the file (0x%" PRIx64 1356 "), ignoring this section", 1357 cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length); 1358 1359 seg_cmd.fileoff = 0; 1360 seg_cmd.filesize = 0; 1361 } 1362 1363 if (seg_cmd.fileoff + seg_cmd.filesize > m_length) { 1364 // We have a load command that says it extends past the end of the file. 1365 // This is likely a corrupt file. We don't have any way to return an error 1366 // condition here (this method was likely invoked from something like 1367 // ObjectFile::GetSectionList()), so we just null out the section contents, 1368 // and dump a message to stdout. The most common case here is core file 1369 // debugging with a truncated file. 1370 const char *lc_segment_name = 1371 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1372 GetModule()->ReportWarning( 1373 "load command %u %s has a fileoff + filesize (0x%" PRIx64 1374 ") that extends beyond the end of the file (0x%" PRIx64 1375 "), the segment will be truncated to match", 1376 cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length); 1377 1378 // Truncate the length 1379 seg_cmd.filesize = m_length - seg_cmd.fileoff; 1380 } 1381 } 1382 1383 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) { 1384 uint32_t result = 0; 1385 if (seg_cmd.initprot & VM_PROT_READ) 1386 result |= ePermissionsReadable; 1387 if (seg_cmd.initprot & VM_PROT_WRITE) 1388 result |= ePermissionsWritable; 1389 if (seg_cmd.initprot & VM_PROT_EXECUTE) 1390 result |= ePermissionsExecutable; 1391 return result; 1392 } 1393 1394 static lldb::SectionType GetSectionType(uint32_t flags, 1395 ConstString section_name) { 1396 1397 if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1398 return eSectionTypeCode; 1399 1400 uint32_t mach_sect_type = flags & SECTION_TYPE; 1401 static ConstString g_sect_name_objc_data("__objc_data"); 1402 static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs"); 1403 static ConstString g_sect_name_objc_selrefs("__objc_selrefs"); 1404 static ConstString g_sect_name_objc_classrefs("__objc_classrefs"); 1405 static ConstString g_sect_name_objc_superrefs("__objc_superrefs"); 1406 static ConstString g_sect_name_objc_const("__objc_const"); 1407 static ConstString g_sect_name_objc_classlist("__objc_classlist"); 1408 static ConstString g_sect_name_cfstring("__cfstring"); 1409 1410 static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev"); 1411 static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges"); 1412 static ConstString g_sect_name_dwarf_debug_frame("__debug_frame"); 1413 static ConstString g_sect_name_dwarf_debug_info("__debug_info"); 1414 static ConstString g_sect_name_dwarf_debug_line("__debug_line"); 1415 static ConstString g_sect_name_dwarf_debug_loc("__debug_loc"); 1416 static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists"); 1417 static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo"); 1418 static ConstString g_sect_name_dwarf_debug_names("__debug_names"); 1419 static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames"); 1420 static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes"); 1421 static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges"); 1422 static ConstString g_sect_name_dwarf_debug_str("__debug_str"); 1423 static ConstString g_sect_name_dwarf_debug_types("__debug_types"); 1424 static ConstString g_sect_name_dwarf_apple_names("__apple_names"); 1425 static ConstString g_sect_name_dwarf_apple_types("__apple_types"); 1426 static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac"); 1427 static ConstString g_sect_name_dwarf_apple_objc("__apple_objc"); 1428 static ConstString g_sect_name_eh_frame("__eh_frame"); 1429 static ConstString g_sect_name_compact_unwind("__unwind_info"); 1430 static ConstString g_sect_name_text("__text"); 1431 static ConstString g_sect_name_data("__data"); 1432 static ConstString g_sect_name_go_symtab("__gosymtab"); 1433 1434 if (section_name == g_sect_name_dwarf_debug_abbrev) 1435 return eSectionTypeDWARFDebugAbbrev; 1436 if (section_name == g_sect_name_dwarf_debug_aranges) 1437 return eSectionTypeDWARFDebugAranges; 1438 if (section_name == g_sect_name_dwarf_debug_frame) 1439 return eSectionTypeDWARFDebugFrame; 1440 if (section_name == g_sect_name_dwarf_debug_info) 1441 return eSectionTypeDWARFDebugInfo; 1442 if (section_name == g_sect_name_dwarf_debug_line) 1443 return eSectionTypeDWARFDebugLine; 1444 if (section_name == g_sect_name_dwarf_debug_loc) 1445 return eSectionTypeDWARFDebugLoc; 1446 if (section_name == g_sect_name_dwarf_debug_loclists) 1447 return eSectionTypeDWARFDebugLocLists; 1448 if (section_name == g_sect_name_dwarf_debug_macinfo) 1449 return eSectionTypeDWARFDebugMacInfo; 1450 if (section_name == g_sect_name_dwarf_debug_names) 1451 return eSectionTypeDWARFDebugNames; 1452 if (section_name == g_sect_name_dwarf_debug_pubnames) 1453 return eSectionTypeDWARFDebugPubNames; 1454 if (section_name == g_sect_name_dwarf_debug_pubtypes) 1455 return eSectionTypeDWARFDebugPubTypes; 1456 if (section_name == g_sect_name_dwarf_debug_ranges) 1457 return eSectionTypeDWARFDebugRanges; 1458 if (section_name == g_sect_name_dwarf_debug_str) 1459 return eSectionTypeDWARFDebugStr; 1460 if (section_name == g_sect_name_dwarf_debug_types) 1461 return eSectionTypeDWARFDebugTypes; 1462 if (section_name == g_sect_name_dwarf_apple_names) 1463 return eSectionTypeDWARFAppleNames; 1464 if (section_name == g_sect_name_dwarf_apple_types) 1465 return eSectionTypeDWARFAppleTypes; 1466 if (section_name == g_sect_name_dwarf_apple_namespaces) 1467 return eSectionTypeDWARFAppleNamespaces; 1468 if (section_name == g_sect_name_dwarf_apple_objc) 1469 return eSectionTypeDWARFAppleObjC; 1470 if (section_name == g_sect_name_objc_selrefs) 1471 return eSectionTypeDataCStringPointers; 1472 if (section_name == g_sect_name_objc_msgrefs) 1473 return eSectionTypeDataObjCMessageRefs; 1474 if (section_name == g_sect_name_eh_frame) 1475 return eSectionTypeEHFrame; 1476 if (section_name == g_sect_name_compact_unwind) 1477 return eSectionTypeCompactUnwind; 1478 if (section_name == g_sect_name_cfstring) 1479 return eSectionTypeDataObjCCFStrings; 1480 if (section_name == g_sect_name_go_symtab) 1481 return eSectionTypeGoSymtab; 1482 if (section_name == g_sect_name_objc_data || 1483 section_name == g_sect_name_objc_classrefs || 1484 section_name == g_sect_name_objc_superrefs || 1485 section_name == g_sect_name_objc_const || 1486 section_name == g_sect_name_objc_classlist) { 1487 return eSectionTypeDataPointers; 1488 } 1489 1490 switch (mach_sect_type) { 1491 // TODO: categorize sections by other flags for regular sections 1492 case S_REGULAR: 1493 if (section_name == g_sect_name_text) 1494 return eSectionTypeCode; 1495 if (section_name == g_sect_name_data) 1496 return eSectionTypeData; 1497 return eSectionTypeOther; 1498 case S_ZEROFILL: 1499 return eSectionTypeZeroFill; 1500 case S_CSTRING_LITERALS: // section with only literal C strings 1501 return eSectionTypeDataCString; 1502 case S_4BYTE_LITERALS: // section with only 4 byte literals 1503 return eSectionTypeData4; 1504 case S_8BYTE_LITERALS: // section with only 8 byte literals 1505 return eSectionTypeData8; 1506 case S_LITERAL_POINTERS: // section with only pointers to literals 1507 return eSectionTypeDataPointers; 1508 case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers 1509 return eSectionTypeDataPointers; 1510 case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers 1511 return eSectionTypeDataPointers; 1512 case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in 1513 // the reserved2 field 1514 return eSectionTypeCode; 1515 case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for 1516 // initialization 1517 return eSectionTypeDataPointers; 1518 case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for 1519 // termination 1520 return eSectionTypeDataPointers; 1521 case S_COALESCED: 1522 return eSectionTypeOther; 1523 case S_GB_ZEROFILL: 1524 return eSectionTypeZeroFill; 1525 case S_INTERPOSING: // section with only pairs of function pointers for 1526 // interposing 1527 return eSectionTypeCode; 1528 case S_16BYTE_LITERALS: // section with only 16 byte literals 1529 return eSectionTypeData16; 1530 case S_DTRACE_DOF: 1531 return eSectionTypeDebug; 1532 case S_LAZY_DYLIB_SYMBOL_POINTERS: 1533 return eSectionTypeDataPointers; 1534 default: 1535 return eSectionTypeOther; 1536 } 1537 } 1538 1539 struct ObjectFileMachO::SegmentParsingContext { 1540 const EncryptedFileRanges EncryptedRanges; 1541 lldb_private::SectionList &UnifiedList; 1542 uint32_t NextSegmentIdx = 0; 1543 uint32_t NextSectionIdx = 0; 1544 bool FileAddressesChanged = false; 1545 1546 SegmentParsingContext(EncryptedFileRanges EncryptedRanges, 1547 lldb_private::SectionList &UnifiedList) 1548 : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {} 1549 }; 1550 1551 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_, 1552 lldb::offset_t offset, 1553 uint32_t cmd_idx, 1554 SegmentParsingContext &context) { 1555 segment_command_64 load_cmd; 1556 memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_)); 1557 1558 if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) 1559 return; 1560 1561 ModuleSP module_sp = GetModule(); 1562 const bool is_core = GetType() == eTypeCoreFile; 1563 const bool is_dsym = (m_header.filetype == MH_DSYM); 1564 bool add_section = true; 1565 bool add_to_unified = true; 1566 ConstString const_segname( 1567 load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname))); 1568 1569 SectionSP unified_section_sp( 1570 context.UnifiedList.FindSectionByName(const_segname)); 1571 if (is_dsym && unified_section_sp) { 1572 if (const_segname == GetSegmentNameLINKEDIT()) { 1573 // We need to keep the __LINKEDIT segment private to this object file 1574 // only 1575 add_to_unified = false; 1576 } else { 1577 // This is the dSYM file and this section has already been created by the 1578 // object file, no need to create it. 1579 add_section = false; 1580 } 1581 } 1582 load_cmd.vmaddr = m_data.GetAddress(&offset); 1583 load_cmd.vmsize = m_data.GetAddress(&offset); 1584 load_cmd.fileoff = m_data.GetAddress(&offset); 1585 load_cmd.filesize = m_data.GetAddress(&offset); 1586 if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1587 return; 1588 1589 SanitizeSegmentCommand(load_cmd, cmd_idx); 1590 1591 const uint32_t segment_permissions = GetSegmentPermissions(load_cmd); 1592 const bool segment_is_encrypted = 1593 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1594 1595 // Keep a list of mach segments around in case we need to get at data that 1596 // isn't stored in the abstracted Sections. 1597 m_mach_segments.push_back(load_cmd); 1598 1599 // Use a segment ID of the segment index shifted left by 8 so they never 1600 // conflict with any of the sections. 1601 SectionSP segment_sp; 1602 if (add_section && (const_segname || is_core)) { 1603 segment_sp = std::make_shared<Section>( 1604 module_sp, // Module to which this section belongs 1605 this, // Object file to which this sections belongs 1606 ++context.NextSegmentIdx 1607 << 8, // Section ID is the 1 based segment index 1608 // shifted right by 8 bits as not to collide with any of the 256 1609 // section IDs that are possible 1610 const_segname, // Name of this section 1611 eSectionTypeContainer, // This section is a container of other 1612 // sections. 1613 load_cmd.vmaddr, // File VM address == addresses as they are 1614 // found in the object file 1615 load_cmd.vmsize, // VM size in bytes of this section 1616 load_cmd.fileoff, // Offset to the data for this section in 1617 // the file 1618 load_cmd.filesize, // Size in bytes of this section as found 1619 // in the file 1620 0, // Segments have no alignment information 1621 load_cmd.flags); // Flags for this section 1622 1623 segment_sp->SetIsEncrypted(segment_is_encrypted); 1624 m_sections_up->AddSection(segment_sp); 1625 segment_sp->SetPermissions(segment_permissions); 1626 if (add_to_unified) 1627 context.UnifiedList.AddSection(segment_sp); 1628 } else if (unified_section_sp) { 1629 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) { 1630 // Check to see if the module was read from memory? 1631 if (module_sp->GetObjectFile()->IsInMemory()) { 1632 // We have a module that is in memory and needs to have its file 1633 // address adjusted. We need to do this because when we load a file 1634 // from memory, its addresses will be slid already, yet the addresses 1635 // in the new symbol file will still be unslid. Since everything is 1636 // stored as section offset, this shouldn't cause any problems. 1637 1638 // Make sure we've parsed the symbol table from the ObjectFile before 1639 // we go around changing its Sections. 1640 module_sp->GetObjectFile()->GetSymtab(); 1641 // eh_frame would present the same problems but we parse that on a per- 1642 // function basis as-needed so it's more difficult to remove its use of 1643 // the Sections. Realistically, the environments where this code path 1644 // will be taken will not have eh_frame sections. 1645 1646 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1647 1648 // Notify the module that the section addresses have been changed once 1649 // we're done so any file-address caches can be updated. 1650 context.FileAddressesChanged = true; 1651 } 1652 } 1653 m_sections_up->AddSection(unified_section_sp); 1654 } 1655 1656 struct section_64 sect64; 1657 ::memset(§64, 0, sizeof(sect64)); 1658 // Push a section into our mach sections for the section at index zero 1659 // (NO_SECT) if we don't have any mach sections yet... 1660 if (m_mach_sections.empty()) 1661 m_mach_sections.push_back(sect64); 1662 uint32_t segment_sect_idx; 1663 const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1; 1664 1665 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1666 for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects; 1667 ++segment_sect_idx) { 1668 if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname, 1669 sizeof(sect64.sectname)) == nullptr) 1670 break; 1671 if (m_data.GetU8(&offset, (uint8_t *)sect64.segname, 1672 sizeof(sect64.segname)) == nullptr) 1673 break; 1674 sect64.addr = m_data.GetAddress(&offset); 1675 sect64.size = m_data.GetAddress(&offset); 1676 1677 if (m_data.GetU32(&offset, §64.offset, num_u32s) == nullptr) 1678 break; 1679 1680 if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) { 1681 sect64.offset = sect64.addr - m_text_address; 1682 } 1683 1684 // Keep a list of mach sections around in case we need to get at data that 1685 // isn't stored in the abstracted Sections. 1686 m_mach_sections.push_back(sect64); 1687 1688 if (add_section) { 1689 ConstString section_name( 1690 sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname))); 1691 if (!const_segname) { 1692 // We have a segment with no name so we need to conjure up segments 1693 // that correspond to the section's segname if there isn't already such 1694 // a section. If there is such a section, we resize the section so that 1695 // it spans all sections. We also mark these sections as fake so 1696 // address matches don't hit if they land in the gaps between the child 1697 // sections. 1698 const_segname.SetTrimmedCStringWithLength(sect64.segname, 1699 sizeof(sect64.segname)); 1700 segment_sp = context.UnifiedList.FindSectionByName(const_segname); 1701 if (segment_sp.get()) { 1702 Section *segment = segment_sp.get(); 1703 // Grow the section size as needed. 1704 const lldb::addr_t sect64_min_addr = sect64.addr; 1705 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1706 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1707 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1708 const lldb::addr_t curr_seg_max_addr = 1709 curr_seg_min_addr + curr_seg_byte_size; 1710 if (sect64_min_addr >= curr_seg_min_addr) { 1711 const lldb::addr_t new_seg_byte_size = 1712 sect64_max_addr - curr_seg_min_addr; 1713 // Only grow the section size if needed 1714 if (new_seg_byte_size > curr_seg_byte_size) 1715 segment->SetByteSize(new_seg_byte_size); 1716 } else { 1717 // We need to change the base address of the segment and adjust the 1718 // child section offsets for all existing children. 1719 const lldb::addr_t slide_amount = 1720 sect64_min_addr - curr_seg_min_addr; 1721 segment->Slide(slide_amount, false); 1722 segment->GetChildren().Slide(-slide_amount, false); 1723 segment->SetByteSize(curr_seg_max_addr - sect64_min_addr); 1724 } 1725 1726 // Grow the section size as needed. 1727 if (sect64.offset) { 1728 const lldb::addr_t segment_min_file_offset = 1729 segment->GetFileOffset(); 1730 const lldb::addr_t segment_max_file_offset = 1731 segment_min_file_offset + segment->GetFileSize(); 1732 1733 const lldb::addr_t section_min_file_offset = sect64.offset; 1734 const lldb::addr_t section_max_file_offset = 1735 section_min_file_offset + sect64.size; 1736 const lldb::addr_t new_file_offset = 1737 std::min(section_min_file_offset, segment_min_file_offset); 1738 const lldb::addr_t new_file_size = 1739 std::max(section_max_file_offset, segment_max_file_offset) - 1740 new_file_offset; 1741 segment->SetFileOffset(new_file_offset); 1742 segment->SetFileSize(new_file_size); 1743 } 1744 } else { 1745 // Create a fake section for the section's named segment 1746 segment_sp = std::make_shared<Section>( 1747 segment_sp, // Parent section 1748 module_sp, // Module to which this section belongs 1749 this, // Object file to which this section belongs 1750 ++context.NextSegmentIdx 1751 << 8, // Section ID is the 1 based segment index 1752 // shifted right by 8 bits as not to 1753 // collide with any of the 256 section IDs 1754 // that are possible 1755 const_segname, // Name of this section 1756 eSectionTypeContainer, // This section is a container of 1757 // other sections. 1758 sect64.addr, // File VM address == addresses as they are 1759 // found in the object file 1760 sect64.size, // VM size in bytes of this section 1761 sect64.offset, // Offset to the data for this section in 1762 // the file 1763 sect64.offset ? sect64.size : 0, // Size in bytes of 1764 // this section as 1765 // found in the file 1766 sect64.align, 1767 load_cmd.flags); // Flags for this section 1768 segment_sp->SetIsFake(true); 1769 segment_sp->SetPermissions(segment_permissions); 1770 m_sections_up->AddSection(segment_sp); 1771 if (add_to_unified) 1772 context.UnifiedList.AddSection(segment_sp); 1773 segment_sp->SetIsEncrypted(segment_is_encrypted); 1774 } 1775 } 1776 assert(segment_sp.get()); 1777 1778 lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name); 1779 1780 SectionSP section_sp(new Section( 1781 segment_sp, module_sp, this, ++context.NextSectionIdx, section_name, 1782 sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, 1783 sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align, 1784 sect64.flags)); 1785 // Set the section to be encrypted to match the segment 1786 1787 bool section_is_encrypted = false; 1788 if (!segment_is_encrypted && load_cmd.filesize != 0) 1789 section_is_encrypted = context.EncryptedRanges.FindEntryThatContains( 1790 sect64.offset) != nullptr; 1791 1792 section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted); 1793 section_sp->SetPermissions(segment_permissions); 1794 segment_sp->GetChildren().AddSection(section_sp); 1795 1796 if (segment_sp->IsFake()) { 1797 segment_sp.reset(); 1798 const_segname.Clear(); 1799 } 1800 } 1801 } 1802 if (segment_sp && is_dsym) { 1803 if (first_segment_sectID <= context.NextSectionIdx) { 1804 lldb::user_id_t sect_uid; 1805 for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx; 1806 ++sect_uid) { 1807 SectionSP curr_section_sp( 1808 segment_sp->GetChildren().FindSectionByID(sect_uid)); 1809 SectionSP next_section_sp; 1810 if (sect_uid + 1 <= context.NextSectionIdx) 1811 next_section_sp = 1812 segment_sp->GetChildren().FindSectionByID(sect_uid + 1); 1813 1814 if (curr_section_sp.get()) { 1815 if (curr_section_sp->GetByteSize() == 0) { 1816 if (next_section_sp.get() != nullptr) 1817 curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() - 1818 curr_section_sp->GetFileAddress()); 1819 else 1820 curr_section_sp->SetByteSize(load_cmd.vmsize); 1821 } 1822 } 1823 } 1824 } 1825 } 1826 } 1827 1828 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd, 1829 lldb::offset_t offset) { 1830 m_dysymtab.cmd = load_cmd.cmd; 1831 m_dysymtab.cmdsize = load_cmd.cmdsize; 1832 m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1833 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1834 } 1835 1836 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) { 1837 if (m_sections_up) 1838 return; 1839 1840 m_sections_up = std::make_unique<SectionList>(); 1841 1842 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1843 // bool dump_sections = false; 1844 ModuleSP module_sp(GetModule()); 1845 1846 offset = MachHeaderSizeFromMagic(m_header.magic); 1847 1848 SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list); 1849 struct load_command load_cmd; 1850 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1851 const lldb::offset_t load_cmd_offset = offset; 1852 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 1853 break; 1854 1855 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1856 ProcessSegmentCommand(load_cmd, offset, i, context); 1857 else if (load_cmd.cmd == LC_DYSYMTAB) 1858 ProcessDysymtabCommand(load_cmd, offset); 1859 1860 offset = load_cmd_offset + load_cmd.cmdsize; 1861 } 1862 1863 if (context.FileAddressesChanged && module_sp) 1864 module_sp->SectionFileAddressesChanged(); 1865 } 1866 1867 class MachSymtabSectionInfo { 1868 public: 1869 MachSymtabSectionInfo(SectionList *section_list) 1870 : m_section_list(section_list), m_section_infos() { 1871 // Get the number of sections down to a depth of 1 to include all segments 1872 // and their sections, but no other sections that may be added for debug 1873 // map or 1874 m_section_infos.resize(section_list->GetNumSections(1)); 1875 } 1876 1877 SectionSP GetSection(uint8_t n_sect, addr_t file_addr) { 1878 if (n_sect == 0) 1879 return SectionSP(); 1880 if (n_sect < m_section_infos.size()) { 1881 if (!m_section_infos[n_sect].section_sp) { 1882 SectionSP section_sp(m_section_list->FindSectionByID(n_sect)); 1883 m_section_infos[n_sect].section_sp = section_sp; 1884 if (section_sp) { 1885 m_section_infos[n_sect].vm_range.SetBaseAddress( 1886 section_sp->GetFileAddress()); 1887 m_section_infos[n_sect].vm_range.SetByteSize( 1888 section_sp->GetByteSize()); 1889 } else { 1890 std::string filename = "<unknown>"; 1891 SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0)); 1892 if (first_section_sp) 1893 filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath(); 1894 1895 Host::SystemLog(Host::eSystemLogError, 1896 "error: unable to find section %d for a symbol in %s, corrupt file?