1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 #include "llvm/Support/MachO.h" 12 13 #include "ObjectFileMachO.h" 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/FileSpecList.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Core/StreamFile.h" 22 #include "lldb/Core/StreamString.h" 23 #include "lldb/Core/Timer.h" 24 #include "lldb/Core/UUID.h" 25 #include "lldb/Host/Host.h" 26 #include "lldb/Host/FileSpec.h" 27 #include "lldb/Symbol/ClangNamespaceDecl.h" 28 #include "lldb/Symbol/ObjectFile.h" 29 #include "lldb/Target/Process.h" 30 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 31 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 32 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 33 34 35 using namespace lldb; 36 using namespace lldb_private; 37 using namespace llvm::MachO; 38 39 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 40 { 41 public: 42 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 43 RegisterContextDarwin_x86_64 (thread, 0) 44 { 45 SetRegisterDataFrom_LC_THREAD (data); 46 } 47 48 virtual void 49 InvalidateAllRegisters () 50 { 51 // Do nothing... registers are always valid... 52 } 53 54 void 55 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 56 { 57 uint32_t offset = 0; 58 SetError (GPRRegSet, Read, -1); 59 SetError (FPURegSet, Read, -1); 60 SetError (EXCRegSet, Read, -1); 61 bool done = false; 62 63 while (!done) 64 { 65 int flavor = data.GetU32 (&offset); 66 if (flavor == 0) 67 done = true; 68 else 69 { 70 uint32_t i; 71 uint32_t count = data.GetU32 (&offset); 72 switch (flavor) 73 { 74 case GPRRegSet: 75 for (i=0; i<count; ++i) 76 (&gpr.rax)[i] = data.GetU64(&offset); 77 SetError (GPRRegSet, Read, 0); 78 done = true; 79 80 break; 81 case FPURegSet: 82 // TODO: fill in FPU regs.... 83 //SetError (FPURegSet, Read, -1); 84 done = true; 85 86 break; 87 case EXCRegSet: 88 exc.trapno = data.GetU32(&offset); 89 exc.err = data.GetU32(&offset); 90 exc.faultvaddr = data.GetU64(&offset); 91 SetError (EXCRegSet, Read, 0); 92 done = true; 93 break; 94 case 7: 95 case 8: 96 case 9: 97 // fancy flavors that encapsulate of the the above 98 // falvors... 99 break; 100 101 default: 102 done = true; 103 break; 104 } 105 } 106 } 107 } 108 protected: 109 virtual int 110 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 111 { 112 return 0; 113 } 114 115 virtual int 116 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 117 { 118 return 0; 119 } 120 121 virtual int 122 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 123 { 124 return 0; 125 } 126 127 virtual int 128 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 129 { 130 return 0; 131 } 132 133 virtual int 134 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 135 { 136 return 0; 137 } 138 139 virtual int 140 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 141 { 142 return 0; 143 } 144 }; 145 146 147 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 148 { 149 public: 150 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 151 RegisterContextDarwin_i386 (thread, 0) 152 { 153 SetRegisterDataFrom_LC_THREAD (data); 154 } 155 156 virtual void 157 InvalidateAllRegisters () 158 { 159 // Do nothing... registers are always valid... 160 } 161 162 void 163 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 164 { 165 uint32_t offset = 0; 166 SetError (GPRRegSet, Read, -1); 167 SetError (FPURegSet, Read, -1); 168 SetError (EXCRegSet, Read, -1); 169 bool done = false; 170 171 while (!done) 172 { 173 int flavor = data.GetU32 (&offset); 174 if (flavor == 0) 175 done = true; 176 else 177 { 178 uint32_t i; 179 uint32_t count = data.GetU32 (&offset); 180 switch (flavor) 181 { 182 case GPRRegSet: 183 for (i=0; i<count; ++i) 184 (&gpr.eax)[i] = data.GetU32(&offset); 185 SetError (GPRRegSet, Read, 0); 186 done = true; 187 188 break; 189 case FPURegSet: 190 // TODO: fill in FPU regs.... 191 //SetError (FPURegSet, Read, -1); 192 done = true; 193 194 break; 195 case EXCRegSet: 196 exc.trapno = data.GetU32(&offset); 197 exc.err = data.GetU32(&offset); 198 exc.faultvaddr = data.GetU32(&offset); 199 SetError (EXCRegSet, Read, 0); 200 done = true; 201 break; 202 case 7: 203 case 8: 204 case 9: 205 // fancy flavors that encapsulate of the the above 206 // falvors... 207 break; 208 209 default: 210 done = true; 211 break; 212 } 213 } 214 } 215 } 216 protected: 217 virtual int 218 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 219 { 220 return 0; 221 } 222 223 virtual int 224 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 225 { 226 return 0; 227 } 228 229 virtual int 230 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 231 { 232 return 0; 233 } 234 235 virtual int 236 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 237 { 238 return 0; 239 } 240 241 virtual int 242 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 243 { 244 return 0; 245 } 246 247 virtual int 248 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 249 { 250 return 0; 251 } 252 }; 253 254 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 255 { 256 public: 257 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 258 RegisterContextDarwin_arm (thread, 0) 259 { 260 SetRegisterDataFrom_LC_THREAD (data); 261 } 262 263 virtual void 264 InvalidateAllRegisters () 265 { 266 // Do nothing... registers are always valid... 267 } 268 269 void 270 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 271 { 272 uint32_t offset = 0; 273 SetError (GPRRegSet, Read, -1); 274 SetError (FPURegSet, Read, -1); 275 SetError (EXCRegSet, Read, -1); 276 int flavor = data.GetU32 (&offset); 277 uint32_t count = data.GetU32 (&offset); 278 switch (flavor) 279 { 280 case GPRRegSet: 281 for (uint32_t i=0; i<count; ++i) 282 gpr.r[i] = data.GetU32(&offset); 283 SetError (GPRRegSet, Read, 0); 284 break; 285 case FPURegSet: 286 // TODO: fill in FPU regs.... 287 //SetError (FPURegSet, Read, -1); 288 break; 289 case EXCRegSet: 290 exc.exception = data.GetU32(&offset); 291 exc.fsr = data.GetU32(&offset); 292 exc.far = data.GetU32(&offset); 293 SetError (EXCRegSet, Read, 0); 294 break; 295 } 296 } 297 protected: 298 virtual int 299 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 300 { 301 return 0; 302 } 303 304 virtual int 305 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 306 { 307 return 0; 308 } 309 310 virtual int 311 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 312 { 313 return 0; 314 } 315 316 virtual int 317 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 318 { 319 return 0; 320 } 321 322 virtual int 323 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 324 { 325 return 0; 326 } 327 328 virtual int 329 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 330 { 331 return 0; 332 } 333 }; 334 335 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 336 337 void 338 ObjectFileMachO::Initialize() 339 { 340 PluginManager::RegisterPlugin (GetPluginNameStatic(), 341 GetPluginDescriptionStatic(), 342 CreateInstance, 343 CreateMemoryInstance); 344 } 345 346 void 347 ObjectFileMachO::Terminate() 348 { 349 PluginManager::UnregisterPlugin (CreateInstance); 350 } 351 352 353 const char * 354 ObjectFileMachO::GetPluginNameStatic() 355 { 356 return "object-file.mach-o"; 357 } 358 359 const char * 360 ObjectFileMachO::GetPluginDescriptionStatic() 361 { 362 return "Mach-o object file reader (32 and 64 bit)"; 363 } 364 365 366 ObjectFile * 367 ObjectFileMachO::CreateInstance (Module* module, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length) 368 { 369 if (ObjectFileMachO::MagicBytesMatch(data_sp, offset, length)) 370 { 371 std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module, data_sp, file, offset, length)); 372 if (objfile_ap.get() && objfile_ap->ParseHeader()) 373 return objfile_ap.release(); 374 } 375 return NULL; 376 } 377 378 ObjectFile * 379 ObjectFileMachO::CreateMemoryInstance (Module* module, 380 DataBufferSP& data_sp, 381 const ProcessSP &process_sp, 382 lldb::addr_t header_addr) 383 { 384 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 385 { 386 std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module, data_sp, process_sp, header_addr)); 387 if (objfile_ap.get() && objfile_ap->ParseHeader()) 388 return objfile_ap.release(); 389 } 390 return NULL; 391 } 392 393 394 const ConstString & 395 ObjectFileMachO::GetSegmentNameTEXT() 396 { 397 static ConstString g_segment_name_TEXT ("__TEXT"); 398 return g_segment_name_TEXT; 399 } 400 401 const ConstString & 402 ObjectFileMachO::GetSegmentNameDATA() 403 { 404 static ConstString g_segment_name_DATA ("__DATA"); 405 return g_segment_name_DATA; 406 } 407 408 const ConstString & 409 ObjectFileMachO::GetSegmentNameOBJC() 410 { 411 static ConstString g_segment_name_OBJC ("__OBJC"); 412 return g_segment_name_OBJC; 413 } 414 415 const ConstString & 416 ObjectFileMachO::GetSegmentNameLINKEDIT() 417 { 418 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 419 return g_section_name_LINKEDIT; 420 } 421 422 const ConstString & 423 ObjectFileMachO::GetSectionNameEHFrame() 424 { 425 static ConstString g_section_name_eh_frame ("__eh_frame"); 426 return g_section_name_eh_frame; 427 } 428 429 430 431 static uint32_t 432 MachHeaderSizeFromMagic(uint32_t magic) 433 { 434 switch (magic) 435 { 436 case HeaderMagic32: 437 case HeaderMagic32Swapped: 438 return sizeof(struct mach_header); 439 440 case HeaderMagic64: 441 case HeaderMagic64Swapped: 442 return sizeof(struct mach_header_64); 443 break; 444 445 default: 446 