1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamFile.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RangeMap.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StreamString.h"
41 #include "lldb/Utility/Timer.h"
42 #include "lldb/Utility/UUID.h"
43 
44 #include "lldb/Host/SafeMachO.h"
45 
46 #include "llvm/Support/MemoryBuffer.h"
47 
48 #include "ObjectFileMachO.h"
49 
50 #if defined(__APPLE__)
51 #include <TargetConditionals.h>
52 // GetLLDBSharedCacheUUID() needs to call dlsym()
53 #include <dlfcn.h>
54 #endif
55 
56 #ifndef __APPLE__
57 #include "Utility/UuidCompatibility.h"
58 #else
59 #include <uuid/uuid.h>
60 #endif
61 
62 #include <memory>
63 
64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
65 using namespace lldb;
66 using namespace lldb_private;
67 using namespace llvm::MachO;
68 
69 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
70 
71 // Some structure definitions needed for parsing the dyld shared cache files
72 // found on iOS devices.
73 
74 struct lldb_copy_dyld_cache_header_v1 {
75   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
76   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
77   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
78   uint32_t imagesOffset;
79   uint32_t imagesCount;
80   uint64_t dyldBaseAddress;
81   uint64_t codeSignatureOffset;
82   uint64_t codeSignatureSize;
83   uint64_t slideInfoOffset;
84   uint64_t slideInfoSize;
85   uint64_t localSymbolsOffset;
86   uint64_t localSymbolsSize;
87   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
88                     // and later
89 };
90 
91 struct lldb_copy_dyld_cache_mapping_info {
92   uint64_t address;
93   uint64_t size;
94   uint64_t fileOffset;
95   uint32_t maxProt;
96   uint32_t initProt;
97 };
98 
99 struct lldb_copy_dyld_cache_local_symbols_info {
100   uint32_t nlistOffset;
101   uint32_t nlistCount;
102   uint32_t stringsOffset;
103   uint32_t stringsSize;
104   uint32_t entriesOffset;
105   uint32_t entriesCount;
106 };
107 struct lldb_copy_dyld_cache_local_symbols_entry {
108   uint32_t dylibOffset;
109   uint32_t nlistStartIndex;
110   uint32_t nlistCount;
111 };
112 
113 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
114                                const char *alt_name, size_t reg_byte_size,
115                                Stream &data) {
116   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
117   if (reg_info == nullptr)
118     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
119   if (reg_info) {
120     lldb_private::RegisterValue reg_value;
121     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
122       if (reg_info->byte_size >= reg_byte_size)
123         data.Write(reg_value.GetBytes(), reg_byte_size);
124       else {
125         data.Write(reg_value.GetBytes(), reg_info->byte_size);
126         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
127           data.PutChar(0);
128       }
129       return;
130     }
131   }
132   // Just write zeros if all else fails
133   for (size_t i = 0; i < reg_byte_size; ++i)
134     data.PutChar(0);
135 }
136 
137 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
138 public:
139   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
140                                     const DataExtractor &data)
141       : RegisterContextDarwin_x86_64(thread, 0) {
142     SetRegisterDataFrom_LC_THREAD(data);
143   }
144 
145   void InvalidateAllRegisters() override {
146     // Do nothing... registers are always valid...
147   }
148 
149   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
150     lldb::offset_t offset = 0;
151     SetError(GPRRegSet, Read, -1);
152     SetError(FPURegSet, Read, -1);
153     SetError(EXCRegSet, Read, -1);
154     bool done = false;
155 
156     while (!done) {
157       int flavor = data.GetU32(&offset);
158       if (flavor == 0)
159         done = true;
160       else {
161         uint32_t i;
162         uint32_t count = data.GetU32(&offset);
163         switch (flavor) {
164         case GPRRegSet:
165           for (i = 0; i < count; ++i)
166             (&gpr.rax)[i] = data.GetU64(&offset);
167           SetError(GPRRegSet, Read, 0);
168           done = true;
169 
170           break;
171         case FPURegSet:
172           // TODO: fill in FPU regs....
173           // SetError (FPURegSet, Read, -1);
174           done = true;
175 
176           break;
177         case EXCRegSet:
178           exc.trapno = data.GetU32(&offset);
179           exc.err = data.GetU32(&offset);
180           exc.faultvaddr = data.GetU64(&offset);
181           SetError(EXCRegSet, Read, 0);
182           done = true;
183           break;
184         case 7:
185         case 8:
186         case 9:
187           // fancy flavors that encapsulate of the above flavors...
188           break;
189 
190         default:
191           done = true;
192           break;
193         }
194       }
195     }
196   }
197 
198   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
199     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
200     if (reg_ctx_sp) {
201       RegisterContext *reg_ctx = reg_ctx_sp.get();
202 
203       data.PutHex32(GPRRegSet); // Flavor
204       data.PutHex32(GPRWordCount);
205       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
206       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
207       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
208       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
209       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
210       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
211       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
212       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
213       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
214       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
215       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
216       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
217       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
218       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
219       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
220       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
221       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
222       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
223       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
224       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
225       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
226 
227       //            // Write out the FPU registers
228       //            const size_t fpu_byte_size = sizeof(FPU);
229       //            size_t bytes_written = 0;
230       //            data.PutHex32 (FPURegSet);
231       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
232       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
233       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
234       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
235       //            data);   // uint16_t    fcw;    // "fctrl"
236       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
237       //            data);  // uint16_t    fsw;    // "fstat"
238       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
239       //            data);   // uint8_t     ftw;    // "ftag"
240       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
241       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
242       //            data);     // uint16_t    fop;    // "fop"
243       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
244       //            data);    // uint32_t    ip;     // "fioff"
245       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
246       //            data);    // uint16_t    cs;     // "fiseg"
247       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
248       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
249       //            data);   // uint32_t    dp;     // "fooff"
250       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
251       //            data);    // uint16_t    ds;     // "foseg"
252       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
253       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
254       //            data);    // uint32_t    mxcsr;
255       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
256       //            4, data);// uint32_t    mxcsrmask;
257       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
258       //            sizeof(MMSReg), data);
259       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
274       //            sizeof(XMMReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
304       //            sizeof(XMMReg), data);
305       //
306       //            // Fill rest with zeros
307       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
308       //            i)
309       //                data.PutChar(0);
310 
311       // Write out the EXC registers
312       data.PutHex32(EXCRegSet);
313       data.PutHex32(EXCWordCount);
314       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
315       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
316       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
317       return true;
318     }
319     return false;
320   }
321 
322 protected:
323   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
324 
325   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
326 
327   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
328 
329   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
330     return 0;
331   }
332 
333   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
334     return 0;
335   }
336 
337   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
338     return 0;
339   }
340 };
341 
342 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
343 public:
344   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
345                                   const DataExtractor &data)
346       : RegisterContextDarwin_i386(thread, 0) {
347     SetRegisterDataFrom_LC_THREAD(data);
348   }
349 
350   void InvalidateAllRegisters() override {
351     // Do nothing... registers are always valid...
352   }
353 
354   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
355     lldb::offset_t offset = 0;
356     SetError(GPRRegSet, Read, -1);
357     SetError(FPURegSet, Read, -1);
358     SetError(EXCRegSet, Read, -1);
359     bool done = false;
360 
361     while (!done) {
362       int flavor = data.GetU32(&offset);
363       if (flavor == 0)
364         done = true;
365       else {
366         uint32_t i;
367         uint32_t count = data.GetU32(&offset);
368         switch (flavor) {
369         case GPRRegSet:
370           for (i = 0; i < count; ++i)
371             (&gpr.eax)[i] = data.GetU32(&offset);
372           SetError(GPRRegSet, Read, 0);
373           done = true;
374 
375           break;
376         case FPURegSet:
377           // TODO: fill in FPU regs....
378           // SetError (FPURegSet, Read, -1);
379           done = true;
380 
381           break;
382         case EXCRegSet:
383           exc.trapno = data.GetU32(&offset);
384           exc.err = data.GetU32(&offset);
385           exc.faultvaddr = data.GetU32(&offset);
386           SetError(EXCRegSet, Read, 0);
387           done = true;
388           break;
389         case 7:
390         case 8:
391         case 9:
392           // fancy flavors that encapsulate of the above flavors...
393           break;
394 
395         default:
396           done = true;
397           break;
398         }
399       }
400     }
401   }
402 
403   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
404     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
405     if (reg_ctx_sp) {
406       RegisterContext *reg_ctx = reg_ctx_sp.get();
407 
408       data.PutHex32(GPRRegSet); // Flavor
409       data.PutHex32(GPRWordCount);
410       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
411       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
412       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
413       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
414       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
415       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
416       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
417       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
418       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
419       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
420       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
421       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
422       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
423       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
424       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
425       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
426 
427       // Write out the EXC registers
428       data.PutHex32(EXCRegSet);
429       data.PutHex32(EXCWordCount);
430       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
431       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
432       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
433       return true;
434     }
435     return false;
436   }
437 
438 protected:
439   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
440 
441   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
442 
443   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
444 
445   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
446     return 0;
447   }
448 
449   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
450     return 0;
451   }
452 
453   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
454     return 0;
455   }
456 };
457 
458 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
459 public:
460   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
461                                  const DataExtractor &data)
462       : RegisterContextDarwin_arm(thread, 0) {
463     SetRegisterDataFrom_LC_THREAD(data);
464   }
465 
466   void InvalidateAllRegisters() override {
467     // Do nothing... registers are always valid...
468   }
469 
470   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
471     lldb::offset_t offset = 0;
472     SetError(GPRRegSet, Read, -1);
473     SetError(FPURegSet, Read, -1);
474     SetError(EXCRegSet, Read, -1);
475     bool done = false;
476 
477     while (!done) {
478       int flavor = data.GetU32(&offset);
479       uint32_t count = data.GetU32(&offset);
480       lldb::offset_t next_thread_state = offset + (count * 4);
481       switch (flavor) {
482       case GPRAltRegSet:
483       case GPRRegSet:
484         // On ARM, the CPSR register is also included in the count but it is
485         // not included in gpr.r so loop until (count-1).
486         for (uint32_t i = 0; i < (count - 1); ++i) {
487           gpr.r[i] = data.GetU32(&offset);
488         }
489         // Save cpsr explicitly.
490         gpr.cpsr = data.GetU32(&offset);
491 
492         SetError(GPRRegSet, Read, 0);
493         offset = next_thread_state;
494         break;
495 
496       case FPURegSet: {
497         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
498         const int fpu_reg_buf_size = sizeof(fpu.floats);
499         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
500                               fpu_reg_buf) == fpu_reg_buf_size) {
501           offset += fpu_reg_buf_size;
502           fpu.fpscr = data.GetU32(&offset);
503           SetError(FPURegSet, Read, 0);
504         } else {
505           done = true;
506         }
507       }
508         offset = next_thread_state;
509         break;
510 
511       case EXCRegSet:
512         if (count == 3) {
513           exc.exception = data.GetU32(&offset);
514           exc.fsr = data.GetU32(&offset);
515           exc.far = data.GetU32(&offset);
516           SetError(EXCRegSet, Read, 0);
517         }
518         done = true;
519         offset = next_thread_state;
520         break;
521 
522       // Unknown register set flavor, stop trying to parse.
523       default:
524         done = true;
525       }
526     }
527   }
528 
529   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
530     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
531     if (reg_ctx_sp) {
532       RegisterContext *reg_ctx = reg_ctx_sp.get();
533 
534       data.PutHex32(GPRRegSet); // Flavor
535       data.PutHex32(GPRWordCount);
536       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
537       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
538       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
539       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
540       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
541       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
542       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
543       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
544       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
545       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
546       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
547       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
548       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
549       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
550       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
551       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
552       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
553 
554       // Write out the EXC registers
555       //            data.PutHex32 (EXCRegSet);
556       //            data.PutHex32 (EXCWordCount);
557       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
558       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
559       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
560       return true;
561     }
562     return false;
563   }
564 
565 protected:
566   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
567 
568   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
569 
570   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
571 
572   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
573 
574   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
575     return 0;
576   }
577 
578   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
579     return 0;
580   }
581 
582   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
583     return 0;
584   }
585 
586   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
587     return -1;
588   }
589 };
590 
591 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
592 public:
593   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
594                                    const DataExtractor &data)
595       : RegisterContextDarwin_arm64(thread, 0) {
596     SetRegisterDataFrom_LC_THREAD(data);
597   }
598 
599   void InvalidateAllRegisters() override {
600     // Do nothing... registers are always valid...
601   }
602 
603   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
604     lldb::offset_t offset = 0;
605     SetError(GPRRegSet, Read, -1);
606     SetError(FPURegSet, Read, -1);
607     SetError(EXCRegSet, Read, -1);
608     bool done = false;
609     while (!done) {
610       int flavor = data.GetU32(&offset);
611       uint32_t count = data.GetU32(&offset);
612       lldb::offset_t next_thread_state = offset + (count * 4);
613       switch (flavor) {
614       case GPRRegSet:
615         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
616         // 32-bit register)
617         if (count >= (33 * 2) + 1) {
618           for (uint32_t i = 0; i < 29; ++i)
619             gpr.x[i] = data.GetU64(&offset);
620           gpr.fp = data.GetU64(&offset);
621           gpr.lr = data.GetU64(&offset);
622           gpr.sp = data.GetU64(&offset);
623           gpr.pc = data.GetU64(&offset);
624           gpr.cpsr = data.GetU32(&offset);
625           SetError(GPRRegSet, Read, 0);
626         }
627         offset = next_thread_state;
628         break;
629       case FPURegSet: {
630         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
631         const int fpu_reg_buf_size = sizeof(fpu);
632         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
633             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
634                               fpu_reg_buf) == fpu_reg_buf_size) {
635           SetError(FPURegSet, Read, 0);
636         } else {
637           done = true;
638         }
639       }
640         offset = next_thread_state;
641         break;
642       case EXCRegSet:
643         if (count == 4) {
644           exc.far = data.GetU64(&offset);
645           exc.esr = data.GetU32(&offset);
646           exc.exception = data.GetU32(&offset);
647           SetError(EXCRegSet, Read, 0);
648         }
649         offset = next_thread_state;
650         break;
651       default:
652         done = true;
653         break;
654       }
655     }
656   }
657 
658   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
659     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
660     if (reg_ctx_sp) {
661       RegisterContext *reg_ctx = reg_ctx_sp.get();
662 
663       data.PutHex32(GPRRegSet); // Flavor
664       data.PutHex32(GPRWordCount);
665       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
666       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
667       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
668       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
669       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
670       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
671       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
672       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
673       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
674       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
675       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
676       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
677       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
678       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
679       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
680       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
681       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
682       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
683       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
684       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
685       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
686       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
687       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
688       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
689       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
690       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
691       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
692       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
693       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
694       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
695       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
696       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
697       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
698       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
699 
700       // Write out the EXC registers
701       //            data.PutHex32 (EXCRegSet);
702       //            data.PutHex32 (EXCWordCount);
703       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
704       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
705       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
706       return true;
707     }
708     return false;
709   }
710 
711 protected:
712   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
713 
714   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
715 
716   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
717 
718   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
719 
720   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
721     return 0;
722   }
723 
724   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
725     return 0;
726   }
727 
728   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
729     return 0;
730   }
731 
732   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
733     return -1;
734   }
735 };
736 
737 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
738   switch (magic) {
739   case MH_MAGIC:
740   case MH_CIGAM:
741     return sizeof(struct mach_header);
742 
743   case MH_MAGIC_64:
744   case MH_CIGAM_64:
745     return sizeof(struct mach_header_64);
746     break;
747 
748   default:
749     break;
750   }
751   return 0;
752 }
753 
754 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
755 
756 char ObjectFileMachO::ID;
757 
758 void ObjectFileMachO::Initialize() {
759   PluginManager::RegisterPlugin(
760       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
761       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
762 }
763 
764 void ObjectFileMachO::Terminate() {
765   PluginManager::UnregisterPlugin(CreateInstance);
766 }
767 
768 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
769   static ConstString g_name("mach-o");
770   return g_name;
771 }
772 
773 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
774   return "Mach-o object file reader (32 and 64 bit)";
775 }
776 
777 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
778                                             DataBufferSP &data_sp,
779                                             lldb::offset_t data_offset,
780                                             const FileSpec *file,
781                                             lldb::offset_t file_offset,
782                                             lldb::offset_t length) {
783   if (!data_sp) {
784     data_sp = MapFileData(*file, length, file_offset);
785     if (!data_sp)
786       return nullptr;
787     data_offset = 0;
788   }
789 
790   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
791     return nullptr;
792 
793   // Update the data to contain the entire file if it doesn't already
794   if (data_sp->GetByteSize() < length) {
795     data_sp = MapFileData(*file, length, file_offset);
796     if (!data_sp)
797       return nullptr;
798     data_offset = 0;
799   }
800   auto objfile_up = std::make_unique<ObjectFileMachO>(
801       module_sp, data_sp, data_offset, file, file_offset, length);
802   if (!objfile_up || !objfile_up->ParseHeader())
803     return nullptr;
804 
805   return objfile_up.release();
806 }
807 
808 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
809     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
810     const ProcessSP &process_sp, lldb::addr_t header_addr) {
811   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
812     std::unique_ptr<ObjectFile> objfile_up(
813         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
814     if (objfile_up.get() && objfile_up->ParseHeader())
815       return objfile_up.release();
816   }
817   return nullptr;
818 }
819 
820 size_t ObjectFileMachO::GetModuleSpecifications(
821     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
822     lldb::offset_t data_offset, lldb::offset_t file_offset,
823     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
824   const size_t initial_count = specs.GetSize();
825 
826   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
827     DataExtractor data;
828     data.SetData(data_sp);
829     llvm::MachO::mach_header header;
830     if (ParseHeader(data, &data_offset, header)) {
831       size_t header_and_load_cmds =
832           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
833       if (header_and_load_cmds >= data_sp->GetByteSize()) {
834         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
835         data.SetData(data_sp);
836         data_offset = MachHeaderSizeFromMagic(header.magic);
837       }
838       if (data_sp) {
839         ModuleSpec base_spec;
840         base_spec.GetFileSpec() = file;
841         base_spec.SetObjectOffset(file_offset);
842         base_spec.SetObjectSize(length);
843         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
844       }
845     }
846   }
847   return specs.GetSize() - initial_count;
848 }
849 
850 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
851   static ConstString g_segment_name_TEXT("__TEXT");
852   return g_segment_name_TEXT;
853 }
854 
855 ConstString ObjectFileMachO::GetSegmentNameDATA() {
856   static ConstString g_segment_name_DATA("__DATA");
857   return g_segment_name_DATA;
858 }
859 
860 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
861   static ConstString g_segment_name("__DATA_DIRTY");
862   return g_segment_name;
863 }
864 
865 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
866   static ConstString g_segment_name("__DATA_CONST");
867   return g_segment_name;
868 }
869 
870 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
871   static ConstString g_segment_name_OBJC("__OBJC");
872   return g_segment_name_OBJC;
873 }
874 
875 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
876   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
877   return g_section_name_LINKEDIT;
878 }
879 
880 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
881   static ConstString g_section_name("__DWARF");
882   return g_section_name;
883 }
884 
885 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
886   static ConstString g_section_name_eh_frame("__eh_frame");
887   return g_section_name_eh_frame;
888 }
889 
890 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
891                                       lldb::addr_t data_offset,
892                                       lldb::addr_t data_length) {
893   DataExtractor data;
894   data.SetData(data_sp, data_offset, data_length);
895   lldb::offset_t offset = 0;
896   uint32_t magic = data.GetU32(&offset);
897   return MachHeaderSizeFromMagic(magic) != 0;
898 }
899 
900 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
901                                  DataBufferSP &data_sp,
902                                  lldb::offset_t data_offset,
903                                  const FileSpec *file,
904                                  lldb::offset_t file_offset,
905                                  lldb::offset_t length)
906     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
907       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
908       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
909       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
910   ::memset(&m_header, 0, sizeof(m_header));
911   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
912 }
913 
914 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
915                                  lldb::DataBufferSP &header_data_sp,
916                                  const lldb::ProcessSP &process_sp,
917                                  lldb::addr_t header_addr)
918     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
919       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
920       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
921       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
922   ::memset(&m_header, 0, sizeof(m_header));
923   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
924 }
925 
926 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
927                                   lldb::offset_t *data_offset_ptr,
928                                   llvm::MachO::mach_header &header) {
929   data.SetByteOrder(endian::InlHostByteOrder());
930   // Leave magic in the original byte order
931   header.magic = data.GetU32(data_offset_ptr);
932   bool can_parse = false;
933   bool is_64_bit = false;
934   switch (header.magic) {
935   case MH_MAGIC:
936     data.SetByteOrder(endian::InlHostByteOrder());
937     data.SetAddressByteSize(4);
938     can_parse = true;
939     break;
940 
941   case MH_MAGIC_64:
942     data.SetByteOrder(endian::InlHostByteOrder());
943     data.SetAddressByteSize(8);
944     can_parse = true;
945     is_64_bit = true;
946     break;
947 
948   case MH_CIGAM:
949     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
950                           ? eByteOrderLittle
951                           : eByteOrderBig);
952     data.SetAddressByteSize(4);
953     can_parse = true;
954     break;
955 
956   case MH_CIGAM_64:
957     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
958                           ? eByteOrderLittle
959                           : eByteOrderBig);
960     data.SetAddressByteSize(8);
961     is_64_bit = true;
962     can_parse = true;
963     break;
964 
965   default:
966     break;
967   }
968 
969   if (can_parse) {
970     data.GetU32(data_offset_ptr, &header.cputype, 6);
971     if (is_64_bit)
972       *data_offset_ptr += 4;
973     return true;
974   } else {
975     memset(&header, 0, sizeof(header));
976   }
977   return false;
978 }
979 
980 bool ObjectFileMachO::ParseHeader() {
981   ModuleSP module_sp(GetModule());
982   if (!module_sp)
983     return false;
984 
985   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
986   bool can_parse = false;
987   lldb::offset_t offset = 0;
988   m_data.SetByteOrder(endian::InlHostByteOrder());
989   // Leave magic in the original byte order
990   m_header.magic = m_data.GetU32(&offset);
991   switch (m_header.magic) {
992   case MH_MAGIC:
993     m_data.SetByteOrder(endian::InlHostByteOrder());
994     m_data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_MAGIC_64:
999     m_data.SetByteOrder(endian::InlHostByteOrder());
1000     m_data.SetAddressByteSize(8);
1001     can_parse = true;
1002     break;
1003 
1004   case MH_CIGAM:
1005     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1006                             ? eByteOrderLittle
1007                             : eByteOrderBig);
1008     m_data.SetAddressByteSize(4);
1009     can_parse = true;
1010     break;
1011 
1012   case MH_CIGAM_64:
1013     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1014                             ? eByteOrderLittle
1015                             : eByteOrderBig);
1016     m_data.SetAddressByteSize(8);
1017     can_parse = true;
1018     break;
1019 
1020   default:
1021     break;
1022   }
1023 
1024   if (can_parse) {
1025     m_data.GetU32(&offset, &m_header.cputype, 6);
1026 
1027     ModuleSpecList all_specs;
1028     ModuleSpec base_spec;
1029     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1030                     base_spec, all_specs);
1031 
1032     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1033       ArchSpec mach_arch =
1034           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1035 
1036       // Check if the module has a required architecture
1037       const ArchSpec &module_arch = module_sp->GetArchitecture();
1038       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1039         continue;
1040 
1041       if (SetModulesArchitecture(mach_arch)) {
1042         const size_t header_and_lc_size =
1043             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1044         if (m_data.GetByteSize() < header_and_lc_size) {
1045           DataBufferSP data_sp;
1046           ProcessSP process_sp(m_process_wp.lock());
1047           if (process_sp) {
1048             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1049           } else {
1050             // Read in all only the load command data from the file on disk
1051             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1052             if (data_sp->GetByteSize() != header_and_lc_size)
1053               continue;
1054           }
1055           if (data_sp)
1056             m_data.SetData(data_sp);
1057         }
1058       }
1059       return true;
1060     }
1061     // None found.
1062     return false;
1063   } else {
1064     memset(&m_header, 0, sizeof(struct mach_header));
1065   }
1066   return false;
1067 }
1068 
1069 ByteOrder ObjectFileMachO::GetByteOrder() const {
1070   return m_data.GetByteOrder();
1071 }
1072 
1073 bool ObjectFileMachO::IsExecutable() const {
1074   return m_header.filetype == MH_EXECUTE;
1075 }
1076 
1077 bool ObjectFileMachO::IsDynamicLoader() const {
1078   return m_header.filetype == MH_DYLINKER;
1079 }
1080 
1081 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1082   return m_data.GetAddressByteSize();
1083 }
1084 
1085 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1086   Symtab *symtab = GetSymtab();
1087   if (!symtab)
1088     return AddressClass::eUnknown;
1089 
1090   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1091   if (symbol) {
1092     if (symbol->ValueIsAddress()) {
1093       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1094       if (section_sp) {
1095         const lldb::SectionType section_type = section_sp->GetType();
1096         switch (section_type) {
1097         case eSectionTypeInvalid:
1098           return AddressClass::eUnknown;
1099 
1100         case eSectionTypeCode:
1101           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1102             // For ARM we have a bit in the n_desc field of the symbol that
1103             // tells us ARM/Thumb which is bit 0x0008.
