1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/FileSpecList.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/ModuleSpec.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/Progress.h"
22 #include "lldb/Core/Section.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Symbol/DWARFCallFrameInfo.h"
26 #include "lldb/Symbol/LocateSymbolFile.h"
27 #include "lldb/Symbol/ObjectFile.h"
28 #include "lldb/Target/DynamicLoader.h"
29 #include "lldb/Target/MemoryRegionInfo.h"
30 #include "lldb/Target/Platform.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/SectionLoadList.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Target/ThreadList.h"
36 #include "lldb/Utility/ArchSpec.h"
37 #include "lldb/Utility/DataBuffer.h"
38 #include "lldb/Utility/FileSpec.h"
39 #include "lldb/Utility/LLDBLog.h"
40 #include "lldb/Utility/Log.h"
41 #include "lldb/Utility/RangeMap.h"
42 #include "lldb/Utility/RegisterValue.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StreamString.h"
45 #include "lldb/Utility/Timer.h"
46 #include "lldb/Utility/UUID.h"
47 
48 #include "lldb/Host/SafeMachO.h"
49 
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/MemoryBuffer.h"
53 
54 #include "ObjectFileMachO.h"
55 
56 #if defined(__APPLE__)
57 #include <TargetConditionals.h>
58 // GetLLDBSharedCacheUUID() needs to call dlsym()
59 #include <dlfcn.h>
60 #include <mach/mach_init.h>
61 #include <mach/vm_map.h>
62 #include <lldb/Host/SafeMachO.h>
63 #endif
64 
65 #ifndef __APPLE__
66 #include "Utility/UuidCompatibility.h"
67 #else
68 #include <uuid/uuid.h>
69 #endif
70 
71 #include <bitset>
72 #include <memory>
73 
74 // Unfortunately the signpost header pulls in the system MachO header, too.
75 #ifdef CPU_TYPE_ARM
76 #undef CPU_TYPE_ARM
77 #endif
78 #ifdef CPU_TYPE_ARM64
79 #undef CPU_TYPE_ARM64
80 #endif
81 #ifdef CPU_TYPE_ARM64_32
82 #undef CPU_TYPE_ARM64_32
83 #endif
84 #ifdef CPU_TYPE_I386
85 #undef CPU_TYPE_I386
86 #endif
87 #ifdef CPU_TYPE_X86_64
88 #undef CPU_TYPE_X86_64
89 #endif
90 #ifdef MH_DYLINKER
91 #undef MH_DYLINKER
92 #endif
93 #ifdef MH_OBJECT
94 #undef MH_OBJECT
95 #endif
96 #ifdef LC_VERSION_MIN_MACOSX
97 #undef LC_VERSION_MIN_MACOSX
98 #endif
99 #ifdef LC_VERSION_MIN_IPHONEOS
100 #undef LC_VERSION_MIN_IPHONEOS
101 #endif
102 #ifdef LC_VERSION_MIN_TVOS
103 #undef LC_VERSION_MIN_TVOS
104 #endif
105 #ifdef LC_VERSION_MIN_WATCHOS
106 #undef LC_VERSION_MIN_WATCHOS
107 #endif
108 #ifdef LC_BUILD_VERSION
109 #undef LC_BUILD_VERSION
110 #endif
111 #ifdef PLATFORM_MACOS
112 #undef PLATFORM_MACOS
113 #endif
114 #ifdef PLATFORM_MACCATALYST
115 #undef PLATFORM_MACCATALYST
116 #endif
117 #ifdef PLATFORM_IOS
118 #undef PLATFORM_IOS
119 #endif
120 #ifdef PLATFORM_IOSSIMULATOR
121 #undef PLATFORM_IOSSIMULATOR
122 #endif
123 #ifdef PLATFORM_TVOS
124 #undef PLATFORM_TVOS
125 #endif
126 #ifdef PLATFORM_TVOSSIMULATOR
127 #undef PLATFORM_TVOSSIMULATOR
128 #endif
129 #ifdef PLATFORM_WATCHOS
130 #undef PLATFORM_WATCHOS
131 #endif
132 #ifdef PLATFORM_WATCHOSSIMULATOR
133 #undef PLATFORM_WATCHOSSIMULATOR
134 #endif
135 
136 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
137 using namespace lldb;
138 using namespace lldb_private;
139 using namespace llvm::MachO;
140 
141 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
142 
143 // Some structure definitions needed for parsing the dyld shared cache files
144 // found on iOS devices.
145 
146 struct lldb_copy_dyld_cache_header_v1 {
147   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
148   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
149   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
150   uint32_t imagesOffset;
151   uint32_t imagesCount;
152   uint64_t dyldBaseAddress;
153   uint64_t codeSignatureOffset;
154   uint64_t codeSignatureSize;
155   uint64_t slideInfoOffset;
156   uint64_t slideInfoSize;
157   uint64_t localSymbolsOffset;
158   uint64_t localSymbolsSize;
159   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
160                     // and later
161 };
162 
163 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
164                                const char *alt_name, size_t reg_byte_size,
165                                Stream &data) {
166   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
167   if (reg_info == nullptr)
168     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
169   if (reg_info) {
170     lldb_private::RegisterValue reg_value;
171     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
172       if (reg_info->byte_size >= reg_byte_size)
173         data.Write(reg_value.GetBytes(), reg_byte_size);
174       else {
175         data.Write(reg_value.GetBytes(), reg_info->byte_size);
176         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
177           data.PutChar(0);
178       }
179       return;
180     }
181   }
182   // Just write zeros if all else fails
183   for (size_t i = 0; i < reg_byte_size; ++i)
184     data.PutChar(0);
185 }
186 
187 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
188 public:
189   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
190                                     const DataExtractor &data)
191       : RegisterContextDarwin_x86_64(thread, 0) {
192     SetRegisterDataFrom_LC_THREAD(data);
193   }
194 
195   void InvalidateAllRegisters() override {
196     // Do nothing... registers are always valid...
197   }
198 
199   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
200     lldb::offset_t offset = 0;
201     SetError(GPRRegSet, Read, -1);
202     SetError(FPURegSet, Read, -1);
203     SetError(EXCRegSet, Read, -1);
204     bool done = false;
205 
206     while (!done) {
207       int flavor = data.GetU32(&offset);
208       if (flavor == 0)
209         done = true;
210       else {
211         uint32_t i;
212         uint32_t count = data.GetU32(&offset);
213         switch (flavor) {
214         case GPRRegSet:
215           for (i = 0; i < count; ++i)
216             (&gpr.rax)[i] = data.GetU64(&offset);
217           SetError(GPRRegSet, Read, 0);
218           done = true;
219 
220           break;
221         case FPURegSet:
222           // TODO: fill in FPU regs....
223           // SetError (FPURegSet, Read, -1);
224           done = true;
225 
226           break;
227         case EXCRegSet:
228           exc.trapno = data.GetU32(&offset);
229           exc.err = data.GetU32(&offset);
230           exc.faultvaddr = data.GetU64(&offset);
231           SetError(EXCRegSet, Read, 0);
232           done = true;
233           break;
234         case 7:
235         case 8:
236         case 9:
237           // fancy flavors that encapsulate of the above flavors...
238           break;
239 
240         default:
241           done = true;
242           break;
243         }
244       }
245     }
246   }
247 
248   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
249     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
250     if (reg_ctx_sp) {
251       RegisterContext *reg_ctx = reg_ctx_sp.get();
252 
253       data.PutHex32(GPRRegSet); // Flavor
254       data.PutHex32(GPRWordCount);
255       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
258       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
259       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
260       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
261       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
262       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
263       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
264       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
265       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
266       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
267       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
268       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
269       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
270       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
271       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
272       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
275       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
276 
277       //            // Write out the FPU registers
278       //            const size_t fpu_byte_size = sizeof(FPU);
279       //            size_t bytes_written = 0;
280       //            data.PutHex32 (FPURegSet);
281       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
282       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
283       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
284       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
285       //            data);   // uint16_t    fcw;    // "fctrl"
286       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
287       //            data);  // uint16_t    fsw;    // "fstat"
288       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
289       //            data);   // uint8_t     ftw;    // "ftag"
290       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
291       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
292       //            data);     // uint16_t    fop;    // "fop"
293       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
294       //            data);    // uint32_t    ip;     // "fioff"
295       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
296       //            data);    // uint16_t    cs;     // "fiseg"
297       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
298       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
299       //            data);   // uint32_t    dp;     // "fooff"
300       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
301       //            data);    // uint16_t    ds;     // "foseg"
302       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
303       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
304       //            data);    // uint32_t    mxcsr;
305       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
306       //            4, data);// uint32_t    mxcsrmask;
307       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
308       //            sizeof(MMSReg), data);
309       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
310       //            sizeof(MMSReg), data);
311       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
312       //            sizeof(MMSReg), data);
313       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
314       //            sizeof(MMSReg), data);
315       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
316       //            sizeof(MMSReg), data);
317       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
318       //            sizeof(MMSReg), data);
319       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
320       //            sizeof(MMSReg), data);
321       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
322       //            sizeof(MMSReg), data);
323       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
324       //            sizeof(XMMReg), data);
325       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
326       //            sizeof(XMMReg), data);
327       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
328       //            sizeof(XMMReg), data);
329       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
330       //            sizeof(XMMReg), data);
331       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
332       //            sizeof(XMMReg), data);
333       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
334       //            sizeof(XMMReg), data);
335       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
336       //            sizeof(XMMReg), data);
337       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
338       //            sizeof(XMMReg), data);
339       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
340       //            sizeof(XMMReg), data);
341       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
342       //            sizeof(XMMReg), data);
343       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
344       //            sizeof(XMMReg), data);
345       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
346       //            sizeof(XMMReg), data);
347       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
348       //            sizeof(XMMReg), data);
349       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
350       //            sizeof(XMMReg), data);
351       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
352       //            sizeof(XMMReg), data);
353       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
354       //            sizeof(XMMReg), data);
355       //
356       //            // Fill rest with zeros
357       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
358       //            i)
359       //                data.PutChar(0);
360 
361       // Write out the EXC registers
362       data.PutHex32(EXCRegSet);
363       data.PutHex32(EXCWordCount);
364       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
365       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
366       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
367       return true;
368     }
369     return false;
370   }
371 
372 protected:
373   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
374 
375   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
376 
377   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
378 
379   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
380     return 0;
381   }
382 
383   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
384     return 0;
385   }
386 
387   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
388     return 0;
389   }
390 };
391 
392 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
393 public:
394   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
395                                   const DataExtractor &data)
396       : RegisterContextDarwin_i386(thread, 0) {
397     SetRegisterDataFrom_LC_THREAD(data);
398   }
399 
400   void InvalidateAllRegisters() override {
401     // Do nothing... registers are always valid...
402   }
403 
404   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
405     lldb::offset_t offset = 0;
406     SetError(GPRRegSet, Read, -1);
407     SetError(FPURegSet, Read, -1);
408     SetError(EXCRegSet, Read, -1);
409     bool done = false;
410 
411     while (!done) {
412       int flavor = data.GetU32(&offset);
413       if (flavor == 0)
414         done = true;
415       else {
416         uint32_t i;
417         uint32_t count = data.GetU32(&offset);
418         switch (flavor) {
419         case GPRRegSet:
420           for (i = 0; i < count; ++i)
421             (&gpr.eax)[i] = data.GetU32(&offset);
422           SetError(GPRRegSet, Read, 0);
423           done = true;
424 
425           break;
426         case FPURegSet:
427           // TODO: fill in FPU regs....
428           // SetError (FPURegSet, Read, -1);
429           done = true;
430 
431           break;
432         case EXCRegSet:
433           exc.trapno = data.GetU32(&offset);
434           exc.err = data.GetU32(&offset);
435           exc.faultvaddr = data.GetU32(&offset);
436           SetError(EXCRegSet, Read, 0);
437           done = true;
438           break;
439         case 7:
440         case 8:
441         case 9:
442           // fancy flavors that encapsulate of the above flavors...
443           break;
444 
445         default:
446           done = true;
447           break;
448         }
449       }
450     }
451   }
452 
453   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
454     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
455     if (reg_ctx_sp) {
456       RegisterContext *reg_ctx = reg_ctx_sp.get();
457 
458       data.PutHex32(GPRRegSet); // Flavor
459       data.PutHex32(GPRWordCount);
460       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
461       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
462       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
465       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
466       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
467       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
468       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
469       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
470       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
471       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
472       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
473       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
474       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
475       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
476 
477       // Write out the EXC registers
478       data.PutHex32(EXCRegSet);
479       data.PutHex32(EXCWordCount);
480       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
481       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
482       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
483       return true;
484     }
485     return false;
486   }
487 
488 protected:
489   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
490 
491   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
492 
493   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
494 
495   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
496     return 0;
497   }
498 
499   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
500     return 0;
501   }
502 
503   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
504     return 0;
505   }
506 };
507 
508 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
509 public:
510   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
511                                  const DataExtractor &data)
512       : RegisterContextDarwin_arm(thread, 0) {
513     SetRegisterDataFrom_LC_THREAD(data);
514   }
515 
516   void InvalidateAllRegisters() override {
517     // Do nothing... registers are always valid...
518   }
519 
520   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
521     lldb::offset_t offset = 0;
522     SetError(GPRRegSet, Read, -1);
523     SetError(FPURegSet, Read, -1);
524     SetError(EXCRegSet, Read, -1);
525     bool done = false;
526 
527     while (!done) {
528       int flavor = data.GetU32(&offset);
529       uint32_t count = data.GetU32(&offset);
530       lldb::offset_t next_thread_state = offset + (count * 4);
531       switch (flavor) {
532       case GPRAltRegSet:
533       case GPRRegSet:
534         // On ARM, the CPSR register is also included in the count but it is
535         // not included in gpr.r so loop until (count-1).
536         for (uint32_t i = 0; i < (count - 1); ++i) {
537           gpr.r[i] = data.GetU32(&offset);
538         }
539         // Save cpsr explicitly.
540         gpr.cpsr = data.GetU32(&offset);
541 
542         SetError(GPRRegSet, Read, 0);
543         offset = next_thread_state;
544         break;
545 
546       case FPURegSet: {
547         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
548         const int fpu_reg_buf_size = sizeof(fpu.floats);
549         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
550                               fpu_reg_buf) == fpu_reg_buf_size) {
551           offset += fpu_reg_buf_size;
552           fpu.fpscr = data.GetU32(&offset);
553           SetError(FPURegSet, Read, 0);
554         } else {
555           done = true;
556         }
557       }
558         offset = next_thread_state;
559         break;
560 
561       case EXCRegSet:
562         if (count == 3) {
563           exc.exception = data.GetU32(&offset);
564           exc.fsr = data.GetU32(&offset);
565           exc.far = data.GetU32(&offset);
566           SetError(EXCRegSet, Read, 0);
567         }
568         done = true;
569         offset = next_thread_state;
570         break;
571 
572       // Unknown register set flavor, stop trying to parse.
573       default:
574         done = true;
575       }
576     }
577   }
578 
579   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
580     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
581     if (reg_ctx_sp) {
582       RegisterContext *reg_ctx = reg_ctx_sp.get();
583 
584       data.PutHex32(GPRRegSet); // Flavor
585       data.PutHex32(GPRWordCount);
586       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
587       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
588       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
589       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
590       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
591       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
592       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
593       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
594       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
595       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
596       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
597       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
598       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
599       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
600       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
601       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
602       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
603 
604       // Write out the EXC registers
605       //            data.PutHex32 (EXCRegSet);
606       //            data.PutHex32 (EXCWordCount);
607       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
608       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
609       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
610       return true;
611     }
612     return false;
613   }
614 
615 protected:
616   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
617 
618   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
619 
620   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
621 
622   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
623 
624   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
625     return 0;
626   }
627 
628   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
629     return 0;
630   }
631 
632   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
633     return 0;
634   }
635 
636   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
637     return -1;
638   }
639 };
640 
641 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
642 public:
643   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
644                                    const DataExtractor &data)
645       : RegisterContextDarwin_arm64(thread, 0) {
646     SetRegisterDataFrom_LC_THREAD(data);
647   }
648 
649   void InvalidateAllRegisters() override {
650     // Do nothing... registers are always valid...
651   }
652 
653   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
654     lldb::offset_t offset = 0;
655     SetError(GPRRegSet, Read, -1);
656     SetError(FPURegSet, Read, -1);
657     SetError(EXCRegSet, Read, -1);
658     bool done = false;
659     while (!done) {
660       int flavor = data.GetU32(&offset);
661       uint32_t count = data.GetU32(&offset);
662       lldb::offset_t next_thread_state = offset + (count * 4);
663       switch (flavor) {
664       case GPRRegSet:
665         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
666         // 32-bit register)
667         if (count >= (33 * 2) + 1) {
668           for (uint32_t i = 0; i < 29; ++i)
669             gpr.x[i] = data.GetU64(&offset);
670           gpr.fp = data.GetU64(&offset);
671           gpr.lr = data.GetU64(&offset);
672           gpr.sp = data.GetU64(&offset);
673           gpr.pc = data.GetU64(&offset);
674           gpr.cpsr = data.GetU32(&offset);
675           SetError(GPRRegSet, Read, 0);
676         }
677         offset = next_thread_state;
678         break;
679       case FPURegSet: {
680         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
681         const int fpu_reg_buf_size = sizeof(fpu);
682         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
683             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
684                               fpu_reg_buf) == fpu_reg_buf_size) {
685           SetError(FPURegSet, Read, 0);
686         } else {
687           done = true;
688         }
689       }
690         offset = next_thread_state;
691         break;
692       case EXCRegSet:
693         if (count == 4) {
694           exc.far = data.GetU64(&offset);
695           exc.esr = data.GetU32(&offset);
696           exc.exception = data.GetU32(&offset);
697           SetError(EXCRegSet, Read, 0);
698         }
699         offset = next_thread_state;
700         break;
701       default:
702         done = true;
703         break;
704       }
705     }
706   }
707 
708   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
709     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
710     if (reg_ctx_sp) {
711       RegisterContext *reg_ctx = reg_ctx_sp.get();
712 
713       data.PutHex32(GPRRegSet); // Flavor
714       data.PutHex32(GPRWordCount);
715       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
748       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
749       data.PutHex32(0); // uint32_t pad at the end
750 
751       // Write out the EXC registers
752       data.PutHex32(EXCRegSet);
753       data.PutHex32(EXCWordCount);
754       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
755       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
756       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
757       return true;
758     }
759     return false;
760   }
761 
762 protected:
763   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
764 
765   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
766 
767   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
768 
769   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
770 
771   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
772     return 0;
773   }
774 
775   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
776     return 0;
777   }
778 
779   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
780     return 0;
781   }
782 
783   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
784     return -1;
785   }
786 };
787 
788 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
789   switch (magic) {
790   case MH_MAGIC:
791   case MH_CIGAM:
792     return sizeof(struct llvm::MachO::mach_header);
793 
794   case MH_MAGIC_64:
795   case MH_CIGAM_64:
796     return sizeof(struct llvm::MachO::mach_header_64);
797     break;
798 
799   default:
800     break;
801   }
802   return 0;
803 }
804 
805 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
806 
807 char ObjectFileMachO::ID;
808 
809 void ObjectFileMachO::Initialize() {
810   PluginManager::RegisterPlugin(
811       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
812       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
813 }
814 
815 void ObjectFileMachO::Terminate() {
816   PluginManager::UnregisterPlugin(CreateInstance);
817 }
818 
819 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
820                                             DataBufferSP &data_sp,
821                                             lldb::offset_t data_offset,
822                                             const FileSpec *file,
823                                             lldb::offset_t file_offset,
824                                             lldb::offset_t length) {
825   if (!data_sp) {
826     data_sp = MapFileData(*file, length, file_offset);
827     if (!data_sp)
828       return nullptr;
829     data_offset = 0;
830   }
831 
832   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
833     return nullptr;
834 
835   // Update the data to contain the entire file if it doesn't already
836   if (data_sp->GetByteSize() < length) {
837     data_sp = MapFileData(*file, length, file_offset);
838     if (!data_sp)
839       return nullptr;
840     data_offset = 0;
841   }
842   auto objfile_up = std::make_unique<ObjectFileMachO>(
843       module_sp, data_sp, data_offset, file, file_offset, length);
844   if (!objfile_up || !objfile_up->ParseHeader())
845     return nullptr;
846 
847   return objfile_up.release();
848 }
849 
850 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
851     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
852     const ProcessSP &process_sp, lldb::addr_t header_addr) {
853   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
854     std::unique_ptr<ObjectFile> objfile_up(
855         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
856     if (objfile_up.get() && objfile_up->ParseHeader())
857       return objfile_up.release();
858   }
859   return nullptr;
860 }
861 
862 size_t ObjectFileMachO::GetModuleSpecifications(
863     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
864     lldb::offset_t data_offset, lldb::offset_t file_offset,
865     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
866   const size_t initial_count = specs.GetSize();
867 
868   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
869     DataExtractor data;
870     data.SetData(data_sp);
871     llvm::MachO::mach_header header;
872     if (ParseHeader(data, &data_offset, header)) {
873       size_t header_and_load_cmds =
874           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
875       if (header_and_load_cmds >= data_sp->GetByteSize()) {
876         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
877         data.SetData(data_sp);
878         data_offset = MachHeaderSizeFromMagic(header.magic);
879       }
880       if (data_sp) {
881         ModuleSpec base_spec;
882         base_spec.GetFileSpec() = file;
883         base_spec.SetObjectOffset(file_offset);
884         base_spec.SetObjectSize(length);
885         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
886       }
887     }
888   }
889   return specs.GetSize() - initial_count;
890 }
891 
892 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
893   static ConstString g_segment_name_TEXT("__TEXT");
894   return g_segment_name_TEXT;
895 }
896 
897 ConstString ObjectFileMachO::GetSegmentNameDATA() {
898   static ConstString g_segment_name_DATA("__DATA");
899   return g_segment_name_DATA;
900 }
901 
902 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
903   static ConstString g_segment_name("__DATA_DIRTY");
904   return g_segment_name;
905 }
906 
907 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
908   static ConstString g_segment_name("__DATA_CONST");
909   return g_segment_name;
910 }
911 
912 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
913   static ConstString g_segment_name_OBJC("__OBJC");
914   return g_segment_name_OBJC;
915 }
916 
917 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
918   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
919   return g_section_name_LINKEDIT;
920 }
921 
922 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
923   static ConstString g_section_name("__DWARF");
924   return g_section_name;
925 }
926 
927 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
928   static ConstString g_section_name_eh_frame("__eh_frame");
929   return g_section_name_eh_frame;
930 }
931 
932 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
933                                       lldb::addr_t data_offset,
934                                       lldb::addr_t data_length) {
935   DataExtractor data;
936   data.SetData(data_sp, data_offset, data_length);
937   lldb::offset_t offset = 0;
938   uint32_t magic = data.GetU32(&offset);
939   return MachHeaderSizeFromMagic(magic) != 0;
940 }
941 
942 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943                                  DataBufferSP &data_sp,
944                                  lldb::offset_t data_offset,
945                                  const FileSpec *file,
946                                  lldb::offset_t file_offset,
947                                  lldb::offset_t length)
948     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
950       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
951       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
952   ::memset(&m_header, 0, sizeof(m_header));
953   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954 }
955 
956 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957                                  lldb::DataBufferSP &header_data_sp,
958                                  const lldb::ProcessSP &process_sp,
959                                  lldb::addr_t header_addr)
960     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
962       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
963       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
964   ::memset(&m_header, 0, sizeof(m_header));
965   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966 }
967 
968 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969                                   lldb::offset_t *data_offset_ptr,
970                                   llvm::MachO::mach_header &header) {
971   data.SetByteOrder(endian::InlHostByteOrder());
972   // Leave magic in the original byte order
973   header.magic = data.GetU32(data_offset_ptr);
974   bool can_parse = false;
975   bool is_64_bit = false;
976   switch (header.magic) {
977   case MH_MAGIC:
978     data.SetByteOrder(endian::InlHostByteOrder());
979     data.SetAddressByteSize(4);
980     can_parse = true;
981     break;
982 
983   case MH_MAGIC_64:
984     data.SetByteOrder(endian::InlHostByteOrder());
985     data.SetAddressByteSize(8);
986     can_parse = true;
987     is_64_bit = true;
988     break;
989 
990   case MH_CIGAM:
991     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992                           ? eByteOrderLittle
993                           : eByteOrderBig);
994     data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_CIGAM_64:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(8);
1003     is_64_bit = true;
1004     can_parse = true;
1005     break;
1006 
1007   default:
1008     break;
1009   }
1010 
1011   if (can_parse) {
1012     data.GetU32(data_offset_ptr, &header.cputype, 6);
1013     if (is_64_bit)
1014       *data_offset_ptr += 4;
1015     return true;
1016   } else {
1017     memset(&header, 0, sizeof(header));
1018   }
1019   return false;
1020 }
1021 
1022 bool ObjectFileMachO::ParseHeader() {
1023   ModuleSP module_sp(GetModule());
1024   if (!module_sp)
1025     return false;
1026 
1027   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028   bool can_parse = false;
1029   lldb::offset_t offset = 0;
1030   m_data.SetByteOrder(endian::InlHostByteOrder());
1031   // Leave magic in the original byte order
1032   m_header.magic = m_data.GetU32(&offset);
1033   switch (m_header.magic) {
1034   case MH_MAGIC:
1035     m_data.SetByteOrder(endian::InlHostByteOrder());
1036     m_data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_MAGIC_64:
1041     m_data.SetByteOrder(endian::InlHostByteOrder());
1042     m_data.SetAddressByteSize(8);
1043     can_parse = true;
1044     break;
1045 
1046   case MH_CIGAM:
1047     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048                             ? eByteOrderLittle
1049                             : eByteOrderBig);
1050     m_data.SetAddressByteSize(4);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM_64:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(8);
1059     can_parse = true;
1060     break;
1061 
1062   default:
1063     break;
1064   }
1065 
1066   if (can_parse) {
1067     m_data.GetU32(&offset, &m_header.cputype, 6);
1068 
1069     ModuleSpecList all_specs;
1070     ModuleSpec base_spec;
1071     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072                     base_spec, all_specs);
1073 
1074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075       ArchSpec mach_arch =
1076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077 
1078       // Check if the module has a required architecture
1079       const ArchSpec &module_arch = module_sp->GetArchitecture();
1080       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081         continue;
1082 
1083       if (SetModulesArchitecture(mach_arch)) {
1084         const size_t header_and_lc_size =
1085             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086         if (m_data.GetByteSize() < header_and_lc_size) {
1087           DataBufferSP data_sp;
1088           ProcessSP process_sp(m_process_wp.lock());
1089           if (process_sp) {
1090             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091           } else {
1092             // Read in all only the load command data from the file on disk
1093             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094             if (data_sp->GetByteSize() != header_and_lc_size)
1095               continue;
1096           }
1097           if (data_sp)
1098             m_data.SetData(data_sp);
1099         }
1100       }
1101       return true;
1102     }
1103     // None found.
1104     return false;
1105   } else {
1106     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107   }
1108   return false;
1109 }
1110 
1111 ByteOrder ObjectFileMachO::GetByteOrder() const {
1112   return m_data.GetByteOrder();
1113 }
1114 
1115 bool ObjectFileMachO::IsExecutable() const {
1116   return m_header.filetype == MH_EXECUTE;
1117 }
1118 
1119 bool ObjectFileMachO::IsDynamicLoader() const {
1120   return m_header.filetype == MH_DYLINKER;
1121 }
1122 
1123 bool ObjectFileMachO::IsSharedCacheBinary() const {
1124   return m_header.flags & MH_DYLIB_IN_CACHE;
1125 }
1126 
1127 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1128   return m_data.GetAddressByteSize();
1129 }
1130 
1131 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1132   Symtab *symtab = GetSymtab();
1133   if (!symtab)
1134     return AddressClass::eUnknown;
1135 
1136   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1137   if (symbol) {
1138     if (symbol->ValueIsAddress()) {
1139       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1140       if (section_sp) {
1141         const lldb::SectionType section_type = section_sp->GetType();
1142         switch (section_type) {
1143         case eSectionTypeInvalid:
1144           return AddressClass::eUnknown;
1145 
1146         case eSectionTypeCode:
1147           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1148             // For ARM we have a bit in the n_desc field of the symbol that
1149             // tells us ARM/Thumb which is bit 0x0008.