\n", 1897 n_sect, 1898 filename.c_str()); 1899 } 1900 } 1901 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { 1902 // Symbol is in section. 1903 return m_section_infos[n_sect].section_sp; 1904 } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 && 1905 m_section_infos[n_sect].vm_range.GetBaseAddress() == 1906 file_addr) { 1907 // Symbol is in section with zero size, but has the same start address 1908 // as the section. This can happen with linker symbols (symbols that 1909 // start with the letter 'l' or 'L'. 1910 return m_section_infos[n_sect].section_sp; 1911 } 1912 } 1913 return m_section_list->FindSectionContainingFileAddress(file_addr); 1914 } 1915 1916 protected: 1917 struct SectionInfo { 1918 SectionInfo() : vm_range(), section_sp() {} 1919 1920 VMRange vm_range; 1921 SectionSP section_sp; 1922 }; 1923 SectionList *m_section_list; 1924 std::vector<SectionInfo> m_section_infos; 1925 }; 1926 1927 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63) 1928 struct TrieEntry { 1929 void Dump() const { 1930 printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 1931 static_cast<unsigned long long>(address), 1932 static_cast<unsigned long long>(flags), 1933 static_cast<unsigned long long>(other), name.GetCString()); 1934 if (import_name) 1935 printf(" -> \"%s\"\n", import_name.GetCString()); 1936 else 1937 printf("\n"); 1938 } 1939 ConstString name; 1940 uint64_t address = LLDB_INVALID_ADDRESS; 1941 uint64_t flags = 1942 0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, 1943 // TRIE_SYMBOL_IS_THUMB 1944 uint64_t other = 0; 1945 ConstString import_name; 1946 }; 1947 1948 struct TrieEntryWithOffset { 1949 lldb::offset_t nodeOffset; 1950 TrieEntry entry; 1951 1952 TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {} 1953 1954 void Dump(uint32_t idx) const { 1955 printf("[%3u] 0x%16.16llx: ", idx, 1956 static_cast<unsigned long long>(nodeOffset)); 1957 entry.Dump(); 1958 } 1959 1960 bool operator<(const TrieEntryWithOffset &other) const { 1961 return (nodeOffset < other.nodeOffset); 1962 } 1963 }; 1964 1965 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset, 1966 const bool is_arm, addr_t text_seg_base_addr, 1967 std::vector<llvm::StringRef> &nameSlices, 1968 std::set<lldb::addr_t> &resolver_addresses, 1969 std::vector<TrieEntryWithOffset> &reexports, 1970 std::vector<TrieEntryWithOffset> &ext_symbols) { 1971 if (!data.ValidOffset(offset)) 1972 return true; 1973 1974 // Terminal node -- end of a branch, possibly add this to 1975 // the symbol table or resolver table. 1976 const uint64_t terminalSize = data.GetULEB128(&offset); 1977 lldb::offset_t children_offset = offset + terminalSize; 1978 if (terminalSize != 0) { 1979 TrieEntryWithOffset e(offset); 1980 e.entry.flags = data.GetULEB128(&offset); 1981 const char *import_name = nullptr; 1982 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) { 1983 e.entry.address = 0; 1984 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 1985 import_name = data.GetCStr(&offset); 1986 } else { 1987 e.entry.address = data.GetULEB128(&offset); 1988 if (text_seg_base_addr != LLDB_INVALID_ADDRESS) 1989 e.entry.address += text_seg_base_addr; 1990 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) { 1991 e.entry.other = data.GetULEB128(&offset); 1992 uint64_t resolver_addr = e.entry.other; 1993 if (text_seg_base_addr != LLDB_INVALID_ADDRESS) 1994 resolver_addr += text_seg_base_addr; 1995 if (is_arm) 1996 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 1997 resolver_addresses.insert(resolver_addr); 1998 } else 1999 e.entry.other = 0; 2000 } 2001 bool add_this_entry = false; 2002 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) && 2003 import_name && import_name[0]) { 2004 // add symbols that are reexport symbols with a valid import name. 2005 add_this_entry = true; 2006 } else if (e.entry.flags == 0 && 2007 (import_name == nullptr || import_name[0] == '\0')) { 2008 // add externally visible symbols, in case the nlist record has 2009 // been stripped/omitted. 2010 add_this_entry = true; 2011 } 2012 if (add_this_entry) { 2013 std::string name; 2014 if (!nameSlices.empty()) { 2015 for (auto name_slice : nameSlices) 2016 name.append(name_slice.data(), name_slice.size()); 2017 } 2018 if (name.size() > 1) { 2019 // Skip the leading '_' 2020 e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1); 2021 } 2022 if (import_name) { 2023 // Skip the leading '_' 2024 e.entry.import_name.SetCString(import_name + 1); 2025 } 2026 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) { 2027 reexports.push_back(e); 2028 } else { 2029 if (is_arm && (e.entry.address & 1)) { 2030 e.entry.flags |= TRIE_SYMBOL_IS_THUMB; 2031 e.entry.address &= THUMB_ADDRESS_BIT_MASK; 2032 } 2033 ext_symbols.push_back(e); 2034 } 2035 } 2036 } 2037 2038 const uint8_t childrenCount = data.GetU8(&children_offset); 2039 for (uint8_t i = 0; i < childrenCount; ++i) { 2040 const char *cstr = data.GetCStr(&children_offset); 2041 if (cstr) 2042 nameSlices.push_back(llvm::StringRef(cstr)); 2043 else 2044 return false; // Corrupt data 2045 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2046 if (childNodeOffset) { 2047 if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr, 2048 nameSlices, resolver_addresses, reexports, 2049 ext_symbols)) { 2050 return false; 2051 } 2052 } 2053 nameSlices.pop_back(); 2054 } 2055 return true; 2056 } 2057 2058 static SymbolType GetSymbolType(const char *&symbol_name, 2059 bool &demangled_is_synthesized, 2060 const SectionSP &text_section_sp, 2061 const SectionSP &data_section_sp, 2062 const SectionSP &data_dirty_section_sp, 2063 const SectionSP &data_const_section_sp, 2064 const SectionSP &symbol_section) { 2065 SymbolType type = eSymbolTypeInvalid; 2066 2067 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2068 if (symbol_section->IsDescendant(text_section_sp.get())) { 2069 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 2070 S_ATTR_SELF_MODIFYING_CODE | 2071 S_ATTR_SOME_INSTRUCTIONS)) 2072 type = eSymbolTypeData; 2073 else 2074 type = eSymbolTypeCode; 2075 } else if (symbol_section->IsDescendant(data_section_sp.get()) || 2076 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 2077 symbol_section->IsDescendant(data_const_section_sp.get())) { 2078 if (symbol_sect_name && 2079 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { 2080 type = eSymbolTypeRuntime; 2081 2082 if (symbol_name) { 2083 llvm::StringRef symbol_name_ref(symbol_name); 2084 if (symbol_name_ref.startswith("OBJC_")) { 2085 static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_"); 2086 static const llvm::StringRef g_objc_v2_prefix_metaclass( 2087 "OBJC_METACLASS_$_"); 2088 static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_"); 2089 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 2090 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2091 type = eSymbolTypeObjCClass; 2092 demangled_is_synthesized = true; 2093 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { 2094 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2095 type = eSymbolTypeObjCMetaClass; 2096 demangled_is_synthesized = true; 2097 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { 2098 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2099 type = eSymbolTypeObjCIVar; 2100 demangled_is_synthesized = true; 2101 } 2102 } 2103 } 2104 } else if (symbol_sect_name && 2105 ::strstr(symbol_sect_name, "__gcc_except_tab") == 2106 symbol_sect_name) { 2107 type = eSymbolTypeException; 2108 } else { 2109 type = eSymbolTypeData; 2110 } 2111 } else if (symbol_sect_name && 2112 ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { 2113 type = eSymbolTypeTrampoline; 2114 } 2115 return type; 2116 } 2117 2118 // Read the UUID out of a dyld_shared_cache file on-disk. 2119 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache, 2120 const ByteOrder byte_order, 2121 const uint32_t addr_byte_size) { 2122 UUID dsc_uuid; 2123 DataBufferSP DscData = MapFileData( 2124 dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2125 if (!DscData) 2126 return dsc_uuid; 2127 DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size); 2128 2129 char version_str[7]; 2130 lldb::offset_t offset = 0; 2131 memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6); 2132 version_str[6] = '\0'; 2133 if (strcmp(version_str, "dyld_v") == 0) { 2134 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid); 2135 dsc_uuid = UUID::fromOptionalData( 2136 dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t)); 2137 } 2138 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2139 if (log && dsc_uuid.IsValid()) { 2140 LLDB_LOGF(log, "Shared cache %s has UUID %s", 2141 dyld_shared_cache.GetPath().c_str(), 2142 dsc_uuid.GetAsString().c_str()); 2143 } 2144 return dsc_uuid; 2145 } 2146 2147 static llvm::Optional<struct nlist_64> 2148 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset, 2149 size_t nlist_byte_size) { 2150 struct nlist_64 nlist; 2151 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2152 return {}; 2153 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 2154 nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset); 2155 nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset); 2156 nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset); 2157 nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset); 2158 return nlist; 2159 } 2160 2161 enum { DebugSymbols = true, NonDebugSymbols = false }; 2162 2163 size_t ObjectFileMachO::ParseSymtab() { 2164 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 2165 Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s", 2166 m_file.GetFilename().AsCString("")); 2167 ModuleSP module_sp(GetModule()); 2168 if (!module_sp) 2169 return 0; 2170 2171 struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0}; 2172 struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0}; 2173 struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 2174 // The data element of type bool indicates that this entry is thumb 2175 // code. 2176 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2177 2178 // Record the address of every function/data that we add to the symtab. 2179 // We add symbols to the table in the order of most information (nlist 2180 // records) to least (function starts), and avoid duplicating symbols 2181 // via this set. 2182 std::set<addr_t> symbols_added; 2183 FunctionStarts function_starts; 2184 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2185 uint32_t i; 2186 FileSpecList dylib_files; 2187 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2188 llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_"); 2189 llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_"); 2190 llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); 2191 2192 for (i = 0; i < m_header.ncmds; ++i) { 2193 const lldb::offset_t cmd_offset = offset; 2194 // Read in the load command and load command size 2195 struct load_command lc; 2196 if (m_data.GetU32(&offset, &lc, 2) == nullptr) 2197 break; 2198 // Watch for the symbol table load command 2199 switch (lc.cmd) { 2200 case LC_SYMTAB: 2201 symtab_load_command.cmd = lc.cmd; 2202 symtab_load_command.cmdsize = lc.cmdsize; 2203 // Read in the rest of the symtab load command 2204 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 2205 nullptr) // fill in symoff, nsyms, stroff, strsize fields 2206 return 0; 2207 break; 2208 2209 case LC_DYLD_INFO: 2210 case LC_DYLD_INFO_ONLY: 2211 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) { 2212 dyld_info.cmd = lc.cmd; 2213 dyld_info.cmdsize = lc.cmdsize; 2214 } else { 2215 memset(&dyld_info, 0, sizeof(dyld_info)); 2216 } 2217 break; 2218 2219 case LC_LOAD_DYLIB: 2220 case LC_LOAD_WEAK_DYLIB: 2221 case LC_REEXPORT_DYLIB: 2222 case LC_LOADFVMLIB: 2223 case LC_LOAD_UPWARD_DYLIB: { 2224 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2225 const char *path = m_data.PeekCStr(name_offset); 2226 if (path) { 2227 FileSpec file_spec(path); 2228 // Strip the path if there is @rpath, @executable, etc so we just use 2229 // the basename 2230 if (path[0] == '@') 2231 file_spec.GetDirectory().Clear(); 2232 2233 if (lc.cmd == LC_REEXPORT_DYLIB) { 2234 m_reexported_dylibs.AppendIfUnique(file_spec); 2235 } 2236 2237 dylib_files.Append(file_spec); 2238 } 2239 } break; 2240 2241 case LC_FUNCTION_STARTS: 2242 function_starts_load_command.cmd = lc.cmd; 2243 function_starts_load_command.cmdsize = lc.cmdsize; 2244 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == 2245 nullptr) // fill in symoff, nsyms, stroff, strsize fields 2246 memset(&function_starts_load_command, 0, 2247 sizeof(function_starts_load_command)); 2248 break; 2249 2250 default: 2251 break; 2252 } 2253 offset = cmd_offset + lc.cmdsize; 2254 } 2255 2256 if (!symtab_load_command.cmd) 2257 return 0; 2258 2259 Symtab *symtab = m_symtab_up.get(); 2260 SectionList *section_list = GetSectionList(); 2261 if (section_list == nullptr) 2262 return 0; 2263 2264 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2265 const ByteOrder byte_order = m_data.GetByteOrder(); 2266 bool bit_width_32 = addr_byte_size == 4; 2267 const size_t nlist_byte_size = 2268 bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2269 2270 DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size); 2271 DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size); 2272 DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size); 2273 DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order, 2274 addr_byte_size); 2275 DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size); 2276 2277 const addr_t nlist_data_byte_size = 2278 symtab_load_command.nsyms * nlist_byte_size; 2279 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2280 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2281 2282 ProcessSP process_sp(m_process_wp.lock()); 2283 Process *process = process_sp.get(); 2284 2285 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2286 bool is_shared_cache_image = m_header.flags & MH_DYLIB_IN_CACHE; 2287 bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory(); 2288 SectionSP linkedit_section_sp( 2289 section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2290 2291 if (process && m_header.filetype != llvm::MachO::MH_OBJECT && 2292 !is_local_shared_cache_image) { 2293 Target &target = process->GetTarget(); 2294 2295 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2296 2297 // Reading mach file from memory in a process or core file... 2298 2299 if (linkedit_section_sp) { 2300 addr_t linkedit_load_addr = 2301 linkedit_section_sp->GetLoadBaseAddress(&target); 2302 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) { 2303 // We might be trying to access the symbol table before the 2304 // __LINKEDIT's load address has been set in the target. We can't 2305 // fail to read the symbol table, so calculate the right address 2306 // manually 2307 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage( 2308 m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2309 } 2310 2311 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2312 const addr_t symoff_addr = linkedit_load_addr + 2313 symtab_load_command.symoff - 2314 linkedit_file_offset; 2315 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - 2316 linkedit_file_offset; 2317 2318 // Always load dyld - the dynamic linker - from memory if we didn't 2319 // find a binary anywhere else. lldb will not register 2320 // dylib/framework/bundle loads/unloads if we don't have the dyld 2321 // symbols, we force dyld to load from memory despite the user's 2322 // target.memory-module-load-level setting. 2323 if (memory_module_load_level == eMemoryModuleLoadLevelComplete || 2324 m_header.filetype == llvm::MachO::MH_DYLINKER) { 2325 DataBufferSP nlist_data_sp( 2326 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size)); 2327 if (nlist_data_sp) 2328 nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2329 if (m_dysymtab.nindirectsyms != 0) { 2330 const addr_t indirect_syms_addr = linkedit_load_addr + 2331 m_dysymtab.indirectsymoff - 2332 linkedit_file_offset; 2333 DataBufferSP indirect_syms_data_sp(ReadMemory( 2334 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2335 if (indirect_syms_data_sp) 2336 indirect_symbol_index_data.SetData( 2337 indirect_syms_data_sp, 0, 2338 indirect_syms_data_sp->GetByteSize()); 2339 // If this binary is outside the shared cache, 2340 // cache the string table. 2341 // Binaries in the shared cache all share a giant string table, 2342 // and we can't share the string tables across multiple 2343 // ObjectFileMachO's, so we'd end up re-reading this mega-strtab 2344 // for every binary in the shared cache - it would be a big perf 2345 // problem. For binaries outside the shared cache, it's faster to 2346 // read the entire strtab at once instead of piece-by-piece as we 2347 // process the nlist records. 2348 if (!is_shared_cache_image) { 2349 DataBufferSP strtab_data_sp( 2350 ReadMemory(process_sp, strtab_addr, strtab_data_byte_size)); 2351 if (strtab_data_sp) { 2352 strtab_data.SetData(strtab_data_sp, 0, 2353 strtab_data_sp->GetByteSize()); 2354 } 2355 } 2356 } 2357 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) { 2358 if (function_starts_load_command.cmd) { 2359 const addr_t func_start_addr = 2360 linkedit_load_addr + function_starts_load_command.dataoff - 2361 linkedit_file_offset; 2362 DataBufferSP func_start_data_sp( 2363 ReadMemory(process_sp, func_start_addr, 2364 function_starts_load_command.datasize)); 2365 if (func_start_data_sp) 2366 function_starts_data.SetData(func_start_data_sp, 0, 2367 func_start_data_sp->GetByteSize()); 2368 } 2369 } 2370 } 2371 } 2372 } else { 2373 if (is_local_shared_cache_image) { 2374 // The load commands in shared cache images are relative to the 2375 // beginning of the shared cache, not the library image. The 2376 // data we get handed when creating the ObjectFileMachO starts 2377 // at the beginning of a specific library and spans to the end 2378 // of the cache to be able to reach the shared LINKEDIT 2379 // segments. We need to convert the load command offsets to be 2380 // relative to the beginning of our specific image. 2381 lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset(); 2382 lldb::offset_t linkedit_slide = 2383 linkedit_offset - m_linkedit_original_offset; 2384 symtab_load_command.symoff += linkedit_slide; 2385 symtab_load_command.stroff += linkedit_slide; 2386 dyld_info.export_off += linkedit_slide; 2387 m_dysymtab.indirectsymoff += linkedit_slide; 2388 function_starts_load_command.dataoff += linkedit_slide; 2389 } 2390 2391 nlist_data.SetData(m_data, symtab_load_command.symoff, 2392 nlist_data_byte_size); 2393 strtab_data.SetData(m_data, symtab_load_command.stroff, 2394 strtab_data_byte_size); 2395 2396 if (dyld_info.export_size > 0) { 2397 dyld_trie_data.SetData(m_data, dyld_info.export_off, 2398 dyld_info.export_size); 2399 } 2400 2401 if (m_dysymtab.nindirectsyms != 0) { 2402 indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff, 2403 m_dysymtab.nindirectsyms * 4); 2404 } 2405 if (function_starts_load_command.cmd) { 2406 function_starts_data.SetData(m_data, function_starts_load_command.dataoff, 2407 function_starts_load_command.datasize); 2408 } 2409 } 2410 2411 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2412 2413 ConstString g_segment_name_TEXT = GetSegmentNameTEXT(); 2414 ConstString g_segment_name_DATA = GetSegmentNameDATA(); 2415 ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2416 ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2417 ConstString g_segment_name_OBJC = GetSegmentNameOBJC(); 2418 ConstString g_section_name_eh_frame = GetSectionNameEHFrame(); 2419 SectionSP text_section_sp( 2420 section_list->FindSectionByName(g_segment_name_TEXT)); 2421 SectionSP data_section_sp( 2422 section_list->FindSectionByName(g_segment_name_DATA)); 2423 SectionSP data_dirty_section_sp( 2424 section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2425 SectionSP data_const_section_sp( 2426 section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2427 SectionSP objc_section_sp( 2428 section_list->FindSectionByName(g_segment_name_OBJC)); 2429 SectionSP eh_frame_section_sp; 2430 if (text_section_sp.get()) 2431 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName( 2432 g_section_name_eh_frame); 2433 else 2434 eh_frame_section_sp = 2435 section_list->FindSectionByName(g_section_name_eh_frame); 2436 2437 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2438 const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions(); 2439 2440 // lldb works best if it knows the start address of all functions in a 2441 // module. Linker symbols or debug info are normally the best source of 2442 // information for start addr / size but they may be stripped in a released 2443 // binary. Two additional sources of information exist in Mach-O binaries: 2444 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each 2445 // function's start address in the 2446 // binary, relative to the text section. 2447 // eh_frame - the eh_frame FDEs have the start addr & size of 2448 // each function 2449 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on 2450 // all modern binaries. 2451 // Binaries built to run on older releases may need to use eh_frame 2452 // information. 2453 2454 if (text_section_sp && function_starts_data.GetByteSize()) { 2455 FunctionStarts::Entry function_start_entry; 2456 function_start_entry.data = false; 2457 lldb::offset_t function_start_offset = 0; 2458 function_start_entry.addr = text_section_sp->GetFileAddress(); 2459 uint64_t delta; 2460 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 2461 0) { 2462 // Now append the current entry 2463 function_start_entry.addr += delta; 2464 if (is_arm) { 2465 if (function_start_entry.addr & 1) { 2466 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; 2467 function_start_entry.data = true; 2468 } else if (always_thumb) { 2469 function_start_entry.data = true; 2470 } 2471 } 2472 function_starts.Append(function_start_entry); 2473 } 2474 } else { 2475 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the 2476 // load command claiming an eh_frame but it doesn't actually have the 2477 // eh_frame content. And if we have a dSYM, we don't need to do any of 2478 // this fill-in-the-missing-symbols works anyway - the debug info should 2479 // give us all the functions in the module. 