1104             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1105               return AddressClass::eCodeAlternateISA;
1106           }
1107           return AddressClass::eCode;
1108 
1109         case eSectionTypeContainer:
1110           return AddressClass::eUnknown;
1111 
1112         case eSectionTypeData:
1113         case eSectionTypeDataCString:
1114         case eSectionTypeDataCStringPointers:
1115         case eSectionTypeDataSymbolAddress:
1116         case eSectionTypeData4:
1117         case eSectionTypeData8:
1118         case eSectionTypeData16:
1119         case eSectionTypeDataPointers:
1120         case eSectionTypeZeroFill:
1121         case eSectionTypeDataObjCMessageRefs:
1122         case eSectionTypeDataObjCCFStrings:
1123         case eSectionTypeGoSymtab:
1124           return AddressClass::eData;
1125 
1126         case eSectionTypeDebug:
1127         case eSectionTypeDWARFDebugAbbrev:
1128         case eSectionTypeDWARFDebugAbbrevDwo:
1129         case eSectionTypeDWARFDebugAddr:
1130         case eSectionTypeDWARFDebugAranges:
1131         case eSectionTypeDWARFDebugCuIndex:
1132         case eSectionTypeDWARFDebugFrame:
1133         case eSectionTypeDWARFDebugInfo:
1134         case eSectionTypeDWARFDebugInfoDwo:
1135         case eSectionTypeDWARFDebugLine:
1136         case eSectionTypeDWARFDebugLineStr:
1137         case eSectionTypeDWARFDebugLoc:
1138         case eSectionTypeDWARFDebugLocDwo:
1139         case eSectionTypeDWARFDebugLocLists:
1140         case eSectionTypeDWARFDebugLocListsDwo:
1141         case eSectionTypeDWARFDebugMacInfo:
1142         case eSectionTypeDWARFDebugMacro:
1143         case eSectionTypeDWARFDebugNames:
1144         case eSectionTypeDWARFDebugPubNames:
1145         case eSectionTypeDWARFDebugPubTypes:
1146         case eSectionTypeDWARFDebugRanges:
1147         case eSectionTypeDWARFDebugRngLists:
1148         case eSectionTypeDWARFDebugRngListsDwo:
1149         case eSectionTypeDWARFDebugStr:
1150         case eSectionTypeDWARFDebugStrDwo:
1151         case eSectionTypeDWARFDebugStrOffsets:
1152         case eSectionTypeDWARFDebugStrOffsetsDwo:
1153         case eSectionTypeDWARFDebugTuIndex:
1154         case eSectionTypeDWARFDebugTypes:
1155         case eSectionTypeDWARFDebugTypesDwo:
1156         case eSectionTypeDWARFAppleNames:
1157         case eSectionTypeDWARFAppleTypes:
1158         case eSectionTypeDWARFAppleNamespaces:
1159         case eSectionTypeDWARFAppleObjC:
1160         case eSectionTypeDWARFGNUDebugAltLink:
1161           return AddressClass::eDebug;
1162 
1163         case eSectionTypeEHFrame:
1164         case eSectionTypeARMexidx:
1165         case eSectionTypeARMextab:
1166         case eSectionTypeCompactUnwind:
1167           return AddressClass::eRuntime;
1168 
1169         case eSectionTypeAbsoluteAddress:
1170         case eSectionTypeELFSymbolTable:
1171         case eSectionTypeELFDynamicSymbols:
1172         case eSectionTypeELFRelocationEntries:
1173         case eSectionTypeELFDynamicLinkInfo:
1174         case eSectionTypeOther:
1175           return AddressClass::eUnknown;
1176         }
1177       }
1178     }
1179 
1180     const SymbolType symbol_type = symbol->GetType();
1181     switch (symbol_type) {
1182     case eSymbolTypeAny:
1183       return AddressClass::eUnknown;
1184     case eSymbolTypeAbsolute:
1185       return AddressClass::eUnknown;
1186 
1187     case eSymbolTypeCode:
1188     case eSymbolTypeTrampoline:
1189     case eSymbolTypeResolver:
1190       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1191         // For ARM we have a bit in the n_desc field of the symbol that tells
1192         // us ARM/Thumb which is bit 0x0008.
1193         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1194           return AddressClass::eCodeAlternateISA;
1195       }
1196       return AddressClass::eCode;
1197 
1198     case eSymbolTypeData:
1199       return AddressClass::eData;
1200     case eSymbolTypeRuntime:
1201       return AddressClass::eRuntime;
1202     case eSymbolTypeException:
1203       return AddressClass::eRuntime;
1204     case eSymbolTypeSourceFile:
1205       return AddressClass::eDebug;
1206     case eSymbolTypeHeaderFile:
1207       return AddressClass::eDebug;
1208     case eSymbolTypeObjectFile:
1209       return AddressClass::eDebug;
1210     case eSymbolTypeCommonBlock:
1211       return AddressClass::eDebug;
1212     case eSymbolTypeBlock:
1213       return AddressClass::eDebug;
1214     case eSymbolTypeLocal:
1215       return AddressClass::eData;
1216     case eSymbolTypeParam:
1217       return AddressClass::eData;
1218     case eSymbolTypeVariable:
1219       return AddressClass::eData;
1220     case eSymbolTypeVariableType:
1221       return AddressClass::eDebug;
1222     case eSymbolTypeLineEntry:
1223       return AddressClass::eDebug;
1224     case eSymbolTypeLineHeader:
1225       return AddressClass::eDebug;
1226     case eSymbolTypeScopeBegin:
1227       return AddressClass::eDebug;
1228     case eSymbolTypeScopeEnd:
1229       return AddressClass::eDebug;
1230     case eSymbolTypeAdditional:
1231       return AddressClass::eUnknown;
1232     case eSymbolTypeCompiler:
1233       return AddressClass::eDebug;
1234     case eSymbolTypeInstrumentation:
1235       return AddressClass::eDebug;
1236     case eSymbolTypeUndefined:
1237       return AddressClass::eUnknown;
1238     case eSymbolTypeObjCClass:
1239       return AddressClass::eRuntime;
1240     case eSymbolTypeObjCMetaClass:
1241       return AddressClass::eRuntime;
1242     case eSymbolTypeObjCIVar:
1243       return AddressClass::eRuntime;
1244     case eSymbolTypeReExported:
1245       return AddressClass::eRuntime;
1246     }
1247   }
1248   return AddressClass::eUnknown;
1249 }
1250 
1251 Symtab *ObjectFileMachO::GetSymtab() {
1252   ModuleSP module_sp(GetModule());
1253   if (module_sp) {
1254     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1255     if (m_symtab_up == nullptr) {
1256       m_symtab_up = std::make_unique<Symtab>(this);
1257       std::lock_guard<std::recursive_mutex> symtab_guard(
1258           m_symtab_up->GetMutex());
1259       ParseSymtab();
1260       m_symtab_up->Finalize();
1261     }
1262   }
1263   return m_symtab_up.get();
1264 }
1265 
1266 bool ObjectFileMachO::IsStripped() {
1267   if (m_dysymtab.cmd == 0) {
1268     ModuleSP module_sp(GetModule());
1269     if (module_sp) {
1270       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1271       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1272         const lldb::offset_t load_cmd_offset = offset;
1273 
1274         load_command lc;
1275         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1276           break;
1277         if (lc.cmd == LC_DYSYMTAB) {
1278           m_dysymtab.cmd = lc.cmd;
1279           m_dysymtab.cmdsize = lc.cmdsize;
1280           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1281                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1282               nullptr) {
1283             // Clear m_dysymtab if we were unable to read all items from the
1284             // load command
1285             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1286           }
1287         }
1288         offset = load_cmd_offset + lc.cmdsize;
1289       }
1290     }
1291   }
1292   if (m_dysymtab.cmd)
1293     return m_dysymtab.nlocalsym <= 1;
1294   return false;
1295 }
1296 
1297 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1298   EncryptedFileRanges result;
1299   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1300 
1301   encryption_info_command encryption_cmd;
1302   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303     const lldb::offset_t load_cmd_offset = offset;
1304     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1305       break;
1306 
1307     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1308     // 3 fields we care about, so treat them the same.
1309     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1310         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1311       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1312         if (encryption_cmd.cryptid != 0) {
1313           EncryptedFileRanges::Entry entry;
1314           entry.SetRangeBase(encryption_cmd.cryptoff);
1315           entry.SetByteSize(encryption_cmd.cryptsize);
1316           result.Append(entry);
1317         }
1318       }
1319     }
1320     offset = load_cmd_offset + encryption_cmd.cmdsize;
1321   }
1322 
1323   return result;
1324 }
1325 
1326 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1327                                              uint32_t cmd_idx) {
1328   if (m_length == 0 || seg_cmd.filesize == 0)
1329     return;
1330 
1331   if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) {
1332     // In shared cache images, the load commands are relative to the
1333     // shared cache file, and not the the specific image we are
1334     // examining. Let's fix this up so that it looks like a normal
1335     // image.
1336     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1337       m_text_address = seg_cmd.vmaddr;
1338     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1339       m_linkedit_original_offset = seg_cmd.fileoff;
1340 
1341     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1342   }
1343 
1344   if (seg_cmd.fileoff > m_length) {
1345     // We have a load command that says it extends past the end of the file.
1346     // This is likely a corrupt file.  We don't have any way to return an error
1347     // condition here (this method was likely invoked from something like
1348     // ObjectFile::GetSectionList()), so we just null out the section contents,
1349     // and dump a message to stdout.  The most common case here is core file
1350     // debugging with a truncated file.
1351     const char *lc_segment_name =
1352         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1353     GetModule()->ReportWarning(
1354         "load command %u %s has a fileoff (0x%" PRIx64
1355         ") that extends beyond the end of the file (0x%" PRIx64
1356         "), ignoring this section",
1357         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1358 
1359     seg_cmd.fileoff = 0;
1360     seg_cmd.filesize = 0;
1361   }
1362 
1363   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1364     // We have a load command that says it extends past the end of the file.
1365     // This is likely a corrupt file.  We don't have any way to return an error
1366     // condition here (this method was likely invoked from something like
1367     // ObjectFile::GetSectionList()), so we just null out the section contents,
1368     // and dump a message to stdout.  The most common case here is core file
1369     // debugging with a truncated file.
1370     const char *lc_segment_name =
1371         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1372     GetModule()->ReportWarning(
1373         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1374         ") that extends beyond the end of the file (0x%" PRIx64
1375         "), the segment will be truncated to match",
1376         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1377 
1378     // Truncate the length
1379     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1380   }
1381 }
1382 
1383 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1384   uint32_t result = 0;
1385   if (seg_cmd.initprot & VM_PROT_READ)
1386     result |= ePermissionsReadable;
1387   if (seg_cmd.initprot & VM_PROT_WRITE)
1388     result |= ePermissionsWritable;
1389   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1390     result |= ePermissionsExecutable;
1391   return result;
1392 }
1393 
1394 static lldb::SectionType GetSectionType(uint32_t flags,
1395                                         ConstString section_name) {
1396 
1397   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1398     return eSectionTypeCode;
1399 
1400   uint32_t mach_sect_type = flags & SECTION_TYPE;
1401   static ConstString g_sect_name_objc_data("__objc_data");
1402   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1403   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1404   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1405   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1406   static ConstString g_sect_name_objc_const("__objc_const");
1407   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1408   static ConstString g_sect_name_cfstring("__cfstring");
1409 
1410   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1411   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1412   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1413   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1414   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1415   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1416   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1417   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1418   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1419   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1420   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1421   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1422   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1423   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1424   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1425   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1426   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1427   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1428   static ConstString g_sect_name_eh_frame("__eh_frame");
1429   static ConstString g_sect_name_compact_unwind("__unwind_info");
1430   static ConstString g_sect_name_text("__text");
1431   static ConstString g_sect_name_data("__data");
1432   static ConstString g_sect_name_go_symtab("__gosymtab");
1433 
1434   if (section_name == g_sect_name_dwarf_debug_abbrev)
1435     return eSectionTypeDWARFDebugAbbrev;
1436   if (section_name == g_sect_name_dwarf_debug_aranges)
1437     return eSectionTypeDWARFDebugAranges;
1438   if (section_name == g_sect_name_dwarf_debug_frame)
1439     return eSectionTypeDWARFDebugFrame;
1440   if (section_name == g_sect_name_dwarf_debug_info)
1441     return eSectionTypeDWARFDebugInfo;
1442   if (section_name == g_sect_name_dwarf_debug_line)
1443     return eSectionTypeDWARFDebugLine;
1444   if (section_name == g_sect_name_dwarf_debug_loc)
1445     return eSectionTypeDWARFDebugLoc;
1446   if (section_name == g_sect_name_dwarf_debug_loclists)
1447     return eSectionTypeDWARFDebugLocLists;
1448   if (section_name == g_sect_name_dwarf_debug_macinfo)
1449     return eSectionTypeDWARFDebugMacInfo;
1450   if (section_name == g_sect_name_dwarf_debug_names)
1451     return eSectionTypeDWARFDebugNames;
1452   if (section_name == g_sect_name_dwarf_debug_pubnames)
1453     return eSectionTypeDWARFDebugPubNames;
1454   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1455     return eSectionTypeDWARFDebugPubTypes;
1456   if (section_name == g_sect_name_dwarf_debug_ranges)
1457     return eSectionTypeDWARFDebugRanges;
1458   if (section_name == g_sect_name_dwarf_debug_str)
1459     return eSectionTypeDWARFDebugStr;
1460   if (section_name == g_sect_name_dwarf_debug_types)
1461     return eSectionTypeDWARFDebugTypes;
1462   if (section_name == g_sect_name_dwarf_apple_names)
1463     return eSectionTypeDWARFAppleNames;
1464   if (section_name == g_sect_name_dwarf_apple_types)
1465     return eSectionTypeDWARFAppleTypes;
1466   if (section_name == g_sect_name_dwarf_apple_namespaces)
1467     return eSectionTypeDWARFAppleNamespaces;
1468   if (section_name == g_sect_name_dwarf_apple_objc)
1469     return eSectionTypeDWARFAppleObjC;
1470   if (section_name == g_sect_name_objc_selrefs)
1471     return eSectionTypeDataCStringPointers;
1472   if (section_name == g_sect_name_objc_msgrefs)
1473     return eSectionTypeDataObjCMessageRefs;
1474   if (section_name == g_sect_name_eh_frame)
1475     return eSectionTypeEHFrame;
1476   if (section_name == g_sect_name_compact_unwind)
1477     return eSectionTypeCompactUnwind;
1478   if (section_name == g_sect_name_cfstring)
1479     return eSectionTypeDataObjCCFStrings;
1480   if (section_name == g_sect_name_go_symtab)
1481     return eSectionTypeGoSymtab;
1482   if (section_name == g_sect_name_objc_data ||
1483       section_name == g_sect_name_objc_classrefs ||
1484       section_name == g_sect_name_objc_superrefs ||
1485       section_name == g_sect_name_objc_const ||
1486       section_name == g_sect_name_objc_classlist) {
1487     return eSectionTypeDataPointers;
1488   }
1489 
1490   switch (mach_sect_type) {
1491   // TODO: categorize sections by other flags for regular sections
1492   case S_REGULAR:
1493     if (section_name == g_sect_name_text)
1494       return eSectionTypeCode;
1495     if (section_name == g_sect_name_data)
1496       return eSectionTypeData;
1497     return eSectionTypeOther;
1498   case S_ZEROFILL:
1499     return eSectionTypeZeroFill;
1500   case S_CSTRING_LITERALS: // section with only literal C strings
1501     return eSectionTypeDataCString;
1502   case S_4BYTE_LITERALS: // section with only 4 byte literals
1503     return eSectionTypeData4;
1504   case S_8BYTE_LITERALS: // section with only 8 byte literals
1505     return eSectionTypeData8;
1506   case S_LITERAL_POINTERS: // section with only pointers to literals
1507     return eSectionTypeDataPointers;
1508   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1509     return eSectionTypeDataPointers;
1510   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1511     return eSectionTypeDataPointers;
1512   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1513                        // the reserved2 field
1514     return eSectionTypeCode;
1515   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1516                                  // initialization
1517     return eSectionTypeDataPointers;
1518   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1519                                  // termination
1520     return eSectionTypeDataPointers;
1521   case S_COALESCED:
1522     return eSectionTypeOther;
1523   case S_GB_ZEROFILL:
1524     return eSectionTypeZeroFill;
1525   case S_INTERPOSING: // section with only pairs of function pointers for
1526                       // interposing
1527     return eSectionTypeCode;
1528   case S_16BYTE_LITERALS: // section with only 16 byte literals
1529     return eSectionTypeData16;
1530   case S_DTRACE_DOF:
1531     return eSectionTypeDebug;
1532   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1533     return eSectionTypeDataPointers;
1534   default:
1535     return eSectionTypeOther;
1536   }
1537 }
1538 
1539 struct ObjectFileMachO::SegmentParsingContext {
1540   const EncryptedFileRanges EncryptedRanges;
1541   lldb_private::SectionList &UnifiedList;
1542   uint32_t NextSegmentIdx = 0;
1543   uint32_t NextSectionIdx = 0;
1544   bool FileAddressesChanged = false;
1545 
1546   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1547                         lldb_private::SectionList &UnifiedList)
1548       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1549 };
1550 
1551 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1552                                             lldb::offset_t offset,
1553                                             uint32_t cmd_idx,
1554                                             SegmentParsingContext &context) {
1555   segment_command_64 load_cmd;
1556   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1557 
1558   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1559     return;
1560 
1561   ModuleSP module_sp = GetModule();
1562   const bool is_core = GetType() == eTypeCoreFile;
1563   const bool is_dsym = (m_header.filetype == MH_DSYM);
1564   bool add_section = true;
1565   bool add_to_unified = true;
1566   ConstString const_segname(
1567       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1568 
1569   SectionSP unified_section_sp(
1570       context.UnifiedList.FindSectionByName(const_segname));
1571   if (is_dsym && unified_section_sp) {
1572     if (const_segname == GetSegmentNameLINKEDIT()) {
1573       // We need to keep the __LINKEDIT segment private to this object file
1574       // only
1575       add_to_unified = false;
1576     } else {
1577       // This is the dSYM file and this section has already been created by the
1578       // object file, no need to create it.
1579       add_section = false;
1580     }
1581   }
1582   load_cmd.vmaddr = m_data.GetAddress(&offset);
1583   load_cmd.vmsize = m_data.GetAddress(&offset);
1584   load_cmd.fileoff = m_data.GetAddress(&offset);
1585   load_cmd.filesize = m_data.GetAddress(&offset);
1586   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1587     return;
1588 
1589   SanitizeSegmentCommand(load_cmd, cmd_idx);
1590 
1591   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1592   const bool segment_is_encrypted =
1593       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1594 
1595   // Keep a list of mach segments around in case we need to get at data that
1596   // isn't stored in the abstracted Sections.
1597   m_mach_segments.push_back(load_cmd);
1598 
1599   // Use a segment ID of the segment index shifted left by 8 so they never
1600   // conflict with any of the sections.
1601   SectionSP segment_sp;
1602   if (add_section && (const_segname || is_core)) {
1603     segment_sp = std::make_shared<Section>(
1604         module_sp, // Module to which this section belongs
1605         this,      // Object file to which this sections belongs
1606         ++context.NextSegmentIdx
1607             << 8, // Section ID is the 1 based segment index
1608         // shifted right by 8 bits as not to collide with any of the 256
1609         // section IDs that are possible
1610         const_segname,         // Name of this section
1611         eSectionTypeContainer, // This section is a container of other
1612         // sections.
1613         load_cmd.vmaddr, // File VM address == addresses as they are
1614         // found in the object file
1615         load_cmd.vmsize,  // VM size in bytes of this section
1616         load_cmd.fileoff, // Offset to the data for this section in
1617         // the file
1618         load_cmd.filesize, // Size in bytes of this section as found
1619         // in the file
1620         0,               // Segments have no alignment information
1621         load_cmd.flags); // Flags for this section
1622 
1623     segment_sp->SetIsEncrypted(segment_is_encrypted);
1624     m_sections_up->AddSection(segment_sp);
1625     segment_sp->SetPermissions(segment_permissions);
1626     if (add_to_unified)
1627       context.UnifiedList.AddSection(segment_sp);
1628   } else if (unified_section_sp) {
1629     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1630       // Check to see if the module was read from memory?
1631       if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) {
1632         // We have a module that is in memory and needs to have its file
1633         // address adjusted. We need to do this because when we load a file
1634         // from memory, its addresses will be slid already, yet the addresses
1635         // in the new symbol file will still be unslid.  Since everything is
1636         // stored as section offset, this shouldn't cause any problems.
1637 
1638         // Make sure we've parsed the symbol table from the ObjectFile before
1639         // we go around changing its Sections.
1640         module_sp->GetObjectFile()->GetSymtab();
1641         // eh_frame would present the same problems but we parse that on a per-
1642         // function basis as-needed so it's more difficult to remove its use of
1643         // the Sections.  Realistically, the environments where this code path
1644         // will be taken will not have eh_frame sections.
1645 
1646         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1647 
1648         // Notify the module that the section addresses have been changed once
1649         // we're done so any file-address caches can be updated.
1650         context.FileAddressesChanged = true;
1651       }
1652     }
1653     m_sections_up->AddSection(unified_section_sp);
1654   }
1655 
1656   struct section_64 sect64;
1657   ::memset(&sect64, 0, sizeof(sect64));
1658   // Push a section into our mach sections for the section at index zero
1659   // (NO_SECT) if we don't have any mach sections yet...
1660   if (m_mach_sections.empty())
1661     m_mach_sections.push_back(sect64);
1662   uint32_t segment_sect_idx;
1663   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1664 
1665   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1666   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1667        ++segment_sect_idx) {
1668     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1669                      sizeof(sect64.sectname)) == nullptr)
1670       break;
1671     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1672                      sizeof(sect64.segname)) == nullptr)
1673       break;
1674     sect64.addr = m_data.GetAddress(&offset);
1675     sect64.size = m_data.GetAddress(&offset);
1676 
1677     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1678       break;
1679 
1680     if ((m_header.flags & MH_DYLIB_IN_CACHE) && !IsInMemory()) {
1681       sect64.offset = sect64.addr - m_text_address;
1682     }
1683 
1684     // Keep a list of mach sections around in case we need to get at data that
1685     // isn't stored in the abstracted Sections.
1686     m_mach_sections.push_back(sect64);
1687 
1688     if (add_section) {
1689       ConstString section_name(
1690           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1691       if (!const_segname) {
1692         // We have a segment with no name so we need to conjure up segments
1693         // that correspond to the section's segname if there isn't already such
1694         // a section. If there is such a section, we resize the section so that
1695         // it spans all sections.  We also mark these sections as fake so
1696         // address matches don't hit if they land in the gaps between the child
1697         // sections.
1698         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1699                                                   sizeof(sect64.segname));
1700         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1701         if (segment_sp.get()) {
1702           Section *segment = segment_sp.get();
1703           // Grow the section size as needed.
1704           const lldb::addr_t sect64_min_addr = sect64.addr;
1705           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1706           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1707           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1708           const lldb::addr_t curr_seg_max_addr =
1709               curr_seg_min_addr + curr_seg_byte_size;
1710           if (sect64_min_addr >= curr_seg_min_addr) {
1711             const lldb::addr_t new_seg_byte_size =
1712                 sect64_max_addr - curr_seg_min_addr;
1713             // Only grow the section size if needed
1714             if (new_seg_byte_size > curr_seg_byte_size)
1715               segment->SetByteSize(new_seg_byte_size);
1716           } else {
1717             // We need to change the base address of the segment and adjust the
1718             // child section offsets for all existing children.
1719             const lldb::addr_t slide_amount =
1720                 sect64_min_addr - curr_seg_min_addr;
1721             segment->Slide(slide_amount, false);
1722             segment->GetChildren().Slide(-slide_amount, false);
1723             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1724           }
1725 
1726           // Grow the section size as needed.
1727           if (sect64.offset) {
1728             const lldb::addr_t segment_min_file_offset =
1729                 segment->GetFileOffset();
1730             const lldb::addr_t segment_max_file_offset =
1731                 segment_min_file_offset + segment->GetFileSize();
1732 
1733             const lldb::addr_t section_min_file_offset = sect64.offset;
1734             const lldb::addr_t section_max_file_offset =
1735                 section_min_file_offset + sect64.size;
1736             const lldb::addr_t new_file_offset =
1737                 std::min(section_min_file_offset, segment_min_file_offset);
1738             const lldb::addr_t new_file_size =
1739                 std::max(section_max_file_offset, segment_max_file_offset) -
1740                 new_file_offset;
1741             segment->SetFileOffset(new_file_offset);
1742             segment->SetFileSize(new_file_size);
1743           }
1744         } else {
1745           // Create a fake section for the section's named segment
1746           segment_sp = std::make_shared<Section>(
1747               segment_sp, // Parent section
1748               module_sp,  // Module to which this section belongs
1749               this,       // Object file to which this section belongs
1750               ++context.NextSegmentIdx
1751                   << 8, // Section ID is the 1 based segment index
1752               // shifted right by 8 bits as not to
1753               // collide with any of the 256 section IDs
1754               // that are possible
1755               const_segname,         // Name of this section
1756               eSectionTypeContainer, // This section is a container of
1757               // other sections.