break; 447 } 448 return 0; 449 } 450 451 452 bool 453 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 454 lldb::addr_t data_offset, 455 lldb::addr_t data_length) 456 { 457 DataExtractor data; 458 data.SetData (data_sp, data_offset, data_length); 459 uint32_t offset = 0; 460 uint32_t magic = data.GetU32(&offset); 461 return MachHeaderSizeFromMagic(magic) != 0; 462 } 463 464 465 ObjectFileMachO::ObjectFileMachO(Module* module, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length) : 466 ObjectFile(module, file, offset, length, data_sp), 467 m_mutex (Mutex::eMutexTypeRecursive), 468 m_sections_ap(), 469 m_symtab_ap(), 470 m_mach_segments(), 471 m_mach_sections(), 472 m_entry_point_address(), 473 m_thread_context_offsets(), 474 m_thread_context_offsets_valid(false) 475 { 476 ::memset (&m_header, 0, sizeof(m_header)); 477 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 478 } 479 480 ObjectFileMachO::ObjectFileMachO (lldb_private::Module* module, 481 lldb::DataBufferSP& header_data_sp, 482 const lldb::ProcessSP &process_sp, 483 lldb::addr_t header_addr) : 484 ObjectFile(module, process_sp, header_addr, header_data_sp), 485 m_mutex (Mutex::eMutexTypeRecursive), 486 m_sections_ap(), 487 m_symtab_ap(), 488 m_mach_segments(), 489 m_mach_sections(), 490 m_entry_point_address(), 491 m_thread_context_offsets(), 492 m_thread_context_offsets_valid(false) 493 { 494 ::memset (&m_header, 0, sizeof(m_header)); 495 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 496 } 497 498 ObjectFileMachO::~ObjectFileMachO() 499 { 500 } 501 502 503 bool 504 ObjectFileMachO::ParseHeader () 505 { 506 lldb_private::Mutex::Locker locker(m_mutex); 507 bool can_parse = false; 508 uint32_t offset = 0; 509 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 510 // Leave magic in the original byte order 511 m_header.magic = m_data.GetU32(&offset); 512 switch (m_header.magic) 513 { 514 case HeaderMagic32: 515 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 516 m_data.SetAddressByteSize(4); 517 can_parse = true; 518 break; 519 520 case HeaderMagic64: 521 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 522 m_data.SetAddressByteSize(8); 523 can_parse = true; 524 break; 525 526 case HeaderMagic32Swapped: 527 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 528 m_data.SetAddressByteSize(4); 529 can_parse = true; 530 break; 531 532 case HeaderMagic64Swapped: 533 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 534 m_data.SetAddressByteSize(8); 535 can_parse = true; 536 break; 537 538 default: 539 break; 540 } 541 542 if (can_parse) 543 { 544 m_data.GetU32(&offset, &m_header.cputype, 6); 545 546 ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 547 548 if (SetModulesArchitecture (mach_arch)) 549 { 550 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 551 if (m_data.GetByteSize() < header_and_lc_size) 552 { 553 DataBufferSP data_sp; 554 ProcessSP process_sp (m_process_wp.lock()); 555 if (process_sp) 556 { 557 data_sp = ReadMemory (process_sp, m_offset, header_and_lc_size); 558 } 559 else 560 { 561 // Read in all only the load command data from the file on disk 562 data_sp = m_file.ReadFileContents(m_offset, header_and_lc_size); 563 if (data_sp->GetByteSize() != header_and_lc_size) 564 return false; 565 } 566 if (data_sp) 567 m_data.SetData (data_sp); 568 } 569 } 570 return true; 571 } 572 else 573 { 574 memset(&m_header, 0, sizeof(struct mach_header)); 575 } 576 return false; 577 } 578 579 580 ByteOrder 581 ObjectFileMachO::GetByteOrder () const 582 { 583 lldb_private::Mutex::Locker locker(m_mutex); 584 return m_data.GetByteOrder (); 585 } 586 587 bool 588 ObjectFileMachO::IsExecutable() const 589 { 590 return m_header.filetype == HeaderFileTypeExecutable; 591 } 592 593 size_t 594 ObjectFileMachO::GetAddressByteSize () const 595 { 596 lldb_private::Mutex::Locker locker(m_mutex); 597 return m_data.GetAddressByteSize (); 598 } 599 600 AddressClass 601 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 602 { 603 Symtab *symtab = GetSymtab(); 604 if (symtab) 605 { 606 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 607 if (symbol) 608 { 609 const AddressRange *range_ptr = symbol->GetAddressRangePtr(); 610 if (range_ptr) 611 { 612 const Section *section = range_ptr->GetBaseAddress().GetSection(); 613 if (section) 614 { 615 const SectionType section_type = section->GetType(); 616 switch (section_type) 617 { 618 case eSectionTypeInvalid: return eAddressClassUnknown; 619 case eSectionTypeCode: 620 if (m_header.cputype == llvm::MachO::CPUTypeARM) 621 { 622 // For ARM we have a bit in the n_desc field of the symbol 623 // that tells us ARM/Thumb which is bit 0x0008. 624 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 625 return eAddressClassCodeAlternateISA; 626 } 627 return eAddressClassCode; 628 629 case eSectionTypeContainer: return eAddressClassUnknown; 630 case eSectionTypeData: 631 case eSectionTypeDataCString: 632 case eSectionTypeDataCStringPointers: 633 case eSectionTypeDataSymbolAddress: 634 case eSectionTypeData4: 635 case eSectionTypeData8: 636 case eSectionTypeData16: 637 case eSectionTypeDataPointers: 638 case eSectionTypeZeroFill: 639 case eSectionTypeDataObjCMessageRefs: 640 case eSectionTypeDataObjCCFStrings: 641 return eAddressClassData; 642 case eSectionTypeDebug: 643 case eSectionTypeDWARFDebugAbbrev: 644 case eSectionTypeDWARFDebugAranges: 645 case eSectionTypeDWARFDebugFrame: 646 case eSectionTypeDWARFDebugInfo: 647 case eSectionTypeDWARFDebugLine: 648 case eSectionTypeDWARFDebugLoc: 649 case eSectionTypeDWARFDebugMacInfo: 650 case eSectionTypeDWARFDebugPubNames: 651 case eSectionTypeDWARFDebugPubTypes: 652 case eSectionTypeDWARFDebugRanges: 653 case eSectionTypeDWARFDebugStr: 654 case eSectionTypeDWARFAppleNames: 655 case eSectionTypeDWARFAppleTypes: 656 case eSectionTypeDWARFAppleNamespaces: 657 case eSectionTypeDWARFAppleObjC: 658 return eAddressClassDebug; 659 case eSectionTypeEHFrame: return eAddressClassRuntime; 660 case eSectionTypeOther: return eAddressClassUnknown; 661 } 662 } 663 } 664 665 const SymbolType symbol_type = symbol->GetType(); 666 switch (symbol_type) 667 { 668 case eSymbolTypeAny: return eAddressClassUnknown; 669 case eSymbolTypeAbsolute: return eAddressClassUnknown; 670 671 case eSymbolTypeCode: 672 case eSymbolTypeTrampoline: 673 if (m_header.cputype == llvm::MachO::CPUTypeARM) 674 { 675 // For ARM we have a bit in the n_desc field of the symbol 676 // that tells us ARM/Thumb which is bit 0x0008. 677 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 678 return eAddressClassCodeAlternateISA; 679 } 680 return eAddressClassCode; 681 682 case eSymbolTypeData: return eAddressClassData; 683 case eSymbolTypeRuntime: return eAddressClassRuntime; 684 case eSymbolTypeException: return eAddressClassRuntime; 685 case eSymbolTypeSourceFile: return eAddressClassDebug; 686 case eSymbolTypeHeaderFile: return eAddressClassDebug; 687 case eSymbolTypeObjectFile: return eAddressClassDebug; 688 case eSymbolTypeCommonBlock: return eAddressClassDebug; 689 case eSymbolTypeBlock: return eAddressClassDebug; 690 case eSymbolTypeLocal: return eAddressClassData; 691 case eSymbolTypeParam: return eAddressClassData; 692 case eSymbolTypeVariable: return eAddressClassData; 693 case eSymbolTypeVariableType: return eAddressClassDebug; 694 case eSymbolTypeLineEntry: return eAddressClassDebug; 695 case eSymbolTypeLineHeader: return eAddressClassDebug; 696 case eSymbolTypeScopeBegin: return eAddressClassDebug; 697 case eSymbolTypeScopeEnd: return eAddressClassDebug; 698 case eSymbolTypeAdditional: return eAddressClassUnknown; 699 case eSymbolTypeCompiler: return eAddressClassDebug; 700 case eSymbolTypeInstrumentation:return eAddressClassDebug; 701 case eSymbolTypeUndefined: return eAddressClassUnknown; 702 case eSymbolTypeObjCClass: return eAddressClassRuntime; 703 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 704 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 705 } 706 } 707 } 708 return eAddressClassUnknown; 709 } 710 711 Symtab * 712 ObjectFileMachO::GetSymtab() 713 { 714 lldb_private::Mutex::Locker symfile_locker(m_mutex); 715 if (m_symtab_ap.get() == NULL) 716 { 717 m_symtab_ap.reset(new Symtab(this)); 718 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 719 ParseSymtab (true); 720 m_symtab_ap->Finalize (); 721 } 722 return m_symtab_ap.get(); 723 } 724 725 726 SectionList * 727 ObjectFileMachO::GetSectionList() 728 { 729 lldb_private::Mutex::Locker locker(m_mutex); 730 if (m_sections_ap.get() == NULL) 731 { 732 m_sections_ap.reset(new SectionList()); 733 ParseSections(); 734 } 735 return m_sections_ap.get(); 736 } 737 738 739 size_t 740 ObjectFileMachO::ParseSections () 741 { 742 lldb::user_id_t segID = 0; 743 lldb::user_id_t sectID = 0; 744 struct segment_command_64 load_cmd; 745 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 746 uint32_t i; 747 const bool is_core = GetType() == eTypeCoreFile; 748 //bool dump_sections = false; 749 for (i=0; i<m_header.ncmds; ++i) 750 { 751 const uint32_t load_cmd_offset = offset; 752 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 753 break; 754 755 if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64) 756 { 757 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 758 { 759 load_cmd.vmaddr = m_data.GetAddress(&offset); 760 load_cmd.vmsize = m_data.GetAddress(&offset); 761 load_cmd.fileoff = m_data.GetAddress(&offset); 762 load_cmd.filesize = m_data.GetAddress(&offset); 763 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 764 { 765 766 const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0; 767 768 // Keep a list of mach segments around in case we need to 769 // get at data that isn't stored in the abstracted Sections. 