2480 if (text_section_sp.get() && eh_frame_section_sp.get() && 2481 m_type != eTypeDebugInfo) { 2482 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, 2483 DWARFCallFrameInfo::EH); 2484 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2485 eh_frame.GetFunctionAddressAndSizeVector(functions); 2486 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2487 size_t count = functions.GetSize(); 2488 for (size_t i = 0; i < count; ++i) { 2489 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = 2490 functions.GetEntryAtIndex(i); 2491 if (func) { 2492 FunctionStarts::Entry function_start_entry; 2493 function_start_entry.addr = func->base - text_base_addr; 2494 if (is_arm) { 2495 if (function_start_entry.addr & 1) { 2496 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; 2497 function_start_entry.data = true; 2498 } else if (always_thumb) { 2499 function_start_entry.data = true; 2500 } 2501 } 2502 function_starts.Append(function_start_entry); 2503 } 2504 } 2505 } 2506 } 2507 2508 const size_t function_starts_count = function_starts.GetSize(); 2509 2510 // For user process binaries (executables, dylibs, frameworks, bundles), if 2511 // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're 2512 // going to assume the binary has been stripped. Don't allow assembly 2513 // language instruction emulation because we don't know proper function 2514 // start boundaries. 2515 // 2516 // For all other types of binaries (kernels, stand-alone bare board 2517 // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame 2518 // sections - we should not make any assumptions about them based on that. 2519 if (function_starts_count == 0 && CalculateStrata() == eStrataUser) { 2520 m_allow_assembly_emulation_unwind_plans = false; 2521 Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet( 2522 LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND)); 2523 2524 if (unwind_or_symbol_log) 2525 module_sp->LogMessage( 2526 unwind_or_symbol_log, 2527 "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds"); 2528 } 2529 2530 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() 2531 ? eh_frame_section_sp->GetID() 2532 : static_cast<user_id_t>(NO_SECT); 2533 2534 lldb::offset_t nlist_data_offset = 0; 2535 2536 uint32_t N_SO_index = UINT32_MAX; 2537 2538 MachSymtabSectionInfo section_info(section_list); 2539 std::vector<uint32_t> N_FUN_indexes; 2540 std::vector<uint32_t> N_NSYM_indexes; 2541 std::vector<uint32_t> N_INCL_indexes; 2542 std::vector<uint32_t> N_BRAC_indexes; 2543 std::vector<uint32_t> N_COMM_indexes; 2544 typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap; 2545 typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2546 typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap; 2547 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2548 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2549 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2550 // Any symbols that get merged into another will get an entry in this map 2551 // so we know 2552 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2553 uint32_t nlist_idx = 0; 2554 Symbol *symbol_ptr = nullptr; 2555 2556 uint32_t sym_idx = 0; 2557 Symbol *sym = nullptr; 2558 size_t num_syms = 0; 2559 std::string memory_symbol_name; 2560 uint32_t unmapped_local_symbols_found = 0; 2561 2562 std::vector<TrieEntryWithOffset> reexport_trie_entries; 2563 std::vector<TrieEntryWithOffset> external_sym_trie_entries; 2564 std::set<lldb::addr_t> resolver_addresses; 2565 2566 if (dyld_trie_data.GetByteSize() > 0) { 2567 ConstString text_segment_name("__TEXT"); 2568 SectionSP text_segment_sp = 2569 GetSectionList()->FindSectionByName(text_segment_name); 2570 lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS; 2571 if (text_segment_sp) 2572 text_segment_file_addr = text_segment_sp->GetFileAddress(); 2573 std::vector<llvm::StringRef> nameSlices; 2574 ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr, 2575 nameSlices, resolver_addresses, reexport_trie_entries, 2576 external_sym_trie_entries); 2577 } 2578 2579 typedef std::set<ConstString> IndirectSymbols; 2580 IndirectSymbols indirect_symbol_names; 2581 2582 #if defined(__APPLE__) && TARGET_OS_EMBEDDED 2583 2584 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been 2585 // optimized by moving LOCAL symbols out of the memory mapped portion of 2586 // the DSC. The symbol information has all been retained, but it isn't 2587 // available in the normal nlist data. However, there *are* duplicate 2588 // entries of *some* 2589 // LOCAL symbols in the normal nlist data. To handle this situation 2590 // correctly, we must first attempt 2591 // to parse any DSC unmapped symbol information. If we find any, we set a 2592 // flag that tells the normal nlist parser to ignore all LOCAL symbols. 2593 2594 if (m_header.flags & MH_DYLIB_IN_CACHE) { 2595 // Before we can start mapping the DSC, we need to make certain the 2596 // target process is actually using the cache we can find. 2597 2598 // Next we need to determine the correct path for the dyld shared cache. 2599 2600 ArchSpec header_arch = GetArchitecture(); 2601 char dsc_path[PATH_MAX]; 2602 char dsc_path_development[PATH_MAX]; 2603 2604 snprintf( 2605 dsc_path, sizeof(dsc_path), "%s%s%s", 2606 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2607 */ 2608 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2609 header_arch.GetArchitectureName()); 2610 2611 snprintf( 2612 dsc_path_development, sizeof(dsc_path), "%s%s%s%s", 2613 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2614 */ 2615 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2616 header_arch.GetArchitectureName(), ".development"); 2617 2618 FileSpec dsc_nondevelopment_filespec(dsc_path); 2619 FileSpec dsc_development_filespec(dsc_path_development); 2620 FileSpec dsc_filespec; 2621 2622 UUID dsc_uuid; 2623 UUID process_shared_cache_uuid; 2624 addr_t process_shared_cache_base_addr; 2625 2626 if (process) { 2627 GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, 2628 process_shared_cache_uuid); 2629 } 2630 2631 // First see if we can find an exact match for the inferior process 2632 // shared cache UUID in the development or non-development shared caches 2633 // on disk. 2634 if (process_shared_cache_uuid.IsValid()) { 2635 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2636 UUID dsc_development_uuid = GetSharedCacheUUID( 2637 dsc_development_filespec, byte_order, addr_byte_size); 2638 if (dsc_development_uuid.IsValid() && 2639 dsc_development_uuid == process_shared_cache_uuid) { 2640 dsc_filespec = dsc_development_filespec; 2641 dsc_uuid = dsc_development_uuid; 2642 } 2643 } 2644 if (!dsc_uuid.IsValid() && 2645 FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) { 2646 UUID dsc_nondevelopment_uuid = GetSharedCacheUUID( 2647 dsc_nondevelopment_filespec, byte_order, addr_byte_size); 2648 if (dsc_nondevelopment_uuid.IsValid() && 2649 dsc_nondevelopment_uuid == process_shared_cache_uuid) { 2650 dsc_filespec = dsc_nondevelopment_filespec; 2651 dsc_uuid = dsc_nondevelopment_uuid; 2652 } 2653 } 2654 } 2655 2656 // Failing a UUID match, prefer the development dyld_shared cache if both 2657 // are present. 2658 if (!FileSystem::Instance().Exists(dsc_filespec)) { 2659 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2660 dsc_filespec = dsc_development_filespec; 2661 } else { 2662 dsc_filespec = dsc_nondevelopment_filespec; 2663 } 2664 } 2665 2666 /* The dyld_cache_header has a pointer to the 2667 dyld_cache_local_symbols_info structure (localSymbolsOffset). 2668 The dyld_cache_local_symbols_info structure gives us three things: 2669 1. The start and count of the nlist records in the dyld_shared_cache 2670 file 2671 2. The start and size of the strings for these nlist records 2672 3. The start and count of dyld_cache_local_symbols_entry entries 2673 2674 There is one dyld_cache_local_symbols_entry per dylib/framework in the 2675 dyld shared cache. 2676 The "dylibOffset" field is the Mach-O header of this dylib/framework in 2677 the dyld shared cache. 2678 The dyld_cache_local_symbols_entry also lists the start of this 2679 dylib/framework's nlist records 2680 and the count of how many nlist records there are for this 2681 dylib/framework. 2682 */ 2683 2684 // Process the dyld shared cache header to find the unmapped symbols 2685 2686 DataBufferSP dsc_data_sp = MapFileData( 2687 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2688 if (!dsc_uuid.IsValid()) { 2689 dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size); 2690 } 2691 if (dsc_data_sp) { 2692 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2693 2694 bool uuid_match = true; 2695 if (dsc_uuid.IsValid() && process) { 2696 if (process_shared_cache_uuid.IsValid() && 2697 dsc_uuid != process_shared_cache_uuid) { 2698 // The on-disk dyld_shared_cache file is not the same as the one in 2699 // this process' memory, don't use it. 2700 uuid_match = false; 2701 ModuleSP module_sp(GetModule()); 2702 if (module_sp) 2703 module_sp->ReportWarning("process shared cache does not match " 2704 "on-disk dyld_shared_cache file, some " 2705 "symbol names will be missing."); 2706 } 2707 } 2708 2709 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2710 2711 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2712 2713 // If the mappingOffset points to a location inside the header, we've 2714 // opened an old dyld shared cache, and should not proceed further. 2715 if (uuid_match && 2716 mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) { 2717 2718 DataBufferSP dsc_mapping_info_data_sp = MapFileData( 2719 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info), 2720 mappingOffset); 2721 2722 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, 2723 byte_order, addr_byte_size); 2724 offset = 0; 2725 2726 // The File addresses (from the in-memory Mach-O load commands) for 2727 // the shared libraries in the shared library cache need to be 2728 // adjusted by an offset to match up with the dylibOffset identifying 2729 // field in the dyld_cache_local_symbol_entry's. This offset is 2730 // recorded in mapping_offset_value. 2731 const uint64_t mapping_offset_value = 2732 dsc_mapping_info_data.GetU64(&offset); 2733 2734 offset = 2735 offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2736 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2737 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2738 2739 if (localSymbolsOffset && localSymbolsSize) { 2740 // Map the local symbols 2741 DataBufferSP dsc_local_symbols_data_sp = 2742 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset); 2743 2744 if (dsc_local_symbols_data_sp) { 2745 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, 2746 byte_order, addr_byte_size); 2747 2748 offset = 0; 2749 2750 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap; 2751 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName; 2752 UndefinedNameToDescMap undefined_name_to_desc; 2753 SymbolIndexToName reexport_shlib_needs_fixup; 2754 2755 // Read the local_symbols_infos struct in one shot 2756 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2757 dsc_local_symbols_data.GetU32(&offset, 2758 &local_symbols_info.nlistOffset, 6); 2759 2760 SectionSP text_section_sp( 2761 section_list->FindSectionByName(GetSegmentNameTEXT())); 2762 2763 uint32_t header_file_offset = 2764 (text_section_sp->GetFileAddress() - mapping_offset_value); 2765 2766 offset = local_symbols_info.entriesOffset; 2767 for (uint32_t entry_index = 0; 2768 entry_index < local_symbols_info.entriesCount; entry_index++) { 2769 struct lldb_copy_dyld_cache_local_symbols_entry 2770 local_symbols_entry; 2771 local_symbols_entry.dylibOffset = 2772 dsc_local_symbols_data.GetU32(&offset); 2773 local_symbols_entry.nlistStartIndex = 2774 dsc_local_symbols_data.GetU32(&offset); 2775 local_symbols_entry.nlistCount = 2776 dsc_local_symbols_data.GetU32(&offset); 2777 2778 if (header_file_offset == local_symbols_entry.dylibOffset) { 2779 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2780 2781 // The normal nlist code cannot correctly size the Symbols 2782 // array, we need to allocate it here. 2783 sym = symtab->Resize( 2784 symtab_load_command.nsyms + m_dysymtab.nindirectsyms + 2785 unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2786 num_syms = symtab->GetNumSymbols(); 2787 2788 nlist_data_offset = 2789 local_symbols_info.nlistOffset + 2790 (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2791 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2792 2793 for (uint32_t nlist_index = 0; 2794 nlist_index < local_symbols_entry.nlistCount; 2795 nlist_index++) { 2796 ///////////////////////////// 2797 { 2798 llvm::Optional<struct nlist_64> nlist_maybe = 2799 ParseNList(dsc_local_symbols_data, nlist_data_offset, 2800 nlist_byte_size); 2801 if (!nlist_maybe) 2802 break; 2803 struct nlist_64 nlist = *nlist_maybe; 2804 2805 SymbolType type = eSymbolTypeInvalid; 2806 const char *symbol_name = dsc_local_symbols_data.PeekCStr( 2807 string_table_offset + nlist.n_strx); 2808 2809 if (symbol_name == NULL) { 2810 // No symbol should be NULL, even the symbols with no 2811 // string values should have an offset zero which 2812 // points to an empty C-string 2813 Host::SystemLog( 2814 Host::eSystemLogError, 2815 "error: DSC unmapped local symbol[%u] has invalid " 2816 "string table offset 0x%x in %s, ignoring symbol\n", 2817 entry_index, nlist.n_strx, 2818 module_sp->GetFileSpec().GetPath().c_str()); 2819 continue; 2820 } 2821 if (symbol_name[0] == '\0') 2822 symbol_name = NULL; 2823 2824 const char *symbol_name_non_abi_mangled = NULL; 2825 2826 SectionSP symbol_section; 2827 uint32_t symbol_byte_size = 0; 2828 bool add_nlist = true; 2829 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2830 bool demangled_is_synthesized = false; 2831 bool is_gsym = false; 2832 bool set_value = true; 2833 2834 assert(sym_idx < num_syms); 2835 2836 sym[sym_idx].SetDebug(is_debug); 2837 2838 if (is_debug) { 2839 switch (nlist.n_type) { 2840 case N_GSYM: 2841 // global symbol: name,,NO_SECT,type,0 2842 // Sometimes the N_GSYM value contains the address. 2843 2844 // FIXME: In the .o files, we have a GSYM and a debug 2845 // symbol for all the ObjC data. They 2846 // have the same address, but we want to ensure that 2847 // we always find only the real symbol, 'cause we 2848 // don't currently correctly attribute the 2849 // GSYM one to the ObjCClass/Ivar/MetaClass 2850 // symbol type. This is a temporary hack to make 2851 // sure the ObjectiveC symbols get treated correctly. 2852 // To do this right, we should coalesce all the GSYM 2853 // & global symbols that have the same address. 2854 2855 is_gsym = true; 2856 sym[sym_idx].SetExternal(true); 2857 2858 if (symbol_name && symbol_name[0] == '_' && 2859 symbol_name[1] == 'O') { 2860 llvm::StringRef symbol_name_ref(symbol_name); 2861 if (symbol_name_ref.startswith( 2862 g_objc_v2_prefix_class)) { 2863 symbol_name_non_abi_mangled = symbol_name + 1; 2864 symbol_name = 2865 symbol_name + g_objc_v2_prefix_class.size(); 2866 type = eSymbolTypeObjCClass; 2867 demangled_is_synthesized = true; 2868 2869 } else if (symbol_name_ref.startswith( 2870 g_objc_v2_prefix_metaclass)) { 2871 symbol_name_non_abi_mangled = symbol_name + 1; 2872 symbol_name = 2873 symbol_name + g_objc_v2_prefix_metaclass.size(); 2874 type = eSymbolTypeObjCMetaClass; 2875 demangled_is_synthesized = true; 2876 } else if (symbol_name_ref.startswith( 2877 g_objc_v2_prefix_ivar)) { 2878 symbol_name_non_abi_mangled = symbol_name + 1; 2879 symbol_name = 2880 symbol_name + g_objc_v2_prefix_ivar.size(); 2881 type = eSymbolTypeObjCIVar; 2882 demangled_is_synthesized = true; 2883 } 2884 } else { 2885 if (nlist.n_value != 0) 2886 symbol_section = section_info.GetSection( 2887 nlist.n_sect, nlist.n_value); 2888 type = eSymbolTypeData; 2889 } 2890 break; 2891 2892 case N_FNAME: 2893 // procedure name (f77 kludge): name,,NO_SECT,0,0 2894 type = eSymbolTypeCompiler; 2895 break; 2896 2897 case N_FUN: 2898 // procedure: name,,n_sect,linenumber,address 2899 if (symbol_name) { 2900 type = eSymbolTypeCode; 2901 symbol_section = section_info.GetSection( 2902 nlist.n_sect, nlist.n_value); 2903 2904 N_FUN_addr_to_sym_idx.insert( 2905 std::make_pair(nlist.n_value, sym_idx)); 2906 // We use the current number of symbols in the 2907 // symbol table in lieu of using nlist_idx in case 2908 // we ever start trimming entries out 2909 N_FUN_indexes.push_back(sym_idx); 2910 } else { 2911 type = eSymbolTypeCompiler; 2912 2913 if (!N_FUN_indexes.empty()) { 2914 // Copy the size of the function into the 2915 // original 2916 // STAB entry so we don't have 2917 // to hunt for it later 2918 symtab->SymbolAtIndex(N_FUN_indexes.back()) 2919 ->SetByteSize(nlist.n_value); 2920 N_FUN_indexes.pop_back(); 2921 // We don't really need the end function STAB as 2922 // it contains the size which we already placed 2923 // with the original symbol, so don't add it if 2924 // we want a minimal symbol table 2925 add_nlist = false; 2926 } 2927 } 2928 break; 2929 2930 case N_STSYM: 2931 // static symbol: name,,n_sect,type,address 2932 N_STSYM_addr_to_sym_idx.insert( 2933 std::make_pair(nlist.n_value, sym_idx)); 2934 symbol_section = section_info.GetSection(nlist.n_sect, 2935 nlist.n_value); 2936 if (symbol_name && symbol_name[0]) { 2937 type = ObjectFile::GetSymbolTypeFromName( 2938 symbol_name + 1, eSymbolTypeData); 2939 } 2940 break; 2941 2942 case N_LCSYM: 2943 // .lcomm symbol: name,,n_sect,type,address 2944 symbol_section = section_info.GetSection(nlist.n_sect, 2945 nlist.n_value); 2946 type = eSymbolTypeCommonBlock; 2947 break; 2948 2949 case N_BNSYM: 2950 // We use the current number of symbols in the symbol 2951 // table in lieu of using nlist_idx in case we ever 2952 // start trimming entries out Skip these if we want 2953 // minimal symbol tables 2954 add_nlist = false; 2955 break; 2956 2957 case N_ENSYM: 2958 // Set the size of the N_BNSYM to the terminating 2959 // index of this N_ENSYM so that we can always skip 2960 // the entire symbol if we need to navigate more 2961 // quickly at the source level when parsing STABS 2962 // Skip these if we want minimal symbol tables 2963 add_nlist = false; 2964 break; 2965 2966 case N_OPT: 2967 // emitted with gcc2_compiled and in gcc source 2968 type = eSymbolTypeCompiler; 2969 break; 2970 2971 case N_RSYM: 2972 // register sym: name,,NO_SECT,type,register 2973 type = eSymbolTypeVariable; 2974 break; 2975 2976 case N_SLINE: 2977 // src line: 0,,n_sect,linenumber,address 2978 symbol_section = section_info.GetSection(nlist.n_sect, 2979 nlist.n_value); 2980 type = eSymbolTypeLineEntry; 2981 break; 2982 2983 case N_SSYM: 2984 // structure elt: name,,NO_SECT,type,struct_offset 2985 type = eSymbolTypeVariableType; 2986 break; 2987 2988 case N_SO: 2989 // source file name 2990 type = eSymbolTypeSourceFile; 2991 if (symbol_name == NULL) { 2992 add_nlist = false; 2993 if (N_SO_index != UINT32_MAX) { 2994 // Set the size of the N_SO to the terminating 2995 // index of this N_SO so that we can always skip 2996 // the entire N_SO if we need to navigate more 2997 // quickly at the source level when parsing STABS 2998 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2999 symbol_ptr->SetByteSize(sym_idx); 3000 symbol_ptr->SetSizeIsSibling(true); 3001 } 3002 N_NSYM_indexes.clear(); 3003 N_INCL_indexes.clear(); 3004 N_BRAC_indexes.clear(); 3005 N_COMM_indexes.clear(); 3006 N_FUN_indexes.clear(); 3007 N_SO_index = UINT32_MAX; 3008 } else { 3009 // We use the current number of symbols in the 3010 // symbol table in lieu of using nlist_idx in case 3011 // we ever start trimming entries out 3012 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3013 if (N_SO_has_full_path) { 3014 if ((N_SO_index == sym_idx - 1) && 3015 ((sym_idx - 1) < num_syms)) { 3016 // We have two consecutive N_SO entries where 3017 // the first contains a directory and the 3018 // second contains a full path. 3019 sym[sym_idx - 1].GetMangled().SetValue( 3020 ConstString(symbol_name), false); 3021 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3022 add_nlist = false; 3023 } else { 3024 // This is the first entry in a N_SO that 3025 // contains a directory or 3026 // a full path to the source file 3027 N_SO_index = sym_idx; 3028 } 3029 } else if ((N_SO_index == sym_idx - 1) && 3030 ((sym_idx - 1) < num_syms)) { 3031 // This is usually the second N_SO entry that 3032 // contains just the filename, so here we combine 3033 // it with the first one if we are minimizing the 3034 // symbol table 3035 const char *so_path = sym[sym_idx - 1] 3036 .GetMangled() 3037 .GetDemangledName() 3038 .AsCString(); 3039 if (so_path && so_path[0]) { 3040 std::string full_so_path(so_path); 3041 const size_t double_slash_pos = 3042 full_so_path.find("//"); 3043 if (double_slash_pos != std::string::npos) { 3044 // The linker has been generating bad N_SO 3045 // entries with doubled up paths 3046 // in the format "%s%s" where the first 3047 // string in the DW_AT_comp_dir, and the 3048 // second is the directory for the source 3049 // file so you end up with a path that looks 3050 // like "/tmp/src//tmp/src/" 3051 FileSpec so_dir(so_path); 3052 if (!FileSystem::Instance().Exists(so_dir)) { 3053 so_dir.SetFile( 3054 &full_so_path[double_slash_pos + 1], 3055 FileSpec::Style::native); 3056 if (FileSystem::Instance().Exists(so_dir)) { 3057 // Trim off the incorrect path 3058 full_so_path.erase(0, double_slash_pos + 1); 3059 } 3060 } 3061 } 3062 if (*full_so_path.rbegin() != '/') 3063 full_so_path += '/'; 3064 full_so_path += symbol_name; 3065 sym[sym_idx - 1].GetMangled().SetValue( 3066 ConstString(full_so_path.c_str()), false); 3067 add_nlist = false; 3068 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3069 } 3070 } else { 3071 // This could be a relative path to a N_SO 3072 N_SO_index = sym_idx; 3073 } 3074 } 3075 break; 3076 3077 case N_OSO: 3078 // object file name: name,,0,0,st_mtime 3079 type = eSymbolTypeObjectFile; 3080 break; 3081 3082 case N_LSYM: 3083 // local sym: name,,NO_SECT,type,offset 3084 type = eSymbolTypeLocal; 3085 break; 3086 3087 // INCL scopes 3088 case N_BINCL: 3089 // include file beginning: name,,NO_SECT,0,sum We use 3090 // the current number of symbols in the symbol table 3091 // in lieu of using nlist_idx in case we ever start 3092 // trimming entries out 3093 N_INCL_indexes.push_back(sym_idx); 3094 type = eSymbolTypeScopeBegin; 3095 break; 3096 3097 case N_EINCL: 3098 // include file end: name,,NO_SECT,0,0 3099 // Set the size of the N_BINCL to the terminating 3100 // index of this N_EINCL so that we can always skip 3101 // the entire symbol if we need to navigate more 3102 // quickly at the source level when parsing STABS 3103 if (!N_INCL_indexes.empty()) { 3104 symbol_ptr = 3105 symtab->SymbolAtIndex(N_INCL_indexes.back()); 3106 symbol_ptr->SetByteSize(sym_idx + 1); 3107 symbol_ptr->SetSizeIsSibling(true); 3108 N_INCL_indexes.pop_back(); 3109 } 3110 type = eSymbolTypeScopeEnd; 3111 break; 3112 3113 case N_SOL: 3114 // #included file name: name,,n_sect,0,address 3115 type = eSymbolTypeHeaderFile; 3116 3117 // We currently don't