1758               sect64.addr, // File VM address == addresses as they are
1759               // found in the object file
1760               sect64.size,   // VM size in bytes of this section
1761               sect64.offset, // Offset to the data for this section in
1762               // the file
1763               sect64.offset ? sect64.size : 0, // Size in bytes of
1764               // this section as
1765               // found in the file
1766               sect64.align,
1767               load_cmd.flags); // Flags for this section
1768           segment_sp->SetIsFake(true);
1769           segment_sp->SetPermissions(segment_permissions);
1770           m_sections_up->AddSection(segment_sp);
1771           if (add_to_unified)
1772             context.UnifiedList.AddSection(segment_sp);
1773           segment_sp->SetIsEncrypted(segment_is_encrypted);
1774         }
1775       }
1776       assert(segment_sp.get());
1777 
1778       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1779 
1780       SectionSP section_sp(new Section(
1781           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1782           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1783           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1784           sect64.flags));
1785       // Set the section to be encrypted to match the segment
1786 
1787       bool section_is_encrypted = false;
1788       if (!segment_is_encrypted && load_cmd.filesize != 0)
1789         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1790                                    sect64.offset) != nullptr;
1791 
1792       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1793       section_sp->SetPermissions(segment_permissions);
1794       segment_sp->GetChildren().AddSection(section_sp);
1795 
1796       if (segment_sp->IsFake()) {
1797         segment_sp.reset();
1798         const_segname.Clear();
1799       }
1800     }
1801   }
1802   if (segment_sp && is_dsym) {
1803     if (first_segment_sectID <= context.NextSectionIdx) {
1804       lldb::user_id_t sect_uid;
1805       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1806            ++sect_uid) {
1807         SectionSP curr_section_sp(
1808             segment_sp->GetChildren().FindSectionByID(sect_uid));
1809         SectionSP next_section_sp;
1810         if (sect_uid + 1 <= context.NextSectionIdx)
1811           next_section_sp =
1812               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1813 
1814         if (curr_section_sp.get()) {
1815           if (curr_section_sp->GetByteSize() == 0) {
1816             if (next_section_sp.get() != nullptr)
1817               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1818                                            curr_section_sp->GetFileAddress());
1819             else
1820               curr_section_sp->SetByteSize(load_cmd.vmsize);
1821           }
1822         }
1823       }
1824     }
1825   }
1826 }
1827 
1828 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1829                                              lldb::offset_t offset) {
1830   m_dysymtab.cmd = load_cmd.cmd;
1831   m_dysymtab.cmdsize = load_cmd.cmdsize;
1832   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1833                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1834 }
1835 
1836 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1837   if (m_sections_up)
1838     return;
1839 
1840   m_sections_up = std::make_unique<SectionList>();
1841 
1842   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1843   // bool dump_sections = false;
1844   ModuleSP module_sp(GetModule());
1845 
1846   offset = MachHeaderSizeFromMagic(m_header.magic);
1847 
1848   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1849   struct load_command load_cmd;
1850   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1851     const lldb::offset_t load_cmd_offset = offset;
1852     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1853       break;
1854 
1855     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1856       ProcessSegmentCommand(load_cmd, offset, i, context);
1857     else if (load_cmd.cmd == LC_DYSYMTAB)
1858       ProcessDysymtabCommand(load_cmd, offset);
1859 
1860     offset = load_cmd_offset + load_cmd.cmdsize;
1861   }
1862 
1863   if (context.FileAddressesChanged && module_sp)
1864     module_sp->SectionFileAddressesChanged();
1865 }
1866 
1867 class MachSymtabSectionInfo {
1868 public:
1869   MachSymtabSectionInfo(SectionList *section_list)
1870       : m_section_list(section_list), m_section_infos() {
1871     // Get the number of sections down to a depth of 1 to include all segments
1872     // and their sections, but no other sections that may be added for debug
1873     // map or
1874     m_section_infos.resize(section_list->GetNumSections(1));
1875   }
1876 
1877   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1878     if (n_sect == 0)
1879       return SectionSP();
1880     if (n_sect < m_section_infos.size()) {
1881       if (!m_section_infos[n_sect].section_sp) {
1882         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1883         m_section_infos[n_sect].section_sp = section_sp;
1884         if (section_sp) {
1885           m_section_infos[n_sect].vm_range.SetBaseAddress(
1886               section_sp->GetFileAddress());
1887           m_section_infos[n_sect].vm_range.SetByteSize(
1888               section_sp->GetByteSize());
1889         } else {
1890           const char *filename = "<unknown>";
1891           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1892           if (first_section_sp)
1893             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath().c_str();
1894 
1895           Host::SystemLog(Host::eSystemLogError,
1896                           "error: unable to find section %d for a symbol in %s, corrupt file?\n",
1897                           n_sect,
1898                           filename);
1899         }
1900       }
1901       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1902         // Symbol is in section.
1903         return m_section_infos[n_sect].section_sp;
1904       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1905                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1906                      file_addr) {
1907         // Symbol is in section with zero size, but has the same start address
1908         // as the section. This can happen with linker symbols (symbols that
1909         // start with the letter 'l' or 'L'.
1910         return m_section_infos[n_sect].section_sp;
1911       }
1912     }
1913     return m_section_list->FindSectionContainingFileAddress(file_addr);
1914   }
1915 
1916 protected:
1917   struct SectionInfo {
1918     SectionInfo() : vm_range(), section_sp() {}
1919 
1920     VMRange vm_range;
1921     SectionSP section_sp;
1922   };
1923   SectionList *m_section_list;
1924   std::vector<SectionInfo> m_section_infos;
1925 };
1926 
1927 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1928 struct TrieEntry {
1929   void Dump() const {
1930     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1931            static_cast<unsigned long long>(address),
1932            static_cast<unsigned long long>(flags),
1933            static_cast<unsigned long long>(other), name.GetCString());
1934     if (import_name)
1935       printf(" -> \"%s\"\n", import_name.GetCString());
1936     else
1937       printf("\n");
1938   }
1939   ConstString name;
1940   uint64_t address = LLDB_INVALID_ADDRESS;
1941   uint64_t flags =
1942       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1943          // TRIE_SYMBOL_IS_THUMB
1944   uint64_t other = 0;
1945   ConstString import_name;
1946 };
1947 
1948 struct TrieEntryWithOffset {
1949   lldb::offset_t nodeOffset;
1950   TrieEntry entry;
1951 
1952   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1953 
1954   void Dump(uint32_t idx) const {
1955     printf("[%3u] 0x%16.16llx: ", idx,
1956            static_cast<unsigned long long>(nodeOffset));
1957     entry.Dump();
1958   }
1959 
1960   bool operator<(const TrieEntryWithOffset &other) const {
1961     return (nodeOffset < other.nodeOffset);
1962   }
1963 };
1964 
1965 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
1966                              const bool is_arm, addr_t text_seg_base_addr,
1967                              std::vector<llvm::StringRef> &nameSlices,
1968                              std::set<lldb::addr_t> &resolver_addresses,
1969                              std::vector<TrieEntryWithOffset> &reexports,
1970                              std::vector<TrieEntryWithOffset> &ext_symbols) {
1971   if (!data.ValidOffset(offset))
1972     return true;
1973 
1974   // Terminal node -- end of a branch, possibly add this to
1975   // the symbol table or resolver table.
1976   const uint64_t terminalSize = data.GetULEB128(&offset);
1977   lldb::offset_t children_offset = offset + terminalSize;
1978   if (terminalSize != 0) {
1979     TrieEntryWithOffset e(offset);
1980     e.entry.flags = data.GetULEB128(&offset);
1981     const char *import_name = nullptr;
1982     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
1983       e.entry.address = 0;
1984       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
1985       import_name = data.GetCStr(&offset);
1986     } else {
1987       e.entry.address = data.GetULEB128(&offset);
1988       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
1989         e.entry.address += text_seg_base_addr;
1990       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
1991         e.entry.other = data.GetULEB128(&offset);
1992         uint64_t resolver_addr = e.entry.other;
1993         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
1994           resolver_addr += text_seg_base_addr;
1995         if (is_arm)
1996           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
1997         resolver_addresses.insert(resolver_addr);
1998       } else
1999         e.entry.other = 0;
2000     }
2001     bool add_this_entry = false;
2002     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2003         import_name && import_name[0]) {
2004       // add symbols that are reexport symbols with a valid import name.
2005       add_this_entry = true;
2006     } else if (e.entry.flags == 0 &&
2007                (import_name == nullptr || import_name[0] == '\0')) {
2008       // add externally visible symbols, in case the nlist record has
2009       // been stripped/omitted.
2010       add_this_entry = true;
2011     }
2012     if (add_this_entry) {
2013       std::string name;
2014       if (!nameSlices.empty()) {
2015         for (auto name_slice : nameSlices)
2016           name.append(name_slice.data(), name_slice.size());
2017       }
2018       if (name.size() > 1) {
2019         // Skip the leading '_'
2020         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2021       }
2022       if (import_name) {
2023         // Skip the leading '_'
2024         e.entry.import_name.SetCString(import_name + 1);
2025       }
2026       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2027         reexports.push_back(e);
2028       } else {
2029         if (is_arm && (e.entry.address & 1)) {
2030           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2031           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2032         }
2033         ext_symbols.push_back(e);
2034       }
2035     }
2036   }
2037 
2038   const uint8_t childrenCount = data.GetU8(&children_offset);
2039   for (uint8_t i = 0; i < childrenCount; ++i) {
2040     const char *cstr = data.GetCStr(&children_offset);
2041     if (cstr)
2042       nameSlices.push_back(llvm::StringRef(cstr));
2043     else
2044       return false; // Corrupt data
2045     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2046     if (childNodeOffset) {
2047       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2048                             nameSlices, resolver_addresses, reexports,
2049                             ext_symbols)) {
2050         return false;
2051       }
2052     }
2053     nameSlices.pop_back();
2054   }
2055   return true;
2056 }
2057 
2058 static SymbolType GetSymbolType(const char *&symbol_name,
2059                                 bool &demangled_is_synthesized,
2060                                 const SectionSP &text_section_sp,
2061                                 const SectionSP &data_section_sp,
2062                                 const SectionSP &data_dirty_section_sp,
2063                                 const SectionSP &data_const_section_sp,
2064                                 const SectionSP &symbol_section) {
2065   SymbolType type = eSymbolTypeInvalid;
2066 
2067   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2068   if (symbol_section->IsDescendant(text_section_sp.get())) {
2069     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2070                                 S_ATTR_SELF_MODIFYING_CODE |
2071                                 S_ATTR_SOME_INSTRUCTIONS))
2072       type = eSymbolTypeData;
2073     else
2074       type = eSymbolTypeCode;
2075   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2076              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2077              symbol_section->IsDescendant(data_const_section_sp.get())) {
2078     if (symbol_sect_name &&
2079         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2080       type = eSymbolTypeRuntime;
2081 
2082       if (symbol_name) {
2083         llvm::StringRef symbol_name_ref(symbol_name);
2084         if (symbol_name_ref.startswith("OBJC_")) {
2085           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2086           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2087               "OBJC_METACLASS_$_");
2088           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2089           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2090             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2091             type = eSymbolTypeObjCClass;
2092             demangled_is_synthesized = true;
2093           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2094             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2095             type = eSymbolTypeObjCMetaClass;
2096             demangled_is_synthesized = true;
2097           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2098             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2099             type = eSymbolTypeObjCIVar;
2100             demangled_is_synthesized = true;
2101           }
2102         }
2103       }
2104     } else if (symbol_sect_name &&
2105                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2106                    symbol_sect_name) {
2107       type = eSymbolTypeException;
2108     } else {
2109       type = eSymbolTypeData;
2110     }
2111   } else if (symbol_sect_name &&
2112              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2113     type = eSymbolTypeTrampoline;
2114   }
2115   return type;
2116 }
2117 
2118 // Read the UUID out of a dyld_shared_cache file on-disk.
2119 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2120                                          const ByteOrder byte_order,
2121                                          const uint32_t addr_byte_size) {
2122   UUID dsc_uuid;
2123   DataBufferSP DscData = MapFileData(
2124       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2125   if (!DscData)
2126     return dsc_uuid;
2127   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2128 
2129   char version_str[7];
2130   lldb::offset_t offset = 0;
2131   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2132   version_str[6] = '\0';
2133   if (strcmp(version_str, "dyld_v") == 0) {
2134     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2135     dsc_uuid = UUID::fromOptionalData(
2136         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2137   }
2138   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2139   if (log && dsc_uuid.IsValid()) {
2140     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2141               dyld_shared_cache.GetPath().c_str(),
2142               dsc_uuid.GetAsString().c_str());
2143   }
2144   return dsc_uuid;
2145 }
2146 
2147 static llvm::Optional<struct nlist_64>
2148 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2149            size_t nlist_byte_size) {
2150   struct nlist_64 nlist;
2151   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2152     return {};
2153   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2154   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2155   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2156   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2157   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2158   return nlist;
2159 }
2160 
2161 enum { DebugSymbols = true, NonDebugSymbols = false };
2162 
2163 size_t ObjectFileMachO::ParseSymtab() {
2164   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2165   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2166                      m_file.GetFilename().AsCString(""));
2167   ModuleSP module_sp(GetModule());
2168   if (!module_sp)
2169     return 0;
2170 
2171   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2172   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2173   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2174   // The data element of type bool indicates that this entry is thumb
2175   // code.
2176   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2177 
2178   // Record the address of every function/data that we add to the symtab.
2179   // We add symbols to the table in the order of most information (nlist
2180   // records) to least (function starts), and avoid duplicating symbols
2181   // via this set.
2182   std::set<addr_t> symbols_added;
2183   FunctionStarts function_starts;
2184   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2185   uint32_t i;
2186   FileSpecList dylib_files;
2187   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2188   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2189   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2190   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2191 
2192   for (i = 0; i < m_header.ncmds; ++i) {
2193     const lldb::offset_t cmd_offset = offset;
2194     // Read in the load command and load command size
2195     struct load_command lc;
2196     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2197       break;
2198     // Watch for the symbol table load command
2199     switch (lc.cmd) {
2200     case LC_SYMTAB:
2201       symtab_load_command.cmd = lc.cmd;
2202       symtab_load_command.cmdsize = lc.cmdsize;
2203       // Read in the rest of the symtab load command
2204       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2205           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2206         return 0;
2207       break;
2208 
2209     case LC_DYLD_INFO:
2210     case LC_DYLD_INFO_ONLY:
2211       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2212         dyld_info.cmd = lc.cmd;
2213         dyld_info.cmdsize = lc.cmdsize;
2214       } else {
2215         memset(&dyld_info, 0, sizeof(dyld_info));
2216       }
2217       break;
2218 
2219     case LC_LOAD_DYLIB:
2220     case LC_LOAD_WEAK_DYLIB:
2221     case LC_REEXPORT_DYLIB:
2222     case LC_LOADFVMLIB:
2223     case LC_LOAD_UPWARD_DYLIB: {
2224       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2225       const char *path = m_data.PeekCStr(name_offset);
2226       if (path) {
2227         FileSpec file_spec(path);
2228         // Strip the path if there is @rpath, @executable, etc so we just use
2229         // the basename
2230         if (path[0] == '@')
2231           file_spec.GetDirectory().Clear();
2232 
2233         if (lc.cmd == LC_REEXPORT_DYLIB) {
2234           m_reexported_dylibs.AppendIfUnique(file_spec);
2235         }
2236 
2237         dylib_files.Append(file_spec);
2238       }
2239     } break;
2240 
2241     case LC_FUNCTION_STARTS:
2242       function_starts_load_command.cmd = lc.cmd;
2243       function_starts_load_command.cmdsize = lc.cmdsize;
2244       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2245           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2246         memset(&function_starts_load_command, 0,
2247                sizeof(function_starts_load_command));
2248       break;
2249 
2250     default:
2251       break;
2252     }
2253     offset = cmd_offset + lc.cmdsize;
2254   }
2255 
2256   if (!symtab_load_command.cmd)
2257     return 0;
2258 
2259   Symtab *symtab = m_symtab_up.get();
2260   SectionList *section_list = GetSectionList();
2261   if (section_list == nullptr)
2262     return 0;
2263 
2264   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2265   const ByteOrder byte_order = m_data.GetByteOrder();
2266   bool bit_width_32 = addr_byte_size == 4;
2267   const size_t nlist_byte_size =
2268       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2269 
2270   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2271   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2272   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2273   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2274                                            addr_byte_size);
2275   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2276 
2277   const addr_t nlist_data_byte_size =
2278       symtab_load_command.nsyms * nlist_byte_size;
2279   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2280   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2281 
2282   ProcessSP process_sp(m_process_wp.lock());
2283   Process *process = process_sp.get();
2284 
2285   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2286   bool is_shared_cache_image = m_header.flags & MH_DYLIB_IN_CACHE;
2287   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2288   SectionSP linkedit_section_sp(
2289       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2290 
2291   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2292       !is_local_shared_cache_image) {
2293     Target &target = process->GetTarget();
2294 
2295     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2296 
2297     // Reading mach file from memory in a process or core file...
2298 
2299     if (linkedit_section_sp) {
2300       addr_t linkedit_load_addr =
2301           linkedit_section_sp->GetLoadBaseAddress(&target);
2302       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2303         // We might be trying to access the symbol table before the
2304         // __LINKEDIT's load address has been set in the target. We can't
2305         // fail to read the symbol table, so calculate the right address
2306         // manually
2307         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2308             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2309       }
2310 
2311       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2312       const addr_t symoff_addr = linkedit_load_addr +
2313                                  symtab_load_command.symoff -
2314                                  linkedit_file_offset;
2315       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2316                     linkedit_file_offset;
2317 
2318         // Always load dyld - the dynamic linker - from memory if we didn't
2319         // find a binary anywhere else. lldb will not register
2320         // dylib/framework/bundle loads/unloads if we don't have the dyld
2321         // symbols, we force dyld to load from memory despite the user's
2322         // target.memory-module-load-level setting.
2323         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2324             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2325           DataBufferSP nlist_data_sp(
2326               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2327           if (nlist_data_sp)
2328             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2329           if (m_dysymtab.nindirectsyms != 0) {
2330             const addr_t indirect_syms_addr = linkedit_load_addr +
2331                                               m_dysymtab.indirectsymoff -
2332                                               linkedit_file_offset;
2333             DataBufferSP indirect_syms_data_sp(ReadMemory(
2334                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2335             if (indirect_syms_data_sp)
2336               indirect_symbol_index_data.SetData(
2337                   indirect_syms_data_sp, 0,
2338                   indirect_syms_data_sp->GetByteSize());
2339             // If this binary is outside the shared cache,
2340             // cache the string table.
2341             // Binaries in the shared cache all share a giant string table,
2342             // and we can't share the string tables across multiple
2343             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2344             // for every binary in the shared cache - it would be a big perf
2345             // problem. For binaries outside the shared cache, it's faster to
2346             // read the entire strtab at once instead of piece-by-piece as we
2347             // process the nlist records.
2348             if (!is_shared_cache_image) {
2349               DataBufferSP strtab_data_sp(
2350                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2351               if (strtab_data_sp) {
2352                 strtab_data.SetData(strtab_data_sp, 0,
2353                                     strtab_data_sp->GetByteSize());
2354               }
2355             }
2356           }
2357         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2358           if (function_starts_load_command.cmd) {
2359             const addr_t func_start_addr =
2360                 linkedit_load_addr + function_starts_load_command.dataoff -
2361                 linkedit_file_offset;
2362             DataBufferSP func_start_data_sp(
2363                 ReadMemory(process_sp, func_start_addr,
2364                            function_starts_load_command.datasize));
2365             if (func_start_data_sp)
2366               function_starts_data.SetData(func_start_data_sp, 0,
2367                                            func_start_data_sp->GetByteSize());
2368           }
2369         }
2370       }
2371     }
2372   } else {
2373     if (is_local_shared_cache_image) {
2374       // The load commands in shared cache images are relative to the
2375       // beginning of the shared cache, not the library image. The
2376       // data we get handed when creating the ObjectFileMachO starts
2377       // at the beginning of a specific library and spans to the end
2378       // of the cache to be able to reach the shared LINKEDIT
2379       // segments. We need to convert the load command offsets to be
2380       // relative to the beginning of our specific image.
2381       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2382       lldb::offset_t linkedit_slide =
2383           linkedit_offset - m_linkedit_original_offset;
2384       symtab_load_command.symoff += linkedit_slide;
2385       symtab_load_command.stroff += linkedit_slide;
2386       dyld_info.export_off += linkedit_slide;
2387       m_dysymtab.indirectsymoff += linkedit_slide;
2388       function_starts_load_command.dataoff += linkedit_slide;
2389     }
2390 
2391     nlist_data.SetData(m_data, symtab_load_command.symoff,
2392                        nlist_data_byte_size);
2393     strtab_data.SetData(m_data, symtab_load_command.stroff,
2394                         strtab_data_byte_size);
2395 
2396     if (dyld_info.export_size > 0) {
2397       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2398                              dyld_info.export_size);
2399     }
2400 
2401     if (m_dysymtab.nindirectsyms != 0) {
2402       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2403                                          m_dysymtab.nindirectsyms * 4);
2404     }
2405     if (function_starts_load_command.cmd) {
2406       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2407                                    function_starts_load_command.datasize);
2408     }
2409   }
2410 
2411   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2412 
2413   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2414   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2415   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2416   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2417   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2418   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2419   SectionSP text_section_sp(
2420       section_list->FindSectionByName(g_segment_name_TEXT));
2421   SectionSP data_section_sp(
2422       section_list->FindSectionByName(g_segment_name_DATA));
2423   SectionSP data_dirty_section_sp(
2424       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2425   SectionSP data_const_section_sp(
2426       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2427   SectionSP objc_section_sp(
2428       section_list->FindSectionByName(g_segment_name_OBJC));
2429   SectionSP eh_frame_section_sp;
2430   if (text_section_sp.get())
2431     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2432         g_section_name_eh_frame);
2433   else
2434     eh_frame_section_sp =
2435         section_list->FindSectionByName(g_section_name_eh_frame);
2436 
2437   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2438   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2439 
2440   // lldb works best if it knows the start address of all functions in a
2441   // module. Linker symbols or debug info are normally the best source of
2442   // information for start addr / size but they may be stripped in a released
2443   // binary. Two additional sources of information exist in Mach-O binaries:
2444   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2445   //    function's start address in the
2446   //                         binary, relative to the text section.
2447   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2448   //    each function
2449   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2450   //  all modern binaries.
2451   //  Binaries built to run on older releases may need to use eh_frame
2452   //  information.
2453 
2454   if (text_section_sp && function_starts_data.GetByteSize()) {
2455     FunctionStarts::Entry function_start_entry;
2456     function_start_entry.data = false;
2457     lldb::offset_t function_start_offset = 0;
2458     function_start_entry.addr = text_section_sp->GetFileAddress();
2459     uint64_t delta;
2460     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2461            0) {
2462       // Now append the current entry
2463       function_start_entry.addr += delta;
2464       if (is_arm) {
2465         if (function_start_entry.addr & 1) {
2466           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2467           function_start_entry.data = true;
2468         } else if (always_thumb) {
2469           function_start_entry.data = true;
2470         }
2471       }
2472       function_starts.Append(function_start_entry);
2473     }
2474   } else {
2475     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2476     // load command claiming an eh_frame but it doesn't actually have the
2477     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2478     // this fill-in-the-missing-symbols works anyway - the debug info should
2479     // give us all the functions in the module.
2480     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2481         m_type != eTypeDebugInfo) {
2482       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2483                                   DWARFCallFrameInfo::EH);
2484       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2485       eh_frame.GetFunctionAddressAndSizeVector(functions);
2486       addr_t text_base_addr = text_section_sp->GetFileAddress();
2487       size_t count = functions.GetSize();
2488       for (size_t i = 0; i < count; ++i) {
2489         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2490             functions.GetEntryAtIndex(i);
2491         if (func) {
2492           FunctionStarts::Entry function_start_entry;
2493           function_start_entry.addr = func->base - text_base_addr;
2494           if (is_arm) {
2495             if (function_start_entry.addr & 1) {
2496               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2497               function_start_entry.data = true;
2498             } else if (always_thumb) {
2499               function_start_entry.data = true;
2500             }
2501           }
2502           function_starts.Append(function_start_entry);
2503         }
2504       }
2505     }
2506   }
2507 
2508   const size_t function_starts_count = function_starts.GetSize();
2509 
2510   // For user process binaries (executables, dylibs, frameworks, bundles), if
2511   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2512   // going to assume the binary has been stripped.  Don't allow assembly
2513   // language instruction emulation because we don't know proper function
2514   // start boundaries.
2515   //
2516   // For all other types of binaries (kernels, stand-alone bare board
2517   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2518   // sections - we should not make any assumptions about them based on that.
2519   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2520     m_allow_assembly_emulation_unwind_plans = false;
2521     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2522         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2523 
2524     if (unwind_or_symbol_log)
2525       module_sp->LogMessage(
2526           unwind_or_symbol_log,
2527           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2528   }
2529 
2530   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2531                                              ? eh_frame_section_sp->GetID()
2532                                              : static_cast<user_id_t>(NO_SECT);
2533 
2534   lldb::offset_t nlist_data_offset = 0;
2535 
2536   uint32_t N_SO_index = UINT32_MAX;
2537 
2538   MachSymtabSectionInfo section_info(section_list);
2539   std::vector<uint32_t> N_FUN_indexes;
2540   std::vector<uint32_t> N_NSYM_indexes;
2541   std::vector<uint32_t> N_INCL_indexes;
2542   std::vector<uint32_t> N_BRAC_indexes;
2543   std::vector<uint32_t> N_COMM_indexes;
2544   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2545   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2546   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2547   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2548   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2549   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2550   // Any symbols that get merged into another will get an entry in this map
2551   // so we know
2552   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2553   uint32_t nlist_idx = 0;
2554   Symbol *symbol_ptr = nullptr;
2555 
2556   uint32_t sym_idx = 0;
2557   Symbol *sym = nullptr;
2558   size_t num_syms = 0;
2559   std::string memory_symbol_name;
2560   uint32_t unmapped_local_symbols_found = 0;
2561 
2562   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2563   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2564   std::set<lldb::addr_t> resolver_addresses;
2565 
2566   if (dyld_trie_data.GetByteSize() > 0) {
2567     ConstString text_segment_name("__TEXT");
2568     SectionSP text_segment_sp =
2569         GetSectionList()->FindSectionByName(text_segment_name);
2570     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2571     if (text_segment_sp)
2572       text_segment_file_addr = text_segment_sp->GetFileAddress();
2573     std::vector<llvm::StringRef> nameSlices;
2574     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2575                      nameSlices, resolver_addresses, reexport_trie_entries,
2576                      external_sym_trie_entries);
2577   }
2578 
2579   typedef std::set<ConstString> IndirectSymbols;
2580   IndirectSymbols indirect_symbol_names;
2581 
2582 #if defined(__APPLE__) && TARGET_OS_EMBEDDED
2583 
2584   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2585   // optimized by moving LOCAL symbols out of the memory mapped portion of
2586   // the DSC. The symbol information has all been retained, but it isn't
2587   // available in the normal nlist data. However, there *are* duplicate
2588   // entries of *some*
2589   // LOCAL symbols in the normal nlist data. To handle this situation
2590   // correctly, we must first attempt
2591   // to parse any DSC unmapped symbol information. If we find any, we set a
2592   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2593 
2594   if (m_header.flags & MH_DYLIB_IN_CACHE) {
2595     // Before we can start mapping the DSC, we need to make certain the
2596     // target process is actually using the cache we can find.
2597 
2598     // Next we need to determine the correct path for the dyld shared cache.
