1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/FileSpecList.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/ModuleSpec.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/Progress.h"
22 #include "lldb/Core/Section.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Symbol/DWARFCallFrameInfo.h"
26 #include "lldb/Symbol/LocateSymbolFile.h"
27 #include "lldb/Symbol/ObjectFile.h"
28 #include "lldb/Target/DynamicLoader.h"
29 #include "lldb/Target/MemoryRegionInfo.h"
30 #include "lldb/Target/Platform.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/SectionLoadList.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Target/ThreadList.h"
36 #include "lldb/Utility/ArchSpec.h"
37 #include "lldb/Utility/DataBuffer.h"
38 #include "lldb/Utility/FileSpec.h"
39 #include "lldb/Utility/LLDBLog.h"
40 #include "lldb/Utility/Log.h"
41 #include "lldb/Utility/RangeMap.h"
42 #include "lldb/Utility/RegisterValue.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StreamString.h"
45 #include "lldb/Utility/Timer.h"
46 #include "lldb/Utility/UUID.h"
47 
48 #include "lldb/Host/SafeMachO.h"
49 
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/MemoryBuffer.h"
53 
54 #include "ObjectFileMachO.h"
55 
56 #if defined(__APPLE__)
57 #include <TargetConditionals.h>
58 // GetLLDBSharedCacheUUID() needs to call dlsym()
59 #include <dlfcn.h>
60 #include <mach/mach_init.h>
61 #include <mach/vm_map.h>
62 #include <lldb/Host/SafeMachO.h>
63 #endif
64 
65 #ifndef __APPLE__
66 #include "Utility/UuidCompatibility.h"
67 #else
68 #include <uuid/uuid.h>
69 #endif
70 
71 #include <bitset>
72 #include <memory>
73 
74 // Unfortunately the signpost header pulls in the system MachO header, too.
75 #ifdef CPU_TYPE_ARM
76 #undef CPU_TYPE_ARM
77 #endif
78 #ifdef CPU_TYPE_ARM64
79 #undef CPU_TYPE_ARM64
80 #endif
81 #ifdef CPU_TYPE_ARM64_32
82 #undef CPU_TYPE_ARM64_32
83 #endif
84 #ifdef CPU_TYPE_I386
85 #undef CPU_TYPE_I386
86 #endif
87 #ifdef CPU_TYPE_X86_64
88 #undef CPU_TYPE_X86_64
89 #endif
90 #ifdef MH_DYLINKER
91 #undef MH_DYLINKER
92 #endif
93 #ifdef MH_OBJECT
94 #undef MH_OBJECT
95 #endif
96 #ifdef LC_VERSION_MIN_MACOSX
97 #undef LC_VERSION_MIN_MACOSX
98 #endif
99 #ifdef LC_VERSION_MIN_IPHONEOS
100 #undef LC_VERSION_MIN_IPHONEOS
101 #endif
102 #ifdef LC_VERSION_MIN_TVOS
103 #undef LC_VERSION_MIN_TVOS
104 #endif
105 #ifdef LC_VERSION_MIN_WATCHOS
106 #undef LC_VERSION_MIN_WATCHOS
107 #endif
108 #ifdef LC_BUILD_VERSION
109 #undef LC_BUILD_VERSION
110 #endif
111 #ifdef PLATFORM_MACOS
112 #undef PLATFORM_MACOS
113 #endif
114 #ifdef PLATFORM_MACCATALYST
115 #undef PLATFORM_MACCATALYST
116 #endif
117 #ifdef PLATFORM_IOS
118 #undef PLATFORM_IOS
119 #endif
120 #ifdef PLATFORM_IOSSIMULATOR
121 #undef PLATFORM_IOSSIMULATOR
122 #endif
123 #ifdef PLATFORM_TVOS
124 #undef PLATFORM_TVOS
125 #endif
126 #ifdef PLATFORM_TVOSSIMULATOR
127 #undef PLATFORM_TVOSSIMULATOR
128 #endif
129 #ifdef PLATFORM_WATCHOS
130 #undef PLATFORM_WATCHOS
131 #endif
132 #ifdef PLATFORM_WATCHOSSIMULATOR
133 #undef PLATFORM_WATCHOSSIMULATOR
134 #endif
135 
136 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
137 using namespace lldb;
138 using namespace lldb_private;
139 using namespace llvm::MachO;
140 
141 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
142 
143 // Some structure definitions needed for parsing the dyld shared cache files
144 // found on iOS devices.
145 
146 struct lldb_copy_dyld_cache_header_v1 {
147   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
148   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
149   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
150   uint32_t imagesOffset;
151   uint32_t imagesCount;
152   uint64_t dyldBaseAddress;
153   uint64_t codeSignatureOffset;
154   uint64_t codeSignatureSize;
155   uint64_t slideInfoOffset;
156   uint64_t slideInfoSize;
157   uint64_t localSymbolsOffset;
158   uint64_t localSymbolsSize;
159   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
160                     // and later
161 };
162 
163 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
164                                const char *alt_name, size_t reg_byte_size,
165                                Stream &data) {
166   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
167   if (reg_info == nullptr)
168     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
169   if (reg_info) {
170     lldb_private::RegisterValue reg_value;
171     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
172       if (reg_info->byte_size >= reg_byte_size)
173         data.Write(reg_value.GetBytes(), reg_byte_size);
174       else {
175         data.Write(reg_value.GetBytes(), reg_info->byte_size);
176         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
177           data.PutChar(0);
178       }
179       return;
180     }
181   }
182   // Just write zeros if all else fails
183   for (size_t i = 0; i < reg_byte_size; ++i)
184     data.PutChar(0);
185 }
186 
187 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
188 public:
189   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
190                                     const DataExtractor &data)
191       : RegisterContextDarwin_x86_64(thread, 0) {
192     SetRegisterDataFrom_LC_THREAD(data);
193   }
194 
195   void InvalidateAllRegisters() override {
196     // Do nothing... registers are always valid...
197   }
198 
199   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
200     lldb::offset_t offset = 0;
201     SetError(GPRRegSet, Read, -1);
202     SetError(FPURegSet, Read, -1);
203     SetError(EXCRegSet, Read, -1);
204     bool done = false;
205 
206     while (!done) {
207       int flavor = data.GetU32(&offset);
208       if (flavor == 0)
209         done = true;
210       else {
211         uint32_t i;
212         uint32_t count = data.GetU32(&offset);
213         switch (flavor) {
214         case GPRRegSet:
215           for (i = 0; i < count; ++i)
216             (&gpr.rax)[i] = data.GetU64(&offset);
217           SetError(GPRRegSet, Read, 0);
218           done = true;
219 
220           break;
221         case FPURegSet:
222           // TODO: fill in FPU regs....
223           // SetError (FPURegSet, Read, -1);
224           done = true;
225 
226           break;
227         case EXCRegSet:
228           exc.trapno = data.GetU32(&offset);
229           exc.err = data.GetU32(&offset);
230           exc.faultvaddr = data.GetU64(&offset);
231           SetError(EXCRegSet, Read, 0);
232           done = true;
233           break;
234         case 7:
235         case 8:
236         case 9:
237           // fancy flavors that encapsulate of the above flavors...
238           break;
239 
240         default:
241           done = true;
242           break;
243         }
244       }
245     }
246   }
247 
248   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
249     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
250     if (reg_ctx_sp) {
251       RegisterContext *reg_ctx = reg_ctx_sp.get();
252 
253       data.PutHex32(GPRRegSet); // Flavor
254       data.PutHex32(GPRWordCount);
255       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
258       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
259       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
260       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
261       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
262       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
263       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
264       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
265       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
266       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
267       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
268       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
269       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
270       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
271       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
272       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
275       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
276 
277       //            // Write out the FPU registers
278       //            const size_t fpu_byte_size = sizeof(FPU);
279       //            size_t bytes_written = 0;
280       //            data.PutHex32 (FPURegSet);
281       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
282       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
283       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
284       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
285       //            data);   // uint16_t    fcw;    // "fctrl"
286       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
287       //            data);  // uint16_t    fsw;    // "fstat"
288       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
289       //            data);   // uint8_t     ftw;    // "ftag"
290       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
291       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
292       //            data);     // uint16_t    fop;    // "fop"
293       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
294       //            data);    // uint32_t    ip;     // "fioff"
295       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
296       //            data);    // uint16_t    cs;     // "fiseg"
297       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
298       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
299       //            data);   // uint32_t    dp;     // "fooff"
300       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
301       //            data);    // uint16_t    ds;     // "foseg"
302       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
303       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
304       //            data);    // uint32_t    mxcsr;
305       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
306       //            4, data);// uint32_t    mxcsrmask;
307       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
308       //            sizeof(MMSReg), data);
309       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
310       //            sizeof(MMSReg), data);
311       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
312       //            sizeof(MMSReg), data);
313       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
314       //            sizeof(MMSReg), data);
315       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
316       //            sizeof(MMSReg), data);
317       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
318       //            sizeof(MMSReg), data);
319       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
320       //            sizeof(MMSReg), data);
321       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
322       //            sizeof(MMSReg), data);
323       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
324       //            sizeof(XMMReg), data);
325       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
326       //            sizeof(XMMReg), data);
327       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
328       //            sizeof(XMMReg), data);
329       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
330       //            sizeof(XMMReg), data);
331       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
332       //            sizeof(XMMReg), data);
333       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
334       //            sizeof(XMMReg), data);
335       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
336       //            sizeof(XMMReg), data);
337       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
338       //            sizeof(XMMReg), data);
339       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
340       //            sizeof(XMMReg), data);
341       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
342       //            sizeof(XMMReg), data);
343       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
344       //            sizeof(XMMReg), data);
345       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
346       //            sizeof(XMMReg), data);
347       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
348       //            sizeof(XMMReg), data);
349       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
350       //            sizeof(XMMReg), data);
351       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
352       //            sizeof(XMMReg), data);
353       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
354       //            sizeof(XMMReg), data);
355       //
356       //            // Fill rest with zeros
357       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
358       //            i)
359       //                data.PutChar(0);
360 
361       // Write out the EXC registers
362       data.PutHex32(EXCRegSet);
363       data.PutHex32(EXCWordCount);
364       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
365       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
366       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
367       return true;
368     }
369     return false;
370   }
371 
372 protected:
373   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
374 
375   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
376 
377   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
378 
379   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
380     return 0;
381   }
382 
383   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
384     return 0;
385   }
386 
387   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
388     return 0;
389   }
390 };
391 
392 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
393 public:
394   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
395                                   const DataExtractor &data)
396       : RegisterContextDarwin_i386(thread, 0) {
397     SetRegisterDataFrom_LC_THREAD(data);
398   }
399 
400   void InvalidateAllRegisters() override {
401     // Do nothing... registers are always valid...
402   }
403 
404   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
405     lldb::offset_t offset = 0;
406     SetError(GPRRegSet, Read, -1);
407     SetError(FPURegSet, Read, -1);
408     SetError(EXCRegSet, Read, -1);
409     bool done = false;
410 
411     while (!done) {
412       int flavor = data.GetU32(&offset);
413       if (flavor == 0)
414         done = true;
415       else {
416         uint32_t i;
417         uint32_t count = data.GetU32(&offset);
418         switch (flavor) {
419         case GPRRegSet:
420           for (i = 0; i < count; ++i)
421             (&gpr.eax)[i] = data.GetU32(&offset);
422           SetError(GPRRegSet, Read, 0);
423           done = true;
424 
425           break;
426         case FPURegSet:
427           // TODO: fill in FPU regs....
428           // SetError (FPURegSet, Read, -1);
429           done = true;
430 
431           break;
432         case EXCRegSet:
433           exc.trapno = data.GetU32(&offset);
434           exc.err = data.GetU32(&offset);
435           exc.faultvaddr = data.GetU32(&offset);
436           SetError(EXCRegSet, Read, 0);
437           done = true;
438           break;
439         case 7:
440         case 8:
441         case 9:
442           // fancy flavors that encapsulate of the above flavors...
443           break;
444 
445         default:
446           done = true;
447           break;
448         }
449       }
450     }
451   }
452 
453   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
454     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
455     if (reg_ctx_sp) {
456       RegisterContext *reg_ctx = reg_ctx_sp.get();
457 
458       data.PutHex32(GPRRegSet); // Flavor
459       data.PutHex32(GPRWordCount);
460       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
461       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
462       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
465       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
466       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
467       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
468       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
469       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
470       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
471       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
472       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
473       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
474       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
475       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
476 
477       // Write out the EXC registers
478       data.PutHex32(EXCRegSet);
479       data.PutHex32(EXCWordCount);
480       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
481       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
482       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
483       return true;
484     }
485     return false;
486   }
487 
488 protected:
489   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
490 
491   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
492 
493   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
494 
495   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
496     return 0;
497   }
498 
499   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
500     return 0;
501   }
502 
503   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
504     return 0;
505   }
506 };
507 
508 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
509 public:
510   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
511                                  const DataExtractor &data)
512       : RegisterContextDarwin_arm(thread, 0) {
513     SetRegisterDataFrom_LC_THREAD(data);
514   }
515 
516   void InvalidateAllRegisters() override {
517     // Do nothing... registers are always valid...
518   }
519 
520   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
521     lldb::offset_t offset = 0;
522     SetError(GPRRegSet, Read, -1);
523     SetError(FPURegSet, Read, -1);
524     SetError(EXCRegSet, Read, -1);
525     bool done = false;
526 
527     while (!done) {
528       int flavor = data.GetU32(&offset);
529       uint32_t count = data.GetU32(&offset);
530       lldb::offset_t next_thread_state = offset + (count * 4);
531       switch (flavor) {
532       case GPRAltRegSet:
533       case GPRRegSet:
534         // On ARM, the CPSR register is also included in the count but it is
535         // not included in gpr.r so loop until (count-1).
536         for (uint32_t i = 0; i < (count - 1); ++i) {
537           gpr.r[i] = data.GetU32(&offset);
538         }
539         // Save cpsr explicitly.
540         gpr.cpsr = data.GetU32(&offset);
541 
542         SetError(GPRRegSet, Read, 0);
543         offset = next_thread_state;
544         break;
545 
546       case FPURegSet: {
547         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
548         const int fpu_reg_buf_size = sizeof(fpu.floats);
549         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
550                               fpu_reg_buf) == fpu_reg_buf_size) {
551           offset += fpu_reg_buf_size;
552           fpu.fpscr = data.GetU32(&offset);
553           SetError(FPURegSet, Read, 0);
554         } else {
555           done = true;
556         }
557       }
558         offset = next_thread_state;
559         break;
560 
561       case EXCRegSet:
562         if (count == 3) {
563           exc.exception = data.GetU32(&offset);
564           exc.fsr = data.GetU32(&offset);
565           exc.far = data.GetU32(&offset);
566           SetError(EXCRegSet, Read, 0);
567         }
568         done = true;
569         offset = next_thread_state;
570         break;
571 
572       // Unknown register set flavor, stop trying to parse.
573       default:
574         done = true;
575       }
576     }
577   }
578 
579   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
580     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
581     if (reg_ctx_sp) {
582       RegisterContext *reg_ctx = reg_ctx_sp.get();
583 
584       data.PutHex32(GPRRegSet); // Flavor
585       data.PutHex32(GPRWordCount);
586       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
587       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
588       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
589       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
590       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
591       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
592       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
593       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
594       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
595       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
596       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
597       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
598       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
599       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
600       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
601       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
602       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
603 
604       // Write out the EXC registers
605       //            data.PutHex32 (EXCRegSet);
606       //            data.PutHex32 (EXCWordCount);
607       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
608       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
609       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
610       return true;
611     }
612     return false;
613   }
614 
615 protected:
616   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
617 
618   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
619 
620   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
621 
622   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
623 
624   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
625     return 0;
626   }
627 
628   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
629     return 0;
630   }
631 
632   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
633     return 0;
634   }
635 
636   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
637     return -1;
638   }
639 };
640 
641 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
642 public:
643   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
644                                    const DataExtractor &data)
645       : RegisterContextDarwin_arm64(thread, 0) {
646     SetRegisterDataFrom_LC_THREAD(data);
647   }
648 
649   void InvalidateAllRegisters() override {
650     // Do nothing... registers are always valid...