use the header files on darwin 3118 add_nlist = false; 3119 break; 3120 3121 case N_PARAMS: 3122 // compiler parameters: name,,NO_SECT,0,0 3123 type = eSymbolTypeCompiler; 3124 break; 3125 3126 case N_VERSION: 3127 // compiler version: name,,NO_SECT,0,0 3128 type = eSymbolTypeCompiler; 3129 break; 3130 3131 case N_OLEVEL: 3132 // compiler -O level: name,,NO_SECT,0,0 3133 type = eSymbolTypeCompiler; 3134 break; 3135 3136 case N_PSYM: 3137 // parameter: name,,NO_SECT,type,offset 3138 type = eSymbolTypeVariable; 3139 break; 3140 3141 case N_ENTRY: 3142 // alternate entry: name,,n_sect,linenumber,address 3143 symbol_section = section_info.GetSection(nlist.n_sect, 3144 nlist.n_value); 3145 type = eSymbolTypeLineEntry; 3146 break; 3147 3148 // Left and Right Braces 3149 case N_LBRAC: 3150 // left bracket: 0,,NO_SECT,nesting level,address We 3151 // use the current number of symbols in the symbol 3152 // table in lieu of using nlist_idx in case we ever 3153 // start trimming entries out 3154 symbol_section = section_info.GetSection(nlist.n_sect, 3155 nlist.n_value); 3156 N_BRAC_indexes.push_back(sym_idx); 3157 type = eSymbolTypeScopeBegin; 3158 break; 3159 3160 case N_RBRAC: 3161 // right bracket: 0,,NO_SECT,nesting level,address 3162 // Set the size of the N_LBRAC to the terminating 3163 // index of this N_RBRAC so that we can always skip 3164 // the entire symbol if we need to navigate more 3165 // quickly at the source level when parsing STABS 3166 symbol_section = section_info.GetSection(nlist.n_sect, 3167 nlist.n_value); 3168 if (!N_BRAC_indexes.empty()) { 3169 symbol_ptr = 3170 symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3171 symbol_ptr->SetByteSize(sym_idx + 1); 3172 symbol_ptr->SetSizeIsSibling(true); 3173 N_BRAC_indexes.pop_back(); 3174 } 3175 type = eSymbolTypeScopeEnd; 3176 break; 3177 3178 case N_EXCL: 3179 // deleted include file: name,,NO_SECT,0,sum 3180 type = eSymbolTypeHeaderFile; 3181 break; 3182 3183 // COMM scopes 3184 case N_BCOMM: 3185 // begin common: name,,NO_SECT,0,0 3186 // We use the current number of symbols in the symbol 3187 // table in lieu of using nlist_idx in case we ever 3188 // start trimming entries out 3189 type = eSymbolTypeScopeBegin; 3190 N_COMM_indexes.push_back(sym_idx); 3191 break; 3192 3193 case N_ECOML: 3194 // end common (local name): 0,,n_sect,0,address 3195 symbol_section = section_info.GetSection(nlist.n_sect, 3196 nlist.n_value); 3197 // Fall through 3198 3199 case N_ECOMM: 3200 // end common: name,,n_sect,0,0 3201 // Set the size of the N_BCOMM to the terminating 3202 // index of this N_ECOMM/N_ECOML so that we can 3203 // always skip the entire symbol if we need to 3204 // navigate more quickly at the source level when 3205 // parsing STABS 3206 if (!N_COMM_indexes.empty()) { 3207 symbol_ptr = 3208 symtab->SymbolAtIndex(N_COMM_indexes.back()); 3209 symbol_ptr->SetByteSize(sym_idx + 1); 3210 symbol_ptr->SetSizeIsSibling(true); 3211 N_COMM_indexes.pop_back(); 3212 } 3213 type = eSymbolTypeScopeEnd; 3214 break; 3215 3216 case N_LENG: 3217 // second stab entry with length information 3218 type = eSymbolTypeAdditional; 3219 break; 3220 3221 default: 3222 break; 3223 } 3224 } else { 3225 // uint8_t n_pext = N_PEXT & nlist.n_type; 3226 uint8_t n_type = N_TYPE & nlist.n_type; 3227 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3228 3229 switch (n_type) { 3230 case N_INDR: { 3231 const char *reexport_name_cstr = 3232 strtab_data.PeekCStr(nlist.n_value); 3233 if (reexport_name_cstr && reexport_name_cstr[0]) { 3234 type = eSymbolTypeReExported; 3235 ConstString reexport_name( 3236 reexport_name_cstr + 3237 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3238 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3239 set_value = false; 3240 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3241 indirect_symbol_names.insert(ConstString( 3242 symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3243 } else 3244 type = eSymbolTypeUndefined; 3245 } break; 3246 3247 case N_UNDF: 3248 if (symbol_name && symbol_name[0]) { 3249 ConstString undefined_name( 3250 symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3251 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3252 } 3253 // Fall through 3254 case N_PBUD: 3255 type = eSymbolTypeUndefined; 3256 break; 3257 3258 case N_ABS: 3259 type = eSymbolTypeAbsolute; 3260 break; 3261 3262 case N_SECT: { 3263 symbol_section = section_info.GetSection(nlist.n_sect, 3264 nlist.n_value); 3265 3266 if (symbol_section == NULL) { 3267 // TODO: warn about this? 3268 add_nlist = false; 3269 break; 3270 } 3271 3272 if (TEXT_eh_frame_sectID == nlist.n_sect) { 3273 type = eSymbolTypeException; 3274 } else { 3275 uint32_t section_type = 3276 symbol_section->Get() & SECTION_TYPE; 3277 3278 switch (section_type) { 3279 case S_CSTRING_LITERALS: 3280 type = eSymbolTypeData; 3281 break; // section with only literal C strings 3282 case S_4BYTE_LITERALS: 3283 type = eSymbolTypeData; 3284 break; // section with only 4 byte literals 3285 case S_8BYTE_LITERALS: 3286 type = eSymbolTypeData; 3287 break; // section with only 8 byte literals 3288 case S_LITERAL_POINTERS: 3289 type = eSymbolTypeTrampoline; 3290 break; // section with only pointers to literals 3291 case S_NON_LAZY_SYMBOL_POINTERS: 3292 type = eSymbolTypeTrampoline; 3293 break; // section with only non-lazy symbol 3294 // pointers 3295 case S_LAZY_SYMBOL_POINTERS: 3296 type = eSymbolTypeTrampoline; 3297 break; // section with only lazy symbol pointers 3298 case S_SYMBOL_STUBS: 3299 type = eSymbolTypeTrampoline; 3300 break; // section with only symbol stubs, byte 3301 // size of stub in the reserved2 field 3302 case S_MOD_INIT_FUNC_POINTERS: 3303 type = eSymbolTypeCode; 3304 break; // section with only function pointers for 3305 // initialization 3306 case S_MOD_TERM_FUNC_POINTERS: 3307 type = eSymbolTypeCode; 3308 break; // section with only function pointers for 3309 // termination 3310 case S_INTERPOSING: 3311 type = eSymbolTypeTrampoline; 3312 break; // section with only pairs of function 3313 // pointers for interposing 3314 case S_16BYTE_LITERALS: 3315 type = eSymbolTypeData; 3316 break; // section with only 16 byte literals 3317 case S_DTRACE_DOF: 3318 type = eSymbolTypeInstrumentation; 3319 break; 3320 case S_LAZY_DYLIB_SYMBOL_POINTERS: 3321 type = eSymbolTypeTrampoline; 3322 break; 3323 default: 3324 switch (symbol_section->GetType()) { 3325 case lldb::eSectionTypeCode: 3326 type = eSymbolTypeCode; 3327 break; 3328 case eSectionTypeData: 3329 case eSectionTypeDataCString: // Inlined C string 3330 // data 3331 case eSectionTypeDataCStringPointers: // Pointers 3332 // to C 3333 // string 3334 // data 3335 case eSectionTypeDataSymbolAddress: // Address of 3336 // a symbol in 3337 // the symbol 3338 // table 3339 case eSectionTypeData4: 3340 case eSectionTypeData8: 3341 case eSectionTypeData16: 3342 type = eSymbolTypeData; 3343 break; 3344 default: 3345 break; 3346 } 3347 break; 3348 } 3349 3350 if (type == eSymbolTypeInvalid) { 3351 const char *symbol_sect_name = 3352 symbol_section->GetName().AsCString(); 3353 if (symbol_section->IsDescendant( 3354 text_section_sp.get())) { 3355 if (symbol_section->IsClear( 3356 S_ATTR_PURE_INSTRUCTIONS | 3357 S_ATTR_SELF_MODIFYING_CODE | 3358 S_ATTR_SOME_INSTRUCTIONS)) 3359 type = eSymbolTypeData; 3360 else 3361 type = eSymbolTypeCode; 3362 } else if (symbol_section->IsDescendant( 3363 data_section_sp.get()) || 3364 symbol_section->IsDescendant( 3365 data_dirty_section_sp.get()) || 3366 symbol_section->IsDescendant( 3367 data_const_section_sp.get())) { 3368 if (symbol_sect_name && 3369 ::strstr(symbol_sect_name, "__objc") == 3370 symbol_sect_name) { 3371 type = eSymbolTypeRuntime; 3372 3373 if (symbol_name) { 3374 llvm::StringRef symbol_name_ref(symbol_name); 3375 if (symbol_name_ref.startswith("_OBJC_")) { 3376 llvm::StringRef 3377 g_objc_v2_prefix_class( 3378 "_OBJC_CLASS_$_"); 3379 llvm::StringRef 3380 g_objc_v2_prefix_metaclass( 3381 "_OBJC_METACLASS_$_"); 3382 llvm::StringRef 3383 g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); 3384 if (symbol_name_ref.startswith( 3385 g_objc_v2_prefix_class)) { 3386 symbol_name_non_abi_mangled = 3387 symbol_name + 1; 3388 symbol_name = 3389 symbol_name + 3390 g_objc_v2_prefix_class.size(); 3391 type = eSymbolTypeObjCClass; 3392 demangled_is_synthesized = true; 3393 } else if ( 3394 symbol_name_ref.startswith( 3395 g_objc_v2_prefix_metaclass)) { 3396 symbol_name_non_abi_mangled = 3397 symbol_name + 1; 3398 symbol_name = 3399 symbol_name + 3400 g_objc_v2_prefix_metaclass.size(); 3401 type = eSymbolTypeObjCMetaClass; 3402 demangled_is_synthesized = true; 3403 } else if (symbol_name_ref.startswith( 3404 g_objc_v2_prefix_ivar)) { 3405 symbol_name_non_abi_mangled = 3406 symbol_name + 1; 3407 symbol_name = 3408 symbol_name + 3409 g_objc_v2_prefix_ivar.size(); 3410 type = eSymbolTypeObjCIVar; 3411 demangled_is_synthesized = true; 3412 } 3413 } 3414 } 3415 } else if (symbol_sect_name && 3416 ::strstr(symbol_sect_name, 3417 "__gcc_except_tab") == 3418 symbol_sect_name) { 3419 type = eSymbolTypeException; 3420 } else { 3421 type = eSymbolTypeData; 3422 } 3423 } else if (symbol_sect_name && 3424 ::strstr(symbol_sect_name, "__IMPORT") == 3425 symbol_sect_name) { 3426 type = eSymbolTypeTrampoline; 3427 } else if (symbol_section->IsDescendant( 3428 objc_section_sp.get())) { 3429 type = eSymbolTypeRuntime; 3430 if (symbol_name && symbol_name[0] == '.') { 3431 llvm::StringRef symbol_name_ref(symbol_name); 3432 llvm::StringRef 3433 g_objc_v1_prefix_class(".objc_class_name_"); 3434 if (symbol_name_ref.startswith( 3435 g_objc_v1_prefix_class)) { 3436 symbol_name_non_abi_mangled = symbol_name; 3437 symbol_name = symbol_name + 3438 g_objc_v1_prefix_class.size(); 3439 type = eSymbolTypeObjCClass; 3440 demangled_is_synthesized = true; 3441 } 3442 } 3443 } 3444 } 3445 } 3446 } break; 3447 } 3448 } 3449 3450 if (add_nlist) { 3451 uint64_t symbol_value = nlist.n_value; 3452 if (symbol_name_non_abi_mangled) { 3453 sym[sym_idx].GetMangled().SetMangledName( 3454 ConstString(symbol_name_non_abi_mangled)); 3455 sym[sym_idx].GetMangled().SetDemangledName( 3456 ConstString(symbol_name)); 3457 } else { 3458 bool symbol_name_is_mangled = false; 3459 3460 if (symbol_name && symbol_name[0] == '_') { 3461 symbol_name_is_mangled = symbol_name[1] == '_'; 3462 symbol_name++; // Skip the leading underscore 3463 } 3464 3465 if (symbol_name) { 3466 ConstString const_symbol_name(symbol_name); 3467 sym[sym_idx].GetMangled().SetValue( 3468 const_symbol_name, symbol_name_is_mangled); 3469 if (is_gsym && is_debug) { 3470 const char *gsym_name = 3471 sym[sym_idx] 3472 .GetMangled() 3473 .GetName(Mangled::ePreferMangled) 3474 .GetCString(); 3475 if (gsym_name) 3476 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3477 } 3478 } 3479 } 3480 if (symbol_section) { 3481 const addr_t section_file_addr = 3482 symbol_section->GetFileAddress(); 3483 if (symbol_byte_size == 0 && 3484 function_starts_count > 0) { 3485 addr_t symbol_lookup_file_addr = nlist.n_value; 3486 // Do an exact address match for non-ARM addresses, 3487 // else get the closest since the symbol might be a 3488 // thumb symbol which has an address with bit zero 3489 // set 3490 FunctionStarts::Entry *func_start_entry = 3491 function_starts.FindEntry(symbol_lookup_file_addr, 3492 !is_arm); 3493 if (is_arm && func_start_entry) { 3494 // Verify that the function start address is the 3495 // symbol address (ARM) or the symbol address + 1 3496 // (thumb) 3497 if (func_start_entry->addr != 3498 symbol_lookup_file_addr && 3499 func_start_entry->addr != 3500 (symbol_lookup_file_addr + 1)) { 3501 // Not the right entry, NULL it out... 3502 func_start_entry = NULL; 3503 } 3504 } 3505 if (func_start_entry) { 3506 func_start_entry->data = true; 3507 3508 addr_t symbol_file_addr = func_start_entry->addr; 3509 uint32_t symbol_flags = 0; 3510 if (is_arm) { 3511 if (symbol_file_addr & 1) 3512 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3513 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3514 } 3515 3516 const FunctionStarts::Entry *next_func_start_entry = 3517 function_starts.FindNextEntry(func_start_entry); 3518 const addr_t section_end_file_addr = 3519 section_file_addr + 3520 symbol_section->GetByteSize(); 3521 if (next_func_start_entry) { 3522 addr_t next_symbol_file_addr = 3523 next_func_start_entry->addr; 3524 // Be sure the clear the Thumb address bit when 3525 // we calculate the size from the current and 3526 // next address 3527 if (is_arm) 3528 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3529 symbol_byte_size = std::min<lldb::addr_t>( 3530 next_symbol_file_addr - symbol_file_addr, 3531 section_end_file_addr - symbol_file_addr); 3532 } else { 3533 symbol_byte_size = 3534 section_end_file_addr - symbol_file_addr; 3535 } 3536 } 3537 } 3538 symbol_value -= section_file_addr; 3539 } 3540 3541 if (is_debug == false) { 3542 if (type == eSymbolTypeCode) { 3543 // See if we can find a N_FUN entry for any code 3544 // symbols. If we do find a match, and the name 3545 // matches, then we can merge the two into just the 3546 // function symbol to avoid duplicate entries in 3547 // the symbol table 3548 auto range = 3549 N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3550 if (range.first != range.second) { 3551 bool found_it = false; 3552 for (auto pos = range.first; pos != range.second; 3553 ++pos) { 3554 if (sym[sym_idx].GetMangled().GetName( 3555 Mangled::ePreferMangled) == 3556 sym[pos->second].GetMangled().GetName( 3557 Mangled::ePreferMangled)) { 3558 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3559 // We just need the flags from the linker 3560 // symbol, so put these flags 3561 // into the N_FUN flags to avoid duplicate 3562 // symbols in the symbol table 3563 sym[pos->second].SetExternal( 3564 sym[sym_idx].IsExternal()); 3565 sym[pos->second].SetFlags(nlist.n_type << 16 | 3566 nlist.n_desc); 3567 if (resolver_addresses.find(nlist.n_value) != 3568 resolver_addresses.end()) 3569 sym[pos->second].SetType(eSymbolTypeResolver); 3570 sym[sym_idx].Clear(); 3571 found_it = true; 3572 break; 3573 } 3574 } 3575 if (found_it) 3576 continue; 3577 } else { 3578 if (resolver_addresses.find(nlist.n_value) != 3579 resolver_addresses.end()) 3580 type = eSymbolTypeResolver; 3581 } 3582 } else if (type == eSymbolTypeData || 3583 type == eSymbolTypeObjCClass || 3584 type == eSymbolTypeObjCMetaClass || 3585 type == eSymbolTypeObjCIVar) { 3586 // See if we can find a N_STSYM entry for any data 3587 // symbols. If we do find a match, and the name 3588 // matches, then we can merge the two into just the 3589 // Static symbol to avoid duplicate entries in the 3590 // symbol table 3591 auto range = N_STSYM_addr_to_sym_idx.equal_range( 3592 nlist.n_value); 3593 if (range.first != range.second) { 3594 bool found_it = false; 3595 for (auto pos = range.first; pos != range.second; 3596 ++pos) { 3597 if (sym[sym_idx].GetMangled().GetName( 3598 Mangled::ePreferMangled) == 3599 sym[pos->second].GetMangled().GetName( 3600 Mangled::ePreferMangled)) { 3601 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3602 // We just need the flags from the linker 3603 // symbol, so put these flags 3604 // into the N_STSYM flags to avoid duplicate 3605 // symbols in the symbol table 3606 sym[pos->second].SetExternal( 3607 sym[sym_idx].IsExternal()); 3608 sym[pos->second].SetFlags(nlist.n_type << 16 | 3609 nlist.n_desc); 3610 sym[sym_idx].Clear(); 3611 found_it = true; 3612 break; 3613 } 3614 } 3615 if (found_it) 3616 continue; 3617 } else { 3618 const char *gsym_name = 3619 sym[sym_idx] 3620 .GetMangled() 3621 .GetName(Mangled::ePreferMangled) 3622 .GetCString(); 3623 if (gsym_name) { 3624 // Combine N_GSYM stab entries with the non 3625 // stab symbol 3626 ConstNameToSymbolIndexMap::const_iterator pos = 3627 N_GSYM_name_to_sym_idx.find(gsym_name); 3628 if (pos != N_GSYM_name_to_sym_idx.end()) { 3629 const uint32_t GSYM_sym_idx = pos->second; 3630 m_nlist_idx_to_sym_idx[nlist_idx] = 3631 GSYM_sym_idx; 3632 // Copy the address, because often the N_GSYM 3633 // address has an invalid address of zero 3634 // when the global is a common symbol 3635 sym[GSYM_sym_idx].GetAddressRef().SetSection( 3636 symbol_section); 3637 sym[GSYM_sym_idx].GetAddressRef().SetOffset( 3638 symbol_value); 3639 symbols_added.insert(sym[GSYM_sym_idx] 3640 .GetAddress() 3641 .GetFileAddress()); 3642 // We just need the flags from the linker 3643 // symbol, so put these flags 3644 // into the N_GSYM flags to avoid duplicate 3645 // symbols in the symbol table 3646 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | 3647 nlist.n_desc); 3648 sym[sym_idx].Clear(); 3649 continue; 3650 } 3651 } 3652 } 3653 } 3654 } 3655 3656 sym[sym_idx].SetID(nlist_idx); 3657 sym[sym_idx].SetType(type); 3658 if (set_value) { 3659 sym[sym_idx].GetAddressRef().SetSection(symbol_section); 3660 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 3661 symbols_added.insert( 3662 sym[sym_idx].GetAddress().GetFileAddress()); 3663 } 3664 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 3665 3666 if (symbol_byte_size > 0) 3667 sym[sym_idx].SetByteSize(symbol_byte_size); 3668 3669 if (demangled_is_synthesized) 3670 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3671 ++sym_idx; 3672 } else { 3673 sym[sym_idx].Clear(); 3674 } 3675 } 3676 ///////////////////////////// 3677 } 3678 break; // No more entries to consider 3679 } 3680 } 3681 3682 for (const auto &pos : reexport_shlib_needs_fixup) { 3683 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3684 if (undef_pos != undefined_name_to_desc.end()) { 3685 const uint8_t dylib_ordinal = 3686 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3687 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3688 sym[pos.first].SetReExportedSymbolSharedLibrary( 3689 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 3690 } 3691 } 3692 } 3693 } 3694 } 3695 } 3696 } 3697 3698 // Must reset this in case it was mutated above! 3699 nlist_data_offset = 0; 3700 #endif 3701 3702 if (nlist_data.GetByteSize() > 0) { 3703 3704 // If the sym array was not created while parsing the DSC unmapped 3705 // symbols, create it now. 3706 if (sym == nullptr) { 3707 sym = 3708 symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3709 num_syms = symtab->GetNumSymbols(); 3710 } 3711 3712 if (unmapped_local_symbols_found) { 3713 assert(m_dysymtab.ilocalsym == 0); 3714 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3715 nlist_idx = m_dysymtab.nlocalsym; 3716 } else { 3717 nlist_idx = 0; 3718 } 3719 3720 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap; 3721 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName; 3722 UndefinedNameToDescMap undefined_name_to_desc; 3723 SymbolIndexToName reexport_shlib_needs_fixup; 3724 3725 // Symtab parsing is a huge mess. Everything is entangled and the code 3726 // requires access to a ridiculous amount of variables. LLDB depends 3727 // heavily on the proper merging of symbols and to get that right we need 3728 // to make sure we have parsed all the debug symbols first. Therefore we 3729 // invoke the lambda twice, once to parse only the debug symbols and then 3730 // once more to parse the remaining symbols. 3731 auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx, 3732 bool debug_only) { 3733 const bool is_debug = ((nlist.n_type & N_STAB) != 0); 3734 if (is_debug != debug_only) 3735 return true; 3736 3737 const char *symbol_name_non_abi_mangled = nullptr; 3738 const char *symbol_name = nullptr; 3739 3740 if (have_strtab_data) { 3741 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3742 3743 if (symbol_name == nullptr) { 3744 // No symbol should be NULL, even the symbols with no string values 3745 // should have an offset zero which points to an empty C-string 3746 Host::SystemLog(Host::eSystemLogError, 3747 "error: symbol[%u] has invalid string table offset " 3748 "0x%x in %s, ignoring symbol\n", 3749 nlist_idx, nlist.n_strx, 3750 module_sp->GetFileSpec().GetPath().c_str()); 3751 return true; 3752 } 3753 if (symbol_name[0] == '\0') 3754 symbol_name = nullptr; 3755 } else { 3756 const addr_t str_addr = strtab_addr + nlist.n_strx; 3757 Status str_error; 3758 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, 3759 str_error)) 3760 symbol_name = memory_symbol_name.c_str(); 3761 } 3762 3763 SymbolType type = eSymbolTypeInvalid; 3764 SectionSP symbol_section; 3765 lldb::addr_t symbol_byte_size = 0; 3766 bool add_nlist = true; 3767 bool is_gsym = false; 3768 bool demangled_is_synthesized = false; 3769 bool set_value = true; 3770 3771 assert(sym_idx < num_syms); 3772 sym[sym_idx].SetDebug(is_debug); 3773 3774 if (is_debug) { 3775 switch (nlist.n_type) { 3776 case N_GSYM: 3777 // global symbol: name,,NO_SECT,type,0 3778 // Sometimes the N_GSYM value contains the address. 3779 3780 // FIXME: In the .o files, we have a GSYM and a debug symbol for all 3781 // the ObjC data. They 3782 // have the same address, but we want to ensure that we always find 3783 // only the real symbol, 'cause we don't currently correctly 3784 // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol 3785 // type. This is a temporary hack to make sure the ObjectiveC 3786 // symbols get treated correctly. To do this right, we should 3787 // coalesce all the GSYM & global symbols that have the same 3788 // address. 