770 m_mach_segments.push_back (load_cmd); 771 772 ConstString segment_name (load_cmd.segname, std::min<int>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 773 // Use a segment ID of the segment index shifted left by 8 so they 774 // never conflict with any of the sections. 775 SectionSP segment_sp; 776 if (segment_name || is_core) 777 { 778 segment_sp.reset(new Section (NULL, 779 GetModule(), // Module to which this section belongs 780 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 781 segment_name, // Name of this section 782 eSectionTypeContainer, // This section is a container of other sections. 783 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 784 load_cmd.vmsize, // VM size in bytes of this section 785 load_cmd.fileoff, // Offset to the data for this section in the file 786 load_cmd.filesize, // Size in bytes of this section as found in the the file 787 load_cmd.flags)); // Flags for this section 788 789 segment_sp->SetIsEncrypted (segment_is_encrypted); 790 m_sections_ap->AddSection(segment_sp); 791 } 792 793 struct section_64 sect64; 794 ::memset (§64, 0, sizeof(sect64)); 795 // Push a section into our mach sections for the section at 796 // index zero (NListSectionNoSection) if we don't have any 797 // mach sections yet... 798 if (m_mach_sections.empty()) 799 m_mach_sections.push_back(sect64); 800 uint32_t segment_sect_idx; 801 const lldb::user_id_t first_segment_sectID = sectID + 1; 802 803 804 const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8; 805 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 806 { 807 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 808 break; 809 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 810 break; 811 sect64.addr = m_data.GetAddress(&offset); 812 sect64.size = m_data.GetAddress(&offset); 813 814 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 815 break; 816 817 // Keep a list of mach sections around in case we need to 818 // get at data that isn't stored in the abstracted Sections. 819 m_mach_sections.push_back (sect64); 820 821 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 822 if (!segment_name) 823 { 824 // We have a segment with no name so we need to conjure up 825 // segments that correspond to the section's segname if there 826 // isn't already such a section. If there is such a section, 827 // we resize the section so that it spans all sections. 828 // We also mark these sections as fake so address matches don't 829 // hit if they land in the gaps between the child sections. 830 segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 831 segment_sp = m_sections_ap->FindSectionByName (segment_name); 832 if (segment_sp.get()) 833 { 834 Section *segment = segment_sp.get(); 835 // Grow the section size as needed. 836 const lldb::addr_t sect64_min_addr = sect64.addr; 837 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 838 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 839 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 840 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 841 if (sect64_min_addr >= curr_seg_min_addr) 842 { 843 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 844 // Only grow the section size if needed 845 if (new_seg_byte_size > curr_seg_byte_size) 846 segment->SetByteSize (new_seg_byte_size); 847 } 848 else 849 { 850 // We need to change the base address of the segment and 851 // adjust the child section offsets for all existing children. 852 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 853 segment->Slide(slide_amount, false); 854 segment->GetChildren().Slide (-slide_amount, false); 855 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 856 } 857 858 // Grow the section size as needed. 859 if (sect64.offset) 860 { 861 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 862 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 863 864 const lldb::addr_t section_min_file_offset = sect64.offset; 865 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 866 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 867 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 868 segment->SetFileOffset (new_file_offset); 869 segment->SetFileSize (new_file_size); 870 } 871 } 872 else 873 { 874 // Create a fake section for the section's named segment 875 segment_sp.reset(new Section(segment_sp.get(), // Parent section 876 GetModule(), // Module to which this section belongs 877 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 878 segment_name, // Name of this section 879 eSectionTypeContainer, // This section is a container of other sections. 880 sect64.addr, // File VM address == addresses as they are found in the object file 881 sect64.size, // VM size in bytes of this section 882 sect64.offset, // Offset to the data for this section in the file 883 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file 884 load_cmd.flags)); // Flags for this section 885 segment_sp->SetIsFake(true); 886 m_sections_ap->AddSection(segment_sp); 887 segment_sp->SetIsEncrypted (segment_is_encrypted); 888 } 889 } 890 assert (segment_sp.get()); 891 892 uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType; 893 static ConstString g_sect_name_objc_data ("__objc_data"); 894 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 895 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 896 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 897 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 898 static ConstString g_sect_name_objc_const ("__objc_const"); 899 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 900 static ConstString g_sect_name_cfstring ("__cfstring"); 901 902 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 903 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 904 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 905 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 906 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 907 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 908 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 909 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 910 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 911 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 912 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 913 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 914 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 915 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 916 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 917 static ConstString g_sect_name_eh_frame ("__eh_frame"); 918 static ConstString g_sect_name_DATA ("__DATA"); 919 static ConstString g_sect_name_TEXT ("__TEXT"); 920 921 SectionType sect_type = eSectionTypeOther; 922 923 if (section_name == g_sect_name_dwarf_debug_abbrev) 924 sect_type = eSectionTypeDWARFDebugAbbrev; 925 else if (section_name == g_sect_name_dwarf_debug_aranges) 926 sect_type = eSectionTypeDWARFDebugAranges; 927 else if (section_name == g_sect_name_dwarf_debug_frame) 928 sect_type = eSectionTypeDWARFDebugFrame; 929 else if (section_name == g_sect_name_dwarf_debug_info) 930 sect_type = eSectionTypeDWARFDebugInfo; 931 else if (section_name == g_sect_name_dwarf_debug_line) 932 sect_type = eSectionTypeDWARFDebugLine; 933 else if (section_name == g_sect_name_dwarf_debug_loc) 934 sect_type = eSectionTypeDWARFDebugLoc; 935 else if (section_name == g_sect_name_dwarf_debug_macinfo) 936 sect_type = eSectionTypeDWARFDebugMacInfo; 937 else if (section_name == g_sect_name_dwarf_debug_pubnames) 938 sect_type = eSectionTypeDWARFDebugPubNames; 939 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 940 sect_type = eSectionTypeDWARFDebugPubTypes; 941 else if (section_name == g_sect_name_dwarf_debug_ranges) 942 sect_type = eSectionTypeDWARFDebugRanges; 943 else if (section_name == g_sect_name_dwarf_debug_str) 944 sect_type = eSectionTypeDWARFDebugStr; 945 else if (section_name == g_sect_name_dwarf_apple_names) 946 sect_type = eSectionTypeDWARFAppleNames; 947 else if (section_name == g_sect_name_dwarf_apple_types) 948 sect_type = eSectionTypeDWARFAppleTypes; 949 else if (section_name == g_sect_name_dwarf_apple_namespaces) 950 sect_type = eSectionTypeDWARFAppleNamespaces; 951 else if (section_name == g_sect_name_dwarf_apple_objc) 952 sect_type = eSectionTypeDWARFAppleObjC; 953 else if (section_name == g_sect_name_objc_selrefs) 954 sect_type = eSectionTypeDataCStringPointers; 955 else if (section_name == g_sect_name_objc_msgrefs) 956 sect_type = eSectionTypeDataObjCMessageRefs; 957 else if (section_name == g_sect_name_eh_frame) 958 sect_type = eSectionTypeEHFrame; 959 else if (section_name == g_sect_name_cfstring) 960 sect_type = eSectionTypeDataObjCCFStrings; 961 else if (section_name == g_sect_name_objc_data || 962 section_name == g_sect_name_objc_classrefs || 963 section_name == g_sect_name_objc_superrefs || 964 section_name == g_sect_name_objc_const || 965 section_name == g_sect_name_objc_classlist) 966 { 967 sect_type = eSectionTypeDataPointers; 968 } 969 970 if (sect_type == eSectionTypeOther) 971 { 972 switch (mach_sect_type) 973 { 974 // TODO: categorize sections by other flags for regular sections 975 case SectionTypeRegular: 