651   }
652 
653   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
654     lldb::offset_t offset = 0;
655     SetError(GPRRegSet, Read, -1);
656     SetError(FPURegSet, Read, -1);
657     SetError(EXCRegSet, Read, -1);
658     bool done = false;
659     while (!done) {
660       int flavor = data.GetU32(&offset);
661       uint32_t count = data.GetU32(&offset);
662       lldb::offset_t next_thread_state = offset + (count * 4);
663       switch (flavor) {
664       case GPRRegSet:
665         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
666         // 32-bit register)
667         if (count >= (33 * 2) + 1) {
668           for (uint32_t i = 0; i < 29; ++i)
669             gpr.x[i] = data.GetU64(&offset);
670           gpr.fp = data.GetU64(&offset);
671           gpr.lr = data.GetU64(&offset);
672           gpr.sp = data.GetU64(&offset);
673           gpr.pc = data.GetU64(&offset);
674           gpr.cpsr = data.GetU32(&offset);
675           SetError(GPRRegSet, Read, 0);
676         }
677         offset = next_thread_state;
678         break;
679       case FPURegSet: {
680         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
681         const int fpu_reg_buf_size = sizeof(fpu);
682         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
683             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
684                               fpu_reg_buf) == fpu_reg_buf_size) {
685           SetError(FPURegSet, Read, 0);
686         } else {
687           done = true;
688         }
689       }
690         offset = next_thread_state;
691         break;
692       case EXCRegSet:
693         if (count == 4) {
694           exc.far = data.GetU64(&offset);
695           exc.esr = data.GetU32(&offset);
696           exc.exception = data.GetU32(&offset);
697           SetError(EXCRegSet, Read, 0);
698         }
699         offset = next_thread_state;
700         break;
701       default:
702         done = true;
703         break;
704       }
705     }
706   }
707 
708   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
709     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
710     if (reg_ctx_sp) {
711       RegisterContext *reg_ctx = reg_ctx_sp.get();
712 
713       data.PutHex32(GPRRegSet); // Flavor
714       data.PutHex32(GPRWordCount);
715       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
748       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
749       data.PutHex32(0); // uint32_t pad at the end
750 
751       // Write out the EXC registers
752       data.PutHex32(EXCRegSet);
753       data.PutHex32(EXCWordCount);
754       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
755       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
756       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
757       return true;
758     }
759     return false;
760   }
761 
762 protected:
763   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
764 
765   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
766 
767   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
768 
769   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
770 
771   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
772     return 0;
773   }
774 
775   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
776     return 0;
777   }
778 
779   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
780     return 0;
781   }
782 
783   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
784     return -1;
785   }
786 };
787 
788 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
789   switch (magic) {
790   case MH_MAGIC:
791   case MH_CIGAM:
792     return sizeof(struct llvm::MachO::mach_header);
793 
794   case MH_MAGIC_64:
795   case MH_CIGAM_64:
796     return sizeof(struct llvm::MachO::mach_header_64);
797     break;
798 
799   default:
800     break;
801   }
802   return 0;
803 }
804 
805 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
806 
807 char ObjectFileMachO::ID;
808 
809 void ObjectFileMachO::Initialize() {
810   PluginManager::RegisterPlugin(
811       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
812       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
813 }
814 
815 void ObjectFileMachO::Terminate() {
816   PluginManager::UnregisterPlugin(CreateInstance);
817 }
818 
819 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
820                                             DataBufferSP &data_sp,
821                                             lldb::offset_t data_offset,
822                                             const FileSpec *file,
823                                             lldb::offset_t file_offset,
824                                             lldb::offset_t length) {
825   if (!data_sp) {
826     data_sp = MapFileData(*file, length, file_offset);
827     if (!data_sp)
828       return nullptr;
829     data_offset = 0;
830   }
831 
832   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
833     return nullptr;
834 
835   // Update the data to contain the entire file if it doesn't already
836   if (data_sp->GetByteSize() < length) {
837     data_sp = MapFileData(*file, length, file_offset);
838     if (!data_sp)
839       return nullptr;
840     data_offset = 0;
841   }
842   auto objfile_up = std::make_unique<ObjectFileMachO>(
843       module_sp, data_sp, data_offset, file, file_offset, length);
844   if (!objfile_up || !objfile_up->ParseHeader())
845     return nullptr;
846 
847   return objfile_up.release();
848 }
849 
850 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
851     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
852     const ProcessSP &process_sp, lldb::addr_t header_addr) {
853   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
854     std::unique_ptr<ObjectFile> objfile_up(
855         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
856     if (objfile_up.get() && objfile_up->ParseHeader())
857       return objfile_up.release();
858   }
859   return nullptr;
860 }
861 
862 size_t ObjectFileMachO::GetModuleSpecifications(
863     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
864     lldb::offset_t data_offset, lldb::offset_t file_offset,
865     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
866   const size_t initial_count = specs.GetSize();
867 
868   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
869     DataExtractor data;
870     data.SetData(data_sp);
871     llvm::MachO::mach_header header;
872     if (ParseHeader(data, &data_offset, header)) {
873       size_t header_and_load_cmds =
874           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
875       if (header_and_load_cmds >= data_sp->GetByteSize()) {
876         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
877         data.SetData(data_sp);
878         data_offset = MachHeaderSizeFromMagic(header.magic);
879       }
880       if (data_sp) {
881         ModuleSpec base_spec;
882         base_spec.GetFileSpec() = file;
883         base_spec.SetObjectOffset(file_offset);
884         base_spec.SetObjectSize(length);
885         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
886       }
887     }
888   }
889   return specs.GetSize() - initial_count;
890 }
891 
892 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
893   static ConstString g_segment_name_TEXT("__TEXT");
894   return g_segment_name_TEXT;
895 }
896 
897 ConstString ObjectFileMachO::GetSegmentNameDATA() {
898   static ConstString g_segment_name_DATA("__DATA");
899   return g_segment_name_DATA;
900 }
901 
902 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
903   static ConstString g_segment_name("__DATA_DIRTY");
904   return g_segment_name;
905 }
906 
907 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
908   static ConstString g_segment_name("__DATA_CONST");
909   return g_segment_name;
910 }
911 
912 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
913   static ConstString g_segment_name_OBJC("__OBJC");
914   return g_segment_name_OBJC;
915 }
916 
917 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
918   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
919   return g_section_name_LINKEDIT;
920 }
921 
922 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
923   static ConstString g_section_name("__DWARF");
924   return g_section_name;
925 }
926 
927 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
928   static ConstString g_section_name_eh_frame("__eh_frame");
929   return g_section_name_eh_frame;
930 }
931 
932 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
933                                       lldb::addr_t data_offset,
934                                       lldb::addr_t data_length) {
935   DataExtractor data;
936   data.SetData(data_sp, data_offset, data_length);
937   lldb::offset_t offset = 0;
938   uint32_t magic = data.GetU32(&offset);
939   return MachHeaderSizeFromMagic(magic) != 0;
940 }
941 
942 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943                                  DataBufferSP &data_sp,
944                                  lldb::offset_t data_offset,
945                                  const FileSpec *file,
946                                  lldb::offset_t file_offset,
947                                  lldb::offset_t length)
948     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
950       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
951       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
952   ::memset(&m_header, 0, sizeof(m_header));
953   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954 }
955 
956 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957                                  lldb::DataBufferSP &header_data_sp,
958                                  const lldb::ProcessSP &process_sp,
959                                  lldb::addr_t header_addr)
960     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
962       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
963       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
964   ::memset(&m_header, 0, sizeof(m_header));
965   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966 }
967 
968 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969                                   lldb::offset_t *data_offset_ptr,
970                                   llvm::MachO::mach_header &header) {
971   data.SetByteOrder(endian::InlHostByteOrder());
972   // Leave magic in the original byte order
973   header.magic = data.GetU32(data_offset_ptr);
974   bool can_parse = false;
975   bool is_64_bit = false;
976   switch (header.magic) {
977   case MH_MAGIC:
978     data.SetByteOrder(endian::InlHostByteOrder());
979     data.SetAddressByteSize(4);
980     can_parse = true;
981     break;
982 
983   case MH_MAGIC_64:
984     data.SetByteOrder(endian::InlHostByteOrder());
985     data.SetAddressByteSize(8);
986     can_parse = true;
987     is_64_bit = true;
988     break;
989 
990   case MH_CIGAM:
991     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992                           ? eByteOrderLittle
993                           : eByteOrderBig);
994     data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_CIGAM_64:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(8);
1003     is_64_bit = true;
1004     can_parse = true;
1005     break;
1006 
1007   default:
1008     break;
1009   }
1010 
1011   if (can_parse) {
1012     data.GetU32(data_offset_ptr, &header.cputype, 6);
1013     if (is_64_bit)
1014       *data_offset_ptr += 4;
1015     return true;
1016   } else {
1017     memset(&header, 0, sizeof(header));
1018   }
1019   return false;
1020 }
1021 
1022 bool ObjectFileMachO::ParseHeader() {
1023   ModuleSP module_sp(GetModule());
1024   if (!module_sp)
1025     return false;
1026 
1027   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028   bool can_parse = false;
1029   lldb::offset_t offset = 0;
1030   m_data.SetByteOrder(endian::InlHostByteOrder());
1031   // Leave magic in the original byte order
1032   m_header.magic = m_data.GetU32(&offset);
1033   switch (m_header.magic) {
1034   case MH_MAGIC:
1035     m_data.SetByteOrder(endian::InlHostByteOrder());
1036     m_data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_MAGIC_64:
1041     m_data.SetByteOrder(endian::InlHostByteOrder());
1042     m_data.SetAddressByteSize(8);
1043     can_parse = true;
1044     break;
1045 
1046   case MH_CIGAM:
1047     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048                             ? eByteOrderLittle
1049                             : eByteOrderBig);
1050     m_data.SetAddressByteSize(4);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM_64:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(8);
1059     can_parse = true;
1060     break;
1061 
1062   default:
1063     break;
1064   }
1065 
1066   if (can_parse) {
1067     m_data.GetU32(&offset, &m_header.cputype, 6);
1068 
1069     ModuleSpecList all_specs;
1070     ModuleSpec base_spec;
1071     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072                     base_spec, all_specs);
1073 
1074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075       ArchSpec mach_arch =
1076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077 
1078       // Check if the module has a required architecture
1079       const ArchSpec &module_arch = module_sp->GetArchitecture();
1080       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081         continue;
1082 
1083       if (SetModulesArchitecture(mach_arch)) {
1084         const size_t header_and_lc_size =
1085             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086         if (m_data.GetByteSize() < header_and_lc_size) {
1087           DataBufferSP data_sp;
1088           ProcessSP process_sp(m_process_wp.lock());
1089           if (process_sp) {
1090             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091           } else {
1092             // Read in all only the load command data from the file on disk
1093             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094             if (data_sp->GetByteSize() != header_and_lc_size)
1095               continue;
1096           }
1097           if (data_sp)
1098             m_data.SetData(data_sp);
1099         }
1100       }
1101       return true;
1102     }
1103     // None found.
1104     return false;
1105   } else {
1106     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107   }
1108   return false;
1109 }
1110 
1111 ByteOrder ObjectFileMachO::GetByteOrder() const {
1112   return m_data.GetByteOrder();
1113 }
1114 
1115 bool ObjectFileMachO::IsExecutable() const {
1116   return m_header.filetype == MH_EXECUTE;
1117 }
1118 
1119 bool ObjectFileMachO::IsDynamicLoader() const {
1120   return m_header.filetype == MH_DYLINKER;
1121 }
1122 
1123 bool ObjectFileMachO::IsSharedCacheBinary() const {
1124   return m_header.flags & MH_DYLIB_IN_CACHE;
1125 }
1126 
1127 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1128   return m_data.GetAddressByteSize();
1129 }
1130 
1131 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1132   Symtab *symtab = GetSymtab();
1133   if (!symtab)
1134     return AddressClass::eUnknown;
1135 
1136   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1137   if (symbol) {
1138     if (symbol->ValueIsAddress()) {
1139       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1140       if (section_sp) {
1141         const lldb::SectionType section_type = section_sp->GetType();
1142         switch (section_type) {
1143         case eSectionTypeInvalid:
1144           return AddressClass::eUnknown;
1145 
1146         case eSectionTypeCode:
1147           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1148             // For ARM we have a bit in the n_desc field of the symbol that
1149             // tells us ARM/Thumb which is bit 0x0008.
1150             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1151               return AddressClass::eCodeAlternateISA;
1152           }
1153           return AddressClass::eCode;
1154 
1155         case eSectionTypeContainer:
1156           return AddressClass::eUnknown;
1157 
1158         case eSectionTypeData:
1159         case eSectionTypeDataCString:
1160         case eSectionTypeDataCStringPointers:
1161         case eSectionTypeDataSymbolAddress:
1162         case eSectionTypeData4:
1163         case eSectionTypeData8:
1164         case eSectionTypeData16:
1165         case eSectionTypeDataPointers:
1166         case eSectionTypeZeroFill:
1167         case eSectionTypeDataObjCMessageRefs:
1168         case eSectionTypeDataObjCCFStrings:
1169         case eSectionTypeGoSymtab:
1170           return AddressClass::eData;
1171 
1172         case eSectionTypeDebug:
1173         case eSectionTypeDWARFDebugAbbrev:
1174         case eSectionTypeDWARFDebugAbbrevDwo:
1175         case eSectionTypeDWARFDebugAddr:
1176         case eSectionTypeDWARFDebugAranges:
1177         case eSectionTypeDWARFDebugCuIndex:
1178         case eSectionTypeDWARFDebugFrame:
1179         case eSectionTypeDWARFDebugInfo:
1180         case eSectionTypeDWARFDebugInfoDwo:
1181         case eSectionTypeDWARFDebugLine:
1182         case eSectionTypeDWARFDebugLineStr:
1183         case eSectionTypeDWARFDebugLoc:
1184         case eSectionTypeDWARFDebugLocDwo:
1185         case eSectionTypeDWARFDebugLocLists:
1186         case eSectionTypeDWARFDebugLocListsDwo:
1187         case eSectionTypeDWARFDebugMacInfo:
1188         case eSectionTypeDWARFDebugMacro:
1189         case eSectionTypeDWARFDebugNames:
1190         case eSectionTypeDWARFDebugPubNames:
1191         case eSectionTypeDWARFDebugPubTypes:
1192         case eSectionTypeDWARFDebugRanges:
1193         case eSectionTypeDWARFDebugRngLists:
1194         case eSectionTypeDWARFDebugRngListsDwo:
1195         case eSectionTypeDWARFDebugStr:
1196         case eSectionTypeDWARFDebugStrDwo:
1197         case eSectionTypeDWARFDebugStrOffsets:
1198         case eSectionTypeDWARFDebugStrOffsetsDwo:
1199         case eSectionTypeDWARFDebugTuIndex:
1200         case eSectionTypeDWARFDebugTypes:
1201         case eSectionTypeDWARFDebugTypesDwo:
1202         case eSectionTypeDWARFAppleNames:
1203         case eSectionTypeDWARFAppleTypes:
1204         case eSectionTypeDWARFAppleNamespaces:
1205         case eSectionTypeDWARFAppleObjC:
1206         case eSectionTypeDWARFGNUDebugAltLink:
1207           return AddressClass::eDebug;
1208 
1209         case eSectionTypeEHFrame:
1210         case eSectionTypeARMexidx:
1211         case eSectionTypeARMextab:
1212         case eSectionTypeCompactUnwind:
1213           return AddressClass::eRuntime;
1214 
1215         case eSectionTypeAbsoluteAddress:
1216         case eSectionTypeELFSymbolTable:
1217         case eSectionTypeELFDynamicSymbols:
1218         case eSectionTypeELFRelocationEntries:
1219         case eSectionTypeELFDynamicLinkInfo:
1220         case eSectionTypeOther:
1221           return AddressClass::eUnknown;
1222         }
1223       }
1224     }
1225 
1226     const SymbolType symbol_type = symbol->GetType();
1227     switch (symbol_type) {
1228     case eSymbolTypeAny:
1229       return AddressClass::eUnknown;
1230     case eSymbolTypeAbsolute:
1231       return AddressClass::eUnknown;
1232 
1233     case eSymbolTypeCode:
1234     case eSymbolTypeTrampoline:
1235     case eSymbolTypeResolver:
1236       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1237         // For ARM we have a bit in the n_desc field of the symbol that tells
1238         // us ARM/Thumb which is bit 0x0008.