1150             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1151               return AddressClass::eCodeAlternateISA;
1152           }
1153           return AddressClass::eCode;
1154 
1155         case eSectionTypeContainer:
1156           return AddressClass::eUnknown;
1157 
1158         case eSectionTypeData:
1159         case eSectionTypeDataCString:
1160         case eSectionTypeDataCStringPointers:
1161         case eSectionTypeDataSymbolAddress:
1162         case eSectionTypeData4:
1163         case eSectionTypeData8:
1164         case eSectionTypeData16:
1165         case eSectionTypeDataPointers:
1166         case eSectionTypeZeroFill:
1167         case eSectionTypeDataObjCMessageRefs:
1168         case eSectionTypeDataObjCCFStrings:
1169         case eSectionTypeGoSymtab:
1170           return AddressClass::eData;
1171 
1172         case eSectionTypeDebug:
1173         case eSectionTypeDWARFDebugAbbrev:
1174         case eSectionTypeDWARFDebugAbbrevDwo:
1175         case eSectionTypeDWARFDebugAddr:
1176         case eSectionTypeDWARFDebugAranges:
1177         case eSectionTypeDWARFDebugCuIndex:
1178         case eSectionTypeDWARFDebugFrame:
1179         case eSectionTypeDWARFDebugInfo:
1180         case eSectionTypeDWARFDebugInfoDwo:
1181         case eSectionTypeDWARFDebugLine:
1182         case eSectionTypeDWARFDebugLineStr:
1183         case eSectionTypeDWARFDebugLoc:
1184         case eSectionTypeDWARFDebugLocDwo:
1185         case eSectionTypeDWARFDebugLocLists:
1186         case eSectionTypeDWARFDebugLocListsDwo:
1187         case eSectionTypeDWARFDebugMacInfo:
1188         case eSectionTypeDWARFDebugMacro:
1189         case eSectionTypeDWARFDebugNames:
1190         case eSectionTypeDWARFDebugPubNames:
1191         case eSectionTypeDWARFDebugPubTypes:
1192         case eSectionTypeDWARFDebugRanges:
1193         case eSectionTypeDWARFDebugRngLists:
1194         case eSectionTypeDWARFDebugRngListsDwo:
1195         case eSectionTypeDWARFDebugStr:
1196         case eSectionTypeDWARFDebugStrDwo:
1197         case eSectionTypeDWARFDebugStrOffsets:
1198         case eSectionTypeDWARFDebugStrOffsetsDwo:
1199         case eSectionTypeDWARFDebugTuIndex:
1200         case eSectionTypeDWARFDebugTypes:
1201         case eSectionTypeDWARFDebugTypesDwo:
1202         case eSectionTypeDWARFAppleNames:
1203         case eSectionTypeDWARFAppleTypes:
1204         case eSectionTypeDWARFAppleNamespaces:
1205         case eSectionTypeDWARFAppleObjC:
1206         case eSectionTypeDWARFGNUDebugAltLink:
1207           return AddressClass::eDebug;
1208 
1209         case eSectionTypeEHFrame:
1210         case eSectionTypeARMexidx:
1211         case eSectionTypeARMextab:
1212         case eSectionTypeCompactUnwind:
1213           return AddressClass::eRuntime;
1214 
1215         case eSectionTypeAbsoluteAddress:
1216         case eSectionTypeELFSymbolTable:
1217         case eSectionTypeELFDynamicSymbols:
1218         case eSectionTypeELFRelocationEntries:
1219         case eSectionTypeELFDynamicLinkInfo:
1220         case eSectionTypeOther:
1221           return AddressClass::eUnknown;
1222         }
1223       }
1224     }
1225 
1226     const SymbolType symbol_type = symbol->GetType();
1227     switch (symbol_type) {
1228     case eSymbolTypeAny:
1229       return AddressClass::eUnknown;
1230     case eSymbolTypeAbsolute:
1231       return AddressClass::eUnknown;
1232 
1233     case eSymbolTypeCode:
1234     case eSymbolTypeTrampoline:
1235     case eSymbolTypeResolver:
1236       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1237         // For ARM we have a bit in the n_desc field of the symbol that tells
1238         // us ARM/Thumb which is bit 0x0008.
1239         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1240           return AddressClass::eCodeAlternateISA;
1241       }
1242       return AddressClass::eCode;
1243 
1244     case eSymbolTypeData:
1245       return AddressClass::eData;
1246     case eSymbolTypeRuntime:
1247       return AddressClass::eRuntime;
1248     case eSymbolTypeException:
1249       return AddressClass::eRuntime;
1250     case eSymbolTypeSourceFile:
1251       return AddressClass::eDebug;
1252     case eSymbolTypeHeaderFile:
1253       return AddressClass::eDebug;
1254     case eSymbolTypeObjectFile:
1255       return AddressClass::eDebug;
1256     case eSymbolTypeCommonBlock:
1257       return AddressClass::eDebug;
1258     case eSymbolTypeBlock:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeLocal:
1261       return AddressClass::eData;
1262     case eSymbolTypeParam:
1263       return AddressClass::eData;
1264     case eSymbolTypeVariable:
1265       return AddressClass::eData;
1266     case eSymbolTypeVariableType:
1267       return AddressClass::eDebug;
1268     case eSymbolTypeLineEntry:
1269       return AddressClass::eDebug;
1270     case eSymbolTypeLineHeader:
1271       return AddressClass::eDebug;
1272     case eSymbolTypeScopeBegin:
1273       return AddressClass::eDebug;
1274     case eSymbolTypeScopeEnd:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeAdditional:
1277       return AddressClass::eUnknown;
1278     case eSymbolTypeCompiler:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeInstrumentation:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeUndefined:
1283       return AddressClass::eUnknown;
1284     case eSymbolTypeObjCClass:
1285       return AddressClass::eRuntime;
1286     case eSymbolTypeObjCMetaClass:
1287       return AddressClass::eRuntime;
1288     case eSymbolTypeObjCIVar:
1289       return AddressClass::eRuntime;
1290     case eSymbolTypeReExported:
1291       return AddressClass::eRuntime;
1292     }
1293   }
1294   return AddressClass::eUnknown;
1295 }
1296 
1297 bool ObjectFileMachO::IsStripped() {
1298   if (m_dysymtab.cmd == 0) {
1299     ModuleSP module_sp(GetModule());
1300     if (module_sp) {
1301       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1302       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303         const lldb::offset_t load_cmd_offset = offset;
1304 
1305         llvm::MachO::load_command lc;
1306         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1307           break;
1308         if (lc.cmd == LC_DYSYMTAB) {
1309           m_dysymtab.cmd = lc.cmd;
1310           m_dysymtab.cmdsize = lc.cmdsize;
1311           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1312                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1313               nullptr) {
1314             // Clear m_dysymtab if we were unable to read all items from the
1315             // load command
1316             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1317           }
1318         }
1319         offset = load_cmd_offset + lc.cmdsize;
1320       }
1321     }
1322   }
1323   if (m_dysymtab.cmd)
1324     return m_dysymtab.nlocalsym <= 1;
1325   return false;
1326 }
1327 
1328 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1329   EncryptedFileRanges result;
1330   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1331 
1332   llvm::MachO::encryption_info_command encryption_cmd;
1333   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1334     const lldb::offset_t load_cmd_offset = offset;
1335     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1336       break;
1337 
1338     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1339     // 3 fields we care about, so treat them the same.
1340     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1341         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1342       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1343         if (encryption_cmd.cryptid != 0) {
1344           EncryptedFileRanges::Entry entry;
1345           entry.SetRangeBase(encryption_cmd.cryptoff);
1346           entry.SetByteSize(encryption_cmd.cryptsize);
1347           result.Append(entry);
1348         }
1349       }
1350     }
1351     offset = load_cmd_offset + encryption_cmd.cmdsize;
1352   }
1353 
1354   return result;
1355 }
1356 
1357 void ObjectFileMachO::SanitizeSegmentCommand(
1358     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1359   if (m_length == 0 || seg_cmd.filesize == 0)
1360     return;
1361 
1362   if (IsSharedCacheBinary() && !IsInMemory()) {
1363     // In shared cache images, the load commands are relative to the
1364     // shared cache file, and not the specific image we are
1365     // examining. Let's fix this up so that it looks like a normal
1366     // image.
1367     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1368       m_text_address = seg_cmd.vmaddr;
1369     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1370       m_linkedit_original_offset = seg_cmd.fileoff;
1371 
1372     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1373   }
1374 
1375   if (seg_cmd.fileoff > m_length) {
1376     // We have a load command that says it extends past the end of the file.
1377     // This is likely a corrupt file.  We don't have any way to return an error
1378     // condition here (this method was likely invoked from something like
1379     // ObjectFile::GetSectionList()), so we just null out the section contents,
1380     // and dump a message to stdout.  The most common case here is core file
1381     // debugging with a truncated file.
1382     const char *lc_segment_name =
1383         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1384     GetModule()->ReportWarning(
1385         "load command %u %s has a fileoff (0x%" PRIx64
1386         ") that extends beyond the end of the file (0x%" PRIx64
1387         "), ignoring this section",
1388         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1389 
1390     seg_cmd.fileoff = 0;
1391     seg_cmd.filesize = 0;
1392   }
1393 
1394   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1395     // We have a load command that says it extends past the end of the file.
1396     // This is likely a corrupt file.  We don't have any way to return an error
1397     // condition here (this method was likely invoked from something like
1398     // ObjectFile::GetSectionList()), so we just null out the section contents,
1399     // and dump a message to stdout.  The most common case here is core file
1400     // debugging with a truncated file.
1401     const char *lc_segment_name =
1402         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1403     GetModule()->ReportWarning(
1404         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1405         ") that extends beyond the end of the file (0x%" PRIx64
1406         "), the segment will be truncated to match",
1407         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1408 
1409     // Truncate the length
1410     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1411   }
1412 }
1413 
1414 static uint32_t
1415 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1416   uint32_t result = 0;
1417   if (seg_cmd.initprot & VM_PROT_READ)
1418     result |= ePermissionsReadable;
1419   if (seg_cmd.initprot & VM_PROT_WRITE)
1420     result |= ePermissionsWritable;
1421   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1422     result |= ePermissionsExecutable;
1423   return result;
1424 }
1425 
1426 static lldb::SectionType GetSectionType(uint32_t flags,
1427                                         ConstString section_name) {
1428 
1429   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1430     return eSectionTypeCode;
1431 
1432   uint32_t mach_sect_type = flags & SECTION_TYPE;
1433   static ConstString g_sect_name_objc_data("__objc_data");
1434   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1435   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1436   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1437   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1438   static ConstString g_sect_name_objc_const("__objc_const");
1439   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1440   static ConstString g_sect_name_cfstring("__cfstring");
1441 
1442   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1443   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1444   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1445   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1446   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1447   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1448   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1449   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1450   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1451   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1452   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1453   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1454   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1455   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1456   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1457   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1458   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1459   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1460   static ConstString g_sect_name_eh_frame("__eh_frame");
1461   static ConstString g_sect_name_compact_unwind("__unwind_info");
1462   static ConstString g_sect_name_text("__text");
1463   static ConstString g_sect_name_data("__data");
1464   static ConstString g_sect_name_go_symtab("__gosymtab");
1465 
1466   if (section_name == g_sect_name_dwarf_debug_abbrev)
1467     return eSectionTypeDWARFDebugAbbrev;
1468   if (section_name == g_sect_name_dwarf_debug_aranges)
1469     return eSectionTypeDWARFDebugAranges;
1470   if (section_name == g_sect_name_dwarf_debug_frame)
1471     return eSectionTypeDWARFDebugFrame;
1472   if (section_name == g_sect_name_dwarf_debug_info)
1473     return eSectionTypeDWARFDebugInfo;
1474   if (section_name == g_sect_name_dwarf_debug_line)
1475     return eSectionTypeDWARFDebugLine;
1476   if (section_name == g_sect_name_dwarf_debug_loc)
1477     return eSectionTypeDWARFDebugLoc;
1478   if (section_name == g_sect_name_dwarf_debug_loclists)
1479     return eSectionTypeDWARFDebugLocLists;
1480   if (section_name == g_sect_name_dwarf_debug_macinfo)
1481     return eSectionTypeDWARFDebugMacInfo;
1482   if (section_name == g_sect_name_dwarf_debug_names)
1483     return eSectionTypeDWARFDebugNames;
1484   if (section_name == g_sect_name_dwarf_debug_pubnames)
1485     return eSectionTypeDWARFDebugPubNames;
1486   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1487     return eSectionTypeDWARFDebugPubTypes;
1488   if (section_name == g_sect_name_dwarf_debug_ranges)
1489     return eSectionTypeDWARFDebugRanges;
1490   if (section_name == g_sect_name_dwarf_debug_str)
1491     return eSectionTypeDWARFDebugStr;
1492   if (section_name == g_sect_name_dwarf_debug_types)
1493     return eSectionTypeDWARFDebugTypes;
1494   if (section_name == g_sect_name_dwarf_apple_names)
1495     return eSectionTypeDWARFAppleNames;
1496   if (section_name == g_sect_name_dwarf_apple_types)
1497     return eSectionTypeDWARFAppleTypes;
1498   if (section_name == g_sect_name_dwarf_apple_namespaces)
1499     return eSectionTypeDWARFAppleNamespaces;
1500   if (section_name == g_sect_name_dwarf_apple_objc)
1501     return eSectionTypeDWARFAppleObjC;
1502   if (section_name == g_sect_name_objc_selrefs)
1503     return eSectionTypeDataCStringPointers;
1504   if (section_name == g_sect_name_objc_msgrefs)
1505     return eSectionTypeDataObjCMessageRefs;
1506   if (section_name == g_sect_name_eh_frame)
1507     return eSectionTypeEHFrame;
1508   if (section_name == g_sect_name_compact_unwind)
1509     return eSectionTypeCompactUnwind;
1510   if (section_name == g_sect_name_cfstring)
1511     return eSectionTypeDataObjCCFStrings;
1512   if (section_name == g_sect_name_go_symtab)
1513     return eSectionTypeGoSymtab;
1514   if (section_name == g_sect_name_objc_data ||
1515       section_name == g_sect_name_objc_classrefs ||
1516       section_name == g_sect_name_objc_superrefs ||
1517       section_name == g_sect_name_objc_const ||
1518       section_name == g_sect_name_objc_classlist) {
1519     return eSectionTypeDataPointers;
1520   }
1521 
1522   switch (mach_sect_type) {
1523   // TODO: categorize sections by other flags for regular sections
1524   case S_REGULAR:
1525     if (section_name == g_sect_name_text)
1526       return eSectionTypeCode;
1527     if (section_name == g_sect_name_data)
1528       return eSectionTypeData;
1529     return eSectionTypeOther;
1530   case S_ZEROFILL:
1531     return eSectionTypeZeroFill;
1532   case S_CSTRING_LITERALS: // section with only literal C strings
1533     return eSectionTypeDataCString;
1534   case S_4BYTE_LITERALS: // section with only 4 byte literals
1535     return eSectionTypeData4;
1536   case S_8BYTE_LITERALS: // section with only 8 byte literals
1537     return eSectionTypeData8;
1538   case S_LITERAL_POINTERS: // section with only pointers to literals
1539     return eSectionTypeDataPointers;
1540   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1541     return eSectionTypeDataPointers;
1542   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1543     return eSectionTypeDataPointers;
1544   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1545                        // the reserved2 field
1546     return eSectionTypeCode;
1547   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1548                                  // initialization
1549     return eSectionTypeDataPointers;
1550   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1551                                  // termination
1552     return eSectionTypeDataPointers;
1553   case S_COALESCED:
1554     return eSectionTypeOther;
1555   case S_GB_ZEROFILL:
1556     return eSectionTypeZeroFill;
1557   case S_INTERPOSING: // section with only pairs of function pointers for
1558                       // interposing
1559     return eSectionTypeCode;
1560   case S_16BYTE_LITERALS: // section with only 16 byte literals
1561     return eSectionTypeData16;
1562   case S_DTRACE_DOF:
1563     return eSectionTypeDebug;
1564   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1565     return eSectionTypeDataPointers;
1566   default:
1567     return eSectionTypeOther;
1568   }
1569 }
1570 
1571 struct ObjectFileMachO::SegmentParsingContext {
1572   const EncryptedFileRanges EncryptedRanges;
1573   lldb_private::SectionList &UnifiedList;
1574   uint32_t NextSegmentIdx = 0;
1575   uint32_t NextSectionIdx = 0;
1576   bool FileAddressesChanged = false;
1577 
1578   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1579                         lldb_private::SectionList &UnifiedList)
1580       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1581 };
1582 
1583 void ObjectFileMachO::ProcessSegmentCommand(
1584     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1585     uint32_t cmd_idx, SegmentParsingContext &context) {
1586   llvm::MachO::segment_command_64 load_cmd;
1587   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1588 
1589   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1590     return;
1591 
1592   ModuleSP module_sp = GetModule();
1593   const bool is_core = GetType() == eTypeCoreFile;
1594   const bool is_dsym = (m_header.filetype == MH_DSYM);
1595   bool add_section = true;
1596   bool add_to_unified = true;
1597   ConstString const_segname(
1598       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1599 
1600   SectionSP unified_section_sp(
1601       context.UnifiedList.FindSectionByName(const_segname));
1602   if (is_dsym && unified_section_sp) {
1603     if (const_segname == GetSegmentNameLINKEDIT()) {
1604       // We need to keep the __LINKEDIT segment private to this object file
1605       // only
1606       add_to_unified = false;
1607     } else {
1608       // This is the dSYM file and this section has already been created by the
1609       // object file, no need to create it.
1610       add_section = false;
1611     }
1612   }
1613   load_cmd.vmaddr = m_data.GetAddress(&offset);
1614   load_cmd.vmsize = m_data.GetAddress(&offset);
1615   load_cmd.fileoff = m_data.GetAddress(&offset);
1616   load_cmd.filesize = m_data.GetAddress(&offset);
1617   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1618     return;
1619 
1620   SanitizeSegmentCommand(load_cmd, cmd_idx);
1621 
1622   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1623   const bool segment_is_encrypted =
1624       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1625 
1626   // Keep a list of mach segments around in case we need to get at data that
1627   // isn't stored in the abstracted Sections.
1628   m_mach_segments.push_back(load_cmd);
1629 
1630   // Use a segment ID of the segment index shifted left by 8 so they never
1631   // conflict with any of the sections.
1632   SectionSP segment_sp;
1633   if (add_section && (const_segname || is_core)) {
1634     segment_sp = std::make_shared<Section>(
1635         module_sp, // Module to which this section belongs
1636         this,      // Object file to which this sections belongs
1637         ++context.NextSegmentIdx
1638             << 8, // Section ID is the 1 based segment index
1639         // shifted right by 8 bits as not to collide with any of the 256
1640         // section IDs that are possible
1641         const_segname,         // Name of this section
1642         eSectionTypeContainer, // This section is a container of other
1643         // sections.
1644         load_cmd.vmaddr, // File VM address == addresses as they are
1645         // found in the object file
1646         load_cmd.vmsize,  // VM size in bytes of this section
1647         load_cmd.fileoff, // Offset to the data for this section in
1648         // the file
1649         load_cmd.filesize, // Size in bytes of this section as found
1650         // in the file
1651         0,               // Segments have no alignment information
1652         load_cmd.flags); // Flags for this section
1653 
1654     segment_sp->SetIsEncrypted(segment_is_encrypted);
1655     m_sections_up->AddSection(segment_sp);
1656     segment_sp->SetPermissions(segment_permissions);
1657     if (add_to_unified)
1658       context.UnifiedList.AddSection(segment_sp);
1659   } else if (unified_section_sp) {
1660     // If this is a dSYM and the file addresses in the dSYM differ from the
1661     // file addresses in the ObjectFile, we must use the file base address for
1662     // the Section from the dSYM for the DWARF to resolve correctly.
1663     // This only happens with binaries in the shared cache in practice;
1664     // normally a mismatch like this would give a binary & dSYM that do not
1665     // match UUIDs. When a binary is included in the shared cache, its
1666     // segments are rearranged to optimize the shared cache, so its file
1667     // addresses will differ from what the ObjectFile had originally,
1668     // and what the dSYM has.
1669     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1670       Log *log = GetLog(LLDBLog::Symbols);
1671       if (log) {
1672         log->Printf(
1673             "Installing dSYM's %s segment file address over ObjectFile's "
1674             "so symbol table/debug info resolves correctly for %s",
1675             const_segname.AsCString(),
1676             module_sp->GetFileSpec().GetFilename().AsCString());
1677       }
1678 
1679       // Make sure we've parsed the symbol table from the ObjectFile before
1680       // we go around changing its Sections.
1681       module_sp->GetObjectFile()->GetSymtab();
1682       // eh_frame would present the same problems but we parse that on a per-
1683       // function basis as-needed so it's more difficult to remove its use of
1684       // the Sections.  Realistically, the environments where this code path
1685       // will be taken will not have eh_frame sections.
1686 
1687       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1688 
1689       // Notify the module that the section addresses have been changed once
1690       // we're done so any file-address caches can be updated.
1691       context.FileAddressesChanged = true;
1692     }
1693     m_sections_up->AddSection(unified_section_sp);
1694   }
1695 
1696   llvm::MachO::section_64 sect64;
1697   ::memset(&sect64, 0, sizeof(sect64));
1698   // Push a section into our mach sections for the section at index zero
1699   // (NO_SECT) if we don't have any mach sections yet...
1700   if (m_mach_sections.empty())
1701     m_mach_sections.push_back(sect64);
1702   uint32_t segment_sect_idx;
1703   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1704 
1705   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1706   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1707        ++segment_sect_idx) {
1708     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1709                      sizeof(sect64.sectname)) == nullptr)
1710       break;
1711     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1712                      sizeof(sect64.segname)) == nullptr)
1713       break;
1714     sect64.addr = m_data.GetAddress(&offset);
1715     sect64.size = m_data.GetAddress(&offset);
1716 
1717     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1718       break;
1719 
1720     if (IsSharedCacheBinary() && !IsInMemory()) {
1721       sect64.offset = sect64.addr - m_text_address;
1722     }
1723 
1724     // Keep a list of mach sections around in case we need to get at data that
1725     // isn't stored in the abstracted Sections.
1726     m_mach_sections.push_back(sect64);
1727 
1728     if (add_section) {
1729       ConstString section_name(
1730           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1731       if (!const_segname) {
1732         // We have a segment with no name so we need to conjure up segments
1733         // that correspond to the section's segname if there isn't already such
1734         // a section. If there is such a section, we resize the section so that
1735         // it spans all sections.  We also mark these sections as fake so
1736         // address matches don't hit if they land in the gaps between the child
1737         // sections.
1738         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1739                                                   sizeof(sect64.segname));
1740         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1741         if (segment_sp.get()) {
1742           Section *segment = segment_sp.get();
1743           // Grow the section size as needed.
1744           const lldb::addr_t sect64_min_addr = sect64.addr;
1745           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1746           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1747           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1748           const lldb::addr_t curr_seg_max_addr =
1749               curr_seg_min_addr + curr_seg_byte_size;
1750           if (sect64_min_addr >= curr_seg_min_addr) {
1751             const lldb::addr_t new_seg_byte_size =
1752                 sect64_max_addr - curr_seg_min_addr;
1753             // Only grow the section size if needed
1754             if (new_seg_byte_size > curr_seg_byte_size)
1755               segment->SetByteSize(new_seg_byte_size);
1756           } else {
1757             // We need to change the base address of the segment and adjust the
1758             // child section offsets for all existing children.
1759             const lldb::addr_t slide_amount =
1760                 sect64_min_addr - curr_seg_min_addr;
1761             segment->Slide(slide_amount, false);
1762             segment->GetChildren().Slide(-slide_amount, false);
1763             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1764           }
1765 
1766           // Grow the section size as needed.
1767           if (sect64.offset) {
1768             const lldb::addr_t segment_min_file_offset =
1769                 segment->GetFileOffset();
1770             const lldb::addr_t segment_max_file_offset =
1771                 segment_min_file_offset + segment->GetFileSize();
1772 
1773             const lldb::addr_t section_min_file_offset = sect64.offset;
1774             const lldb::addr_t section_max_file_offset =
1775                 section_min_file_offset + sect64.size;
1776             const lldb::addr_t new_file_offset =
1777                 std::min(section_min_file_offset, segment_min_file_offset);
1778             const lldb::addr_t new_file_size =
1779                 std::max(section_max_file_offset, segment_max_file_offset) -
1780                 new_file_offset;
1781             segment->SetFileOffset(new_file_offset);
1782             segment->SetFileSize(new_file_size);
1783           }
1784         } else {
1785           // Create a fake section for the section's named segment
1786           segment_sp = std::make_shared<Section>(
1787               segment_sp, // Parent section
1788               module_sp,  // Module to which this section belongs
1789               this,       // Object file to which this section belongs
1790               ++context.NextSegmentIdx
1791                   << 8, // Section ID is the 1 based segment index
1792               // shifted right by 8 bits as not to
1793               // collide with any of the 256 section IDs
1794               // that are possible
1795               const_segname,         // Name of this section
1796               eSectionTypeContainer, // This section is a container of
1797               // other sections.
1798               sect64.addr, // File VM address == addresses as they are
1799               // found in the object file
1800               sect64.size,   // VM size in bytes of this section
1801               sect64.offset, // Offset to the data for this section in
1802               // the file
1803               sect64.offset ? sect64.size : 0, // Size in bytes of
1804               // this section as
1805               // found in the file
1806               sect64.align,
1807               load_cmd.flags); // Flags for this section
1808           segment_sp->SetIsFake(true);
1809           segment_sp->SetPermissions(segment_permissions);
1810           m_sections_up->AddSection(segment_sp);
1811           if (add_to_unified)
1812             context.UnifiedList.AddSection(segment_sp);
1813           segment_sp->SetIsEncrypted(segment_is_encrypted);
1814         }
1815       }
1816       assert(segment_sp.get());
1817 
1818       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1819 
1820       SectionSP section_sp(new Section(
1821           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1822           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1823           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1824           sect64.flags));
1825       // Set the section to be encrypted to match the segment
1826 
1827       bool section_is_encrypted = false;
1828       if (!segment_is_encrypted && load_cmd.filesize != 0)
1829         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1830                                    sect64.offset) != nullptr;
1831 
1832       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1833       section_sp->SetPermissions(segment_permissions);
1834       segment_sp->GetChildren().AddSection(section_sp);
1835 
1836       if (segment_sp->IsFake()) {
1837         segment_sp.reset();
1838         const_segname.Clear();
1839       }
1840     }
1841   }
1842   if (segment_sp && is_dsym) {
1843     if (first_segment_sectID <= context.NextSectionIdx) {
1844       lldb::user_id_t sect_uid;
1845       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1846            ++sect_uid) {
1847         SectionSP curr_section_sp(
1848             segment_sp->GetChildren().FindSectionByID(sect_uid));
1849         SectionSP next_section_sp;
1850         if (sect_uid + 1 <= context.NextSectionIdx)
1851           next_section_sp =
1852               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1853 
1854         if (curr_section_sp.get()) {
1855           if (curr_section_sp->GetByteSize() == 0) {
1856             if (next_section_sp.get() != nullptr)
1857               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1858                                            curr_section_sp->GetFileAddress());
1859             else
1860               curr_section_sp->SetByteSize(load_cmd.vmsize);
1861           }
1862         }
1863       }
1864     }
1865   }
1866 }
1867 
1868 void ObjectFileMachO::ProcessDysymtabCommand(
1869     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1870   m_dysymtab.cmd = load_cmd.cmd;
1871   m_dysymtab.cmdsize = load_cmd.cmdsize;
1872   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1873                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1874 }
1875 
1876 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1877   if (m_sections_up)
1878     return;
1879 
1880   m_sections_up = std::make_unique<SectionList>();
1881 
1882   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1883   // bool dump_sections = false;
1884   ModuleSP module_sp(GetModule());
1885 
1886   offset = MachHeaderSizeFromMagic(m_header.magic);
1887 
1888   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1889   llvm::MachO::load_command load_cmd;
1890   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1891     const lldb::offset_t load_cmd_offset = offset;
1892     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1893       break;
1894 
1895     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1896       ProcessSegmentCommand(load_cmd, offset, i, context);
1897     else if (load_cmd.cmd == LC_DYSYMTAB)
1898       ProcessDysymtabCommand(load_cmd, offset);
1899 
1900     offset = load_cmd_offset + load_cmd.cmdsize;
1901   }
1902 
1903   if (context.FileAddressesChanged && module_sp)
1904     module_sp->SectionFileAddressesChanged();
1905 }
1906 
1907 class MachSymtabSectionInfo {
1908 public:
1909   MachSymtabSectionInfo(SectionList *section_list)
1910       : m_section_list(section_list), m_section_infos() {
1911     // Get the number of sections down to a depth of 1 to include all segments
1912     // and their sections, but no other sections that may be added for debug
1913     // map or
1914     m_section_infos.resize(section_list->GetNumSections(1));
1915   }
1916 
1917   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1918     if (n_sect == 0)
1919       return SectionSP();
1920     if (n_sect < m_section_infos.size()) {
1921       if (!m_section_infos[n_sect].section_sp) {
1922         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1923         m_section_infos[n_sect].section_sp = section_sp;
1924         if (section_sp) {
1925           m_section_infos[n_sect].vm_range.SetBaseAddress(
1926               section_sp->GetFileAddress());
1927           m_section_infos[n_sect].vm_range.SetByteSize(
1928               section_sp->GetByteSize());
1929         } else {
1930           std::string filename = "<unknown>";
1931           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1932           if (first_section_sp)
1933             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1934 
1935           Host::SystemLog(Host::eSystemLogError,
1936                           "error: unable to find section %d for a symbol in "
1937                           "%s, corrupt file?\n",
1938                           n_sect, filename.c_str());
1939         }
1940       }
1941       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1942         // Symbol is in section.