976 if (segment_sp->GetName() == g_sect_name_TEXT) 977 sect_type = eSectionTypeCode; 978 else if (segment_sp->GetName() == g_sect_name_DATA) 979 sect_type = eSectionTypeData; 980 else 981 sect_type = eSectionTypeOther; 982 break; 983 case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break; 984 case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 985 case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 986 case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 987 case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 988 case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 989 case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 990 case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 991 case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 992 case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 993 case SectionTypeCoalesced: sect_type = eSectionTypeOther; break; 994 case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break; 995 case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 996 case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 997 case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break; 998 case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break; 999 default: break; 1000 } 1001 } 1002 1003 SectionSP section_sp(new Section(segment_sp.get(), 1004 GetModule(), 1005 ++sectID, 1006 section_name, 1007 sect_type, 1008 sect64.addr - segment_sp->GetFileAddress(), 1009 sect64.size, 1010 sect64.offset, 1011 sect64.offset == 0 ? 0 : sect64.size, 1012 sect64.flags)); 1013 // Set the section to be encrypted to match the segment 1014 section_sp->SetIsEncrypted (segment_is_encrypted); 1015 1016 segment_sp->GetChildren().AddSection(section_sp); 1017 1018 if (segment_sp->IsFake()) 1019 { 1020 segment_sp.reset(); 1021 segment_name.Clear(); 1022 } 1023 } 1024 if (segment_sp && m_header.filetype == HeaderFileTypeDSYM) 1025 { 1026 if (first_segment_sectID <= sectID) 1027 { 1028 lldb::user_id_t sect_uid; 1029 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1030 { 1031 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1032 SectionSP next_section_sp; 1033 if (sect_uid + 1 <= sectID) 1034 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1035 1036 if (curr_section_sp.get()) 1037 { 1038 if (curr_section_sp->GetByteSize() == 0) 1039 { 1040 if (next_section_sp.get() != NULL) 1041 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1042 else 1043 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1044 } 1045 } 1046 } 1047 } 1048 } 1049 } 1050 } 1051 } 1052 else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo) 1053 { 1054 m_dysymtab.cmd = load_cmd.cmd; 1055 m_dysymtab.cmdsize = load_cmd.cmdsize; 1056 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1057 } 1058 1059 offset = load_cmd_offset + load_cmd.cmdsize; 1060 } 1061 // if (dump_sections) 1062 // { 1063 // StreamFile s(stdout); 1064 // m_sections_ap->Dump(&s, true); 1065 // } 1066 return sectID; // Return the number of sections we registered with the module 1067 } 1068 1069 class MachSymtabSectionInfo 1070 { 1071 public: 1072 1073 MachSymtabSectionInfo (SectionList *section_list) : 1074 m_section_list (section_list), 1075 m_section_infos() 1076 { 1077 // Get the number of sections down to a depth of 1 to include 1078 // all segments and their sections, but no other sections that 1079 // may be added for debug map or 1080 m_section_infos.resize(section_list->GetNumSections(1)); 1081 } 1082 1083 1084 Section * 1085 GetSection (uint8_t n_sect, addr_t file_addr) 1086 { 1087 if (n_sect == 0) 1088 return NULL; 1089 if (n_sect < m_section_infos.size()) 1090 { 1091 if (m_section_infos[n_sect].section == NULL) 1092 { 1093 Section *section = m_section_list->FindSectionByID (n_sect).get(); 1094 m_section_infos[n_sect].section = section; 1095 if (section != NULL) 1096 { 1097 m_section_infos[n_sect].vm_range.SetBaseAddress (section->GetFileAddress()); 1098 m_section_infos[n_sect].vm_range.SetByteSize (section->GetByteSize()); 1099 } 1100 else 1101 { 1102 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1103 } 1104 } 1105 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1106 { 1107 // Symbol is in section. 1108 return m_section_infos[n_sect].section; 1109 } 1110 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1111 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1112 { 1113 // Symbol is in section with zero size, but has the same start 1114 // address as the section. This can happen with linker symbols 1115 // (symbols that start with the letter 'l' or 'L'. 1116 return m_section_infos[n_sect].section; 1117 } 1118 } 1119 return m_section_list->FindSectionContainingFileAddress(file_addr).get(); 1120 } 1121 1122 protected: 1123 struct SectionInfo 1124 { 1125 SectionInfo () : 1126 vm_range(), 1127 section (NULL) 1128 { 1129 } 1130 1131 VMRange vm_range; 1132 Section *section; 1133 }; 1134 SectionList *m_section_list; 1135 std::vector<SectionInfo> m_section_infos; 1136 }; 1137 1138 1139 1140 size_t 1141 ObjectFileMachO::ParseSymtab (bool minimize) 1142 { 1143 Timer scoped_timer(__PRETTY_FUNCTION__, 1144 "ObjectFileMachO::ParseSymtab () module = %s", 1145 m_file.GetFilename().AsCString("")); 1146 struct symtab_command symtab_load_command; 1147 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 1148 uint32_t i; 1149 1150 LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 1151 1152 for (i=0; i<m_header.ncmds; ++i) 1153 { 1154 const uint32_t cmd_offset = offset; 1155 // Read in the load command and load command size 1156 if (m_data.GetU32(&offset, &symtab_load_command, 2) == NULL) 1157 break; 1158 // Watch for the symbol table load command 1159 if (symtab_load_command.cmd == LoadCommandSymtab) 1160 { 1161 // Read in the rest of the symtab load command 1162 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4)) // fill in symoff, nsyms, stroff, strsize fields 1163 { 1164 if (symtab_load_command.symoff == 0) 1165 { 1166 if (log) 1167 GetModule()->LogMessage(log.get(), "LC_SYMTAB.symoff == 0"); 1168 return 0; 1169 } 1170 1171 if (symtab_load_command.stroff == 0) 1172 { 1173 if (log) 1174 GetModule()->LogMessage(log.get(), "LC_SYMTAB.stroff == 0"); 1175 return 0; 1176 } 1177 1178 if (symtab_load_command.nsyms == 0) 1179 { 1180 if (log) 1181 GetModule()->LogMessage(log.get(), "LC_SYMTAB.nsyms == 0"); 1182 return 0; 1183 } 1184 1185 if (symtab_load_command.strsize == 0) 1186 { 1187 if (log) 1188 GetModule()->LogMessage(log.get(), "LC_SYMTAB.strsize == 0"); 1189 return 0; 1190 } 1191 1192 Symtab *symtab = m_symtab_ap.get(); 1193 SectionList *section_list = GetSectionList(); 1194 if (section_list == NULL) 1195 return 0; 1196 1197 ProcessSP process_sp (m_process_wp.lock()); 1198 1199 const size_t addr_byte_size = m_data.GetAddressByteSize(); 1200 bool bit_width_32 = addr_byte_size == 4; 1201 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 1202 1203 DataExtractor nlist_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize()); 1204 DataExtractor strtab_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize()); 1205 1206 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 1207 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 1208 if (process_sp) 1209 { 1210 Target &target = process_sp->GetTarget(); 1211 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 1212 // Reading mach file from memory in a process or core file... 1213 1214 if (linkedit_section_sp) 1215 { 1216 const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 1217 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 1218 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 1219 const addr_t stroff_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 1220 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 1221 if (nlist_data_sp) 1222 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 1223 DataBufferSP strtab_data_sp (ReadMemory (process_sp, stroff_addr, strtab_data_byte_size)); 1224 if (strtab_data_sp) 1225 strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 1226 } 1227 } 1228 else 1229 { 1230 nlist_data.SetData (m_data, 1231 symtab_load_command.symoff, 1232 nlist_data_byte_size); 1233 strtab_data.SetData (m_data, 1234 symtab_load_command.stroff, 1235 strtab_data_byte_size); 1236 1237 } 1238 1239 if (nlist_data.GetByteSize() == 0) 1240 { 1241 if (log) 1242 GetModule()->LogMessage(log.get(), "failed to read nlist data"); 1243 return 0; 1244 } 1245 1246 1247 if (strtab_data.GetByteSize() == 0) 1248 { 1249 if (log) 1250 GetModule()->LogMessage(log.get(), "failed to read strtab data"); 1251 return 0; 1252 } 1253 1254 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 1255 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 1256 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 1257 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 1258 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 1259 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 1260 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 1261 SectionSP eh_frame_section_sp; 1262 if (text_section_sp.get()) 1263 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 1264 else 1265 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 1266 1267 uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection; 1268 1269 uint32_t nlist_data_offset = 0; 1270 1271 uint32_t N_SO_index = UINT32_MAX; 1272 1273 MachSymtabSectionInfo section_info (section_list); 1274 