1239         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1240           return AddressClass::eCodeAlternateISA;
1241       }
1242       return AddressClass::eCode;
1243 
1244     case eSymbolTypeData:
1245       return AddressClass::eData;
1246     case eSymbolTypeRuntime:
1247       return AddressClass::eRuntime;
1248     case eSymbolTypeException:
1249       return AddressClass::eRuntime;
1250     case eSymbolTypeSourceFile:
1251       return AddressClass::eDebug;
1252     case eSymbolTypeHeaderFile:
1253       return AddressClass::eDebug;
1254     case eSymbolTypeObjectFile:
1255       return AddressClass::eDebug;
1256     case eSymbolTypeCommonBlock:
1257       return AddressClass::eDebug;
1258     case eSymbolTypeBlock:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeLocal:
1261       return AddressClass::eData;
1262     case eSymbolTypeParam:
1263       return AddressClass::eData;
1264     case eSymbolTypeVariable:
1265       return AddressClass::eData;
1266     case eSymbolTypeVariableType:
1267       return AddressClass::eDebug;
1268     case eSymbolTypeLineEntry:
1269       return AddressClass::eDebug;
1270     case eSymbolTypeLineHeader:
1271       return AddressClass::eDebug;
1272     case eSymbolTypeScopeBegin:
1273       return AddressClass::eDebug;
1274     case eSymbolTypeScopeEnd:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeAdditional:
1277       return AddressClass::eUnknown;
1278     case eSymbolTypeCompiler:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeInstrumentation:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeUndefined:
1283       return AddressClass::eUnknown;
1284     case eSymbolTypeObjCClass:
1285       return AddressClass::eRuntime;
1286     case eSymbolTypeObjCMetaClass:
1287       return AddressClass::eRuntime;
1288     case eSymbolTypeObjCIVar:
1289       return AddressClass::eRuntime;
1290     case eSymbolTypeReExported:
1291       return AddressClass::eRuntime;
1292     }
1293   }
1294   return AddressClass::eUnknown;
1295 }
1296 
1297 bool ObjectFileMachO::IsStripped() {
1298   if (m_dysymtab.cmd == 0) {
1299     ModuleSP module_sp(GetModule());
1300     if (module_sp) {
1301       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1302       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303         const lldb::offset_t load_cmd_offset = offset;
1304 
1305         llvm::MachO::load_command lc;
1306         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1307           break;
1308         if (lc.cmd == LC_DYSYMTAB) {
1309           m_dysymtab.cmd = lc.cmd;
1310           m_dysymtab.cmdsize = lc.cmdsize;
1311           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1312                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1313               nullptr) {
1314             // Clear m_dysymtab if we were unable to read all items from the
1315             // load command
1316             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1317           }
1318         }
1319         offset = load_cmd_offset + lc.cmdsize;
1320       }
1321     }
1322   }
1323   if (m_dysymtab.cmd)
1324     return m_dysymtab.nlocalsym <= 1;
1325   return false;
1326 }
1327 
1328 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1329   EncryptedFileRanges result;
1330   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1331 
1332   llvm::MachO::encryption_info_command encryption_cmd;
1333   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1334     const lldb::offset_t load_cmd_offset = offset;
1335     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1336       break;
1337 
1338     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1339     // 3 fields we care about, so treat them the same.
1340     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1341         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1342       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1343         if (encryption_cmd.cryptid != 0) {
1344           EncryptedFileRanges::Entry entry;
1345           entry.SetRangeBase(encryption_cmd.cryptoff);
1346           entry.SetByteSize(encryption_cmd.cryptsize);
1347           result.Append(entry);
1348         }
1349       }
1350     }
1351     offset = load_cmd_offset + encryption_cmd.cmdsize;
1352   }
1353 
1354   return result;
1355 }
1356 
1357 void ObjectFileMachO::SanitizeSegmentCommand(
1358     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1359   if (m_length == 0 || seg_cmd.filesize == 0)
1360     return;
1361 
1362   if (IsSharedCacheBinary() && !IsInMemory()) {
1363     // In shared cache images, the load commands are relative to the
1364     // shared cache file, and not the specific image we are
1365     // examining. Let's fix this up so that it looks like a normal
1366     // image.
1367     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1368       m_text_address = seg_cmd.vmaddr;
1369     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1370       m_linkedit_original_offset = seg_cmd.fileoff;
1371 
1372     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1373   }
1374 
1375   if (seg_cmd.fileoff > m_length) {
1376     // We have a load command that says it extends past the end of the file.
1377     // This is likely a corrupt file.  We don't have any way to return an error
1378     // condition here (this method was likely invoked from something like
1379     // ObjectFile::GetSectionList()), so we just null out the section contents,
1380     // and dump a message to stdout.  The most common case here is core file
1381     // debugging with a truncated file.
1382     const char *lc_segment_name =
1383         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1384     GetModule()->ReportWarning(
1385         "load command %u %s has a fileoff (0x%" PRIx64
1386         ") that extends beyond the end of the file (0x%" PRIx64
1387         "), ignoring this section",
1388         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1389 
1390     seg_cmd.fileoff = 0;
1391     seg_cmd.filesize = 0;
1392   }
1393 
1394   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1395     // We have a load command that says it extends past the end of the file.
1396     // This is likely a corrupt file.  We don't have any way to return an error
1397     // condition here (this method was likely invoked from something like
1398     // ObjectFile::GetSectionList()), so we just null out the section contents,
1399     // and dump a message to stdout.  The most common case here is core file
1400     // debugging with a truncated file.
1401     const char *lc_segment_name =
1402         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1403     GetModule()->ReportWarning(
1404         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1405         ") that extends beyond the end of the file (0x%" PRIx64
1406         "), the segment will be truncated to match",
1407         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1408 
1409     // Truncate the length
1410     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1411   }
1412 }
1413 
1414 static uint32_t
1415 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1416   uint32_t result = 0;
1417   if (seg_cmd.initprot & VM_PROT_READ)
1418     result |= ePermissionsReadable;
1419   if (seg_cmd.initprot & VM_PROT_WRITE)
1420     result |= ePermissionsWritable;
1421   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1422     result |= ePermissionsExecutable;
1423   return result;
1424 }
1425 
1426 static lldb::SectionType GetSectionType(uint32_t flags,
1427                                         ConstString section_name) {
1428 
1429   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1430     return eSectionTypeCode;
1431 
1432   uint32_t mach_sect_type = flags & SECTION_TYPE;
1433   static ConstString g_sect_name_objc_data("__objc_data");
1434   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1435   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1436   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1437   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1438   static ConstString g_sect_name_objc_const("__objc_const");
1439   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1440   static ConstString g_sect_name_cfstring("__cfstring");
1441 
1442   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1443   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1444   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1445   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1446   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1447   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1448   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1449   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1450   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1451   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1452   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1453   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1454   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1455   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1456   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1457   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1458   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1459   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1460   static ConstString g_sect_name_eh_frame("__eh_frame");
1461   static ConstString g_sect_name_compact_unwind("__unwind_info");
1462   static ConstString g_sect_name_text("__text");
1463   static ConstString g_sect_name_data("__data");
1464   static ConstString g_sect_name_go_symtab("__gosymtab");
1465 
1466   if (section_name == g_sect_name_dwarf_debug_abbrev)
1467     return eSectionTypeDWARFDebugAbbrev;
1468   if (section_name == g_sect_name_dwarf_debug_aranges)
1469     return eSectionTypeDWARFDebugAranges;
1470   if (section_name == g_sect_name_dwarf_debug_frame)
1471     return eSectionTypeDWARFDebugFrame;
1472   if (section_name == g_sect_name_dwarf_debug_info)
1473     return eSectionTypeDWARFDebugInfo;
1474   if (section_name == g_sect_name_dwarf_debug_line)
1475     return eSectionTypeDWARFDebugLine;
1476   if (section_name == g_sect_name_dwarf_debug_loc)
1477     return eSectionTypeDWARFDebugLoc;
1478   if (section_name == g_sect_name_dwarf_debug_loclists)
1479     return eSectionTypeDWARFDebugLocLists;
1480   if (section_name == g_sect_name_dwarf_debug_macinfo)
1481     return eSectionTypeDWARFDebugMacInfo;
1482   if (section_name == g_sect_name_dwarf_debug_names)
1483     return eSectionTypeDWARFDebugNames;
1484   if (section_name == g_sect_name_dwarf_debug_pubnames)
1485     return eSectionTypeDWARFDebugPubNames;
1486   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1487     return eSectionTypeDWARFDebugPubTypes;
1488   if (section_name == g_sect_name_dwarf_debug_ranges)
1489     return eSectionTypeDWARFDebugRanges;
1490   if (section_name == g_sect_name_dwarf_debug_str)
1491     return eSectionTypeDWARFDebugStr;
1492   if (section_name == g_sect_name_dwarf_debug_types)
1493     return eSectionTypeDWARFDebugTypes;
1494   if (section_name == g_sect_name_dwarf_apple_names)
1495     return eSectionTypeDWARFAppleNames;
1496   if (section_name == g_sect_name_dwarf_apple_types)
1497     return eSectionTypeDWARFAppleTypes;
1498   if (section_name == g_sect_name_dwarf_apple_namespaces)
1499     return eSectionTypeDWARFAppleNamespaces;
1500   if (section_name == g_sect_name_dwarf_apple_objc)
1501     return eSectionTypeDWARFAppleObjC;
1502   if (section_name == g_sect_name_objc_selrefs)
1503     return eSectionTypeDataCStringPointers;
1504   if (section_name == g_sect_name_objc_msgrefs)
1505     return eSectionTypeDataObjCMessageRefs;
1506   if (section_name == g_sect_name_eh_frame)
1507     return eSectionTypeEHFrame;
1508   if (section_name == g_sect_name_compact_unwind)
1509     return eSectionTypeCompactUnwind;
1510   if (section_name == g_sect_name_cfstring)
1511     return eSectionTypeDataObjCCFStrings;
1512   if (section_name == g_sect_name_go_symtab)
1513     return eSectionTypeGoSymtab;
1514   if (section_name == g_sect_name_objc_data ||
1515       section_name == g_sect_name_objc_classrefs ||
1516       section_name == g_sect_name_objc_superrefs ||
1517       section_name == g_sect_name_objc_const ||
1518       section_name == g_sect_name_objc_classlist) {
1519     return eSectionTypeDataPointers;
1520   }
1521 
1522   switch (mach_sect_type) {
1523   // TODO: categorize sections by other flags for regular sections
1524   case S_REGULAR:
1525     if (section_name == g_sect_name_text)
1526       return eSectionTypeCode;
1527     if (section_name == g_sect_name_data)
1528       return eSectionTypeData;
1529     return eSectionTypeOther;
1530   case S_ZEROFILL:
1531     return eSectionTypeZeroFill;
1532   case S_CSTRING_LITERALS: // section with only literal C strings
1533     return eSectionTypeDataCString;
1534   case S_4BYTE_LITERALS: // section with only 4 byte literals
1535     return eSectionTypeData4;
1536   case S_8BYTE_LITERALS: // section with only 8 byte literals
1537     return eSectionTypeData8;
1538   case S_LITERAL_POINTERS: // section with only pointers to literals
1539     return eSectionTypeDataPointers;
1540   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1541     return eSectionTypeDataPointers;
1542   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1543     return eSectionTypeDataPointers;
1544   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1545                        // the reserved2 field
1546     return eSectionTypeCode;
1547   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1548                                  // initialization
1549     return eSectionTypeDataPointers;
1550   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1551                                  // termination
1552     return eSectionTypeDataPointers;
1553   case S_COALESCED:
1554     return eSectionTypeOther;
1555   case S_GB_ZEROFILL:
1556     return eSectionTypeZeroFill;
1557   case S_INTERPOSING: // section with only pairs of function pointers for
1558                       // interposing
1559     return eSectionTypeCode;
1560   case S_16BYTE_LITERALS: // section with only 16 byte literals
1561     return eSectionTypeData16;
1562   case S_DTRACE_DOF:
1563     return eSectionTypeDebug;
1564   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1565     return eSectionTypeDataPointers;
1566   default:
1567     return eSectionTypeOther;
1568   }
1569 }
1570 
1571 struct ObjectFileMachO::SegmentParsingContext {
1572   const EncryptedFileRanges EncryptedRanges;
1573   lldb_private::SectionList &UnifiedList;
1574   uint32_t NextSegmentIdx = 0;
1575   uint32_t NextSectionIdx = 0;
1576   bool FileAddressesChanged = false;
1577 
1578   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1579                         lldb_private::SectionList &UnifiedList)
1580       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1581 };
1582 
1583 void ObjectFileMachO::ProcessSegmentCommand(
1584     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1585     uint32_t cmd_idx, SegmentParsingContext &context) {
1586   llvm::MachO::segment_command_64 load_cmd;
1587   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1588 
1589   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1590     return;
1591 
1592   ModuleSP module_sp = GetModule();
1593   const bool is_core = GetType() == eTypeCoreFile;
1594   const bool is_dsym = (m_header.filetype == MH_DSYM);
1595   bool add_section = true;
1596   bool add_to_unified = true;
1597   ConstString const_segname(
1598       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1599 
1600   SectionSP unified_section_sp(
1601       context.UnifiedList.FindSectionByName(const_segname));
1602   if (is_dsym && unified_section_sp) {
1603     if (const_segname == GetSegmentNameLINKEDIT()) {
1604       // We need to keep the __LINKEDIT segment private to this object file
1605       // only
1606       add_to_unified = false;
1607     } else {
1608       // This is the dSYM file and this section has already been created by the
1609       // object file, no need to create it.
1610       add_section = false;
1611     }
1612   }
1613   load_cmd.vmaddr = m_data.GetAddress(&offset);
1614   load_cmd.vmsize = m_data.GetAddress(&offset);
1615   load_cmd.fileoff = m_data.GetAddress(&offset);
1616   load_cmd.filesize = m_data.GetAddress(&offset);
1617   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1618     return;
1619 
1620   SanitizeSegmentCommand(load_cmd, cmd_idx);
1621 
1622   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1623   const bool segment_is_encrypted =
1624       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1625 
1626   // Keep a list of mach segments around in case we need to get at data that
1627   // isn't stored in the abstracted Sections.
1628   m_mach_segments.push_back(load_cmd);
1629 
1630   // Use a segment ID of the segment index shifted left by 8 so they never
1631   // conflict with any of the sections.
1632   SectionSP segment_sp;
1633   if (add_section && (const_segname || is_core)) {
1634     segment_sp = std::make_shared<Section>(
1635         module_sp, // Module to which this section belongs
1636         this,      // Object file to which this sections belongs
1637         ++context.NextSegmentIdx
1638             << 8, // Section ID is the 1 based segment index
1639         // shifted right by 8 bits as not to collide with any of the 256
1640         // section IDs that are possible
1641         const_segname,         // Name of this section
1642         eSectionTypeContainer, // This section is a container of other
1643         // sections.
1644         load_cmd.vmaddr, // File VM address == addresses as they are
1645         // found in the object file
1646         load_cmd.vmsize,  // VM size in bytes of this section
1647         load_cmd.fileoff, // Offset to the data for this section in
1648         // the file
1649         load_cmd.filesize, // Size in bytes of this section as found
1650         // in the file
1651         0,               // Segments have no alignment information
1652         load_cmd.flags); // Flags for this section
1653 
1654     segment_sp->SetIsEncrypted(segment_is_encrypted);
1655     m_sections_up->AddSection(segment_sp);
1656     segment_sp->SetPermissions(segment_permissions);
1657     if (add_to_unified)
1658       context.UnifiedList.AddSection(segment_sp);
1659   } else if (unified_section_sp) {
1660     // If this is a dSYM and the file addresses in the dSYM differ from the
1661     // file addresses in the ObjectFile, we must use the file base address for
1662     // the Section from the dSYM for the DWARF to resolve correctly.