1943         return m_section_infos[n_sect].section_sp;
1944       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1945                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1946                      file_addr) {
1947         // Symbol is in section with zero size, but has the same start address
1948         // as the section. This can happen with linker symbols (symbols that
1949         // start with the letter 'l' or 'L'.
1950         return m_section_infos[n_sect].section_sp;
1951       }
1952     }
1953     return m_section_list->FindSectionContainingFileAddress(file_addr);
1954   }
1955 
1956 protected:
1957   struct SectionInfo {
1958     SectionInfo() : vm_range(), section_sp() {}
1959 
1960     VMRange vm_range;
1961     SectionSP section_sp;
1962   };
1963   SectionList *m_section_list;
1964   std::vector<SectionInfo> m_section_infos;
1965 };
1966 
1967 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1968 struct TrieEntry {
1969   void Dump() const {
1970     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1971            static_cast<unsigned long long>(address),
1972            static_cast<unsigned long long>(flags),
1973            static_cast<unsigned long long>(other), name.GetCString());
1974     if (import_name)
1975       printf(" -> \"%s\"\n", import_name.GetCString());
1976     else
1977       printf("\n");
1978   }
1979   ConstString name;
1980   uint64_t address = LLDB_INVALID_ADDRESS;
1981   uint64_t flags =
1982       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1983          // TRIE_SYMBOL_IS_THUMB
1984   uint64_t other = 0;
1985   ConstString import_name;
1986 };
1987 
1988 struct TrieEntryWithOffset {
1989   lldb::offset_t nodeOffset;
1990   TrieEntry entry;
1991 
1992   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1993 
1994   void Dump(uint32_t idx) const {
1995     printf("[%3u] 0x%16.16llx: ", idx,
1996            static_cast<unsigned long long>(nodeOffset));
1997     entry.Dump();
1998   }
1999 
2000   bool operator<(const TrieEntryWithOffset &other) const {
2001     return (nodeOffset < other.nodeOffset);
2002   }
2003 };
2004 
2005 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2006                              const bool is_arm, addr_t text_seg_base_addr,
2007                              std::vector<llvm::StringRef> &nameSlices,
2008                              std::set<lldb::addr_t> &resolver_addresses,
2009                              std::vector<TrieEntryWithOffset> &reexports,
2010                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2011   if (!data.ValidOffset(offset))
2012     return true;
2013 
2014   // Terminal node -- end of a branch, possibly add this to
2015   // the symbol table or resolver table.
2016   const uint64_t terminalSize = data.GetULEB128(&offset);
2017   lldb::offset_t children_offset = offset + terminalSize;
2018   if (terminalSize != 0) {
2019     TrieEntryWithOffset e(offset);
2020     e.entry.flags = data.GetULEB128(&offset);
2021     const char *import_name = nullptr;
2022     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2023       e.entry.address = 0;
2024       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2025       import_name = data.GetCStr(&offset);
2026     } else {
2027       e.entry.address = data.GetULEB128(&offset);
2028       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2029         e.entry.address += text_seg_base_addr;
2030       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2031         e.entry.other = data.GetULEB128(&offset);
2032         uint64_t resolver_addr = e.entry.other;
2033         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2034           resolver_addr += text_seg_base_addr;
2035         if (is_arm)
2036           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2037         resolver_addresses.insert(resolver_addr);
2038       } else
2039         e.entry.other = 0;
2040     }
2041     bool add_this_entry = false;
2042     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2043         import_name && import_name[0]) {
2044       // add symbols that are reexport symbols with a valid import name.
2045       add_this_entry = true;
2046     } else if (e.entry.flags == 0 &&
2047                (import_name == nullptr || import_name[0] == '\0')) {
2048       // add externally visible symbols, in case the nlist record has
2049       // been stripped/omitted.
2050       add_this_entry = true;
2051     }
2052     if (add_this_entry) {
2053       std::string name;
2054       if (!nameSlices.empty()) {
2055         for (auto name_slice : nameSlices)
2056           name.append(name_slice.data(), name_slice.size());
2057       }
2058       if (name.size() > 1) {
2059         // Skip the leading '_'
2060         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2061       }
2062       if (import_name) {
2063         // Skip the leading '_'
2064         e.entry.import_name.SetCString(import_name + 1);
2065       }
2066       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2067         reexports.push_back(e);
2068       } else {
2069         if (is_arm && (e.entry.address & 1)) {
2070           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2071           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2072         }
2073         ext_symbols.push_back(e);
2074       }
2075     }
2076   }
2077 
2078   const uint8_t childrenCount = data.GetU8(&children_offset);
2079   for (uint8_t i = 0; i < childrenCount; ++i) {
2080     const char *cstr = data.GetCStr(&children_offset);
2081     if (cstr)
2082       nameSlices.push_back(llvm::StringRef(cstr));
2083     else
2084       return false; // Corrupt data
2085     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2086     if (childNodeOffset) {
2087       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2088                             nameSlices, resolver_addresses, reexports,
2089                             ext_symbols)) {
2090         return false;
2091       }
2092     }
2093     nameSlices.pop_back();
2094   }
2095   return true;
2096 }
2097 
2098 static SymbolType GetSymbolType(const char *&symbol_name,
2099                                 bool &demangled_is_synthesized,
2100                                 const SectionSP &text_section_sp,
2101                                 const SectionSP &data_section_sp,
2102                                 const SectionSP &data_dirty_section_sp,
2103                                 const SectionSP &data_const_section_sp,
2104                                 const SectionSP &symbol_section) {
2105   SymbolType type = eSymbolTypeInvalid;
2106 
2107   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2108   if (symbol_section->IsDescendant(text_section_sp.get())) {
2109     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2110                                 S_ATTR_SELF_MODIFYING_CODE |
2111                                 S_ATTR_SOME_INSTRUCTIONS))
2112       type = eSymbolTypeData;
2113     else
2114       type = eSymbolTypeCode;
2115   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2116              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2117              symbol_section->IsDescendant(data_const_section_sp.get())) {
2118     if (symbol_sect_name &&
2119         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2120       type = eSymbolTypeRuntime;
2121 
2122       if (symbol_name) {
2123         llvm::StringRef symbol_name_ref(symbol_name);
2124         if (symbol_name_ref.startswith("OBJC_")) {
2125           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2126           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2127               "OBJC_METACLASS_$_");
2128           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2129           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2130             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2131             type = eSymbolTypeObjCClass;
2132             demangled_is_synthesized = true;
2133           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2134             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2135             type = eSymbolTypeObjCMetaClass;
2136             demangled_is_synthesized = true;
2137           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2138             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2139             type = eSymbolTypeObjCIVar;
2140             demangled_is_synthesized = true;
2141           }
2142         }
2143       }
2144     } else if (symbol_sect_name &&
2145                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2146                    symbol_sect_name) {
2147       type = eSymbolTypeException;
2148     } else {
2149       type = eSymbolTypeData;
2150     }
2151   } else if (symbol_sect_name &&
2152              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2153     type = eSymbolTypeTrampoline;
2154   }
2155   return type;
2156 }
2157 
2158 // Read the UUID out of a dyld_shared_cache file on-disk.
2159 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2160                                          const ByteOrder byte_order,
2161                                          const uint32_t addr_byte_size) {
2162   UUID dsc_uuid;
2163   DataBufferSP DscData = MapFileData(
2164       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2165   if (!DscData)
2166     return dsc_uuid;
2167   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2168 
2169   char version_str[7];
2170   lldb::offset_t offset = 0;
2171   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2172   version_str[6] = '\0';
2173   if (strcmp(version_str, "dyld_v") == 0) {
2174     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2175     dsc_uuid = UUID::fromOptionalData(
2176         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2177   }
2178   Log *log = GetLog(LLDBLog::Symbols);
2179   if (log && dsc_uuid.IsValid()) {
2180     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2181               dyld_shared_cache.GetPath().c_str(),
2182               dsc_uuid.GetAsString().c_str());
2183   }
2184   return dsc_uuid;
2185 }
2186 
2187 static llvm::Optional<struct nlist_64>
2188 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2189            size_t nlist_byte_size) {
2190   struct nlist_64 nlist;
2191   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2192     return {};
2193   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2194   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2195   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2196   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2197   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2198   return nlist;
2199 }
2200 
2201 enum { DebugSymbols = true, NonDebugSymbols = false };
2202 
2203 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2204   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s",
2205                      m_file.GetFilename().AsCString(""));
2206   ModuleSP module_sp(GetModule());
2207   if (!module_sp)
2208     return;
2209 
2210   Progress progress(llvm::formatv("Parsing symbol table for {0}",
2211                                   m_file.GetFilename().AsCString("<Unknown>")));
2212 
2213   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2214   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2215   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2216   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2217   // The data element of type bool indicates that this entry is thumb
2218   // code.
2219   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2220 
2221   // Record the address of every function/data that we add to the symtab.
2222   // We add symbols to the table in the order of most information (nlist
2223   // records) to least (function starts), and avoid duplicating symbols
2224   // via this set.
2225   llvm::DenseSet<addr_t> symbols_added;
2226 
2227   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2228   // do not add the tombstone or empty keys to the set.
2229   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2230     // Don't add the tombstone or empty keys.
2231     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2232       return;
2233     symbols_added.insert(file_addr);
2234   };
2235   FunctionStarts function_starts;
2236   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2237   uint32_t i;
2238   FileSpecList dylib_files;
2239   Log *log = GetLog(LLDBLog::Symbols);
2240   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2241   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2242   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2243   UUID image_uuid;
2244 
2245   for (i = 0; i < m_header.ncmds; ++i) {
2246     const lldb::offset_t cmd_offset = offset;
2247     // Read in the load command and load command size
2248     llvm::MachO::load_command lc;
2249     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2250       break;
2251     // Watch for the symbol table load command
2252     switch (lc.cmd) {
2253     case LC_SYMTAB:
2254       symtab_load_command.cmd = lc.cmd;
2255       symtab_load_command.cmdsize = lc.cmdsize;
2256       // Read in the rest of the symtab load command
2257       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2258           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2259         return;
2260       break;
2261 
2262     case LC_DYLD_INFO:
2263     case LC_DYLD_INFO_ONLY:
2264       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2265         dyld_info.cmd = lc.cmd;
2266         dyld_info.cmdsize = lc.cmdsize;
2267       } else {
2268         memset(&dyld_info, 0, sizeof(dyld_info));
2269       }
2270       break;
2271 
2272     case LC_LOAD_DYLIB:
2273     case LC_LOAD_WEAK_DYLIB:
2274     case LC_REEXPORT_DYLIB:
2275     case LC_LOADFVMLIB:
2276     case LC_LOAD_UPWARD_DYLIB: {
2277       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2278       const char *path = m_data.PeekCStr(name_offset);
2279       if (path) {
2280         FileSpec file_spec(path);
2281         // Strip the path if there is @rpath, @executable, etc so we just use
2282         // the basename
2283         if (path[0] == '@')
2284           file_spec.GetDirectory().Clear();
2285 
2286         if (lc.cmd == LC_REEXPORT_DYLIB) {
2287           m_reexported_dylibs.AppendIfUnique(file_spec);
2288         }
2289 
2290         dylib_files.Append(file_spec);
2291       }
2292     } break;
2293 
2294     case LC_DYLD_EXPORTS_TRIE:
2295       exports_trie_load_command.cmd = lc.cmd;
2296       exports_trie_load_command.cmdsize = lc.cmdsize;
2297       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2298           nullptr) // fill in offset and size fields
2299         memset(&exports_trie_load_command, 0,
2300                sizeof(exports_trie_load_command));
2301       break;
2302     case LC_FUNCTION_STARTS:
2303       function_starts_load_command.cmd = lc.cmd;
2304       function_starts_load_command.cmdsize = lc.cmdsize;
2305       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2306           nullptr) // fill in data offset and size fields
2307         memset(&function_starts_load_command, 0,
2308                sizeof(function_starts_load_command));
2309       break;
2310 
2311     case LC_UUID: {
2312       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2313 
2314       if (uuid_bytes)
2315         image_uuid = UUID::fromOptionalData(uuid_bytes, 16);
2316       break;
2317     }
2318 
2319     default:
2320       break;
2321     }
2322     offset = cmd_offset + lc.cmdsize;
2323   }
2324 
2325   if (!symtab_load_command.cmd)
2326     return;
2327 
2328   SectionList *section_list = GetSectionList();
2329   if (section_list == nullptr)
2330     return;
2331 
2332   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2333   const ByteOrder byte_order = m_data.GetByteOrder();
2334   bool bit_width_32 = addr_byte_size == 4;
2335   const size_t nlist_byte_size =
2336       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2337 
2338   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2339   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2340   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2341   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2342                                            addr_byte_size);
2343   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2344 
2345   const addr_t nlist_data_byte_size =
2346       symtab_load_command.nsyms * nlist_byte_size;
2347   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2348   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2349 
2350   ProcessSP process_sp(m_process_wp.lock());
2351   Process *process = process_sp.get();
2352 
2353   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2354   bool is_shared_cache_image = IsSharedCacheBinary();
2355   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2356   SectionSP linkedit_section_sp(
2357       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2358 
2359   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2360       !is_local_shared_cache_image) {
2361     Target &target = process->GetTarget();
2362 
2363     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2364 
2365     // Reading mach file from memory in a process or core file...
2366 
2367     if (linkedit_section_sp) {
2368       addr_t linkedit_load_addr =
2369           linkedit_section_sp->GetLoadBaseAddress(&target);
2370       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2371         // We might be trying to access the symbol table before the
2372         // __LINKEDIT's load address has been set in the target. We can't
2373         // fail to read the symbol table, so calculate the right address
2374         // manually
2375         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2376             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2377       }
2378 
2379       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2380       const addr_t symoff_addr = linkedit_load_addr +
2381                                  symtab_load_command.symoff -
2382                                  linkedit_file_offset;
2383       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2384                     linkedit_file_offset;
2385 
2386         // Always load dyld - the dynamic linker - from memory if we didn't
2387         // find a binary anywhere else. lldb will not register
2388         // dylib/framework/bundle loads/unloads if we don't have the dyld
2389         // symbols, we force dyld to load from memory despite the user's
2390         // target.memory-module-load-level setting.
2391         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2392             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2393           DataBufferSP nlist_data_sp(
2394               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2395           if (nlist_data_sp)
2396             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2397           if (m_dysymtab.nindirectsyms != 0) {
2398             const addr_t indirect_syms_addr = linkedit_load_addr +
2399                                               m_dysymtab.indirectsymoff -
2400                                               linkedit_file_offset;
2401             DataBufferSP indirect_syms_data_sp(ReadMemory(
2402                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2403             if (indirect_syms_data_sp)
2404               indirect_symbol_index_data.SetData(
2405                   indirect_syms_data_sp, 0,
2406                   indirect_syms_data_sp->GetByteSize());
2407             // If this binary is outside the shared cache,
2408             // cache the string table.
2409             // Binaries in the shared cache all share a giant string table,
2410             // and we can't share the string tables across multiple
2411             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2412             // for every binary in the shared cache - it would be a big perf
2413             // problem. For binaries outside the shared cache, it's faster to
2414             // read the entire strtab at once instead of piece-by-piece as we
2415             // process the nlist records.
2416             if (!is_shared_cache_image) {
2417               DataBufferSP strtab_data_sp(
2418                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2419               if (strtab_data_sp) {
2420                 strtab_data.SetData(strtab_data_sp, 0,
2421                                     strtab_data_sp->GetByteSize());
2422               }
2423             }
2424           }
2425         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2426           if (function_starts_load_command.cmd) {
2427             const addr_t func_start_addr =
2428                 linkedit_load_addr + function_starts_load_command.dataoff -
2429                 linkedit_file_offset;
2430             DataBufferSP func_start_data_sp(
2431                 ReadMemory(process_sp, func_start_addr,
2432                            function_starts_load_command.datasize));
2433             if (func_start_data_sp)
2434               function_starts_data.SetData(func_start_data_sp, 0,
2435                                            func_start_data_sp->GetByteSize());
2436           }
2437         }
2438       }
2439     }
2440   } else {
2441     if (is_local_shared_cache_image) {
2442       // The load commands in shared cache images are relative to the
2443       // beginning of the shared cache, not the library image. The
2444       // data we get handed when creating the ObjectFileMachO starts
2445       // at the beginning of a specific library and spans to the end
2446       // of the cache to be able to reach the shared LINKEDIT
2447       // segments. We need to convert the load command offsets to be
2448       // relative to the beginning of our specific image.
2449       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2450       lldb::offset_t linkedit_slide =
2451           linkedit_offset - m_linkedit_original_offset;
2452       symtab_load_command.symoff += linkedit_slide;
2453       symtab_load_command.stroff += linkedit_slide;
2454       dyld_info.export_off += linkedit_slide;
2455       m_dysymtab.indirectsymoff += linkedit_slide;
2456       function_starts_load_command.dataoff += linkedit_slide;
2457       exports_trie_load_command.dataoff += linkedit_slide;
2458     }
2459 
2460     nlist_data.SetData(m_data, symtab_load_command.symoff,
2461                        nlist_data_byte_size);
2462     strtab_data.SetData(m_data, symtab_load_command.stroff,
2463                         strtab_data_byte_size);
2464 
2465     // We shouldn't have exports data from both the LC_DYLD_INFO command
2466     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2467     lldbassert(!((dyld_info.export_size > 0)
2468                  && (exports_trie_load_command.datasize > 0)));
2469     if (dyld_info.export_size > 0) {
2470       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2471                              dyld_info.export_size);
2472     } else if (exports_trie_load_command.datasize > 0) {
2473       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2474                              exports_trie_load_command.datasize);
2475     }
2476 
2477     if (m_dysymtab.nindirectsyms != 0) {
2478       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2479                                          m_dysymtab.nindirectsyms * 4);
2480     }
2481     if (function_starts_load_command.cmd) {
2482       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2483                                    function_starts_load_command.datasize);
2484     }
2485   }
2486 
2487   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2488 
2489   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2490   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2491   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2492   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2493   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2494   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2495   SectionSP text_section_sp(
2496       section_list->FindSectionByName(g_segment_name_TEXT));
2497   SectionSP data_section_sp(
2498       section_list->FindSectionByName(g_segment_name_DATA));
2499   SectionSP data_dirty_section_sp(
2500       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2501   SectionSP data_const_section_sp(
2502       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2503   SectionSP objc_section_sp(
2504       section_list->FindSectionByName(g_segment_name_OBJC));
2505   SectionSP eh_frame_section_sp;
2506   if (text_section_sp.get())
2507     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2508         g_section_name_eh_frame);
2509   else
2510     eh_frame_section_sp =
2511         section_list->FindSectionByName(g_section_name_eh_frame);
2512 
2513   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2514   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2515 
2516   // lldb works best if it knows the start address of all functions in a
2517   // module. Linker symbols or debug info are normally the best source of
2518   // information for start addr / size but they may be stripped in a released
2519   // binary. Two additional sources of information exist in Mach-O binaries:
2520   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2521   //    function's start address in the
2522   //                         binary, relative to the text section.
2523   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2524   //    each function
2525   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2526   //  all modern binaries.
2527   //  Binaries built to run on older releases may need to use eh_frame
2528   //  information.
2529 
2530   if (text_section_sp && function_starts_data.GetByteSize()) {
2531     FunctionStarts::Entry function_start_entry;
2532     function_start_entry.data = false;
2533     lldb::offset_t function_start_offset = 0;
2534     function_start_entry.addr = text_section_sp->GetFileAddress();
2535     uint64_t delta;
2536     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2537            0) {
2538       // Now append the current entry
2539       function_start_entry.addr += delta;
2540       if (is_arm) {
2541         if (function_start_entry.addr & 1) {
2542           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2543           function_start_entry.data = true;
2544         } else if (always_thumb) {
2545           function_start_entry.data = true;
2546         }
2547       }
2548       function_starts.Append(function_start_entry);
2549     }
2550   } else {
2551     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2552     // load command claiming an eh_frame but it doesn't actually have the
2553     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2554     // this fill-in-the-missing-symbols works anyway - the debug info should
2555     // give us all the functions in the module.
2556     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2557         m_type != eTypeDebugInfo) {
2558       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2559                                   DWARFCallFrameInfo::EH);
2560       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2561       eh_frame.GetFunctionAddressAndSizeVector(functions);
2562       addr_t text_base_addr = text_section_sp->GetFileAddress();
2563       size_t count = functions.GetSize();
2564       for (size_t i = 0; i < count; ++i) {
2565         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2566             functions.GetEntryAtIndex(i);
2567         if (func) {
2568           FunctionStarts::Entry function_start_entry;
2569           function_start_entry.addr = func->base - text_base_addr;
2570           if (is_arm) {
2571             if (function_start_entry.addr & 1) {
2572               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2573               function_start_entry.data = true;
2574             } else if (always_thumb) {
2575               function_start_entry.data = true;
2576             }
2577           }
2578           function_starts.Append(function_start_entry);
2579         }
2580       }
2581     }
2582   }
2583 
2584   const size_t function_starts_count = function_starts.GetSize();
2585 
2586   // For user process binaries (executables, dylibs, frameworks, bundles), if
2587   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2588   // going to assume the binary has been stripped.  Don't allow assembly
2589   // language instruction emulation because we don't know proper function
2590   // start boundaries.
2591   //
2592   // For all other types of binaries (kernels, stand-alone bare board
2593   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2594   // sections - we should not make any assumptions about them based on that.
2595   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2596     m_allow_assembly_emulation_unwind_plans = false;
2597     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2598 
2599     if (unwind_or_symbol_log)
2600       module_sp->LogMessage(
2601           unwind_or_symbol_log,
2602           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2603   }
2604 
2605   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2606                                              ? eh_frame_section_sp->GetID()
2607                                              : static_cast<user_id_t>(NO_SECT);
2608 
2609   uint32_t N_SO_index = UINT32_MAX;
2610 
2611   MachSymtabSectionInfo section_info(section_list);
2612   std::vector<uint32_t> N_FUN_indexes;
2613   std::vector<uint32_t> N_NSYM_indexes;
2614   std::vector<uint32_t> N_INCL_indexes;
2615   std::vector<uint32_t> N_BRAC_indexes;
2616   std::vector<uint32_t> N_COMM_indexes;
2617   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2618   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2619   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2620   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2621   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2622   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2623   // Any symbols that get merged into another will get an entry in this map
2624   // so we know
2625   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2626   uint32_t nlist_idx = 0;
2627   Symbol *symbol_ptr = nullptr;
2628 
2629   uint32_t sym_idx = 0;
2630   Symbol *sym = nullptr;
2631   size_t num_syms = 0;
2632   std::string memory_symbol_name;
2633   uint32_t unmapped_local_symbols_found = 0;
2634 
2635   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2636   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2637   std::set<lldb::addr_t> resolver_addresses;
2638 
2639   if (dyld_trie_data.GetByteSize() > 0) {
2640     ConstString text_segment_name("__TEXT");
2641     SectionSP text_segment_sp =
2642         GetSectionList()->FindSectionByName(text_segment_name);
2643     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2644     if (text_segment_sp)
2645       text_segment_file_addr = text_segment_sp->GetFileAddress();
2646     std::vector<llvm::StringRef> nameSlices;
2647     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2648                      nameSlices, resolver_addresses, reexport_trie_entries,
2649                      external_sym_trie_entries);
2650   }
2651 
2652   typedef std::set<ConstString> IndirectSymbols;
2653   IndirectSymbols indirect_symbol_names;
2654 
2655 #if TARGET_OS_IPHONE
2656 
2657   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2658   // optimized by moving LOCAL symbols out of the memory mapped portion of
2659   // the DSC. The symbol information has all been retained, but it isn't
2660   // available in the normal nlist data. However, there *are* duplicate
2661   // entries of *some*
2662   // LOCAL symbols in the normal nlist data. To handle this situation
2663   // correctly, we must first attempt
2664   // to parse any DSC unmapped symbol information. If we find any, we set a
2665   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2666 
2667   if (IsSharedCacheBinary()) {
2668     // Before we can start mapping the DSC, we need to make certain the
2669     // target process is actually using the cache we can find.
2670 
2671     // Next we need to determine the correct path for the dyld shared cache.
2672 
2673     ArchSpec header_arch = GetArchitecture();
2674 
2675     UUID dsc_uuid;
2676     UUID process_shared_cache_uuid;
2677     addr_t process_shared_cache_base_addr;
2678 
2679     if (process) {
2680       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2681                                 process_shared_cache_uuid);
2682     }
2683 
2684     __block bool found_image = false;
2685     __block void *nlist_buffer = nullptr;
2686     __block unsigned nlist_count = 0;
2687     __block char *string_table = nullptr;
2688     __block vm_offset_t vm_nlist_memory = 0;
2689     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2690     __block vm_offset_t vm_string_memory = 0;
2691     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2692 
2693     auto _ = llvm::make_scope_exit(^{
2694       if (vm_nlist_memory)
2695         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2696       if (vm_string_memory)
2697         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2698     });
2699 
2700     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2701     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2702     UndefinedNameToDescMap undefined_name_to_desc;
2703     SymbolIndexToName reexport_shlib_needs_fixup;
2704 
2705     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2706       uuid_t cache_uuid;
2707       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2708       if (found_image)
2709         return;
2710 
2711         if (process_shared_cache_uuid.IsValid() &&
2712           process_shared_cache_uuid != UUID::fromOptionalData(&cache_uuid, 16))
2713         return;
2714 
2715       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2716         uuid_t dsc_image_uuid;
2717         if (found_image)
2718           return;
2719 
2720         dyld_image_copy_uuid(image, &dsc_image_uuid);
2721         if (image_uuid != UUID::fromOptionalData(dsc_image_uuid, 16))
2722           return;
2723 
2724         found_image = true;
2725 
2726         // Compute the size of the string table. We need to ask dyld for a
2727         // new SPI to avoid this step.
2728         dyld_image_local_nlist_content_4Symbolication(
2729             image, ^(const void *nlistStart, uint64_t nlistCount,
2730                      const char *stringTable) {
2731               if (!nlistStart || !nlistCount)
2732                 return;
2733 
2734               // The buffers passed here are valid only inside the block.
2735               // Use vm_read to make a cheap copy of them available for our
2736               // processing later.
2737               kern_return_t ret =
2738                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2739                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2740                           &vm_nlist_bytes_read);
2741               if (ret != KERN_SUCCESS)
2742                 return;
2743               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2744 
2745               // We don't know the size of the string table. It's cheaper
2746               // to map the whol VM region than to determine the size by
2747               // parsing all teh nlist entries.
2748               vm_address_t string_address = (vm_address_t)stringTable;
2749               vm_size_t region_size;
2750               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2751               vm_region_basic_info_data_t info;
2752               memory_object_name_t object;
2753               ret = vm_region_64(mach_task_self(), &string_address,
2754                                  &region_size, VM_REGION_BASIC_INFO_64,
2755                                  (vm_region_info_t)&info, &info_count, &object);
2756               if (ret != KERN_SUCCESS)
2757                 return;
2758 
2759               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2760                             region_size -
2761                                 ((vm_address_t)stringTable - string_address),
2762                             &vm_string_memory, &vm_string_bytes_read);
2763               if (ret != KERN_SUCCESS)
2764                 return;
2765 
2766               nlist_buffer = (void *)vm_nlist_memory;
2767               string_table = (char *)vm_string_memory;
2768               nlist_count = nlistCount;
2769             });
2770       });
2771     });
2772     if (nlist_buffer) {
2773       DataExtractor dsc_local_symbols_data(nlist_buffer,
2774                                            nlist_count * nlist_byte_size,
2775                                            byte_order, addr_byte_size);
2776       unmapped_local_symbols_found = nlist_count;
2777 
2778                 // The normal nlist code cannot correctly size the Symbols
2779                 // array, we need to allocate it here.
2780                 sym = symtab.Resize(
2781                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2782                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2783                 num_syms = symtab.GetNumSymbols();
2784 
2785       lldb::offset_t nlist_data_offset = 0;
2786 
2787                 for (uint32_t nlist_index = 0;
2788                      nlist_index < nlist_count;
2789                      nlist_index++) {
2790                   /////////////////////////////
2791                   {
2792                     llvm::Optional<struct nlist_64> nlist_maybe =
2793                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2794                                    nlist_byte_size);
2795                     if (!nlist_maybe)
2796                       break;
2797                     struct nlist_64 nlist = *nlist_maybe;
2798 
2799                     SymbolType type = eSymbolTypeInvalid;
2800           const char *symbol_name = string_table + nlist.n_strx;
2801 
2802                     if (symbol_name == NULL) {
2803                       // No symbol should be NULL, even the symbols with no
2804                       // string values should have an offset zero which
2805                       // points to an empty C-string
2806                       Host::SystemLog(
2807                           Host::eSystemLogError,
2808                           "error: DSC unmapped local symbol[%u] has invalid "
2809                           "string table offset 0x%x in %s, ignoring symbol\n",
2810                           nlist_index, nlist.n_strx,
2811                           module_sp->GetFileSpec().GetPath().c_str());
2812                       continue;
2813                     }
2814                     if (symbol_name[0] == '\0')
2815                       symbol_name = NULL;
2816 
2817                     const char *symbol_name_non_abi_mangled = NULL;
2818 
2819                     SectionSP symbol_section;
2820                     uint32_t symbol_byte_size = 0;
2821                     bool add_nlist = true;
2822                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2823                     bool demangled_is_synthesized = false;
2824                     bool is_gsym = false;
2825                     bool set_value = true;
2826 
2827                     assert(sym_idx < num_syms);
2828 
2829                     sym[sym_idx].SetDebug(is_debug);
2830 
2831                     if (is_debug) {
2832                       switch (nlist.n_type) {
2833                       case N_GSYM:
2834                         // global symbol: name,,NO_SECT,type,0
2835                         // Sometimes the N_GSYM value contains the address.