std::vector<uint32_t> N_FUN_indexes; 1275 std::vector<uint32_t> N_NSYM_indexes; 1276 std::vector<uint32_t> N_INCL_indexes; 1277 std::vector<uint32_t> N_BRAC_indexes; 1278 std::vector<uint32_t> N_COMM_indexes; 1279 typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap; 1280 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 1281 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 1282 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 1283 // Any symbols that get merged into another will get an entry 1284 // in this map so we know 1285 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 1286 uint32_t nlist_idx = 0; 1287 Symbol *symbol_ptr = NULL; 1288 1289 uint32_t sym_idx = 0; 1290 Symbol *sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 1291 uint32_t num_syms = symtab->GetNumSymbols(); 1292 1293 //symtab->Reserve (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 1294 for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 1295 { 1296 struct nlist_64 nlist; 1297 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 1298 break; 1299 1300 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 1301 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 1302 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 1303 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 1304 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 1305 1306 SymbolType type = eSymbolTypeInvalid; 1307 const char *symbol_name = strtab_data.PeekCStr(nlist.n_strx); 1308 if (symbol_name == NULL) 1309 { 1310 // No symbol should be NULL, even the symbols with no 1311 // string values should have an offset zero which points 1312 // to an empty C-string 1313 Host::SystemLog (Host::eSystemLogError, 1314 "error: symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n", 1315 nlist_idx, 1316 nlist.n_strx, 1317 m_module->GetFileSpec().GetDirectory().GetCString(), 1318 m_module->GetFileSpec().GetFilename().GetCString()); 1319 continue; 1320 } 1321 const char *symbol_name_non_abi_mangled = NULL; 1322 1323 if (symbol_name[0] == '\0') 1324 symbol_name = NULL; 1325 Section* symbol_section = NULL; 1326 bool add_nlist = true; 1327 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 1328 1329 assert (sym_idx < num_syms); 1330 1331 sym[sym_idx].SetDebug (is_debug); 1332 1333 if (is_debug) 1334 { 1335 switch (nlist.n_type) 1336 { 1337 case StabGlobalSymbol: 1338 // N_GSYM -- global symbol: name,,NO_SECT,type,0 1339 // Sometimes the N_GSYM value contains the address. 1340 1341 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 1342 // have the same address, but we want to ensure that we always find only the real symbol, 1343 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 1344 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 1345 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 1346 // same address. 1347 1348 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 1349 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 1350 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 1351 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 1352 add_nlist = false; 1353 else 1354 { 1355 sym[sym_idx].SetExternal(true); 1356 if (nlist.n_value != 0) 1357 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1358 type = eSymbolTypeData; 1359 } 1360 break; 1361 1362 case StabFunctionName: 1363 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 1364 type = eSymbolTypeCompiler; 1365 break; 1366 1367 case StabFunction: 1368 // N_FUN -- procedure: name,,n_sect,linenumber,address 1369 if (symbol_name) 1370 { 1371 type = eSymbolTypeCode; 1372 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1373 1374 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 1375 // We use the current number of symbols in the symbol table in lieu of 1376 // using nlist_idx in case we ever start trimming entries out 1377 N_FUN_indexes.push_back(sym_idx); 1378 } 1379 else 1380 { 1381 type = eSymbolTypeCompiler; 1382 1383 if ( !N_FUN_indexes.empty() ) 1384 { 1385 // Copy the size of the function into the original STAB entry so we don't have 1386 // to hunt for it later 1387 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 1388 N_FUN_indexes.pop_back(); 1389 // We don't really need the end function STAB as it contains the size which 1390 // we already placed with the original symbol, so don't add it if we want a 1391 // minimal symbol table 1392 if (minimize) 1393 add_nlist = false; 1394 } 1395 } 1396 break; 1397 1398 case StabStaticSymbol: 1399 // N_STSYM -- static symbol: name,,n_sect,type,address 1400 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 1401 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1402 type = eSymbolTypeData; 1403 break; 1404 1405 case StabLocalCommon: 1406 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 1407 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1408 type = eSymbolTypeCommonBlock; 1409 break; 1410 1411 case StabBeginSymbol: 1412 // N_BNSYM 1413 // We use the current number of symbols in the symbol table in lieu of 1414 // using nlist_idx in case we ever start trimming entries out 1415 if (minimize) 1416 { 1417 // Skip these if we want minimal symbol tables 1418 add_nlist = false; 1419 } 1420 else 1421 { 1422 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1423 N_NSYM_indexes.push_back(sym_idx); 1424 type = eSymbolTypeScopeBegin; 1425 } 1426 break; 1427 1428 case StabEndSymbol: 1429 // N_ENSYM 1430 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 1431 // so that we can always skip the entire symbol if we need to navigate 1432 // more quickly at the source level when parsing STABS 1433 if (minimize) 1434 { 1435 // Skip these if we want minimal symbol tables 1436 add_nlist = false; 1437 } 1438 else 1439 { 1440 if ( !N_NSYM_indexes.empty() ) 1441 { 1442 symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back()); 1443 symbol_ptr->SetByteSize(sym_idx + 1); 1444 symbol_ptr->SetSizeIsSibling(true); 1445 N_NSYM_indexes.pop_back(); 1446 } 1447 type = eSymbolTypeScopeEnd; 1448 } 1449 break; 1450 1451 1452 case StabSourceFileOptions: 1453 // N_OPT - emitted with gcc2_compiled and in gcc source 1454 type = eSymbolTypeCompiler; 1455 break; 1456 1457 case StabRegisterSymbol: 1458 // N_RSYM - register sym: name,,NO_SECT,type,register 1459 type = eSymbolTypeVariable; 1460 break; 1461 1462 case StabSourceLine: 1463 // N_SLINE - src line: 0,,n_sect,linenumber,address 1464 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1465 type = eSymbolTypeLineEntry; 1466 break; 1467 1468 case StabStructureType: 1469 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 1470 type = eSymbolTypeVariableType; 1471 break; 1472 1473 case StabSourceFileName: 1474 // N_SO - source file name 1475 type = eSymbolTypeSourceFile; 1476 if (symbol_name == NULL) 1477 { 1478 if (minimize) 1479 add_nlist = false; 1480 if (N_SO_index != UINT32_MAX) 1481 { 1482 // Set the size of the N_SO to the terminating index of this N_SO 1483 // so that we can always skip the entire N_SO if we need to navigate 1484 // more quickly at the source level when parsing STABS 1485 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 1486 symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1)); 1487 symbol_ptr->SetSizeIsSibling(true); 1488 } 1489 N_NSYM_indexes.clear(); 1490 N_INCL_indexes.clear(); 1491 N_BRAC_indexes.clear(); 1492 N_COMM_indexes.clear(); 1493 N_FUN_indexes.clear(); 1494 N_SO_index = UINT32_MAX; 1495 } 1496 else 1497 { 1498 // We use the current number of symbols in the symbol table in lieu of 1499 // using nlist_idx in case we ever start trimming entries out 1500 if (symbol_name[0] == '/') 1501 N_SO_index = sym_idx; 1502 else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 1503 { 1504 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 1505 if (so_path && so_path[0]) 1506 { 1507 std::string full_so_path (so_path); 1508 if (*full_so_path.rbegin() != '/') 1509 full_so_path += '/'; 1510 full_so_path += symbol_name; 1511 sym[sym_idx - 1].GetMangled().SetValue(full_so_path.c_str(), false); 1512 add_nlist = false; 1513 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 1514 } 1515 } 1516 } 1517 1518 break; 1519 1520 case StabObjectFileName: 1521 // N_OSO - object file name: name,,0,0,st_mtime 1522 type = eSymbolTypeObjectFile; 1523 break; 1524 1525 case StabLocalSymbol: 1526 // N_LSYM - local sym: name,,NO_SECT,type,offset 1527 type = eSymbolTypeLocal; 1528 break; 1529 1530 //---------------------------------------------------------------------- 1531 // INCL scopes 1532 //---------------------------------------------------------------------- 1533 case StabBeginIncludeFileName: 1534 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 1535 // We use the current number of symbols in the symbol table in lieu of 1536 // using nlist_idx in case we ever start trimming entries out 1537 N_INCL_indexes.push_back(sym_idx); 1538 type = eSymbolTypeScopeBegin; 1539 break; 1540 1541 case StabEndIncludeFile: 1542 // N_EINCL - include file end: name,,NO_SECT,0,0 1543 // Set the size of the N_BINCL to the terminating index of this N_EINCL 1544 // so that we can always skip the entire symbol if we need to navigate 1545 // more quickly at the source level when parsing STABS 1546 if ( !N_INCL_indexes.empty() ) 1547 { 1548 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 1549 symbol_ptr->SetByteSize(sym_idx + 1); 1550 symbol_ptr->SetSizeIsSibling(true); 1551 N_INCL_indexes.pop_back(); 