1663     // This only happens with binaries in the shared cache in practice;
1664     // normally a mismatch like this would give a binary & dSYM that do not
1665     // match UUIDs. When a binary is included in the shared cache, its
1666     // segments are rearranged to optimize the shared cache, so its file
1667     // addresses will differ from what the ObjectFile had originally,
1668     // and what the dSYM has.
1669     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1670       Log *log = GetLog(LLDBLog::Symbols);
1671       if (log) {
1672         log->Printf(
1673             "Installing dSYM's %s segment file address over ObjectFile's "
1674             "so symbol table/debug info resolves correctly for %s",
1675             const_segname.AsCString(),
1676             module_sp->GetFileSpec().GetFilename().AsCString());
1677       }
1678 
1679       // Make sure we've parsed the symbol table from the ObjectFile before
1680       // we go around changing its Sections.
1681       module_sp->GetObjectFile()->GetSymtab();
1682       // eh_frame would present the same problems but we parse that on a per-
1683       // function basis as-needed so it's more difficult to remove its use of
1684       // the Sections.  Realistically, the environments where this code path
1685       // will be taken will not have eh_frame sections.
1686 
1687       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1688 
1689       // Notify the module that the section addresses have been changed once
1690       // we're done so any file-address caches can be updated.
1691       context.FileAddressesChanged = true;
1692     }
1693     m_sections_up->AddSection(unified_section_sp);
1694   }
1695 
1696   llvm::MachO::section_64 sect64;
1697   ::memset(&sect64, 0, sizeof(sect64));
1698   // Push a section into our mach sections for the section at index zero
1699   // (NO_SECT) if we don't have any mach sections yet...
1700   if (m_mach_sections.empty())
1701     m_mach_sections.push_back(sect64);
1702   uint32_t segment_sect_idx;
1703   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1704 
1705   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1706   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1707        ++segment_sect_idx) {
1708     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1709                      sizeof(sect64.sectname)) == nullptr)
1710       break;
1711     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1712                      sizeof(sect64.segname)) == nullptr)
1713       break;
1714     sect64.addr = m_data.GetAddress(&offset);
1715     sect64.size = m_data.GetAddress(&offset);
1716 
1717     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1718       break;
1719 
1720     if (IsSharedCacheBinary() && !IsInMemory()) {
1721       sect64.offset = sect64.addr - m_text_address;
1722     }
1723 
1724     // Keep a list of mach sections around in case we need to get at data that
1725     // isn't stored in the abstracted Sections.
1726     m_mach_sections.push_back(sect64);
1727 
1728     if (add_section) {
1729       ConstString section_name(
1730           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1731       if (!const_segname) {
1732         // We have a segment with no name so we need to conjure up segments
1733         // that correspond to the section's segname if there isn't already such
1734         // a section. If there is such a section, we resize the section so that
1735         // it spans all sections.  We also mark these sections as fake so
1736         // address matches don't hit if they land in the gaps between the child
1737         // sections.
1738         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1739                                                   sizeof(sect64.segname));
1740         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1741         if (segment_sp.get()) {
1742           Section *segment = segment_sp.get();
1743           // Grow the section size as needed.
1744           const lldb::addr_t sect64_min_addr = sect64.addr;
1745           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1746           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1747           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1748           const lldb::addr_t curr_seg_max_addr =
1749               curr_seg_min_addr + curr_seg_byte_size;
1750           if (sect64_min_addr >= curr_seg_min_addr) {
1751             const lldb::addr_t new_seg_byte_size =
1752                 sect64_max_addr - curr_seg_min_addr;
1753             // Only grow the section size if needed
1754             if (new_seg_byte_size > curr_seg_byte_size)
1755               segment->SetByteSize(new_seg_byte_size);
1756           } else {
1757             // We need to change the base address of the segment and adjust the
1758             // child section offsets for all existing children.
1759             const lldb::addr_t slide_amount =
1760                 sect64_min_addr - curr_seg_min_addr;
1761             segment->Slide(slide_amount, false);
1762             segment->GetChildren().Slide(-slide_amount, false);
1763             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1764           }
1765 
1766           // Grow the section size as needed.
1767           if (sect64.offset) {
1768             const lldb::addr_t segment_min_file_offset =
1769                 segment->GetFileOffset();
1770             const lldb::addr_t segment_max_file_offset =
1771                 segment_min_file_offset + segment->GetFileSize();
1772 
1773             const lldb::addr_t section_min_file_offset = sect64.offset;
1774             const lldb::addr_t section_max_file_offset =
1775                 section_min_file_offset + sect64.size;
1776             const lldb::addr_t new_file_offset =
1777                 std::min(section_min_file_offset, segment_min_file_offset);
1778             const lldb::addr_t new_file_size =
1779                 std::max(section_max_file_offset, segment_max_file_offset) -
1780                 new_file_offset;
1781             segment->SetFileOffset(new_file_offset);
1782             segment->SetFileSize(new_file_size);
1783           }
1784         } else {
1785           // Create a fake section for the section's named segment
1786           segment_sp = std::make_shared<Section>(
1787               segment_sp, // Parent section
1788               module_sp,  // Module to which this section belongs
1789               this,       // Object file to which this section belongs
1790               ++context.NextSegmentIdx
1791                   << 8, // Section ID is the 1 based segment index
1792               // shifted right by 8 bits as not to
1793               // collide with any of the 256 section IDs
1794               // that are possible
1795               const_segname,         // Name of this section
1796               eSectionTypeContainer, // This section is a container of
1797               // other sections.
1798               sect64.addr, // File VM address == addresses as they are
1799               // found in the object file
1800               sect64.size,   // VM size in bytes of this section
1801               sect64.offset, // Offset to the data for this section in
1802               // the file
1803               sect64.offset ? sect64.size : 0, // Size in bytes of
1804               // this section as
1805               // found in the file
1806               sect64.align,
1807               load_cmd.flags); // Flags for this section
1808           segment_sp->SetIsFake(true);
1809           segment_sp->SetPermissions(segment_permissions);
1810           m_sections_up->AddSection(segment_sp);
1811           if (add_to_unified)
1812             context.UnifiedList.AddSection(segment_sp);
1813           segment_sp->SetIsEncrypted(segment_is_encrypted);
1814         }
1815       }
1816       assert(segment_sp.get());
1817 
1818       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1819 
1820       SectionSP section_sp(new Section(
1821           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1822           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1823           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1824           sect64.flags));
1825       // Set the section to be encrypted to match the segment
1826 
1827       bool section_is_encrypted = false;
1828       if (!segment_is_encrypted && load_cmd.filesize != 0)
1829         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1830                                    sect64.offset) != nullptr;
1831 
1832       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1833       section_sp->SetPermissions(segment_permissions);
1834       segment_sp->GetChildren().AddSection(section_sp);
1835 
1836       if (segment_sp->IsFake()) {
1837         segment_sp.reset();
1838         const_segname.Clear();
1839       }
1840     }
1841   }
1842   if (segment_sp && is_dsym) {
1843     if (first_segment_sectID <= context.NextSectionIdx) {
1844       lldb::user_id_t sect_uid;
1845       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1846            ++sect_uid) {
1847         SectionSP curr_section_sp(
1848             segment_sp->GetChildren().FindSectionByID(sect_uid));
1849         SectionSP next_section_sp;
1850         if (sect_uid + 1 <= context.NextSectionIdx)
1851           next_section_sp =
1852               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1853 
1854         if (curr_section_sp.get()) {
1855           if (curr_section_sp->GetByteSize() == 0) {
1856             if (next_section_sp.get() != nullptr)
1857               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1858                                            curr_section_sp->GetFileAddress());
1859             else
1860               curr_section_sp->SetByteSize(load_cmd.vmsize);
1861           }
1862         }
1863       }
1864     }
1865   }
1866 }
1867 
1868 void ObjectFileMachO::ProcessDysymtabCommand(
1869     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1870   m_dysymtab.cmd = load_cmd.cmd;
1871   m_dysymtab.cmdsize = load_cmd.cmdsize;
1872   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1873                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1874 }
1875 
1876 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1877   if (m_sections_up)
1878     return;
1879 
1880   m_sections_up = std::make_unique<SectionList>();
1881 
1882   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1883   // bool dump_sections = false;
1884   ModuleSP module_sp(GetModule());
1885 
1886   offset = MachHeaderSizeFromMagic(m_header.magic);
1887 
1888   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1889   llvm::MachO::load_command load_cmd;
1890   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1891     const lldb::offset_t load_cmd_offset = offset;
1892     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1893       break;
1894 
1895     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1896       ProcessSegmentCommand(load_cmd, offset, i, context);
1897     else if (load_cmd.cmd == LC_DYSYMTAB)
1898       ProcessDysymtabCommand(load_cmd, offset);
1899 
1900     offset = load_cmd_offset + load_cmd.cmdsize;
1901   }
1902 
1903   if (context.FileAddressesChanged && module_sp)
1904     module_sp->SectionFileAddressesChanged();
1905 }
1906 
1907 class MachSymtabSectionInfo {
1908 public:
1909   MachSymtabSectionInfo(SectionList *section_list)
1910       : m_section_list(section_list), m_section_infos() {
1911     // Get the number of sections down to a depth of 1 to include all segments
1912     // and their sections, but no other sections that may be added for debug
1913     // map or
1914     m_section_infos.resize(section_list->GetNumSections(1));
1915   }
1916 
1917   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1918     if (n_sect == 0)
1919       return SectionSP();
1920     if (n_sect < m_section_infos.size()) {
1921       if (!m_section_infos[n_sect].section_sp) {
1922         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1923         m_section_infos[n_sect].section_sp = section_sp;
1924         if (section_sp) {
1925           m_section_infos[n_sect].vm_range.SetBaseAddress(
1926               section_sp->GetFileAddress());
1927           m_section_infos[n_sect].vm_range.SetByteSize(
1928               section_sp->GetByteSize());
1929         } else {
1930           std::string filename = "<unknown>";
1931           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1932           if (first_section_sp)
1933             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1934 
1935           Host::SystemLog(Host::eSystemLogError,
1936                           "error: unable to find section %d for a symbol in "
1937                           "%s, corrupt file?\n",
1938                           n_sect, filename.c_str());
1939         }
1940       }
1941       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1942         // Symbol is in section.
1943         return m_section_infos[n_sect].section_sp;
1944       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1945                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1946                      file_addr) {
1947         // Symbol is in section with zero size, but has the same start address
1948         // as the section. This can happen with linker symbols (symbols that
1949         // start with the letter 'l' or 'L'.
1950         return m_section_infos[n_sect].section_sp;
1951       }
1952     }
1953     return m_section_list->FindSectionContainingFileAddress(file_addr);
1954   }
1955 
1956 protected:
1957   struct SectionInfo {
1958     SectionInfo() : vm_range(), section_sp() {}
1959 
1960     VMRange vm_range;
1961     SectionSP section_sp;
1962   };
1963   SectionList *m_section_list;
1964   std::vector<SectionInfo> m_section_infos;
1965 };
1966 
1967 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1968 struct TrieEntry {
1969   void Dump() const {
1970     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1971            static_cast<unsigned long long>(address),
1972            static_cast<unsigned long long>(flags),
1973            static_cast<unsigned long long>(other), name.GetCString());
1974     if (import_name)
1975       printf(" -> \"%s\"\n", import_name.GetCString());
1976     else
1977       printf("\n");
1978   }
1979   ConstString name;
1980   uint64_t address = LLDB_INVALID_ADDRESS;
1981   uint64_t flags =
1982       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1983          // TRIE_SYMBOL_IS_THUMB
1984   uint64_t other = 0;
1985   ConstString import_name;
1986 };
1987 
1988 struct TrieEntryWithOffset {
1989   lldb::offset_t nodeOffset;
1990   TrieEntry entry;
1991 
1992   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1993 
1994   void Dump(uint32_t idx) const {
1995     printf("[%3u] 0x%16.16llx: ", idx,
1996            static_cast<unsigned long long>(nodeOffset));
1997     entry.Dump();
1998   }
1999 
2000   bool operator<(const TrieEntryWithOffset &other) const {
2001     return (nodeOffset < other.nodeOffset);
2002   }
2003 };
2004 
2005 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2006                              const bool is_arm, addr_t text_seg_base_addr,
2007                              std::vector<llvm::StringRef> &nameSlices,
2008                              std::set<lldb::addr_t> &resolver_addresses,
2009                              std::vector<TrieEntryWithOffset> &reexports,
2010                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2011   if (!data.ValidOffset(offset))
2012     return true;
2013 
2014   // Terminal node -- end of a branch, possibly add this to
2015   // the symbol table or resolver table.
2016   const uint64_t terminalSize = data.GetULEB128(&offset);
2017   lldb::offset_t children_offset = offset + terminalSize;
2018   if (terminalSize != 0) {
2019     TrieEntryWithOffset e(offset);
2020     e.entry.flags = data.GetULEB128(&offset);
2021     const char *import_name = nullptr;
2022     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2023       e.entry.address = 0;
2024       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2025       import_name = data.GetCStr(&offset);
2026     } else {
2027       e.entry.address = data.GetULEB128(&offset);
2028       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2029         e.entry.address += text_seg_base_addr;
2030       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2031         e.entry.other = data.GetULEB128(&offset);
2032         uint64_t resolver_addr = e.entry.other;
2033         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2034           resolver_addr += text_seg_base_addr;
2035         if (is_arm)
2036           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2037         resolver_addresses.insert(resolver_addr);
2038       } else
2039         e.entry.other = 0;
2040     }
2041     bool add_this_entry = false;
2042     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2043         import_name && import_name[0]) {
2044       // add symbols that are reexport symbols with a valid import name.
2045       add_this_entry = true;
2046     } else if (e.entry.flags == 0 &&
2047                (import_name == nullptr || import_name[0] == '\0')) {
2048       // add externally visible symbols, in case the nlist record has
2049       // been stripped/omitted.
2050       add_this_entry = true;
2051     }
2052     if (add_this_entry) {
2053       std::string name;
2054       if (!nameSlices.empty()) {
2055         for (auto name_slice : nameSlices)
2056           name.append(name_slice.data(), name_slice.size());
2057       }
2058       if (name.size() > 1) {
2059         // Skip the leading '_'
2060         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2061       }
2062       if (import_name) {
2063         // Skip the leading '_'
2064         e.entry.import_name.SetCString(import_name + 1);
2065       }
2066       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2067         reexports.push_back(e);
2068       } else {
2069         if (is_arm && (e.entry.address & 1)) {
2070           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2071           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2072         }
2073         ext_symbols.push_back(e);
2074       }
2075     }
2076   }
2077 
2078   const uint8_t childrenCount = data.GetU8(&children_offset);
2079   for (uint8_t i = 0; i < childrenCount; ++i) {
2080     const char *cstr = data.GetCStr(&children_offset);
2081     if (cstr)
2082       nameSlices.push_back(llvm::StringRef(cstr));
2083     else
2084       return false; // Corrupt data
2085     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2086     if (childNodeOffset) {
2087       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2088                             nameSlices, resolver_addresses, reexports,
2089                             ext_symbols)) {
2090         return false;
2091       }
2092     }
2093     nameSlices.pop_back();
2094   }
2095   return true;
2096 }
2097 
2098 static SymbolType GetSymbolType(const char *&symbol_name,
2099                                 bool &demangled_is_synthesized,
2100                                 const SectionSP &text_section_sp,
2101                                 const SectionSP &data_section_sp,
2102                                 const SectionSP &data_dirty_section_sp,
2103                                 const SectionSP &data_const_section_sp,
2104                                 const SectionSP &symbol_section) {
2105   SymbolType type = eSymbolTypeInvalid;
2106 
2107   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2108   if (symbol_section->IsDescendant(text_section_sp.get())) {
2109     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2110                                 S_ATTR_SELF_MODIFYING_CODE |
2111                                 S_ATTR_SOME_INSTRUCTIONS))
2112       type = eSymbolTypeData;
2113     else
2114       type = eSymbolTypeCode;
2115   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2116              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2117              symbol_section->IsDescendant(data_const_section_sp.get())) {
2118     if (symbol_sect_name &&
2119         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2120       type = eSymbolTypeRuntime;
2121 
2122       if (symbol_name) {
2123         llvm::StringRef symbol_name_ref(symbol_name);
2124         if (symbol_name_ref.startswith("OBJC_")) {
2125           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2126           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2127               "OBJC_METACLASS_$_");
2128           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2129           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2130             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2131             type = eSymbolTypeObjCClass;
2132             demangled_is_synthesized = true;
2133           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2134             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2135             type = eSymbolTypeObjCMetaClass;
2136             demangled_is_synthesized = true;
2137           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2138             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2139             type = eSymbolTypeObjCIVar;
2140             demangled_is_synthesized = true;
2141           }
2142         }
2143       }
2144     } else if (symbol_sect_name &&
2145                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2146                    symbol_sect_name) {
2147       type = eSymbolTypeException;
2148     } else {
2149       type = eSymbolTypeData;
2150     }
2151   } else if (symbol_sect_name &&
2152              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2153     type = eSymbolTypeTrampoline;
2154   }
2155   return type;
2156 }
2157 
2158 // Read the UUID out of a dyld_shared_cache file on-disk.