2836 
2837                         // FIXME: In the .o files, we have a GSYM and a debug
2838                         // symbol for all the ObjC data.  They
2839                         // have the same address, but we want to ensure that
2840                         // we always find only the real symbol, 'cause we
2841                         // don't currently correctly attribute the
2842                         // GSYM one to the ObjCClass/Ivar/MetaClass
2843                         // symbol type.  This is a temporary hack to make
2844                         // sure the ObjectiveC symbols get treated correctly.
2845                         // To do this right, we should coalesce all the GSYM
2846                         // & global symbols that have the same address.
2847 
2848                         is_gsym = true;
2849                         sym[sym_idx].SetExternal(true);
2850 
2851                         if (symbol_name && symbol_name[0] == '_' &&
2852                             symbol_name[1] == 'O') {
2853                           llvm::StringRef symbol_name_ref(symbol_name);
2854                           if (symbol_name_ref.startswith(
2855                                   g_objc_v2_prefix_class)) {
2856                             symbol_name_non_abi_mangled = symbol_name + 1;
2857                             symbol_name =
2858                                 symbol_name + g_objc_v2_prefix_class.size();
2859                             type = eSymbolTypeObjCClass;
2860                             demangled_is_synthesized = true;
2861 
2862                           } else if (symbol_name_ref.startswith(
2863                                          g_objc_v2_prefix_metaclass)) {
2864                             symbol_name_non_abi_mangled = symbol_name + 1;
2865                             symbol_name =
2866                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2867                             type = eSymbolTypeObjCMetaClass;
2868                             demangled_is_synthesized = true;
2869                           } else if (symbol_name_ref.startswith(
2870                                          g_objc_v2_prefix_ivar)) {
2871                             symbol_name_non_abi_mangled = symbol_name + 1;
2872                             symbol_name =
2873                                 symbol_name + g_objc_v2_prefix_ivar.size();
2874                             type = eSymbolTypeObjCIVar;
2875                             demangled_is_synthesized = true;
2876                           }
2877                         } else {
2878                           if (nlist.n_value != 0)
2879                             symbol_section = section_info.GetSection(
2880                                 nlist.n_sect, nlist.n_value);
2881                           type = eSymbolTypeData;
2882                         }
2883                         break;
2884 
2885                       case N_FNAME:
2886                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2887                         type = eSymbolTypeCompiler;
2888                         break;
2889 
2890                       case N_FUN:
2891                         // procedure: name,,n_sect,linenumber,address
2892                         if (symbol_name) {
2893                           type = eSymbolTypeCode;
2894                           symbol_section = section_info.GetSection(
2895                               nlist.n_sect, nlist.n_value);
2896 
2897                           N_FUN_addr_to_sym_idx.insert(
2898                               std::make_pair(nlist.n_value, sym_idx));
2899                           // We use the current number of symbols in the
2900                           // symbol table in lieu of using nlist_idx in case
2901                           // we ever start trimming entries out
2902                           N_FUN_indexes.push_back(sym_idx);
2903                         } else {
2904                           type = eSymbolTypeCompiler;
2905 
2906                           if (!N_FUN_indexes.empty()) {
2907                             // Copy the size of the function into the
2908                             // original
2909                             // STAB entry so we don't have
2910                             // to hunt for it later
2911                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2912                                 ->SetByteSize(nlist.n_value);
2913                             N_FUN_indexes.pop_back();
2914                             // We don't really need the end function STAB as
2915                             // it contains the size which we already placed
2916                             // with the original symbol, so don't add it if
2917                             // we want a minimal symbol table
2918                             add_nlist = false;
2919                           }
2920                         }
2921                         break;
2922 
2923                       case N_STSYM:
2924                         // static symbol: name,,n_sect,type,address
2925                         N_STSYM_addr_to_sym_idx.insert(
2926                             std::make_pair(nlist.n_value, sym_idx));
2927                         symbol_section = section_info.GetSection(nlist.n_sect,
2928                                                                  nlist.n_value);
2929                         if (symbol_name && symbol_name[0]) {
2930                           type = ObjectFile::GetSymbolTypeFromName(
2931                               symbol_name + 1, eSymbolTypeData);
2932                         }
2933                         break;
2934 
2935                       case N_LCSYM:
2936                         // .lcomm symbol: name,,n_sect,type,address
2937                         symbol_section = section_info.GetSection(nlist.n_sect,
2938                                                                  nlist.n_value);
2939                         type = eSymbolTypeCommonBlock;
2940                         break;
2941 
2942                       case N_BNSYM:
2943                         // We use the current number of symbols in the symbol
2944                         // table in lieu of using nlist_idx in case we ever
2945                         // start trimming entries out Skip these if we want
2946                         // minimal symbol tables
2947                         add_nlist = false;
2948                         break;
2949 
2950                       case N_ENSYM:
2951                         // Set the size of the N_BNSYM to the terminating
2952                         // index of this N_ENSYM so that we can always skip
2953                         // the entire symbol if we need to navigate more
2954                         // quickly at the source level when parsing STABS
2955                         // Skip these if we want minimal symbol tables
2956                         add_nlist = false;
2957                         break;
2958 
2959                       case N_OPT:
2960                         // emitted with gcc2_compiled and in gcc source
2961                         type = eSymbolTypeCompiler;
2962                         break;
2963 
2964                       case N_RSYM:
2965                         // register sym: name,,NO_SECT,type,register
2966                         type = eSymbolTypeVariable;
2967                         break;
2968 
2969                       case N_SLINE:
2970                         // src line: 0,,n_sect,linenumber,address
2971                         symbol_section = section_info.GetSection(nlist.n_sect,
2972                                                                  nlist.n_value);
2973                         type = eSymbolTypeLineEntry;
2974                         break;
2975 
2976                       case N_SSYM:
2977                         // structure elt: name,,NO_SECT,type,struct_offset
2978                         type = eSymbolTypeVariableType;
2979                         break;
2980 
2981                       case N_SO:
2982                         // source file name
2983                         type = eSymbolTypeSourceFile;
2984                         if (symbol_name == NULL) {
2985                           add_nlist = false;
2986                           if (N_SO_index != UINT32_MAX) {
2987                             // Set the size of the N_SO to the terminating
2988                             // index of this N_SO so that we can always skip
2989                             // the entire N_SO if we need to navigate more
2990                             // quickly at the source level when parsing STABS
2991                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
2992                             symbol_ptr->SetByteSize(sym_idx);
2993                             symbol_ptr->SetSizeIsSibling(true);
2994                           }
2995                           N_NSYM_indexes.clear();
2996                           N_INCL_indexes.clear();
2997                           N_BRAC_indexes.clear();
2998                           N_COMM_indexes.clear();
2999                           N_FUN_indexes.clear();
3000                           N_SO_index = UINT32_MAX;
3001                         } else {
3002                           // We use the current number of symbols in the
3003                           // symbol table in lieu of using nlist_idx in case
3004                           // we ever start trimming entries out
3005                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3006                           if (N_SO_has_full_path) {
3007                             if ((N_SO_index == sym_idx - 1) &&
3008                                 ((sym_idx - 1) < num_syms)) {
3009                               // We have two consecutive N_SO entries where
3010                               // the first contains a directory and the
3011                               // second contains a full path.
3012                               sym[sym_idx - 1].GetMangled().SetValue(
3013                                   ConstString(symbol_name), false);
3014                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3015                               add_nlist = false;
3016                             } else {
3017                               // This is the first entry in a N_SO that
3018                               // contains a directory or
3019                               // a full path to the source file
3020                               N_SO_index = sym_idx;
3021                             }
3022                           } else if ((N_SO_index == sym_idx - 1) &&
3023                                      ((sym_idx - 1) < num_syms)) {
3024                             // This is usually the second N_SO entry that
3025                             // contains just the filename, so here we combine
3026                             // it with the first one if we are minimizing the
3027                             // symbol table
3028                             const char *so_path = sym[sym_idx - 1]
3029                                                       .GetMangled()
3030                                                       .GetDemangledName()
3031                                                       .AsCString();
3032                             if (so_path && so_path[0]) {
3033                               std::string full_so_path(so_path);
3034                               const size_t double_slash_pos =
3035                                   full_so_path.find("//");
3036                               if (double_slash_pos != std::string::npos) {
3037                                 // The linker has been generating bad N_SO
3038                                 // entries with doubled up paths
3039                                 // in the format "%s%s" where the first
3040                                 // string in the DW_AT_comp_dir, and the
3041                                 // second is the directory for the source
3042                                 // file so you end up with a path that looks
3043                                 // like "/tmp/src//tmp/src/"
3044                                 FileSpec so_dir(so_path);
3045                                 if (!FileSystem::Instance().Exists(so_dir)) {
3046                                   so_dir.SetFile(
3047                                       &full_so_path[double_slash_pos + 1],
3048                                       FileSpec::Style::native);
3049                                   if (FileSystem::Instance().Exists(so_dir)) {
3050                                     // Trim off the incorrect path
3051                                     full_so_path.erase(0, double_slash_pos + 1);
3052                                   }
3053                                 }
3054                               }
3055                               if (*full_so_path.rbegin() != '/')
3056                                 full_so_path += '/';
3057                               full_so_path += symbol_name;
3058                               sym[sym_idx - 1].GetMangled().SetValue(
3059                                   ConstString(full_so_path.c_str()), false);
3060                               add_nlist = false;
3061                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3062                             }
3063                           } else {
3064                             // This could be a relative path to a N_SO
3065                             N_SO_index = sym_idx;
3066                           }
3067                         }
3068                         break;
3069 
3070                       case N_OSO:
3071                         // object file name: name,,0,0,st_mtime
3072                         type = eSymbolTypeObjectFile;
3073                         break;
3074 
3075                       case N_LSYM:
3076                         // local sym: name,,NO_SECT,type,offset
3077                         type = eSymbolTypeLocal;
3078                         break;
3079 
3080                       // INCL scopes
3081                       case N_BINCL:
3082                         // include file beginning: name,,NO_SECT,0,sum We use
3083                         // the current number of symbols in the symbol table
3084                         // in lieu of using nlist_idx in case we ever start
3085                         // trimming entries out
3086                         N_INCL_indexes.push_back(sym_idx);
3087                         type = eSymbolTypeScopeBegin;
3088                         break;
3089 
3090                       case N_EINCL:
3091                         // include file end: name,,NO_SECT,0,0
3092                         // Set the size of the N_BINCL to the terminating
3093                         // index of this N_EINCL so that we can always skip
3094                         // the entire symbol if we need to navigate more
3095                         // quickly at the source level when parsing STABS
3096                         if (!N_INCL_indexes.empty()) {
3097                           symbol_ptr =
3098                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3099                           symbol_ptr->SetByteSize(sym_idx + 1);
3100                           symbol_ptr->SetSizeIsSibling(true);
3101                           N_INCL_indexes.pop_back();
3102                         }
3103                         type = eSymbolTypeScopeEnd;
3104                         break;
3105 
3106                       case N_SOL:
3107                         // #included file name: name,,n_sect,0,address
3108                         type = eSymbolTypeHeaderFile;
3109 
3110                         // We currently don't use the header files on darwin
3111                         add_nlist = false;
3112                         break;
3113 
3114                       case N_PARAMS:
3115                         // compiler parameters: name,,NO_SECT,0,0
3116                         type = eSymbolTypeCompiler;
3117                         break;
3118 
3119                       case N_VERSION:
3120                         // compiler version: name,,NO_SECT,0,0
3121                         type = eSymbolTypeCompiler;
3122                         break;
3123 
3124                       case N_OLEVEL:
3125                         // compiler -O level: name,,NO_SECT,0,0
3126                         type = eSymbolTypeCompiler;
3127                         break;
3128 
3129                       case N_PSYM:
3130                         // parameter: name,,NO_SECT,type,offset
3131                         type = eSymbolTypeVariable;
3132                         break;
3133 
3134                       case N_ENTRY:
3135                         // alternate entry: name,,n_sect,linenumber,address
3136                         symbol_section = section_info.GetSection(nlist.n_sect,
3137                                                                  nlist.n_value);
3138                         type = eSymbolTypeLineEntry;
3139                         break;
3140 
3141                       // Left and Right Braces
3142                       case N_LBRAC:
3143                         // left bracket: 0,,NO_SECT,nesting level,address We
3144                         // use the current number of symbols in the symbol
3145                         // table in lieu of using nlist_idx in case we ever
3146                         // start trimming entries out
3147                         symbol_section = section_info.GetSection(nlist.n_sect,
3148                                                                  nlist.n_value);
3149                         N_BRAC_indexes.push_back(sym_idx);
3150                         type = eSymbolTypeScopeBegin;
3151                         break;
3152 
3153                       case N_RBRAC:
3154                         // right bracket: 0,,NO_SECT,nesting level,address
3155                         // Set the size of the N_LBRAC to the terminating
3156                         // index of this N_RBRAC so that we can always skip
3157                         // the entire symbol if we need to navigate more
3158                         // quickly at the source level when parsing STABS
3159                         symbol_section = section_info.GetSection(nlist.n_sect,
3160                                                                  nlist.n_value);
3161                         if (!N_BRAC_indexes.empty()) {
3162                           symbol_ptr =
3163                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3164                           symbol_ptr->SetByteSize(sym_idx + 1);
3165                           symbol_ptr->SetSizeIsSibling(true);
3166                           N_BRAC_indexes.pop_back();
3167                         }
3168                         type = eSymbolTypeScopeEnd;
3169                         break;
3170 
3171                       case N_EXCL:
3172                         // deleted include file: name,,NO_SECT,0,sum
3173                         type = eSymbolTypeHeaderFile;
3174                         break;
3175 
3176                       // COMM scopes
3177                       case N_BCOMM:
3178                         // begin common: name,,NO_SECT,0,0
3179                         // We use the current number of symbols in the symbol
3180                         // table in lieu of using nlist_idx in case we ever
3181                         // start trimming entries out
3182                         type = eSymbolTypeScopeBegin;
3183                         N_COMM_indexes.push_back(sym_idx);
3184                         break;
3185 
3186                       case N_ECOML:
3187                         // end common (local name): 0,,n_sect,0,address
3188                         symbol_section = section_info.GetSection(nlist.n_sect,
3189                                                                  nlist.n_value);
3190                         // Fall through
3191 
3192                       case N_ECOMM:
3193                         // end common: name,,n_sect,0,0
3194                         // Set the size of the N_BCOMM to the terminating
3195                         // index of this N_ECOMM/N_ECOML so that we can
3196                         // always skip the entire symbol if we need to
3197                         // navigate more quickly at the source level when
3198                         // parsing STABS
3199                         if (!N_COMM_indexes.empty()) {
3200                           symbol_ptr =
3201                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3202                           symbol_ptr->SetByteSize(sym_idx + 1);
3203                           symbol_ptr->SetSizeIsSibling(true);
3204                           N_COMM_indexes.pop_back();
3205                         }
3206                         type = eSymbolTypeScopeEnd;
3207                         break;
3208 
3209                       case N_LENG:
3210                         // second stab entry with length information
3211                         type = eSymbolTypeAdditional;
3212                         break;
3213 
3214                       default:
3215                         break;
3216                       }
3217                     } else {
3218                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3219                       uint8_t n_type = N_TYPE & nlist.n_type;
3220                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3221 
3222                       switch (n_type) {
3223                       case N_INDR: {
3224                         const char *reexport_name_cstr =
3225                             strtab_data.PeekCStr(nlist.n_value);
3226                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3227                           type = eSymbolTypeReExported;
3228                           ConstString reexport_name(
3229                               reexport_name_cstr +
3230                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3231                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3232                           set_value = false;
3233                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3234                           indirect_symbol_names.insert(ConstString(
3235                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3236                         } else
3237                           type = eSymbolTypeUndefined;
3238                       } break;
3239 
3240                       case N_UNDF:
3241                         if (symbol_name && symbol_name[0]) {
3242                           ConstString undefined_name(
3243                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3244                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3245                         }
3246                       // Fall through
3247                       case N_PBUD:
3248                         type = eSymbolTypeUndefined;
3249                         break;
3250 
3251                       case N_ABS:
3252                         type = eSymbolTypeAbsolute;
3253                         break;
3254 
3255                       case N_SECT: {
3256                         symbol_section = section_info.GetSection(nlist.n_sect,
3257                                                                  nlist.n_value);
3258 
3259                         if (symbol_section == NULL) {
3260                           // TODO: warn about this?
3261                           add_nlist = false;
3262                           break;
3263                         }
3264 
3265                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3266                           type = eSymbolTypeException;
3267                         } else {
3268                           uint32_t section_type =
3269                               symbol_section->Get() & SECTION_TYPE;
3270 
3271                           switch (section_type) {
3272                           case S_CSTRING_LITERALS:
3273                             type = eSymbolTypeData;
3274                             break; // section with only literal C strings
3275                           case S_4BYTE_LITERALS:
3276                             type = eSymbolTypeData;
3277                             break; // section with only 4 byte literals
3278                           case S_8BYTE_LITERALS:
3279                             type = eSymbolTypeData;
3280                             break; // section with only 8 byte literals
3281                           case S_LITERAL_POINTERS:
3282                             type = eSymbolTypeTrampoline;
3283                             break; // section with only pointers to literals
3284                           case S_NON_LAZY_SYMBOL_POINTERS:
3285                             type = eSymbolTypeTrampoline;
3286                             break; // section with only non-lazy symbol
3287                                    // pointers
3288                           case S_LAZY_SYMBOL_POINTERS:
3289                             type = eSymbolTypeTrampoline;
3290                             break; // section with only lazy symbol pointers
3291                           case S_SYMBOL_STUBS:
3292                             type = eSymbolTypeTrampoline;
3293                             break; // section with only symbol stubs, byte
3294                                    // size of stub in the reserved2 field
3295                           case S_MOD_INIT_FUNC_POINTERS:
3296                             type = eSymbolTypeCode;
3297                             break; // section with only function pointers for
3298                                    // initialization
3299                           case S_MOD_TERM_FUNC_POINTERS:
3300                             type = eSymbolTypeCode;
3301                             break; // section with only function pointers for
3302                                    // termination
3303                           case S_INTERPOSING:
3304                             type = eSymbolTypeTrampoline;
3305                             break; // section with only pairs of function
3306                                    // pointers for interposing
3307                           case S_16BYTE_LITERALS:
3308                             type = eSymbolTypeData;
3309                             break; // section with only 16 byte literals
3310                           case S_DTRACE_DOF:
3311                             type = eSymbolTypeInstrumentation;
3312                             break;
3313                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3314                             type = eSymbolTypeTrampoline;
3315                             break;
3316                           default:
3317                             switch (symbol_section->GetType()) {
3318                             case lldb::eSectionTypeCode:
3319                               type = eSymbolTypeCode;
3320                               break;
3321                             case eSectionTypeData:
3322                             case eSectionTypeDataCString: // Inlined C string
3323                                                           // data
3324                             case eSectionTypeDataCStringPointers: // Pointers
3325                                                                   // to C
3326                                                                   // string
3327                                                                   // data
3328                             case eSectionTypeDataSymbolAddress:   // Address of
3329                                                                   // a symbol in
3330                                                                   // the symbol
3331                                                                   // table
3332                             case eSectionTypeData4:
3333                             case eSectionTypeData8:
3334                             case eSectionTypeData16:
3335                               type = eSymbolTypeData;
3336                               break;
3337                             default:
3338                               break;
3339                             }
3340                             break;
3341                           }
3342 
3343                           if (type == eSymbolTypeInvalid) {
3344                             const char *symbol_sect_name =
3345                                 symbol_section->GetName().AsCString();
3346                             if (symbol_section->IsDescendant(
3347                                     text_section_sp.get())) {
3348                               if (symbol_section->IsClear(
3349                                       S_ATTR_PURE_INSTRUCTIONS |
3350                                       S_ATTR_SELF_MODIFYING_CODE |
3351                                       S_ATTR_SOME_INSTRUCTIONS))
3352                                 type = eSymbolTypeData;
3353                               else
3354                                 type = eSymbolTypeCode;
3355                             } else if (symbol_section->IsDescendant(
3356                                            data_section_sp.get()) ||
3357                                        symbol_section->IsDescendant(
3358                                            data_dirty_section_sp.get()) ||
3359                                        symbol_section->IsDescendant(
3360                                            data_const_section_sp.get())) {
3361                               if (symbol_sect_name &&
3362                                   ::strstr(symbol_sect_name, "__objc") ==
3363                                       symbol_sect_name) {
3364                                 type = eSymbolTypeRuntime;
3365 
3366                                 if (symbol_name) {
3367                                   llvm::StringRef symbol_name_ref(symbol_name);
3368                                   if (symbol_name_ref.startswith("_OBJC_")) {
3369                                     llvm::StringRef
3370                                         g_objc_v2_prefix_class(
3371                                             "_OBJC_CLASS_$_");
3372                                     llvm::StringRef
3373                                         g_objc_v2_prefix_metaclass(
3374                                             "_OBJC_METACLASS_$_");
3375                                     llvm::StringRef
3376                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3377                                     if (symbol_name_ref.startswith(
3378                                             g_objc_v2_prefix_class)) {
3379                                       symbol_name_non_abi_mangled =
3380                                           symbol_name + 1;
3381                                       symbol_name =
3382                                           symbol_name +
3383                                           g_objc_v2_prefix_class.size();
3384                                       type = eSymbolTypeObjCClass;
3385                                       demangled_is_synthesized = true;
3386                                     } else if (
3387                                         symbol_name_ref.startswith(
3388                                             g_objc_v2_prefix_metaclass)) {
3389                                       symbol_name_non_abi_mangled =
3390                                           symbol_name + 1;
3391                                       symbol_name =
3392                                           symbol_name +
3393                                           g_objc_v2_prefix_metaclass.size();
3394                                       type = eSymbolTypeObjCMetaClass;
3395                                       demangled_is_synthesized = true;
3396                                     } else if (symbol_name_ref.startswith(
3397                                                    g_objc_v2_prefix_ivar)) {
3398                                       symbol_name_non_abi_mangled =
3399                                           symbol_name + 1;
3400                                       symbol_name =
3401                                           symbol_name +
3402                                           g_objc_v2_prefix_ivar.size();
3403                                       type = eSymbolTypeObjCIVar;
3404                                       demangled_is_synthesized = true;
3405                                     }
3406                                   }
3407                                 }
3408                               } else if (symbol_sect_name &&
3409                                          ::strstr(symbol_sect_name,
3410                                                   "__gcc_except_tab") ==
3411                                              symbol_sect_name) {
3412                                 type = eSymbolTypeException;
3413                               } else {
3414                                 type = eSymbolTypeData;
3415                               }
3416                             } else if (symbol_sect_name &&
3417                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3418                                            symbol_sect_name) {
3419                               type = eSymbolTypeTrampoline;
3420                             } else if (symbol_section->IsDescendant(
3421                                            objc_section_sp.get())) {
3422                               type = eSymbolTypeRuntime;
3423                               if (symbol_name && symbol_name[0] == '.') {
3424                                 llvm::StringRef symbol_name_ref(symbol_name);
3425                                 llvm::StringRef
3426                                     g_objc_v1_prefix_class(".objc_class_name_");
3427                                 if (symbol_name_ref.startswith(
3428                                         g_objc_v1_prefix_class)) {
3429                                   symbol_name_non_abi_mangled = symbol_name;
3430                                   symbol_name = symbol_name +
3431                                                 g_objc_v1_prefix_class.size();
3432                                   type = eSymbolTypeObjCClass;
3433                                   demangled_is_synthesized = true;
3434                                 }
3435                               }
3436                             }
3437                           }
3438                         }
3439                       } break;
3440                       }
3441                     }
3442 
3443                     if (add_nlist) {
3444                       uint64_t symbol_value = nlist.n_value;
3445                       if (symbol_name_non_abi_mangled) {
3446                         sym[sym_idx].GetMangled().SetMangledName(
3447                             ConstString(symbol_name_non_abi_mangled));
3448                         sym[sym_idx].GetMangled().SetDemangledName(
3449                             ConstString(symbol_name));
3450                       } else {
3451                         bool symbol_name_is_mangled = false;
3452 
3453                         if (symbol_name && symbol_name[0] == '_') {
3454                           symbol_name_is_mangled = symbol_name[1] == '_';
3455                           symbol_name++; // Skip the leading underscore
3456                         }
3457 
3458                         if (symbol_name) {
3459                           ConstString const_symbol_name(symbol_name);
3460                           sym[sym_idx].GetMangled().SetValue(
3461                               const_symbol_name, symbol_name_is_mangled);
3462                           if (is_gsym && is_debug) {
3463                             const char *gsym_name =
3464                                 sym[sym_idx]
3465                                     .GetMangled()
3466                                     .GetName(Mangled::ePreferMangled)
3467                                     .GetCString();
3468                             if (gsym_name)
3469                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3470                           }
3471                         }
3472                       }
3473                       if (symbol_section) {
3474                         const addr_t section_file_addr =
3475                             symbol_section->GetFileAddress();
3476                         if (symbol_byte_size == 0 &&
3477                             function_starts_count > 0) {
3478                           addr_t symbol_lookup_file_addr = nlist.n_value;
3479                           // Do an exact address match for non-ARM addresses,
3480                           // else get the closest since the symbol might be a
3481                           // thumb symbol which has an address with bit zero
3482                           // set
3483                           FunctionStarts::Entry *func_start_entry =
3484                               function_starts.FindEntry(symbol_lookup_file_addr,
3485                                                         !is_arm);
3486                           if (is_arm && func_start_entry) {
3487                             // Verify that the function start address is the
3488                             // symbol address (ARM) or the symbol address + 1
3489                             // (thumb)
3490                             if (func_start_entry->addr !=
3491                                     symbol_lookup_file_addr &&
3492                                 func_start_entry->addr !=
3493                                     (symbol_lookup_file_addr + 1)) {
3494                               // Not the right entry, NULL it out...