2599 
2600     ArchSpec header_arch = GetArchitecture();
2601     char dsc_path[PATH_MAX];
2602     char dsc_path_development[PATH_MAX];
2603 
2604     snprintf(
2605         dsc_path, sizeof(dsc_path), "%s%s%s",
2606         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2607                                                    */
2608         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2609         header_arch.GetArchitectureName());
2610 
2611     snprintf(
2612         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2613         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2614                                                    */
2615         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2616         header_arch.GetArchitectureName(), ".development");
2617 
2618     FileSpec dsc_nondevelopment_filespec(dsc_path);
2619     FileSpec dsc_development_filespec(dsc_path_development);
2620     FileSpec dsc_filespec;
2621 
2622     UUID dsc_uuid;
2623     UUID process_shared_cache_uuid;
2624     addr_t process_shared_cache_base_addr;
2625 
2626     if (process) {
2627       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2628                                 process_shared_cache_uuid);
2629     }
2630 
2631     // First see if we can find an exact match for the inferior process
2632     // shared cache UUID in the development or non-development shared caches
2633     // on disk.
2634     if (process_shared_cache_uuid.IsValid()) {
2635       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2636         UUID dsc_development_uuid = GetSharedCacheUUID(
2637             dsc_development_filespec, byte_order, addr_byte_size);
2638         if (dsc_development_uuid.IsValid() &&
2639             dsc_development_uuid == process_shared_cache_uuid) {
2640           dsc_filespec = dsc_development_filespec;
2641           dsc_uuid = dsc_development_uuid;
2642         }
2643       }
2644       if (!dsc_uuid.IsValid() &&
2645           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2646         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2647             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2648         if (dsc_nondevelopment_uuid.IsValid() &&
2649             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2650           dsc_filespec = dsc_nondevelopment_filespec;
2651           dsc_uuid = dsc_nondevelopment_uuid;
2652         }
2653       }
2654     }
2655 
2656     // Failing a UUID match, prefer the development dyld_shared cache if both
2657     // are present.
2658     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2659       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2660         dsc_filespec = dsc_development_filespec;
2661       } else {
2662         dsc_filespec = dsc_nondevelopment_filespec;
2663       }
2664     }
2665 
2666     /* The dyld_cache_header has a pointer to the
2667        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2668        The dyld_cache_local_symbols_info structure gives us three things:
2669          1. The start and count of the nlist records in the dyld_shared_cache
2670        file
2671          2. The start and size of the strings for these nlist records
2672          3. The start and count of dyld_cache_local_symbols_entry entries
2673 
2674        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2675        dyld shared cache.
2676        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2677        the dyld shared cache.
2678        The dyld_cache_local_symbols_entry also lists the start of this
2679        dylib/framework's nlist records
2680        and the count of how many nlist records there are for this
2681        dylib/framework.
2682     */
2683 
2684     // Process the dyld shared cache header to find the unmapped symbols
2685 
2686     DataBufferSP dsc_data_sp = MapFileData(
2687         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2688     if (!dsc_uuid.IsValid()) {
2689       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2690     }
2691     if (dsc_data_sp) {
2692       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2693 
2694       bool uuid_match = true;
2695       if (dsc_uuid.IsValid() && process) {
2696         if (process_shared_cache_uuid.IsValid() &&
2697             dsc_uuid != process_shared_cache_uuid) {
2698           // The on-disk dyld_shared_cache file is not the same as the one in
2699           // this process' memory, don't use it.
2700           uuid_match = false;
2701           ModuleSP module_sp(GetModule());
2702           if (module_sp)
2703             module_sp->ReportWarning("process shared cache does not match "
2704                                      "on-disk dyld_shared_cache file, some "
2705                                      "symbol names will be missing.");
2706         }
2707       }
2708 
2709       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2710 
2711       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2712 
2713       // If the mappingOffset points to a location inside the header, we've
2714       // opened an old dyld shared cache, and should not proceed further.
2715       if (uuid_match &&
2716           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2717 
2718         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2719             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2720             mappingOffset);
2721 
2722         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2723                                             byte_order, addr_byte_size);
2724         offset = 0;
2725 
2726         // The File addresses (from the in-memory Mach-O load commands) for
2727         // the shared libraries in the shared library cache need to be
2728         // adjusted by an offset to match up with the dylibOffset identifying
2729         // field in the dyld_cache_local_symbol_entry's.  This offset is
2730         // recorded in mapping_offset_value.
2731         const uint64_t mapping_offset_value =
2732             dsc_mapping_info_data.GetU64(&offset);
2733 
2734         offset =
2735             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2736         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2737         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2738 
2739         if (localSymbolsOffset && localSymbolsSize) {
2740           // Map the local symbols
2741           DataBufferSP dsc_local_symbols_data_sp =
2742               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2743 
2744           if (dsc_local_symbols_data_sp) {
2745             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2746                                                  byte_order, addr_byte_size);
2747 
2748             offset = 0;
2749 
2750             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2751             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2752             UndefinedNameToDescMap undefined_name_to_desc;
2753             SymbolIndexToName reexport_shlib_needs_fixup;
2754 
2755             // Read the local_symbols_infos struct in one shot
2756             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2757             dsc_local_symbols_data.GetU32(&offset,
2758                                           &local_symbols_info.nlistOffset, 6);
2759 
2760             SectionSP text_section_sp(
2761                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2762 
2763             uint32_t header_file_offset =
2764                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2765 
2766             offset = local_symbols_info.entriesOffset;
2767             for (uint32_t entry_index = 0;
2768                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2769               struct lldb_copy_dyld_cache_local_symbols_entry
2770                   local_symbols_entry;
2771               local_symbols_entry.dylibOffset =
2772                   dsc_local_symbols_data.GetU32(&offset);
2773               local_symbols_entry.nlistStartIndex =
2774                   dsc_local_symbols_data.GetU32(&offset);
2775               local_symbols_entry.nlistCount =
2776                   dsc_local_symbols_data.GetU32(&offset);
2777 
2778               if (header_file_offset == local_symbols_entry.dylibOffset) {
2779                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2780 
2781                 // The normal nlist code cannot correctly size the Symbols
2782                 // array, we need to allocate it here.
2783                 sym = symtab->Resize(
2784                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2785                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2786                 num_syms = symtab->GetNumSymbols();
2787 
2788                 nlist_data_offset =
2789                     local_symbols_info.nlistOffset +
2790                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2791                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2792 
2793                 for (uint32_t nlist_index = 0;
2794                      nlist_index < local_symbols_entry.nlistCount;
2795                      nlist_index++) {
2796                   /////////////////////////////
2797                   {
2798                     llvm::Optional<struct nlist_64> nlist_maybe =
2799                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2800                                    nlist_byte_size);
2801                     if (!nlist_maybe)
2802                       break;
2803                     struct nlist_64 nlist = *nlist_maybe;
2804 
2805                     SymbolType type = eSymbolTypeInvalid;
2806                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2807                         string_table_offset + nlist.n_strx);
2808 
2809                     if (symbol_name == NULL) {
2810                       // No symbol should be NULL, even the symbols with no
2811                       // string values should have an offset zero which
2812                       // points to an empty C-string
2813                       Host::SystemLog(
2814                           Host::eSystemLogError,
2815                           "error: DSC unmapped local symbol[%u] has invalid "
2816                           "string table offset 0x%x in %s, ignoring symbol\n",
2817                           entry_index, nlist.n_strx,
2818                           module_sp->GetFileSpec().GetPath().c_str());
2819                       continue;
2820                     }
2821                     if (symbol_name[0] == '\0')
2822                       symbol_name = NULL;
2823 
2824                     const char *symbol_name_non_abi_mangled = NULL;
2825 
2826                     SectionSP symbol_section;
2827                     uint32_t symbol_byte_size = 0;
2828                     bool add_nlist = true;
2829                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2830                     bool demangled_is_synthesized = false;
2831                     bool is_gsym = false;
2832                     bool set_value = true;
2833 
2834                     assert(sym_idx < num_syms);
2835 
2836                     sym[sym_idx].SetDebug(is_debug);
2837 
2838                     if (is_debug) {
2839                       switch (nlist.n_type) {
2840                       case N_GSYM:
2841                         // global symbol: name,,NO_SECT,type,0
2842                         // Sometimes the N_GSYM value contains the address.
2843 
2844                         // FIXME: In the .o files, we have a GSYM and a debug
2845                         // symbol for all the ObjC data.  They
2846                         // have the same address, but we want to ensure that
2847                         // we always find only the real symbol, 'cause we
2848                         // don't currently correctly attribute the
2849                         // GSYM one to the ObjCClass/Ivar/MetaClass
2850                         // symbol type.  This is a temporary hack to make
2851                         // sure the ObjectiveC symbols get treated correctly.
2852                         // To do this right, we should coalesce all the GSYM
2853                         // & global symbols that have the same address.
2854 
2855                         is_gsym = true;
2856                         sym[sym_idx].SetExternal(true);
2857 
2858                         if (symbol_name && symbol_name[0] == '_' &&
2859                             symbol_name[1] == 'O') {
2860                           llvm::StringRef symbol_name_ref(symbol_name);
2861                           if (symbol_name_ref.startswith(
2862                                   g_objc_v2_prefix_class)) {
2863                             symbol_name_non_abi_mangled = symbol_name + 1;
2864                             symbol_name =
2865                                 symbol_name + g_objc_v2_prefix_class.size();
2866                             type = eSymbolTypeObjCClass;
2867                             demangled_is_synthesized = true;
2868 
2869                           } else if (symbol_name_ref.startswith(
2870                                          g_objc_v2_prefix_metaclass)) {
2871                             symbol_name_non_abi_mangled = symbol_name + 1;
2872                             symbol_name =
2873                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2874                             type = eSymbolTypeObjCMetaClass;
2875                             demangled_is_synthesized = true;
2876                           } else if (symbol_name_ref.startswith(
2877                                          g_objc_v2_prefix_ivar)) {
2878                             symbol_name_non_abi_mangled = symbol_name + 1;
2879                             symbol_name =
2880                                 symbol_name + g_objc_v2_prefix_ivar.size();
2881                             type = eSymbolTypeObjCIVar;
2882                             demangled_is_synthesized = true;
2883                           }
2884                         } else {
2885                           if (nlist.n_value != 0)
2886                             symbol_section = section_info.GetSection(
2887                                 nlist.n_sect, nlist.n_value);
2888                           type = eSymbolTypeData;
2889                         }
2890                         break;
2891 
2892                       case N_FNAME:
2893                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2894                         type = eSymbolTypeCompiler;
2895                         break;
2896 
2897                       case N_FUN:
2898                         // procedure: name,,n_sect,linenumber,address
2899                         if (symbol_name) {
2900                           type = eSymbolTypeCode;
2901                           symbol_section = section_info.GetSection(
2902                               nlist.n_sect, nlist.n_value);
2903 
2904                           N_FUN_addr_to_sym_idx.insert(
2905                               std::make_pair(nlist.n_value, sym_idx));
2906                           // We use the current number of symbols in the
2907                           // symbol table in lieu of using nlist_idx in case
2908                           // we ever start trimming entries out
2909                           N_FUN_indexes.push_back(sym_idx);
2910                         } else {
2911                           type = eSymbolTypeCompiler;
2912 
2913                           if (!N_FUN_indexes.empty()) {
2914                             // Copy the size of the function into the
2915                             // original
2916                             // STAB entry so we don't have
2917                             // to hunt for it later
2918                             symtab->SymbolAtIndex(N_FUN_indexes.back())
2919                                 ->SetByteSize(nlist.n_value);
2920                             N_FUN_indexes.pop_back();
2921                             // We don't really need the end function STAB as
2922                             // it contains the size which we already placed
2923                             // with the original symbol, so don't add it if
2924                             // we want a minimal symbol table
2925                             add_nlist = false;
2926                           }
2927                         }
2928                         break;
2929 
2930                       case N_STSYM:
2931                         // static symbol: name,,n_sect,type,address
2932                         N_STSYM_addr_to_sym_idx.insert(
2933                             std::make_pair(nlist.n_value, sym_idx));
2934                         symbol_section = section_info.GetSection(nlist.n_sect,
2935                                                                  nlist.n_value);
2936                         if (symbol_name && symbol_name[0]) {
2937                           type = ObjectFile::GetSymbolTypeFromName(
2938                               symbol_name + 1, eSymbolTypeData);
2939                         }
2940                         break;
2941 
2942                       case N_LCSYM:
2943                         // .lcomm symbol: name,,n_sect,type,address
2944                         symbol_section = section_info.GetSection(nlist.n_sect,
2945                                                                  nlist.n_value);
2946                         type = eSymbolTypeCommonBlock;
2947                         break;
2948 
2949                       case N_BNSYM:
2950                         // We use the current number of symbols in the symbol
2951                         // table in lieu of using nlist_idx in case we ever
2952                         // start trimming entries out Skip these if we want
2953                         // minimal symbol tables
2954                         add_nlist = false;
2955                         break;
2956 
2957                       case N_ENSYM:
2958                         // Set the size of the N_BNSYM to the terminating
2959                         // index of this N_ENSYM so that we can always skip
2960                         // the entire symbol if we need to navigate more
2961                         // quickly at the source level when parsing STABS
2962                         // Skip these if we want minimal symbol tables
2963                         add_nlist = false;
2964                         break;
2965 
2966                       case N_OPT:
2967                         // emitted with gcc2_compiled and in gcc source
2968                         type = eSymbolTypeCompiler;
2969                         break;
2970 
2971                       case N_RSYM:
2972                         // register sym: name,,NO_SECT,type,register
2973                         type = eSymbolTypeVariable;
2974                         break;
2975 
2976                       case N_SLINE:
2977                         // src line: 0,,n_sect,linenumber,address
2978                         symbol_section = section_info.GetSection(nlist.n_sect,
2979                                                                  nlist.n_value);
2980                         type = eSymbolTypeLineEntry;
2981                         break;
2982 
2983                       case N_SSYM:
2984                         // structure elt: name,,NO_SECT,type,struct_offset
2985                         type = eSymbolTypeVariableType;
2986                         break;
2987 
2988                       case N_SO:
2989                         // source file name
2990                         type = eSymbolTypeSourceFile;
2991                         if (symbol_name == NULL) {
2992                           add_nlist = false;
2993                           if (N_SO_index != UINT32_MAX) {
2994                             // Set the size of the N_SO to the terminating
2995                             // index of this N_SO so that we can always skip
2996                             // the entire N_SO if we need to navigate more
2997                             // quickly at the source level when parsing STABS
2998                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
2999                             symbol_ptr->SetByteSize(sym_idx);
3000                             symbol_ptr->SetSizeIsSibling(true);
3001                           }
3002                           N_NSYM_indexes.clear();
3003                           N_INCL_indexes.clear();
3004                           N_BRAC_indexes.clear();
3005                           N_COMM_indexes.clear();
3006                           N_FUN_indexes.clear();
3007                           N_SO_index = UINT32_MAX;
3008                         } else {
3009                           // We use the current number of symbols in the
3010                           // symbol table in lieu of using nlist_idx in case
3011                           // we ever start trimming entries out
3012                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3013                           if (N_SO_has_full_path) {
3014                             if ((N_SO_index == sym_idx - 1) &&
3015                                 ((sym_idx - 1) < num_syms)) {
3016                               // We have two consecutive N_SO entries where
3017                               // the first contains a directory and the
3018                               // second contains a full path.
3019                               sym[sym_idx - 1].GetMangled().SetValue(
3020                                   ConstString(symbol_name), false);
3021                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3022                               add_nlist = false;
3023                             } else {
3024                               // This is the first entry in a N_SO that
3025                               // contains a directory or
3026                               // a full path to the source file
3027                               N_SO_index = sym_idx;
3028                             }
3029                           } else if ((N_SO_index == sym_idx - 1) &&
3030                                      ((sym_idx - 1) < num_syms)) {
3031                             // This is usually the second N_SO entry that
3032                             // contains just the filename, so here we combine
3033                             // it with the first one if we are minimizing the
3034                             // symbol table
3035                             const char *so_path =
3036                                 sym[sym_idx - 1]
3037                                     .GetMangled()
3038                                     .GetDemangledName(
3039                                         lldb::eLanguageTypeUnknown)
3040                                     .AsCString();
3041                             if (so_path && so_path[0]) {
3042                               std::string full_so_path(so_path);
3043                               const size_t double_slash_pos =
3044                                   full_so_path.find("//");
3045                               if (double_slash_pos != std::string::npos) {
3046                                 // The linker has been generating bad N_SO
3047                                 // entries with doubled up paths
3048                                 // in the format "%s%s" where the first
3049                                 // string in the DW_AT_comp_dir, and the
3050                                 // second is the directory for the source
3051                                 // file so you end up with a path that looks
3052                                 // like "/tmp/src//tmp/src/"
3053                                 FileSpec so_dir(so_path);
3054                                 if (!FileSystem::Instance().Exists(so_dir)) {
3055                                   so_dir.SetFile(
3056                                       &full_so_path[double_slash_pos + 1],
3057                                       FileSpec::Style::native);
3058                                   if (FileSystem::Instance().Exists(so_dir)) {
3059                                     // Trim off the incorrect path
3060                                     full_so_path.erase(0, double_slash_pos + 1);
3061                                   }
3062                                 }
3063                               }
3064                               if (*full_so_path.rbegin() != '/')
3065                                 full_so_path += '/';
3066                               full_so_path += symbol_name;
3067                               sym[sym_idx - 1].GetMangled().SetValue(
3068                                   ConstString(full_so_path.c_str()), false);
3069                               add_nlist = false;
3070                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3071                             }
3072                           } else {
3073                             // This could be a relative path to a N_SO
3074                             N_SO_index = sym_idx;
3075                           }
3076                         }
3077                         break;
3078 
3079                       case N_OSO:
3080                         // object file name: name,,0,0,st_mtime
3081                         type = eSymbolTypeObjectFile;
3082                         break;
3083 
3084                       case N_LSYM:
3085                         // local sym: name,,NO_SECT,type,offset
3086                         type = eSymbolTypeLocal;
3087                         break;
3088 
3089                       // INCL scopes
3090                       case N_BINCL:
3091                         // include file beginning: name,,NO_SECT,0,sum We use
3092                         // the current number of symbols in the symbol table
3093                         // in lieu of using nlist_idx in case we ever start
3094                         // trimming entries out
3095                         N_INCL_indexes.push_back(sym_idx);
3096                         type = eSymbolTypeScopeBegin;
3097                         break;
3098 
3099                       case N_EINCL:
3100                         // include file end: name,,NO_SECT,0,0
3101                         // Set the size of the N_BINCL to the terminating
3102                         // index of this N_EINCL so that we can always skip
3103                         // the entire symbol if we need to navigate more
3104                         // quickly at the source level when parsing STABS
3105                         if (!N_INCL_indexes.empty()) {
3106                           symbol_ptr =
3107                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3108                           symbol_ptr->SetByteSize(sym_idx + 1);
3109                           symbol_ptr->SetSizeIsSibling(true);
3110                           N_INCL_indexes.pop_back();
3111                         }
3112                         type = eSymbolTypeScopeEnd;
3113                         break;
3114 
3115                       case N_SOL:
3116                         // #included file name: name,,n_sect,0,address
3117                         type = eSymbolTypeHeaderFile;
3118 
3119                         // We currently don't use the header files on darwin
3120                         add_nlist = false;
3121                         break;
3122 
3123                       case N_PARAMS:
3124                         // compiler parameters: name,,NO_SECT,0,0
3125                         type = eSymbolTypeCompiler;
3126                         break;
3127 
3128                       case N_VERSION:
3129                         // compiler version: name,,NO_SECT,0,0
3130                         type = eSymbolTypeCompiler;
3131                         break;
3132 
3133                       case N_OLEVEL:
3134                         // compiler -O level: name,,NO_SECT,0,0
3135                         type = eSymbolTypeCompiler;
3136                         break;
3137 
3138                       case N_PSYM:
3139                         // parameter: name,,NO_SECT,type,offset
3140                         type = eSymbolTypeVariable;
3141                         break;
3142 
3143                       case N_ENTRY:
3144                         // alternate entry: name,,n_sect,linenumber,address
3145                         symbol_section = section_info.GetSection(nlist.n_sect,
3146                                                                  nlist.n_value);
3147                         type = eSymbolTypeLineEntry;
3148                         break;
3149 
3150                       // Left and Right Braces
3151                       case N_LBRAC:
3152                         // left bracket: 0,,NO_SECT,nesting level,address We
3153                         // use the current number of symbols in the symbol
3154                         // table in lieu of using nlist_idx in case we ever
3155                         // start trimming entries out
3156                         symbol_section = section_info.GetSection(nlist.n_sect,
3157                                                                  nlist.n_value);
3158                         N_BRAC_indexes.push_back(sym_idx);
3159                         type = eSymbolTypeScopeBegin;
3160                         break;
3161 
3162                       case N_RBRAC:
3163                         // right bracket: 0,,NO_SECT,nesting level,address
3164                         // Set the size of the N_LBRAC to the terminating
3165                         // index of this N_RBRAC so that we can always skip
3166                         // the entire symbol if we need to navigate more
3167                         // quickly at the source level when parsing STABS
3168                         symbol_section = section_info.GetSection(nlist.n_sect,
3169                                                                  nlist.n_value);
3170                         if (!N_BRAC_indexes.empty()) {
3171                           symbol_ptr =
3172                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3173                           symbol_ptr->SetByteSize(sym_idx + 1);
3174                           symbol_ptr->SetSizeIsSibling(true);
3175                           N_BRAC_indexes.pop_back();
3176                         }
3177                         type = eSymbolTypeScopeEnd;
3178                         break;
3179 
3180                       case N_EXCL:
3181                         // deleted include file: name,,NO_SECT,0,sum
3182                         type = eSymbolTypeHeaderFile;
3183                         break;
3184 
3185                       // COMM scopes
3186                       case N_BCOMM:
3187                         // begin common: name,,NO_SECT,0,0
3188                         // We use the current number of symbols in the symbol
3189                         // table in lieu of using nlist_idx in case we ever
3190                         // start trimming entries out
3191                         type = eSymbolTypeScopeBegin;
3192                         N_COMM_indexes.push_back(sym_idx);
3193                         break;
3194 
3195                       case N_ECOML:
3196                         // end common (local name): 0,,n_sect,0,address
3197                         symbol_section = section_info.GetSection(nlist.n_sect,
3198                                                                  nlist.n_value);
3199                         // Fall through
3200 
3201                       case N_ECOMM:
3202                         // end common: name,,n_sect,0,0
3203                         // Set the size of the N_BCOMM to the terminating
3204                         // index of this N_ECOMM/N_ECOML so that we can
3205                         // always skip the entire symbol if we need to
3206                         // navigate more quickly at the source level when
3207                         // parsing STABS
3208                         if (!N_COMM_indexes.empty()) {
3209                           symbol_ptr =
3210                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3211                           symbol_ptr->SetByteSize(sym_idx + 1);
3212                           symbol_ptr->SetSizeIsSibling(true);
3213                           N_COMM_indexes.pop_back();
3214                         }
3215                         type = eSymbolTypeScopeEnd;
3216                         break;
3217 
3218                       case N_LENG:
3219                         // second stab entry with length information
3220                         type = eSymbolTypeAdditional;
3221                         break;
3222 
3223                       default:
3224                         break;
3225                       }
3226                     } else {
3227                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3228                       uint8_t n_type = N_TYPE & nlist.n_type;
3229                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3230 
3231                       switch (n_type) {
3232                       case N_INDR: {
3233                         const char *reexport_name_cstr =
3234                             strtab_data.PeekCStr(nlist.n_value);
3235                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3236                           type = eSymbolTypeReExported;
3237                           ConstString reexport_name(
3238                               reexport_name_cstr +
3239                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3240                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3241                           set_value = false;
3242                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3243                           indirect_symbol_names.insert(ConstString(
3244                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3245                         } else
3246                           type = eSymbolTypeUndefined;
3247                       } break;
3248 
3249                       case N_UNDF:
3250                         if (symbol_name && symbol_name[0]) {
3251                           ConstString undefined_name(
3252                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3253                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3254                         }
3255                       // Fall through
3256                       case N_PBUD:
3257                         type = eSymbolTypeUndefined;
3258                         break;
3259 
3260                       case N_ABS:
3261                         type = eSymbolTypeAbsolute;
3262                         break;
3263 
3264                       case N_SECT: {
3265                         symbol_section = section_info.GetSection(nlist.n_sect,
3266                                                                  nlist.n_value);
3267 
3268                         if (symbol_section == NULL) {
3269                           // TODO: warn about this?