2159 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2160                                          const ByteOrder byte_order,
2161                                          const uint32_t addr_byte_size) {
2162   UUID dsc_uuid;
2163   DataBufferSP DscData = MapFileData(
2164       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2165   if (!DscData)
2166     return dsc_uuid;
2167   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2168 
2169   char version_str[7];
2170   lldb::offset_t offset = 0;
2171   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2172   version_str[6] = '\0';
2173   if (strcmp(version_str, "dyld_v") == 0) {
2174     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2175     dsc_uuid = UUID::fromOptionalData(
2176         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2177   }
2178   Log *log = GetLog(LLDBLog::Symbols);
2179   if (log && dsc_uuid.IsValid()) {
2180     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2181               dyld_shared_cache.GetPath().c_str(),
2182               dsc_uuid.GetAsString().c_str());
2183   }
2184   return dsc_uuid;
2185 }
2186 
2187 static llvm::Optional<struct nlist_64>
2188 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2189            size_t nlist_byte_size) {
2190   struct nlist_64 nlist;
2191   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2192     return {};
2193   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2194   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2195   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2196   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2197   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2198   return nlist;
2199 }
2200 
2201 enum { DebugSymbols = true, NonDebugSymbols = false };
2202 
2203 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2204   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s",
2205                      m_file.GetFilename().AsCString(""));
2206   ModuleSP module_sp(GetModule());
2207   if (!module_sp)
2208     return;
2209 
2210   Progress progress(llvm::formatv("Parsing symbol table for {0}",
2211                                   m_file.GetFilename().AsCString("<Unknown>")));
2212 
2213   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2214   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2215   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2216   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2217   // The data element of type bool indicates that this entry is thumb
2218   // code.
2219   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2220 
2221   // Record the address of every function/data that we add to the symtab.
2222   // We add symbols to the table in the order of most information (nlist
2223   // records) to least (function starts), and avoid duplicating symbols
2224   // via this set.
2225   llvm::DenseSet<addr_t> symbols_added;
2226 
2227   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2228   // do not add the tombstone or empty keys to the set.
2229   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2230     // Don't add the tombstone or empty keys.
2231     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2232       return;
2233     symbols_added.insert(file_addr);
2234   };
2235   FunctionStarts function_starts;
2236   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2237   uint32_t i;
2238   FileSpecList dylib_files;
2239   Log *log = GetLog(LLDBLog::Symbols);
2240   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2241   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2242   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2243   UUID image_uuid;
2244 
2245   for (i = 0; i < m_header.ncmds; ++i) {
2246     const lldb::offset_t cmd_offset = offset;
2247     // Read in the load command and load command size
2248     llvm::MachO::load_command lc;
2249     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2250       break;
2251     // Watch for the symbol table load command
2252     switch (lc.cmd) {
2253     case LC_SYMTAB:
2254       symtab_load_command.cmd = lc.cmd;
2255       symtab_load_command.cmdsize = lc.cmdsize;
2256       // Read in the rest of the symtab load command
2257       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2258           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2259         return;
2260       break;
2261 
2262     case LC_DYLD_INFO:
2263     case LC_DYLD_INFO_ONLY:
2264       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2265         dyld_info.cmd = lc.cmd;
2266         dyld_info.cmdsize = lc.cmdsize;
2267       } else {
2268         memset(&dyld_info, 0, sizeof(dyld_info));
2269       }
2270       break;
2271 
2272     case LC_LOAD_DYLIB:
2273     case LC_LOAD_WEAK_DYLIB:
2274     case LC_REEXPORT_DYLIB:
2275     case LC_LOADFVMLIB:
2276     case LC_LOAD_UPWARD_DYLIB: {
2277       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2278       const char *path = m_data.PeekCStr(name_offset);
2279       if (path) {
2280         FileSpec file_spec(path);
2281         // Strip the path if there is @rpath, @executable, etc so we just use
2282         // the basename
2283         if (path[0] == '@')
2284           file_spec.GetDirectory().Clear();
2285 
2286         if (lc.cmd == LC_REEXPORT_DYLIB) {
2287           m_reexported_dylibs.AppendIfUnique(file_spec);
2288         }
2289 
2290         dylib_files.Append(file_spec);
2291       }
2292     } break;
2293 
2294     case LC_DYLD_EXPORTS_TRIE:
2295       exports_trie_load_command.cmd = lc.cmd;
2296       exports_trie_load_command.cmdsize = lc.cmdsize;
2297       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2298           nullptr) // fill in offset and size fields
2299         memset(&exports_trie_load_command, 0,
2300                sizeof(exports_trie_load_command));
2301       break;
2302     case LC_FUNCTION_STARTS:
2303       function_starts_load_command.cmd = lc.cmd;
2304       function_starts_load_command.cmdsize = lc.cmdsize;
2305       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2306           nullptr) // fill in data offset and size fields
2307         memset(&function_starts_load_command, 0,
2308                sizeof(function_starts_load_command));
2309       break;
2310 
2311     case LC_UUID: {
2312       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2313 
2314       if (uuid_bytes)
2315         image_uuid = UUID::fromOptionalData(uuid_bytes, 16);
2316       break;
2317     }
2318 
2319     default:
2320       break;
2321     }
2322     offset = cmd_offset + lc.cmdsize;
2323   }
2324 
2325   if (!symtab_load_command.cmd)
2326     return;
2327 
2328   SectionList *section_list = GetSectionList();
2329   if (section_list == nullptr)
2330     return;
2331 
2332   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2333   const ByteOrder byte_order = m_data.GetByteOrder();
2334   bool bit_width_32 = addr_byte_size == 4;
2335   const size_t nlist_byte_size =
2336       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2337 
2338   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2339   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2340   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2341   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2342                                            addr_byte_size);
2343   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2344 
2345   const addr_t nlist_data_byte_size =
2346       symtab_load_command.nsyms * nlist_byte_size;
2347   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2348   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2349 
2350   ProcessSP process_sp(m_process_wp.lock());
2351   Process *process = process_sp.get();
2352 
2353   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2354   bool is_shared_cache_image = IsSharedCacheBinary();
2355   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2356   SectionSP linkedit_section_sp(
2357       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2358 
2359   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2360       !is_local_shared_cache_image) {
2361     Target &target = process->GetTarget();
2362 
2363     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2364 
2365     // Reading mach file from memory in a process or core file...
2366 
2367     if (linkedit_section_sp) {
2368       addr_t linkedit_load_addr =
2369           linkedit_section_sp->GetLoadBaseAddress(&target);
2370       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2371         // We might be trying to access the symbol table before the
2372         // __LINKEDIT's load address has been set in the target. We can't
2373         // fail to read the symbol table, so calculate the right address
2374         // manually
2375         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2376             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2377       }
2378 
2379       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2380       const addr_t symoff_addr = linkedit_load_addr +
2381                                  symtab_load_command.symoff -
2382                                  linkedit_file_offset;
2383       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2384                     linkedit_file_offset;
2385 
2386         // Always load dyld - the dynamic linker - from memory if we didn't
2387         // find a binary anywhere else. lldb will not register
2388         // dylib/framework/bundle loads/unloads if we don't have the dyld
2389         // symbols, we force dyld to load from memory despite the user's
2390         // target.memory-module-load-level setting.
2391         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2392             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2393           DataBufferSP nlist_data_sp(
2394               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2395           if (nlist_data_sp)
2396             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2397           if (m_dysymtab.nindirectsyms != 0) {
2398             const addr_t indirect_syms_addr = linkedit_load_addr +
2399                                               m_dysymtab.indirectsymoff -
2400                                               linkedit_file_offset;
2401             DataBufferSP indirect_syms_data_sp(ReadMemory(
2402                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2403             if (indirect_syms_data_sp)
2404               indirect_symbol_index_data.SetData(
2405                   indirect_syms_data_sp, 0,
2406                   indirect_syms_data_sp->GetByteSize());
2407             // If this binary is outside the shared cache,
2408             // cache the string table.
2409             // Binaries in the shared cache all share a giant string table,
2410             // and we can't share the string tables across multiple
2411             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2412             // for every binary in the shared cache - it would be a big perf
2413             // problem. For binaries outside the shared cache, it's faster to
2414             // read the entire strtab at once instead of piece-by-piece as we
2415             // process the nlist records.
2416             if (!is_shared_cache_image) {
2417               DataBufferSP strtab_data_sp(
2418                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2419               if (strtab_data_sp) {
2420                 strtab_data.SetData(strtab_data_sp, 0,
2421                                     strtab_data_sp->GetByteSize());
2422               }
2423             }
2424           }
2425         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2426           if (function_starts_load_command.cmd) {
2427             const addr_t func_start_addr =
2428                 linkedit_load_addr + function_starts_load_command.dataoff -
2429                 linkedit_file_offset;
2430             DataBufferSP func_start_data_sp(
2431                 ReadMemory(process_sp, func_start_addr,
2432                            function_starts_load_command.datasize));
2433             if (func_start_data_sp)
2434               function_starts_data.SetData(func_start_data_sp, 0,
2435                                            func_start_data_sp->GetByteSize());
2436           }
2437         }
2438       }
2439     }
2440   } else {
2441     if (is_local_shared_cache_image) {
2442       // The load commands in shared cache images are relative to the
2443       // beginning of the shared cache, not the library image. The
2444       // data we get handed when creating the ObjectFileMachO starts
2445       // at the beginning of a specific library and spans to the end
2446       // of the cache to be able to reach the shared LINKEDIT
2447       // segments. We need to convert the load command offsets to be
2448       // relative to the beginning of our specific image.
2449       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2450       lldb::offset_t linkedit_slide =
2451           linkedit_offset - m_linkedit_original_offset;
2452       symtab_load_command.symoff += linkedit_slide;
2453       symtab_load_command.stroff += linkedit_slide;
2454       dyld_info.export_off += linkedit_slide;
2455       m_dysymtab.indirectsymoff += linkedit_slide;
2456       function_starts_load_command.dataoff += linkedit_slide;
2457       exports_trie_load_command.dataoff += linkedit_slide;
2458     }
2459 
2460     nlist_data.SetData(m_data, symtab_load_command.symoff,
2461                        nlist_data_byte_size);
2462     strtab_data.SetData(m_data, symtab_load_command.stroff,
2463                         strtab_data_byte_size);
2464 
2465     // We shouldn't have exports data from both the LC_DYLD_INFO command
2466     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2467     lldbassert(!((dyld_info.export_size > 0)
2468                  && (exports_trie_load_command.datasize > 0)));
2469     if (dyld_info.export_size > 0) {
2470       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2471                              dyld_info.export_size);
2472     } else if (exports_trie_load_command.datasize > 0) {
2473       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2474                              exports_trie_load_command.datasize);
2475     }
2476 
2477     if (m_dysymtab.nindirectsyms != 0) {
2478       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2479                                          m_dysymtab.nindirectsyms * 4);
2480     }
2481     if (function_starts_load_command.cmd) {
2482       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2483                                    function_starts_load_command.datasize);
2484     }
2485   }
2486 
2487   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2488 
2489   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2490   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2491   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2492   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2493   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2494   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2495   SectionSP text_section_sp(
2496       section_list->FindSectionByName(g_segment_name_TEXT));
2497   SectionSP data_section_sp(
2498       section_list->FindSectionByName(g_segment_name_DATA));
2499   SectionSP data_dirty_section_sp(
2500       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2501   SectionSP data_const_section_sp(
2502       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2503   SectionSP objc_section_sp(
2504       section_list->FindSectionByName(g_segment_name_OBJC));
2505   SectionSP eh_frame_section_sp;
2506   if (text_section_sp.get())
2507     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2508         g_section_name_eh_frame);
2509   else
2510     eh_frame_section_sp =
2511         section_list->FindSectionByName(g_section_name_eh_frame);
2512 
2513   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2514   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2515 
2516   // lldb works best if it knows the start address of all functions in a
2517   // module. Linker symbols or debug info are normally the best source of
2518   // information for start addr / size but they may be stripped in a released
2519   // binary. Two additional sources of information exist in Mach-O binaries:
2520   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2521   //    function's start address in the
2522   //                         binary, relative to the text section.
2523   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2524   //    each function
2525   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2526   //  all modern binaries.
2527   //  Binaries built to run on older releases may need to use eh_frame
2528   //  information.
2529 
2530   if (text_section_sp && function_starts_data.GetByteSize()) {
2531     FunctionStarts::Entry function_start_entry;
2532     function_start_entry.data = false;
2533     lldb::offset_t function_start_offset = 0;
2534     function_start_entry.addr = text_section_sp->GetFileAddress();
2535     uint64_t delta;
2536     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2537            0) {
2538       // Now append the current entry
2539       function_start_entry.addr += delta;
2540       if (is_arm) {
2541         if (function_start_entry.addr & 1) {
2542           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2543           function_start_entry.data = true;
2544         } else if (always_thumb) {
2545           function_start_entry.data = true;
2546         }
2547       }
2548       function_starts.Append(function_start_entry);
2549     }
2550   } else {
2551     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2552     // load command claiming an eh_frame but it doesn't actually have the
2553     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2554     // this fill-in-the-missing-symbols works anyway - the debug info should
2555     // give us all the functions in the module.
2556     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2557         m_type != eTypeDebugInfo) {
2558       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2559                                   DWARFCallFrameInfo::EH);
2560       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2561       eh_frame.GetFunctionAddressAndSizeVector(functions);
2562       addr_t text_base_addr = text_section_sp->GetFileAddress();
2563       size_t count = functions.GetSize();
2564       for (size_t i = 0; i < count; ++i) {
2565         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2566             functions.GetEntryAtIndex(i);
2567         if (func) {
2568           FunctionStarts::Entry function_start_entry;
2569           function_start_entry.addr = func->base - text_base_addr;
2570           if (is_arm) {
2571             if (function_start_entry.addr & 1) {
2572               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2573               function_start_entry.data = true;
2574             } else if (always_thumb) {
2575               function_start_entry.data = true;
2576             }
2577           }
2578           function_starts.Append(function_start_entry);
2579         }
2580       }
2581     }
2582   }
2583 
2584   const size_t function_starts_count = function_starts.GetSize();
2585 
2586   // For user process binaries (executables, dylibs, frameworks, bundles), if
2587   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2588   // going to assume the binary has been stripped.  Don't allow assembly
2589   // language instruction emulation because we don't know proper function
2590   // start boundaries.
2591   //
2592   // For all other types of binaries (kernels, stand-alone bare board
2593   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2594   // sections - we should not make any assumptions about them based on that.