3495                               func_start_entry = NULL;
3496                             }
3497                           }
3498                           if (func_start_entry) {
3499                             func_start_entry->data = true;
3500 
3501                             addr_t symbol_file_addr = func_start_entry->addr;
3502                             uint32_t symbol_flags = 0;
3503                             if (is_arm) {
3504                               if (symbol_file_addr & 1)
3505                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3506                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3507                             }
3508 
3509                             const FunctionStarts::Entry *next_func_start_entry =
3510                                 function_starts.FindNextEntry(func_start_entry);
3511                             const addr_t section_end_file_addr =
3512                                 section_file_addr +
3513                                 symbol_section->GetByteSize();
3514                             if (next_func_start_entry) {
3515                               addr_t next_symbol_file_addr =
3516                                   next_func_start_entry->addr;
3517                               // Be sure the clear the Thumb address bit when
3518                               // we calculate the size from the current and
3519                               // next address
3520                               if (is_arm)
3521                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3522                               symbol_byte_size = std::min<lldb::addr_t>(
3523                                   next_symbol_file_addr - symbol_file_addr,
3524                                   section_end_file_addr - symbol_file_addr);
3525                             } else {
3526                               symbol_byte_size =
3527                                   section_end_file_addr - symbol_file_addr;
3528                             }
3529                           }
3530                         }
3531                         symbol_value -= section_file_addr;
3532                       }
3533 
3534                       if (is_debug == false) {
3535                         if (type == eSymbolTypeCode) {
3536                           // See if we can find a N_FUN entry for any code
3537                           // symbols. If we do find a match, and the name
3538                           // matches, then we can merge the two into just the
3539                           // function symbol to avoid duplicate entries in
3540                           // the symbol table
3541                           auto range =
3542                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3543                           if (range.first != range.second) {
3544                             bool found_it = false;
3545                             for (auto pos = range.first; pos != range.second;
3546                                  ++pos) {
3547                               if (sym[sym_idx].GetMangled().GetName(
3548                                       Mangled::ePreferMangled) ==
3549                                   sym[pos->second].GetMangled().GetName(
3550                                       Mangled::ePreferMangled)) {
3551                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3552                                 // We just need the flags from the linker
3553                                 // symbol, so put these flags
3554                                 // into the N_FUN flags to avoid duplicate
3555                                 // symbols in the symbol table
3556                                 sym[pos->second].SetExternal(
3557                                     sym[sym_idx].IsExternal());
3558                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3559                                                           nlist.n_desc);
3560                                 if (resolver_addresses.find(nlist.n_value) !=
3561                                     resolver_addresses.end())
3562                                   sym[pos->second].SetType(eSymbolTypeResolver);
3563                                 sym[sym_idx].Clear();
3564                                 found_it = true;
3565                                 break;
3566                               }
3567                             }
3568                             if (found_it)
3569                               continue;
3570                           } else {
3571                             if (resolver_addresses.find(nlist.n_value) !=
3572                                 resolver_addresses.end())
3573                               type = eSymbolTypeResolver;
3574                           }
3575                         } else if (type == eSymbolTypeData ||
3576                                    type == eSymbolTypeObjCClass ||
3577                                    type == eSymbolTypeObjCMetaClass ||
3578                                    type == eSymbolTypeObjCIVar) {
3579                           // See if we can find a N_STSYM entry for any data
3580                           // symbols. If we do find a match, and the name
3581                           // matches, then we can merge the two into just the
3582                           // Static symbol to avoid duplicate entries in the
3583                           // symbol table
3584                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3585                               nlist.n_value);
3586                           if (range.first != range.second) {
3587                             bool found_it = false;
3588                             for (auto pos = range.first; pos != range.second;
3589                                  ++pos) {
3590                               if (sym[sym_idx].GetMangled().GetName(
3591                                       Mangled::ePreferMangled) ==
3592                                   sym[pos->second].GetMangled().GetName(
3593                                       Mangled::ePreferMangled)) {
3594                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3595                                 // We just need the flags from the linker
3596                                 // symbol, so put these flags
3597                                 // into the N_STSYM flags to avoid duplicate
3598                                 // symbols in the symbol table
3599                                 sym[pos->second].SetExternal(
3600                                     sym[sym_idx].IsExternal());
3601                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3602                                                           nlist.n_desc);
3603                                 sym[sym_idx].Clear();
3604                                 found_it = true;
3605                                 break;
3606                               }
3607                             }
3608                             if (found_it)
3609                               continue;
3610                           } else {
3611                             const char *gsym_name =
3612                                 sym[sym_idx]
3613                                     .GetMangled()
3614                                     .GetName(Mangled::ePreferMangled)
3615                                     .GetCString();
3616                             if (gsym_name) {
3617                               // Combine N_GSYM stab entries with the non
3618                               // stab symbol
3619                               ConstNameToSymbolIndexMap::const_iterator pos =
3620                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3621                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3622                                 const uint32_t GSYM_sym_idx = pos->second;
3623                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3624                                     GSYM_sym_idx;
3625                                 // Copy the address, because often the N_GSYM
3626                                 // address has an invalid address of zero
3627                                 // when the global is a common symbol
3628                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3629                                     symbol_section);
3630                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3631                                     symbol_value);
3632                                 add_symbol_addr(sym[GSYM_sym_idx]
3633                                                     .GetAddress()
3634                                                     .GetFileAddress());
3635                                 // We just need the flags from the linker
3636                                 // symbol, so put these flags
3637                                 // into the N_GSYM flags to avoid duplicate
3638                                 // symbols in the symbol table
3639                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3640                                                            nlist.n_desc);
3641                                 sym[sym_idx].Clear();
3642                                 continue;
3643                               }
3644                             }
3645                           }
3646                         }
3647                       }
3648 
3649                       sym[sym_idx].SetID(nlist_idx);
3650                       sym[sym_idx].SetType(type);
3651                       if (set_value) {
3652                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3653                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3654                         add_symbol_addr(
3655                             sym[sym_idx].GetAddress().GetFileAddress());
3656                       }
3657                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3658 
3659                       if (symbol_byte_size > 0)
3660                         sym[sym_idx].SetByteSize(symbol_byte_size);
3661 
3662                       if (demangled_is_synthesized)
3663                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3664                       ++sym_idx;
3665                     } else {
3666                       sym[sym_idx].Clear();
3667                     }
3668                   }
3669                   /////////////////////////////
3670                 }
3671             }
3672 
3673             for (const auto &pos : reexport_shlib_needs_fixup) {
3674               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3675               if (undef_pos != undefined_name_to_desc.end()) {
3676                 const uint8_t dylib_ordinal =
3677                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3678                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3679                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3680                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3681               }
3682             }
3683           }
3684 
3685 #endif
3686   lldb::offset_t nlist_data_offset = 0;
3687 
3688   if (nlist_data.GetByteSize() > 0) {
3689 
3690     // If the sym array was not created while parsing the DSC unmapped
3691     // symbols, create it now.
3692     if (sym == nullptr) {
3693       sym =
3694           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3695       num_syms = symtab.GetNumSymbols();
3696     }
3697 
3698     if (unmapped_local_symbols_found) {
3699       assert(m_dysymtab.ilocalsym == 0);
3700       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3701       nlist_idx = m_dysymtab.nlocalsym;
3702     } else {
3703       nlist_idx = 0;
3704     }
3705 
3706     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3707     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3708     UndefinedNameToDescMap undefined_name_to_desc;
3709     SymbolIndexToName reexport_shlib_needs_fixup;
3710 
3711     // Symtab parsing is a huge mess. Everything is entangled and the code
3712     // requires access to a ridiculous amount of variables. LLDB depends
3713     // heavily on the proper merging of symbols and to get that right we need
3714     // to make sure we have parsed all the debug symbols first. Therefore we
3715     // invoke the lambda twice, once to parse only the debug symbols and then
3716     // once more to parse the remaining symbols.
3717     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3718                                  bool debug_only) {
3719       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3720       if (is_debug != debug_only)
3721         return true;
3722 
3723       const char *symbol_name_non_abi_mangled = nullptr;
3724       const char *symbol_name = nullptr;
3725 
3726       if (have_strtab_data) {
3727         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3728 
3729         if (symbol_name == nullptr) {
3730           // No symbol should be NULL, even the symbols with no string values
3731           // should have an offset zero which points to an empty C-string
3732           Host::SystemLog(Host::eSystemLogError,
3733                           "error: symbol[%u] has invalid string table offset "
3734                           "0x%x in %s, ignoring symbol\n",
3735                           nlist_idx, nlist.n_strx,
3736                           module_sp->GetFileSpec().GetPath().c_str());
3737           return true;
3738         }
3739         if (symbol_name[0] == '\0')
3740           symbol_name = nullptr;
3741       } else {
3742         const addr_t str_addr = strtab_addr + nlist.n_strx;
3743         Status str_error;
3744         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3745                                            str_error))
3746           symbol_name = memory_symbol_name.c_str();
3747       }
3748 
3749       SymbolType type = eSymbolTypeInvalid;
3750       SectionSP symbol_section;
3751       lldb::addr_t symbol_byte_size = 0;
3752       bool add_nlist = true;
3753       bool is_gsym = false;
3754       bool demangled_is_synthesized = false;
3755       bool set_value = true;
3756 
3757       assert(sym_idx < num_syms);
3758       sym[sym_idx].SetDebug(is_debug);
3759 
3760       if (is_debug) {
3761         switch (nlist.n_type) {
3762         case N_GSYM:
3763           // global symbol: name,,NO_SECT,type,0
3764           // Sometimes the N_GSYM value contains the address.
3765 
3766           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3767           // the ObjC data.  They
3768           // have the same address, but we want to ensure that we always find
3769           // only the real symbol, 'cause we don't currently correctly
3770           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3771           // type.  This is a temporary hack to make sure the ObjectiveC
3772           // symbols get treated correctly.  To do this right, we should
3773           // coalesce all the GSYM & global symbols that have the same
3774           // address.
3775           is_gsym = true;
3776           sym[sym_idx].SetExternal(true);
3777 
3778           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3779             llvm::StringRef symbol_name_ref(symbol_name);
3780             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3781               symbol_name_non_abi_mangled = symbol_name + 1;
3782               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3783               type = eSymbolTypeObjCClass;
3784               demangled_is_synthesized = true;
3785 
3786             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3787               symbol_name_non_abi_mangled = symbol_name + 1;
3788               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3789               type = eSymbolTypeObjCMetaClass;
3790               demangled_is_synthesized = true;
3791             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3792               symbol_name_non_abi_mangled = symbol_name + 1;
3793               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3794               type = eSymbolTypeObjCIVar;
3795               demangled_is_synthesized = true;
3796             }
3797           } else {
3798             if (nlist.n_value != 0)
3799               symbol_section =
3800                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3801             type = eSymbolTypeData;
3802           }
3803           break;
3804 
3805         case N_FNAME:
3806           // procedure name (f77 kludge): name,,NO_SECT,0,0
3807           type = eSymbolTypeCompiler;
3808           break;
3809 
3810         case N_FUN:
3811           // procedure: name,,n_sect,linenumber,address
3812           if (symbol_name) {
3813             type = eSymbolTypeCode;
3814             symbol_section =
3815                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3816 
3817             N_FUN_addr_to_sym_idx.insert(
3818                 std::make_pair(nlist.n_value, sym_idx));
3819             // We use the current number of symbols in the symbol table in
3820             // lieu of using nlist_idx in case we ever start trimming entries
3821             // out
3822             N_FUN_indexes.push_back(sym_idx);
3823           } else {
3824             type = eSymbolTypeCompiler;
3825 
3826             if (!N_FUN_indexes.empty()) {
3827               // Copy the size of the function into the original STAB entry
3828               // so we don't have to hunt for it later
3829               symtab.SymbolAtIndex(N_FUN_indexes.back())
3830                   ->SetByteSize(nlist.n_value);
3831               N_FUN_indexes.pop_back();
3832               // We don't really need the end function STAB as it contains
3833               // the size which we already placed with the original symbol,
3834               // so don't add it if we want a minimal symbol table
3835               add_nlist = false;
3836             }
3837           }
3838           break;
3839 
3840         case N_STSYM:
3841           // static symbol: name,,n_sect,type,address
3842           N_STSYM_addr_to_sym_idx.insert(
3843               std::make_pair(nlist.n_value, sym_idx));
3844           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3845           if (symbol_name && symbol_name[0]) {
3846             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3847                                                      eSymbolTypeData);
3848           }
3849           break;
3850 
3851         case N_LCSYM:
3852           // .lcomm symbol: name,,n_sect,type,address
3853           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3854           type = eSymbolTypeCommonBlock;
3855           break;
3856 
3857         case N_BNSYM:
3858           // We use the current number of symbols in the symbol table in lieu
3859           // of using nlist_idx in case we ever start trimming entries out
3860           // Skip these if we want minimal symbol tables
3861           add_nlist = false;
3862           break;
3863 
3864         case N_ENSYM:
3865           // Set the size of the N_BNSYM to the terminating index of this
3866           // N_ENSYM so that we can always skip the entire symbol if we need
3867           // to navigate more quickly at the source level when parsing STABS
3868           // Skip these if we want minimal symbol tables
3869           add_nlist = false;
3870           break;
3871 
3872         case N_OPT:
3873           // emitted with gcc2_compiled and in gcc source
3874           type = eSymbolTypeCompiler;
3875           break;
3876 
3877         case N_RSYM:
3878           // register sym: name,,NO_SECT,type,register
3879           type = eSymbolTypeVariable;
3880           break;
3881 
3882         case N_SLINE:
3883           // src line: 0,,n_sect,linenumber,address
3884           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3885           type = eSymbolTypeLineEntry;
3886           break;
3887 
3888         case N_SSYM:
3889           // structure elt: name,,NO_SECT,type,struct_offset
3890           type = eSymbolTypeVariableType;
3891           break;
3892 
3893         case N_SO:
3894           // source file name
3895           type = eSymbolTypeSourceFile;
3896           if (symbol_name == nullptr) {
3897             add_nlist = false;
3898             if (N_SO_index != UINT32_MAX) {
3899               // Set the size of the N_SO to the terminating index of this
3900               // N_SO so that we can always skip the entire N_SO if we need
3901               // to navigate more quickly at the source level when parsing
3902               // STABS
3903               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3904               symbol_ptr->SetByteSize(sym_idx);
3905               symbol_ptr->SetSizeIsSibling(true);
3906             }
3907             N_NSYM_indexes.clear();
3908             N_INCL_indexes.clear();
3909             N_BRAC_indexes.clear();
3910             N_COMM_indexes.clear();
3911             N_FUN_indexes.clear();
3912             N_SO_index = UINT32_MAX;
3913           } else {
3914             // We use the current number of symbols in the symbol table in
3915             // lieu of using nlist_idx in case we ever start trimming entries
3916             // out
3917             const bool N_SO_has_full_path = symbol_name[0] == '/';
3918             if (N_SO_has_full_path) {
3919               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3920                 // We have two consecutive N_SO entries where the first
3921                 // contains a directory and the second contains a full path.
3922                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3923                                                        false);
3924                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3925                 add_nlist = false;
3926               } else {
3927                 // This is the first entry in a N_SO that contains a
3928                 // directory or a full path to the source file
3929                 N_SO_index = sym_idx;
3930               }
3931             } else if ((N_SO_index == sym_idx - 1) &&
3932                        ((sym_idx - 1) < num_syms)) {
3933               // This is usually the second N_SO entry that contains just the
3934               // filename, so here we combine it with the first one if we are
3935               // minimizing the symbol table
3936               const char *so_path =
3937                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3938               if (so_path && so_path[0]) {
3939                 std::string full_so_path(so_path);
3940                 const size_t double_slash_pos = full_so_path.find("//");
3941                 if (double_slash_pos != std::string::npos) {
3942                   // The linker has been generating bad N_SO entries with
3943                   // doubled up paths in the format "%s%s" where the first
3944                   // string in the DW_AT_comp_dir, and the second is the
3945                   // directory for the source file so you end up with a path
3946                   // that looks like "/tmp/src//tmp/src/"
3947                   FileSpec so_dir(so_path);
3948                   if (!FileSystem::Instance().Exists(so_dir)) {
3949                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3950                                    FileSpec::Style::native);
3951                     if (FileSystem::Instance().Exists(so_dir)) {
3952                       // Trim off the incorrect path
3953                       full_so_path.erase(0, double_slash_pos + 1);
3954                     }
3955                   }
3956                 }
3957                 if (*full_so_path.rbegin() != '/')
3958                   full_so_path += '/';
3959                 full_so_path += symbol_name;
3960                 sym[sym_idx - 1].GetMangled().SetValue(
3961                     ConstString(full_so_path.c_str()), false);
3962                 add_nlist = false;
3963                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3964               }
3965             } else {
3966               // This could be a relative path to a N_SO
3967               N_SO_index = sym_idx;
3968             }
3969           }
3970           break;
3971 
3972         case N_OSO:
3973           // object file name: name,,0,0,st_mtime
3974           type = eSymbolTypeObjectFile;
3975           break;
3976 
3977         case N_LSYM:
3978           // local sym: name,,NO_SECT,type,offset
3979           type = eSymbolTypeLocal;
3980           break;
3981 
3982         // INCL scopes
3983         case N_BINCL:
3984           // include file beginning: name,,NO_SECT,0,sum We use the current
3985           // number of symbols in the symbol table in lieu of using nlist_idx
3986           // in case we ever start trimming entries out
3987           N_INCL_indexes.push_back(sym_idx);
3988           type = eSymbolTypeScopeBegin;
3989           break;
3990 
3991         case N_EINCL:
3992           // include file end: name,,NO_SECT,0,0
3993           // Set the size of the N_BINCL to the terminating index of this
3994           // N_EINCL so that we can always skip the entire symbol if we need
3995           // to navigate more quickly at the source level when parsing STABS
3996           if (!N_INCL_indexes.empty()) {
3997             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
3998             symbol_ptr->SetByteSize(sym_idx + 1);
3999             symbol_ptr->SetSizeIsSibling(true);
4000             N_INCL_indexes.pop_back();
4001           }
4002           type = eSymbolTypeScopeEnd;
4003           break;
4004 
4005         case N_SOL:
4006           // #included file name: name,,n_sect,0,address
4007           type = eSymbolTypeHeaderFile;
4008 
4009           // We currently don't use the header files on darwin
4010           add_nlist = false;
4011           break;
4012 
4013         case N_PARAMS:
4014           // compiler parameters: name,,NO_SECT,0,0
4015           type = eSymbolTypeCompiler;
4016           break;
4017 
4018         case N_VERSION:
4019           // compiler version: name,,NO_SECT,0,0
4020           type = eSymbolTypeCompiler;
4021           break;
4022 
4023         case N_OLEVEL:
4024           // compiler -O level: name,,NO_SECT,0,0
4025           type = eSymbolTypeCompiler;
4026           break;
4027 
4028         case N_PSYM:
4029           // parameter: name,,NO_SECT,type,offset
4030           type = eSymbolTypeVariable;
4031           break;
4032 
4033         case N_ENTRY:
4034           // alternate entry: name,,n_sect,linenumber,address
4035           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4036           type = eSymbolTypeLineEntry;
4037           break;
4038 
4039         // Left and Right Braces
4040         case N_LBRAC:
4041           // left bracket: 0,,NO_SECT,nesting level,address We use the
4042           // current number of symbols in the symbol table in lieu of using
4043           // nlist_idx in case we ever start trimming entries out
4044           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4045           N_BRAC_indexes.push_back(sym_idx);
4046           type = eSymbolTypeScopeBegin;
4047           break;
4048 
4049         case N_RBRAC:
4050           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4051           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4052           // can always skip the entire symbol if we need to navigate more
4053           // quickly at the source level when parsing STABS
4054           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4055           if (!N_BRAC_indexes.empty()) {
4056             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4057             symbol_ptr->SetByteSize(sym_idx + 1);
4058             symbol_ptr->SetSizeIsSibling(true);
4059             N_BRAC_indexes.pop_back();
4060           }
4061           type = eSymbolTypeScopeEnd;
4062           break;
4063 
4064         case N_EXCL:
4065           // deleted include file: name,,NO_SECT,0,sum
4066           type = eSymbolTypeHeaderFile;
4067           break;
4068 
4069         // COMM scopes
4070         case N_BCOMM:
4071           // begin common: name,,NO_SECT,0,0
4072           // We use the current number of symbols in the symbol table in lieu
4073           // of using nlist_idx in case we ever start trimming entries out
4074           type = eSymbolTypeScopeBegin;
4075           N_COMM_indexes.push_back(sym_idx);
4076           break;
4077 
4078         case N_ECOML:
4079           // end common (local name): 0,,n_sect,0,address
4080           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4081           LLVM_FALLTHROUGH;
4082 
4083         case N_ECOMM:
4084           // end common: name,,n_sect,0,0
4085           // Set the size of the N_BCOMM to the terminating index of this
4086           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4087           // we need to navigate more quickly at the source level when
4088           // parsing STABS
4089           if (!N_COMM_indexes.empty()) {
4090             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4091             symbol_ptr->SetByteSize(sym_idx + 1);
4092             symbol_ptr->SetSizeIsSibling(true);
4093             N_COMM_indexes.pop_back();
4094           }
4095           type = eSymbolTypeScopeEnd;
4096           break;
4097 
4098         case N_LENG:
4099           // second stab entry with length information
4100           type = eSymbolTypeAdditional;
4101           break;
4102 
4103         default:
4104           break;
4105         }
4106       } else {
4107         uint8_t n_type = N_TYPE & nlist.n_type;
4108         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4109 
4110         switch (n_type) {
4111         case N_INDR: {
4112           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4113           if (reexport_name_cstr && reexport_name_cstr[0]) {
4114             type = eSymbolTypeReExported;
4115             ConstString reexport_name(reexport_name_cstr +
4116                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4117             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4118             set_value = false;
4119             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4120             indirect_symbol_names.insert(
4121                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4122           } else
4123             type = eSymbolTypeUndefined;
4124         } break;
4125 
4126         case N_UNDF:
4127           if (symbol_name && symbol_name[0]) {
4128             ConstString undefined_name(symbol_name +
4129                                        ((symbol_name[0] == '_') ? 1 : 0));
4130             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4131           }
4132           LLVM_FALLTHROUGH;
4133 
4134         case N_PBUD:
4135           type = eSymbolTypeUndefined;
4136           break;
4137 
4138         case N_ABS:
4139           type = eSymbolTypeAbsolute;
4140           break;
4141 
4142         case N_SECT: {
4143           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4144 
4145           if (!symbol_section) {
4146             // TODO: warn about this?
4147             add_nlist = false;
4148             break;
4149           }
4150 
4151           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4152             type = eSymbolTypeException;
4153           } else {
4154             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4155 
4156             switch (section_type) {
4157             case S_CSTRING_LITERALS:
4158               type = eSymbolTypeData;
4159               break; // section with only literal C strings
4160             case S_4BYTE_LITERALS:
4161               type = eSymbolTypeData;
4162               break; // section with only 4 byte literals
4163             case S_8BYTE_LITERALS:
4164               type = eSymbolTypeData;
4165               break; // section with only 8 byte literals
4166             case S_LITERAL_POINTERS:
4167               type = eSymbolTypeTrampoline;
4168               break; // section with only pointers to literals
4169             case S_NON_LAZY_SYMBOL_POINTERS:
4170               type = eSymbolTypeTrampoline;
4171               break; // section with only non-lazy symbol pointers
4172             case S_LAZY_SYMBOL_POINTERS:
4173               type = eSymbolTypeTrampoline;
4174               break; // section with only lazy symbol pointers
4175             case S_SYMBOL_STUBS:
4176               type = eSymbolTypeTrampoline;
4177               break; // section with only symbol stubs, byte size of stub in
4178                      // the reserved2 field
4179             case S_MOD_INIT_FUNC_POINTERS:
4180               type = eSymbolTypeCode;
4181               break; // section with only function pointers for initialization
4182             case S_MOD_TERM_FUNC_POINTERS:
4183               type = eSymbolTypeCode;
4184               break; // section with only function pointers for termination
4185             case S_INTERPOSING:
4186               type = eSymbolTypeTrampoline;
4187               break; // section with only pairs of function pointers for
4188                      // interposing
4189             case S_16BYTE_LITERALS:
4190               type = eSymbolTypeData;
4191               break; // section with only 16 byte literals
4192             case S_DTRACE_DOF:
4193               type = eSymbolTypeInstrumentation;
4194               break;
4195             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4196               type = eSymbolTypeTrampoline;
4197               break;
4198             default:
4199               switch (symbol_section->GetType()) {
4200               case lldb::eSectionTypeCode:
4201                 type = eSymbolTypeCode;
4202                 break;
4203               case eSectionTypeData:
4204               case eSectionTypeDataCString:         // Inlined C string data
4205               case eSectionTypeDataCStringPointers: // Pointers to C string
4206                                                     // data
4207               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4208                                                     // the symbol table
4209               case eSectionTypeData4:
4210               case eSectionTypeData8:
4211               case eSectionTypeData16:
4212                 type = eSymbolTypeData;
4213                 break;
4214               default:
4215                 break;
4216               }
4217               break;
4218             }
4219 
4220             if (type == eSymbolTypeInvalid) {
4221               const char *symbol_sect_name =
4222                   symbol_section->GetName().AsCString();
4223               if (symbol_section->IsDescendant(text_section_sp.get())) {
4224                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4225                                             S_ATTR_SELF_MODIFYING_CODE |
4226                                             S_ATTR_SOME_INSTRUCTIONS))
4227                   type = eSymbolTypeData;
4228                 else
4229                   type = eSymbolTypeCode;
4230               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4231                          symbol_section->IsDescendant(
4232                              data_dirty_section_sp.get()) ||
4233                          symbol_section->IsDescendant(
4234                              data_const_section_sp.get())) {
4235                 if (symbol_sect_name &&
4236                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4237                   type = eSymbolTypeRuntime;
4238 
4239                   if (symbol_name) {
4240                     llvm::StringRef symbol_name_ref(symbol_name);
4241                     if (symbol_name_ref.startswith("_OBJC_")) {
4242                       llvm::StringRef g_objc_v2_prefix_class(
4243                           "_OBJC_CLASS_$_");
4244                       llvm::StringRef g_objc_v2_prefix_metaclass(
4245                           "_OBJC_METACLASS_$_");
4246                       llvm::StringRef g_objc_v2_prefix_ivar(
4247                           "_OBJC_IVAR_$_");
4248                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4249                         symbol_name_non_abi_mangled = symbol_name + 1;
4250                         symbol_name =
4251                             symbol_name + g_objc_v2_prefix_class.size();
4252                         type = eSymbolTypeObjCClass;
4253                         demangled_is_synthesized = true;
4254                       } else if (symbol_name_ref.startswith(
4255                                      g_objc_v2_prefix_metaclass)) {
4256                         symbol_name_non_abi_mangled = symbol_name + 1;
4257                         symbol_name =
4258                             symbol_name + g_objc_v2_prefix_metaclass.size();
4259                         type = eSymbolTypeObjCMetaClass;
4260                         demangled_is_synthesized = true;
4261                       } else if (symbol_name_ref.startswith(
4262                                      g_objc_v2_prefix_ivar)) {
4263                         symbol_name_non_abi_mangled = symbol_name + 1;
4264                         symbol_name =
4265                             symbol_name + g_objc_v2_prefix_ivar.size();
4266                         type = eSymbolTypeObjCIVar;
4267                         demangled_is_synthesized = true;
4268                       }
4269                     }
4270                   }
4271                 } else if (symbol_sect_name &&
4272                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4273                                symbol_sect_name) {
4274                   type = eSymbolTypeException;
4275                 } else {
4276                   type = eSymbolTypeData;
4277                 }
4278               } else if (symbol_sect_name &&
4279                          ::strstr(symbol_sect_name, "__IMPORT") ==
4280                              symbol_sect_name) {
4281                 type = eSymbolTypeTrampoline;
4282               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4283                 type = eSymbolTypeRuntime;
4284                 if (symbol_name && symbol_name[0] == '.') {
4285                   llvm::StringRef symbol_name_ref(symbol_name);
4286                   llvm::StringRef g_objc_v1_prefix_class(
4287                       ".objc_class_name_");
4288                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4289                     symbol_name_non_abi_mangled = symbol_name;
4290                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4291                     type = eSymbolTypeObjCClass;
4292                     demangled_is_synthesized = true;
4293                   }
4294                 }
4295               }
4296             }
4297           }
4298         } break;
4299         }
4300       }
4301 
4302       if (!add_nlist) {
4303         sym[sym_idx].Clear();
4304         return true;
4305       }
4306 
4307       uint64_t symbol_value = nlist.n_value;
4308 
4309       if (symbol_name_non_abi_mangled) {
4310         sym[sym_idx].GetMangled().SetMangledName(
4311             ConstString(symbol_name_non_abi_mangled));
4312         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4313       } else {
4314         bool symbol_name_is_mangled = false;
4315 
4316         if (symbol_name && symbol_name[0] == '_') {
4317           symbol_name_is_mangled = symbol_name[1] == '_';
4318           symbol_name++; // Skip the leading underscore
4319         }
4320 
4321         if (symbol_name) {
4322           ConstString const_symbol_name(symbol_name);
4323           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4324                                              symbol_name_is_mangled);
4325         }
4326       }
4327 
4328       if (is_gsym) {
4329         const char *gsym_name = sym[sym_idx]
4330                                     .GetMangled()
4331                                     .GetName(Mangled::ePreferMangled)
4332                                     .GetCString();
4333         if (gsym_name)
4334           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4335       }
4336 
4337       if (symbol_section) {
4338         const addr_t section_file_addr = symbol_section->GetFileAddress();
4339         if (symbol_byte_size == 0 && function_starts_count > 0) {
4340           addr_t symbol_lookup_file_addr = nlist.n_value;
4341           // Do an exact address match for non-ARM addresses, else get the
4342           // closest since the symbol might be a thumb symbol which has an
4343           // address with bit zero set.
4344           FunctionStarts::Entry *func_start_entry =
4345               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4346           if (is_arm && func_start_entry) {
4347             // Verify that the function start address is the symbol address
4348             // (ARM) or the symbol address + 1 (thumb).
4349             if (func_start_entry->addr != symbol_lookup_file_addr &&
4350                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4351               // Not the right entry, NULL it out...
4352               func_start_entry = nullptr;
4353             }
4354           }
4355           if (func_start_entry) {
4356             func_start_entry->data = true;
4357 
4358             addr_t symbol_file_addr = func_start_entry->addr;
4359             if (is_arm)
4360               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4361 
4362             const FunctionStarts::Entry *next_func_start_entry =
4363                 function_starts.FindNextEntry(func_start_entry);
4364             const addr_t section_end_file_addr =
4365                 section_file_addr + symbol_section->GetByteSize();
4366             if (next_func_start_entry) {
4367               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4368               // Be sure the clear the Thumb address bit when we calculate the
4369               // size from the current and next address
4370               if (is_arm)
4371                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4372               symbol_byte_size = std::min<lldb::addr_t>(
4373                   next_symbol_file_addr - symbol_file_addr,
4374                   section_end_file_addr - symbol_file_addr);
4375             } else {
4376               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4377             }
4378           }
4379         }
4380         symbol_value -= section_file_addr;
4381       }
4382 
4383       if (!is_debug) {
4384         if (type == eSymbolTypeCode) {
4385           // See if we can find a N_FUN entry for any code symbols. If we do
4386           // find a match, and the name matches, then we can merge the two into
4387           // just the function symbol to avoid duplicate entries in the symbol
4388           // table.