1552 } 1553 type = eSymbolTypeScopeEnd; 1554 break; 1555 1556 case StabIncludeFileName: 1557 // N_SOL - #included file name: name,,n_sect,0,address 1558 type = eSymbolTypeHeaderFile; 1559 1560 // We currently don't use the header files on darwin 1561 if (minimize) 1562 add_nlist = false; 1563 break; 1564 1565 case StabCompilerParameters: 1566 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 1567 type = eSymbolTypeCompiler; 1568 break; 1569 1570 case StabCompilerVersion: 1571 // N_VERSION - compiler version: name,,NO_SECT,0,0 1572 type = eSymbolTypeCompiler; 1573 break; 1574 1575 case StabCompilerOptLevel: 1576 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 1577 type = eSymbolTypeCompiler; 1578 break; 1579 1580 case StabParameter: 1581 // N_PSYM - parameter: name,,NO_SECT,type,offset 1582 type = eSymbolTypeVariable; 1583 break; 1584 1585 case StabAlternateEntry: 1586 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 1587 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1588 type = eSymbolTypeLineEntry; 1589 break; 1590 1591 //---------------------------------------------------------------------- 1592 // Left and Right Braces 1593 //---------------------------------------------------------------------- 1594 case StabLeftBracket: 1595 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 1596 // We use the current number of symbols in the symbol table in lieu of 1597 // using nlist_idx in case we ever start trimming entries out 1598 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1599 N_BRAC_indexes.push_back(sym_idx); 1600 type = eSymbolTypeScopeBegin; 1601 break; 1602 1603 case StabRightBracket: 1604 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 1605 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 1606 // so that we can always skip the entire symbol if we need to navigate 1607 // more quickly at the source level when parsing STABS 1608 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1609 if ( !N_BRAC_indexes.empty() ) 1610 { 1611 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 1612 symbol_ptr->SetByteSize(sym_idx + 1); 1613 symbol_ptr->SetSizeIsSibling(true); 1614 N_BRAC_indexes.pop_back(); 1615 } 1616 type = eSymbolTypeScopeEnd; 1617 break; 1618 1619 case StabDeletedIncludeFile: 1620 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 1621 type = eSymbolTypeHeaderFile; 1622 break; 1623 1624 //---------------------------------------------------------------------- 1625 // COMM scopes 1626 //---------------------------------------------------------------------- 1627 case StabBeginCommon: 1628 // N_BCOMM - begin common: name,,NO_SECT,0,0 1629 // We use the current number of symbols in the symbol table in lieu of 1630 // using nlist_idx in case we ever start trimming entries out 1631 type = eSymbolTypeScopeBegin; 1632 N_COMM_indexes.push_back(sym_idx); 1633 break; 1634 1635 case StabEndCommonLocal: 1636 // N_ECOML - end common (local name): 0,,n_sect,0,address 1637 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1638 // Fall through 1639 1640 case StabEndCommon: 1641 // N_ECOMM - end common: name,,n_sect,0,0 1642 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 1643 // so that we can always skip the entire symbol if we need to navigate 1644 // more quickly at the source level when parsing STABS 1645 if ( !N_COMM_indexes.empty() ) 1646 { 1647 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 1648 symbol_ptr->SetByteSize(sym_idx + 1); 1649 symbol_ptr->SetSizeIsSibling(true); 1650 N_COMM_indexes.pop_back(); 1651 } 1652 type = eSymbolTypeScopeEnd; 1653 break; 1654 1655 case StabLength: 1656 // N_LENG - second stab entry with length information 1657 type = eSymbolTypeAdditional; 1658 break; 1659 1660 default: break; 1661 } 1662 } 1663 else 1664 { 1665 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 1666 uint8_t n_type = NlistMaskType & nlist.n_type; 1667 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 1668 1669 switch (n_type) 1670 { 1671 case NListTypeIndirect: // N_INDR - Fall through 1672 case NListTypePreboundUndefined:// N_PBUD - Fall through 1673 case NListTypeUndefined: // N_UNDF 1674 type = eSymbolTypeUndefined; 1675 break; 1676 1677 case NListTypeAbsolute: // N_ABS 1678 type = eSymbolTypeAbsolute; 1679 break; 1680 1681 case NListTypeSection: // N_SECT 1682 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1683 1684 if (symbol_section == NULL) 1685 { 1686 // TODO: warn about this? 1687 add_nlist = false; 1688 break; 1689 } 1690 1691 if (TEXT_eh_frame_sectID == nlist.n_sect) 1692 { 1693 type = eSymbolTypeException; 1694 } 1695 else 1696 { 1697 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 1698 1699 switch (section_type) 1700 { 1701 case SectionTypeRegular: break; // regular section 1702 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 1703 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 1704 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 1705 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 1706 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 1707 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 1708 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 1709 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1710 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 1711 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 1712 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 1713 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 1714 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 1715 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 1716 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 1717 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 1718 default: break; 1719 } 1720 1721 if (type == eSymbolTypeInvalid) 1722 { 1723 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 1724 if (symbol_section->IsDescendant (text_section_sp.get())) 1725 { 1726 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 1727 SectionAttrUserSelfModifyingCode | 1728 SectionAttrSytemSomeInstructions)) 1729 type = eSymbolTypeData; 1730 else 1731 type = eSymbolTypeCode; 1732 } 1733 else 1734 if (symbol_section->IsDescendant(data_section_sp.get())) 1735 { 1736 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 1737 { 1738 type = eSymbolTypeRuntime; 1739 1740 if (symbol_name && 1741 symbol_name[0] == '_' && 1742 symbol_name[1] == 'O' && 1743 symbol_name[2] == 'B') 1744 { 1745 llvm::StringRef symbol_name_ref(symbol_name); 1746 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 1747 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 1748 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 1749 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 1750 { 1751 symbol_name_non_abi_mangled = symbol_name + 1; 1752 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 1753 type = eSymbolTypeObjCClass; 1754 } 1755 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 1756 { 1757 symbol_name_non_abi_mangled = symbol_name + 1; 1758 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 1759 type = eSymbolTypeObjCMetaClass; 1760 } 1761 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 1762 { 1763 symbol_name_non_abi_mangled = symbol_name + 1; 1764 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 1765 type = eSymbolTypeObjCIVar; 1766 } 1767 } 1768 } 1769 else 1770 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 1771 { 1772 type = eSymbolTypeException; 1773 } 1774 else 1775 { 1776 type = eSymbolTypeData; 1777 } 1778 } 1779 else 1780 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 1781 { 1782 type = eSymbolTypeTrampoline; 1783 } 1784 else 1785 if (symbol_section->IsDescendant(objc_section_sp.get())) 1786 { 1787 type = eSymbolTypeRuntime; 1788 if (symbol_name && symbol_name[0] == '.') 1789 { 1790 llvm::StringRef symbol_name_ref(symbol_name); 1791 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 1792 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 1793 { 1794 symbol_name_non_abi_mangled = symbol_name; 1795 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 1796 type = eSymbolTypeObjCClass; 1797 } 1798 } 1799 } 1800 } 1801 } 1802 break; 1803 } 1804 } 1805 1806 if (add_nlist) 1807 { 1808 uint64_t symbol_value = nlist.n_value; 1809 bool symbol_name_is_mangled = false; 1810 1811 if (symbol_name_non_abi_mangled) 1812 { 1813 sym[sym_idx].GetMangled().SetMangledName (symbol_name_non_abi_mangled); 1814 sym[sym_idx].GetMangled().SetDemangledName (symbol_name); 1815 } 1816 else 1817 { 1818 if (symbol_name && symbol_name[0] == '_') 1819 { 1820 symbol_name_is_mangled = symbol_name[1] == '_'; 1821 symbol_name++; // Skip the leading underscore 1822 } 1823 1824 if (symbol_name) 1825 { 1826 sym[sym_idx].GetMangled().SetValue(symbol_name, symbol_name_is_mangled); 1827 } 1828 } 1829 1830 if (is_debug == false) 1831 { 1832 if (type == eSymbolTypeCode) 1833 { 1834 // See if we can find a N_FUN entry for any code symbols. 1835 // If we do find a match, and the name matches, then we 1836 // can merge the two into just the function symbol to avoid 1837 // duplicate entries in the symbol table 1838 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 1839 if (pos != N_FUN_addr_to_sym_idx.end()) 1840 { 1841 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 1842 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 1843 { 1844 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 1845 // We just need the flags from the linker symbol, so put these flags 1846 // into the N_FUN flags to avoid duplicate symbols in the symbol table 1847 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1848 sym[sym_idx].Clear(); 1849 continue; 1850 } 1851 } 1852 } 1853 else if (type == eSymbolTypeData) 1854 { 1855 // See if we can find a N_STSYM entry for any data symbols. 