2595   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2596     m_allow_assembly_emulation_unwind_plans = false;
2597     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2598 
2599     if (unwind_or_symbol_log)
2600       module_sp->LogMessage(
2601           unwind_or_symbol_log,
2602           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2603   }
2604 
2605   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2606                                              ? eh_frame_section_sp->GetID()
2607                                              : static_cast<user_id_t>(NO_SECT);
2608 
2609   uint32_t N_SO_index = UINT32_MAX;
2610 
2611   MachSymtabSectionInfo section_info(section_list);
2612   std::vector<uint32_t> N_FUN_indexes;
2613   std::vector<uint32_t> N_NSYM_indexes;
2614   std::vector<uint32_t> N_INCL_indexes;
2615   std::vector<uint32_t> N_BRAC_indexes;
2616   std::vector<uint32_t> N_COMM_indexes;
2617   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2618   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2619   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2620   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2621   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2622   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2623   // Any symbols that get merged into another will get an entry in this map
2624   // so we know
2625   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2626   uint32_t nlist_idx = 0;
2627   Symbol *symbol_ptr = nullptr;
2628 
2629   uint32_t sym_idx = 0;
2630   Symbol *sym = nullptr;
2631   size_t num_syms = 0;
2632   std::string memory_symbol_name;
2633   uint32_t unmapped_local_symbols_found = 0;
2634 
2635   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2636   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2637   std::set<lldb::addr_t> resolver_addresses;
2638 
2639   if (dyld_trie_data.GetByteSize() > 0) {
2640     ConstString text_segment_name("__TEXT");
2641     SectionSP text_segment_sp =
2642         GetSectionList()->FindSectionByName(text_segment_name);
2643     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2644     if (text_segment_sp)
2645       text_segment_file_addr = text_segment_sp->GetFileAddress();
2646     std::vector<llvm::StringRef> nameSlices;
2647     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2648                      nameSlices, resolver_addresses, reexport_trie_entries,
2649                      external_sym_trie_entries);
2650   }
2651 
2652   typedef std::set<ConstString> IndirectSymbols;
2653   IndirectSymbols indirect_symbol_names;
2654 
2655 #if TARGET_OS_IPHONE
2656 
2657   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2658   // optimized by moving LOCAL symbols out of the memory mapped portion of
2659   // the DSC. The symbol information has all been retained, but it isn't
2660   // available in the normal nlist data. However, there *are* duplicate
2661   // entries of *some*
2662   // LOCAL symbols in the normal nlist data. To handle this situation
2663   // correctly, we must first attempt
2664   // to parse any DSC unmapped symbol information. If we find any, we set a
2665   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2666 
2667   if (IsSharedCacheBinary()) {
2668     // Before we can start mapping the DSC, we need to make certain the
2669     // target process is actually using the cache we can find.
2670 
2671     // Next we need to determine the correct path for the dyld shared cache.
2672 
2673     ArchSpec header_arch = GetArchitecture();
2674 
2675     UUID dsc_uuid;
2676     UUID process_shared_cache_uuid;
2677     addr_t process_shared_cache_base_addr;
2678 
2679     if (process) {
2680       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2681                                 process_shared_cache_uuid);
2682     }
2683 
2684     __block bool found_image = false;
2685     __block void *nlist_buffer = nullptr;
2686     __block unsigned nlist_count = 0;
2687     __block char *string_table = nullptr;
2688     __block vm_offset_t vm_nlist_memory = 0;
2689     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2690     __block vm_offset_t vm_string_memory = 0;
2691     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2692 
2693     auto _ = llvm::make_scope_exit(^{
2694       if (vm_nlist_memory)
2695         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2696       if (vm_string_memory)
2697         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2698     });
2699 
2700     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2701     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2702     UndefinedNameToDescMap undefined_name_to_desc;
2703     SymbolIndexToName reexport_shlib_needs_fixup;
2704 
2705     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2706       uuid_t cache_uuid;
2707       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2708       if (found_image)
2709         return;
2710 
2711         if (process_shared_cache_uuid.IsValid() &&
2712           process_shared_cache_uuid != UUID::fromOptionalData(&cache_uuid, 16))
2713         return;
2714       const bool pinned = dyld_shared_cache_pin_mapping(shared_cache);
2715       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2716         uuid_t dsc_image_uuid;
2717         if (found_image)
2718           return;
2719 
2720         dyld_image_copy_uuid(image, &dsc_image_uuid);
2721         if (image_uuid != UUID::fromOptionalData(dsc_image_uuid, 16))
2722           return;
2723 
2724         found_image = true;
2725 
2726         // Compute the size of the string table. We need to ask dyld for a
2727         // new SPI to avoid this step.
2728         dyld_image_local_nlist_content_4Symbolication(
2729             image, ^(const void *nlistStart, uint64_t nlistCount,
2730                      const char *stringTable) {
2731               if (!nlistStart || !nlistCount)
2732                 return;
2733 
2734               // The buffers passed here are valid only inside the block.
2735               // Use vm_read to make a cheap copy of them available for our
2736               // processing later.
2737               kern_return_t ret =
2738                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2739                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2740                           &vm_nlist_bytes_read);
2741               if (ret != KERN_SUCCESS)
2742                 return;
2743               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2744 
2745               // We don't know the size of the string table. It's cheaper
2746               // to map the whol VM region than to determine the size by
2747               // parsing all teh nlist entries.
2748               vm_address_t string_address = (vm_address_t)stringTable;
2749               vm_size_t region_size;
2750               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2751               vm_region_basic_info_data_t info;
2752               memory_object_name_t object;
2753               ret = vm_region_64(mach_task_self(), &string_address,
2754                                  &region_size, VM_REGION_BASIC_INFO_64,
2755                                  (vm_region_info_t)&info, &info_count, &object);
2756               if (ret != KERN_SUCCESS)
2757                 return;
2758 
2759               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2760                             region_size -
2761                                 ((vm_address_t)stringTable - string_address),
2762                             &vm_string_memory, &vm_string_bytes_read);
2763               if (ret != KERN_SUCCESS)
2764                 return;
2765 
2766               nlist_buffer = (void *)vm_nlist_memory;
2767               string_table = (char *)vm_string_memory;
2768               nlist_count = nlistCount;
2769             });
2770       });
2771       if (pinned)
2772         dyld_shared_cache_unpin_mapping(shared_cache);
2773     });
2774     if (nlist_buffer) {
2775       DataExtractor dsc_local_symbols_data(nlist_buffer,
2776                                            nlist_count * nlist_byte_size,
2777                                            byte_order, addr_byte_size);
2778       unmapped_local_symbols_found = nlist_count;
2779 
2780                 // The normal nlist code cannot correctly size the Symbols
2781                 // array, we need to allocate it here.
2782                 sym = symtab.Resize(
2783                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2784                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2785                 num_syms = symtab.GetNumSymbols();
2786 
2787       lldb::offset_t nlist_data_offset = 0;
2788 
2789                 for (uint32_t nlist_index = 0;
2790                      nlist_index < nlist_count;
2791                      nlist_index++) {
2792                   /////////////////////////////
2793                   {
2794                     llvm::Optional<struct nlist_64> nlist_maybe =
2795                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2796                                    nlist_byte_size);
2797                     if (!nlist_maybe)
2798                       break;
2799                     struct nlist_64 nlist = *nlist_maybe;
2800 
2801                     SymbolType type = eSymbolTypeInvalid;
2802           const char *symbol_name = string_table + nlist.n_strx;
2803 
2804                     if (symbol_name == NULL) {
2805                       // No symbol should be NULL, even the symbols with no
2806                       // string values should have an offset zero which
2807                       // points to an empty C-string
2808                       Host::SystemLog(
2809                           Host::eSystemLogError,
2810                           "error: DSC unmapped local symbol[%u] has invalid "
2811                           "string table offset 0x%x in %s, ignoring symbol\n",
2812                           nlist_index, nlist.n_strx,
2813                           module_sp->GetFileSpec().GetPath().c_str());
2814                       continue;
2815                     }
2816                     if (symbol_name[0] == '\0')
2817                       symbol_name = NULL;
2818 
2819                     const char *symbol_name_non_abi_mangled = NULL;
2820 
2821                     SectionSP symbol_section;
2822                     uint32_t symbol_byte_size = 0;
2823                     bool add_nlist = true;
2824                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2825                     bool demangled_is_synthesized = false;
2826                     bool is_gsym = false;
2827                     bool set_value = true;
2828 
2829                     assert(sym_idx < num_syms);
2830 
2831                     sym[sym_idx].SetDebug(is_debug);
2832 
2833                     if (is_debug) {
2834                       switch (nlist.n_type) {
2835                       case N_GSYM:
2836                         // global symbol: name,,NO_SECT,type,0
2837                         // Sometimes the N_GSYM value contains the address.
2838 
2839                         // FIXME: In the .o files, we have a GSYM and a debug
2840                         // symbol for all the ObjC data.  They
2841                         // have the same address, but we want to ensure that
2842                         // we always find only the real symbol, 'cause we
2843                         // don't currently correctly attribute the
2844                         // GSYM one to the ObjCClass/Ivar/MetaClass
2845                         // symbol type.  This is a temporary hack to make
2846                         // sure the ObjectiveC symbols get treated correctly.
2847                         // To do this right, we should coalesce all the GSYM
2848                         // & global symbols that have the same address.
2849 
2850                         is_gsym = true;
2851                         sym[sym_idx].SetExternal(true);
2852 
2853                         if (symbol_name && symbol_name[0] == '_' &&
2854                             symbol_name[1] == 'O') {
2855                           llvm::StringRef symbol_name_ref(symbol_name);
2856                           if (symbol_name_ref.startswith(
2857                                   g_objc_v2_prefix_class)) {
2858                             symbol_name_non_abi_mangled = symbol_name + 1;
2859                             symbol_name =
2860                                 symbol_name + g_objc_v2_prefix_class.size();
2861                             type = eSymbolTypeObjCClass;
2862                             demangled_is_synthesized = true;
2863 
2864                           } else if (symbol_name_ref.startswith(
2865                                          g_objc_v2_prefix_metaclass)) {
2866                             symbol_name_non_abi_mangled = symbol_name + 1;
2867                             symbol_name =
2868                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2869                             type = eSymbolTypeObjCMetaClass;
2870                             demangled_is_synthesized = true;
2871                           } else if (symbol_name_ref.startswith(
2872                                          g_objc_v2_prefix_ivar)) {
2873                             symbol_name_non_abi_mangled = symbol_name + 1;
2874                             symbol_name =
2875                                 symbol_name + g_objc_v2_prefix_ivar.size();
2876                             type = eSymbolTypeObjCIVar;
2877                             demangled_is_synthesized = true;
2878                           }
2879                         } else {
2880                           if (nlist.n_value != 0)
2881                             symbol_section = section_info.GetSection(
2882                                 nlist.n_sect, nlist.n_value);
2883                           type = eSymbolTypeData;
2884                         }
2885                         break;
2886 
2887                       case N_FNAME:
2888                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2889                         type = eSymbolTypeCompiler;
2890                         break;
2891 
2892                       case N_FUN:
2893                         // procedure: name,,n_sect,linenumber,address
2894                         if (symbol_name) {
2895                           type = eSymbolTypeCode;
2896                           symbol_section = section_info.GetSection(
2897                               nlist.n_sect, nlist.n_value);
2898 
2899                           N_FUN_addr_to_sym_idx.insert(
2900                               std::make_pair(nlist.n_value, sym_idx));
2901                           // We use the current number of symbols in the
2902                           // symbol table in lieu of using nlist_idx in case
2903                           // we ever start trimming entries out
2904                           N_FUN_indexes.push_back(sym_idx);
2905                         } else {
2906                           type = eSymbolTypeCompiler;
2907 
2908                           if (!N_FUN_indexes.empty()) {
2909                             // Copy the size of the function into the
2910                             // original
2911                             // STAB entry so we don't have
2912                             // to hunt for it later
2913                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2914                                 ->SetByteSize(nlist.n_value);
2915                             N_FUN_indexes.pop_back();
2916                             // We don't really need the end function STAB as
2917                             // it contains the size which we already placed
2918                             // with the original symbol, so don't add it if
2919                             // we want a minimal symbol table
2920                             add_nlist = false;
2921                           }
2922                         }
2923                         break;
2924 
2925                       case N_STSYM:
2926                         // static symbol: name,,n_sect,type,address
2927                         N_STSYM_addr_to_sym_idx.insert(
2928                             std::make_pair(nlist.n_value, sym_idx));
2929                         symbol_section = section_info.GetSection(nlist.n_sect,
2930                                                                  nlist.n_value);
2931                         if (symbol_name && symbol_name[0]) {
2932                           type = ObjectFile::GetSymbolTypeFromName(
2933                               symbol_name + 1, eSymbolTypeData);
2934                         }
2935                         break;
2936 
2937                       case N_LCSYM:
2938                         // .lcomm symbol: name,,n_sect,type,address
2939                         symbol_section = section_info.GetSection(nlist.n_sect,
2940                                                                  nlist.n_value);
2941                         type = eSymbolTypeCommonBlock;
2942                         break;
2943 
2944                       case N_BNSYM:
2945                         // We use the current number of symbols in the symbol
2946                         // table in lieu of using nlist_idx in case we ever
2947                         // start trimming entries out Skip these if we want
2948                         // minimal symbol tables
2949                         add_nlist = false;
2950                         break;
2951 
2952                       case N_ENSYM:
2953                         // Set the size of the N_BNSYM to the terminating
2954                         // index of this N_ENSYM so that we can always skip
2955                         // the entire symbol if we need to navigate more
2956                         // quickly at the source level when parsing STABS
2957                         // Skip these if we want minimal symbol tables
2958                         add_nlist = false;
2959                         break;
2960 
2961                       case N_OPT:
2962                         // emitted with gcc2_compiled and in gcc source
2963                         type = eSymbolTypeCompiler;
2964                         break;
2965 
2966                       case N_RSYM:
2967                         // register sym: name,,NO_SECT,type,register
2968                         type = eSymbolTypeVariable;
2969                         break;
2970 
2971                       case N_SLINE:
2972                         // src line: 0,,n_sect,linenumber,address
2973                         symbol_section = section_info.GetSection(nlist.n_sect,
2974                                                                  nlist.n_value);
2975                         type = eSymbolTypeLineEntry;
2976                         break;
2977 
2978                       case N_SSYM:
2979                         // structure elt: name,,NO_SECT,type,struct_offset
2980                         type = eSymbolTypeVariableType;
2981                         break;
2982 
2983                       case N_SO:
2984                         // source file name
2985                         type = eSymbolTypeSourceFile;
2986                         if (symbol_name == NULL) {
2987                           add_nlist = false;
2988                           if (N_SO_index != UINT32_MAX) {
2989                             // Set the size of the N_SO to the terminating
2990                             // index of this N_SO so that we can always skip
2991                             // the entire N_SO if we need to navigate more
2992                             // quickly at the source level when parsing STABS
2993                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
2994                             symbol_ptr->SetByteSize(sym_idx);
2995                             symbol_ptr->SetSizeIsSibling(true);
2996                           }
2997                           N_NSYM_indexes.clear();
2998                           N_INCL_indexes.clear();
2999                           N_BRAC_indexes.clear();
3000                           N_COMM_indexes.clear();
3001                           N_FUN_indexes.clear();
3002                           N_SO_index = UINT32_MAX;
3003                         } else {
3004                           // We use the current number of symbols in the
3005                           // symbol table in lieu of using nlist_idx in case
3006                           // we ever start trimming entries out
3007                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3008                           if (N_SO_has_full_path) {
3009                             if ((N_SO_index == sym_idx - 1) &&
3010                                 ((sym_idx - 1) < num_syms)) {
3011                               // We have two consecutive N_SO entries where
3012                               // the first contains a directory and the
3013                               // second contains a full path.