4389           std::pair<ValueToSymbolIndexMap::const_iterator,
4390                     ValueToSymbolIndexMap::const_iterator>
4391               range;
4392           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4393           if (range.first != range.second) {
4394             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4395                  pos != range.second; ++pos) {
4396               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4397                   sym[pos->second].GetMangled().GetName(
4398                       Mangled::ePreferMangled)) {
4399                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4400                 // We just need the flags from the linker symbol, so put these
4401                 // flags into the N_FUN flags to avoid duplicate symbols in the
4402                 // symbol table.
4403                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4404                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4405                 if (resolver_addresses.find(nlist.n_value) !=
4406                     resolver_addresses.end())
4407                   sym[pos->second].SetType(eSymbolTypeResolver);
4408                 sym[sym_idx].Clear();
4409                 return true;
4410               }
4411             }
4412           } else {
4413             if (resolver_addresses.find(nlist.n_value) !=
4414                 resolver_addresses.end())
4415               type = eSymbolTypeResolver;
4416           }
4417         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4418                    type == eSymbolTypeObjCMetaClass ||
4419                    type == eSymbolTypeObjCIVar) {
4420           // See if we can find a N_STSYM entry for any data symbols. If we do
4421           // find a match, and the name matches, then we can merge the two into
4422           // just the Static symbol to avoid duplicate entries in the symbol
4423           // table.
4424           std::pair<ValueToSymbolIndexMap::const_iterator,
4425                     ValueToSymbolIndexMap::const_iterator>
4426               range;
4427           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4428           if (range.first != range.second) {
4429             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4430                  pos != range.second; ++pos) {
4431               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4432                   sym[pos->second].GetMangled().GetName(
4433                       Mangled::ePreferMangled)) {
4434                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4435                 // We just need the flags from the linker symbol, so put these
4436                 // flags into the N_STSYM flags to avoid duplicate symbols in
4437                 // the symbol table.
4438                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4439                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4440                 sym[sym_idx].Clear();
4441                 return true;
4442               }
4443             }
4444           } else {
4445             // Combine N_GSYM stab entries with the non stab symbol.
4446             const char *gsym_name = sym[sym_idx]
4447                                         .GetMangled()
4448                                         .GetName(Mangled::ePreferMangled)
4449                                         .GetCString();
4450             if (gsym_name) {
4451               ConstNameToSymbolIndexMap::const_iterator pos =
4452                   N_GSYM_name_to_sym_idx.find(gsym_name);
4453               if (pos != N_GSYM_name_to_sym_idx.end()) {
4454                 const uint32_t GSYM_sym_idx = pos->second;
4455                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4456                 // Copy the address, because often the N_GSYM address has an
4457                 // invalid address of zero when the global is a common symbol.
4458                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4459                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4460                 add_symbol_addr(
4461                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4462                 // We just need the flags from the linker symbol, so put these
4463                 // flags into the N_GSYM flags to avoid duplicate symbols in
4464                 // the symbol table.
4465                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4466                 sym[sym_idx].Clear();
4467                 return true;
4468               }
4469             }
4470           }
4471         }
4472       }
4473 
4474       sym[sym_idx].SetID(nlist_idx);
4475       sym[sym_idx].SetType(type);
4476       if (set_value) {
4477         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4478         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4479         if (symbol_section)
4480           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4481       }
4482       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4483       if (nlist.n_desc & N_WEAK_REF)
4484         sym[sym_idx].SetIsWeak(true);
4485 
4486       if (symbol_byte_size > 0)
4487         sym[sym_idx].SetByteSize(symbol_byte_size);
4488 
4489       if (demangled_is_synthesized)
4490         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4491 
4492       ++sym_idx;
4493       return true;
4494     };
4495 
4496     // First parse all the nlists but don't process them yet. See the next
4497     // comment for an explanation why.
4498     std::vector<struct nlist_64> nlists;
4499     nlists.reserve(symtab_load_command.nsyms);
4500     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4501       if (auto nlist =
4502               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4503         nlists.push_back(*nlist);
4504       else
4505         break;
4506     }
4507 
4508     // Now parse all the debug symbols. This is needed to merge non-debug
4509     // symbols in the next step. Non-debug symbols are always coalesced into
4510     // the debug symbol. Doing this in one step would mean that some symbols
4511     // won't be merged.
4512     nlist_idx = 0;
4513     for (auto &nlist : nlists) {
4514       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4515         break;
4516     }
4517 
4518     // Finally parse all the non debug symbols.
4519     nlist_idx = 0;
4520     for (auto &nlist : nlists) {
4521       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4522         break;
4523     }
4524 
4525     for (const auto &pos : reexport_shlib_needs_fixup) {
4526       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4527       if (undef_pos != undefined_name_to_desc.end()) {
4528         const uint8_t dylib_ordinal =
4529             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4530         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4531           sym[pos.first].SetReExportedSymbolSharedLibrary(
4532               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4533       }
4534     }
4535   }
4536 
4537   // Count how many trie symbols we'll add to the symbol table
4538   int trie_symbol_table_augment_count = 0;
4539   for (auto &e : external_sym_trie_entries) {
4540     if (symbols_added.find(e.entry.address) == symbols_added.end())
4541       trie_symbol_table_augment_count++;
4542   }
4543 
4544   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4545     num_syms = sym_idx + trie_symbol_table_augment_count;
4546     sym = symtab.Resize(num_syms);
4547   }
4548   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4549 
4550   // Add symbols from the trie to the symbol table.
4551   for (auto &e : external_sym_trie_entries) {
4552     if (symbols_added.contains(e.entry.address))
4553       continue;
4554 
4555     // Find the section that this trie address is in, use that to annotate
4556     // symbol type as we add the trie address and name to the symbol table.
4557     Address symbol_addr;
4558     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4559       SectionSP symbol_section(symbol_addr.GetSection());
4560       const char *symbol_name = e.entry.name.GetCString();
4561       bool demangled_is_synthesized = false;
4562       SymbolType type =
4563           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4564                         data_section_sp, data_dirty_section_sp,
4565                         data_const_section_sp, symbol_section);
4566 
4567       sym[sym_idx].SetType(type);
4568       if (symbol_section) {
4569         sym[sym_idx].SetID(synthetic_sym_id++);
4570         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4571         if (demangled_is_synthesized)
4572           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4573         sym[sym_idx].SetIsSynthetic(true);
4574         sym[sym_idx].SetExternal(true);
4575         sym[sym_idx].GetAddressRef() = symbol_addr;
4576         add_symbol_addr(symbol_addr.GetFileAddress());
4577         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4578           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4579         ++sym_idx;
4580       }
4581     }
4582   }
4583 
4584   if (function_starts_count > 0) {
4585     uint32_t num_synthetic_function_symbols = 0;
4586     for (i = 0; i < function_starts_count; ++i) {
4587       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4588           symbols_added.end())
4589         ++num_synthetic_function_symbols;
4590     }
4591 
4592     if (num_synthetic_function_symbols > 0) {
4593       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4594         num_syms = sym_idx + num_synthetic_function_symbols;
4595         sym = symtab.Resize(num_syms);
4596       }
4597       for (i = 0; i < function_starts_count; ++i) {
4598         const FunctionStarts::Entry *func_start_entry =
4599             function_starts.GetEntryAtIndex(i);
4600         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4601           addr_t symbol_file_addr = func_start_entry->addr;
4602           uint32_t symbol_flags = 0;
4603           if (func_start_entry->data)
4604             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4605           Address symbol_addr;
4606           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4607             SectionSP symbol_section(symbol_addr.GetSection());
4608             uint32_t symbol_byte_size = 0;
4609             if (symbol_section) {
4610               const addr_t section_file_addr = symbol_section->GetFileAddress();
4611               const FunctionStarts::Entry *next_func_start_entry =
4612                   function_starts.FindNextEntry(func_start_entry);
4613               const addr_t section_end_file_addr =
4614                   section_file_addr + symbol_section->GetByteSize();
4615               if (next_func_start_entry) {
4616                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4617                 if (is_arm)
4618                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4619                 symbol_byte_size = std::min<lldb::addr_t>(
4620                     next_symbol_file_addr - symbol_file_addr,
4621                     section_end_file_addr - symbol_file_addr);
4622               } else {
4623                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4624               }
4625               sym[sym_idx].SetID(synthetic_sym_id++);
4626               // Don't set the name for any synthetic symbols, the Symbol
4627               // object will generate one if needed when the name is accessed
4628               // via accessors.
4629               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4630               sym[sym_idx].SetType(eSymbolTypeCode);
4631               sym[sym_idx].SetIsSynthetic(true);
4632               sym[sym_idx].GetAddressRef() = symbol_addr;
4633               add_symbol_addr(symbol_addr.GetFileAddress());
4634               if (symbol_flags)
4635                 sym[sym_idx].SetFlags(symbol_flags);
4636               if (symbol_byte_size)
4637                 sym[sym_idx].SetByteSize(symbol_byte_size);
4638               ++sym_idx;
4639             }
4640           }
4641         }
4642       }
4643     }
4644   }
4645 
4646   // Trim our symbols down to just what we ended up with after removing any
4647   // symbols.
4648   if (sym_idx < num_syms) {
4649     num_syms = sym_idx;
4650     sym = symtab.Resize(num_syms);
4651   }
4652 
4653   // Now synthesize indirect symbols
4654   if (m_dysymtab.nindirectsyms != 0) {
4655     if (indirect_symbol_index_data.GetByteSize()) {
4656       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4657           m_nlist_idx_to_sym_idx.end();
4658 
4659       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4660            ++sect_idx) {
4661         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4662             S_SYMBOL_STUBS) {
4663           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4664           if (symbol_stub_byte_size == 0)
4665             continue;
4666 
4667           const uint32_t num_symbol_stubs =
4668               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4669 
4670           if (num_symbol_stubs == 0)
4671             continue;
4672 
4673           const uint32_t symbol_stub_index_offset =
4674               m_mach_sections[sect_idx].reserved1;
4675           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4676             const uint32_t symbol_stub_index =
4677                 symbol_stub_index_offset + stub_idx;
4678             const lldb::addr_t symbol_stub_addr =
4679                 m_mach_sections[sect_idx].addr +
4680                 (stub_idx * symbol_stub_byte_size);
4681             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4682             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4683                     symbol_stub_offset, 4)) {
4684               const uint32_t stub_sym_id =
4685                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4686               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4687                 continue;
4688 
4689               NListIndexToSymbolIndexMap::const_iterator index_pos =
4690                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4691               Symbol *stub_symbol = nullptr;
4692               if (index_pos != end_index_pos) {
4693                 // We have a remapping from the original nlist index to a
4694                 // current symbol index, so just look this up by index
4695                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4696               } else {
4697                 // We need to lookup a symbol using the original nlist symbol
4698                 // index since this index is coming from the S_SYMBOL_STUBS
4699                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4700               }
4701 
4702               if (stub_symbol) {
4703                 Address so_addr(symbol_stub_addr, section_list);
4704 
4705                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4706                   // Change the external symbol into a trampoline that makes
4707                   // sense These symbols were N_UNDF N_EXT, and are useless
4708                   // to us, so we can re-use them so we don't have to make up
4709                   // a synthetic symbol for no good reason.
4710                   if (resolver_addresses.find(symbol_stub_addr) ==
4711                       resolver_addresses.end())
4712                     stub_symbol->SetType(eSymbolTypeTrampoline);
4713                   else
4714                     stub_symbol->SetType(eSymbolTypeResolver);
4715                   stub_symbol->SetExternal(false);
4716                   stub_symbol->GetAddressRef() = so_addr;
4717                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4718                 } else {
4719                   // Make a synthetic symbol to describe the trampoline stub
4720                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4721                   if (sym_idx >= num_syms) {
4722                     sym = symtab.Resize(++num_syms);
4723                     stub_symbol = nullptr; // this pointer no longer valid
4724                   }
4725                   sym[sym_idx].SetID(synthetic_sym_id++);
4726                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4727                   if (resolver_addresses.find(symbol_stub_addr) ==
4728                       resolver_addresses.end())
4729                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4730                   else
4731                     sym[sym_idx].SetType(eSymbolTypeResolver);
4732                   sym[sym_idx].SetIsSynthetic(true);
4733                   sym[sym_idx].GetAddressRef() = so_addr;
4734                   add_symbol_addr(so_addr.GetFileAddress());
4735                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4736                   ++sym_idx;
4737                 }
4738               } else {
4739                 if (log)
4740                   log->Warning("symbol stub referencing symbol table symbol "
4741                                "%u that isn't in our minimal symbol table, "
4742                                "fix this!!!",
4743                                stub_sym_id);
4744               }
4745             }
4746           }
4747         }
4748       }
4749     }
4750   }
4751 
4752   if (!reexport_trie_entries.empty()) {
4753     for (const auto &e : reexport_trie_entries) {
4754       if (e.entry.import_name) {
4755         // Only add indirect symbols from the Trie entries if we didn't have
4756         // a N_INDR nlist entry for this already
4757         if (indirect_symbol_names.find(e.entry.name) ==
4758             indirect_symbol_names.end()) {
4759           // Make a synthetic symbol to describe re-exported symbol.
4760           if (sym_idx >= num_syms)
4761             sym = symtab.Resize(++num_syms);
4762           sym[sym_idx].SetID(synthetic_sym_id++);
4763           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4764           sym[sym_idx].SetType(eSymbolTypeReExported);
4765           sym[sym_idx].SetIsSynthetic(true);
4766           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4767           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4768             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4769                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4770           }
4771           ++sym_idx;
4772         }
4773       }
4774     }
4775   }
4776 }
4777 
4778 void ObjectFileMachO::Dump(Stream *s) {
4779   ModuleSP module_sp(GetModule());
4780   if (module_sp) {
4781     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4782     s->Printf("%p: ", static_cast<void *>(this));
4783     s->Indent();
4784     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4785       s->PutCString("ObjectFileMachO64");
4786     else
4787       s->PutCString("ObjectFileMachO32");
4788 
4789     *s << ", file = '" << m_file;
4790     ModuleSpecList all_specs;
4791     ModuleSpec base_spec;
4792     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4793                     base_spec, all_specs);
4794     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4795       *s << "', triple";
4796       if (e)
4797         s->Printf("[%d]", i);
4798       *s << " = ";
4799       *s << all_specs.GetModuleSpecRefAtIndex(i)
4800                 .GetArchitecture()
4801                 .GetTriple()
4802                 .getTriple();
4803     }
4804     *s << "\n";
4805     SectionList *sections = GetSectionList();
4806     if (sections)
4807       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4808                      UINT32_MAX);
4809 
4810     if (m_symtab_up)
4811       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4812   }
4813 }
4814 
4815 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4816                               const lldb_private::DataExtractor &data,
4817                               lldb::offset_t lc_offset) {
4818   uint32_t i;
4819   llvm::MachO::uuid_command load_cmd;
4820 
4821   lldb::offset_t offset = lc_offset;
4822   for (i = 0; i < header.ncmds; ++i) {
4823     const lldb::offset_t cmd_offset = offset;
4824     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4825       break;
4826 
4827     if (load_cmd.cmd == LC_UUID) {
4828       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4829 
4830       if (uuid_bytes) {
4831         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4832         // We pretend these object files have no UUID to prevent crashing.
4833 
4834         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4835                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4836                                        0xbb, 0x14, 0xf0, 0x0d};
4837 
4838         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4839           return UUID();
4840 
4841         return UUID::fromOptionalData(uuid_bytes, 16);
4842       }
4843       return UUID();
4844     }
4845     offset = cmd_offset + load_cmd.cmdsize;
4846   }
4847   return UUID();
4848 }
4849 
4850 static llvm::StringRef GetOSName(uint32_t cmd) {
4851   switch (cmd) {
4852   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4853     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4854   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4855     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4856   case llvm::MachO::LC_VERSION_MIN_TVOS:
4857     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4858   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4859     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4860   default:
4861     llvm_unreachable("unexpected LC_VERSION load command");
4862   }
4863 }
4864 
4865 namespace {
4866 struct OSEnv {
4867   llvm::StringRef os_type;
4868   llvm::StringRef environment;
4869   OSEnv(uint32_t cmd) {
4870     switch (cmd) {
4871     case llvm::MachO::PLATFORM_MACOS:
4872       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4873       return;
4874     case llvm::MachO::PLATFORM_IOS:
4875       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4876       return;
4877     case llvm::MachO::PLATFORM_TVOS:
4878       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4879       return;
4880     case llvm::MachO::PLATFORM_WATCHOS:
4881       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4882       return;
4883     // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
4884     // NEED_BRIDGEOS_TRIPLE
4885     // case llvm::MachO::PLATFORM_BRIDGEOS:
4886     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4887     //   return;
4888     // case llvm::MachO::PLATFORM_DRIVERKIT:
4889     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4890     //   return;
4891     case llvm::MachO::PLATFORM_MACCATALYST:
4892       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4893       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4894       return;
4895     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4896       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4897       environment =
4898           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4899       return;
4900     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4901       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4902       environment =
4903           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4904       return;
4905     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4906       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4907       environment =
4908           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4909       return;
4910     default: {
4911       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4912       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4913     }
4914     }
4915   }
4916 };
4917 
4918 struct MinOS {
4919   uint32_t major_version, minor_version, patch_version;
4920   MinOS(uint32_t version)
4921       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4922         patch_version(version & 0xffu) {}
4923 };
4924 } // namespace
4925 
4926 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4927                                       const lldb_private::DataExtractor &data,
4928                                       lldb::offset_t lc_offset,
4929                                       ModuleSpec &base_spec,
4930                                       lldb_private::ModuleSpecList &all_specs) {
4931   auto &base_arch = base_spec.GetArchitecture();
4932   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4933   if (!base_arch.IsValid())
4934     return;
4935 
4936   bool found_any = false;
4937   auto add_triple = [&](const llvm::Triple &triple) {
4938     auto spec = base_spec;
4939     spec.GetArchitecture().GetTriple() = triple;
4940     if (spec.GetArchitecture().IsValid()) {
4941       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4942       all_specs.Append(spec);
4943       found_any = true;
4944     }
4945   };
4946 
4947   // Set OS to an unspecified unknown or a "*" so it can match any OS
4948   llvm::Triple base_triple = base_arch.GetTriple();
4949   base_triple.setOS(llvm::Triple::UnknownOS);
4950   base_triple.setOSName(llvm::StringRef());
4951 
4952   if (header.filetype == MH_PRELOAD) {
4953     if (header.cputype == CPU_TYPE_ARM) {
4954       // If this is a 32-bit arm binary, and it's a standalone binary, force
4955       // the Vendor to Apple so we don't accidentally pick up the generic
4956       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4957       // frame pointer register; most other armv7 ABIs use a combination of
4958       // r7 and r11.
4959       base_triple.setVendor(llvm::Triple::Apple);
4960     } else {
4961       // Set vendor to an unspecified unknown or a "*" so it can match any
4962       // vendor This is required for correct behavior of EFI debugging on
4963       // x86_64
4964       base_triple.setVendor(llvm::Triple::UnknownVendor);
4965       base_triple.setVendorName(llvm::StringRef());
4966     }
4967     return add_triple(base_triple);
4968   }
4969 
4970   llvm::MachO::load_command load_cmd;
4971 
4972   // See if there is an LC_VERSION_MIN_* load command that can give
4973   // us the OS type.
4974   lldb::offset_t offset = lc_offset;
4975   for (uint32_t i = 0; i < header.ncmds; ++i) {
4976     const lldb::offset_t cmd_offset = offset;
4977     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4978       break;
4979 
4980     llvm::MachO::version_min_command version_min;
4981     switch (load_cmd.cmd) {
4982     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4983     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4984     case llvm::MachO::LC_VERSION_MIN_TVOS:
4985     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4986       if (load_cmd.cmdsize != sizeof(version_min))
4987         break;
4988       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4989                             data.GetByteOrder(), &version_min) == 0)
4990         break;
4991       MinOS min_os(version_min.version);
4992       llvm::SmallString<32> os_name;
4993       llvm::raw_svector_ostream os(os_name);
4994       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4995          << min_os.minor_version << '.' << min_os.patch_version;
4996 
4997       auto triple = base_triple;
4998       triple.setOSName(os.str());
4999 
5000       // Disambiguate legacy simulator platforms.
5001       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5002           (base_triple.getArch() == llvm::Triple::x86_64 ||
5003            base_triple.getArch() == llvm::Triple::x86)) {
5004         // The combination of legacy LC_VERSION_MIN load command and
5005         // x86 architecture always indicates a simulator environment.
5006         // The combination of LC_VERSION_MIN and arm architecture only
5007         // appears for native binaries. Back-deploying simulator
5008         // binaries on Apple Silicon Macs use the modern unambigous
5009         // LC_BUILD_VERSION load commands; no special handling required.
5010         triple.setEnvironment(llvm::Triple::Simulator);
5011       }
5012       add_triple(triple);
5013       break;
5014     }
5015     default:
5016       break;
5017     }
5018 
5019     offset = cmd_offset + load_cmd.cmdsize;
5020   }
5021 
5022   // See if there are LC_BUILD_VERSION load commands that can give
5023   // us the OS type.
5024   offset = lc_offset;
5025   for (uint32_t i = 0; i < header.ncmds; ++i) {
5026     const lldb::offset_t cmd_offset = offset;
5027     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5028       break;
5029 
5030     do {
5031       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5032         llvm::MachO::build_version_command build_version;
5033         if (load_cmd.cmdsize < sizeof(build_version)) {
5034           // Malformed load command.
5035           break;
5036         }
5037         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5038                               data.GetByteOrder(), &build_version) == 0)
5039           break;
5040         MinOS min_os(build_version.minos);
5041         OSEnv os_env(build_version.platform);
5042         llvm::SmallString<16> os_name;
5043         llvm::raw_svector_ostream os(os_name);
5044         os << os_env.os_type << min_os.major_version << '.'
5045            << min_os.minor_version << '.' << min_os.patch_version;
5046         auto triple = base_triple;
5047         triple.setOSName(os.str());
5048         os_name.clear();
5049         if (!os_env.environment.empty())
5050           triple.setEnvironmentName(os_env.environment);
5051         add_triple(triple);
5052       }
5053     } while (false);
5054     offset = cmd_offset + load_cmd.cmdsize;
5055   }
5056 
5057   if (!found_any) {
5058     add_triple(base_triple);
5059   }
5060 }
5061 
5062 ArchSpec ObjectFileMachO::GetArchitecture(
5063     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5064     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5065   ModuleSpecList all_specs;
5066   ModuleSpec base_spec;
5067   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5068                   base_spec, all_specs);
5069 
5070   // If the object file offers multiple alternative load commands,
5071   // pick the one that matches the module.
5072   if (module_sp) {
5073     const ArchSpec &module_arch = module_sp->GetArchitecture();
5074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5075       ArchSpec mach_arch =
5076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5077       if (module_arch.IsCompatibleMatch(mach_arch))
5078         return mach_arch;
5079     }
5080   }
5081 
5082   // Return the first arch we found.
5083   if (all_specs.GetSize() == 0)
5084     return {};
5085   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5086 }
5087 
5088 UUID ObjectFileMachO::GetUUID() {
5089   ModuleSP module_sp(GetModule());
5090   if (module_sp) {
5091     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5092     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5093     return GetUUID(m_header, m_data, offset);
5094   }
5095   return UUID();
5096 }
5097 
5098 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5099   uint32_t count = 0;
5100   ModuleSP module_sp(GetModule());
5101   if (module_sp) {
5102     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5103     llvm::MachO::load_command load_cmd;
5104     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5105     std::vector<std::string> rpath_paths;
5106     std::vector<std::string> rpath_relative_paths;
5107     std::vector<std::string> at_exec_relative_paths;
5108     uint32_t i;
5109     for (i = 0; i < m_header.ncmds; ++i) {
5110       const uint32_t cmd_offset = offset;
5111       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5112         break;
5113 
5114       switch (load_cmd.cmd) {
5115       case LC_RPATH:
5116       case LC_LOAD_DYLIB:
5117       case LC_LOAD_WEAK_DYLIB:
5118       case LC_REEXPORT_DYLIB:
5119       case LC_LOAD_DYLINKER:
5120       case LC_LOADFVMLIB:
5121       case LC_LOAD_UPWARD_DYLIB: {
5122         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5123         const char *path = m_data.PeekCStr(name_offset);
5124         if (path) {
5125           if (load_cmd.cmd == LC_RPATH)
5126             rpath_paths.push_back(path);
5127           else {
5128             if (path[0] == '@') {
5129               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5130                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5131               else if (strncmp(path, "@executable_path",
5132                                strlen("@executable_path")) == 0)
5133                 at_exec_relative_paths.push_back(path +
5134                                                  strlen("@executable_path"));
5135             } else {
5136               FileSpec file_spec(path);
5137               if (files.AppendIfUnique(file_spec))
5138                 count++;
5139             }
5140           }
5141         }
5142       } break;
5143 
5144       default:
5145         break;
5146       }
5147       offset = cmd_offset + load_cmd.cmdsize;
5148     }
5149 
5150     FileSpec this_file_spec(m_file);
5151     FileSystem::Instance().Resolve(this_file_spec);
5152 
5153     if (!rpath_paths.empty()) {
5154       // Fixup all LC_RPATH values to be absolute paths
5155       std::string loader_path("@loader_path");
5156       std::string executable_path("@executable_path");
5157       for (auto &rpath : rpath_paths) {
5158         if (llvm::StringRef(rpath).startswith(loader_path)) {
5159           rpath.erase(0, loader_path.size());
5160           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5161         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5162           rpath.erase(0, executable_path.size());
5163           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5164         }
5165       }
5166 
5167       for (const auto &rpath_relative_path : rpath_relative_paths) {
5168         for (const auto &rpath : rpath_paths) {
5169           std::string path = rpath;
5170           path += rpath_relative_path;
5171           // It is OK to resolve this path because we must find a file on disk
5172           // for us to accept it anyway if it is rpath relative.
5173           FileSpec file_spec(path);
5174           FileSystem::Instance().Resolve(file_spec);
5175           if (FileSystem::Instance().Exists(file_spec) &&
5176               files.AppendIfUnique(file_spec)) {
5177             count++;
5178             break;
5179           }
5180         }
5181       }
5182     }
5183 
5184     // We may have @executable_paths but no RPATHS.  Figure those out here.
5185     // Only do this if this object file is the executable.  We have no way to
5186     // get back to the actual executable otherwise, so we won't get the right
5187     // path.
5188     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5189       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5190       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5191         FileSpec file_spec =
5192             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5193         if (FileSystem::Instance().Exists(file_spec) &&
5194             files.AppendIfUnique(file_spec))
5195           count++;
5196       }
5197     }
5198   }
5199   return count;
5200 }
5201 
5202 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5203   // If the object file is not an executable it can't hold the entry point.
5204   // m_entry_point_address is initialized to an invalid address, so we can just
5205   // return that. If m_entry_point_address is valid it means we've found it
5206   // already, so return the cached value.
5207 
5208   if ((!IsExecutable() && !IsDynamicLoader()) ||
5209       m_entry_point_address.IsValid()) {
5210     return m_entry_point_address;
5211   }
5212 
5213   // Otherwise, look for the UnixThread or Thread command.  The data for the
5214   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5215   //
5216   //  uint32_t flavor  - this is the flavor argument you would pass to
5217   //  thread_get_state
5218   //  uint32_t count   - this is the count of longs in the thread state data
5219   //  struct XXX_thread_state state - this is the structure from
5220   //  <machine/thread_status.h> corresponding to the flavor.
5221   //  <repeat this trio>
5222   //
5223   // So we just keep reading the various register flavors till we find the GPR
5224   // one, then read the PC out of there.
5225   // FIXME: We will need to have a "RegisterContext data provider" class at some
5226   // point that can get all the registers
5227   // out of data in this form & attach them to a given thread.  That should
5228   // underlie the MacOS X User process plugin, and we'll also need it for the
5229   // MacOS X Core File process plugin.  When we have that we can also use it
5230   // here.
5231   //
5232   // For now we hard-code the offsets and flavors we need:
5233   //
5234   //
5235 
5236   ModuleSP module_sp(GetModule());
5237   if (module_sp) {
5238     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5239     llvm::MachO::load_command load_cmd;
5240     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5241     uint32_t i;
5242     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5243     bool done = false;
5244 
5245     for (i = 0; i < m_header.ncmds; ++i) {
5246       const lldb::offset_t cmd_offset = offset;
5247       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5248         break;
5249 
5250       switch (load_cmd.cmd) {
5251       case LC_UNIXTHREAD:
5252       case LC_THREAD: {
5253         while (offset < cmd_offset + load_cmd.cmdsize) {
5254           uint32_t flavor = m_data.GetU32(&offset);
5255           uint32_t count = m_data.GetU32(&offset);
5256           if (count == 0) {
5257             // We've gotten off somehow, log and exit;
5258             return m_entry_point_address;
5259           }
5260 
5261           switch (m_header.cputype) {
5262           case llvm::MachO::CPU_TYPE_ARM:
5263             if (flavor == 1 ||
5264                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5265                              // from mach/arm/thread_status.h
5266             {
5267               offset += 60; // This is the offset of pc in the GPR thread state
5268                             // data structure.