3789 is_gsym = true; 3790 sym[sym_idx].SetExternal(true); 3791 3792 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { 3793 llvm::StringRef symbol_name_ref(symbol_name); 3794 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 3795 symbol_name_non_abi_mangled = symbol_name + 1; 3796 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3797 type = eSymbolTypeObjCClass; 3798 demangled_is_synthesized = true; 3799 3800 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { 3801 symbol_name_non_abi_mangled = symbol_name + 1; 3802 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3803 type = eSymbolTypeObjCMetaClass; 3804 demangled_is_synthesized = true; 3805 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { 3806 symbol_name_non_abi_mangled = symbol_name + 1; 3807 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3808 type = eSymbolTypeObjCIVar; 3809 demangled_is_synthesized = true; 3810 } 3811 } else { 3812 if (nlist.n_value != 0) 3813 symbol_section = 3814 section_info.GetSection(nlist.n_sect, nlist.n_value); 3815 type = eSymbolTypeData; 3816 } 3817 break; 3818 3819 case N_FNAME: 3820 // procedure name (f77 kludge): name,,NO_SECT,0,0 3821 type = eSymbolTypeCompiler; 3822 break; 3823 3824 case N_FUN: 3825 // procedure: name,,n_sect,linenumber,address 3826 if (symbol_name) { 3827 type = eSymbolTypeCode; 3828 symbol_section = 3829 section_info.GetSection(nlist.n_sect, nlist.n_value); 3830 3831 N_FUN_addr_to_sym_idx.insert( 3832 std::make_pair(nlist.n_value, sym_idx)); 3833 // We use the current number of symbols in the symbol table in 3834 // lieu of using nlist_idx in case we ever start trimming entries 3835 // out 3836 N_FUN_indexes.push_back(sym_idx); 3837 } else { 3838 type = eSymbolTypeCompiler; 3839 3840 if (!N_FUN_indexes.empty()) { 3841 // Copy the size of the function into the original STAB entry 3842 // so we don't have to hunt for it later 3843 symtab->SymbolAtIndex(N_FUN_indexes.back()) 3844 ->SetByteSize(nlist.n_value); 3845 N_FUN_indexes.pop_back(); 3846 // We don't really need the end function STAB as it contains 3847 // the size which we already placed with the original symbol, 3848 // so don't add it if we want a minimal symbol table 3849 add_nlist = false; 3850 } 3851 } 3852 break; 3853 3854 case N_STSYM: 3855 // static symbol: name,,n_sect,type,address 3856 N_STSYM_addr_to_sym_idx.insert( 3857 std::make_pair(nlist.n_value, sym_idx)); 3858 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3859 if (symbol_name && symbol_name[0]) { 3860 type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1, 3861 eSymbolTypeData); 3862 } 3863 break; 3864 3865 case N_LCSYM: 3866 // .lcomm symbol: name,,n_sect,type,address 3867 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3868 type = eSymbolTypeCommonBlock; 3869 break; 3870 3871 case N_BNSYM: 3872 // We use the current number of symbols in the symbol table in lieu 3873 // of using nlist_idx in case we ever start trimming entries out 3874 // Skip these if we want minimal symbol tables 3875 add_nlist = false; 3876 break; 3877 3878 case N_ENSYM: 3879 // Set the size of the N_BNSYM to the terminating index of this 3880 // N_ENSYM so that we can always skip the entire symbol if we need 3881 // to navigate more quickly at the source level when parsing STABS 3882 // Skip these if we want minimal symbol tables 3883 add_nlist = false; 3884 break; 3885 3886 case N_OPT: 3887 // emitted with gcc2_compiled and in gcc source 3888 type = eSymbolTypeCompiler; 3889 break; 3890 3891 case N_RSYM: 3892 // register sym: name,,NO_SECT,type,register 3893 type = eSymbolTypeVariable; 3894 break; 3895 3896 case N_SLINE: 3897 // src line: 0,,n_sect,linenumber,address 3898 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3899 type = eSymbolTypeLineEntry; 3900 break; 3901 3902 case N_SSYM: 3903 // structure elt: name,,NO_SECT,type,struct_offset 3904 type = eSymbolTypeVariableType; 3905 break; 3906 3907 case N_SO: 3908 // source file name 3909 type = eSymbolTypeSourceFile; 3910 if (symbol_name == nullptr) { 3911 add_nlist = false; 3912 if (N_SO_index != UINT32_MAX) { 3913 // Set the size of the N_SO to the terminating index of this 3914 // N_SO so that we can always skip the entire N_SO if we need 3915 // to navigate more quickly at the source level when parsing 3916 // STABS 3917 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3918 symbol_ptr->SetByteSize(sym_idx); 3919 symbol_ptr->SetSizeIsSibling(true); 3920 } 3921 N_NSYM_indexes.clear(); 3922 N_INCL_indexes.clear(); 3923 N_BRAC_indexes.clear(); 3924 N_COMM_indexes.clear(); 3925 N_FUN_indexes.clear(); 3926 N_SO_index = UINT32_MAX; 3927 } else { 3928 // We use the current number of symbols in the symbol table in 3929 // lieu of using nlist_idx in case we ever start trimming entries 3930 // out 3931 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3932 if (N_SO_has_full_path) { 3933 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { 3934 // We have two consecutive N_SO entries where the first 3935 // contains a directory and the second contains a full path. 3936 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), 3937 false); 3938 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3939 add_nlist = false; 3940 } else { 3941 // This is the first entry in a N_SO that contains a 3942 // directory or a full path to the source file 3943 N_SO_index = sym_idx; 3944 } 3945 } else if ((N_SO_index == sym_idx - 1) && 3946 ((sym_idx - 1) < num_syms)) { 3947 // This is usually the second N_SO entry that contains just the 3948 // filename, so here we combine it with the first one if we are 3949 // minimizing the symbol table 3950 const char *so_path = 3951 sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3952 if (so_path && so_path[0]) { 3953 std::string full_so_path(so_path); 3954 const size_t double_slash_pos = full_so_path.find("//"); 3955 if (double_slash_pos != std::string::npos) { 3956 // The linker has been generating bad N_SO entries with 3957 // doubled up paths in the format "%s%s" where the first 3958 // string in the DW_AT_comp_dir, and the second is the 3959 // directory for the source file so you end up with a path 3960 // that looks like "/tmp/src//tmp/src/" 3961 FileSpec so_dir(so_path); 3962 if (!FileSystem::Instance().Exists(so_dir)) { 3963 so_dir.SetFile(&full_so_path[double_slash_pos + 1], 3964 FileSpec::Style::native); 3965 if (FileSystem::Instance().Exists(so_dir)) { 3966 // Trim off the incorrect path 3967 full_so_path.erase(0, double_slash_pos + 1); 3968 } 3969 } 3970 } 3971 if (*full_so_path.rbegin() != '/') 3972 full_so_path += '/'; 3973 full_so_path += symbol_name; 3974 sym[sym_idx - 1].GetMangled().SetValue( 3975 ConstString(full_so_path.c_str()), false); 3976 add_nlist = false; 3977 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3978 } 3979 } else { 3980 // This could be a relative path to a N_SO 3981 N_SO_index = sym_idx; 3982 } 3983 } 3984 break; 3985 3986 case N_OSO: 3987 // object file name: name,,0,0,st_mtime 3988 type = eSymbolTypeObjectFile; 3989 break; 3990 3991 case N_LSYM: 3992 // local sym: name,,NO_SECT,type,offset 3993 type = eSymbolTypeLocal; 3994 break; 3995 3996 // INCL scopes 3997 case N_BINCL: 3998 // include file beginning: name,,NO_SECT,0,sum We use the current 3999 // number of symbols in the symbol table in lieu of using nlist_idx 4000 // in case we ever start trimming entries out 4001 N_INCL_indexes.push_back(sym_idx); 4002 type = eSymbolTypeScopeBegin; 4003 break; 4004 4005 case N_EINCL: 4006 // include file end: name,,NO_SECT,0,0 4007 // Set the size of the N_BINCL to the terminating index of this 4008 // N_EINCL so that we can always skip the entire symbol if we need 4009 // to navigate more quickly at the source level when parsing STABS 4010 if (!N_INCL_indexes.empty()) { 4011 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 4012 symbol_ptr->SetByteSize(sym_idx + 1); 4013 symbol_ptr->SetSizeIsSibling(true); 4014 N_INCL_indexes.pop_back(); 4015 } 4016 type = eSymbolTypeScopeEnd; 4017 break; 4018 4019 case N_SOL: 4020 // #included file name: name,,n_sect,0,address 4021 type = eSymbolTypeHeaderFile; 4022 4023 // We currently don't use the header files on darwin 4024 add_nlist = false; 4025 break; 4026 4027 case N_PARAMS: 4028 // compiler parameters: name,,NO_SECT,0,0 4029 type = eSymbolTypeCompiler; 4030 break; 4031 4032 case N_VERSION: 4033 // compiler version: name,,NO_SECT,0,0 4034 type = eSymbolTypeCompiler; 4035 break; 4036 4037 case N_OLEVEL: 4038 // compiler -O level: name,,NO_SECT,0,0 4039 type = eSymbolTypeCompiler; 4040 break; 4041 4042 case N_PSYM: 4043 // parameter: name,,NO_SECT,type,offset 4044 type = eSymbolTypeVariable; 4045 break; 4046 4047 case N_ENTRY: 4048 // alternate entry: name,,n_sect,linenumber,address 4049 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4050 type = eSymbolTypeLineEntry; 4051 break; 4052 4053 // Left and Right Braces 4054 case N_LBRAC: 4055 // left bracket: 0,,NO_SECT,nesting level,address We use the 4056 // current number of symbols in the symbol table in lieu of using 4057 // nlist_idx in case we ever start trimming entries out 4058 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4059 N_BRAC_indexes.push_back(sym_idx); 4060 type = eSymbolTypeScopeBegin; 4061 break; 4062 4063 case N_RBRAC: 4064 // right bracket: 0,,NO_SECT,nesting level,address Set the size of 4065 // the N_LBRAC to the terminating index of this N_RBRAC so that we 4066 // can always skip the entire symbol if we need to navigate more 4067 // quickly at the source level when parsing STABS 4068 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4069 if (!N_BRAC_indexes.empty()) { 4070 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4071 symbol_ptr->SetByteSize(sym_idx + 1); 4072 symbol_ptr->SetSizeIsSibling(true); 4073 N_BRAC_indexes.pop_back(); 4074 } 4075 type = eSymbolTypeScopeEnd; 4076 break; 4077 4078 case N_EXCL: 4079 // deleted include file: name,,NO_SECT,0,sum 4080 type = eSymbolTypeHeaderFile; 4081 break; 4082 4083 // COMM scopes 4084 case N_BCOMM: 4085 // begin common: name,,NO_SECT,0,0 4086 // We use the current number of symbols in the symbol table in lieu 4087 // of using nlist_idx in case we ever start trimming entries out 4088 type = eSymbolTypeScopeBegin; 4089 N_COMM_indexes.push_back(sym_idx); 4090 break; 4091 4092 case N_ECOML: 4093 // end common (local name): 0,,n_sect,0,address 4094 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4095 LLVM_FALLTHROUGH; 4096 4097 case N_ECOMM: 4098 // end common: name,,n_sect,0,0 4099 // Set the size of the N_BCOMM to the terminating index of this 4100 // N_ECOMM/N_ECOML so that we can always skip the entire symbol if 4101 // we need to navigate more quickly at the source level when 4102 // parsing STABS 4103 if (!N_COMM_indexes.empty()) { 4104 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4105 symbol_ptr->SetByteSize(sym_idx + 1); 4106 symbol_ptr->SetSizeIsSibling(true); 4107 N_COMM_indexes.pop_back(); 4108 } 4109 type = eSymbolTypeScopeEnd; 4110 break; 4111 4112 case N_LENG: 4113 // second stab entry with length information 4114 type = eSymbolTypeAdditional; 4115 break; 4116 4117 default: 4118 break; 4119 } 4120 } else { 4121 uint8_t n_type = N_TYPE & nlist.n_type; 4122 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4123 4124 switch (n_type) { 4125 case N_INDR: { 4126 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4127 if (reexport_name_cstr && reexport_name_cstr[0]) { 4128 type = eSymbolTypeReExported; 4129 ConstString reexport_name(reexport_name_cstr + 4130 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4131 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4132 set_value = false; 4133 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4134 indirect_symbol_names.insert( 4135 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4136 } else 4137 type = eSymbolTypeUndefined; 4138 } break; 4139 4140 case N_UNDF: 4141 if (symbol_name && symbol_name[0]) { 4142 ConstString undefined_name(symbol_name + 4143 ((symbol_name[0] == '_') ? 1 : 0)); 4144 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4145 } 4146 LLVM_FALLTHROUGH; 4147 4148 case N_PBUD: 4149 type = eSymbolTypeUndefined; 4150 break; 4151 4152 case N_ABS: 4153 type = eSymbolTypeAbsolute; 4154 break; 4155 4156 case N_SECT: { 4157 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4158 4159 if (!symbol_section) { 4160 // TODO: warn about this? 4161 add_nlist = false; 4162 break; 4163 } 4164 4165 if (TEXT_eh_frame_sectID == nlist.n_sect) { 4166 type = eSymbolTypeException; 4167 } else { 4168 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4169 4170 switch (section_type) { 4171 case S_CSTRING_LITERALS: 4172 type = eSymbolTypeData; 4173 break; // section with only literal C strings 4174 case S_4BYTE_LITERALS: 4175 type = eSymbolTypeData; 4176 break; // section with only 4 byte literals 4177 case S_8BYTE_LITERALS: 4178 type = eSymbolTypeData; 4179 break; // section with only 8 byte literals 4180 case S_LITERAL_POINTERS: 4181 type = eSymbolTypeTrampoline; 4182 break; // section with only pointers to literals 4183 case S_NON_LAZY_SYMBOL_POINTERS: 4184 type = eSymbolTypeTrampoline; 4185 break; // section with only non-lazy symbol pointers 4186 case S_LAZY_SYMBOL_POINTERS: 4187 type = eSymbolTypeTrampoline; 4188 break; // section with only lazy symbol pointers 4189 case S_SYMBOL_STUBS: 4190 type = eSymbolTypeTrampoline; 4191 break; // section with only symbol stubs, byte size of stub in 4192 // the reserved2 field 4193 case S_MOD_INIT_FUNC_POINTERS: 4194 type = eSymbolTypeCode; 4195 break; // section with only function pointers for initialization 4196 case S_MOD_TERM_FUNC_POINTERS: 4197 type = eSymbolTypeCode; 4198 break; // section with only function pointers for termination 4199 case S_INTERPOSING: 4200 type = eSymbolTypeTrampoline; 4201 break; // section with only pairs of function pointers for 4202 // interposing 4203 case S_16BYTE_LITERALS: 4204 type = eSymbolTypeData; 4205 break; // section with only 16 byte literals 4206 case S_DTRACE_DOF: 4207 type = eSymbolTypeInstrumentation; 4208 break; 4209 case S_LAZY_DYLIB_SYMBOL_POINTERS: 4210 type = eSymbolTypeTrampoline; 4211 break; 4212 default: 4213 switch (symbol_section->GetType()) { 4214 case lldb::eSectionTypeCode: 4215 type = eSymbolTypeCode; 4216 break; 4217 case eSectionTypeData: 4218 case eSectionTypeDataCString: // Inlined C string data 4219 case eSectionTypeDataCStringPointers: // Pointers to C string 4220 // data 4221 case eSectionTypeDataSymbolAddress: // Address of a symbol in 4222 // the symbol table 4223 case eSectionTypeData4: 4224 case eSectionTypeData8: 4225 case eSectionTypeData16: 4226 type = eSymbolTypeData; 4227 break; 4228 default: 4229 break; 4230 } 4231 break; 4232 } 4233 4234 if (type == eSymbolTypeInvalid) { 4235 const char *symbol_sect_name = 4236 symbol_section->GetName().AsCString(); 4237 if (symbol_section->IsDescendant(text_section_sp.get())) { 4238 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4239 S_ATTR_SELF_MODIFYING_CODE | 4240 S_ATTR_SOME_INSTRUCTIONS)) 4241 type = eSymbolTypeData; 4242 else 4243 type = eSymbolTypeCode; 4244 } else if (symbol_section->IsDescendant(data_section_sp.get()) || 4245 symbol_section->IsDescendant( 4246 data_dirty_section_sp.get()) || 4247 symbol_section->IsDescendant( 4248 data_const_section_sp.get())) { 4249 if (symbol_sect_name && 4250 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { 4251 type = eSymbolTypeRuntime; 4252 4253 if (symbol_name) { 4254 llvm::StringRef symbol_name_ref(symbol_name); 4255 if (symbol_name_ref.startswith("_OBJC_")) { 4256 llvm::StringRef g_objc_v2_prefix_class( 4257 "_OBJC_CLASS_$_"); 4258 llvm::StringRef g_objc_v2_prefix_metaclass( 4259 "_OBJC_METACLASS_$_"); 4260 llvm::StringRef g_objc_v2_prefix_ivar( 4261 "_OBJC_IVAR_$_"); 4262 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 4263 symbol_name_non_abi_mangled = symbol_name + 1; 4264 symbol_name = 4265 symbol_name + g_objc_v2_prefix_class.size(); 4266 type = eSymbolTypeObjCClass; 4267 demangled_is_synthesized = true; 4268 } else if (symbol_name_ref.startswith( 4269 g_objc_v2_prefix_metaclass)) { 4270 symbol_name_non_abi_mangled = symbol_name + 1; 4271 symbol_name = 4272 symbol_name + g_objc_v2_prefix_metaclass.size(); 4273 type = eSymbolTypeObjCMetaClass; 4274 demangled_is_synthesized = true; 4275 } else if (symbol_name_ref.startswith( 4276 g_objc_v2_prefix_ivar)) { 4277 symbol_name_non_abi_mangled = symbol_name + 1; 4278 symbol_name = 4279 symbol_name + g_objc_v2_prefix_ivar.size(); 4280 type = eSymbolTypeObjCIVar; 4281 demangled_is_synthesized = true; 4282 } 4283 } 4284 } 4285 } else if (symbol_sect_name && 4286 ::strstr(symbol_sect_name, "__gcc_except_tab") == 4287 symbol_sect_name) { 4288 type = eSymbolTypeException; 4289 } else { 4290 type = eSymbolTypeData; 4291 } 4292 } else if (symbol_sect_name && 4293 ::strstr(symbol_sect_name, "__IMPORT") == 4294 symbol_sect_name) { 4295 type = eSymbolTypeTrampoline; 4296 } else if (symbol_section->IsDescendant(objc_section_sp.get())) { 4297 type = eSymbolTypeRuntime; 4298 if (symbol_name && symbol_name[0] == '.') { 4299 llvm::StringRef symbol_name_ref(symbol_name); 4300 llvm::StringRef g_objc_v1_prefix_class( 4301 ".objc_class_name_"); 4302 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { 4303 symbol_name_non_abi_mangled = symbol_name; 4304 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4305 type = eSymbolTypeObjCClass; 4306 demangled_is_synthesized = true; 4307 } 4308 } 4309 } 4310 } 4311 } 4312 } break; 4313 } 4314 } 4315 4316 if (!add_nlist) { 4317 sym[sym_idx].Clear(); 4318 return true; 4319 } 4320 4321 uint64_t symbol_value = nlist.n_value; 4322 4323 if (symbol_name_non_abi_mangled) { 4324 sym[sym_idx].GetMangled().SetMangledName( 4325 ConstString(symbol_name_non_abi_mangled)); 4326 sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name)); 4327 } else { 4328 bool symbol_name_is_mangled = false; 4329 4330 if (symbol_name && symbol_name[0] == '_') { 4331 symbol_name_is_mangled = symbol_name[1] == '_'; 4332 symbol_name++; // Skip the leading underscore 4333 } 4334 4335 if (symbol_name) { 4336 ConstString const_symbol_name(symbol_name); 4337 sym[sym_idx].GetMangled().SetValue(const_symbol_name, 4338 symbol_name_is_mangled); 4339 } 4340 } 4341 4342 if (is_gsym) { 4343 const char *gsym_name = sym[sym_idx] 4344 .GetMangled() 4345 .GetName(Mangled::ePreferMangled) 4346 .GetCString(); 4347 if (gsym_name) 4348 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4349 } 4350 4351 if (symbol_section) { 4352 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4353 if (symbol_byte_size == 0 && function_starts_count > 0) { 4354 addr_t symbol_lookup_file_addr = nlist.n_value; 4355 // Do an exact address match for non-ARM addresses, else get the 4356 // closest since the symbol might be a thumb symbol which has an 4357 // address with bit zero set. 4358 FunctionStarts::Entry *func_start_entry = 4359 function_starts.FindEntry(symbol_lookup_file_addr, !is_arm); 4360 if (is_arm && func_start_entry) { 4361 // Verify that the function start address is the symbol address 4362 // (ARM) or the symbol address + 1 (thumb). 4363 if (func_start_entry->addr != symbol_lookup_file_addr && 4364 func_start_entry->addr != (symbol_lookup_file_addr + 1)) { 4365 // Not the right entry, NULL it out... 4366 func_start_entry = nullptr; 4367 } 4368 } 4369 if (func_start_entry) { 4370 func_start_entry->data = true; 4371 4372 addr_t symbol_file_addr = func_start_entry->addr; 4373 if (is_arm) 4374 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4375 4376 const FunctionStarts::Entry *next_func_start_entry = 4377 function_starts.FindNextEntry(func_start_entry); 4378 const addr_t section_end_file_addr = 4379 section_file_addr + symbol_section->GetByteSize(); 4380 if (next_func_start_entry) { 4381 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4382 // Be sure the clear the Thumb address bit when we calculate the 4383 // size from the current and next address 4384 if (is_arm) 4385 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4386 symbol_byte_size = std::min<lldb::addr_t>( 4387 next_symbol_file_addr - symbol_file_addr, 4388 section_end_file_addr - symbol_file_addr); 4389 } else { 4390 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4391 } 4392 } 4393 } 4394 symbol_value -= section_file_addr; 4395 } 4396 4397 if (!is_debug) { 4398 if (type == eSymbolTypeCode) { 4399 // See if we can find a N_FUN entry for any code symbols. If we do 4400 // find a match, and the name matches, then we can merge the two into 4401 // just the function symbol to avoid duplicate entries in the symbol 4402 // table. 4403 std::pair<ValueToSymbolIndexMap::const_iterator, 4404 ValueToSymbolIndexMap::const_iterator> 4405 range; 4406 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4407 if (range.first != range.second) { 4408 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4409 pos != range.second; ++pos) { 4410 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == 4411 sym[pos->second].GetMangled().GetName( 4412 Mangled::ePreferMangled)) { 4413 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4414 // We just need the flags from the linker symbol, so put these 4415 // flags into the N_FUN flags to avoid duplicate symbols in the 4416 // symbol table. 4417 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4418 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4419 if (resolver_addresses.find(nlist.n_value) != 4420 resolver_addresses.end()) 4421 sym[pos->second].SetType(eSymbolTypeResolver); 4422 sym[sym_idx].Clear(); 4423 return true; 4424 } 4425 } 4426 } else { 4427 if (resolver_addresses.find(nlist.n_value) != 4428 resolver_addresses.end()) 4429 type = eSymbolTypeResolver; 4430 } 4431 } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || 4432 type == eSymbolTypeObjCMetaClass || 4433 type == eSymbolTypeObjCIVar) { 4434 // See if we can find a N_STSYM entry for any data symbols. If we do 4435 // find a match, and the name matches, then we can merge the two into 4436 // just the Static symbol to avoid duplicate entries in the symbol 4437 // table. 4438 std::pair<ValueToSymbolIndexMap::const_iterator, 4439 ValueToSymbolIndexMap::const_iterator> 4440 range; 4441 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4442 if (range.first != range.second) { 4443 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4444 pos != range.second; ++pos) { 4445 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == 4446 sym[pos->second].GetMangled().GetName( 4447 Mangled::ePreferMangled)) { 4448 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4449 // We just need the flags from the linker symbol, so put these 4450 // flags into the N_STSYM flags to avoid duplicate symbols in 4451 // the symbol table. 4452 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4453 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4454 sym[sym_idx].Clear(); 4455 return true; 4456 } 4457 } 4458 } else { 4459 // Combine N_GSYM stab entries with the non stab symbol. 4460 const char *gsym_name = sym[sym_idx] 4461 .GetMangled() 4462 .GetName(Mangled::ePreferMangled) 4463 .GetCString(); 4464 if (gsym_name) { 4465 ConstNameToSymbolIndexMap::const_iterator pos = 4466 N_GSYM_name_to_sym_idx.find(gsym_name); 4467 if (pos != N_GSYM_name_to_sym_idx.end()) { 4468 const uint32_t GSYM_sym_idx = pos->second; 4469 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4470 // Copy the address, because often the N_GSYM address has an 4471 // invalid address of zero when the global is a common symbol. 4472 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section); 4473 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value); 4474 symbols_added.insert( 4475 sym[GSYM_sym_idx].GetAddress().GetFileAddress()); 4476 // We just need the flags from the linker symbol, so put these 4477 // flags into the N_GSYM flags to avoid duplicate symbols in 4478 // the symbol table. 