3014                               sym[sym_idx - 1].GetMangled().SetValue(
3015                                   ConstString(symbol_name), false);
3016                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3017                               add_nlist = false;
3018                             } else {
3019                               // This is the first entry in a N_SO that
3020                               // contains a directory or
3021                               // a full path to the source file
3022                               N_SO_index = sym_idx;
3023                             }
3024                           } else if ((N_SO_index == sym_idx - 1) &&
3025                                      ((sym_idx - 1) < num_syms)) {
3026                             // This is usually the second N_SO entry that
3027                             // contains just the filename, so here we combine
3028                             // it with the first one if we are minimizing the
3029                             // symbol table
3030                             const char *so_path = sym[sym_idx - 1]
3031                                                       .GetMangled()
3032                                                       .GetDemangledName()
3033                                                       .AsCString();
3034                             if (so_path && so_path[0]) {
3035                               std::string full_so_path(so_path);
3036                               const size_t double_slash_pos =
3037                                   full_so_path.find("//");
3038                               if (double_slash_pos != std::string::npos) {
3039                                 // The linker has been generating bad N_SO
3040                                 // entries with doubled up paths
3041                                 // in the format "%s%s" where the first
3042                                 // string in the DW_AT_comp_dir, and the
3043                                 // second is the directory for the source
3044                                 // file so you end up with a path that looks
3045                                 // like "/tmp/src//tmp/src/"
3046                                 FileSpec so_dir(so_path);
3047                                 if (!FileSystem::Instance().Exists(so_dir)) {
3048                                   so_dir.SetFile(
3049                                       &full_so_path[double_slash_pos + 1],
3050                                       FileSpec::Style::native);
3051                                   if (FileSystem::Instance().Exists(so_dir)) {
3052                                     // Trim off the incorrect path
3053                                     full_so_path.erase(0, double_slash_pos + 1);
3054                                   }
3055                                 }
3056                               }
3057                               if (*full_so_path.rbegin() != '/')
3058                                 full_so_path += '/';
3059                               full_so_path += symbol_name;
3060                               sym[sym_idx - 1].GetMangled().SetValue(
3061                                   ConstString(full_so_path.c_str()), false);
3062                               add_nlist = false;
3063                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3064                             }
3065                           } else {
3066                             // This could be a relative path to a N_SO
3067                             N_SO_index = sym_idx;
3068                           }
3069                         }
3070                         break;
3071 
3072                       case N_OSO:
3073                         // object file name: name,,0,0,st_mtime
3074                         type = eSymbolTypeObjectFile;
3075                         break;
3076 
3077                       case N_LSYM:
3078                         // local sym: name,,NO_SECT,type,offset
3079                         type = eSymbolTypeLocal;
3080                         break;
3081 
3082                       // INCL scopes
3083                       case N_BINCL:
3084                         // include file beginning: name,,NO_SECT,0,sum We use
3085                         // the current number of symbols in the symbol table
3086                         // in lieu of using nlist_idx in case we ever start
3087                         // trimming entries out
3088                         N_INCL_indexes.push_back(sym_idx);
3089                         type = eSymbolTypeScopeBegin;
3090                         break;
3091 
3092                       case N_EINCL:
3093                         // include file end: name,,NO_SECT,0,0
3094                         // Set the size of the N_BINCL to the terminating
3095                         // index of this N_EINCL so that we can always skip
3096                         // the entire symbol if we need to navigate more
3097                         // quickly at the source level when parsing STABS
3098                         if (!N_INCL_indexes.empty()) {
3099                           symbol_ptr =
3100                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3101                           symbol_ptr->SetByteSize(sym_idx + 1);
3102                           symbol_ptr->SetSizeIsSibling(true);
3103                           N_INCL_indexes.pop_back();
3104                         }
3105                         type = eSymbolTypeScopeEnd;
3106                         break;
3107 
3108                       case N_SOL:
3109                         // #included file name: name,,n_sect,0,address
3110                         type = eSymbolTypeHeaderFile;
3111 
3112                         // We currently don't use the header files on darwin
3113                         add_nlist = false;
3114                         break;
3115 
3116                       case N_PARAMS:
3117                         // compiler parameters: name,,NO_SECT,0,0
3118                         type = eSymbolTypeCompiler;
3119                         break;
3120 
3121                       case N_VERSION:
3122                         // compiler version: name,,NO_SECT,0,0
3123                         type = eSymbolTypeCompiler;
3124                         break;
3125 
3126                       case N_OLEVEL:
3127                         // compiler -O level: name,,NO_SECT,0,0
3128                         type = eSymbolTypeCompiler;
3129                         break;
3130 
3131                       case N_PSYM:
3132                         // parameter: name,,NO_SECT,type,offset
3133                         type = eSymbolTypeVariable;
3134                         break;
3135 
3136                       case N_ENTRY:
3137                         // alternate entry: name,,n_sect,linenumber,address
3138                         symbol_section = section_info.GetSection(nlist.n_sect,
3139                                                                  nlist.n_value);
3140                         type = eSymbolTypeLineEntry;
3141                         break;
3142 
3143                       // Left and Right Braces
3144                       case N_LBRAC:
3145                         // left bracket: 0,,NO_SECT,nesting level,address We
3146                         // use the current number of symbols in the symbol
3147                         // table in lieu of using nlist_idx in case we ever
3148                         // start trimming entries out
3149                         symbol_section = section_info.GetSection(nlist.n_sect,
3150                                                                  nlist.n_value);
3151                         N_BRAC_indexes.push_back(sym_idx);
3152                         type = eSymbolTypeScopeBegin;
3153                         break;
3154 
3155                       case N_RBRAC:
3156                         // right bracket: 0,,NO_SECT,nesting level,address
3157                         // Set the size of the N_LBRAC to the terminating
3158                         // index of this N_RBRAC so that we can always skip
3159                         // the entire symbol if we need to navigate more
3160                         // quickly at the source level when parsing STABS
3161                         symbol_section = section_info.GetSection(nlist.n_sect,
3162                                                                  nlist.n_value);
3163                         if (!N_BRAC_indexes.empty()) {
3164                           symbol_ptr =
3165                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3166                           symbol_ptr->SetByteSize(sym_idx + 1);
3167                           symbol_ptr->SetSizeIsSibling(true);
3168                           N_BRAC_indexes.pop_back();
3169                         }
3170                         type = eSymbolTypeScopeEnd;
3171                         break;
3172 
3173                       case N_EXCL:
3174                         // deleted include file: name,,NO_SECT,0,sum
3175                         type = eSymbolTypeHeaderFile;
3176                         break;
3177 
3178                       // COMM scopes
3179                       case N_BCOMM:
3180                         // begin common: name,,NO_SECT,0,0
3181                         // We use the current number of symbols in the symbol
3182                         // table in lieu of using nlist_idx in case we ever
3183                         // start trimming entries out
3184                         type = eSymbolTypeScopeBegin;
3185                         N_COMM_indexes.push_back(sym_idx);
3186                         break;
3187 
3188                       case N_ECOML:
3189                         // end common (local name): 0,,n_sect,0,address
3190                         symbol_section = section_info.GetSection(nlist.n_sect,
3191                                                                  nlist.n_value);
3192                         // Fall through
3193 
3194                       case N_ECOMM:
3195                         // end common: name,,n_sect,0,0
3196                         // Set the size of the N_BCOMM to the terminating
3197                         // index of this N_ECOMM/N_ECOML so that we can
3198                         // always skip the entire symbol if we need to
3199                         // navigate more quickly at the source level when
3200                         // parsing STABS
3201                         if (!N_COMM_indexes.empty()) {
3202                           symbol_ptr =
3203                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3204                           symbol_ptr->SetByteSize(sym_idx + 1);
3205                           symbol_ptr->SetSizeIsSibling(true);
3206                           N_COMM_indexes.pop_back();
3207                         }
3208                         type = eSymbolTypeScopeEnd;
3209                         break;
3210 
3211                       case N_LENG:
3212                         // second stab entry with length information
3213                         type = eSymbolTypeAdditional;
3214                         break;
3215 
3216                       default:
3217                         break;
3218                       }
3219                     } else {
3220                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3221                       uint8_t n_type = N_TYPE & nlist.n_type;
3222                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3223 
3224                       switch (n_type) {
3225                       case N_INDR: {
3226                         const char *reexport_name_cstr =
3227                             strtab_data.PeekCStr(nlist.n_value);
3228                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3229                           type = eSymbolTypeReExported;
3230                           ConstString reexport_name(
3231                               reexport_name_cstr +
3232                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3233                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3234                           set_value = false;
3235                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3236                           indirect_symbol_names.insert(ConstString(
3237                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3238                         } else
3239                           type = eSymbolTypeUndefined;
3240                       } break;
3241 
3242                       case N_UNDF:
3243                         if (symbol_name && symbol_name[0]) {
3244                           ConstString undefined_name(
3245                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3246                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3247                         }
3248                       // Fall through
3249                       case N_PBUD:
3250                         type = eSymbolTypeUndefined;
3251                         break;
3252 
3253                       case N_ABS:
3254                         type = eSymbolTypeAbsolute;
3255                         break;
3256 
3257                       case N_SECT: {
3258                         symbol_section = section_info.GetSection(nlist.n_sect,
3259                                                                  nlist.n_value);
3260 
3261                         if (symbol_section == NULL) {
3262                           // TODO: warn about this?
3263                           add_nlist = false;
3264                           break;
3265                         }
3266 
3267                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3268                           type = eSymbolTypeException;
3269                         } else {
3270                           uint32_t section_type =
3271                               symbol_section->Get() & SECTION_TYPE;
3272 
3273                           switch (section_type) {
3274                           case S_CSTRING_LITERALS:
3275                             type = eSymbolTypeData;
3276                             break; // section with only literal C strings
3277                           case S_4BYTE_LITERALS:
3278                             type = eSymbolTypeData;
3279                             break; // section with only 4 byte literals
3280                           case S_8BYTE_LITERALS:
3281                             type = eSymbolTypeData;
3282                             break; // section with only 8 byte literals
3283                           case S_LITERAL_POINTERS:
3284                             type = eSymbolTypeTrampoline;
3285                             break; // section with only pointers to literals
3286                           case S_NON_LAZY_SYMBOL_POINTERS:
3287                             type = eSymbolTypeTrampoline;
3288                             break; // section with only non-lazy symbol
3289                                    // pointers
3290                           case S_LAZY_SYMBOL_POINTERS:
3291                             type = eSymbolTypeTrampoline;
3292                             break; // section with only lazy symbol pointers
3293                           case S_SYMBOL_STUBS:
3294                             type = eSymbolTypeTrampoline;
3295                             break; // section with only symbol stubs, byte
3296                                    // size of stub in the reserved2 field
3297                           case S_MOD_INIT_FUNC_POINTERS:
3298                             type = eSymbolTypeCode;
3299                             break; // section with only function pointers for
3300                                    // initialization
3301                           case S_MOD_TERM_FUNC_POINTERS:
3302                             type = eSymbolTypeCode;
3303                             break; // section with only function pointers for
3304                                    // termination
3305                           case S_INTERPOSING:
3306                             type = eSymbolTypeTrampoline;
3307                             break; // section with only pairs of function
3308                                    // pointers for interposing
3309                           case S_16BYTE_LITERALS:
3310                             type = eSymbolTypeData;
3311                             break; // section with only 16 byte literals
3312                           case S_DTRACE_DOF:
3313                             type = eSymbolTypeInstrumentation;
3314                             break;
3315                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3316                             type = eSymbolTypeTrampoline;
3317                             break;
3318                           default:
3319                             switch (symbol_section->GetType()) {
3320                             case lldb::eSectionTypeCode:
3321                               type = eSymbolTypeCode;
3322                               break;
3323                             case eSectionTypeData:
3324                             case eSectionTypeDataCString: // Inlined C string
3325                                                           // data
3326                             case eSectionTypeDataCStringPointers: // Pointers
3327                                                                   // to C
3328                                                                   // string
3329                                                                   // data
3330                             case eSectionTypeDataSymbolAddress:   // Address of
3331                                                                   // a symbol in
3332                                                                   // the symbol
3333                                                                   // table
3334                             case eSectionTypeData4:
3335                             case eSectionTypeData8:
3336                             case eSectionTypeData16:
3337                               type = eSymbolTypeData;
3338                               break;
3339                             default:
3340                               break;
3341                             }
3342                             break;
3343                           }
3344 
3345                           if (type == eSymbolTypeInvalid) {
3346                             const char *symbol_sect_name =
3347                                 symbol_section->GetName().AsCString();
3348                             if (symbol_section->IsDescendant(
3349                                     text_section_sp.get())) {
3350                               if (symbol_section->IsClear(
3351                                       S_ATTR_PURE_INSTRUCTIONS |
3352                                       S_ATTR_SELF_MODIFYING_CODE |
3353                                       S_ATTR_SOME_INSTRUCTIONS))
3354                                 type = eSymbolTypeData;
3355                               else
3356                                 type = eSymbolTypeCode;
3357                             } else if (symbol_section->IsDescendant(
3358                                            data_section_sp.get()) ||
3359                                        symbol_section->IsDescendant(
3360                                            data_dirty_section_sp.get()) ||
3361                                        symbol_section->IsDescendant(
3362                                            data_const_section_sp.get())) {
3363                               if (symbol_sect_name &&
3364                                   ::strstr(symbol_sect_name, "__objc") ==
3365                                       symbol_sect_name) {
3366                                 type = eSymbolTypeRuntime;
3367 
3368                                 if (symbol_name) {
3369                                   llvm::StringRef symbol_name_ref(symbol_name);
3370                                   if (symbol_name_ref.startswith("_OBJC_")) {
3371                                     llvm::StringRef
3372                                         g_objc_v2_prefix_class(
3373                                             "_OBJC_CLASS_$_");
3374                                     llvm::StringRef
3375                                         g_objc_v2_prefix_metaclass(
3376                                             "_OBJC_METACLASS_$_");
3377                                     llvm::StringRef
3378                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3379                                     if (symbol_name_ref.startswith(
3380                                             g_objc_v2_prefix_class)) {
3381                                       symbol_name_non_abi_mangled =
3382                                           symbol_name + 1;
3383                                       symbol_name =
3384                                           symbol_name +
3385                                           g_objc_v2_prefix_class.size();
3386                                       type = eSymbolTypeObjCClass;
3387                                       demangled_is_synthesized = true;
3388                                     } else if (
3389                                         symbol_name_ref.startswith(
3390                                             g_objc_v2_prefix_metaclass)) {
3391                                       symbol_name_non_abi_mangled =
3392                                           symbol_name + 1;
3393                                       symbol_name =
3394                                           symbol_name +
3395                                           g_objc_v2_prefix_metaclass.size();
3396                                       type = eSymbolTypeObjCMetaClass;
3397                                       demangled_is_synthesized = true;
3398                                     } else if (symbol_name_ref.startswith(
3399                                                    g_objc_v2_prefix_ivar)) {
3400                                       symbol_name_non_abi_mangled =
3401                                           symbol_name + 1;
3402                                       symbol_name =
3403                                           symbol_name +
3404                                           g_objc_v2_prefix_ivar.size();
3405                                       type = eSymbolTypeObjCIVar;
3406                                       demangled_is_synthesized = true;
3407                                     }
3408                                   }
3409                                 }
3410                               } else if (symbol_sect_name &&
3411                                          ::strstr(symbol_sect_name,
3412                                                   "__gcc_except_tab") ==
3413                                              symbol_sect_name) {
3414                                 type = eSymbolTypeException;
3415                               } else {
3416                                 type = eSymbolTypeData;
3417                               }
3418                             } else if (symbol_sect_name &&
3419                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3420                                            symbol_sect_name) {
3421                               type = eSymbolTypeTrampoline;
3422                             } else if (symbol_section->IsDescendant(
3423                                            objc_section_sp.get())) {
3424                               type = eSymbolTypeRuntime;
3425                               if (symbol_name && symbol_name[0] == '.') {
3426                                 llvm::StringRef symbol_name_ref(symbol_name);
3427                                 llvm::StringRef
3428                                     g_objc_v1_prefix_class(".objc_class_name_");
3429                                 if (symbol_name_ref.startswith(
3430                                         g_objc_v1_prefix_class)) {
3431                                   symbol_name_non_abi_mangled = symbol_name;
3432                                   symbol_name = symbol_name +
3433                                                 g_objc_v1_prefix_class.size();
3434                                   type = eSymbolTypeObjCClass;
3435                                   demangled_is_synthesized = true;
3436                                 }
3437                               }
3438                             }
3439                           }
3440                         }
3441                       } break;
3442                       }
3443                     }
3444 
3445                     if (add_nlist) {
3446                       uint64_t symbol_value = nlist.n_value;
3447                       if (symbol_name_non_abi_mangled) {
3448                         sym[sym_idx].GetMangled().SetMangledName(
3449                             ConstString(symbol_name_non_abi_mangled));
3450                         sym[sym_idx].GetMangled().SetDemangledName(
3451                             ConstString(symbol_name));
3452                       } else {
3453                         bool symbol_name_is_mangled = false;
3454 
3455                         if (symbol_name && symbol_name[0] == '_') {
3456                           symbol_name_is_mangled = symbol_name[1] == '_';
3457                           symbol_name++; // Skip the leading underscore
3458                         }
3459 
3460                         if (symbol_name) {
3461                           ConstString const_symbol_name(symbol_name);
3462                           sym[sym_idx].GetMangled().SetValue(
3463                               const_symbol_name, symbol_name_is_mangled);
3464                           if (is_gsym && is_debug) {
3465                             const char *gsym_name =
3466                                 sym[sym_idx]
3467                                     .GetMangled()
3468                                     .GetName(Mangled::ePreferMangled)
3469                                     .GetCString();
3470                             if (gsym_name)
3471                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3472                           }
3473                         }
3474                       }
3475                       if (symbol_section) {
3476                         const addr_t section_file_addr =
3477                             symbol_section->GetFileAddress();
3478                         if (symbol_byte_size == 0 &&
3479                             function_starts_count > 0) {
3480                           addr_t symbol_lookup_file_addr = nlist.n_value;
3481                           // Do an exact address match for non-ARM addresses,
3482                           // else get the closest since the symbol might be a
3483                           // thumb symbol which has an address with bit zero
3484                           // set
3485                           FunctionStarts::Entry *func_start_entry =
3486                               function_starts.FindEntry(symbol_lookup_file_addr,
3487                                                         !is_arm);
3488                           if (is_arm && func_start_entry) {
3489                             // Verify that the function start address is the
3490                             // symbol address (ARM) or the symbol address + 1
3491                             // (thumb)
3492                             if (func_start_entry->addr !=
3493                                     symbol_lookup_file_addr &&
3494                                 func_start_entry->addr !=
3495                                     (symbol_lookup_file_addr + 1)) {
3496                               // Not the right entry, NULL it out...