5269               start_address = m_data.GetU32(&offset);
5270               done = true;
5271             }
5272             break;
5273           case llvm::MachO::CPU_TYPE_ARM64:
5274           case llvm::MachO::CPU_TYPE_ARM64_32:
5275             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5276             {
5277               offset += 256; // This is the offset of pc in the GPR thread state
5278                              // data structure.
5279               start_address = m_data.GetU64(&offset);
5280               done = true;
5281             }
5282             break;
5283           case llvm::MachO::CPU_TYPE_I386:
5284             if (flavor ==
5285                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5286             {
5287               offset += 40; // This is the offset of eip in the GPR thread state
5288                             // data structure.
5289               start_address = m_data.GetU32(&offset);
5290               done = true;
5291             }
5292             break;
5293           case llvm::MachO::CPU_TYPE_X86_64:
5294             if (flavor ==
5295                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5296             {
5297               offset += 16 * 8; // This is the offset of rip in the GPR thread
5298                                 // state data structure.
5299               start_address = m_data.GetU64(&offset);
5300               done = true;
5301             }
5302             break;
5303           default:
5304             return m_entry_point_address;
5305           }
5306           // Haven't found the GPR flavor yet, skip over the data for this
5307           // flavor:
5308           if (done)
5309             break;
5310           offset += count * 4;
5311         }
5312       } break;
5313       case LC_MAIN: {
5314         ConstString text_segment_name("__TEXT");
5315         uint64_t entryoffset = m_data.GetU64(&offset);
5316         SectionSP text_segment_sp =
5317             GetSectionList()->FindSectionByName(text_segment_name);
5318         if (text_segment_sp) {
5319           done = true;
5320           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5321         }
5322       } break;
5323 
5324       default:
5325         break;
5326       }
5327       if (done)
5328         break;
5329 
5330       // Go to the next load command:
5331       offset = cmd_offset + load_cmd.cmdsize;
5332     }
5333 
5334     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5335       if (GetSymtab()) {
5336         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5337             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5338             Symtab::eDebugAny, Symtab::eVisibilityAny);
5339         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5340           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5341         }
5342       }
5343     }
5344 
5345     if (start_address != LLDB_INVALID_ADDRESS) {
5346       // We got the start address from the load commands, so now resolve that
5347       // address in the sections of this ObjectFile:
5348       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5349               start_address, GetSectionList())) {
5350         m_entry_point_address.Clear();
5351       }
5352     } else {
5353       // We couldn't read the UnixThread load command - maybe it wasn't there.
5354       // As a fallback look for the "start" symbol in the main executable.
5355 
5356       ModuleSP module_sp(GetModule());
5357 
5358       if (module_sp) {
5359         SymbolContextList contexts;
5360         SymbolContext context;
5361         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5362                                               eSymbolTypeCode, contexts);
5363         if (contexts.GetSize()) {
5364           if (contexts.GetContextAtIndex(0, context))
5365             m_entry_point_address = context.symbol->GetAddress();
5366         }
5367       }
5368     }
5369   }
5370 
5371   return m_entry_point_address;
5372 }
5373 
5374 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5375   lldb_private::Address header_addr;
5376   SectionList *section_list = GetSectionList();
5377   if (section_list) {
5378     SectionSP text_segment_sp(
5379         section_list->FindSectionByName(GetSegmentNameTEXT()));
5380     if (text_segment_sp) {
5381       header_addr.SetSection(text_segment_sp);
5382       header_addr.SetOffset(0);
5383     }
5384   }
5385   return header_addr;
5386 }
5387 
5388 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5389   ModuleSP module_sp(GetModule());
5390   if (module_sp) {
5391     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5392     if (!m_thread_context_offsets_valid) {
5393       m_thread_context_offsets_valid = true;
5394       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5395       FileRangeArray::Entry file_range;
5396       llvm::MachO::thread_command thread_cmd;
5397       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5398         const uint32_t cmd_offset = offset;
5399         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5400           break;
5401 
5402         if (thread_cmd.cmd == LC_THREAD) {
5403           file_range.SetRangeBase(offset);
5404           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5405           m_thread_context_offsets.Append(file_range);
5406         }
5407         offset = cmd_offset + thread_cmd.cmdsize;
5408       }
5409     }
5410   }
5411   return m_thread_context_offsets.GetSize();
5412 }
5413 
5414 std::string ObjectFileMachO::GetIdentifierString() {
5415   std::string result;
5416   ModuleSP module_sp(GetModule());
5417   if (module_sp) {
5418     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5419 
5420     // First, look over the load commands for an LC_NOTE load command with
5421     // data_owner string "kern ver str" & use that if found.
5422     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5423     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5424       const uint32_t cmd_offset = offset;
5425       llvm::MachO::load_command lc;
5426       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5427         break;
5428       if (lc.cmd == LC_NOTE) {
5429         char data_owner[17];
5430         m_data.CopyData(offset, 16, data_owner);
5431         data_owner[16] = '\0';
5432         offset += 16;
5433         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5434         uint64_t size = m_data.GetU64_unchecked(&offset);
5435 
5436         // "kern ver str" has a uint32_t version and then a nul terminated
5437         // c-string.
5438         if (strcmp("kern ver str", data_owner) == 0) {
5439           offset = fileoff;
5440           uint32_t version;
5441           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5442             if (version == 1) {
5443               uint32_t strsize = size - sizeof(uint32_t);
5444               char *buf = (char *)malloc(strsize);
5445               if (buf) {
5446                 m_data.CopyData(offset, strsize, buf);
5447                 buf[strsize - 1] = '\0';
5448                 result = buf;
5449                 if (buf)
5450                   free(buf);
5451                 return result;
5452               }
5453             }
5454           }
5455         }
5456       }
5457       offset = cmd_offset + lc.cmdsize;
5458     }
5459 
5460     // Second, make a pass over the load commands looking for an obsolete
5461     // LC_IDENT load command.
5462     offset = MachHeaderSizeFromMagic(m_header.magic);
5463     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5464       const uint32_t cmd_offset = offset;
5465       llvm::MachO::ident_command ident_command;
5466       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5467         break;
5468       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5469         char *buf = (char *)malloc(ident_command.cmdsize);
5470         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5471                                               buf) == ident_command.cmdsize) {
5472           buf[ident_command.cmdsize - 1] = '\0';
5473           result = buf;
5474         }
5475         if (buf)
5476           free(buf);
5477       }
5478       offset = cmd_offset + ident_command.cmdsize;
5479     }
5480   }
5481   return result;
5482 }
5483 
5484 addr_t ObjectFileMachO::GetAddressMask() {
5485   addr_t mask = 0;
5486   ModuleSP module_sp(GetModule());
5487   if (module_sp) {
5488     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5489     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5490     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5491       const uint32_t cmd_offset = offset;
5492       llvm::MachO::load_command lc;
5493       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5494         break;
5495       if (lc.cmd == LC_NOTE) {
5496         char data_owner[17];
5497         m_data.CopyData(offset, 16, data_owner);
5498         data_owner[16] = '\0';
5499         offset += 16;
5500         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5501 
5502         // "addrable bits" has a uint32_t version and a uint32_t
5503         // number of bits used in addressing.
5504         if (strcmp("addrable bits", data_owner) == 0) {
5505           offset = fileoff;
5506           uint32_t version;
5507           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5508             if (version == 3) {
5509               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5510               if (num_addr_bits != 0) {
5511                 mask = ~((1ULL << num_addr_bits) - 1);
5512               }
5513               break;
5514             }
5515           }
5516         }
5517       }
5518       offset = cmd_offset + lc.cmdsize;
5519     }
5520   }
5521   return mask;
5522 }
5523 
5524 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5525                                                 bool &value_is_offset,
5526                                                 UUID &uuid,
5527                                                 ObjectFile::BinaryType &type) {
5528   value = LLDB_INVALID_ADDRESS;
5529   value_is_offset = false;
5530   uuid.Clear();
5531   uint32_t log2_pagesize = 0; // not currently passed up to caller
5532   uint32_t platform = 0;      // not currently passed up to caller
5533   ModuleSP module_sp(GetModule());
5534   if (module_sp) {
5535     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5536     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5537     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5538       const uint32_t cmd_offset = offset;
5539       llvm::MachO::load_command lc;
5540       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5541         break;
5542       if (lc.cmd == LC_NOTE) {
5543         char data_owner[17];
5544         memset(data_owner, 0, sizeof(data_owner));
5545         m_data.CopyData(offset, 16, data_owner);
5546         offset += 16;
5547         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5548         uint64_t size = m_data.GetU64_unchecked(&offset);
5549 
5550         // struct main_bin_spec
5551         // {
5552         //     uint32_t version;       // currently 2
5553         //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5554         //                             // 2 == user process,
5555         //                             // 3 == standalone binary
5556         //     uint64_t address;       // UINT64_MAX if address not specified
5557         //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5558         //                             // 0 if no slide needs to be applied to
5559         //                             // file address
5560         //     uuid_t   uuid;          // all zero's if uuid not specified
5561         //     uint32_t log2_pagesize; // process page size in log base 2,
5562         //                             // e.g. 4k pages are 12.
5563         //                             // 0 for unspecified
5564         //     uint32_t platform;      // The Mach-O platform for this corefile.
5565         //                             // 0 for unspecified.
5566         //                             // The values are defined in
5567         //                             // <mach-o/loader.h>, PLATFORM_*.
5568         // } __attribute((packed));
5569 
5570         // "main bin spec" (main binary specification) data payload is
5571         // formatted:
5572         //    uint32_t version       [currently 1]
5573         //    uint32_t type          [0 == unspecified, 1 == kernel,
5574         //                            2 == user process, 3 == firmware ]
5575         //    uint64_t address       [ UINT64_MAX if address not specified ]
5576         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5577         //    uint32_t log2_pagesize [ process page size in log base
5578         //                             2, e.g. 4k pages are 12.
5579         //                             0 for unspecified ]
5580         //    uint32_t unused        [ for alignment ]
5581 
5582         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5583           offset = fileoff;
5584           uint32_t version;
5585           if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
5586             uint32_t binspec_type = 0;
5587             uuid_t raw_uuid;
5588             memset(raw_uuid, 0, sizeof(uuid_t));
5589 
5590             if (!m_data.GetU32(&offset, &binspec_type, 1))
5591               return false;
5592             if (!m_data.GetU64(&offset, &value, 1))
5593               return false;
5594             uint64_t slide = LLDB_INVALID_ADDRESS;
5595             if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
5596               return false;
5597             if (value == LLDB_INVALID_ADDRESS &&
5598                 slide != LLDB_INVALID_ADDRESS) {
5599               value = slide;
5600               value_is_offset = true;
5601             }
5602 
5603             if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5604               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5605               // convert the "main bin spec" type into our
5606               // ObjectFile::BinaryType enum
5607               switch (binspec_type) {
5608               case 0:
5609                 type = eBinaryTypeUnknown;
5610                 break;
5611               case 1:
5612                 type = eBinaryTypeKernel;
5613                 break;
5614               case 2:
5615                 type = eBinaryTypeUser;
5616                 break;
5617               case 3:
5618                 type = eBinaryTypeStandalone;
5619                 break;
5620               }
5621               if (!m_data.GetU32(&offset, &log2_pagesize, 1))
5622                 return false;
5623               if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
5624                 return false;
5625               return true;
5626             }
5627           }
5628         }
5629       }
5630       offset = cmd_offset + lc.cmdsize;
5631     }
5632   }
5633   return false;
5634 }
5635 
5636 lldb::RegisterContextSP
5637 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5638                                          lldb_private::Thread &thread) {
5639   lldb::RegisterContextSP reg_ctx_sp;
5640 
5641   ModuleSP module_sp(GetModule());
5642   if (module_sp) {
5643     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5644     if (!m_thread_context_offsets_valid)
5645       GetNumThreadContexts();
5646 
5647     const FileRangeArray::Entry *thread_context_file_range =
5648         m_thread_context_offsets.GetEntryAtIndex(idx);
5649     if (thread_context_file_range) {
5650 
5651       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5652                          thread_context_file_range->GetByteSize());
5653 
5654       switch (m_header.cputype) {
5655       case llvm::MachO::CPU_TYPE_ARM64:
5656       case llvm::MachO::CPU_TYPE_ARM64_32:
5657         reg_ctx_sp =
5658             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5659         break;
5660 
5661       case llvm::MachO::CPU_TYPE_ARM:
5662         reg_ctx_sp =
5663             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5664         break;
5665 
5666       case llvm::MachO::CPU_TYPE_I386:
5667         reg_ctx_sp =
5668             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5669         break;
5670 
5671       case llvm::MachO::CPU_TYPE_X86_64:
5672         reg_ctx_sp =
5673             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5674         break;
5675       }
5676     }
5677   }
5678   return reg_ctx_sp;
5679 }
5680 
5681 ObjectFile::Type ObjectFileMachO::CalculateType() {
5682   switch (m_header.filetype) {
5683   case MH_OBJECT: // 0x1u
5684     if (GetAddressByteSize() == 4) {
5685       // 32 bit kexts are just object files, but they do have a valid
5686       // UUID load command.
5687       if (GetUUID()) {
5688         // this checking for the UUID load command is not enough we could
5689         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5690         // this is required of kexts
5691         if (m_strata == eStrataInvalid)
5692           m_strata = eStrataKernel;
5693         return eTypeSharedLibrary;
5694       }
5695     }
5696     return eTypeObjectFile;
5697 
5698   case MH_EXECUTE:
5699     return eTypeExecutable; // 0x2u
5700   case MH_FVMLIB:
5701     return eTypeSharedLibrary; // 0x3u
5702   case MH_CORE:
5703     return eTypeCoreFile; // 0x4u
5704   case MH_PRELOAD:
5705     return eTypeSharedLibrary; // 0x5u
5706   case MH_DYLIB:
5707     return eTypeSharedLibrary; // 0x6u
5708   case MH_DYLINKER:
5709     return eTypeDynamicLinker; // 0x7u
5710   case MH_BUNDLE:
5711     return eTypeSharedLibrary; // 0x8u
5712   case MH_DYLIB_STUB:
5713     return eTypeStubLibrary; // 0x9u
5714   case MH_DSYM:
5715     return eTypeDebugInfo; // 0xAu
5716   case MH_KEXT_BUNDLE:
5717     return eTypeSharedLibrary; // 0xBu
5718   default:
5719     break;
5720   }
5721   return eTypeUnknown;
5722 }
5723 
5724 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5725   switch (m_header.filetype) {
5726   case MH_OBJECT: // 0x1u
5727   {
5728     // 32 bit kexts are just object files, but they do have a valid
5729     // UUID load command.
5730     if (GetUUID()) {
5731       // this checking for the UUID load command is not enough we could
5732       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5733       // this is required of kexts
5734       if (m_type == eTypeInvalid)
5735         m_type = eTypeSharedLibrary;
5736 
5737       return eStrataKernel;
5738     }
5739   }
5740     return eStrataUnknown;
5741 
5742   case MH_EXECUTE: // 0x2u
5743     // Check for the MH_DYLDLINK bit in the flags
5744     if (m_header.flags & MH_DYLDLINK) {
5745       return eStrataUser;
5746     } else {
5747       SectionList *section_list = GetSectionList();
5748       if (section_list) {
5749         static ConstString g_kld_section_name("__KLD");
5750         if (section_list->FindSectionByName(g_kld_section_name))
5751           return eStrataKernel;
5752       }
5753     }
5754     return eStrataRawImage;
5755 
5756   case MH_FVMLIB:
5757     return eStrataUser; // 0x3u
5758   case MH_CORE:
5759     return eStrataUnknown; // 0x4u
5760   case MH_PRELOAD:
5761     return eStrataRawImage; // 0x5u
5762   case MH_DYLIB:
5763     return eStrataUser; // 0x6u
5764   case MH_DYLINKER:
5765     return eStrataUser; // 0x7u
5766   case MH_BUNDLE:
5767     return eStrataUser; // 0x8u
5768   case MH_DYLIB_STUB:
5769     return eStrataUser; // 0x9u
5770   case MH_DSYM:
5771     return eStrataUnknown; // 0xAu
5772   case MH_KEXT_BUNDLE:
5773     return eStrataKernel; // 0xBu
5774   default:
5775     break;
5776   }
5777   return eStrataUnknown;
5778 }
5779 
5780 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5781   ModuleSP module_sp(GetModule());
5782   if (module_sp) {
5783     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5784     llvm::MachO::dylib_command load_cmd;
5785     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5786     uint32_t version_cmd = 0;
5787     uint64_t version = 0;
5788     uint32_t i;
5789     for (i = 0; i < m_header.ncmds; ++i) {
5790       const lldb::offset_t cmd_offset = offset;
5791       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5792         break;
5793 
5794       if (load_cmd.cmd == LC_ID_DYLIB) {
5795         if (version_cmd == 0) {
5796           version_cmd = load_cmd.cmd;
5797           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5798             break;
5799           version = load_cmd.dylib.current_version;
5800         }
5801         break; // Break for now unless there is another more complete version
5802                // number load command in the future.
5803       }
5804       offset = cmd_offset + load_cmd.cmdsize;
5805     }
5806 
5807     if (version_cmd == LC_ID_DYLIB) {
5808       unsigned major = (version & 0xFFFF0000ull) >> 16;
5809       unsigned minor = (version & 0x0000FF00ull) >> 8;
5810       unsigned subminor = (version & 0x000000FFull);
5811       return llvm::VersionTuple(major, minor, subminor);
5812     }
5813   }
5814   return llvm::VersionTuple();
5815 }
5816 
5817 ArchSpec ObjectFileMachO::GetArchitecture() {
5818   ModuleSP module_sp(GetModule());
5819   ArchSpec arch;
5820   if (module_sp) {
5821     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5822 
5823     return GetArchitecture(module_sp, m_header, m_data,
5824                            MachHeaderSizeFromMagic(m_header.magic));
5825   }
5826   return arch;
5827 }
5828 
5829 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5830                                                 addr_t &base_addr, UUID &uuid) {
5831   uuid.Clear();
5832   base_addr = LLDB_INVALID_ADDRESS;
5833   if (process && process->GetDynamicLoader()) {
5834     DynamicLoader *dl = process->GetDynamicLoader();
5835     LazyBool using_shared_cache;
5836     LazyBool private_shared_cache;
5837     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5838                                   private_shared_cache);
5839   }
5840   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5841   LLDB_LOGF(
5842       log,
5843       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5844       uuid.GetAsString().c_str(), base_addr);
5845 }
5846 
5847 // From dyld SPI header dyld_process_info.h
5848 typedef void *dyld_process_info;
5849 struct lldb_copy__dyld_process_cache_info {
5850   uuid_t cacheUUID;          // UUID of cache used by process
5851   uint64_t cacheBaseAddress; // load address of dyld shared cache
5852   bool noCache;              // process is running without a dyld cache
5853   bool privateCache; // process is using a private copy of its dyld cache
5854 };
5855 
5856 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5857 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5858 // errors. So we need to use the actual underlying types of task_t and
5859 // kern_return_t below.
5860 extern "C" unsigned int /*task_t*/ mach_task_self();
5861 
5862 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5863   uuid.Clear();
5864   base_addr = LLDB_INVALID_ADDRESS;
5865 
5866 #if defined(__APPLE__)
5867   uint8_t *(*dyld_get_all_image_infos)(void);
5868   dyld_get_all_image_infos =
5869       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5870   if (dyld_get_all_image_infos) {
5871     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5872     if (dyld_all_image_infos_address) {
5873       uint32_t *version = (uint32_t *)
5874           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5875       if (*version >= 13) {
5876         uuid_t *sharedCacheUUID_address = 0;
5877         int wordsize = sizeof(uint8_t *);
5878         if (wordsize == 8) {
5879           sharedCacheUUID_address =
5880               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5881                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5882           if (*version >= 15)
5883             base_addr =
5884                 *(uint64_t
5885                       *)((uint8_t *)dyld_all_image_infos_address +
5886                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5887         } else {
5888           sharedCacheUUID_address =
5889               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5890                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5891           if (*version >= 15) {
5892             base_addr = 0;
5893             base_addr =
5894                 *(uint32_t
5895                       *)((uint8_t *)dyld_all_image_infos_address +
5896                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5897           }
5898         }
5899         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5900       }
5901     }
5902   } else {
5903     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5904     dyld_process_info (*dyld_process_info_create)(
5905         unsigned int /* task_t */ task, uint64_t timestamp,
5906         unsigned int /*kern_return_t*/ *kernelError);
5907     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5908     void (*dyld_process_info_release)(dyld_process_info info);
5909 
5910     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5911                                           unsigned int /*kern_return_t*/ *))
5912         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5913     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5914         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5915     dyld_process_info_release =
5916         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5917 
5918     if (dyld_process_info_create && dyld_process_info_get_cache) {
5919       unsigned int /*kern_return_t */ kern_ret;
5920       dyld_process_info process_info =
5921           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5922       if (process_info) {
5923         struct lldb_copy__dyld_process_cache_info sc_info;
5924         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5925         dyld_process_info_get_cache(process_info, &sc_info);
5926         if (sc_info.cacheBaseAddress != 0) {
5927           base_addr = sc_info.cacheBaseAddress;
5928           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5929         }
5930         dyld_process_info_release(process_info);
5931       }
5932     }
5933   }
5934   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5935   if (log && uuid.IsValid())
5936     LLDB_LOGF(log,
5937               "lldb's in-memory shared cache has a UUID of %s base address of "
5938               "0x%" PRIx64,
5939               uuid.GetAsString().c_str(), base_addr);
5940 #endif
5941 }
5942 
5943 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5944   if (!m_min_os_version) {
5945     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5946     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5947       const lldb::offset_t load_cmd_offset = offset;
5948 
5949       llvm::MachO::version_min_command lc;
5950       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5951         break;
5952       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5953           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5954           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5955           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5956         if (m_data.GetU32(&offset, &lc.version,
5957                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5958           const uint32_t xxxx = lc.version >> 16;
5959           const uint32_t yy = (lc.version >> 8) & 0xffu;
5960           const uint32_t zz = lc.version & 0xffu;
5961           if (xxxx) {
5962             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5963             break;
5964           }
5965         }
5966       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5967         // struct build_version_command {
5968         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5969         //     uint32_t    cmdsize;        /* sizeof(struct
5970         //     build_version_command) plus */
5971         //                                 /* ntools * sizeof(struct
5972         //                                 build_tool_version) */
5973         //     uint32_t    platform;       /* platform */
5974         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5975         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5976         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5977         //     tool entries following this */
5978         // };
5979 
5980         offset += 4; // skip platform
5981         uint32_t minos = m_data.GetU32(&offset);
5982 
5983         const uint32_t xxxx = minos >> 16;
5984         const uint32_t yy = (minos >> 8) & 0xffu;
5985         const uint32_t zz = minos & 0xffu;
5986         if (xxxx) {
5987           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5988           break;
5989         }
5990       }
5991 
5992       offset = load_cmd_offset + lc.cmdsize;
5993     }
5994 
5995     if (!m_min_os_version) {
5996       // Set version to an empty value so we don't keep trying to
5997       m_min_os_version = llvm::VersionTuple();
5998     }
5999   }
6000 
6001   return *m_min_os_version;
6002 }
6003 
6004 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6005   if (!m_sdk_versions.hasValue()) {
6006     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6007     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6008       const lldb::offset_t load_cmd_offset = offset;
6009 
6010       llvm::MachO::version_min_command lc;
6011       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6012         break;
6013       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6014           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6015           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6016           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6017         if (m_data.GetU32(&offset, &lc.version,
6018                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6019           const uint32_t xxxx = lc.sdk >> 16;
6020           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6021           const uint32_t zz = lc.sdk & 0xffu;
6022           if (xxxx) {
6023             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6024             break;
6025           } else {
6026             GetModule()->ReportWarning("minimum OS version load command with "
6027                                        "invalid (0) version found.");
6028           }
6029         }
6030       }
6031       offset = load_cmd_offset + lc.cmdsize;
6032     }
6033 
6034     if (!m_sdk_versions.hasValue()) {
6035       offset = MachHeaderSizeFromMagic(m_header.magic);
6036       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6037         const lldb::offset_t load_cmd_offset = offset;
6038 
6039         llvm::MachO::version_min_command lc;
6040         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6041           break;
6042         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6043           // struct build_version_command {
6044           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6045           //     uint32_t    cmdsize;        /* sizeof(struct
6046           //     build_version_command) plus */
6047           //                                 /* ntools * sizeof(struct
6048           //                                 build_tool_version) */
6049           //     uint32_t    platform;       /* platform */
6050           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6051           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6052           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6053           //     of tool entries following this */
6054           // };
6055 
6056           offset += 4; // skip platform
6057           uint32_t minos = m_data.GetU32(&offset);
6058 
6059           const uint32_t xxxx = minos >> 16;
6060           const uint32_t yy = (minos >> 8) & 0xffu;
6061           const uint32_t zz = minos & 0xffu;
6062           if (xxxx) {
6063             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6064             break;
6065           }
6066         }
6067         offset = load_cmd_offset + lc.cmdsize;
6068       }
6069     }
6070 
6071     if (!m_sdk_versions.hasValue())
6072       m_sdk_versions = llvm::VersionTuple();
6073   }
6074 
6075   return m_sdk_versions.getValue();
6076 }
6077 
6078 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6079   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6080 }
6081 
6082 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6083   return m_allow_assembly_emulation_unwind_plans;
6084 }
6085 
6086 Section *ObjectFileMachO::GetMachHeaderSection() {
6087   // Find the first address of the mach header which is the first non-zero file
6088   // sized section whose file offset is zero. This is the base file address of
6089   // the mach-o file which can be subtracted from the vmaddr of the other
6090   // segments found in memory and added to the load address
6091   ModuleSP module_sp = GetModule();
6092   if (!module_sp)
6093     return nullptr;
6094   SectionList *section_list = GetSectionList();
6095   if (!section_list)
6096     return nullptr;
6097   const size_t num_sections = section_list->GetSize();
6098   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6099     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6100     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6101       return section;
6102   }
6103   return nullptr;
6104 }
6105 
6106 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6107   if (!section)
6108     return false;
6109   const bool is_dsym = (m_header.filetype == MH_DSYM);
6110   if (section->GetFileSize() == 0 && !is_dsym)
6111     return false;
6112   if (section->IsThreadSpecific())
6113     return false;
6114   if (GetModule().get() != section->GetModule().get())
6115     return false;
6116   // Be careful with __LINKEDIT and __DWARF segments
6117   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6118       section->GetName() == GetSegmentNameDWARF()) {
6119     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6120     // this isn't a kernel binary like a kext or mach_kernel.
6121     const bool is_memory_image = (bool)m_process_wp.lock();
6122     const Strata strata = GetStrata();
6123     if (is_memory_image == false || strata == eStrataKernel)
6124       return false;
6125   }
6126   return true;
6127 }
6128 
6129 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6130     lldb::addr_t header_load_address, const Section *header_section,
6131     const Section *section) {
6132   ModuleSP module_sp = GetModule();
6133   if (module_sp && header_section && section &&
6134       header_load_address != LLDB_INVALID_ADDRESS) {
6135     lldb::addr_t file_addr = header_section->GetFileAddress();
6136     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6137       return section->GetFileAddress() - file_addr + header_load_address;
6138   }
6139   return LLDB_INVALID_ADDRESS;
6140 }
6141 
6142 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6143                                      bool value_is_offset) {
6144   ModuleSP module_sp = GetModule();
6145   if (!module_sp)
6146     return false;
6147 
6148   SectionList *section_list = GetSectionList();
6149   if (!section_list)
6150     return false;
6151 
6152   size_t num_loaded_sections = 0;
6153   const size_t num_sections = section_list->GetSize();
6154 
6155   if (value_is_offset) {
6156     // "value" is an offset to apply to each top level segment
6157     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6158       // Iterate through the object file sections to find all of the
6159       // sections that size on disk (to avoid __PAGEZERO) and load them
6160       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6161       if (SectionIsLoadable(section_sp.get()))
6162         if (target.GetSectionLoadList().SetSectionLoadAddress(
6163                 section_sp, section_sp->GetFileAddress() + value))
6164           ++num_loaded_sections;
6165     }
6166   } else {
6167     // "value" is the new base address of the mach_header, adjust each
6168     // section accordingly
6169 
6170     Section *mach_header_section = GetMachHeaderSection();
6171     if (mach_header_section) {
6172       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6173         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6174 
6175         lldb::addr_t section_load_addr =
6176             CalculateSectionLoadAddressForMemoryImage(
6177                 value, mach_header_section, section_sp.get());
6178         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6179           if (target.GetSectionLoadList().SetSectionLoadAddress(
6180                   section_sp, section_load_addr))
6181             ++num_loaded_sections;
6182         }
6183       }
6184     }
6185   }
6186   return num_loaded_sections > 0;
6187 }
6188 
6189 struct all_image_infos_header {
6190   uint32_t version;         // currently 1
6191   uint32_t imgcount;        // number of binary images
6192   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6193                             // struct entry's begin.