1856 // If we do find a match, and the name matches, then we 1857 // can merge the two into just the Static symbol to avoid 1858 // duplicate entries in the symbol table 1859 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 1860 if (pos != N_STSYM_addr_to_sym_idx.end()) 1861 { 1862 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 1863 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 1864 { 1865 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 1866 // We just need the flags from the linker symbol, so put these flags 1867 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 1868 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1869 sym[sym_idx].Clear(); 1870 continue; 1871 } 1872 } 1873 } 1874 } 1875 if (symbol_section != NULL) 1876 symbol_value -= symbol_section->GetFileAddress(); 1877 1878 sym[sym_idx].SetID (nlist_idx); 1879 sym[sym_idx].SetType (type); 1880 sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetSection (symbol_section); 1881 sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetOffset (symbol_value); 1882 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1883 1884 ++sym_idx; 1885 } 1886 else 1887 { 1888 sym[sym_idx].Clear(); 1889 } 1890 1891 } 1892 1893 // STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value 1894 // is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all 1895 // such entries by figuring out what the address for the global is by looking up this non-STAB 1896 // entry and copying the value into the debug symbol's value to save us the hassle in the 1897 // debug symbol parser. 1898 1899 Symbol *global_symbol = NULL; 1900 for (nlist_idx = 0; 1901 nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL; 1902 nlist_idx++) 1903 { 1904 if (global_symbol->GetValue().GetFileAddress() == 0) 1905 { 1906 std::vector<uint32_t> indexes; 1907 if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0) 1908 { 1909 std::vector<uint32_t>::const_iterator pos; 1910 std::vector<uint32_t>::const_iterator end = indexes.end(); 1911 for (pos = indexes.begin(); pos != end; ++pos) 1912 { 1913 symbol_ptr = symtab->SymbolAtIndex(*pos); 1914 if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false) 1915 { 1916 global_symbol->SetValue(symbol_ptr->GetValue()); 1917 break; 1918 } 1919 } 1920 } 1921 } 1922 } 1923 1924 // Trim our symbols down to just what we ended up with after 1925 // removing any symbols. 1926 if (sym_idx < num_syms) 1927 { 1928 num_syms = sym_idx; 1929 sym = symtab->Resize (num_syms); 1930 } 1931 1932 // Now synthesize indirect symbols 1933 if (m_dysymtab.nindirectsyms != 0) 1934 { 1935 DataExtractor indirect_symbol_index_data (m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4); 1936 1937 if (indirect_symbol_index_data.GetByteSize()) 1938 { 1939 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 1940 1941 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 1942 { 1943 if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs) 1944 { 1945 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 1946 if (symbol_stub_byte_size == 0) 1947 continue; 1948 1949 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 1950 1951 if (num_symbol_stubs == 0) 1952 continue; 1953 1954 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 1955 uint32_t synthetic_stub_sym_id = symtab_load_command.nsyms; 1956 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 1957 { 1958 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 1959 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 1960 uint32_t symbol_stub_offset = symbol_stub_index * 4; 1961 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 1962 { 1963 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 1964 if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal)) 1965 continue; 1966 1967 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 1968 Symbol *stub_symbol = NULL; 1969 if (index_pos != end_index_pos) 1970 { 1971 // We have a remapping from the original nlist index to 1972 // a current symbol index, so just look this up by index 1973 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 1974 } 1975 else 1976 { 1977 // We need to lookup a symbol using the original nlist 1978 // symbol index since this index is coming from the 1979 // S_SYMBOL_STUBS 1980 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 1981 } 1982 1983 assert (stub_symbol); 1984 if (stub_symbol) 1985 { 1986 Address so_addr(symbol_stub_addr, section_list); 1987 1988 if (stub_symbol->GetType() == eSymbolTypeUndefined) 1989 { 1990 // Change the external symbol into a trampoline that makes sense 1991 // These symbols were N_UNDF N_EXT, and are useless to us, so we 1992 // can re-use them so we don't have to make up a synthetic symbol 1993 // for no good reason. 1994 stub_symbol->SetType (eSymbolTypeTrampoline); 1995 stub_symbol->SetExternal (false); 1996 stub_symbol->GetAddressRangeRef().GetBaseAddress() = so_addr; 1997 stub_symbol->GetAddressRangeRef().SetByteSize (symbol_stub_byte_size); 1998 } 1999 else 2000 { 2001 // Make a synthetic symbol to describe the trampoline stub 2002 if (sym_idx >= num_syms) 2003 sym = symtab->Resize (++num_syms); 2004 sym[sym_idx].SetID (synthetic_stub_sym_id++); 2005 sym[sym_idx].GetMangled() = stub_symbol->GetMangled(); 2006 sym[sym_idx].SetType (eSymbolTypeTrampoline); 2007 sym[sym_idx].SetIsSynthetic (true); 2008 sym[sym_idx].GetAddressRangeRef().GetBaseAddress() = so_addr; 2009 sym[sym_idx].GetAddressRangeRef().SetByteSize (symbol_stub_byte_size); 2010 ++sym_idx; 2011 } 2012 } 2013 } 2014 } 2015 } 2016 } 2017 } 2018 } 2019 return symtab->GetNumSymbols(); 2020 } 2021 } 2022 offset = cmd_offset + symtab_load_command.cmdsize; 2023 } 2024 return 0; 2025 } 2026 2027 2028 void 2029 ObjectFileMachO::Dump (Stream *s) 2030 { 2031 lldb_private::Mutex::Locker locker(m_mutex); 2032 s->Printf("%p: ", this); 2033 s->Indent(); 2034 if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped) 2035 s->PutCString("ObjectFileMachO64"); 2036 else 2037 s->PutCString("ObjectFileMachO32"); 2038 2039 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 2040 2041 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2042 2043 if (m_sections_ap.get()) 2044 m_sections_ap->Dump(s, NULL, true, UINT32_MAX); 2045 2046 if (m_symtab_ap.get()) 2047 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 2048 } 2049 2050 2051 bool 2052 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 2053 { 2054 lldb_private::Mutex::Locker locker(m_mutex); 2055 struct uuid_command load_cmd; 2056 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2057 uint32_t i; 2058 for (i=0; i<m_header.ncmds; ++i) 2059 { 2060 const uint32_t cmd_offset = offset; 2061 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 2062 break; 2063 2064 if (load_cmd.cmd == LoadCommandUUID) 2065 { 2066 const uint8_t *uuid_bytes = m_data.PeekData(offset, 16); 2067 if (uuid_bytes) 2068 { 2069 uuid->SetBytes (uuid_bytes); 2070 return true; 2071 } 2072 return false; 2073 } 2074 offset = cmd_offset + load_cmd.cmdsize; 2075 } 2076 return false; 2077 } 2078 2079 2080 uint32_t 2081 ObjectFileMachO::GetDependentModules (FileSpecList& files) 2082 { 2083 lldb_private::Mutex::Locker locker(m_mutex); 2084 struct load_command load_cmd; 2085 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2086 uint32_t count = 0; 2087 const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system 2088 uint32_t i; 2089 for (i=0; i<m_header.ncmds; ++i) 2090 { 2091 const uint32_t cmd_offset = offset; 2092 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 2093 break; 2094 2095 switch (load_cmd.cmd) 2096 { 2097 case LoadCommandDylibLoad: 2098 case LoadCommandDylibLoadWeak: 2099 case LoadCommandDylibReexport: 2100 case LoadCommandDynamicLinkerLoad: 2101 case LoadCommandFixedVMShlibLoad: 2102 case LoadCommandDylibLoadUpward: 2103 { 2104 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2105 const char *path = m_data.PeekCStr(name_offset); 2106 // Skip any path that starts with '@' since these are usually: 2107 // @executable_path/.../file 2108 // @rpath/.../file 2109 if (path && path[0] != '@') 2110 { 2111 FileSpec file_spec(path, resolve_path); 2112 if (files.AppendIfUnique(file_spec)) 2113 count++; 2114 } 2115 } 2116 break; 2117 2118 default: 2119 break; 2120 } 2121 offset = cmd_offset + load_cmd.cmdsize; 2122 } 2123 return count; 2124 } 2125 2126 lldb_private::Address 2127 ObjectFileMachO::GetEntryPointAddress () 2128 { 2129 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 2130 // is initialized to an invalid address, so we can just return that. 2131 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 2132 2133 if (!IsExecutable() || m_entry_point_address.IsValid()) 2134 return m_entry_point_address; 2135 2136 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 2137 // /usr/include/mach-o.h, but it is basically: 2138 // 2139 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 2140 // uint32_t count - this is the count of longs in the thread state data 2141 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 2142 // <repeat this trio> 2143 // 2144 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 2145 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 2146 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 2147 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 2148 // 2149 // For now we hard-code the offsets and flavors we need: 2150 // 2151 // 2152 2153 lldb_private::Mutex::Locker locker(m_mutex); 2154 struct load_command load_cmd; 2155 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2156 uint32_t i; 2157 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 2158 bool done = false; 2159 2160 for (i=0; i<m_header.ncmds; ++i) 2161 { 2162 const uint32_t cmd_offset = offset; 2163 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 2164 break; 2165 2166 switch (load_cmd.cmd) 2167 { 2168 case LoadCommandUnixThread: 2169 case LoadCommandThread: 2170 { 2171 while (offset < cmd_offset + load_cmd.cmdsize) 2172 { 2173 uint32_t flavor = m_data.GetU32(&offset); 2174 uint32_t count = m_data.GetU32(&offset); 2175 if (count == 0) 2176 { 2177 // We've gotten off somehow, log and exit; 2178 return m_entry_point_address; 2179 } 2180 2181 switch (m_header.cputype) 2182 { 2183 case llvm::MachO::CPUTypeARM: 2184 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 2185 { 2186 offset += 60; // This is the offset of pc in the GPR thread state data structure. 