4479 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4480 sym[sym_idx].Clear(); 4481 return true; 4482 } 4483 } 4484 } 4485 } 4486 } 4487 4488 sym[sym_idx].SetID(nlist_idx); 4489 sym[sym_idx].SetType(type); 4490 if (set_value) { 4491 sym[sym_idx].GetAddressRef().SetSection(symbol_section); 4492 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 4493 symbols_added.insert(sym[sym_idx].GetAddress().GetFileAddress()); 4494 } 4495 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4496 if (nlist.n_desc & N_WEAK_REF) 4497 sym[sym_idx].SetIsWeak(true); 4498 4499 if (symbol_byte_size > 0) 4500 sym[sym_idx].SetByteSize(symbol_byte_size); 4501 4502 if (demangled_is_synthesized) 4503 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4504 4505 ++sym_idx; 4506 return true; 4507 }; 4508 4509 // First parse all the nlists but don't process them yet. See the next 4510 // comment for an explanation why. 4511 std::vector<struct nlist_64> nlists; 4512 nlists.reserve(symtab_load_command.nsyms); 4513 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { 4514 if (auto nlist = 4515 ParseNList(nlist_data, nlist_data_offset, nlist_byte_size)) 4516 nlists.push_back(*nlist); 4517 else 4518 break; 4519 } 4520 4521 // Now parse all the debug symbols. This is needed to merge non-debug 4522 // symbols in the next step. Non-debug symbols are always coalesced into 4523 // the debug symbol. Doing this in one step would mean that some symbols 4524 // won't be merged. 4525 nlist_idx = 0; 4526 for (auto &nlist : nlists) { 4527 if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols)) 4528 break; 4529 } 4530 4531 // Finally parse all the non debug symbols. 4532 nlist_idx = 0; 4533 for (auto &nlist : nlists) { 4534 if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols)) 4535 break; 4536 } 4537 4538 for (const auto &pos : reexport_shlib_needs_fixup) { 4539 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4540 if (undef_pos != undefined_name_to_desc.end()) { 4541 const uint8_t dylib_ordinal = 4542 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4543 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4544 sym[pos.first].SetReExportedSymbolSharedLibrary( 4545 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 4546 } 4547 } 4548 } 4549 4550 // Count how many trie symbols we'll add to the symbol table 4551 int trie_symbol_table_augment_count = 0; 4552 for (auto &e : external_sym_trie_entries) { 4553 if (symbols_added.find(e.entry.address) == symbols_added.end()) 4554 trie_symbol_table_augment_count++; 4555 } 4556 4557 if (num_syms < sym_idx + trie_symbol_table_augment_count) { 4558 num_syms = sym_idx + trie_symbol_table_augment_count; 4559 sym = symtab->Resize(num_syms); 4560 } 4561 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4562 4563 // Add symbols from the trie to the symbol table. 4564 for (auto &e : external_sym_trie_entries) { 4565 if (symbols_added.find(e.entry.address) != symbols_added.end()) 4566 continue; 4567 4568 // Find the section that this trie address is in, use that to annotate 4569 // symbol type as we add the trie address and name to the symbol table. 4570 Address symbol_addr; 4571 if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) { 4572 SectionSP symbol_section(symbol_addr.GetSection()); 4573 const char *symbol_name = e.entry.name.GetCString(); 4574 bool demangled_is_synthesized = false; 4575 SymbolType type = 4576 GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp, 4577 data_section_sp, data_dirty_section_sp, 4578 data_const_section_sp, symbol_section); 4579 4580 sym[sym_idx].SetType(type); 4581 if (symbol_section) { 4582 sym[sym_idx].SetID(synthetic_sym_id++); 4583 sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name)); 4584 if (demangled_is_synthesized) 4585 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4586 sym[sym_idx].SetIsSynthetic(true); 4587 sym[sym_idx].SetExternal(true); 4588 sym[sym_idx].GetAddressRef() = symbol_addr; 4589 symbols_added.insert(symbol_addr.GetFileAddress()); 4590 if (e.entry.flags & TRIE_SYMBOL_IS_THUMB) 4591 sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB); 4592 ++sym_idx; 4593 } 4594 } 4595 } 4596 4597 if (function_starts_count > 0) { 4598 uint32_t num_synthetic_function_symbols = 0; 4599 for (i = 0; i < function_starts_count; ++i) { 4600 if (symbols_added.find(function_starts.GetEntryRef(i).addr) == 4601 symbols_added.end()) 4602 ++num_synthetic_function_symbols; 4603 } 4604 4605 if (num_synthetic_function_symbols > 0) { 4606 if (num_syms < sym_idx + num_synthetic_function_symbols) { 4607 num_syms = sym_idx + num_synthetic_function_symbols; 4608 sym = symtab->Resize(num_syms); 4609 } 4610 for (i = 0; i < function_starts_count; ++i) { 4611 const FunctionStarts::Entry *func_start_entry = 4612 function_starts.GetEntryAtIndex(i); 4613 if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) { 4614 addr_t symbol_file_addr = func_start_entry->addr; 4615 uint32_t symbol_flags = 0; 4616 if (func_start_entry->data) 4617 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4618 Address symbol_addr; 4619 if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) { 4620 SectionSP symbol_section(symbol_addr.GetSection()); 4621 uint32_t symbol_byte_size = 0; 4622 if (symbol_section) { 4623 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4624 const FunctionStarts::Entry *next_func_start_entry = 4625 function_starts.FindNextEntry(func_start_entry); 4626 const addr_t section_end_file_addr = 4627 section_file_addr + symbol_section->GetByteSize(); 4628 if (next_func_start_entry) { 4629 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4630 if (is_arm) 4631 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4632 symbol_byte_size = std::min<lldb::addr_t>( 4633 next_symbol_file_addr - symbol_file_addr, 4634 section_end_file_addr - symbol_file_addr); 4635 } else { 4636 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4637 } 4638 sym[sym_idx].SetID(synthetic_sym_id++); 4639 sym[sym_idx].GetMangled().SetDemangledName( 4640 GetNextSyntheticSymbolName()); 4641 sym[sym_idx].SetType(eSymbolTypeCode); 4642 sym[sym_idx].SetIsSynthetic(true); 4643 sym[sym_idx].GetAddressRef() = symbol_addr; 4644 symbols_added.insert(symbol_addr.GetFileAddress()); 4645 if (symbol_flags) 4646 sym[sym_idx].SetFlags(symbol_flags); 4647 if (symbol_byte_size) 4648 sym[sym_idx].SetByteSize(symbol_byte_size); 4649 ++sym_idx; 4650 } 4651 } 4652 } 4653 } 4654 } 4655 } 4656 4657 // Trim our symbols down to just what we ended up with after removing any 4658 // symbols. 4659 if (sym_idx < num_syms) { 4660 num_syms = sym_idx; 4661 sym = symtab->Resize(num_syms); 4662 } 4663 4664 // Now synthesize indirect symbols 4665 if (m_dysymtab.nindirectsyms != 0) { 4666 if (indirect_symbol_index_data.GetByteSize()) { 4667 NListIndexToSymbolIndexMap::const_iterator end_index_pos = 4668 m_nlist_idx_to_sym_idx.end(); 4669 4670 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); 4671 ++sect_idx) { 4672 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == 4673 S_SYMBOL_STUBS) { 4674 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4675 if (symbol_stub_byte_size == 0) 4676 continue; 4677 4678 const uint32_t num_symbol_stubs = 4679 m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4680 4681 if (num_symbol_stubs == 0) 4682 continue; 4683 4684 const uint32_t symbol_stub_index_offset = 4685 m_mach_sections[sect_idx].reserved1; 4686 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) { 4687 const uint32_t symbol_stub_index = 4688 symbol_stub_index_offset + stub_idx; 4689 const lldb::addr_t symbol_stub_addr = 4690 m_mach_sections[sect_idx].addr + 4691 (stub_idx * symbol_stub_byte_size); 4692 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4693 if (indirect_symbol_index_data.ValidOffsetForDataOfSize( 4694 symbol_stub_offset, 4)) { 4695 const uint32_t stub_sym_id = 4696 indirect_symbol_index_data.GetU32(&symbol_stub_offset); 4697 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4698 continue; 4699 4700 NListIndexToSymbolIndexMap::const_iterator index_pos = 4701 m_nlist_idx_to_sym_idx.find(stub_sym_id); 4702 Symbol *stub_symbol = nullptr; 4703 if (index_pos != end_index_pos) { 4704 // We have a remapping from the original nlist index to a 4705 // current symbol index, so just look this up by index 4706 stub_symbol = symtab->SymbolAtIndex(index_pos->second); 4707 } else { 4708 // We need to lookup a symbol using the original nlist symbol 4709 // index since this index is coming from the S_SYMBOL_STUBS 4710 stub_symbol = symtab->FindSymbolByID(stub_sym_id); 4711 } 4712 4713 if (stub_symbol) { 4714 Address so_addr(symbol_stub_addr, section_list); 4715 4716 if (stub_symbol->GetType() == eSymbolTypeUndefined) { 4717 // Change the external symbol into a trampoline that makes 4718 // sense These symbols were N_UNDF N_EXT, and are useless 4719 // to us, so we can re-use them so we don't have to make up 4720 // a synthetic symbol for no good reason. 4721 if (resolver_addresses.find(symbol_stub_addr) == 4722 resolver_addresses.end()) 4723 stub_symbol->SetType(eSymbolTypeTrampoline); 4724 else 4725 stub_symbol->SetType(eSymbolTypeResolver); 4726 stub_symbol->SetExternal(false); 4727 stub_symbol->GetAddressRef() = so_addr; 4728 stub_symbol->SetByteSize(symbol_stub_byte_size); 4729 } else { 4730 // Make a synthetic symbol to describe the trampoline stub 4731 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4732 if (sym_idx >= num_syms) { 4733 sym = symtab->Resize(++num_syms); 4734 stub_symbol = nullptr; // this pointer no longer valid 4735 } 4736 sym[sym_idx].SetID(synthetic_sym_id++); 4737 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4738 if (resolver_addresses.find(symbol_stub_addr) == 4739 resolver_addresses.end()) 4740 sym[sym_idx].SetType(eSymbolTypeTrampoline); 4741 else 4742 sym[sym_idx].SetType(eSymbolTypeResolver); 4743 sym[sym_idx].SetIsSynthetic(true); 4744 sym[sym_idx].GetAddressRef() = so_addr; 4745 symbols_added.insert(so_addr.GetFileAddress()); 4746 sym[sym_idx].SetByteSize(symbol_stub_byte_size); 4747 ++sym_idx; 4748 } 4749 } else { 4750 if (log) 4751 log->Warning("symbol stub referencing symbol table symbol " 4752 "%u that isn't in our minimal symbol table, " 4753 "fix this!!!", 4754 stub_sym_id); 4755 } 4756 } 4757 } 4758 } 4759 } 4760 } 4761 } 4762 4763 if (!reexport_trie_entries.empty()) { 4764 for (const auto &e : reexport_trie_entries) { 4765 if (e.entry.import_name) { 4766 // Only add indirect symbols from the Trie entries if we didn't have 4767 // a N_INDR nlist entry for this already 4768 if (indirect_symbol_names.find(e.entry.name) == 4769 indirect_symbol_names.end()) { 4770 // Make a synthetic symbol to describe re-exported symbol. 4771 if (sym_idx >= num_syms) 4772 sym = symtab->Resize(++num_syms); 4773 sym[sym_idx].SetID(synthetic_sym_id++); 4774 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4775 sym[sym_idx].SetType(eSymbolTypeReExported); 4776 sym[sym_idx].SetIsSynthetic(true); 4777 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4778 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) { 4779 sym[sym_idx].SetReExportedSymbolSharedLibrary( 4780 dylib_files.GetFileSpecAtIndex(e.entry.other - 1)); 4781 } 4782 ++sym_idx; 4783 } 4784 } 4785 } 4786 } 4787 4788 // StreamFile s(stdout, false); 4789 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4790 // symtab->Dump(&s, NULL, eSortOrderNone); 4791 // Set symbol byte sizes correctly since mach-o nlist entries don't have 4792 // sizes 4793 symtab->CalculateSymbolSizes(); 4794 4795 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4796 // symtab->Dump(&s, NULL, eSortOrderNone); 4797 4798 return symtab->GetNumSymbols(); 4799 } 4800 4801 void ObjectFileMachO::Dump(Stream *s) { 4802 ModuleSP module_sp(GetModule()); 4803 if (module_sp) { 4804 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 4805 s->Printf("%p: ", static_cast<void *>(this)); 4806 s->Indent(); 4807 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4808 s->PutCString("ObjectFileMachO64"); 4809 else 4810 s->PutCString("ObjectFileMachO32"); 4811 4812 *s << ", file = '" << m_file; 4813 ModuleSpecList all_specs; 4814 ModuleSpec base_spec; 4815 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), 4816 base_spec, all_specs); 4817 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 4818 *s << "', triple"; 4819 if (e) 4820 s->Printf("[%d]", i); 4821 *s << " = "; 4822 *s << all_specs.GetModuleSpecRefAtIndex(i) 4823 .GetArchitecture() 4824 .GetTriple() 4825 .getTriple(); 4826 } 4827 *s << "\n"; 4828 SectionList *sections = GetSectionList(); 4829 if (sections) 4830 sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true, 4831 UINT32_MAX); 4832 4833 if (m_symtab_up) 4834 m_symtab_up->Dump(s, nullptr, eSortOrderNone); 4835 } 4836 } 4837 4838 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header, 4839 const lldb_private::DataExtractor &data, 4840 lldb::offset_t lc_offset) { 4841 uint32_t i; 4842 struct uuid_command load_cmd; 4843 4844 lldb::offset_t offset = lc_offset; 4845 for (i = 0; i < header.ncmds; ++i) { 4846 const lldb::offset_t cmd_offset = offset; 4847 if (data.GetU32(&offset, &load_cmd, 2) == nullptr) 4848 break; 4849 4850 if (load_cmd.cmd == LC_UUID) { 4851 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4852 4853 if (uuid_bytes) { 4854 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4855 // We pretend these object files have no UUID to prevent crashing. 4856 4857 const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8, 4858 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63, 4859 0xbb, 0x14, 0xf0, 0x0d}; 4860 4861 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4862 return UUID(); 4863 4864 return UUID::fromOptionalData(uuid_bytes, 16); 4865 } 4866 return UUID(); 4867 } 4868 offset = cmd_offset + load_cmd.cmdsize; 4869 } 4870 return UUID(); 4871 } 4872 4873 static llvm::StringRef GetOSName(uint32_t cmd) { 4874 switch (cmd) { 4875 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 4876 return llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4877 case llvm::MachO::LC_VERSION_MIN_MACOSX: 4878 return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4879 case llvm::MachO::LC_VERSION_MIN_TVOS: 4880 return llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4881 case llvm::MachO::LC_VERSION_MIN_WATCHOS: 4882 return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4883 default: 4884 llvm_unreachable("unexpected LC_VERSION load command"); 4885 } 4886 } 4887 4888 namespace { 4889 struct OSEnv { 4890 llvm::StringRef os_type; 4891 llvm::StringRef environment; 4892 OSEnv(uint32_t cmd) { 4893 switch (cmd) { 4894 case llvm::MachO::PLATFORM_MACOS: 4895 os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4896 return; 4897 case llvm::MachO::PLATFORM_IOS: 4898 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4899 return; 4900 case llvm::MachO::PLATFORM_TVOS: 4901 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4902 return; 4903 case llvm::MachO::PLATFORM_WATCHOS: 4904 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4905 return; 4906 // NEED_BRIDGEOS_TRIPLE case llvm::MachO::PLATFORM_BRIDGEOS: 4907 // NEED_BRIDGEOS_TRIPLE os_type = 4908 // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS); 4909 // NEED_BRIDGEOS_TRIPLE return; 4910 case llvm::MachO::PLATFORM_MACCATALYST: 4911 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4912 environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI); 4913 return; 4914 case llvm::MachO::PLATFORM_IOSSIMULATOR: 4915 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4916 environment = 4917 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4918 return; 4919 case llvm::MachO::PLATFORM_TVOSSIMULATOR: 4920 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4921 environment = 4922 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4923 return; 4924 case llvm::MachO::PLATFORM_WATCHOSSIMULATOR: 4925 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4926 environment = 4927 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4928 return; 4929 default: { 4930 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 4931 LIBLLDB_LOG_PROCESS)); 4932 LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION"); 4933 } 4934 } 4935 } 4936 }; 4937 4938 struct MinOS { 4939 uint32_t major_version, minor_version, patch_version; 4940 MinOS(uint32_t version) 4941 : major_version(version >> 16), minor_version((version >> 8) & 0xffu), 4942 patch_version(version & 0xffu) {} 4943 }; 4944 } // namespace 4945 4946 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header, 4947 const lldb_private::DataExtractor &data, 4948 lldb::offset_t lc_offset, 4949 ModuleSpec &base_spec, 4950 lldb_private::ModuleSpecList &all_specs) { 4951 auto &base_arch = base_spec.GetArchitecture(); 4952 base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype); 4953 if (!base_arch.IsValid()) 4954 return; 4955 4956 bool found_any = false; 4957 auto add_triple = [&](const llvm::Triple &triple) { 4958 auto spec = base_spec; 4959 spec.GetArchitecture().GetTriple() = triple; 4960 if (spec.GetArchitecture().IsValid()) { 4961 spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset); 4962 all_specs.Append(spec); 4963 found_any = true; 4964 } 4965 }; 4966 4967 // Set OS to an unspecified unknown or a "*" so it can match any OS 4968 llvm::Triple base_triple = base_arch.GetTriple(); 4969 base_triple.setOS(llvm::Triple::UnknownOS); 4970 base_triple.setOSName(llvm::StringRef()); 4971 4972 if (header.filetype == MH_PRELOAD) { 4973 if (header.cputype == CPU_TYPE_ARM) { 4974 // If this is a 32-bit arm binary, and it's a standalone binary, force 4975 // the Vendor to Apple so we don't accidentally pick up the generic 4976 // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the 4977 // frame pointer register; most other armv7 ABIs use a combination of 4978 // r7 and r11. 4979 base_triple.setVendor(llvm::Triple::Apple); 4980 } else { 4981 // Set vendor to an unspecified unknown or a "*" so it can match any 4982 // vendor This is required for correct behavior of EFI debugging on 4983 // x86_64 4984 base_triple.setVendor(llvm::Triple::UnknownVendor); 4985 base_triple.setVendorName(llvm::StringRef()); 4986 } 4987 return add_triple(base_triple); 4988 } 4989 4990 struct load_command load_cmd; 4991 4992 // See if there is an LC_VERSION_MIN_* load command that can give 4993 // us the OS type. 4994 lldb::offset_t offset = lc_offset; 4995 for (uint32_t i = 0; i < header.ncmds; ++i) { 4996 const lldb::offset_t cmd_offset = offset; 4997 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4998 break; 4999 5000 struct version_min_command version_min; 5001 switch (load_cmd.cmd) { 5002 case llvm::MachO::LC_VERSION_MIN_MACOSX: 5003 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 5004 case llvm::MachO::LC_VERSION_MIN_TVOS: 5005 case llvm::MachO::LC_VERSION_MIN_WATCHOS: { 5006 if (load_cmd.cmdsize != sizeof(version_min)) 5007 break; 5008 if (data.ExtractBytes(cmd_offset, sizeof(version_min), 5009 data.GetByteOrder(), &version_min) == 0) 5010 break; 5011 MinOS min_os(version_min.version); 5012 llvm::SmallString<32> os_name; 5013 llvm::raw_svector_ostream os(os_name); 5014 os << GetOSName(load_cmd.cmd) << min_os.major_version << '.' 5015 << min_os.minor_version << '.' << min_os.patch_version; 5016 5017 auto triple = base_triple; 5018 triple.setOSName(os.str()); 5019 5020 // Disambiguate legacy simulator platforms. 5021 if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX && 5022 (base_triple.getArch() == llvm::Triple::x86_64 || 5023 base_triple.getArch() == llvm::Triple::x86)) { 5024 // The combination of legacy LC_VERSION_MIN load command and 5025 // x86 architecture always indicates a simulator environment. 5026 // The combination of LC_VERSION_MIN and arm architecture only 5027 // appears for native binaries. Back-deploying simulator 5028 // binaries on Apple Silicon Macs use the modern unambigous 5029 // LC_BUILD_VERSION load commands; no special handling required. 5030 triple.setEnvironment(llvm::Triple::Simulator); 5031 } 5032 add_triple(triple); 5033 break; 5034 } 5035 default: 5036 break; 5037 } 5038 5039 offset = cmd_offset + load_cmd.cmdsize; 5040 } 5041 5042 // See if there are LC_BUILD_VERSION load commands that can give 5043 // us the OS type. 5044 offset = lc_offset; 5045 for (uint32_t i = 0; i < header.ncmds; ++i) { 5046 const lldb::offset_t cmd_offset = offset; 5047 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 5048 break; 5049 5050 do { 5051 if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) { 5052 struct build_version_command build_version; 5053 if (load_cmd.cmdsize < sizeof(build_version)) { 5054 // Malformed load command. 5055 break; 5056 } 5057 if (data.ExtractBytes(cmd_offset, sizeof(build_version), 5058 data.GetByteOrder(), &build_version) == 0) 5059 break; 5060 MinOS min_os(build_version.minos); 5061 OSEnv os_env(build_version.platform); 5062 llvm::SmallString<16> os_name; 5063 llvm::raw_svector_ostream os(os_name); 5064 os << os_env.os_type << min_os.major_version << '.' 5065 << min_os.minor_version << '.' << min_os.patch_version; 5066 auto triple = base_triple; 5067 triple.setOSName(os.str()); 5068 os_name.clear(); 5069 if (!os_env.environment.empty()) 5070 triple.setEnvironmentName(os_env.environment); 5071 add_triple(triple); 5072 } 5073 } while (0); 5074 offset = cmd_offset + load_cmd.cmdsize; 5075 } 5076 5077 if (!found_any) { 5078 if (header.filetype == MH_KEXT_BUNDLE) { 5079 base_triple.setVendor(llvm::Triple::Apple); 5080 add_triple(base_triple); 5081 } else { 5082 // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT 5083 // so lets not say our Vendor is Apple, leave it as an unspecified 5084 // unknown. 5085 base_triple.setVendor(llvm::Triple::UnknownVendor); 5086 base_triple.setVendorName(llvm::StringRef()); 5087 add_triple(base_triple); 5088 } 5089 } 5090 } 5091 5092 ArchSpec ObjectFileMachO::GetArchitecture( 5093 ModuleSP module_sp, const llvm::MachO::mach_header &header, 5094 const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) { 5095 ModuleSpecList all_specs; 5096 ModuleSpec base_spec; 5097 GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic), 5098 base_spec, all_specs); 5099 5100 // If the object file offers multiple alternative load commands, 5101 // pick the one that matches the module. 5102 if (module_sp) { 5103 const ArchSpec &module_arch = module_sp->GetArchitecture(); 5104 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 5105 ArchSpec mach_arch = 5106 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); 5107 if (module_arch.IsCompatibleMatch(mach_arch)) 5108 return mach_arch; 5109 } 5110 } 5111 5112 // Return the first arch we found. 