6194   uint32_t entries_size;    // size of 'struct entry'.
6195   uint32_t unused;
6196 };
6197 
6198 struct image_entry {
6199   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6200                              // UINT64_MAX if unavailable.
6201   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6202                              // uuid is unknown.
6203   uint64_t load_address;     // UINT64_MAX if unknown.
6204   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6205   uint32_t segment_count;    // The number of segments for this binary.
6206   uint32_t unused;
6207 
6208   image_entry() {
6209     filepath_offset = UINT64_MAX;
6210     memset(&uuid, 0, sizeof(uuid_t));
6211     segment_count = 0;
6212     load_address = UINT64_MAX;
6213     seg_addrs_offset = UINT64_MAX;
6214     unused = 0;
6215   }
6216   image_entry(const image_entry &rhs) {
6217     filepath_offset = rhs.filepath_offset;
6218     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6219     segment_count = rhs.segment_count;
6220     seg_addrs_offset = rhs.seg_addrs_offset;
6221     load_address = rhs.load_address;
6222     unused = rhs.unused;
6223   }
6224 };
6225 
6226 struct segment_vmaddr {
6227   char segname[16];
6228   uint64_t vmaddr;
6229   uint64_t unused;
6230 
6231   segment_vmaddr() {
6232     memset(&segname, 0, 16);
6233     vmaddr = UINT64_MAX;
6234     unused = 0;
6235   }
6236   segment_vmaddr(const segment_vmaddr &rhs) {
6237     memcpy(&segname, &rhs.segname, 16);
6238     vmaddr = rhs.vmaddr;
6239     unused = rhs.unused;
6240   }
6241 };
6242 
6243 // Write the payload for the "all image infos" LC_NOTE into
6244 // the supplied all_image_infos_payload, assuming that this
6245 // will be written into the corefile starting at
6246 // initial_file_offset.
6247 //
6248 // The placement of this payload is a little tricky.  We're
6249 // laying this out as
6250 //
6251 // 1. header (struct all_image_info_header)
6252 // 2. Array of fixed-size (struct image_entry)'s, one
6253 //    per binary image present in the process.
6254 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6255 //    for each binary image.
6256 // 4. Variable length c-strings of binary image filepaths,
6257 //    one per binary.
6258 //
6259 // To compute where everything will be laid out in the
6260 // payload, we need to iterate over the images and calculate
6261 // how many segment_vmaddr structures each image will need,
6262 // and how long each image's filepath c-string is. There
6263 // are some multiple passes over the image list while calculating
6264 // everything.
6265 
6266 static offset_t CreateAllImageInfosPayload(
6267     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6268     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6269   Target &target = process_sp->GetTarget();
6270   ModuleList modules = target.GetImages();
6271 
6272   // stack-only corefiles have no reason to include binaries that
6273   // are not executing; we're trying to make the smallest corefile
6274   // we can, so leave the rest out.
6275   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6276     modules.Clear();
6277 
6278   std::set<std::string> executing_uuids;
6279   ThreadList &thread_list(process_sp->GetThreadList());
6280   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6281     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6282     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6283     for (uint32_t j = 0; j < stack_frame_count; j++) {
6284       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6285       Address pc = stack_frame_sp->GetFrameCodeAddress();
6286       ModuleSP module_sp = pc.GetModule();
6287       if (module_sp) {
6288         UUID uuid = module_sp->GetUUID();
6289         if (uuid.IsValid()) {
6290           executing_uuids.insert(uuid.GetAsString());
6291           modules.AppendIfNeeded(module_sp);
6292         }
6293       }
6294     }
6295   }
6296   size_t modules_count = modules.GetSize();
6297 
6298   struct all_image_infos_header infos;
6299   infos.version = 1;
6300   infos.imgcount = modules_count;
6301   infos.entries_size = sizeof(image_entry);
6302   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6303   infos.unused = 0;
6304 
6305   all_image_infos_payload.PutHex32(infos.version);
6306   all_image_infos_payload.PutHex32(infos.imgcount);
6307   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6308   all_image_infos_payload.PutHex32(infos.entries_size);
6309   all_image_infos_payload.PutHex32(infos.unused);
6310 
6311   // First create the structures for all of the segment name+vmaddr vectors
6312   // for each module, so we will know the size of them as we add the
6313   // module entries.
6314   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6315   for (size_t i = 0; i < modules_count; i++) {
6316     ModuleSP module = modules.GetModuleAtIndex(i);
6317 
6318     SectionList *sections = module->GetSectionList();
6319     size_t sections_count = sections->GetSize();
6320     std::vector<segment_vmaddr> segment_vmaddrs;
6321     for (size_t j = 0; j < sections_count; j++) {
6322       SectionSP section = sections->GetSectionAtIndex(j);
6323       if (!section->GetParent().get()) {
6324         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6325         if (vmaddr == LLDB_INVALID_ADDRESS)
6326           continue;
6327         ConstString name = section->GetName();
6328         segment_vmaddr seg_vmaddr;
6329         strncpy(seg_vmaddr.segname, name.AsCString(),
6330                 sizeof(seg_vmaddr.segname));
6331         seg_vmaddr.vmaddr = vmaddr;
6332         seg_vmaddr.unused = 0;
6333         segment_vmaddrs.push_back(seg_vmaddr);
6334       }
6335     }
6336     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6337   }
6338 
6339   offset_t size_of_vmaddr_structs = 0;
6340   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6341     size_of_vmaddr_structs +=
6342         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6343   }
6344 
6345   offset_t size_of_filepath_cstrings = 0;
6346   for (size_t i = 0; i < modules_count; i++) {
6347     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6348     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6349   }
6350 
6351   // Calculate the file offsets of our "all image infos" payload in the
6352   // corefile. initial_file_offset the original value passed in to this method.
6353 
6354   offset_t start_of_entries =
6355       initial_file_offset + sizeof(all_image_infos_header);
6356   offset_t start_of_seg_vmaddrs =
6357       start_of_entries + sizeof(image_entry) * modules_count;
6358   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6359 
6360   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6361 
6362   // Now write the one-per-module 'struct image_entry' into the
6363   // StringStream; keep track of where the struct segment_vmaddr
6364   // entries for each module will end up in the corefile.
6365 
6366   offset_t current_string_offset = start_of_filenames;
6367   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6368   std::vector<struct image_entry> image_entries;
6369   for (size_t i = 0; i < modules_count; i++) {
6370     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6371 
6372     struct image_entry ent;
6373     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6374     if (modules_segment_vmaddrs[i].size() > 0) {
6375       ent.segment_count = modules_segment_vmaddrs[i].size();
6376       ent.seg_addrs_offset = current_segaddrs_offset;
6377     }
6378     ent.filepath_offset = current_string_offset;
6379     ObjectFile *objfile = module_sp->GetObjectFile();
6380     if (objfile) {
6381       Address base_addr(objfile->GetBaseAddress());
6382       if (base_addr.IsValid()) {
6383         ent.load_address = base_addr.GetLoadAddress(&target);
6384       }
6385     }
6386 
6387     all_image_infos_payload.PutHex64(ent.filepath_offset);
6388     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6389     all_image_infos_payload.PutHex64(ent.load_address);
6390     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6391     all_image_infos_payload.PutHex32(ent.segment_count);
6392 
6393     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6394         executing_uuids.end())
6395       all_image_infos_payload.PutHex32(1);
6396     else
6397       all_image_infos_payload.PutHex32(0);
6398 
6399     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6400     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6401   }
6402 
6403   // Now write the struct segment_vmaddr entries into the StringStream.
6404 
6405   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6406     if (modules_segment_vmaddrs[i].size() == 0)
6407       continue;
6408     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6409       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6410       all_image_infos_payload.PutHex64(segvm.vmaddr);
6411       all_image_infos_payload.PutHex64(segvm.unused);
6412     }
6413   }
6414 
6415   for (size_t i = 0; i < modules_count; i++) {
6416     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6417     std::string filepath = module_sp->GetFileSpec().GetPath();
6418     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6419   }
6420 
6421   return final_file_offset;
6422 }
6423 
6424 // Temp struct used to combine contiguous memory regions with
6425 // identical permissions.
6426 struct page_object {
6427   addr_t addr;
6428   addr_t size;
6429   uint32_t prot;
6430 };
6431 
6432 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6433                                const FileSpec &outfile,
6434                                lldb::SaveCoreStyle &core_style, Status &error) {
6435   if (!process_sp)
6436     return false;
6437 
6438   // Default on macOS is to create a dirty-memory-only corefile.
6439   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6440     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6441   }
6442 
6443   Target &target = process_sp->GetTarget();
6444   const ArchSpec target_arch = target.GetArchitecture();
6445   const llvm::Triple &target_triple = target_arch.GetTriple();
6446   if (target_triple.getVendor() == llvm::Triple::Apple &&
6447       (target_triple.getOS() == llvm::Triple::MacOSX ||
6448        target_triple.getOS() == llvm::Triple::IOS ||
6449        target_triple.getOS() == llvm::Triple::WatchOS ||
6450        target_triple.getOS() == llvm::Triple::TvOS)) {
6451     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6452     // {
6453     bool make_core = false;
6454     switch (target_arch.GetMachine()) {
6455     case llvm::Triple::aarch64:
6456     case llvm::Triple::aarch64_32:
6457     case llvm::Triple::arm:
6458     case llvm::Triple::thumb:
6459     case llvm::Triple::x86:
6460     case llvm::Triple::x86_64:
6461       make_core = true;
6462       break;
6463     default:
6464       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6465                                      target_triple.str().c_str());
6466       break;
6467     }
6468 
6469     if (make_core) {
6470       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6471       //                uint32_t range_info_idx = 0;
6472       MemoryRegionInfo range_info;
6473       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6474       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6475       const ByteOrder byte_order = target_arch.GetByteOrder();
6476       std::vector<page_object> pages_to_copy;
6477 
6478       if (range_error.Success()) {
6479         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6480           // Calculate correct protections
6481           uint32_t prot = 0;
6482           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6483             prot |= VM_PROT_READ;
6484           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6485             prot |= VM_PROT_WRITE;
6486           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6487             prot |= VM_PROT_EXECUTE;
6488 
6489           const addr_t addr = range_info.GetRange().GetRangeBase();
6490           const addr_t size = range_info.GetRange().GetByteSize();
6491 
6492           if (size == 0)
6493             break;
6494 
6495           bool include_this_region = true;
6496           bool dirty_pages_only = false;
6497           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6498             dirty_pages_only = true;
6499             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6500               include_this_region = false;
6501             }
6502           }
6503           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6504             dirty_pages_only = true;
6505           }
6506 
6507           if (prot != 0 && include_this_region) {
6508             addr_t pagesize = range_info.GetPageSize();
6509             const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6510                 range_info.GetDirtyPageList();
6511             if (dirty_pages_only && dirty_page_list.hasValue()) {
6512               for (addr_t dirtypage : dirty_page_list.getValue()) {
6513                 page_object obj;
6514                 obj.addr = dirtypage;
6515                 obj.size = pagesize;
6516                 obj.prot = prot;
6517                 pages_to_copy.push_back(obj);
6518               }
6519             } else {
6520               page_object obj;
6521               obj.addr = addr;
6522               obj.size = size;
6523               obj.prot = prot;
6524               pages_to_copy.push_back(obj);
6525             }
6526           }
6527 
6528           range_error = process_sp->GetMemoryRegionInfo(
6529               range_info.GetRange().GetRangeEnd(), range_info);
6530           if (range_error.Fail())
6531             break;
6532         }
6533 
6534         // Combine contiguous entries that have the same
6535         // protections so we don't have an excess of
6536         // load commands.
6537         std::vector<page_object> combined_page_objects;
6538         page_object last_obj;
6539         last_obj.addr = LLDB_INVALID_ADDRESS;
6540         last_obj.size = 0;
6541         for (page_object obj : pages_to_copy) {
6542           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6543             last_obj = obj;
6544             continue;
6545           }
6546           if (last_obj.addr + last_obj.size == obj.addr &&
6547               last_obj.prot == obj.prot) {
6548             last_obj.size += obj.size;
6549             continue;
6550           }
6551           combined_page_objects.push_back(last_obj);
6552           last_obj = obj;
6553         }
6554         // Add the last entry we were looking to combine
6555         // on to the array.
6556         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6557           combined_page_objects.push_back(last_obj);
6558 
6559         for (page_object obj : combined_page_objects) {
6560           uint32_t cmd_type = LC_SEGMENT_64;
6561           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6562           if (addr_byte_size == 4) {
6563             cmd_type = LC_SEGMENT;
6564             segment_size = sizeof(llvm::MachO::segment_command);
6565           }
6566           llvm::MachO::segment_command_64 segment = {
6567               cmd_type,     // uint32_t cmd;
6568               segment_size, // uint32_t cmdsize;
6569               {0},          // char segname[16];
6570               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6571                             // Mach-O
6572               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6573                             // Mach-O
6574               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6575               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6576                             // Mach-O
6577               obj.prot,     // uint32_t maxprot;
6578               obj.prot,     // uint32_t initprot;
6579               0,            // uint32_t nsects;
6580               0};           // uint32_t flags;
6581           segment_load_commands.push_back(segment);
6582         }
6583 
6584         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6585 
6586         llvm::MachO::mach_header_64 mach_header;
6587         if (addr_byte_size == 8) {
6588           mach_header.magic = MH_MAGIC_64;
6589         } else {
6590           mach_header.magic = MH_MAGIC;
6591         }
6592         mach_header.cputype = target_arch.GetMachOCPUType();
6593         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6594         mach_header.filetype = MH_CORE;
6595         mach_header.ncmds = segment_load_commands.size();
6596         mach_header.flags = 0;
6597         mach_header.reserved = 0;
6598         ThreadList &thread_list = process_sp->GetThreadList();
6599         const uint32_t num_threads = thread_list.GetSize();
6600 
6601         // Make an array of LC_THREAD data items. Each one contains the
6602         // contents of the LC_THREAD load command. The data doesn't contain
6603         // the load command + load command size, we will add the load command
6604         // and load command size as we emit the data.
6605         std::vector<StreamString> LC_THREAD_datas(num_threads);
6606         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6607           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6608           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6609           LC_THREAD_data.SetByteOrder(byte_order);
6610         }
6611         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6612           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6613           if (thread_sp) {
6614             switch (mach_header.cputype) {
6615             case llvm::MachO::CPU_TYPE_ARM64:
6616             case llvm::MachO::CPU_TYPE_ARM64_32:
6617               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6618                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6619               break;
6620 
6621             case llvm::MachO::CPU_TYPE_ARM:
6622               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6623                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6624               break;
6625 
6626             case llvm::MachO::CPU_TYPE_I386:
6627               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6628                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6629               break;
6630 
6631             case llvm::MachO::CPU_TYPE_X86_64:
6632               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6633                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6634               break;
6635             }
6636           }
6637         }
6638 
6639         // The size of the load command is the size of the segments...
6640         if (addr_byte_size == 8) {
6641           mach_header.sizeofcmds = segment_load_commands.size() *
6642                                    sizeof(llvm::MachO::segment_command_64);
6643         } else {
6644           mach_header.sizeofcmds = segment_load_commands.size() *
6645                                    sizeof(llvm::MachO::segment_command);
6646         }
6647 
6648         // and the size of all LC_THREAD load command
6649         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6650           ++mach_header.ncmds;
6651           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6652         }
6653 
6654         // Bits will be set to indicate which bits are NOT used in
6655         // addressing in this process or 0 for unknown.
6656         uint64_t address_mask = process_sp->GetCodeAddressMask();
6657         if (address_mask != 0) {
6658           // LC_NOTE "addrable bits"
6659           mach_header.ncmds++;
6660           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6661         }
6662 
6663         // LC_NOTE "all image infos"
6664         mach_header.ncmds++;
6665         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6666 
6667         // Write the mach header
6668         buffer.PutHex32(mach_header.magic);
6669         buffer.PutHex32(mach_header.cputype);
6670         buffer.PutHex32(mach_header.cpusubtype);
6671         buffer.PutHex32(mach_header.filetype);
6672         buffer.PutHex32(mach_header.ncmds);
6673         buffer.PutHex32(mach_header.sizeofcmds);
6674         buffer.PutHex32(mach_header.flags);
6675         if (addr_byte_size == 8) {
6676           buffer.PutHex32(mach_header.reserved);
6677         }
6678 
6679         // Skip the mach header and all load commands and align to the next
6680         // 0x1000 byte boundary
6681         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6682 
6683         file_offset = llvm::alignTo(file_offset, 16);
6684         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6685 
6686         // Add "addrable bits" LC_NOTE when an address mask is available
6687         if (address_mask != 0) {
6688           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6689               new LCNoteEntry(addr_byte_size, byte_order));
6690           addrable_bits_lcnote_up->name = "addrable bits";
6691           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6692           int bits = std::bitset<64>(~address_mask).count();
6693           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6694           addrable_bits_lcnote_up->payload.PutHex32(
6695               bits); // # of bits used for addressing
6696           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6697 
6698           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6699 
6700           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6701         }
6702 
6703         // Add "all image infos" LC_NOTE
6704         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6705             new LCNoteEntry(addr_byte_size, byte_order));
6706         all_image_infos_lcnote_up->name = "all image infos";
6707         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6708         file_offset = CreateAllImageInfosPayload(
6709             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6710             core_style);
6711         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6712 
6713         // Add LC_NOTE load commands
6714         for (auto &lcnote : lc_notes) {
6715           // Add the LC_NOTE load command to the file.
6716           buffer.PutHex32(LC_NOTE);
6717           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6718           char namebuf[16];
6719           memset(namebuf, 0, sizeof(namebuf));
6720           // this is the uncommon case where strncpy is exactly
6721           // the right one, doesn't need to be nul terminated.
6722           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6723           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6724           buffer.PutHex64(lcnote->payload_file_offset);
6725           buffer.PutHex64(lcnote->payload.GetSize());
6726         }
6727 
6728         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6729         file_offset = llvm::alignTo(file_offset, 4096);
6730 
6731         for (auto &segment : segment_load_commands) {
6732           segment.fileoff = file_offset;
6733           file_offset += segment.filesize;
6734         }
6735 
6736         // Write out all of the LC_THREAD load commands
6737         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6738           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6739           buffer.PutHex32(LC_THREAD);
6740           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6741           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6742         }
6743 
6744         // Write out all of the segment load commands
6745         for (const auto &segment : segment_load_commands) {
6746           buffer.PutHex32(segment.cmd);
6747           buffer.PutHex32(segment.cmdsize);
6748           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6749           if (addr_byte_size == 8) {
6750             buffer.PutHex64(segment.vmaddr);
6751             buffer.PutHex64(segment.vmsize);
6752             buffer.PutHex64(segment.fileoff);
6753             buffer.PutHex64(segment.filesize);
6754           } else {
6755             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6756             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6757             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6758             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6759           }
6760           buffer.PutHex32(segment.maxprot);
6761           buffer.PutHex32(segment.initprot);
6762           buffer.PutHex32(segment.nsects);
6763           buffer.PutHex32(segment.flags);
6764         }
6765 
6766         std::string core_file_path(outfile.GetPath());
6767         auto core_file = FileSystem::Instance().Open(
6768             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6769                          File::eOpenOptionCanCreate);
6770         if (!core_file) {
6771           error = core_file.takeError();
6772         } else {
6773           // Read 1 page at a time
6774           uint8_t bytes[0x1000];
6775           // Write the mach header and load commands out to the core file
6776           size_t bytes_written = buffer.GetString().size();
6777           error =
6778               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6779           if (error.Success()) {
6780 
6781             for (auto &lcnote : lc_notes) {
6782               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6783                   -1) {
6784                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6785                                                "to write '%s' LC_NOTE payload",
6786                                                lcnote->name.c_str());
6787                 return false;
6788               }
6789               bytes_written = lcnote->payload.GetSize();
6790               error = core_file.get()->Write(lcnote->payload.GetData(),
6791                                              bytes_written);
6792               if (!error.Success())
6793                 return false;
6794             }
6795 
6796             // Now write the file data for all memory segments in the process
6797             for (const auto &segment : segment_load_commands) {
6798               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6799                 error.SetErrorStringWithFormat(
6800                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6801                     segment.fileoff, core_file_path.c_str());
6802                 break;
6803               }
6804 
6805               target.GetDebugger().GetAsyncOutputStream()->Printf(
6806                   "Saving %" PRId64
6807                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6808                   segment.vmsize, segment.vmaddr);
6809               addr_t bytes_left = segment.vmsize;
6810               addr_t addr = segment.vmaddr;
6811               Status memory_read_error;
6812               while (bytes_left > 0 && error.Success()) {
6813                 const size_t bytes_to_read =
6814                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6815 
6816                 // In a savecore setting, we don't really care about caching,
6817                 // as the data is dumped and very likely never read again,
6818                 // so we call ReadMemoryFromInferior to bypass it.
6819                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6820                     addr, bytes, bytes_to_read, memory_read_error);
6821 
6822                 if (bytes_read == bytes_to_read) {
6823                   size_t bytes_written = bytes_read;
6824                   error = core_file.get()->Write(bytes, bytes_written);
6825                   bytes_left -= bytes_read;
6826                   addr += bytes_read;
6827                 } else {
6828                   // Some pages within regions are not readable, those should
6829                   // be zero filled
6830                   memset(bytes, 0, bytes_to_read);
6831                   size_t bytes_written = bytes_to_read;
6832                   error = core_file.get()->Write(bytes, bytes_written);
6833                   bytes_left -= bytes_to_read;
6834                   addr += bytes_to_read;
6835                 }
6836               }
6837             }
6838           }
6839         }
6840       } else {
6841         error.SetErrorString(
6842             "process doesn't support getting memory region info");
6843       }
6844     }
6845     return true; // This is the right plug to handle saving core files for
6846                  // this process
6847   }
6848   return false;
6849 }
6850 
6851 ObjectFileMachO::MachOCorefileAllImageInfos
6852 ObjectFileMachO::GetCorefileAllImageInfos() {
6853   MachOCorefileAllImageInfos image_infos;
6854 
6855   // Look for an "all image infos" LC_NOTE.
6856   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6857   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6858     const uint32_t cmd_offset = offset;
6859     llvm::MachO::load_command lc;
6860     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6861       break;
6862     if (lc.cmd == LC_NOTE) {
6863       char data_owner[17];
6864       m_data.CopyData(offset, 16, data_owner);
6865       data_owner[16] = '\0';
6866       offset += 16;
6867       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6868       offset += 4; /* size unused */
6869 
6870       if (strcmp("all image infos", data_owner) == 0) {
6871         offset = fileoff;
6872         // Read the struct all_image_infos_header.
6873         uint32_t version = m_data.GetU32(&offset);
6874         if (version != 1) {
6875           return image_infos;
6876         }
6877         uint32_t imgcount = m_data.GetU32(&offset);
6878         uint64_t entries_fileoff = m_data.GetU64(&offset);
6879         offset += 4; // uint32_t entries_size;
6880         offset += 4; // uint32_t unused;
6881 
6882         offset = entries_fileoff;
6883         for (uint32_t i = 0; i < imgcount; i++) {
6884           // Read the struct image_entry.
6885           offset_t filepath_offset = m_data.GetU64(&offset);
6886           uuid_t uuid;
6887           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6888                  sizeof(uuid_t));
6889           uint64_t load_address = m_data.GetU64(&offset);
6890           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6891           uint32_t segment_count = m_data.GetU32(&offset);
6892           uint32_t currently_executing = m_data.GetU32(&offset);
6893 
6894           MachOCorefileImageEntry image_entry;
6895           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6896           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6897           image_entry.load_address = load_address;
6898           image_entry.currently_executing = currently_executing;
6899 
6900           offset_t seg_vmaddrs_offset = seg_addrs_offset;
6901           for (uint32_t j = 0; j < segment_count; j++) {
6902             char segname[17];
6903             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6904             segname[16] = '\0';
6905             seg_vmaddrs_offset += 16;
6906             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6907             seg_vmaddrs_offset += 8; /* unused */
6908 
6909             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
6910                                                     vmaddr};
6911             image_entry.segment_load_addresses.push_back(new_seg);
6912           }
6913           image_infos.all_image_infos.push_back(image_entry);
6914         }
6915       } else if (strcmp("load binary", data_owner) == 0) {
6916         uint32_t version = m_data.GetU32(&fileoff);
6917         if (version == 1) {
6918           uuid_t uuid;
6919           memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
6920                  sizeof(uuid_t));
6921           uint64_t load_address = m_data.GetU64(&fileoff);
6922           uint64_t slide = m_data.GetU64(&fileoff);
6923           std::string filename = m_data.GetCStr(&fileoff);
6924 
6925           MachOCorefileImageEntry image_entry;
6926           image_entry.filename = filename;
6927           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6928           image_entry.load_address = load_address;
6929           image_entry.slide = slide;
6930           image_infos.all_image_infos.push_back(image_entry);
6931         }
6932       }
6933     }
6934     offset = cmd_offset + lc.cmdsize;
6935   }
6936 
6937   return image_infos;
6938 }
6939 
6940 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6941   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6942   Log *log = GetLog(LLDBLog::DynamicLoader);
6943 
6944   ModuleList added_modules;
6945   for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6946     ModuleSpec module_spec;
6947     module_spec.GetUUID() = image.uuid;
6948     if (image.filename.empty()) {
6949       char namebuf[80];
6950       if (image.load_address != LLDB_INVALID_ADDRESS)
6951         snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
6952                  image.load_address);
6953       else
6954         snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64, image.slide);
6955       module_spec.GetFileSpec() = FileSpec(namebuf);
6956     } else {
6957       module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
6958     }
6959     if (image.currently_executing) {
6960       Symbols::DownloadObjectAndSymbolFile(module_spec, true);
6961       if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
6962         process.GetTarget().GetOrCreateModule(module_spec, false);
6963       }
6964     }
6965     Status error;
6966     ModuleSP module_sp =
6967         process.GetTarget().GetOrCreateModule(module_spec, false, &error);
6968     if (!module_sp.get() || !module_sp->GetObjectFile()) {
6969       if (image.load_address != LLDB_INVALID_ADDRESS) {
6970         module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
6971                                                  image.load_address);
6972       }
6973     }
6974     if (module_sp.get()) {
6975       // Will call ModulesDidLoad with all modules once they've all
6976       // been added to the Target with load addresses.  Don't notify
6977       // here, before the load address is set.
6978       const bool notify = false;
6979       process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
6980       added_modules.Append(module_sp, notify);
6981       if (image.segment_load_addresses.size() > 0) {
6982         if (log) {
6983           std::string uuidstr = image.uuid.GetAsString();
6984           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
6985                       "UUID %s with section load addresses",
6986                       image.filename.c_str(), uuidstr.c_str());
6987         }
6988         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
6989           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
6990           if (sectlist) {
6991             SectionSP sect_sp =
6992                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
6993             if (sect_sp) {
6994               process.GetTarget().SetSectionLoadAddress(
6995                   sect_sp, std::get<1>(name_vmaddr_tuple));
6996             }
6997           }
6998         }
6999       } else if (image.load_address != LLDB_INVALID_ADDRESS) {
7000         if (log) {
7001           std::string uuidstr = image.uuid.GetAsString();
7002           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7003                       "UUID %s with load address 0x%" PRIx64,
7004                       image.filename.c_str(), uuidstr.c_str(),
7005                       image.load_address);
7006         }
7007         const bool address_is_slide = false;
7008         bool changed = false;
7009         module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
7010                                   address_is_slide, changed);
7011       } else if (image.slide != 0) {
7012         if (log) {
7013           std::string uuidstr = image.uuid.GetAsString();
7014           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7015                       "UUID %s with slide amount 0x%" PRIx64,
7016                       image.filename.c_str(), uuidstr.c_str(), image.slide);
7017         }
7018         const bool address_is_slide = true;
7019         bool changed = false;
7020         module_sp->SetLoadAddress(process.GetTarget(), image.slide,
7021                                   address_is_slide, changed);
7022       } else {
7023         if (log) {
7024           std::string uuidstr = image.uuid.GetAsString();
7025           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7026                       "UUID %s at its file address, no slide applied",
7027                       image.filename.c_str(), uuidstr.c_str());
7028         }
7029         const bool address_is_slide = true;
7030         bool changed = false;
7031         module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
7032                                   changed);
7033       }
7034     }
7035   }
7036   if (added_modules.GetSize() > 0) {
7037     process.GetTarget().ModulesDidLoad(added_modules);
7038     process.Flush();
7039     return true;
7040   }
7041   return false;
7042 }
7043