3270                           add_nlist = false;
3271                           break;
3272                         }
3273 
3274                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3275                           type = eSymbolTypeException;
3276                         } else {
3277                           uint32_t section_type =
3278                               symbol_section->Get() & SECTION_TYPE;
3279 
3280                           switch (section_type) {
3281                           case S_CSTRING_LITERALS:
3282                             type = eSymbolTypeData;
3283                             break; // section with only literal C strings
3284                           case S_4BYTE_LITERALS:
3285                             type = eSymbolTypeData;
3286                             break; // section with only 4 byte literals
3287                           case S_8BYTE_LITERALS:
3288                             type = eSymbolTypeData;
3289                             break; // section with only 8 byte literals
3290                           case S_LITERAL_POINTERS:
3291                             type = eSymbolTypeTrampoline;
3292                             break; // section with only pointers to literals
3293                           case S_NON_LAZY_SYMBOL_POINTERS:
3294                             type = eSymbolTypeTrampoline;
3295                             break; // section with only non-lazy symbol
3296                                    // pointers
3297                           case S_LAZY_SYMBOL_POINTERS:
3298                             type = eSymbolTypeTrampoline;
3299                             break; // section with only lazy symbol pointers
3300                           case S_SYMBOL_STUBS:
3301                             type = eSymbolTypeTrampoline;
3302                             break; // section with only symbol stubs, byte
3303                                    // size of stub in the reserved2 field
3304                           case S_MOD_INIT_FUNC_POINTERS:
3305                             type = eSymbolTypeCode;
3306                             break; // section with only function pointers for
3307                                    // initialization
3308                           case S_MOD_TERM_FUNC_POINTERS:
3309                             type = eSymbolTypeCode;
3310                             break; // section with only function pointers for
3311                                    // termination
3312                           case S_INTERPOSING:
3313                             type = eSymbolTypeTrampoline;
3314                             break; // section with only pairs of function
3315                                    // pointers for interposing
3316                           case S_16BYTE_LITERALS:
3317                             type = eSymbolTypeData;
3318                             break; // section with only 16 byte literals
3319                           case S_DTRACE_DOF:
3320                             type = eSymbolTypeInstrumentation;
3321                             break;
3322                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3323                             type = eSymbolTypeTrampoline;
3324                             break;
3325                           default:
3326                             switch (symbol_section->GetType()) {
3327                             case lldb::eSectionTypeCode:
3328                               type = eSymbolTypeCode;
3329                               break;
3330                             case eSectionTypeData:
3331                             case eSectionTypeDataCString: // Inlined C string
3332                                                           // data
3333                             case eSectionTypeDataCStringPointers: // Pointers
3334                                                                   // to C
3335                                                                   // string
3336                                                                   // data
3337                             case eSectionTypeDataSymbolAddress:   // Address of
3338                                                                   // a symbol in
3339                                                                   // the symbol
3340                                                                   // table
3341                             case eSectionTypeData4:
3342                             case eSectionTypeData8:
3343                             case eSectionTypeData16:
3344                               type = eSymbolTypeData;
3345                               break;
3346                             default:
3347                               break;
3348                             }
3349                             break;
3350                           }
3351 
3352                           if (type == eSymbolTypeInvalid) {
3353                             const char *symbol_sect_name =
3354                                 symbol_section->GetName().AsCString();
3355                             if (symbol_section->IsDescendant(
3356                                     text_section_sp.get())) {
3357                               if (symbol_section->IsClear(
3358                                       S_ATTR_PURE_INSTRUCTIONS |
3359                                       S_ATTR_SELF_MODIFYING_CODE |
3360                                       S_ATTR_SOME_INSTRUCTIONS))
3361                                 type = eSymbolTypeData;
3362                               else
3363                                 type = eSymbolTypeCode;
3364                             } else if (symbol_section->IsDescendant(
3365                                            data_section_sp.get()) ||
3366                                        symbol_section->IsDescendant(
3367                                            data_dirty_section_sp.get()) ||
3368                                        symbol_section->IsDescendant(
3369                                            data_const_section_sp.get())) {
3370                               if (symbol_sect_name &&
3371                                   ::strstr(symbol_sect_name, "__objc") ==
3372                                       symbol_sect_name) {
3373                                 type = eSymbolTypeRuntime;
3374 
3375                                 if (symbol_name) {
3376                                   llvm::StringRef symbol_name_ref(symbol_name);
3377                                   if (symbol_name_ref.startswith("_OBJC_")) {
3378                                     llvm::StringRef
3379                                         g_objc_v2_prefix_class(
3380                                             "_OBJC_CLASS_$_");
3381                                     llvm::StringRef
3382                                         g_objc_v2_prefix_metaclass(
3383                                             "_OBJC_METACLASS_$_");
3384                                     llvm::StringRef
3385                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3386                                     if (symbol_name_ref.startswith(
3387                                             g_objc_v2_prefix_class)) {
3388                                       symbol_name_non_abi_mangled =
3389                                           symbol_name + 1;
3390                                       symbol_name =
3391                                           symbol_name +
3392                                           g_objc_v2_prefix_class.size();
3393                                       type = eSymbolTypeObjCClass;
3394                                       demangled_is_synthesized = true;
3395                                     } else if (
3396                                         symbol_name_ref.startswith(
3397                                             g_objc_v2_prefix_metaclass)) {
3398                                       symbol_name_non_abi_mangled =
3399                                           symbol_name + 1;
3400                                       symbol_name =
3401                                           symbol_name +
3402                                           g_objc_v2_prefix_metaclass.size();
3403                                       type = eSymbolTypeObjCMetaClass;
3404                                       demangled_is_synthesized = true;
3405                                     } else if (symbol_name_ref.startswith(
3406                                                    g_objc_v2_prefix_ivar)) {
3407                                       symbol_name_non_abi_mangled =
3408                                           symbol_name + 1;
3409                                       symbol_name =
3410                                           symbol_name +
3411                                           g_objc_v2_prefix_ivar.size();
3412                                       type = eSymbolTypeObjCIVar;
3413                                       demangled_is_synthesized = true;
3414                                     }
3415                                   }
3416                                 }
3417                               } else if (symbol_sect_name &&
3418                                          ::strstr(symbol_sect_name,
3419                                                   "__gcc_except_tab") ==
3420                                              symbol_sect_name) {
3421                                 type = eSymbolTypeException;
3422                               } else {
3423                                 type = eSymbolTypeData;
3424                               }
3425                             } else if (symbol_sect_name &&
3426                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3427                                            symbol_sect_name) {
3428                               type = eSymbolTypeTrampoline;
3429                             } else if (symbol_section->IsDescendant(
3430                                            objc_section_sp.get())) {
3431                               type = eSymbolTypeRuntime;
3432                               if (symbol_name && symbol_name[0] == '.') {
3433                                 llvm::StringRef symbol_name_ref(symbol_name);
3434                                 llvm::StringRef
3435                                     g_objc_v1_prefix_class(".objc_class_name_");
3436                                 if (symbol_name_ref.startswith(
3437                                         g_objc_v1_prefix_class)) {
3438                                   symbol_name_non_abi_mangled = symbol_name;
3439                                   symbol_name = symbol_name +
3440                                                 g_objc_v1_prefix_class.size();
3441                                   type = eSymbolTypeObjCClass;
3442                                   demangled_is_synthesized = true;
3443                                 }
3444                               }
3445                             }
3446                           }
3447                         }
3448                       } break;
3449                       }
3450                     }
3451 
3452                     if (add_nlist) {
3453                       uint64_t symbol_value = nlist.n_value;
3454                       if (symbol_name_non_abi_mangled) {
3455                         sym[sym_idx].GetMangled().SetMangledName(
3456                             ConstString(symbol_name_non_abi_mangled));
3457                         sym[sym_idx].GetMangled().SetDemangledName(
3458                             ConstString(symbol_name));
3459                       } else {
3460                         bool symbol_name_is_mangled = false;
3461 
3462                         if (symbol_name && symbol_name[0] == '_') {
3463                           symbol_name_is_mangled = symbol_name[1] == '_';
3464                           symbol_name++; // Skip the leading underscore
3465                         }
3466 
3467                         if (symbol_name) {
3468                           ConstString const_symbol_name(symbol_name);
3469                           sym[sym_idx].GetMangled().SetValue(
3470                               const_symbol_name, symbol_name_is_mangled);
3471                           if (is_gsym && is_debug) {
3472                             const char *gsym_name =
3473                                 sym[sym_idx]
3474                                     .GetMangled()
3475                                     .GetName(lldb::eLanguageTypeUnknown,
3476                                              Mangled::ePreferMangled)
3477                                     .GetCString();
3478                             if (gsym_name)
3479                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3480                           }
3481                         }
3482                       }
3483                       if (symbol_section) {
3484                         const addr_t section_file_addr =
3485                             symbol_section->GetFileAddress();
3486                         if (symbol_byte_size == 0 &&
3487                             function_starts_count > 0) {
3488                           addr_t symbol_lookup_file_addr = nlist.n_value;
3489                           // Do an exact address match for non-ARM addresses,
3490                           // else get the closest since the symbol might be a
3491                           // thumb symbol which has an address with bit zero
3492                           // set
3493                           FunctionStarts::Entry *func_start_entry =
3494                               function_starts.FindEntry(symbol_lookup_file_addr,
3495                                                         !is_arm);
3496                           if (is_arm && func_start_entry) {
3497                             // Verify that the function start address is the
3498                             // symbol address (ARM) or the symbol address + 1
3499                             // (thumb)
3500                             if (func_start_entry->addr !=
3501                                     symbol_lookup_file_addr &&
3502                                 func_start_entry->addr !=
3503                                     (symbol_lookup_file_addr + 1)) {
3504                               // Not the right entry, NULL it out...
3505                               func_start_entry = NULL;
3506                             }
3507                           }
3508                           if (func_start_entry) {
3509                             func_start_entry->data = true;
3510 
3511                             addr_t symbol_file_addr = func_start_entry->addr;
3512                             uint32_t symbol_flags = 0;
3513                             if (is_arm) {
3514                               if (symbol_file_addr & 1)
3515                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3516                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3517                             }
3518 
3519                             const FunctionStarts::Entry *next_func_start_entry =
3520                                 function_starts.FindNextEntry(func_start_entry);
3521                             const addr_t section_end_file_addr =
3522                                 section_file_addr +
3523                                 symbol_section->GetByteSize();
3524                             if (next_func_start_entry) {
3525                               addr_t next_symbol_file_addr =
3526                                   next_func_start_entry->addr;
3527                               // Be sure the clear the Thumb address bit when
3528                               // we calculate the size from the current and
3529                               // next address
3530                               if (is_arm)
3531                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3532                               symbol_byte_size = std::min<lldb::addr_t>(
3533                                   next_symbol_file_addr - symbol_file_addr,
3534                                   section_end_file_addr - symbol_file_addr);
3535                             } else {
3536                               symbol_byte_size =
3537                                   section_end_file_addr - symbol_file_addr;
3538                             }
3539                           }
3540                         }
3541                         symbol_value -= section_file_addr;
3542                       }
3543 
3544                       if (is_debug == false) {
3545                         if (type == eSymbolTypeCode) {
3546                           // See if we can find a N_FUN entry for any code
3547                           // symbols. If we do find a match, and the name
3548                           // matches, then we can merge the two into just the
3549                           // function symbol to avoid duplicate entries in
3550                           // the symbol table
3551                           auto range =
3552                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3553                           if (range.first != range.second) {
3554                             bool found_it = false;
3555                             for (auto pos = range.first; pos != range.second;
3556                                  ++pos) {
3557                               if (sym[sym_idx].GetMangled().GetName(
3558                                       lldb::eLanguageTypeUnknown,
3559                                       Mangled::ePreferMangled) ==
3560                                   sym[pos->second].GetMangled().GetName(
3561                                       lldb::eLanguageTypeUnknown,
3562                                       Mangled::ePreferMangled)) {
3563                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3564                                 // We just need the flags from the linker
3565                                 // symbol, so put these flags
3566                                 // into the N_FUN flags to avoid duplicate
3567                                 // symbols in the symbol table
3568                                 sym[pos->second].SetExternal(
3569                                     sym[sym_idx].IsExternal());
3570                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3571                                                           nlist.n_desc);
3572                                 if (resolver_addresses.find(nlist.n_value) !=
3573                                     resolver_addresses.end())
3574                                   sym[pos->second].SetType(eSymbolTypeResolver);
3575                                 sym[sym_idx].Clear();
3576                                 found_it = true;
3577                                 break;
3578                               }
3579                             }
3580                             if (found_it)
3581                               continue;
3582                           } else {
3583                             if (resolver_addresses.find(nlist.n_value) !=
3584                                 resolver_addresses.end())
3585                               type = eSymbolTypeResolver;
3586                           }
3587                         } else if (type == eSymbolTypeData ||
3588                                    type == eSymbolTypeObjCClass ||
3589                                    type == eSymbolTypeObjCMetaClass ||
3590                                    type == eSymbolTypeObjCIVar) {
3591                           // See if we can find a N_STSYM entry for any data
3592                           // symbols. If we do find a match, and the name
3593                           // matches, then we can merge the two into just the
3594                           // Static symbol to avoid duplicate entries in the
3595                           // symbol table
3596                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3597                               nlist.n_value);
3598                           if (range.first != range.second) {
3599                             bool found_it = false;
3600                             for (auto pos = range.first; pos != range.second;
3601                                  ++pos) {
3602                               if (sym[sym_idx].GetMangled().GetName(
3603                                       lldb::eLanguageTypeUnknown,
3604                                       Mangled::ePreferMangled) ==
3605                                   sym[pos->second].GetMangled().GetName(
3606                                       lldb::eLanguageTypeUnknown,
3607                                       Mangled::ePreferMangled)) {
3608                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3609                                 // We just need the flags from the linker
3610                                 // symbol, so put these flags
3611                                 // into the N_STSYM flags to avoid duplicate
3612                                 // symbols in the symbol table
3613                                 sym[pos->second].SetExternal(
3614                                     sym[sym_idx].IsExternal());
3615                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3616                                                           nlist.n_desc);
3617                                 sym[sym_idx].Clear();
3618                                 found_it = true;
3619                                 break;
3620                               }
3621                             }
3622                             if (found_it)
3623                               continue;
3624                           } else {
3625                             const char *gsym_name =
3626                                 sym[sym_idx]
3627                                     .GetMangled()
3628                                     .GetName(lldb::eLanguageTypeUnknown,
3629                                              Mangled::ePreferMangled)
3630                                     .GetCString();
3631                             if (gsym_name) {
3632                               // Combine N_GSYM stab entries with the non
3633                               // stab symbol
3634                               ConstNameToSymbolIndexMap::const_iterator pos =
3635                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3636                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3637                                 const uint32_t GSYM_sym_idx = pos->second;
3638                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3639                                     GSYM_sym_idx;
3640                                 // Copy the address, because often the N_GSYM
3641                                 // address has an invalid address of zero
3642                                 // when the global is a common symbol
3643                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3644                                     symbol_section);
3645                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3646                                     symbol_value);
3647                                 symbols_added.insert(sym[GSYM_sym_idx]
3648                                                          .GetAddress()
3649                                                          .GetFileAddress());
3650                                 // We just need the flags from the linker
3651                                 // symbol, so put these flags
3652                                 // into the N_GSYM flags to avoid duplicate
3653                                 // symbols in the symbol table
3654                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3655                                                            nlist.n_desc);
3656                                 sym[sym_idx].Clear();
3657                                 continue;
3658                               }
3659                             }
3660                           }
3661                         }
3662                       }
3663 
3664                       sym[sym_idx].SetID(nlist_idx);
3665                       sym[sym_idx].SetType(type);
3666                       if (set_value) {
3667                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3668                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3669                         symbols_added.insert(
3670                             sym[sym_idx].GetAddress().GetFileAddress());
3671                       }
3672                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3673 
3674                       if (symbol_byte_size > 0)
3675                         sym[sym_idx].SetByteSize(symbol_byte_size);
3676 
3677                       if (demangled_is_synthesized)
3678                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3679                       ++sym_idx;
3680                     } else {
3681                       sym[sym_idx].Clear();
3682                     }
3683                   }
3684                   /////////////////////////////
3685                 }
3686                 break; // No more entries to consider
3687               }
3688             }
3689 
3690             for (const auto &pos : reexport_shlib_needs_fixup) {
3691               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3692               if (undef_pos != undefined_name_to_desc.end()) {
3693                 const uint8_t dylib_ordinal =
3694                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3695                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3696                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3697                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3698               }
3699             }
3700           }
3701         }
3702       }
3703     }
3704   }
3705 
3706   // Must reset this in case it was mutated above!
3707   nlist_data_offset = 0;
3708 #endif
3709 
3710   if (nlist_data.GetByteSize() > 0) {
3711 
3712     // If the sym array was not created while parsing the DSC unmapped
3713     // symbols, create it now.
3714     if (sym == nullptr) {
3715       sym =
3716           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3717       num_syms = symtab->GetNumSymbols();
3718     }
3719 
3720     if (unmapped_local_symbols_found) {
3721       assert(m_dysymtab.ilocalsym == 0);
3722       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3723       nlist_idx = m_dysymtab.nlocalsym;
3724     } else {
3725       nlist_idx = 0;
3726     }
3727 
3728     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3729     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3730     UndefinedNameToDescMap undefined_name_to_desc;
3731     SymbolIndexToName reexport_shlib_needs_fixup;
3732 
3733     // Symtab parsing is a huge mess. Everything is entangled and the code
3734     // requires access to a ridiculous amount of variables. LLDB depends
3735     // heavily on the proper merging of symbols and to get that right we need
3736     // to make sure we have parsed all the debug symbols first. Therefore we
3737     // invoke the lambda twice, once to parse only the debug symbols and then
3738     // once more to parse the remaining symbols.
3739     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3740                                  bool debug_only) {
3741       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3742       if (is_debug != debug_only)
3743         return true;
3744 
3745       const char *symbol_name_non_abi_mangled = nullptr;
3746       const char *symbol_name = nullptr;
3747 
3748       if (have_strtab_data) {
3749         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3750 
3751         if (symbol_name == nullptr) {
3752           // No symbol should be NULL, even the symbols with no string values
3753           // should have an offset zero which points to an empty C-string
3754           Host::SystemLog(Host::eSystemLogError,
3755                           "error: symbol[%u] has invalid string table offset "
3756                           "0x%x in %s, ignoring symbol\n",
3757                           nlist_idx, nlist.n_strx,
3758                           module_sp->GetFileSpec().GetPath().c_str());
3759           return true;
3760         }
3761         if (symbol_name[0] == '\0')
3762           symbol_name = nullptr;
3763       } else {
3764         const addr_t str_addr = strtab_addr + nlist.n_strx;
3765         Status str_error;
3766         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3767                                            str_error))
3768           symbol_name = memory_symbol_name.c_str();
3769       }
3770 
3771       SymbolType type = eSymbolTypeInvalid;
3772       SectionSP symbol_section;
3773       lldb::addr_t symbol_byte_size = 0;
3774       bool add_nlist = true;
3775       bool is_gsym = false;
3776       bool demangled_is_synthesized = false;
3777       bool set_value = true;
3778 
3779       assert(sym_idx < num_syms);
3780       sym[sym_idx].SetDebug(is_debug);
3781 
3782       if (is_debug) {
3783         switch (nlist.n_type) {
3784         case N_GSYM:
3785           // global symbol: name,,NO_SECT,type,0
3786           // Sometimes the N_GSYM value contains the address.
3787 
3788           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3789           // the ObjC data.  They
3790           // have the same address, but we want to ensure that we always find
3791           // only the real symbol, 'cause we don't currently correctly
3792           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3793           // type.  This is a temporary hack to make sure the ObjectiveC
3794           // symbols get treated correctly.  To do this right, we should
3795           // coalesce all the GSYM & global symbols that have the same
3796           // address.
3797           is_gsym = true;
3798           sym[sym_idx].SetExternal(true);
3799 
3800           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3801             llvm::StringRef symbol_name_ref(symbol_name);
3802             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3803               symbol_name_non_abi_mangled = symbol_name + 1;
3804               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3805               type = eSymbolTypeObjCClass;
3806               demangled_is_synthesized = true;
3807 
3808             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3809               symbol_name_non_abi_mangled = symbol_name + 1;
3810               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3811               type = eSymbolTypeObjCMetaClass;
3812               demangled_is_synthesized = true;
3813             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3814               symbol_name_non_abi_mangled = symbol_name + 1;
3815               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3816               type = eSymbolTypeObjCIVar;
3817               demangled_is_synthesized = true;
3818             }
3819           } else {
3820             if (nlist.n_value != 0)
3821               symbol_section =
3822                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3823             type = eSymbolTypeData;
3824           }
3825           break;
3826 
3827         case N_FNAME:
3828           // procedure name (f77 kludge): name,,NO_SECT,0,0
3829           type = eSymbolTypeCompiler;
3830           break;
3831 
3832         case N_FUN:
3833           // procedure: name,,n_sect,linenumber,address
3834           if (symbol_name) {
3835             type = eSymbolTypeCode;
3836             symbol_section =
3837                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3838 
3839             N_FUN_addr_to_sym_idx.insert(
3840                 std::make_pair(nlist.n_value, sym_idx));
3841             // We use the current number of symbols in the symbol table in
3842             // lieu of using nlist_idx in case we ever start trimming entries
3843             // out
3844             N_FUN_indexes.push_back(sym_idx);
3845           } else {
3846             type = eSymbolTypeCompiler;
3847 
3848             if (!N_FUN_indexes.empty()) {
3849               // Copy the size of the function into the original STAB entry
3850               // so we don't have to hunt for it later
3851               symtab->SymbolAtIndex(N_FUN_indexes.back())
3852                   ->SetByteSize(nlist.n_value);
3853               N_FUN_indexes.pop_back();
3854               // We don't really need the end function STAB as it contains
3855               // the size which we already placed with the original symbol,
3856               // so don't add it if we want a minimal symbol table
3857               add_nlist = false;
3858             }
3859           }
3860           break;
3861 
3862         case N_STSYM:
3863           // static symbol: name,,n_sect,type,address
3864           N_STSYM_addr_to_sym_idx.insert(
3865               std::make_pair(nlist.n_value, sym_idx));
3866           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3867           if (symbol_name && symbol_name[0]) {
3868             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3869                                                      eSymbolTypeData);
3870           }
3871           break;
3872 
3873         case N_LCSYM:
3874           // .lcomm symbol: name,,n_sect,type,address
3875           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3876           type = eSymbolTypeCommonBlock;
3877           break;
3878 
3879         case N_BNSYM:
3880           // We use the current number of symbols in the symbol table in lieu
3881           // of using nlist_idx in case we ever start trimming entries out
3882           // Skip these if we want minimal symbol tables
3883           add_nlist = false;
3884           break;
3885 
3886         case N_ENSYM:
3887           // Set the size of the N_BNSYM to the terminating index of this
3888           // N_ENSYM so that we can always skip the entire symbol if we need
3889           // to navigate more quickly at the source level when parsing STABS
3890           // Skip these if we want minimal symbol tables
3891           add_nlist = false;
3892           break;
3893 
3894         case N_OPT:
3895           // emitted with gcc2_compiled and in gcc source
3896           type = eSymbolTypeCompiler;
3897           break;
3898 
3899         case N_RSYM:
3900           // register sym: name,,NO_SECT,type,register
3901           type = eSymbolTypeVariable;
3902           break;
3903 
3904         case N_SLINE:
3905           // src line: 0,,n_sect,linenumber,address
3906           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3907           type = eSymbolTypeLineEntry;
3908           break;
3909 
3910         case N_SSYM:
3911           // structure elt: name,,NO_SECT,type,struct_offset
3912           type = eSymbolTypeVariableType;
3913           break;
3914 
3915         case N_SO:
3916           // source file name
3917           type = eSymbolTypeSourceFile;
3918           if (symbol_name == nullptr) {
3919             add_nlist = false;
3920             if (N_SO_index != UINT32_MAX) {
3921               // Set the size of the N_SO to the terminating index of this
3922               // N_SO so that we can always skip the entire N_SO if we need
3923               // to navigate more quickly at the source level when parsing
3924               // STABS
3925               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3926               symbol_ptr->SetByteSize(sym_idx);
3927               symbol_ptr->SetSizeIsSibling(true);
3928             }
3929             N_NSYM_indexes.clear();
3930             N_INCL_indexes.clear();
3931             N_BRAC_indexes.clear();
3932             N_COMM_indexes.clear();
3933             N_FUN_indexes.clear();
3934             N_SO_index = UINT32_MAX;
3935           } else {
3936             // We use the current number of symbols in the symbol table in
3937             // lieu of using nlist_idx in case we ever start trimming entries
3938             // out
3939             const bool N_SO_has_full_path = symbol_name[0] == '/';
3940             if (N_SO_has_full_path) {
3941               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3942                 // We have two consecutive N_SO entries where the first
3943                 // contains a directory and the second contains a full path.