5113 if (all_specs.GetSize() == 0) 5114 return {}; 5115 return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture(); 5116 } 5117 5118 UUID ObjectFileMachO::GetUUID() { 5119 ModuleSP module_sp(GetModule()); 5120 if (module_sp) { 5121 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5122 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5123 return GetUUID(m_header, m_data, offset); 5124 } 5125 return UUID(); 5126 } 5127 5128 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) { 5129 uint32_t count = 0; 5130 ModuleSP module_sp(GetModule()); 5131 if (module_sp) { 5132 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5133 struct load_command load_cmd; 5134 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5135 std::vector<std::string> rpath_paths; 5136 std::vector<std::string> rpath_relative_paths; 5137 std::vector<std::string> at_exec_relative_paths; 5138 uint32_t i; 5139 for (i = 0; i < m_header.ncmds; ++i) { 5140 const uint32_t cmd_offset = offset; 5141 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5142 break; 5143 5144 switch (load_cmd.cmd) { 5145 case LC_RPATH: 5146 case LC_LOAD_DYLIB: 5147 case LC_LOAD_WEAK_DYLIB: 5148 case LC_REEXPORT_DYLIB: 5149 case LC_LOAD_DYLINKER: 5150 case LC_LOADFVMLIB: 5151 case LC_LOAD_UPWARD_DYLIB: { 5152 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 5153 const char *path = m_data.PeekCStr(name_offset); 5154 if (path) { 5155 if (load_cmd.cmd == LC_RPATH) 5156 rpath_paths.push_back(path); 5157 else { 5158 if (path[0] == '@') { 5159 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 5160 rpath_relative_paths.push_back(path + strlen("@rpath")); 5161 else if (strncmp(path, "@executable_path", 5162 strlen("@executable_path")) == 0) 5163 at_exec_relative_paths.push_back(path + 5164 strlen("@executable_path")); 5165 } else { 5166 FileSpec file_spec(path); 5167 if (files.AppendIfUnique(file_spec)) 5168 count++; 5169 } 5170 } 5171 } 5172 } break; 5173 5174 default: 5175 break; 5176 } 5177 offset = cmd_offset + load_cmd.cmdsize; 5178 } 5179 5180 FileSpec this_file_spec(m_file); 5181 FileSystem::Instance().Resolve(this_file_spec); 5182 5183 if (!rpath_paths.empty()) { 5184 // Fixup all LC_RPATH values to be absolute paths 5185 std::string loader_path("@loader_path"); 5186 std::string executable_path("@executable_path"); 5187 for (auto &rpath : rpath_paths) { 5188 if (llvm::StringRef(rpath).startswith(loader_path)) { 5189 rpath.erase(0, loader_path.size()); 5190 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5191 } else if (llvm::StringRef(rpath).startswith(executable_path)) { 5192 rpath.erase(0, executable_path.size()); 5193 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5194 } 5195 } 5196 5197 for (const auto &rpath_relative_path : rpath_relative_paths) { 5198 for (const auto &rpath : rpath_paths) { 5199 std::string path = rpath; 5200 path += rpath_relative_path; 5201 // It is OK to resolve this path because we must find a file on disk 5202 // for us to accept it anyway if it is rpath relative. 5203 FileSpec file_spec(path); 5204 FileSystem::Instance().Resolve(file_spec); 5205 if (FileSystem::Instance().Exists(file_spec) && 5206 files.AppendIfUnique(file_spec)) { 5207 count++; 5208 break; 5209 } 5210 } 5211 } 5212 } 5213 5214 // We may have @executable_paths but no RPATHS. Figure those out here. 5215 // Only do this if this object file is the executable. We have no way to 5216 // get back to the actual executable otherwise, so we won't get the right 5217 // path. 5218 if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) { 5219 FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent(); 5220 for (const auto &at_exec_relative_path : at_exec_relative_paths) { 5221 FileSpec file_spec = 5222 exec_dir.CopyByAppendingPathComponent(at_exec_relative_path); 5223 if (FileSystem::Instance().Exists(file_spec) && 5224 files.AppendIfUnique(file_spec)) 5225 count++; 5226 } 5227 } 5228 } 5229 return count; 5230 } 5231 5232 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() { 5233 // If the object file is not an executable it can't hold the entry point. 5234 // m_entry_point_address is initialized to an invalid address, so we can just 5235 // return that. If m_entry_point_address is valid it means we've found it 5236 // already, so return the cached value. 5237 5238 if ((!IsExecutable() && !IsDynamicLoader()) || 5239 m_entry_point_address.IsValid()) { 5240 return m_entry_point_address; 5241 } 5242 5243 // Otherwise, look for the UnixThread or Thread command. The data for the 5244 // Thread command is given in /usr/include/mach-o.h, but it is basically: 5245 // 5246 // uint32_t flavor - this is the flavor argument you would pass to 5247 // thread_get_state 5248 // uint32_t count - this is the count of longs in the thread state data 5249 // struct XXX_thread_state state - this is the structure from 5250 // <machine/thread_status.h> corresponding to the flavor. 5251 // <repeat this trio> 5252 // 5253 // So we just keep reading the various register flavors till we find the GPR 5254 // one, then read the PC out of there. 5255 // FIXME: We will need to have a "RegisterContext data provider" class at some 5256 // point that can get all the registers 5257 // out of data in this form & attach them to a given thread. That should 5258 // underlie the MacOS X User process plugin, and we'll also need it for the 5259 // MacOS X Core File process plugin. When we have that we can also use it 5260 // here. 5261 // 5262 // For now we hard-code the offsets and flavors we need: 5263 // 5264 // 5265 5266 ModuleSP module_sp(GetModule()); 5267 if (module_sp) { 5268 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5269 struct load_command load_cmd; 5270 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5271 uint32_t i; 5272 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 5273 bool done = false; 5274 5275 for (i = 0; i < m_header.ncmds; ++i) { 5276 const lldb::offset_t cmd_offset = offset; 5277 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5278 break; 5279 5280 switch (load_cmd.cmd) { 5281 case LC_UNIXTHREAD: 5282 case LC_THREAD: { 5283 while (offset < cmd_offset + load_cmd.cmdsize) { 5284 uint32_t flavor = m_data.GetU32(&offset); 5285 uint32_t count = m_data.GetU32(&offset); 5286 if (count == 0) { 5287 // We've gotten off somehow, log and exit; 5288 return m_entry_point_address; 5289 } 5290 5291 switch (m_header.cputype) { 5292 case llvm::MachO::CPU_TYPE_ARM: 5293 if (flavor == 1 || 5294 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 5295 // from mach/arm/thread_status.h 5296 { 5297 offset += 60; // This is the offset of pc in the GPR thread state 5298 // data structure. 5299 start_address = m_data.GetU32(&offset); 5300 done = true; 5301 } 5302 break; 5303 case llvm::MachO::CPU_TYPE_ARM64: 5304 case llvm::MachO::CPU_TYPE_ARM64_32: 5305 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 5306 { 5307 offset += 256; // This is the offset of pc in the GPR thread state 5308 // data structure. 5309 start_address = m_data.GetU64(&offset); 5310 done = true; 5311 } 5312 break; 5313 case llvm::MachO::CPU_TYPE_I386: 5314 if (flavor == 5315 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5316 { 5317 offset += 40; // This is the offset of eip in the GPR thread state 5318 // data structure. 5319 start_address = m_data.GetU32(&offset); 5320 done = true; 5321 } 5322 break; 5323 case llvm::MachO::CPU_TYPE_X86_64: 5324 if (flavor == 5325 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5326 { 5327 offset += 16 * 8; // This is the offset of rip in the GPR thread 5328 // state data structure. 5329 start_address = m_data.GetU64(&offset); 5330 done = true; 5331 } 5332 break; 5333 default: 5334 return m_entry_point_address; 5335 } 5336 // Haven't found the GPR flavor yet, skip over the data for this 5337 // flavor: 5338 if (done) 5339 break; 5340 offset += count * 4; 5341 } 5342 } break; 5343 case LC_MAIN: { 5344 ConstString text_segment_name("__TEXT"); 5345 uint64_t entryoffset = m_data.GetU64(&offset); 5346 SectionSP text_segment_sp = 5347 GetSectionList()->FindSectionByName(text_segment_name); 5348 if (text_segment_sp) { 5349 done = true; 5350 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5351 } 5352 } break; 5353 5354 default: 5355 break; 5356 } 5357 if (done) 5358 break; 5359 5360 // Go to the next load command: 5361 offset = cmd_offset + load_cmd.cmdsize; 5362 } 5363 5364 if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) { 5365 if (GetSymtab()) { 5366 Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType( 5367 ConstString("_dyld_start"), SymbolType::eSymbolTypeCode, 5368 Symtab::eDebugAny, Symtab::eVisibilityAny); 5369 if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) { 5370 start_address = dyld_start_sym->GetAddress().GetFileAddress(); 5371 } 5372 } 5373 } 5374 5375 if (start_address != LLDB_INVALID_ADDRESS) { 5376 // We got the start address from the load commands, so now resolve that 5377 // address in the sections of this ObjectFile: 5378 if (!m_entry_point_address.ResolveAddressUsingFileSections( 5379 start_address, GetSectionList())) { 5380 m_entry_point_address.Clear(); 5381 } 5382 } else { 5383 // We couldn't read the UnixThread load command - maybe it wasn't there. 5384 // As a fallback look for the "start" symbol in the main executable. 5385 5386 ModuleSP module_sp(GetModule()); 5387 5388 if (module_sp) { 5389 SymbolContextList contexts; 5390 SymbolContext context; 5391 module_sp->FindSymbolsWithNameAndType(ConstString("start"), 5392 eSymbolTypeCode, contexts); 5393 if (contexts.GetSize()) { 5394 if (contexts.GetContextAtIndex(0, context)) 5395 m_entry_point_address = context.symbol->GetAddress(); 5396 } 5397 } 5398 } 5399 } 5400 5401 return m_entry_point_address; 5402 } 5403 5404 lldb_private::Address ObjectFileMachO::GetBaseAddress() { 5405 lldb_private::Address header_addr; 5406 SectionList *section_list = GetSectionList(); 5407 if (section_list) { 5408 SectionSP text_segment_sp( 5409 section_list->FindSectionByName(GetSegmentNameTEXT())); 5410 if (text_segment_sp) { 5411 header_addr.SetSection(text_segment_sp); 5412 header_addr.SetOffset(0); 5413 } 5414 } 5415 return header_addr; 5416 } 5417 5418 uint32_t ObjectFileMachO::GetNumThreadContexts() { 5419 ModuleSP module_sp(GetModule()); 5420 if (module_sp) { 5421 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5422 if (!m_thread_context_offsets_valid) { 5423 m_thread_context_offsets_valid = true; 5424 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5425 FileRangeArray::Entry file_range; 5426 thread_command thread_cmd; 5427 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5428 const uint32_t cmd_offset = offset; 5429 if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr) 5430 break; 5431 5432 if (thread_cmd.cmd == LC_THREAD) { 5433 file_range.SetRangeBase(offset); 5434 file_range.SetByteSize(thread_cmd.cmdsize - 8); 5435 m_thread_context_offsets.Append(file_range); 5436 } 5437 offset = cmd_offset + thread_cmd.cmdsize; 5438 } 5439 } 5440 } 5441 return m_thread_context_offsets.GetSize(); 5442 } 5443 5444 std::string ObjectFileMachO::GetIdentifierString() { 5445 std::string result; 5446 ModuleSP module_sp(GetModule()); 5447 if (module_sp) { 5448 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5449 5450 // First, look over the load commands for an LC_NOTE load command with 5451 // data_owner string "kern ver str" & use that if found. 5452 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5453 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5454 const uint32_t cmd_offset = offset; 5455 load_command lc; 5456 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5457 break; 5458 if (lc.cmd == LC_NOTE) { 5459 char data_owner[17]; 5460 m_data.CopyData(offset, 16, data_owner); 5461 data_owner[16] = '\0'; 5462 offset += 16; 5463 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5464 uint64_t size = m_data.GetU64_unchecked(&offset); 5465 5466 // "kern ver str" has a uint32_t version and then a nul terminated 5467 // c-string. 5468 if (strcmp("kern ver str", data_owner) == 0) { 5469 offset = fileoff; 5470 uint32_t version; 5471 if (m_data.GetU32(&offset, &version, 1) != nullptr) { 5472 if (version == 1) { 5473 uint32_t strsize = size - sizeof(uint32_t); 5474 char *buf = (char *)malloc(strsize); 5475 if (buf) { 5476 m_data.CopyData(offset, strsize, buf); 5477 buf[strsize - 1] = '\0'; 5478 result = buf; 5479 if (buf) 5480 free(buf); 5481 return result; 5482 } 5483 } 5484 } 5485 } 5486 } 5487 offset = cmd_offset + lc.cmdsize; 5488 } 5489 5490 // Second, make a pass over the load commands looking for an obsolete 5491 // LC_IDENT load command. 5492 offset = MachHeaderSizeFromMagic(m_header.magic); 5493 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5494 const uint32_t cmd_offset = offset; 5495 struct ident_command ident_command; 5496 if (m_data.GetU32(&offset, &ident_command, 2) == nullptr) 5497 break; 5498 if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) { 5499 char *buf = (char *)malloc(ident_command.cmdsize); 5500 if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize, 5501 buf) == ident_command.cmdsize) { 5502 buf[ident_command.cmdsize - 1] = '\0'; 5503 result = buf; 5504 } 5505 if (buf) 5506 free(buf); 5507 } 5508 offset = cmd_offset + ident_command.cmdsize; 5509 } 5510 } 5511 return result; 5512 } 5513 5514 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid, 5515 ObjectFile::BinaryType &type) { 5516 address = LLDB_INVALID_ADDRESS; 5517 uuid.Clear(); 5518 ModuleSP module_sp(GetModule()); 5519 if (module_sp) { 5520 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5521 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5522 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5523 const uint32_t cmd_offset = offset; 5524 load_command lc; 5525 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5526 break; 5527 if (lc.cmd == LC_NOTE) { 5528 char data_owner[17]; 5529 memset(data_owner, 0, sizeof(data_owner)); 5530 m_data.CopyData(offset, 16, data_owner); 5531 offset += 16; 5532 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5533 uint64_t size = m_data.GetU64_unchecked(&offset); 5534 5535 // "main bin spec" (main binary specification) data payload is 5536 // formatted: 5537 // uint32_t version [currently 1] 5538 // uint32_t type [0 == unspecified, 1 == kernel, 5539 // 2 == user process, 3 == firmware ] 5540 // uint64_t address [ UINT64_MAX if address not specified ] 5541 // uuid_t uuid [ all zero's if uuid not specified ] 5542 // uint32_t log2_pagesize [ process page size in log base 5543 // 2, e.g. 4k pages are 12. 5544 // 0 for unspecified ] 5545 // uint32_t unused [ for alignment ] 5546 5547 if (strcmp("main bin spec", data_owner) == 0 && size >= 32) { 5548 offset = fileoff; 5549 uint32_t version; 5550 if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) { 5551 uint32_t binspec_type = 0; 5552 uuid_t raw_uuid; 5553 memset(raw_uuid, 0, sizeof(uuid_t)); 5554 5555 if (m_data.GetU32(&offset, &binspec_type, 1) && 5556 m_data.GetU64(&offset, &address, 1) && 5557 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) { 5558 uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t)); 5559 // convert the "main bin spec" type into our 5560 // ObjectFile::BinaryType enum 5561 switch (binspec_type) { 5562 case 0: 5563 type = eBinaryTypeUnknown; 5564 break; 5565 case 1: 5566 type = eBinaryTypeKernel; 5567 break; 5568 case 2: 5569 type = eBinaryTypeUser; 5570 break; 5571 case 3: 5572 type = eBinaryTypeStandalone; 5573 break; 5574 } 5575 return true; 5576 } 5577 } 5578 } 5579 } 5580 offset = cmd_offset + lc.cmdsize; 5581 } 5582 } 5583 return false; 5584 } 5585 5586 lldb::RegisterContextSP 5587 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx, 5588 lldb_private::Thread &thread) { 5589 lldb::RegisterContextSP reg_ctx_sp; 5590 5591 ModuleSP module_sp(GetModule()); 5592 if (module_sp) { 5593 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5594 if (!m_thread_context_offsets_valid) 5595 GetNumThreadContexts(); 5596 5597 const FileRangeArray::Entry *thread_context_file_range = 5598 m_thread_context_offsets.GetEntryAtIndex(idx); 5599 if (thread_context_file_range) { 5600 5601 DataExtractor data(m_data, thread_context_file_range->GetRangeBase(), 5602 thread_context_file_range->GetByteSize()); 5603 5604 switch (m_header.cputype) { 5605 case llvm::MachO::CPU_TYPE_ARM64: 5606 case llvm::MachO::CPU_TYPE_ARM64_32: 5607 reg_ctx_sp = 5608 std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data); 5609 break; 5610 5611 case llvm::MachO::CPU_TYPE_ARM: 5612 reg_ctx_sp = 5613 std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data); 5614 break; 5615 5616 case llvm::MachO::CPU_TYPE_I386: 5617 reg_ctx_sp = 5618 std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data); 5619 break; 5620 5621 case llvm::MachO::CPU_TYPE_X86_64: 5622 reg_ctx_sp = 5623 std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data); 5624 break; 5625 } 5626 } 5627 } 5628 return reg_ctx_sp; 5629 } 5630 5631 ObjectFile::Type ObjectFileMachO::CalculateType() { 5632 switch (m_header.filetype) { 5633 case MH_OBJECT: // 0x1u 5634 if (GetAddressByteSize() == 4) { 5635 // 32 bit kexts are just object files, but they do have a valid 5636 // UUID load command. 5637 if (GetUUID()) { 5638 // this checking for the UUID load command is not enough we could 5639 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5640 // this is required of kexts 5641 if (m_strata == eStrataInvalid) 5642 m_strata = eStrataKernel; 5643 return eTypeSharedLibrary; 5644 } 5645 } 5646 return eTypeObjectFile; 5647 5648 case MH_EXECUTE: 5649 return eTypeExecutable; // 0x2u 5650 case MH_FVMLIB: 5651 return eTypeSharedLibrary; // 0x3u 5652 case MH_CORE: 5653 return eTypeCoreFile; // 0x4u 5654 case MH_PRELOAD: 5655 return eTypeSharedLibrary; // 0x5u 5656 case MH_DYLIB: 5657 return eTypeSharedLibrary; // 0x6u 5658 case MH_DYLINKER: 5659 return eTypeDynamicLinker; // 0x7u 5660 case MH_BUNDLE: 5661 return eTypeSharedLibrary; // 0x8u 5662 case MH_DYLIB_STUB: 5663 return eTypeStubLibrary; // 0x9u 5664 case MH_DSYM: 5665 return eTypeDebugInfo; // 0xAu 5666 case MH_KEXT_BUNDLE: 5667 return eTypeSharedLibrary; // 0xBu 5668 default: 5669 break; 5670 } 5671 return eTypeUnknown; 5672 } 5673 5674 ObjectFile::Strata ObjectFileMachO::CalculateStrata() { 5675 switch (m_header.filetype) { 5676 case MH_OBJECT: // 0x1u 5677 { 5678 // 32 bit kexts are just object files, but they do have a valid 5679 // UUID load command. 5680 if (GetUUID()) { 5681 // this checking for the UUID load command is not enough we could 5682 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5683 // this is required of kexts 5684 if (m_type == eTypeInvalid) 5685 m_type = eTypeSharedLibrary; 5686 5687 return eStrataKernel; 5688 } 5689 } 5690 return eStrataUnknown; 5691 5692 case MH_EXECUTE: // 0x2u 5693 // Check for the MH_DYLDLINK bit in the flags 5694 if (m_header.flags & MH_DYLDLINK) { 5695 return eStrataUser; 5696 } else { 5697 SectionList *section_list = GetSectionList(); 5698 if (section_list) { 5699 static ConstString g_kld_section_name("__KLD"); 5700 if (section_list->FindSectionByName(g_kld_section_name)) 5701 return eStrataKernel; 5702 } 5703 } 5704 return eStrataRawImage; 5705 5706 case MH_FVMLIB: 5707 return eStrataUser; // 0x3u 5708 case MH_CORE: 5709 return eStrataUnknown; // 0x4u 5710 case MH_PRELOAD: 5711 return eStrataRawImage; // 0x5u 5712 case MH_DYLIB: 5713 return eStrataUser; // 0x6u 5714 case MH_DYLINKER: 5715 return eStrataUser; // 0x7u 5716 case MH_BUNDLE: 5717 return eStrataUser; // 0x8u 5718 case MH_DYLIB_STUB: 5719 return eStrataUser; // 0x9u 5720 case MH_DSYM: 5721 return eStrataUnknown; // 0xAu 5722 case MH_KEXT_BUNDLE: 5723 return eStrataKernel; // 0xBu 5724 default: 5725 break; 5726 } 5727 return eStrataUnknown; 5728 } 5729 5730 llvm::VersionTuple ObjectFileMachO::GetVersion() { 5731 ModuleSP module_sp(GetModule()); 5732 if (module_sp) { 5733 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5734 struct dylib_command load_cmd; 5735 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5736 uint32_t version_cmd = 0; 5737 uint64_t version = 0; 5738 uint32_t i; 5739 for (i = 0; i < m_header.ncmds; ++i) { 5740 const lldb::offset_t cmd_offset = offset; 5741 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5742 break; 5743 5744 if (load_cmd.cmd == LC_ID_DYLIB) { 5745 if (version_cmd == 0) { 5746 version_cmd = load_cmd.cmd; 5747 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr) 5748 break; 5749 version = load_cmd.dylib.current_version; 5750 } 5751 break; // Break for now unless there is another more complete version 5752 // number load command in the future. 5753 } 5754 offset = cmd_offset + load_cmd.cmdsize; 5755 } 5756 5757 if (version_cmd == LC_ID_DYLIB) { 5758 unsigned major = (version & 0xFFFF0000ull) >> 16; 5759 unsigned minor = (version & 0x0000FF00ull) >> 8; 5760 unsigned subminor = (version & 0x000000FFull); 5761 return llvm::VersionTuple(major, minor, subminor); 5762 } 5763 } 5764 return llvm::VersionTuple(); 5765 } 5766 5767 ArchSpec ObjectFileMachO::GetArchitecture() { 5768 ModuleSP module_sp(GetModule()); 5769 ArchSpec arch; 5770 if (module_sp) { 5771 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5772 5773 return GetArchitecture(module_sp, m_header, m_data, 5774 MachHeaderSizeFromMagic(m_header.magic)); 5775 } 5776 return arch; 5777 } 5778 5779 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, 5780 addr_t &base_addr, UUID &uuid) { 5781 uuid.Clear(); 5782 base_addr = LLDB_INVALID_ADDRESS; 5783 if (process && process->GetDynamicLoader()) { 5784 DynamicLoader *dl = process->GetDynamicLoader(); 5785 LazyBool using_shared_cache; 5786 LazyBool private_shared_cache; 5787 dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache, 5788 private_shared_cache); 5789 } 5790 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 5791 LIBLLDB_LOG_PROCESS)); 5792 LLDB_LOGF( 5793 log, 5794 "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64, 5795 uuid.GetAsString().c_str(), base_addr); 5796 } 5797 5798 // From dyld SPI header dyld_process_info.h 5799 typedef void *dyld_process_info; 5800 struct lldb_copy__dyld_process_cache_info { 5801 uuid_t cacheUUID; // UUID of cache used by process 5802 uint64_t cacheBaseAddress; // load address of dyld shared cache 5803 bool noCache; // process is running without a dyld cache 5804 bool privateCache; // process is using a private copy of its dyld cache 5805 }; 5806 5807 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with 5808 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile 5809 // errors. So we need to use the actual underlying types of task_t and 5810 // kern_return_t below. 