2187 start_address = m_data.GetU32(&offset); 2188 done = true; 2189 } 2190 break; 2191 case llvm::MachO::CPUTypeI386: 2192 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 2193 { 2194 offset += 40; // This is the offset of eip in the GPR thread state data structure. 2195 start_address = m_data.GetU32(&offset); 2196 done = true; 2197 } 2198 break; 2199 case llvm::MachO::CPUTypeX86_64: 2200 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 2201 { 2202 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 2203 start_address = m_data.GetU64(&offset); 2204 done = true; 2205 } 2206 break; 2207 default: 2208 return m_entry_point_address; 2209 } 2210 // Haven't found the GPR flavor yet, skip over the data for this flavor: 2211 if (done) 2212 break; 2213 offset += count * 4; 2214 } 2215 } 2216 break; 2217 2218 default: 2219 break; 2220 } 2221 if (done) 2222 break; 2223 2224 // Go to the next load command: 2225 offset = cmd_offset + load_cmd.cmdsize; 2226 } 2227 2228 if (start_address != LLDB_INVALID_ADDRESS) 2229 { 2230 // We got the start address from the load commands, so now resolve that address in the sections 2231 // of this ObjectFile: 2232 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 2233 { 2234 m_entry_point_address.Clear(); 2235 } 2236 } 2237 else 2238 { 2239 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 2240 // "start" symbol in the main executable. 2241 2242 SymbolContextList contexts; 2243 SymbolContext context; 2244 if (!m_module->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 2245 return m_entry_point_address; 2246 2247 contexts.GetContextAtIndex(0, context); 2248 2249 m_entry_point_address = context.symbol->GetValue(); 2250 } 2251 2252 return m_entry_point_address; 2253 2254 } 2255 2256 lldb_private::Address 2257 ObjectFileMachO::GetHeaderAddress () 2258 { 2259 lldb_private::Address header_addr; 2260 SectionList *section_list = GetSectionList(); 2261 if (section_list) 2262 { 2263 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 2264 if (text_segment_sp) 2265 { 2266 header_addr.SetSection (text_segment_sp.get()); 2267 header_addr.SetOffset (0); 2268 } 2269 } 2270 return header_addr; 2271 } 2272 2273 uint32_t 2274 ObjectFileMachO::GetNumThreadContexts () 2275 { 2276 lldb_private::Mutex::Locker locker(m_mutex); 2277 if (!m_thread_context_offsets_valid) 2278 { 2279 m_thread_context_offsets_valid = true; 2280 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2281 FileRangeArray::Entry file_range; 2282 thread_command thread_cmd; 2283 for (uint32_t i=0; i<m_header.ncmds; ++i) 2284 { 2285 const uint32_t cmd_offset = offset; 2286 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 2287 break; 2288 2289 if (thread_cmd.cmd == LoadCommandThread) 2290 { 2291 file_range.SetRangeBase (offset); 2292 file_range.SetByteSize (thread_cmd.cmdsize - 8); 2293 m_thread_context_offsets.Append (file_range); 2294 } 2295 offset = cmd_offset + thread_cmd.cmdsize; 2296 } 2297 } 2298 return m_thread_context_offsets.GetSize(); 2299 } 2300 2301 lldb::RegisterContextSP 2302 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 2303 { 2304 lldb_private::Mutex::Locker locker(m_mutex); 2305 if (!m_thread_context_offsets_valid) 2306 GetNumThreadContexts (); 2307 2308 lldb::RegisterContextSP reg_ctx_sp; 2309 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 2310 2311 DataExtractor data (m_data, 2312 thread_context_file_range->GetRangeBase(), 2313 thread_context_file_range->GetByteSize()); 2314 2315 switch (m_header.cputype) 2316 { 2317 case llvm::MachO::CPUTypeARM: 2318 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 2319 break; 2320 2321 case llvm::MachO::CPUTypeI386: 2322 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 2323 break; 2324 2325 case llvm::MachO::CPUTypeX86_64: 2326 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 2327 break; 2328 } 2329 return reg_ctx_sp; 2330 } 2331 2332 2333 ObjectFile::Type 2334 ObjectFileMachO::CalculateType() 2335 { 2336 switch (m_header.filetype) 2337 { 2338 case HeaderFileTypeObject: // 0x1u MH_OBJECT 2339 if (GetAddressByteSize () == 4) 2340 { 2341 // 32 bit kexts are just object files, but they do have a valid 2342 // UUID load command. 2343 UUID uuid; 2344 if (GetUUID(&uuid)) 2345 { 2346 // this checking for the UUID load command is not enough 2347 // we could eventually look for the symbol named 2348 // "OSKextGetCurrentIdentifier" as this is required of kexts 2349 if (m_strata == eStrataInvalid) 2350 m_strata = eStrataKernel; 2351 return eTypeSharedLibrary; 2352 } 2353 } 2354 return eTypeObjectFile; 2355 2356 case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE 2357 case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB 2358 case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE 2359 case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD 2360 case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB 2361 case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER 2362 case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE 2363 case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB 2364 case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM 2365 case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE 2366 default: 2367 break; 2368 } 2369 return eTypeUnknown; 2370 } 2371 2372 ObjectFile::Strata 2373 ObjectFileMachO::CalculateStrata() 2374 { 2375 switch (m_header.filetype) 2376 { 2377 case HeaderFileTypeObject: // 0x1u MH_OBJECT 2378 { 2379 // 32 bit kexts are just object files, but they do have a valid 2380 // UUID load command. 2381 UUID uuid; 2382 if (GetUUID(&uuid)) 2383 { 2384 // this checking for the UUID load command is not enough 2385 // we could eventually look for the symbol named 2386 // "OSKextGetCurrentIdentifier" as this is required of kexts 2387 if (m_type == eTypeInvalid) 2388 m_type = eTypeSharedLibrary; 2389 2390 return eStrataKernel; 2391 } 2392 } 2393 return eStrataUnknown; 2394 2395 case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE 2396 // Check for the MH_DYLDLINK bit in the flags 2397 if (m_header.flags & HeaderFlagBitIsDynamicLinkObject) 2398 { 2399 return eStrataUser; 2400 } 2401 else 2402 { 2403 SectionList *section_list = GetSectionList(); 2404 if (section_list) 2405 { 2406 static ConstString g_kld_section_name ("__KLD"); 2407 if (section_list->FindSectionByName(g_kld_section_name)) 2408 return eStrataKernel; 2409 } 2410 } 2411 return eStrataRawImage; 2412 2413 case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB 2414 case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE 2415 case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD 2416 case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB 2417 case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER 2418 case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE 2419 case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB 2420 case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM 2421 case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE 2422 default: 2423 break; 2424 } 2425 return eStrataUnknown; 2426 } 2427 2428 2429 bool 2430 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 2431 { 2432 lldb_private::Mutex::Locker locker(m_mutex); 2433 arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 2434 2435 // Files with type MH_PRELOAD are currently used in cases where the image 2436 // debugs at the addresses in the file itself. Below we set the OS to 2437 // unknown to make sure we use the DynamicLoaderStatic()... 2438 if (m_header.filetype == HeaderFileTypePreloadedExecutable) 2439 { 2440 arch.GetTriple().setOS (llvm::Triple::UnknownOS); 2441 } 2442 2443 return true; 2444 } 2445 2446 2447 //------------------------------------------------------------------ 2448 // PluginInterface protocol 2449 //------------------------------------------------------------------ 2450 const char * 2451 ObjectFileMachO::GetPluginName() 2452 { 2453 return "ObjectFileMachO"; 2454 } 2455 2456 const char * 2457 ObjectFileMachO::GetShortPluginName() 2458 { 2459 return GetPluginNameStatic(); 2460 } 2461 2462 uint32_t 2463 ObjectFileMachO::GetPluginVersion() 2464 { 2465 return 1; 2466 } 2467 2468