3944                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3945                                                        false);
3946                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3947                 add_nlist = false;
3948               } else {
3949                 // This is the first entry in a N_SO that contains a
3950                 // directory or a full path to the source file
3951                 N_SO_index = sym_idx;
3952               }
3953             } else if ((N_SO_index == sym_idx - 1) &&
3954                        ((sym_idx - 1) < num_syms)) {
3955               // This is usually the second N_SO entry that contains just the
3956               // filename, so here we combine it with the first one if we are
3957               // minimizing the symbol table
3958               const char *so_path =
3959                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3960               if (so_path && so_path[0]) {
3961                 std::string full_so_path(so_path);
3962                 const size_t double_slash_pos = full_so_path.find("//");
3963                 if (double_slash_pos != std::string::npos) {
3964                   // The linker has been generating bad N_SO entries with
3965                   // doubled up paths in the format "%s%s" where the first
3966                   // string in the DW_AT_comp_dir, and the second is the
3967                   // directory for the source file so you end up with a path
3968                   // that looks like "/tmp/src//tmp/src/"
3969                   FileSpec so_dir(so_path);
3970                   if (!FileSystem::Instance().Exists(so_dir)) {
3971                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3972                                    FileSpec::Style::native);
3973                     if (FileSystem::Instance().Exists(so_dir)) {
3974                       // Trim off the incorrect path
3975                       full_so_path.erase(0, double_slash_pos + 1);
3976                     }
3977                   }
3978                 }
3979                 if (*full_so_path.rbegin() != '/')
3980                   full_so_path += '/';
3981                 full_so_path += symbol_name;
3982                 sym[sym_idx - 1].GetMangled().SetValue(
3983                     ConstString(full_so_path.c_str()), false);
3984                 add_nlist = false;
3985                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3986               }
3987             } else {
3988               // This could be a relative path to a N_SO
3989               N_SO_index = sym_idx;
3990             }
3991           }
3992           break;
3993 
3994         case N_OSO:
3995           // object file name: name,,0,0,st_mtime
3996           type = eSymbolTypeObjectFile;
3997           break;
3998 
3999         case N_LSYM:
4000           // local sym: name,,NO_SECT,type,offset
4001           type = eSymbolTypeLocal;
4002           break;
4003 
4004         // INCL scopes
4005         case N_BINCL:
4006           // include file beginning: name,,NO_SECT,0,sum We use the current
4007           // number of symbols in the symbol table in lieu of using nlist_idx
4008           // in case we ever start trimming entries out
4009           N_INCL_indexes.push_back(sym_idx);
4010           type = eSymbolTypeScopeBegin;
4011           break;
4012 
4013         case N_EINCL:
4014           // include file end: name,,NO_SECT,0,0
4015           // Set the size of the N_BINCL to the terminating index of this
4016           // N_EINCL so that we can always skip the entire symbol if we need
4017           // to navigate more quickly at the source level when parsing STABS
4018           if (!N_INCL_indexes.empty()) {
4019             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4020             symbol_ptr->SetByteSize(sym_idx + 1);
4021             symbol_ptr->SetSizeIsSibling(true);
4022             N_INCL_indexes.pop_back();
4023           }
4024           type = eSymbolTypeScopeEnd;
4025           break;
4026 
4027         case N_SOL:
4028           // #included file name: name,,n_sect,0,address
4029           type = eSymbolTypeHeaderFile;
4030 
4031           // We currently don't use the header files on darwin
4032           add_nlist = false;
4033           break;
4034 
4035         case N_PARAMS:
4036           // compiler parameters: name,,NO_SECT,0,0
4037           type = eSymbolTypeCompiler;
4038           break;
4039 
4040         case N_VERSION:
4041           // compiler version: name,,NO_SECT,0,0
4042           type = eSymbolTypeCompiler;
4043           break;
4044 
4045         case N_OLEVEL:
4046           // compiler -O level: name,,NO_SECT,0,0
4047           type = eSymbolTypeCompiler;
4048           break;
4049 
4050         case N_PSYM:
4051           // parameter: name,,NO_SECT,type,offset
4052           type = eSymbolTypeVariable;
4053           break;
4054 
4055         case N_ENTRY:
4056           // alternate entry: name,,n_sect,linenumber,address
4057           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4058           type = eSymbolTypeLineEntry;
4059           break;
4060 
4061         // Left and Right Braces
4062         case N_LBRAC:
4063           // left bracket: 0,,NO_SECT,nesting level,address We use the
4064           // current number of symbols in the symbol table in lieu of using
4065           // nlist_idx in case we ever start trimming entries out
4066           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4067           N_BRAC_indexes.push_back(sym_idx);
4068           type = eSymbolTypeScopeBegin;
4069           break;
4070 
4071         case N_RBRAC:
4072           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4073           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4074           // can always skip the entire symbol if we need to navigate more
4075           // quickly at the source level when parsing STABS
4076           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4077           if (!N_BRAC_indexes.empty()) {
4078             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4079             symbol_ptr->SetByteSize(sym_idx + 1);
4080             symbol_ptr->SetSizeIsSibling(true);
4081             N_BRAC_indexes.pop_back();
4082           }
4083           type = eSymbolTypeScopeEnd;
4084           break;
4085 
4086         case N_EXCL:
4087           // deleted include file: name,,NO_SECT,0,sum
4088           type = eSymbolTypeHeaderFile;
4089           break;
4090 
4091         // COMM scopes
4092         case N_BCOMM:
4093           // begin common: name,,NO_SECT,0,0
4094           // We use the current number of symbols in the symbol table in lieu
4095           // of using nlist_idx in case we ever start trimming entries out
4096           type = eSymbolTypeScopeBegin;
4097           N_COMM_indexes.push_back(sym_idx);
4098           break;
4099 
4100         case N_ECOML:
4101           // end common (local name): 0,,n_sect,0,address
4102           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4103           LLVM_FALLTHROUGH;
4104 
4105         case N_ECOMM:
4106           // end common: name,,n_sect,0,0
4107           // Set the size of the N_BCOMM to the terminating index of this
4108           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4109           // we need to navigate more quickly at the source level when
4110           // parsing STABS
4111           if (!N_COMM_indexes.empty()) {
4112             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4113             symbol_ptr->SetByteSize(sym_idx + 1);
4114             symbol_ptr->SetSizeIsSibling(true);
4115             N_COMM_indexes.pop_back();
4116           }
4117           type = eSymbolTypeScopeEnd;
4118           break;
4119 
4120         case N_LENG:
4121           // second stab entry with length information
4122           type = eSymbolTypeAdditional;
4123           break;
4124 
4125         default:
4126           break;
4127         }
4128       } else {
4129         uint8_t n_type = N_TYPE & nlist.n_type;
4130         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4131 
4132         switch (n_type) {
4133         case N_INDR: {
4134           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4135           if (reexport_name_cstr && reexport_name_cstr[0]) {
4136             type = eSymbolTypeReExported;
4137             ConstString reexport_name(reexport_name_cstr +
4138                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4139             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4140             set_value = false;
4141             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4142             indirect_symbol_names.insert(
4143                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4144           } else
4145             type = eSymbolTypeUndefined;
4146         } break;
4147 
4148         case N_UNDF:
4149           if (symbol_name && symbol_name[0]) {
4150             ConstString undefined_name(symbol_name +
4151                                        ((symbol_name[0] == '_') ? 1 : 0));
4152             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4153           }
4154           LLVM_FALLTHROUGH;
4155 
4156         case N_PBUD:
4157           type = eSymbolTypeUndefined;
4158           break;
4159 
4160         case N_ABS:
4161           type = eSymbolTypeAbsolute;
4162           break;
4163 
4164         case N_SECT: {
4165           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4166 
4167           if (!symbol_section) {
4168             // TODO: warn about this?
4169             add_nlist = false;
4170             break;
4171           }
4172 
4173           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4174             type = eSymbolTypeException;
4175           } else {
4176             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4177 
4178             switch (section_type) {
4179             case S_CSTRING_LITERALS:
4180               type = eSymbolTypeData;
4181               break; // section with only literal C strings
4182             case S_4BYTE_LITERALS:
4183               type = eSymbolTypeData;
4184               break; // section with only 4 byte literals
4185             case S_8BYTE_LITERALS:
4186               type = eSymbolTypeData;
4187               break; // section with only 8 byte literals
4188             case S_LITERAL_POINTERS:
4189               type = eSymbolTypeTrampoline;
4190               break; // section with only pointers to literals
4191             case S_NON_LAZY_SYMBOL_POINTERS:
4192               type = eSymbolTypeTrampoline;
4193               break; // section with only non-lazy symbol pointers
4194             case S_LAZY_SYMBOL_POINTERS:
4195               type = eSymbolTypeTrampoline;
4196               break; // section with only lazy symbol pointers
4197             case S_SYMBOL_STUBS:
4198               type = eSymbolTypeTrampoline;
4199               break; // section with only symbol stubs, byte size of stub in
4200                      // the reserved2 field
4201             case S_MOD_INIT_FUNC_POINTERS:
4202               type = eSymbolTypeCode;
4203               break; // section with only function pointers for initialization
4204             case S_MOD_TERM_FUNC_POINTERS:
4205               type = eSymbolTypeCode;
4206               break; // section with only function pointers for termination
4207             case S_INTERPOSING:
4208               type = eSymbolTypeTrampoline;
4209               break; // section with only pairs of function pointers for
4210                      // interposing
4211             case S_16BYTE_LITERALS:
4212               type = eSymbolTypeData;
4213               break; // section with only 16 byte literals
4214             case S_DTRACE_DOF:
4215               type = eSymbolTypeInstrumentation;
4216               break;
4217             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4218               type = eSymbolTypeTrampoline;
4219               break;
4220             default:
4221               switch (symbol_section->GetType()) {
4222               case lldb::eSectionTypeCode:
4223                 type = eSymbolTypeCode;
4224                 break;
4225               case eSectionTypeData:
4226               case eSectionTypeDataCString:         // Inlined C string data
4227               case eSectionTypeDataCStringPointers: // Pointers to C string
4228                                                     // data
4229               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4230                                                     // the symbol table
4231               case eSectionTypeData4:
4232               case eSectionTypeData8:
4233               case eSectionTypeData16:
4234                 type = eSymbolTypeData;
4235                 break;
4236               default:
4237                 break;
4238               }
4239               break;
4240             }
4241 
4242             if (type == eSymbolTypeInvalid) {
4243               const char *symbol_sect_name =
4244                   symbol_section->GetName().AsCString();
4245               if (symbol_section->IsDescendant(text_section_sp.get())) {
4246                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4247                                             S_ATTR_SELF_MODIFYING_CODE |
4248                                             S_ATTR_SOME_INSTRUCTIONS))
4249                   type = eSymbolTypeData;
4250                 else
4251                   type = eSymbolTypeCode;
4252               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4253                          symbol_section->IsDescendant(
4254                              data_dirty_section_sp.get()) ||
4255                          symbol_section->IsDescendant(
4256                              data_const_section_sp.get())) {
4257                 if (symbol_sect_name &&
4258                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4259                   type = eSymbolTypeRuntime;
4260 
4261                   if (symbol_name) {
4262                     llvm::StringRef symbol_name_ref(symbol_name);
4263                     if (symbol_name_ref.startswith("_OBJC_")) {
4264                       llvm::StringRef g_objc_v2_prefix_class(
4265                           "_OBJC_CLASS_$_");
4266                       llvm::StringRef g_objc_v2_prefix_metaclass(
4267                           "_OBJC_METACLASS_$_");
4268                       llvm::StringRef g_objc_v2_prefix_ivar(
4269                           "_OBJC_IVAR_$_");
4270                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4271                         symbol_name_non_abi_mangled = symbol_name + 1;
4272                         symbol_name =
4273                             symbol_name + g_objc_v2_prefix_class.size();
4274                         type = eSymbolTypeObjCClass;
4275                         demangled_is_synthesized = true;
4276                       } else if (symbol_name_ref.startswith(
4277                                      g_objc_v2_prefix_metaclass)) {
4278                         symbol_name_non_abi_mangled = symbol_name + 1;
4279                         symbol_name =
4280                             symbol_name + g_objc_v2_prefix_metaclass.size();
4281                         type = eSymbolTypeObjCMetaClass;
4282                         demangled_is_synthesized = true;
4283                       } else if (symbol_name_ref.startswith(
4284                                      g_objc_v2_prefix_ivar)) {
4285                         symbol_name_non_abi_mangled = symbol_name + 1;
4286                         symbol_name =
4287                             symbol_name + g_objc_v2_prefix_ivar.size();
4288                         type = eSymbolTypeObjCIVar;
4289                         demangled_is_synthesized = true;
4290                       }
4291                     }
4292                   }
4293                 } else if (symbol_sect_name &&
4294                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4295                                symbol_sect_name) {
4296                   type = eSymbolTypeException;
4297                 } else {
4298                   type = eSymbolTypeData;
4299                 }
4300               } else if (symbol_sect_name &&
4301                          ::strstr(symbol_sect_name, "__IMPORT") ==
4302                              symbol_sect_name) {
4303                 type = eSymbolTypeTrampoline;
4304               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4305                 type = eSymbolTypeRuntime;
4306                 if (symbol_name && symbol_name[0] == '.') {
4307                   llvm::StringRef symbol_name_ref(symbol_name);
4308                   llvm::StringRef g_objc_v1_prefix_class(
4309                       ".objc_class_name_");
4310                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4311                     symbol_name_non_abi_mangled = symbol_name;
4312                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4313                     type = eSymbolTypeObjCClass;
4314                     demangled_is_synthesized = true;
4315                   }
4316                 }
4317               }
4318             }
4319           }
4320         } break;
4321         }
4322       }
4323 
4324       if (!add_nlist) {
4325         sym[sym_idx].Clear();
4326         return true;
4327       }
4328 
4329       uint64_t symbol_value = nlist.n_value;
4330 
4331       if (symbol_name_non_abi_mangled) {
4332         sym[sym_idx].GetMangled().SetMangledName(
4333             ConstString(symbol_name_non_abi_mangled));
4334         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4335       } else {
4336         bool symbol_name_is_mangled = false;
4337 
4338         if (symbol_name && symbol_name[0] == '_') {
4339           symbol_name_is_mangled = symbol_name[1] == '_';
4340           symbol_name++; // Skip the leading underscore
4341         }
4342 
4343         if (symbol_name) {
4344           ConstString const_symbol_name(symbol_name);
4345           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4346                                              symbol_name_is_mangled);
4347         }
4348       }
4349 
4350       if (is_gsym) {
4351         const char *gsym_name = sym[sym_idx]
4352                                     .GetMangled()
4353                                     .GetName(Mangled::ePreferMangled)
4354                                     .GetCString();
4355         if (gsym_name)
4356           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4357       }
4358 
4359       if (symbol_section) {
4360         const addr_t section_file_addr = symbol_section->GetFileAddress();
4361         if (symbol_byte_size == 0 && function_starts_count > 0) {
4362           addr_t symbol_lookup_file_addr = nlist.n_value;
4363           // Do an exact address match for non-ARM addresses, else get the
4364           // closest since the symbol might be a thumb symbol which has an
4365           // address with bit zero set.
4366           FunctionStarts::Entry *func_start_entry =
4367               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4368           if (is_arm && func_start_entry) {
4369             // Verify that the function start address is the symbol address
4370             // (ARM) or the symbol address + 1 (thumb).
4371             if (func_start_entry->addr != symbol_lookup_file_addr &&
4372                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4373               // Not the right entry, NULL it out...
4374               func_start_entry = nullptr;
4375             }
4376           }
4377           if (func_start_entry) {
4378             func_start_entry->data = true;
4379 
4380             addr_t symbol_file_addr = func_start_entry->addr;
4381             if (is_arm)
4382               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4383 
4384             const FunctionStarts::Entry *next_func_start_entry =
4385                 function_starts.FindNextEntry(func_start_entry);
4386             const addr_t section_end_file_addr =
4387                 section_file_addr + symbol_section->GetByteSize();
4388             if (next_func_start_entry) {
4389               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4390               // Be sure the clear the Thumb address bit when we calculate the
4391               // size from the current and next address
4392               if (is_arm)
4393                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4394               symbol_byte_size = std::min<lldb::addr_t>(
4395                   next_symbol_file_addr - symbol_file_addr,
4396                   section_end_file_addr - symbol_file_addr);
4397             } else {
4398               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4399             }
4400           }
4401         }
4402         symbol_value -= section_file_addr;
4403       }
4404 
4405       if (!is_debug) {
4406         if (type == eSymbolTypeCode) {
4407           // See if we can find a N_FUN entry for any code symbols. If we do
4408           // find a match, and the name matches, then we can merge the two into
4409           // just the function symbol to avoid duplicate entries in the symbol
4410           // table.
4411           std::pair<ValueToSymbolIndexMap::const_iterator,
4412                     ValueToSymbolIndexMap::const_iterator>
4413               range;
4414           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4415           if (range.first != range.second) {
4416             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4417                  pos != range.second; ++pos) {
4418               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4419                   sym[pos->second].GetMangled().GetName(
4420                       Mangled::ePreferMangled)) {
4421                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4422                 // We just need the flags from the linker symbol, so put these
4423                 // flags into the N_FUN flags to avoid duplicate symbols in the
4424                 // symbol table.
4425                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4426                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4427                 if (resolver_addresses.find(nlist.n_value) !=
4428                     resolver_addresses.end())
4429                   sym[pos->second].SetType(eSymbolTypeResolver);
4430                 sym[sym_idx].Clear();
4431                 return true;
4432               }
4433             }
4434           } else {
4435             if (resolver_addresses.find(nlist.n_value) !=
4436                 resolver_addresses.end())
4437               type = eSymbolTypeResolver;
4438           }
4439         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4440                    type == eSymbolTypeObjCMetaClass ||
4441                    type == eSymbolTypeObjCIVar) {
4442           // See if we can find a N_STSYM entry for any data symbols. If we do
4443           // find a match, and the name matches, then we can merge the two into
4444           // just the Static symbol to avoid duplicate entries in the symbol
4445           // table.
4446           std::pair<ValueToSymbolIndexMap::const_iterator,
4447                     ValueToSymbolIndexMap::const_iterator>
4448               range;
4449           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4450           if (range.first != range.second) {
4451             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4452                  pos != range.second; ++pos) {
4453               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4454                   sym[pos->second].GetMangled().GetName(
4455                       Mangled::ePreferMangled)) {
4456                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4457                 // We just need the flags from the linker symbol, so put these
4458                 // flags into the N_STSYM flags to avoid duplicate symbols in
4459                 // the symbol table.
4460                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4461                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4462                 sym[sym_idx].Clear();
4463                 return true;
4464               }
4465             }
4466           } else {
4467             // Combine N_GSYM stab entries with the non stab symbol.
4468             const char *gsym_name = sym[sym_idx]
4469                                         .GetMangled()
4470                                         .GetName(Mangled::ePreferMangled)
4471                                         .GetCString();
4472             if (gsym_name) {
4473               ConstNameToSymbolIndexMap::const_iterator pos =
4474                   N_GSYM_name_to_sym_idx.find(gsym_name);
4475               if (pos != N_GSYM_name_to_sym_idx.end()) {
4476                 const uint32_t GSYM_sym_idx = pos->second;
4477                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4478                 // Copy the address, because often the N_GSYM address has an
4479                 // invalid address of zero when the global is a common symbol.
4480                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4481                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4482                 symbols_added.insert(
4483                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4484                 // We just need the flags from the linker symbol, so put these
4485                 // flags into the N_GSYM flags to avoid duplicate symbols in
4486                 // the symbol table.
4487                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4488                 sym[sym_idx].Clear();
4489                 return true;
4490               }
4491             }
4492           }
4493         }
4494       }
4495 
4496       sym[sym_idx].SetID(nlist_idx);
4497       sym[sym_idx].SetType(type);
4498       if (set_value) {
4499         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4500         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4501         symbols_added.insert(sym[sym_idx].GetAddress().GetFileAddress());
4502       }
4503       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4504       if (nlist.n_desc & N_WEAK_REF)
4505         sym[sym_idx].SetIsWeak(true);
4506 
4507       if (symbol_byte_size > 0)
4508         sym[sym_idx].SetByteSize(symbol_byte_size);
4509 
4510       if (demangled_is_synthesized)
4511         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4512 
4513       ++sym_idx;
4514       return true;
4515     };
4516 
4517     // First parse all the nlists but don't process them yet. See the next
4518     // comment for an explanation why.
4519     std::vector<struct nlist_64> nlists;
4520     nlists.reserve(symtab_load_command.nsyms);
4521     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4522       if (auto nlist =
4523               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4524         nlists.push_back(*nlist);
4525       else
4526         break;
4527     }
4528 
4529     // Now parse all the debug symbols. This is needed to merge non-debug
4530     // symbols in the next step. Non-debug symbols are always coalesced into
4531     // the debug symbol. Doing this in one step would mean that some symbols
4532     // won't be merged.
4533     nlist_idx = 0;
4534     for (auto &nlist : nlists) {
4535       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4536         break;
4537     }
4538 
4539     // Finally parse all the non debug symbols.
4540     nlist_idx = 0;
4541     for (auto &nlist : nlists) {
4542       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4543         break;
4544     }
4545 
4546     for (const auto &pos : reexport_shlib_needs_fixup) {
4547       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4548       if (undef_pos != undefined_name_to_desc.end()) {
4549         const uint8_t dylib_ordinal =
4550             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4551         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4552           sym[pos.first].SetReExportedSymbolSharedLibrary(
4553               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4554       }
4555     }
4556   }
4557 
4558   // Count how many trie symbols we'll add to the symbol table
4559   int trie_symbol_table_augment_count = 0;
4560   for (auto &e : external_sym_trie_entries) {
4561     if (symbols_added.find(e.entry.address) == symbols_added.end())
4562       trie_symbol_table_augment_count++;
4563   }
4564 
4565   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4566     num_syms = sym_idx + trie_symbol_table_augment_count;
4567     sym = symtab->Resize(num_syms);
4568   }
4569   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4570 
4571   // Add symbols from the trie to the symbol table.
4572   for (auto &e : external_sym_trie_entries) {
4573     if (symbols_added.find(e.entry.address) != symbols_added.end())
4574       continue;
4575 
4576     // Find the section that this trie address is in, use that to annotate
4577     // symbol type as we add the trie address and name to the symbol table.
4578     Address symbol_addr;
4579     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4580       SectionSP symbol_section(symbol_addr.GetSection());
4581       const char *symbol_name = e.entry.name.GetCString();
4582       bool demangled_is_synthesized = false;
4583       SymbolType type =
4584           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4585                         data_section_sp, data_dirty_section_sp,
4586                         data_const_section_sp, symbol_section);
4587 
4588       sym[sym_idx].SetType(type);
4589       if (symbol_section) {
4590         sym[sym_idx].SetID(synthetic_sym_id++);
4591         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4592         if (demangled_is_synthesized)
4593           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4594         sym[sym_idx].SetIsSynthetic(true);
4595         sym[sym_idx].SetExternal(true);
4596         sym[sym_idx].GetAddressRef() = symbol_addr;
4597         symbols_added.insert(symbol_addr.GetFileAddress());
4598         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4599           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4600         ++sym_idx;
4601       }
4602     }
4603   }
4604 
4605   if (function_starts_count > 0) {
4606     uint32_t num_synthetic_function_symbols = 0;
4607     for (i = 0; i < function_starts_count; ++i) {
4608       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4609           symbols_added.end())
4610         ++num_synthetic_function_symbols;
4611     }
4612 
4613     if (num_synthetic_function_symbols > 0) {
4614       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4615         num_syms = sym_idx + num_synthetic_function_symbols;
4616         sym = symtab->Resize(num_syms);
4617       }
4618       for (i = 0; i < function_starts_count; ++i) {
4619         const FunctionStarts::Entry *func_start_entry =
4620             function_starts.GetEntryAtIndex(i);
4621         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4622           addr_t symbol_file_addr = func_start_entry->addr;
4623           uint32_t symbol_flags = 0;
4624           if (func_start_entry->data)
4625             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4626           Address symbol_addr;
4627           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4628             SectionSP symbol_section(symbol_addr.GetSection());
4629             uint32_t symbol_byte_size = 0;
4630             if (symbol_section) {
4631               const addr_t section_file_addr = symbol_section->GetFileAddress();
4632               const FunctionStarts::Entry *next_func_start_entry =
4633                   function_starts.FindNextEntry(func_start_entry);
4634               const addr_t section_end_file_addr =
4635                   section_file_addr + symbol_section->GetByteSize();
4636               if (next_func_start_entry) {
4637                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4638                 if (is_arm)
4639                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4640                 symbol_byte_size = std::min<lldb::addr_t>(
4641                     next_symbol_file_addr - symbol_file_addr,
4642                     section_end_file_addr - symbol_file_addr);
4643               } else {
4644                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4645               }
4646               sym[sym_idx].SetID(synthetic_sym_id++);
4647               sym[sym_idx].GetMangled().SetDemangledName(
4648                   GetNextSyntheticSymbolName());
4649               sym[sym_idx].SetType(eSymbolTypeCode);
4650               sym[sym_idx].SetIsSynthetic(true);
4651               sym[sym_idx].GetAddressRef() = symbol_addr;
4652               symbols_added.insert(symbol_addr.GetFileAddress());
4653               if (symbol_flags)
4654                 sym[sym_idx].SetFlags(symbol_flags);
4655               if (symbol_byte_size)
4656                 sym[sym_idx].SetByteSize(symbol_byte_size);
4657               ++sym_idx;
4658             }
4659           }
4660         }
4661       }
4662     }
4663   }
4664 
4665   // Trim our symbols down to just what we ended up with after removing any
4666   // symbols.
4667   if (sym_idx < num_syms) {
4668     num_syms = sym_idx;
4669     sym = symtab->Resize(num_syms);
4670   }
4671 
4672   // Now synthesize indirect symbols
4673   if (m_dysymtab.nindirectsyms != 0) {
4674     if (indirect_symbol_index_data.GetByteSize()) {
4675       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4676           m_nlist_idx_to_sym_idx.end();
4677 
4678       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4679            ++sect_idx) {
4680         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4681             S_SYMBOL_STUBS) {
4682           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4683           if (symbol_stub_byte_size == 0)
4684             continue;
4685 
4686           const uint32_t num_symbol_stubs =
4687               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4688 
4689           if (num_symbol_stubs == 0)
4690             continue;
4691 
4692           const uint32_t symbol_stub_index_offset =
4693               m_mach_sections[sect_idx].reserved1;
4694           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4695             const uint32_t symbol_stub_index =
4696                 symbol_stub_index_offset + stub_idx;
4697             const lldb::addr_t symbol_stub_addr =
4698                 m_mach_sections[sect_idx].addr +
4699                 (stub_idx * symbol_stub_byte_size);
4700             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4701             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4702                     symbol_stub_offset, 4)) {
4703               const uint32_t stub_sym_id =
4704                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4705               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4706                 continue;
4707 
4708               NListIndexToSymbolIndexMap::const_iterator index_pos =
4709                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4710               Symbol *stub_symbol = nullptr;
4711               if (index_pos != end_index_pos) {
4712                 // We have a remapping from the original nlist index to a
4713                 // current symbol index, so just look this up by index
4714                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4715               } else {
4716                 // We need to lookup a symbol using the original nlist symbol
4717                 // index since this index is coming from the S_SYMBOL_STUBS
4718                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4719               }
4720 
4721               if (stub_symbol) {
4722                 Address so_addr(symbol_stub_addr, section_list);
4723 
4724                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4725                   // Change the external symbol into a trampoline that makes
4726                   // sense These symbols were N_UNDF N_EXT, and are useless
4727                   // to us, so we can re-use them so we don't have to make up
4728                   // a synthetic symbol for no good reason.
4729                   if (resolver_addresses.find(symbol_stub_addr) ==
4730                       resolver_addresses.end())
4731                     stub_symbol->SetType(eSymbolTypeTrampoline);
4732                   else
4733                     stub_symbol->SetType(eSymbolTypeResolver);
4734                   stub_symbol->SetExternal(false);
4735                   stub_symbol->GetAddressRef() = so_addr;
4736                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4737                 } else {
4738                   // Make a synthetic symbol to describe the trampoline stub
4739                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4740                   if (sym_idx >= num_syms) {
4741                     sym = symtab->Resize(++num_syms);
4742                     stub_symbol = nullptr; // this pointer no longer valid
4743                   }
4744                   sym[sym_idx].SetID(synthetic_sym_id++);
4745                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4746                   if (resolver_addresses.find(symbol_stub_addr) ==
4747                       resolver_addresses.end())
4748                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4749                   else
4750                     sym[sym_idx].SetType(eSymbolTypeResolver);
4751                   sym[sym_idx].SetIsSynthetic(true);
4752                   sym[sym_idx].GetAddressRef() = so_addr;
4753                   symbols_added.insert(so_addr.GetFileAddress());
4754                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4755                   ++sym_idx;
4756                 }
4757               } else {
4758                 if (log)
4759                   log->Warning("symbol stub referencing symbol table symbol "
4760                                "%u that isn't in our minimal symbol table, "
4761                                "fix this!!!",
4762                                stub_sym_id);
4763               }
4764             }
4765           }
4766         }
4767       }
4768     }
4769   }
4770 
4771   if (!reexport_trie_entries.empty()) {
4772     for (const auto &e : reexport_trie_entries) {
4773       if (e.entry.import_name) {
4774         // Only add indirect symbols from the Trie entries if we didn't have
4775         // a N_INDR nlist entry for this already
4776         if (indirect_symbol_names.find(e.entry.name) ==
4777             indirect_symbol_names.end()) {
4778           // Make a synthetic symbol to describe re-exported symbol.