5811 extern "C" unsigned int /*task_t*/ mach_task_self(); 5812 5813 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) { 5814 uuid.Clear(); 5815 base_addr = LLDB_INVALID_ADDRESS; 5816 5817 #if defined(__APPLE__) 5818 uint8_t *(*dyld_get_all_image_infos)(void); 5819 dyld_get_all_image_infos = 5820 (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5821 if (dyld_get_all_image_infos) { 5822 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5823 if (dyld_all_image_infos_address) { 5824 uint32_t *version = (uint32_t *) 5825 dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5826 if (*version >= 13) { 5827 uuid_t *sharedCacheUUID_address = 0; 5828 int wordsize = sizeof(uint8_t *); 5829 if (wordsize == 8) { 5830 sharedCacheUUID_address = 5831 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5832 160); // sharedCacheUUID <mach-o/dyld_images.h> 5833 if (*version >= 15) 5834 base_addr = 5835 *(uint64_t 5836 *)((uint8_t *)dyld_all_image_infos_address + 5837 176); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5838 } else { 5839 sharedCacheUUID_address = 5840 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5841 84); // sharedCacheUUID <mach-o/dyld_images.h> 5842 if (*version >= 15) { 5843 base_addr = 0; 5844 base_addr = 5845 *(uint32_t 5846 *)((uint8_t *)dyld_all_image_infos_address + 5847 100); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5848 } 5849 } 5850 uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t)); 5851 } 5852 } 5853 } else { 5854 // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI 5855 dyld_process_info (*dyld_process_info_create)( 5856 unsigned int /* task_t */ task, uint64_t timestamp, 5857 unsigned int /*kern_return_t*/ *kernelError); 5858 void (*dyld_process_info_get_cache)(void *info, void *cacheInfo); 5859 void (*dyld_process_info_release)(dyld_process_info info); 5860 5861 dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, 5862 unsigned int /*kern_return_t*/ *)) 5863 dlsym(RTLD_DEFAULT, "_dyld_process_info_create"); 5864 dyld_process_info_get_cache = (void (*)(void *, void *))dlsym( 5865 RTLD_DEFAULT, "_dyld_process_info_get_cache"); 5866 dyld_process_info_release = 5867 (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release"); 5868 5869 if (dyld_process_info_create && dyld_process_info_get_cache) { 5870 unsigned int /*kern_return_t */ kern_ret; 5871 dyld_process_info process_info = 5872 dyld_process_info_create(::mach_task_self(), 0, &kern_ret); 5873 if (process_info) { 5874 struct lldb_copy__dyld_process_cache_info sc_info; 5875 memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info)); 5876 dyld_process_info_get_cache(process_info, &sc_info); 5877 if (sc_info.cacheBaseAddress != 0) { 5878 base_addr = sc_info.cacheBaseAddress; 5879 uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t)); 5880 } 5881 dyld_process_info_release(process_info); 5882 } 5883 } 5884 } 5885 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 5886 LIBLLDB_LOG_PROCESS)); 5887 if (log && uuid.IsValid()) 5888 LLDB_LOGF(log, 5889 "lldb's in-memory shared cache has a UUID of %s base address of " 5890 "0x%" PRIx64, 5891 uuid.GetAsString().c_str(), base_addr); 5892 #endif 5893 } 5894 5895 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() { 5896 if (!m_min_os_version) { 5897 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5898 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5899 const lldb::offset_t load_cmd_offset = offset; 5900 5901 version_min_command lc; 5902 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5903 break; 5904 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 5905 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 5906 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 5907 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 5908 if (m_data.GetU32(&offset, &lc.version, 5909 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 5910 const uint32_t xxxx = lc.version >> 16; 5911 const uint32_t yy = (lc.version >> 8) & 0xffu; 5912 const uint32_t zz = lc.version & 0xffu; 5913 if (xxxx) { 5914 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 5915 break; 5916 } 5917 } 5918 } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 5919 // struct build_version_command { 5920 // uint32_t cmd; /* LC_BUILD_VERSION */ 5921 // uint32_t cmdsize; /* sizeof(struct 5922 // build_version_command) plus */ 5923 // /* ntools * sizeof(struct 5924 // build_tool_version) */ 5925 // uint32_t platform; /* platform */ 5926 // uint32_t minos; /* X.Y.Z is encoded in nibbles 5927 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded in 5928 // nibbles xxxx.yy.zz */ uint32_t ntools; /* number of 5929 // tool entries following this */ 5930 // }; 5931 5932 offset += 4; // skip platform 5933 uint32_t minos = m_data.GetU32(&offset); 5934 5935 const uint32_t xxxx = minos >> 16; 5936 const uint32_t yy = (minos >> 8) & 0xffu; 5937 const uint32_t zz = minos & 0xffu; 5938 if (xxxx) { 5939 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 5940 break; 5941 } 5942 } 5943 5944 offset = load_cmd_offset + lc.cmdsize; 5945 } 5946 5947 if (!m_min_os_version) { 5948 // Set version to an empty value so we don't keep trying to 5949 m_min_os_version = llvm::VersionTuple(); 5950 } 5951 } 5952 5953 return *m_min_os_version; 5954 } 5955 5956 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() { 5957 if (!m_sdk_versions.hasValue()) { 5958 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5959 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5960 const lldb::offset_t load_cmd_offset = offset; 5961 5962 version_min_command lc; 5963 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5964 break; 5965 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 5966 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 5967 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 5968 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 5969 if (m_data.GetU32(&offset, &lc.version, 5970 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 5971 const uint32_t xxxx = lc.sdk >> 16; 5972 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5973 const uint32_t zz = lc.sdk & 0xffu; 5974 if (xxxx) { 5975 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); 5976 break; 5977 } else { 5978 GetModule()->ReportWarning("minimum OS version load command with " 5979 "invalid (0) version found."); 5980 } 5981 } 5982 } 5983 offset = load_cmd_offset + lc.cmdsize; 5984 } 5985 5986 if (!m_sdk_versions.hasValue()) { 5987 offset = MachHeaderSizeFromMagic(m_header.magic); 5988 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5989 const lldb::offset_t load_cmd_offset = offset; 5990 5991 version_min_command lc; 5992 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5993 break; 5994 if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 5995 // struct build_version_command { 5996 // uint32_t cmd; /* LC_BUILD_VERSION */ 5997 // uint32_t cmdsize; /* sizeof(struct 5998 // build_version_command) plus */ 5999 // /* ntools * sizeof(struct 6000 // build_tool_version) */ 6001 // uint32_t platform; /* platform */ 6002 // uint32_t minos; /* X.Y.Z is encoded in nibbles 6003 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded 6004 // in nibbles xxxx.yy.zz */ uint32_t ntools; /* number 6005 // of tool entries following this */ 6006 // }; 6007 6008 offset += 4; // skip platform 6009 uint32_t minos = m_data.GetU32(&offset); 6010 6011 const uint32_t xxxx = minos >> 16; 6012 const uint32_t yy = (minos >> 8) & 0xffu; 6013 const uint32_t zz = minos & 0xffu; 6014 if (xxxx) { 6015 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); 6016 break; 6017 } 6018 } 6019 offset = load_cmd_offset + lc.cmdsize; 6020 } 6021 } 6022 6023 if (!m_sdk_versions.hasValue()) 6024 m_sdk_versions = llvm::VersionTuple(); 6025 } 6026 6027 return m_sdk_versions.getValue(); 6028 } 6029 6030 bool ObjectFileMachO::GetIsDynamicLinkEditor() { 6031 return m_header.filetype == llvm::MachO::MH_DYLINKER; 6032 } 6033 6034 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() { 6035 return m_allow_assembly_emulation_unwind_plans; 6036 } 6037 6038 // PluginInterface protocol 6039 lldb_private::ConstString ObjectFileMachO::GetPluginName() { 6040 return GetPluginNameStatic(); 6041 } 6042 6043 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; } 6044 6045 Section *ObjectFileMachO::GetMachHeaderSection() { 6046 // Find the first address of the mach header which is the first non-zero file 6047 // sized section whose file offset is zero. This is the base file address of 6048 // the mach-o file which can be subtracted from the vmaddr of the other 6049 // segments found in memory and added to the load address 6050 ModuleSP module_sp = GetModule(); 6051 if (!module_sp) 6052 return nullptr; 6053 SectionList *section_list = GetSectionList(); 6054 if (!section_list) 6055 return nullptr; 6056 const size_t num_sections = section_list->GetSize(); 6057 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6058 Section *section = section_list->GetSectionAtIndex(sect_idx).get(); 6059 if (section->GetFileOffset() == 0 && SectionIsLoadable(section)) 6060 return section; 6061 } 6062 return nullptr; 6063 } 6064 6065 bool ObjectFileMachO::SectionIsLoadable(const Section *section) { 6066 if (!section) 6067 return false; 6068 const bool is_dsym = (m_header.filetype == MH_DSYM); 6069 if (section->GetFileSize() == 0 && !is_dsym) 6070 return false; 6071 if (section->IsThreadSpecific()) 6072 return false; 6073 if (GetModule().get() != section->GetModule().get()) 6074 return false; 6075 // Be careful with __LINKEDIT and __DWARF segments 6076 if (section->GetName() == GetSegmentNameLINKEDIT() || 6077 section->GetName() == GetSegmentNameDWARF()) { 6078 // Only map __LINKEDIT and __DWARF if we have an in memory image and 6079 // this isn't a kernel binary like a kext or mach_kernel. 6080 const bool is_memory_image = (bool)m_process_wp.lock(); 6081 const Strata strata = GetStrata(); 6082 if (is_memory_image == false || strata == eStrataKernel) 6083 return false; 6084 } 6085 return true; 6086 } 6087 6088 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage( 6089 lldb::addr_t header_load_address, const Section *header_section, 6090 const Section *section) { 6091 ModuleSP module_sp = GetModule(); 6092 if (module_sp && header_section && section && 6093 header_load_address != LLDB_INVALID_ADDRESS) { 6094 lldb::addr_t file_addr = header_section->GetFileAddress(); 6095 if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section)) 6096 return section->GetFileAddress() - file_addr + header_load_address; 6097 } 6098 return LLDB_INVALID_ADDRESS; 6099 } 6100 6101 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value, 6102 bool value_is_offset) { 6103 ModuleSP module_sp = GetModule(); 6104 if (!module_sp) 6105 return false; 6106 6107 SectionList *section_list = GetSectionList(); 6108 if (!section_list) 6109 return false; 6110 6111 size_t num_loaded_sections = 0; 6112 const size_t num_sections = section_list->GetSize(); 6113 6114 if (value_is_offset) { 6115 // "value" is an offset to apply to each top level segment 6116 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6117 // Iterate through the object file sections to find all of the 6118 // sections that size on disk (to avoid __PAGEZERO) and load them 6119 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6120 if (SectionIsLoadable(section_sp.get())) 6121 if (target.GetSectionLoadList().SetSectionLoadAddress( 6122 section_sp, section_sp->GetFileAddress() + value)) 6123 ++num_loaded_sections; 6124 } 6125 } else { 6126 // "value" is the new base address of the mach_header, adjust each 6127 // section accordingly 6128 6129 Section *mach_header_section = GetMachHeaderSection(); 6130 if (mach_header_section) { 6131 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6132 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6133 6134 lldb::addr_t section_load_addr = 6135 CalculateSectionLoadAddressForMemoryImage( 6136 value, mach_header_section, section_sp.get()); 6137 if (section_load_addr != LLDB_INVALID_ADDRESS) { 6138 if (target.GetSectionLoadList().SetSectionLoadAddress( 6139 section_sp, section_load_addr)) 6140 ++num_loaded_sections; 6141 } 6142 } 6143 } 6144 } 6145 return num_loaded_sections > 0; 6146 } 6147 6148 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp, 6149 const FileSpec &outfile, Status &error) { 6150 if (!process_sp) 6151 return false; 6152 6153 Target &target = process_sp->GetTarget(); 6154 const ArchSpec target_arch = target.GetArchitecture(); 6155 const llvm::Triple &target_triple = target_arch.GetTriple(); 6156 if (target_triple.getVendor() == llvm::Triple::Apple && 6157 (target_triple.getOS() == llvm::Triple::MacOSX || 6158 target_triple.getOS() == llvm::Triple::IOS || 6159 target_triple.getOS() == llvm::Triple::WatchOS || 6160 target_triple.getOS() == llvm::Triple::TvOS)) { 6161 // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) 6162 // { 6163 bool make_core = false; 6164 switch (target_arch.GetMachine()) { 6165 case llvm::Triple::aarch64: 6166 case llvm::Triple::aarch64_32: 6167 case llvm::Triple::arm: 6168 case llvm::Triple::thumb: 6169 case llvm::Triple::x86: 6170 case llvm::Triple::x86_64: 6171 make_core = true; 6172 break; 6173 default: 6174 error.SetErrorStringWithFormat("unsupported core architecture: %s", 6175 target_triple.str().c_str()); 6176 break; 6177 } 6178 6179 if (make_core) { 6180 std::vector<segment_command_64> segment_load_commands; 6181 // uint32_t range_info_idx = 0; 6182 MemoryRegionInfo range_info; 6183 Status range_error = process_sp->GetMemoryRegionInfo(0, range_info); 6184 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 6185 const ByteOrder byte_order = target_arch.GetByteOrder(); 6186 if (range_error.Success()) { 6187 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) { 6188 const addr_t addr = range_info.GetRange().GetRangeBase(); 6189 const addr_t size = range_info.GetRange().GetByteSize(); 6190 6191 if (size == 0) 6192 break; 6193 6194 // Calculate correct protections 6195 uint32_t prot = 0; 6196 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 6197 prot |= VM_PROT_READ; 6198 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 6199 prot |= VM_PROT_WRITE; 6200 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 6201 prot |= VM_PROT_EXECUTE; 6202 6203 if (prot != 0) { 6204 uint32_t cmd_type = LC_SEGMENT_64; 6205 uint32_t segment_size = sizeof(segment_command_64); 6206 if (addr_byte_size == 4) { 6207 cmd_type = LC_SEGMENT; 6208 segment_size = sizeof(segment_command); 6209 } 6210 segment_command_64 segment = { 6211 cmd_type, // uint32_t cmd; 6212 segment_size, // uint32_t cmdsize; 6213 {0}, // char segname[16]; 6214 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 6215 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 6216 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 6217 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 6218 prot, // uint32_t maxprot; 6219 prot, // uint32_t initprot; 6220 0, // uint32_t nsects; 6221 0}; // uint32_t flags; 6222 segment_load_commands.push_back(segment); 6223 } else { 6224 // No protections and a size of 1 used to be returned from old 6225 // debugservers when we asked about a region that was past the 6226 // last memory region and it indicates the end... 6227 if (size == 1) 6228 break; 6229 } 6230 6231 range_error = process_sp->GetMemoryRegionInfo( 6232 range_info.GetRange().GetRangeEnd(), range_info); 6233 if (range_error.Fail()) 6234 break; 6235 } 6236 6237 StreamString buffer(Stream::eBinary, addr_byte_size, byte_order); 6238 6239 mach_header_64 mach_header; 6240 if (addr_byte_size == 8) { 6241 mach_header.magic = MH_MAGIC_64; 6242 } else { 6243 mach_header.magic = MH_MAGIC; 6244 } 6245 mach_header.cputype = target_arch.GetMachOCPUType(); 6246 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 6247 mach_header.filetype = MH_CORE; 6248 mach_header.ncmds = segment_load_commands.size(); 6249 mach_header.flags = 0; 6250 mach_header.reserved = 0; 6251 ThreadList &thread_list = process_sp->GetThreadList(); 6252 const uint32_t num_threads = thread_list.GetSize(); 6253 6254 // Make an array of LC_THREAD data items. Each one contains the 6255 // contents of the LC_THREAD load command. The data doesn't contain 6256 // the load command + load command size, we will add the load command 6257 // and load command size as we emit the data. 6258 std::vector<StreamString> LC_THREAD_datas(num_threads); 6259 for (auto &LC_THREAD_data : LC_THREAD_datas) { 6260 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 6261 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 6262 LC_THREAD_data.SetByteOrder(byte_order); 6263 } 6264 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { 6265 ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); 6266 if (thread_sp) { 6267 switch (mach_header.cputype) { 6268 case llvm::MachO::CPU_TYPE_ARM64: 6269 case llvm::MachO::CPU_TYPE_ARM64_32: 6270 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD( 6271 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6272 break; 6273 6274 case llvm::MachO::CPU_TYPE_ARM: 6275 RegisterContextDarwin_arm_Mach::Create_LC_THREAD( 6276 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6277 break; 6278 6279 case llvm::MachO::CPU_TYPE_I386: 6280 RegisterContextDarwin_i386_Mach::Create_LC_THREAD( 6281 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6282 break; 6283 6284 case llvm::MachO::CPU_TYPE_X86_64: 6285 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD( 6286 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6287 break; 6288 } 6289 } 6290 } 6291 6292 // The size of the load command is the size of the segments... 6293 if (addr_byte_size == 8) { 6294 mach_header.sizeofcmds = 6295 segment_load_commands.size() * sizeof(struct segment_command_64); 6296 } else { 6297 mach_header.sizeofcmds = 6298 segment_load_commands.size() * sizeof(struct segment_command); 6299 } 6300 6301 // and the size of all LC_THREAD load command 6302 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6303 ++mach_header.ncmds; 6304 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 6305 } 6306 6307 // Write the mach header 6308 buffer.PutHex32(mach_header.magic); 6309 buffer.PutHex32(mach_header.cputype); 6310 buffer.PutHex32(mach_header.cpusubtype); 6311 buffer.PutHex32(mach_header.filetype); 6312 buffer.PutHex32(mach_header.ncmds); 6313 buffer.PutHex32(mach_header.sizeofcmds); 6314 buffer.PutHex32(mach_header.flags); 6315 if (addr_byte_size == 8) { 6316 buffer.PutHex32(mach_header.reserved); 6317 } 6318 6319 // Skip the mach header and all load commands and align to the next 6320 // 0x1000 byte boundary 6321 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 6322 if (file_offset & 0x00000fff) { 6323 file_offset += 0x00001000ull; 6324 file_offset &= (~0x00001000ull + 1); 6325 } 6326 6327 for (auto &segment : segment_load_commands) { 6328 segment.fileoff = file_offset; 6329 file_offset += segment.filesize; 6330 } 6331 6332 // Write out all of the LC_THREAD load commands 6333 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6334 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 6335 buffer.PutHex32(LC_THREAD); 6336 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 6337 buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size); 6338 } 6339 6340 // Write out all of the segment load commands 6341 for (const auto &segment : segment_load_commands) { 6342 printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 6343 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 6344 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 6345 segment.cmd, segment.cmdsize, segment.vmaddr, 6346 segment.vmaddr + segment.vmsize, segment.fileoff, 6347 segment.filesize, segment.maxprot, segment.initprot, 6348 segment.nsects, segment.flags); 6349 6350 buffer.PutHex32(segment.cmd); 6351 buffer.PutHex32(segment.cmdsize); 6352 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 6353 if (addr_byte_size == 8) { 6354 buffer.PutHex64(segment.vmaddr); 6355 buffer.PutHex64(segment.vmsize); 6356 buffer.PutHex64(segment.fileoff); 6357 buffer.PutHex64(segment.filesize); 6358 } else { 6359 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 6360 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 6361 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 6362 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 6363 } 6364 buffer.PutHex32(segment.maxprot); 6365 buffer.PutHex32(segment.initprot); 6366 buffer.PutHex32(segment.nsects); 6367 buffer.PutHex32(segment.flags); 6368 } 6369 6370 std::string core_file_path(outfile.GetPath()); 6371 auto core_file = FileSystem::Instance().Open( 6372 outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate | 6373 File::eOpenOptionCanCreate); 6374 if (!core_file) { 6375 error = core_file.takeError(); 6376 } else { 6377 // Read 1 page at a time 6378 uint8_t bytes[0x1000]; 6379 // Write the mach header and load commands out to the core file 6380 size_t bytes_written = buffer.GetString().size(); 6381 error = 6382 core_file.get()->Write(buffer.GetString().data(), bytes_written); 6383 if (error.Success()) { 6384 // Now write the file data for all memory segments in the process 6385 for (const auto &segment : segment_load_commands) { 6386 if (core_file.get()->SeekFromStart(segment.fileoff) == -1) { 6387 error.SetErrorStringWithFormat( 6388 "unable to seek to offset 0x%" PRIx64 " in '%s'", 6389 segment.fileoff, core_file_path.c_str()); 6390 break; 6391 } 6392 6393 printf("Saving %" PRId64 6394 " bytes of data for memory region at 0x%" PRIx64 "\n", 6395 segment.vmsize, segment.vmaddr); 6396 addr_t bytes_left = segment.vmsize; 6397 addr_t addr = segment.vmaddr; 6398 Status memory_read_error; 6399 while (bytes_left > 0 && error.Success()) { 6400 const size_t bytes_to_read = 6401 bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 6402 6403 // In a savecore setting, we don't really care about caching, 6404 // as the data is dumped and very likely never read again, 6405 // so we call ReadMemoryFromInferior to bypass it. 6406 const size_t bytes_read = process_sp->ReadMemoryFromInferior( 6407 addr, bytes, bytes_to_read, memory_read_error); 6408 6409 if (bytes_read == bytes_to_read) { 6410 size_t bytes_written = bytes_read; 6411 error = core_file.get()->Write(bytes, bytes_written); 6412 bytes_left -= bytes_read; 6413 addr += bytes_read; 6414 } else { 6415 // Some pages within regions are not readable, those should 6416 // be zero filled 6417 memset(bytes, 0, bytes_to_read); 6418 size_t bytes_written = bytes_to_read; 6419 error = core_file.get()->Write(bytes, bytes_written); 6420 bytes_left -= bytes_to_read; 6421 addr += bytes_to_read; 6422 } 6423 } 6424 } 6425 } 6426 } 6427 } else { 6428 error.SetErrorString( 6429 "process doesn't support getting memory region info"); 6430 } 6431 } 6432 return true; // This is the right plug to handle saving core files for 6433 // this process 6434 } 6435 return false; 6436 } 6437