4779           if (sym_idx >= num_syms)
4780             sym = symtab->Resize(++num_syms);
4781           sym[sym_idx].SetID(synthetic_sym_id++);
4782           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4783           sym[sym_idx].SetType(eSymbolTypeReExported);
4784           sym[sym_idx].SetIsSynthetic(true);
4785           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4786           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4787             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4788                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4789           }
4790           ++sym_idx;
4791         }
4792       }
4793     }
4794   }
4795 
4796   //        StreamFile s(stdout, false);
4797   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4798   //        symtab->Dump(&s, NULL, eSortOrderNone);
4799   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4800   // sizes
4801   symtab->CalculateSymbolSizes();
4802 
4803   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4804   //        symtab->Dump(&s, NULL, eSortOrderNone);
4805 
4806   return symtab->GetNumSymbols();
4807 }
4808 
4809 void ObjectFileMachO::Dump(Stream *s) {
4810   ModuleSP module_sp(GetModule());
4811   if (module_sp) {
4812     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4813     s->Printf("%p: ", static_cast<void *>(this));
4814     s->Indent();
4815     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4816       s->PutCString("ObjectFileMachO64");
4817     else
4818       s->PutCString("ObjectFileMachO32");
4819 
4820     *s << ", file = '" << m_file;
4821     ModuleSpecList all_specs;
4822     ModuleSpec base_spec;
4823     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4824                     base_spec, all_specs);
4825     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4826       *s << "', triple";
4827       if (e)
4828         s->Printf("[%d]", i);
4829       *s << " = ";
4830       *s << all_specs.GetModuleSpecRefAtIndex(i)
4831                 .GetArchitecture()
4832                 .GetTriple()
4833                 .getTriple();
4834     }
4835     *s << "\n";
4836     SectionList *sections = GetSectionList();
4837     if (sections)
4838       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4839                      UINT32_MAX);
4840 
4841     if (m_symtab_up)
4842       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4843   }
4844 }
4845 
4846 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4847                               const lldb_private::DataExtractor &data,
4848                               lldb::offset_t lc_offset) {
4849   uint32_t i;
4850   struct uuid_command load_cmd;
4851 
4852   lldb::offset_t offset = lc_offset;
4853   for (i = 0; i < header.ncmds; ++i) {
4854     const lldb::offset_t cmd_offset = offset;
4855     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4856       break;
4857 
4858     if (load_cmd.cmd == LC_UUID) {
4859       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4860 
4861       if (uuid_bytes) {
4862         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4863         // We pretend these object files have no UUID to prevent crashing.
4864 
4865         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4866                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4867                                        0xbb, 0x14, 0xf0, 0x0d};
4868 
4869         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4870           return UUID();
4871 
4872         return UUID::fromOptionalData(uuid_bytes, 16);
4873       }
4874       return UUID();
4875     }
4876     offset = cmd_offset + load_cmd.cmdsize;
4877   }
4878   return UUID();
4879 }
4880 
4881 static llvm::StringRef GetOSName(uint32_t cmd) {
4882   switch (cmd) {
4883   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4884     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4885   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4886     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4887   case llvm::MachO::LC_VERSION_MIN_TVOS:
4888     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4889   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4890     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4891   default:
4892     llvm_unreachable("unexpected LC_VERSION load command");
4893   }
4894 }
4895 
4896 namespace {
4897 struct OSEnv {
4898   llvm::StringRef os_type;
4899   llvm::StringRef environment;
4900   OSEnv(uint32_t cmd) {
4901     switch (cmd) {
4902     case llvm::MachO::PLATFORM_MACOS:
4903       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4904       return;
4905     case llvm::MachO::PLATFORM_IOS:
4906       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4907       return;
4908     case llvm::MachO::PLATFORM_TVOS:
4909       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4910       return;
4911     case llvm::MachO::PLATFORM_WATCHOS:
4912       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4913       return;
4914       // NEED_BRIDGEOS_TRIPLE      case llvm::MachO::PLATFORM_BRIDGEOS:
4915       // NEED_BRIDGEOS_TRIPLE        os_type =
4916       // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4917       // NEED_BRIDGEOS_TRIPLE        return;
4918     case llvm::MachO::PLATFORM_MACCATALYST:
4919       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4920       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4921       return;
4922     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4923       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4924       environment =
4925           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4926       return;
4927     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4928       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4929       environment =
4930           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4931       return;
4932     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4933       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4934       environment =
4935           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4936       return;
4937     default: {
4938       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4939                                                       LIBLLDB_LOG_PROCESS));
4940       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4941     }
4942     }
4943   }
4944 };
4945 
4946 struct MinOS {
4947   uint32_t major_version, minor_version, patch_version;
4948   MinOS(uint32_t version)
4949       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4950         patch_version(version & 0xffu) {}
4951 };
4952 } // namespace
4953 
4954 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4955                                       const lldb_private::DataExtractor &data,
4956                                       lldb::offset_t lc_offset,
4957                                       ModuleSpec &base_spec,
4958                                       lldb_private::ModuleSpecList &all_specs) {
4959   auto &base_arch = base_spec.GetArchitecture();
4960   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4961   if (!base_arch.IsValid())
4962     return;
4963 
4964   bool found_any = false;
4965   auto add_triple = [&](const llvm::Triple &triple) {
4966     auto spec = base_spec;
4967     spec.GetArchitecture().GetTriple() = triple;
4968     if (spec.GetArchitecture().IsValid()) {
4969       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4970       all_specs.Append(spec);
4971       found_any = true;
4972     }
4973   };
4974 
4975   // Set OS to an unspecified unknown or a "*" so it can match any OS
4976   llvm::Triple base_triple = base_arch.GetTriple();
4977   base_triple.setOS(llvm::Triple::UnknownOS);
4978   base_triple.setOSName(llvm::StringRef());
4979 
4980   if (header.filetype == MH_PRELOAD) {
4981     if (header.cputype == CPU_TYPE_ARM) {
4982       // If this is a 32-bit arm binary, and it's a standalone binary, force
4983       // the Vendor to Apple so we don't accidentally pick up the generic
4984       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4985       // frame pointer register; most other armv7 ABIs use a combination of
4986       // r7 and r11.
4987       base_triple.setVendor(llvm::Triple::Apple);
4988     } else {
4989       // Set vendor to an unspecified unknown or a "*" so it can match any
4990       // vendor This is required for correct behavior of EFI debugging on
4991       // x86_64
4992       base_triple.setVendor(llvm::Triple::UnknownVendor);
4993       base_triple.setVendorName(llvm::StringRef());
4994     }
4995     return add_triple(base_triple);
4996   }
4997 
4998   struct load_command load_cmd;
4999 
5000   // See if there is an LC_VERSION_MIN_* load command that can give
5001   // us the OS type.
5002   lldb::offset_t offset = lc_offset;
5003   for (uint32_t i = 0; i < header.ncmds; ++i) {
5004     const lldb::offset_t cmd_offset = offset;
5005     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5006       break;
5007 
5008     struct version_min_command version_min;
5009     switch (load_cmd.cmd) {
5010     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5011     case llvm::MachO::LC_VERSION_MIN_MACOSX:
5012     case llvm::MachO::LC_VERSION_MIN_TVOS:
5013     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5014       if (load_cmd.cmdsize != sizeof(version_min))
5015         break;
5016       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5017                             data.GetByteOrder(), &version_min) == 0)
5018         break;
5019       MinOS min_os(version_min.version);
5020       llvm::SmallString<32> os_name;
5021       llvm::raw_svector_ostream os(os_name);
5022       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5023          << min_os.minor_version << '.' << min_os.patch_version;
5024 
5025       auto triple = base_triple;
5026       triple.setOSName(os.str());
5027       os_name.clear();
5028       add_triple(triple);
5029       break;
5030     }
5031     default:
5032       break;
5033     }
5034 
5035     offset = cmd_offset + load_cmd.cmdsize;
5036   }
5037 
5038   // See if there are LC_BUILD_VERSION load commands that can give
5039   // us the OS type.
5040   offset = lc_offset;
5041   for (uint32_t i = 0; i < header.ncmds; ++i) {
5042     const lldb::offset_t cmd_offset = offset;
5043     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5044       break;
5045 
5046     do {
5047       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5048         struct build_version_command build_version;
5049         if (load_cmd.cmdsize < sizeof(build_version)) {
5050           // Malformed load command.
5051           break;
5052         }
5053         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5054                               data.GetByteOrder(), &build_version) == 0)
5055           break;
5056         MinOS min_os(build_version.minos);
5057         OSEnv os_env(build_version.platform);
5058         llvm::SmallString<16> os_name;
5059         llvm::raw_svector_ostream os(os_name);
5060         os << os_env.os_type << min_os.major_version << '.'
5061            << min_os.minor_version << '.' << min_os.patch_version;
5062         auto triple = base_triple;
5063         triple.setOSName(os.str());
5064         os_name.clear();
5065         if (!os_env.environment.empty())
5066           triple.setEnvironmentName(os_env.environment);
5067         add_triple(triple);
5068       }
5069     } while (0);
5070     offset = cmd_offset + load_cmd.cmdsize;
5071   }
5072 
5073   if (!found_any) {
5074     if (header.filetype == MH_KEXT_BUNDLE) {
5075       base_triple.setVendor(llvm::Triple::Apple);
5076       add_triple(base_triple);
5077     } else {
5078       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5079       // so lets not say our Vendor is Apple, leave it as an unspecified
5080       // unknown.
5081       base_triple.setVendor(llvm::Triple::UnknownVendor);
5082       base_triple.setVendorName(llvm::StringRef());
5083       add_triple(base_triple);
5084     }
5085   }
5086 }
5087 
5088 ArchSpec ObjectFileMachO::GetArchitecture(
5089     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5090     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5091   ModuleSpecList all_specs;
5092   ModuleSpec base_spec;
5093   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5094                   base_spec, all_specs);
5095 
5096   // If the object file offers multiple alternative load commands,
5097   // pick the one that matches the module.
5098   if (module_sp) {
5099     const ArchSpec &module_arch = module_sp->GetArchitecture();
5100     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5101       ArchSpec mach_arch =
5102           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5103       if (module_arch.IsCompatibleMatch(mach_arch))
5104         return mach_arch;
5105     }
5106   }
5107 
5108   // Return the first arch we found.
5109   if (all_specs.GetSize() == 0)
5110     return {};
5111   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5112 }
5113 
5114 UUID ObjectFileMachO::GetUUID() {
5115   ModuleSP module_sp(GetModule());
5116   if (module_sp) {
5117     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5118     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5119     return GetUUID(m_header, m_data, offset);
5120   }
5121   return UUID();
5122 }
5123 
5124 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5125   uint32_t count = 0;
5126   ModuleSP module_sp(GetModule());
5127   if (module_sp) {
5128     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5129     struct load_command load_cmd;
5130     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5131     std::vector<std::string> rpath_paths;
5132     std::vector<std::string> rpath_relative_paths;
5133     std::vector<std::string> at_exec_relative_paths;
5134     uint32_t i;
5135     for (i = 0; i < m_header.ncmds; ++i) {
5136       const uint32_t cmd_offset = offset;
5137       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5138         break;
5139 
5140       switch (load_cmd.cmd) {
5141       case LC_RPATH:
5142       case LC_LOAD_DYLIB:
5143       case LC_LOAD_WEAK_DYLIB:
5144       case LC_REEXPORT_DYLIB:
5145       case LC_LOAD_DYLINKER:
5146       case LC_LOADFVMLIB:
5147       case LC_LOAD_UPWARD_DYLIB: {
5148         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5149         const char *path = m_data.PeekCStr(name_offset);
5150         if (path) {
5151           if (load_cmd.cmd == LC_RPATH)
5152             rpath_paths.push_back(path);
5153           else {
5154             if (path[0] == '@') {
5155               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5156                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5157               else if (strncmp(path, "@executable_path",
5158                                strlen("@executable_path")) == 0)
5159                 at_exec_relative_paths.push_back(path +
5160                                                  strlen("@executable_path"));
5161             } else {
5162               FileSpec file_spec(path);
5163               if (files.AppendIfUnique(file_spec))
5164                 count++;
5165             }
5166           }
5167         }
5168       } break;
5169 
5170       default:
5171         break;
5172       }
5173       offset = cmd_offset + load_cmd.cmdsize;
5174     }
5175 
5176     FileSpec this_file_spec(m_file);
5177     FileSystem::Instance().Resolve(this_file_spec);
5178 
5179     if (!rpath_paths.empty()) {
5180       // Fixup all LC_RPATH values to be absolute paths
5181       std::string loader_path("@loader_path");
5182       std::string executable_path("@executable_path");
5183       for (auto &rpath : rpath_paths) {
5184         if (llvm::StringRef(rpath).startswith(loader_path)) {
5185           rpath.erase(0, loader_path.size());
5186           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5187         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5188           rpath.erase(0, executable_path.size());
5189           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5190         }
5191       }
5192 
5193       for (const auto &rpath_relative_path : rpath_relative_paths) {
5194         for (const auto &rpath : rpath_paths) {
5195           std::string path = rpath;
5196           path += rpath_relative_path;
5197           // It is OK to resolve this path because we must find a file on disk
5198           // for us to accept it anyway if it is rpath relative.
5199           FileSpec file_spec(path);
5200           FileSystem::Instance().Resolve(file_spec);
5201           if (FileSystem::Instance().Exists(file_spec) &&
5202               files.AppendIfUnique(file_spec)) {
5203             count++;
5204             break;
5205           }
5206         }
5207       }
5208     }
5209 
5210     // We may have @executable_paths but no RPATHS.  Figure those out here.
5211     // Only do this if this object file is the executable.  We have no way to
5212     // get back to the actual executable otherwise, so we won't get the right
5213     // path.
5214     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5215       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5216       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5217         FileSpec file_spec =
5218             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5219         if (FileSystem::Instance().Exists(file_spec) &&
5220             files.AppendIfUnique(file_spec))
5221           count++;
5222       }
5223     }
5224   }
5225   return count;
5226 }
5227 
5228 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5229   // If the object file is not an executable it can't hold the entry point.
5230   // m_entry_point_address is initialized to an invalid address, so we can just
5231   // return that. If m_entry_point_address is valid it means we've found it
5232   // already, so return the cached value.
5233 
5234   if ((!IsExecutable() && !IsDynamicLoader()) ||
5235       m_entry_point_address.IsValid()) {
5236     return m_entry_point_address;
5237   }
5238 
5239   // Otherwise, look for the UnixThread or Thread command.  The data for the
5240   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5241   //
5242   //  uint32_t flavor  - this is the flavor argument you would pass to
5243   //  thread_get_state
5244   //  uint32_t count   - this is the count of longs in the thread state data
5245   //  struct XXX_thread_state state - this is the structure from
5246   //  <machine/thread_status.h> corresponding to the flavor.
5247   //  <repeat this trio>
5248   //
5249   // So we just keep reading the various register flavors till we find the GPR
5250   // one, then read the PC out of there.
5251   // FIXME: We will need to have a "RegisterContext data provider" class at some
5252   // point that can get all the registers
5253   // out of data in this form & attach them to a given thread.  That should
5254   // underlie the MacOS X User process plugin, and we'll also need it for the
5255   // MacOS X Core File process plugin.  When we have that we can also use it
5256   // here.
5257   //
5258   // For now we hard-code the offsets and flavors we need:
5259   //
5260   //
5261 
5262   ModuleSP module_sp(GetModule());
5263   if (module_sp) {
5264     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5265     struct load_command load_cmd;
5266     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5267     uint32_t i;
5268     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5269     bool done = false;
5270 
5271     for (i = 0; i < m_header.ncmds; ++i) {
5272       const lldb::offset_t cmd_offset = offset;
5273       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5274         break;
5275 
5276       switch (load_cmd.cmd) {
5277       case LC_UNIXTHREAD:
5278       case LC_THREAD: {
5279         while (offset < cmd_offset + load_cmd.cmdsize) {
5280           uint32_t flavor = m_data.GetU32(&offset);
5281           uint32_t count = m_data.GetU32(&offset);
5282           if (count == 0) {
5283             // We've gotten off somehow, log and exit;
5284             return m_entry_point_address;
5285           }
5286 
5287           switch (m_header.cputype) {
5288           case llvm::MachO::CPU_TYPE_ARM:
5289             if (flavor == 1 ||
5290                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5291                              // from mach/arm/thread_status.h
5292             {
5293               offset += 60; // This is the offset of pc in the GPR thread state
5294                             // data structure.
5295               start_address = m_data.GetU32(&offset);
5296               done = true;
5297             }
5298             break;
5299           case llvm::MachO::CPU_TYPE_ARM64:
5300           case llvm::MachO::CPU_TYPE_ARM64_32:
5301             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5302             {
5303               offset += 256; // This is the offset of pc in the GPR thread state
5304                              // data structure.
5305               start_address = m_data.GetU64(&offset);
5306               done = true;
5307             }
5308             break;
5309           case llvm::MachO::CPU_TYPE_I386:
5310             if (flavor ==
5311                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5312             {
5313               offset += 40; // This is the offset of eip in the GPR thread state
5314                             // data structure.
5315               start_address = m_data.GetU32(&offset);
5316               done = true;
5317             }
5318             break;
5319           case llvm::MachO::CPU_TYPE_X86_64:
5320             if (flavor ==
5321                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5322             {
5323               offset += 16 * 8; // This is the offset of rip in the GPR thread
5324                                 // state data structure.
5325               start_address = m_data.GetU64(&offset);
5326               done = true;
5327             }
5328             break;
5329           default:
5330             return m_entry_point_address;
5331           }
5332           // Haven't found the GPR flavor yet, skip over the data for this
5333           // flavor:
5334           if (done)
5335             break;
5336           offset += count * 4;
5337         }
5338       } break;
5339       case LC_MAIN: {
5340         ConstString text_segment_name("__TEXT");
5341         uint64_t entryoffset = m_data.GetU64(&offset);
5342         SectionSP text_segment_sp =
5343             GetSectionList()->FindSectionByName(text_segment_name);
5344         if (text_segment_sp) {
5345           done = true;
5346           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5347         }
5348       } break;
5349 
5350       default:
5351         break;
5352       }
5353       if (done)
5354         break;
5355 
5356       // Go to the next load command:
5357       offset = cmd_offset + load_cmd.cmdsize;
5358     }
5359 
5360     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5361       if (GetSymtab()) {
5362         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5363             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5364             Symtab::eDebugAny, Symtab::eVisibilityAny);
5365         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5366           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5367         }
5368       }
5369     }
5370 
5371     if (start_address != LLDB_INVALID_ADDRESS) {
5372       // We got the start address from the load commands, so now resolve that
5373       // address in the sections of this ObjectFile:
5374       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5375               start_address, GetSectionList())) {
5376         m_entry_point_address.Clear();
5377       }
5378     } else {
5379       // We couldn't read the UnixThread load command - maybe it wasn't there.
5380       // As a fallback look for the "start" symbol in the main executable.
5381 
5382       ModuleSP module_sp(GetModule());
5383 
5384       if (module_sp) {
5385         SymbolContextList contexts;
5386         SymbolContext context;
5387         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5388                                               eSymbolTypeCode, contexts);
5389         if (contexts.GetSize()) {
5390           if (contexts.GetContextAtIndex(0, context))
5391             m_entry_point_address = context.symbol->GetAddress();
5392         }
5393       }
5394     }
5395   }
5396 
5397   return m_entry_point_address;
5398 }
5399 
5400 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5401   lldb_private::Address header_addr;
5402   SectionList *section_list = GetSectionList();
5403   if (section_list) {
5404     SectionSP text_segment_sp(
5405         section_list->FindSectionByName(GetSegmentNameTEXT()));
5406     if (text_segment_sp) {
5407       header_addr.SetSection(text_segment_sp);
5408       header_addr.SetOffset(0);
5409     }
5410   }
5411   return header_addr;
5412 }
5413 
5414 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5415   ModuleSP module_sp(GetModule());
5416   if (module_sp) {
5417     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5418     if (!m_thread_context_offsets_valid) {
5419       m_thread_context_offsets_valid = true;
5420       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5421       FileRangeArray::Entry file_range;
5422       thread_command thread_cmd;
5423       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5424         const uint32_t cmd_offset = offset;
5425         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5426           break;
5427 
5428         if (thread_cmd.cmd == LC_THREAD) {
5429           file_range.SetRangeBase(offset);
5430           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5431           m_thread_context_offsets.Append(file_range);
5432         }
5433         offset = cmd_offset + thread_cmd.cmdsize;
5434       }
5435     }
5436   }
5437   return m_thread_context_offsets.GetSize();
5438 }
5439 
5440 std::string ObjectFileMachO::GetIdentifierString() {
5441   std::string result;
5442   ModuleSP module_sp(GetModule());
5443   if (module_sp) {
5444     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5445 
5446     // First, look over the load commands for an LC_NOTE load command with
5447     // data_owner string "kern ver str" & use that if found.
5448     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5449     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5450       const uint32_t cmd_offset = offset;
5451       load_command lc;
5452       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5453         break;
5454       if (lc.cmd == LC_NOTE) {
5455         char data_owner[17];
5456         m_data.CopyData(offset, 16, data_owner);
5457         data_owner[16] = '\0';
5458         offset += 16;
5459         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5460         uint64_t size = m_data.GetU64_unchecked(&offset);
5461 
5462         // "kern ver str" has a uint32_t version and then a nul terminated
5463         // c-string.
5464         if (strcmp("kern ver str", data_owner) == 0) {
5465           offset = fileoff;
5466           uint32_t version;
5467           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5468             if (version == 1) {
5469               uint32_t strsize = size - sizeof(uint32_t);
5470               char *buf = (char *)malloc(strsize);
5471               if (buf) {
5472                 m_data.CopyData(offset, strsize, buf);
5473                 buf[strsize - 1] = '\0';
5474                 result = buf;
5475                 if (buf)
5476                   free(buf);
5477                 return result;
5478               }
5479             }
5480           }
5481         }
5482       }
5483       offset = cmd_offset + lc.cmdsize;
5484     }
5485 
5486     // Second, make a pass over the load commands looking for an obsolete
5487     // LC_IDENT load command.
5488     offset = MachHeaderSizeFromMagic(m_header.magic);
5489     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5490       const uint32_t cmd_offset = offset;
5491       struct ident_command ident_command;
5492       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5493         break;
5494       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5495         char *buf = (char *)malloc(ident_command.cmdsize);
5496         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5497                                               buf) == ident_command.cmdsize) {
5498           buf[ident_command.cmdsize - 1] = '\0';
5499           result = buf;
5500         }
5501         if (buf)
5502           free(buf);
5503       }
5504       offset = cmd_offset + ident_command.cmdsize;
5505     }
5506   }
5507   return result;
5508 }
5509 
5510 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid) {
5511   address = LLDB_INVALID_ADDRESS;
5512   uuid.Clear();
5513   ModuleSP module_sp(GetModule());
5514   if (module_sp) {
5515     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5516     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5517     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5518       const uint32_t cmd_offset = offset;
5519       load_command lc;
5520       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5521         break;
5522       if (lc.cmd == LC_NOTE) {
5523         char data_owner[17];
5524         memset(data_owner, 0, sizeof(data_owner));
5525         m_data.CopyData(offset, 16, data_owner);
5526         offset += 16;
5527         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5528         uint64_t size = m_data.GetU64_unchecked(&offset);
5529 
5530         // "main bin spec" (main binary specification) data payload is
5531         // formatted:
5532         //    uint32_t version       [currently 1]
5533         //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user
5534         //    process] uint64_t address       [ UINT64_MAX if address not
5535         //    specified ] uuid_t   uuid          [ all zero's if uuid not
5536         //    specified ] uint32_t log2_pagesize [ process page size in log base
5537         //    2, e.g. 4k pages are 12.  0 for unspecified ]
5538 
5539         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5540           offset = fileoff;
5541           uint32_t version;
5542           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5543             uint32_t type = 0;
5544             uuid_t raw_uuid;
5545             memset(raw_uuid, 0, sizeof(uuid_t));
5546 
5547             if (m_data.GetU32(&offset, &type, 1) &&
5548                 m_data.GetU64(&offset, &address, 1) &&
5549                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5550               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5551               return true;
5552             }
5553           }
5554         }
5555       }
5556       offset = cmd_offset + lc.cmdsize;
5557     }
5558   }
5559   return false;
5560 }
5561 
5562 lldb::RegisterContextSP
5563 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5564                                          lldb_private::Thread &thread) {
5565   lldb::RegisterContextSP reg_ctx_sp;
5566 
5567   ModuleSP module_sp(GetModule());
5568   if (module_sp) {
5569     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5570     if (!m_thread_context_offsets_valid)
5571       GetNumThreadContexts();
5572 
5573     const FileRangeArray::Entry *thread_context_file_range =
5574         m_thread_context_offsets.GetEntryAtIndex(idx);
5575     if (thread_context_file_range) {
5576 
5577       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5578                          thread_context_file_range->GetByteSize());
5579 
5580       switch (m_header.cputype) {
5581       case llvm::MachO::CPU_TYPE_ARM64:
5582       case llvm::MachO::CPU_TYPE_ARM64_32:
5583         reg_ctx_sp =
5584             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5585         break;
5586 
5587       case llvm::MachO::CPU_TYPE_ARM:
5588         reg_ctx_sp =
5589             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5590         break;
5591 
5592       case llvm::MachO::CPU_TYPE_I386:
5593         reg_ctx_sp =
5594             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5595         break;
5596 
5597       case llvm::MachO::CPU_TYPE_X86_64:
5598         reg_ctx_sp =
5599             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5600         break;
5601       }
5602     }
5603   }
5604   return reg_ctx_sp;
5605 }
5606 
5607 ObjectFile::Type ObjectFileMachO::CalculateType() {
5608   switch (m_header.filetype) {
5609   case MH_OBJECT: // 0x1u
5610     if (GetAddressByteSize() == 4) {
5611       // 32 bit kexts are just object files, but they do have a valid
5612       // UUID load command.
5613       if (GetUUID()) {
5614         // this checking for the UUID load command is not enough we could
5615         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5616         // this is required of kexts
5617         if (m_strata == eStrataInvalid)
5618           m_strata = eStrataKernel;
5619         return eTypeSharedLibrary;
5620       }
5621     }
5622     return eTypeObjectFile;
5623 
5624   case MH_EXECUTE:
5625     return eTypeExecutable; // 0x2u
5626   case MH_FVMLIB:
5627     return eTypeSharedLibrary; // 0x3u
5628   case MH_CORE:
5629     return eTypeCoreFile; // 0x4u
5630   case MH_PRELOAD:
5631     return eTypeSharedLibrary; // 0x5u
5632   case MH_DYLIB:
5633     return eTypeSharedLibrary; // 0x6u
5634   case MH_DYLINKER:
5635     return eTypeDynamicLinker; // 0x7u
5636   case MH_BUNDLE:
5637     return eTypeSharedLibrary; // 0x8u
5638   case MH_DYLIB_STUB:
5639     return eTypeStubLibrary; // 0x9u
5640   case MH_DSYM:
5641     return eTypeDebugInfo; // 0xAu
5642   case MH_KEXT_BUNDLE:
5643     return eTypeSharedLibrary; // 0xBu
5644   default:
5645     break;
5646   }
5647   return eTypeUnknown;
5648 }
5649 
5650 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5651   switch (m_header.filetype) {
5652   case MH_OBJECT: // 0x1u
5653   {
5654     // 32 bit kexts are just object files, but they do have a valid
5655     // UUID load command.
5656     if (GetUUID()) {
5657       // this checking for the UUID load command is not enough we could
5658       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5659       // this is required of kexts
5660       if (m_type == eTypeInvalid)
5661         m_type = eTypeSharedLibrary;
5662 
5663       return eStrataKernel;
5664     }
5665   }
5666     return eStrataUnknown;
5667 
5668   case MH_EXECUTE: // 0x2u
5669     // Check for the MH_DYLDLINK bit in the flags
5670     if (m_header.flags & MH_DYLDLINK) {
5671       return eStrataUser;
5672     } else {
5673       SectionList *section_list = GetSectionList();
5674       if (section_list) {
5675         static ConstString g_kld_section_name("__KLD");
5676         if (section_list->FindSectionByName(g_kld_section_name))
5677           return eStrataKernel;
5678       }
5679     }
5680     return eStrataRawImage;
5681 
5682   case MH_FVMLIB:
5683     return eStrataUser; // 0x3u
5684   case MH_CORE:
5685     return eStrataUnknown; // 0x4u
5686   case MH_PRELOAD:
5687     return eStrataRawImage; // 0x5u
5688   case MH_DYLIB:
5689     return eStrataUser; // 0x6u
5690   case MH_DYLINKER:
5691     return eStrataUser; // 0x7u
5692   case MH_BUNDLE:
5693     return eStrataUser; // 0x8u
5694   case MH_DYLIB_STUB:
5695     return eStrataUser; // 0x9u
5696   case MH_DSYM:
5697     return eStrataUnknown; // 0xAu
5698   case MH_KEXT_BUNDLE:
5699     return eStrataKernel; // 0xBu
5700   default:
5701     break;
5702   }
5703   return eStrataUnknown;
5704 }
5705 
5706 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5707   ModuleSP module_sp(GetModule());
5708   if (module_sp) {
5709     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5710     struct dylib_command load_cmd;
5711     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5712     uint32_t version_cmd = 0;
5713     uint64_t version = 0;
5714     uint32_t i;
5715     for (i = 0; i < m_header.ncmds; ++i) {
5716       const lldb::offset_t cmd_offset = offset;
5717       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5718         break;
5719 
5720       if (load_cmd.cmd == LC_ID_DYLIB) {
5721         if (version_cmd == 0) {
5722           version_cmd = load_cmd.cmd;
5723           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5724             break;
5725           version = load_cmd.dylib.current_version;
5726         }
5727         break; // Break for now unless there is another more complete version
5728                // number load command in the future.
5729       }
5730       offset = cmd_offset + load_cmd.cmdsize;
5731     }
5732 
5733     if (version_cmd == LC_ID_DYLIB) {
5734       unsigned major = (version & 0xFFFF0000ull) >> 16;
5735       unsigned minor = (version & 0x0000FF00ull) >> 8;
5736       unsigned subminor = (version & 0x000000FFull);
5737       return llvm::VersionTuple(major, minor, subminor);
5738     }
5739   }
5740   return llvm::VersionTuple();
5741 }
5742 
5743 ArchSpec ObjectFileMachO::GetArchitecture() {
5744   ModuleSP module_sp(GetModule());
5745   ArchSpec arch;
5746   if (module_sp) {
5747     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5748 
5749     return GetArchitecture(module_sp, m_header, m_data,
5750                            MachHeaderSizeFromMagic(m_header.magic));
5751   }
5752   return arch;
5753 }
5754 
5755 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5756                                                 addr_t &base_addr, UUID &uuid) {
5757   uuid.Clear();
5758   base_addr = LLDB_INVALID_ADDRESS;
5759   if (process && process->GetDynamicLoader()) {
5760     DynamicLoader *dl = process->GetDynamicLoader();
5761     LazyBool using_shared_cache;
5762     LazyBool private_shared_cache;
5763     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5764                                   private_shared_cache);
5765   }
5766   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5767                                                   LIBLLDB_LOG_PROCESS));
5768   LLDB_LOGF(
5769       log,
5770       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5771       uuid.GetAsString().c_str(), base_addr);
5772 }
5773 
5774 // From dyld SPI header dyld_process_info.h
5775 typedef void *dyld_process_info;
5776 struct lldb_copy__dyld_process_cache_info {
5777   uuid_t cacheUUID;          // UUID of cache used by process
5778   uint64_t cacheBaseAddress; // load address of dyld shared cache
5779   bool noCache;              // process is running without a dyld cache
5780   bool privateCache; // process is using a private copy of its dyld cache
5781 };
5782 
5783 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5784 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5785 // errors. So we need to use the actual underlying types of task_t and
5786 // kern_return_t below.
5787 extern "C" unsigned int /*task_t*/ mach_task_self();
5788 
5789 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5790   uuid.Clear();
5791   base_addr = LLDB_INVALID_ADDRESS;
5792 
5793 #if defined(__APPLE__)
5794   uint8_t *(*dyld_get_all_image_infos)(void);
5795   dyld_get_all_image_infos =
5796       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5797   if (dyld_get_all_image_infos) {
5798     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5799     if (dyld_all_image_infos_address) {
5800       uint32_t *version = (uint32_t *)
5801           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5802       if (*version >= 13) {
5803         uuid_t *sharedCacheUUID_address = 0;
5804         int wordsize = sizeof(uint8_t *);
5805         if (wordsize == 8) {
5806           sharedCacheUUID_address =
5807               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5808                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5809           if (*version >= 15)
5810             base_addr =
5811                 *(uint64_t
5812                       *)((uint8_t *)dyld_all_image_infos_address +
5813                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5814         } else {
5815           sharedCacheUUID_address =
5816               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5817                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5818           if (*version >= 15) {
5819             base_addr = 0;
5820             base_addr =
5821                 *(uint32_t
5822                       *)((uint8_t *)dyld_all_image_infos_address +
5823                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5824           }
5825         }
5826         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5827       }
5828     }
5829   } else {
5830     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5831     dyld_process_info (*dyld_process_info_create)(
5832         unsigned int /* task_t */ task, uint64_t timestamp,
5833         unsigned int /*kern_return_t*/ *kernelError);
5834     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5835     void (*dyld_process_info_release)(dyld_process_info info);
5836 
5837     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5838                                           unsigned int /*kern_return_t*/ *))
5839         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5840     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5841         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5842     dyld_process_info_release =
5843         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5844 
5845     if (dyld_process_info_create && dyld_process_info_get_cache) {
5846       unsigned int /*kern_return_t */ kern_ret;
5847       dyld_process_info process_info =
5848           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5849       if (process_info) {
5850         struct lldb_copy__dyld_process_cache_info sc_info;
5851         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5852         dyld_process_info_get_cache(process_info, &sc_info);
5853         if (sc_info.cacheBaseAddress != 0) {
5854           base_addr = sc_info.cacheBaseAddress;
5855           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5856         }
5857         dyld_process_info_release(process_info);
5858       }
5859     }
5860   }
5861   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5862                                                   LIBLLDB_LOG_PROCESS));
5863   if (log && uuid.IsValid())
5864     LLDB_LOGF(log,
5865               "lldb's in-memory shared cache has a UUID of %s base address of "
5866               "0x%" PRIx64,
5867               uuid.GetAsString().c_str(), base_addr);
5868 #endif
5869 }
5870 
5871 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5872   if (!m_min_os_version) {
5873     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5874     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5875       const lldb::offset_t load_cmd_offset = offset;
5876 
5877       version_min_command lc;
5878       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5879         break;
5880       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5881           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5882           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5883           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5884         if (m_data.GetU32(&offset, &lc.version,
5885                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5886           const uint32_t xxxx = lc.version >> 16;
5887           const uint32_t yy = (lc.version >> 8) & 0xffu;
5888           const uint32_t zz = lc.version & 0xffu;
5889           if (xxxx) {
5890             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5891             break;
5892           }
5893         }
5894       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5895         // struct build_version_command {
5896         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5897         //     uint32_t    cmdsize;        /* sizeof(struct
5898         //     build_version_command) plus */
5899         //                                 /* ntools * sizeof(struct
5900         //                                 build_tool_version) */
5901         //     uint32_t    platform;       /* platform */
5902         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5903         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5904         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5905         //     tool entries following this */
5906         // };
5907 
5908         offset += 4; // skip platform
5909         uint32_t minos = m_data.GetU32(&offset);
5910 
5911         const uint32_t xxxx = minos >> 16;
5912         const uint32_t yy = (minos >> 8) & 0xffu;
5913         const uint32_t zz = minos & 0xffu;
5914         if (xxxx) {
5915           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5916           break;
5917         }
5918       }
5919 
5920       offset = load_cmd_offset + lc.cmdsize;
5921     }
5922 
5923     if (!m_min_os_version) {
5924       // Set version to an empty value so we don't keep trying to
5925       m_min_os_version = llvm::VersionTuple();
5926     }
5927   }
5928 
5929   return *m_min_os_version;
5930 }
5931 
5932 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
5933   if (!m_sdk_versions.hasValue()) {
5934     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5935     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5936       const lldb::offset_t load_cmd_offset = offset;
5937 
5938       version_min_command lc;
5939       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5940         break;
5941       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5942           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5943           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5944           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5945         if (m_data.GetU32(&offset, &lc.version,
5946                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5947           const uint32_t xxxx = lc.sdk >> 16;
5948           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5949           const uint32_t zz = lc.sdk & 0xffu;
5950           if (xxxx) {
5951             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5952             break;
5953           } else {
5954             GetModule()->ReportWarning("minimum OS version load command with "
5955                                        "invalid (0) version found.");
5956           }
5957         }
5958       }
5959       offset = load_cmd_offset + lc.cmdsize;
5960     }
5961 
5962     if (!m_sdk_versions.hasValue()) {
5963       offset = MachHeaderSizeFromMagic(m_header.magic);
5964       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5965         const lldb::offset_t load_cmd_offset = offset;
5966 
5967         version_min_command lc;
5968         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5969           break;
5970         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5971           // struct build_version_command {
5972           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5973           //     uint32_t    cmdsize;        /* sizeof(struct
5974           //     build_version_command) plus */
5975           //                                 /* ntools * sizeof(struct
5976           //                                 build_tool_version) */
5977           //     uint32_t    platform;       /* platform */
5978           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5979           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
5980           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
5981           //     of tool entries following this */
5982           // };
5983 
5984           offset += 4; // skip platform
5985           uint32_t minos = m_data.GetU32(&offset);
5986 
5987           const uint32_t xxxx = minos >> 16;
5988           const uint32_t yy = (minos >> 8) & 0xffu;
5989           const uint32_t zz = minos & 0xffu;
5990           if (xxxx) {
5991             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5992             break;
5993           }
5994         }
5995         offset = load_cmd_offset + lc.cmdsize;
5996       }
5997     }
5998 
5999     if (!m_sdk_versions.hasValue())
6000       m_sdk_versions = llvm::VersionTuple();
6001   }
6002 
6003   return m_sdk_versions.getValue();
6004 }
6005 
6006 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6007   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6008 }
6009 
6010 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6011   return m_allow_assembly_emulation_unwind_plans;
6012 }
6013 
6014 // PluginInterface protocol
6015 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
6016   return GetPluginNameStatic();
6017 }
6018 
6019 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
6020 
6021 Section *ObjectFileMachO::GetMachHeaderSection() {
6022   // Find the first address of the mach header which is the first non-zero file
6023   // sized section whose file offset is zero. This is the base file address of
6024   // the mach-o file which can be subtracted from the vmaddr of the other
6025   // segments found in memory and added to the load address
6026   ModuleSP module_sp = GetModule();
6027   if (!module_sp)
6028     return nullptr;
6029   SectionList *section_list = GetSectionList();
6030   if (!section_list)
6031     return nullptr;
6032   const size_t num_sections = section_list->GetSize();
6033   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6034     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6035     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6036       return section;
6037   }
6038   return nullptr;
6039 }
6040 
6041 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6042   if (!section)
6043     return false;
6044   const bool is_dsym = (m_header.filetype == MH_DSYM);
6045   if (section->GetFileSize() == 0 && !is_dsym)
6046     return false;
6047   if (section->IsThreadSpecific())
6048     return false;
6049   if (GetModule().get() != section->GetModule().get())
6050     return false;
6051   // Be careful with __LINKEDIT and __DWARF segments
6052   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6053       section->GetName() == GetSegmentNameDWARF()) {
6054     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6055     // this isn't a kernel binary like a kext or mach_kernel.
6056     const bool is_memory_image = (bool)m_process_wp.lock();
6057     const Strata strata = GetStrata();
6058     if (is_memory_image == false || strata == eStrataKernel)
6059       return false;
6060   }
6061   return true;
6062 }
6063 
6064 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6065     lldb::addr_t header_load_address, const Section *header_section,
6066     const Section *section) {
6067   ModuleSP module_sp = GetModule();
6068   if (module_sp && header_section && section &&
6069       header_load_address != LLDB_INVALID_ADDRESS) {
6070     lldb::addr_t file_addr = header_section->GetFileAddress();
6071     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6072       return section->GetFileAddress() - file_addr + header_load_address;
6073   }
6074   return LLDB_INVALID_ADDRESS;
6075 }
6076 
6077 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6078                                      bool value_is_offset) {
6079   ModuleSP module_sp = GetModule();
6080   if (!module_sp)
6081     return false;
6082 
6083   SectionList *section_list = GetSectionList();
6084   if (!section_list)
6085     return false;
6086 
6087   size_t num_loaded_sections = 0;
6088   const size_t num_sections = section_list->GetSize();
6089 
6090   if (value_is_offset) {
6091     // "value" is an offset to apply to each top level segment
6092     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6093       // Iterate through the object file sections to find all of the
6094       // sections that size on disk (to avoid __PAGEZERO) and load them
6095       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6096       if (SectionIsLoadable(section_sp.get()))
6097         if (target.GetSectionLoadList().SetSectionLoadAddress(
6098                 section_sp, section_sp->GetFileAddress() + value))
6099           ++num_loaded_sections;
6100     }
6101   } else {
6102     // "value" is the new base address of the mach_header, adjust each
6103     // section accordingly
6104 
6105     Section *mach_header_section = GetMachHeaderSection();
6106     if (mach_header_section) {
6107       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6108         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6109 
6110         lldb::addr_t section_load_addr =
6111             CalculateSectionLoadAddressForMemoryImage(
6112                 value, mach_header_section, section_sp.get());
6113         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6114           if (target.GetSectionLoadList().SetSectionLoadAddress(
6115                   section_sp, section_load_addr))
6116             ++num_loaded_sections;
6117         }
6118       }
6119     }
6120   }
6121   return num_loaded_sections > 0;
6122 }
6123 
6124 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6125                                const FileSpec &outfile, Status &error) {
6126   if (!process_sp)
6127     return false;
6128 
6129   Target &target = process_sp->GetTarget();
6130   const ArchSpec target_arch = target.GetArchitecture();
6131   const llvm::Triple &target_triple = target_arch.GetTriple();
6132   if (target_triple.getVendor() == llvm::Triple::Apple &&
6133       (target_triple.getOS() == llvm::Triple::MacOSX ||
6134        target_triple.getOS() == llvm::Triple::IOS ||
6135        target_triple.getOS() == llvm::Triple::WatchOS ||
6136        target_triple.getOS() == llvm::Triple::TvOS)) {
6137     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6138     // {
6139     bool make_core = false;
6140     switch (target_arch.GetMachine()) {
6141     case llvm::Triple::aarch64:
6142     case llvm::Triple::aarch64_32:
6143     case llvm::Triple::arm:
6144     case llvm::Triple::thumb:
6145     case llvm::Triple::x86:
6146     case llvm::Triple::x86_64:
6147       make_core = true;
6148       break;
6149     default:
6150       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6151                                      target_triple.str().c_str());
6152       break;
6153     }
6154 
6155     if (make_core) {
6156       std::vector<segment_command_64> segment_load_commands;
6157       //                uint32_t range_info_idx = 0;
6158       MemoryRegionInfo range_info;
6159       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6160       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6161       const ByteOrder byte_order = target_arch.GetByteOrder();
6162       if (range_error.Success()) {
6163         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6164           const addr_t addr = range_info.GetRange().GetRangeBase();
6165           const addr_t size = range_info.GetRange().GetByteSize();
6166 
6167           if (size == 0)
6168             break;
6169 
6170           // Calculate correct protections
6171           uint32_t prot = 0;
6172           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6173             prot |= VM_PROT_READ;
6174           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6175             prot |= VM_PROT_WRITE;
6176           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6177             prot |= VM_PROT_EXECUTE;
6178 
6179           if (prot != 0) {
6180             uint32_t cmd_type = LC_SEGMENT_64;
6181             uint32_t segment_size = sizeof(segment_command_64);
6182             if (addr_byte_size == 4) {
6183               cmd_type = LC_SEGMENT;
6184               segment_size = sizeof(segment_command);
6185             }
6186             segment_command_64 segment = {
6187                 cmd_type,     // uint32_t cmd;
6188                 segment_size, // uint32_t cmdsize;
6189                 {0},          // char segname[16];
6190                 addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6191                 size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6192                 0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6193                 size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6194                 prot, // uint32_t maxprot;
6195                 prot, // uint32_t initprot;
6196                 0,    // uint32_t nsects;
6197                 0};   // uint32_t flags;
6198             segment_load_commands.push_back(segment);
6199           } else {
6200             // No protections and a size of 1 used to be returned from old
6201             // debugservers when we asked about a region that was past the
6202             // last memory region and it indicates the end...
6203             if (size == 1)
6204               break;
6205           }
6206 
6207           range_error = process_sp->GetMemoryRegionInfo(
6208               range_info.GetRange().GetRangeEnd(), range_info);
6209           if (range_error.Fail())
6210             break;
6211         }
6212 
6213         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6214 
6215         mach_header_64 mach_header;
6216         if (addr_byte_size == 8) {
6217           mach_header.magic = MH_MAGIC_64;
6218         } else {
6219           mach_header.magic = MH_MAGIC;
6220         }
6221         mach_header.cputype = target_arch.GetMachOCPUType();
6222         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6223         mach_header.filetype = MH_CORE;
6224         mach_header.ncmds = segment_load_commands.size();
6225         mach_header.flags = 0;
6226         mach_header.reserved = 0;
6227         ThreadList &thread_list = process_sp->GetThreadList();
6228         const uint32_t num_threads = thread_list.GetSize();
6229 
6230         // Make an array of LC_THREAD data items. Each one contains the
6231         // contents of the LC_THREAD load command. The data doesn't contain
6232         // the load command + load command size, we will add the load command
6233         // and load command size as we emit the data.
6234         std::vector<StreamString> LC_THREAD_datas(num_threads);
6235         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6236           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6237           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6238           LC_THREAD_data.SetByteOrder(byte_order);
6239         }
6240         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6241           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6242           if (thread_sp) {
6243             switch (mach_header.cputype) {
6244             case llvm::MachO::CPU_TYPE_ARM64:
6245             case llvm::MachO::CPU_TYPE_ARM64_32:
6246               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6247                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6248               break;
6249 
6250             case llvm::MachO::CPU_TYPE_ARM:
6251               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6252                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6253               break;
6254 
6255             case llvm::MachO::CPU_TYPE_I386:
6256               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6257                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6258               break;
6259 
6260             case llvm::MachO::CPU_TYPE_X86_64:
6261               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6262                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6263               break;
6264             }
6265           }
6266         }
6267 
6268         // The size of the load command is the size of the segments...
6269         if (addr_byte_size == 8) {
6270           mach_header.sizeofcmds =
6271               segment_load_commands.size() * sizeof(struct segment_command_64);
6272         } else {
6273           mach_header.sizeofcmds =
6274               segment_load_commands.size() * sizeof(struct segment_command);
6275         }
6276 
6277         // and the size of all LC_THREAD load command
6278         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6279           ++mach_header.ncmds;
6280           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6281         }
6282 
6283         // Write the mach header
6284         buffer.PutHex32(mach_header.magic);
6285         buffer.PutHex32(mach_header.cputype);
6286         buffer.PutHex32(mach_header.cpusubtype);
6287         buffer.PutHex32(mach_header.filetype);
6288         buffer.PutHex32(mach_header.ncmds);
6289         buffer.PutHex32(mach_header.sizeofcmds);
6290         buffer.PutHex32(mach_header.flags);
6291         if (addr_byte_size == 8) {
6292           buffer.PutHex32(mach_header.reserved);
6293         }
6294 
6295         // Skip the mach header and all load commands and align to the next
6296         // 0x1000 byte boundary
6297         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6298         if (file_offset & 0x00000fff) {
6299           file_offset += 0x00001000ull;
6300           file_offset &= (~0x00001000ull + 1);
6301         }
6302 
6303         for (auto &segment : segment_load_commands) {
6304           segment.fileoff = file_offset;
6305           file_offset += segment.filesize;
6306         }
6307 
6308         // Write out all of the LC_THREAD load commands
6309         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6310           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6311           buffer.PutHex32(LC_THREAD);
6312           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6313           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6314         }
6315 
6316         // Write out all of the segment load commands
6317         for (const auto &segment : segment_load_commands) {
6318           printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6319                  ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6320                  ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6321                  segment.cmd, segment.cmdsize, segment.vmaddr,
6322                  segment.vmaddr + segment.vmsize, segment.fileoff,
6323                  segment.filesize, segment.maxprot, segment.initprot,
6324                  segment.nsects, segment.flags);
6325 
6326           buffer.PutHex32(segment.cmd);
6327           buffer.PutHex32(segment.cmdsize);
6328           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6329           if (addr_byte_size == 8) {
6330             buffer.PutHex64(segment.vmaddr);
6331             buffer.PutHex64(segment.vmsize);
6332             buffer.PutHex64(segment.fileoff);
6333             buffer.PutHex64(segment.filesize);
6334           } else {
6335             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6336             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6337             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6338             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6339           }
6340           buffer.PutHex32(segment.maxprot);
6341           buffer.PutHex32(segment.initprot);
6342           buffer.PutHex32(segment.nsects);
6343           buffer.PutHex32(segment.flags);
6344         }
6345 
6346         std::string core_file_path(outfile.GetPath());
6347         auto core_file = FileSystem::Instance().Open(
6348             outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate |
6349                          File::eOpenOptionCanCreate);
6350         if (!core_file) {
6351           error = core_file.takeError();
6352         } else {
6353           // Read 1 page at a time
6354           uint8_t bytes[0x1000];
6355           // Write the mach header and load commands out to the core file
6356           size_t bytes_written = buffer.GetString().size();
6357           error =
6358               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6359           if (error.Success()) {
6360             // Now write the file data for all memory segments in the process
6361             for (const auto &segment : segment_load_commands) {
6362               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6363                 error.SetErrorStringWithFormat(
6364                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6365                     segment.fileoff, core_file_path.c_str());
6366                 break;
6367               }
6368 
6369               printf("Saving %" PRId64
6370                      " bytes of data for memory region at 0x%" PRIx64 "\n",
6371                      segment.vmsize, segment.vmaddr);
6372               addr_t bytes_left = segment.vmsize;
6373               addr_t addr = segment.vmaddr;
6374               Status memory_read_error;
6375               while (bytes_left > 0 && error.Success()) {
6376                 const size_t bytes_to_read =
6377                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6378 
6379                 // In a savecore setting, we don't really care about caching,
6380                 // as the data is dumped and very likely never read again,
6381                 // so we call ReadMemoryFromInferior to bypass it.
6382                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6383                     addr, bytes, bytes_to_read, memory_read_error);
6384 
6385                 if (bytes_read == bytes_to_read) {
6386                   size_t bytes_written = bytes_read;
6387                   error = core_file.get()->Write(bytes, bytes_written);
6388                   bytes_left -= bytes_read;
6389                   addr += bytes_read;
6390                 } else {
6391                   // Some pages within regions are not readable, those should
6392                   // be zero filled
6393                   memset(bytes, 0, bytes_to_read);
6394                   size_t bytes_written = bytes_to_read;
6395                   error = core_file.get()->Write(bytes, bytes_written);
6396                   bytes_left -= bytes_to_read;
6397                   addr += bytes_to_read;
6398                 }
6399               }
6400             }
6401           }
6402         }
6403       } else {
6404         error.SetErrorString(
6405             "process doesn't support getting memory region info");
6406       }
6407     }
6408     return true; // This is the right plug to handle saving core files for
6409                  // this process
6410   }
6411   return false;
6412 }
6413