3497                               func_start_entry = NULL;
3498                             }
3499                           }
3500                           if (func_start_entry) {
3501                             func_start_entry->data = true;
3502 
3503                             addr_t symbol_file_addr = func_start_entry->addr;
3504                             uint32_t symbol_flags = 0;
3505                             if (is_arm) {
3506                               if (symbol_file_addr & 1)
3507                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3508                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3509                             }
3510 
3511                             const FunctionStarts::Entry *next_func_start_entry =
3512                                 function_starts.FindNextEntry(func_start_entry);
3513                             const addr_t section_end_file_addr =
3514                                 section_file_addr +
3515                                 symbol_section->GetByteSize();
3516                             if (next_func_start_entry) {
3517                               addr_t next_symbol_file_addr =
3518                                   next_func_start_entry->addr;
3519                               // Be sure the clear the Thumb address bit when
3520                               // we calculate the size from the current and
3521                               // next address
3522                               if (is_arm)
3523                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3524                               symbol_byte_size = std::min<lldb::addr_t>(
3525                                   next_symbol_file_addr - symbol_file_addr,
3526                                   section_end_file_addr - symbol_file_addr);
3527                             } else {
3528                               symbol_byte_size =
3529                                   section_end_file_addr - symbol_file_addr;
3530                             }
3531                           }
3532                         }
3533                         symbol_value -= section_file_addr;
3534                       }
3535 
3536                       if (is_debug == false) {
3537                         if (type == eSymbolTypeCode) {
3538                           // See if we can find a N_FUN entry for any code
3539                           // symbols. If we do find a match, and the name
3540                           // matches, then we can merge the two into just the
3541                           // function symbol to avoid duplicate entries in
3542                           // the symbol table
3543                           auto range =
3544                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3545                           if (range.first != range.second) {
3546                             bool found_it = false;
3547                             for (auto pos = range.first; pos != range.second;
3548                                  ++pos) {
3549                               if (sym[sym_idx].GetMangled().GetName(
3550                                       Mangled::ePreferMangled) ==
3551                                   sym[pos->second].GetMangled().GetName(
3552                                       Mangled::ePreferMangled)) {
3553                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3554                                 // We just need the flags from the linker
3555                                 // symbol, so put these flags
3556                                 // into the N_FUN flags to avoid duplicate
3557                                 // symbols in the symbol table
3558                                 sym[pos->second].SetExternal(
3559                                     sym[sym_idx].IsExternal());
3560                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3561                                                           nlist.n_desc);
3562                                 if (resolver_addresses.find(nlist.n_value) !=
3563                                     resolver_addresses.end())
3564                                   sym[pos->second].SetType(eSymbolTypeResolver);
3565                                 sym[sym_idx].Clear();
3566                                 found_it = true;
3567                                 break;
3568                               }
3569                             }
3570                             if (found_it)
3571                               continue;
3572                           } else {
3573                             if (resolver_addresses.find(nlist.n_value) !=
3574                                 resolver_addresses.end())
3575                               type = eSymbolTypeResolver;
3576                           }
3577                         } else if (type == eSymbolTypeData ||
3578                                    type == eSymbolTypeObjCClass ||
3579                                    type == eSymbolTypeObjCMetaClass ||
3580                                    type == eSymbolTypeObjCIVar) {
3581                           // See if we can find a N_STSYM entry for any data
3582                           // symbols. If we do find a match, and the name
3583                           // matches, then we can merge the two into just the
3584                           // Static symbol to avoid duplicate entries in the
3585                           // symbol table
3586                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3587                               nlist.n_value);
3588                           if (range.first != range.second) {
3589                             bool found_it = false;
3590                             for (auto pos = range.first; pos != range.second;
3591                                  ++pos) {
3592                               if (sym[sym_idx].GetMangled().GetName(
3593                                       Mangled::ePreferMangled) ==
3594                                   sym[pos->second].GetMangled().GetName(
3595                                       Mangled::ePreferMangled)) {
3596                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3597                                 // We just need the flags from the linker
3598                                 // symbol, so put these flags
3599                                 // into the N_STSYM flags to avoid duplicate
3600                                 // symbols in the symbol table
3601                                 sym[pos->second].SetExternal(
3602                                     sym[sym_idx].IsExternal());
3603                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3604                                                           nlist.n_desc);
3605                                 sym[sym_idx].Clear();
3606                                 found_it = true;
3607                                 break;
3608                               }
3609                             }
3610                             if (found_it)
3611                               continue;
3612                           } else {
3613                             const char *gsym_name =
3614                                 sym[sym_idx]
3615                                     .GetMangled()
3616                                     .GetName(Mangled::ePreferMangled)
3617                                     .GetCString();
3618                             if (gsym_name) {
3619                               // Combine N_GSYM stab entries with the non
3620                               // stab symbol
3621                               ConstNameToSymbolIndexMap::const_iterator pos =
3622                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3623                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3624                                 const uint32_t GSYM_sym_idx = pos->second;
3625                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3626                                     GSYM_sym_idx;
3627                                 // Copy the address, because often the N_GSYM
3628                                 // address has an invalid address of zero
3629                                 // when the global is a common symbol
3630                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3631                                     symbol_section);
3632                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3633                                     symbol_value);
3634                                 add_symbol_addr(sym[GSYM_sym_idx]
3635                                                     .GetAddress()
3636                                                     .GetFileAddress());
3637                                 // We just need the flags from the linker
3638                                 // symbol, so put these flags
3639                                 // into the N_GSYM flags to avoid duplicate
3640                                 // symbols in the symbol table
3641                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3642                                                            nlist.n_desc);
3643                                 sym[sym_idx].Clear();
3644                                 continue;
3645                               }
3646                             }
3647                           }
3648                         }
3649                       }
3650 
3651                       sym[sym_idx].SetID(nlist_idx);
3652                       sym[sym_idx].SetType(type);
3653                       if (set_value) {
3654                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3655                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3656                         add_symbol_addr(
3657                             sym[sym_idx].GetAddress().GetFileAddress());
3658                       }
3659                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3660 
3661                       if (symbol_byte_size > 0)
3662                         sym[sym_idx].SetByteSize(symbol_byte_size);
3663 
3664                       if (demangled_is_synthesized)
3665                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3666                       ++sym_idx;
3667                     } else {
3668                       sym[sym_idx].Clear();
3669                     }
3670                   }
3671                   /////////////////////////////
3672                 }
3673             }
3674 
3675             for (const auto &pos : reexport_shlib_needs_fixup) {
3676               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3677               if (undef_pos != undefined_name_to_desc.end()) {
3678                 const uint8_t dylib_ordinal =
3679                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3680                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3681                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3682                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3683               }
3684             }
3685           }
3686 
3687 #endif
3688   lldb::offset_t nlist_data_offset = 0;
3689 
3690   if (nlist_data.GetByteSize() > 0) {
3691 
3692     // If the sym array was not created while parsing the DSC unmapped
3693     // symbols, create it now.
3694     if (sym == nullptr) {
3695       sym =
3696           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3697       num_syms = symtab.GetNumSymbols();
3698     }
3699 
3700     if (unmapped_local_symbols_found) {
3701       assert(m_dysymtab.ilocalsym == 0);
3702       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3703       nlist_idx = m_dysymtab.nlocalsym;
3704     } else {
3705       nlist_idx = 0;
3706     }
3707 
3708     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3709     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3710     UndefinedNameToDescMap undefined_name_to_desc;
3711     SymbolIndexToName reexport_shlib_needs_fixup;
3712 
3713     // Symtab parsing is a huge mess. Everything is entangled and the code
3714     // requires access to a ridiculous amount of variables. LLDB depends
3715     // heavily on the proper merging of symbols and to get that right we need
3716     // to make sure we have parsed all the debug symbols first. Therefore we
3717     // invoke the lambda twice, once to parse only the debug symbols and then
3718     // once more to parse the remaining symbols.
3719     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3720                                  bool debug_only) {
3721       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3722       if (is_debug != debug_only)
3723         return true;
3724 
3725       const char *symbol_name_non_abi_mangled = nullptr;
3726       const char *symbol_name = nullptr;
3727 
3728       if (have_strtab_data) {
3729         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3730 
3731         if (symbol_name == nullptr) {
3732           // No symbol should be NULL, even the symbols with no string values
3733           // should have an offset zero which points to an empty C-string
3734           Host::SystemLog(Host::eSystemLogError,
3735                           "error: symbol[%u] has invalid string table offset "
3736                           "0x%x in %s, ignoring symbol\n",
3737                           nlist_idx, nlist.n_strx,
3738                           module_sp->GetFileSpec().GetPath().c_str());
3739           return true;
3740         }
3741         if (symbol_name[0] == '\0')
3742           symbol_name = nullptr;
3743       } else {
3744         const addr_t str_addr = strtab_addr + nlist.n_strx;
3745         Status str_error;
3746         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3747                                            str_error))
3748           symbol_name = memory_symbol_name.c_str();
3749       }
3750 
3751       SymbolType type = eSymbolTypeInvalid;
3752       SectionSP symbol_section;
3753       lldb::addr_t symbol_byte_size = 0;
3754       bool add_nlist = true;
3755       bool is_gsym = false;
3756       bool demangled_is_synthesized = false;
3757       bool set_value = true;
3758 
3759       assert(sym_idx < num_syms);
3760       sym[sym_idx].SetDebug(is_debug);
3761 
3762       if (is_debug) {
3763         switch (nlist.n_type) {
3764         case N_GSYM:
3765           // global symbol: name,,NO_SECT,type,0
3766           // Sometimes the N_GSYM value contains the address.
3767 
3768           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3769           // the ObjC data.  They
3770           // have the same address, but we want to ensure that we always find
3771           // only the real symbol, 'cause we don't currently correctly
3772           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3773           // type.  This is a temporary hack to make sure the ObjectiveC
3774           // symbols get treated correctly.  To do this right, we should
3775           // coalesce all the GSYM & global symbols that have the same
3776           // address.
3777           is_gsym = true;
3778           sym[sym_idx].SetExternal(true);
3779 
3780           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3781             llvm::StringRef symbol_name_ref(symbol_name);
3782             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3783               symbol_name_non_abi_mangled = symbol_name + 1;
3784               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3785               type = eSymbolTypeObjCClass;
3786               demangled_is_synthesized = true;
3787 
3788             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3789               symbol_name_non_abi_mangled = symbol_name + 1;
3790               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3791               type = eSymbolTypeObjCMetaClass;
3792               demangled_is_synthesized = true;
3793             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3794               symbol_name_non_abi_mangled = symbol_name + 1;
3795               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3796               type = eSymbolTypeObjCIVar;
3797               demangled_is_synthesized = true;
3798             }
3799           } else {
3800             if (nlist.n_value != 0)
3801               symbol_section =
3802                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3803             type = eSymbolTypeData;
3804           }
3805           break;
3806 
3807         case N_FNAME:
3808           // procedure name (f77 kludge): name,,NO_SECT,0,0
3809           type = eSymbolTypeCompiler;
3810           break;
3811 
3812         case N_FUN:
3813           // procedure: name,,n_sect,linenumber,address
3814           if (symbol_name) {
3815             type = eSymbolTypeCode;
3816             symbol_section =
3817                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3818 
3819             N_FUN_addr_to_sym_idx.insert(
3820                 std::make_pair(nlist.n_value, sym_idx));
3821             // We use the current number of symbols in the symbol table in
3822             // lieu of using nlist_idx in case we ever start trimming entries
3823             // out
3824             N_FUN_indexes.push_back(sym_idx);
3825           } else {
3826             type = eSymbolTypeCompiler;
3827 
3828             if (!N_FUN_indexes.empty()) {
3829               // Copy the size of the function into the original STAB entry
3830               // so we don't have to hunt for it later
3831               symtab.SymbolAtIndex(N_FUN_indexes.back())
3832                   ->SetByteSize(nlist.n_value);
3833               N_FUN_indexes.pop_back();
3834               // We don't really need the end function STAB as it contains
3835               // the size which we already placed with the original symbol,
3836               // so don't add it if we want a minimal symbol table
3837               add_nlist = false;
3838             }
3839           }
3840           break;
3841 
3842         case N_STSYM:
3843           // static symbol: name,,n_sect,type,address
3844           N_STSYM_addr_to_sym_idx.insert(
3845               std::make_pair(nlist.n_value, sym_idx));
3846           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3847           if (symbol_name && symbol_name[0]) {
3848             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3849                                                      eSymbolTypeData);
3850           }
3851           break;
3852 
3853         case N_LCSYM:
3854           // .lcomm symbol: name,,n_sect,type,address
3855           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3856           type = eSymbolTypeCommonBlock;
3857           break;
3858 
3859         case N_BNSYM:
3860           // We use the current number of symbols in the symbol table in lieu
3861           // of using nlist_idx in case we ever start trimming entries out
3862           // Skip these if we want minimal symbol tables
3863           add_nlist = false;
3864           break;
3865 
3866         case N_ENSYM:
3867           // Set the size of the N_BNSYM to the terminating index of this
3868           // N_ENSYM so that we can always skip the entire symbol if we need
3869           // to navigate more quickly at the source level when parsing STABS
3870           // Skip these if we want minimal symbol tables
3871           add_nlist = false;
3872           break;
3873 
3874         case N_OPT:
3875           // emitted with gcc2_compiled and in gcc source
3876           type = eSymbolTypeCompiler;
3877           break;
3878 
3879         case N_RSYM:
3880           // register sym: name,,NO_SECT,type,register
3881           type = eSymbolTypeVariable;
3882           break;
3883 
3884         case N_SLINE:
3885           // src line: 0,,n_sect,linenumber,address
3886           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3887           type = eSymbolTypeLineEntry;
3888           break;
3889 
3890         case N_SSYM:
3891           // structure elt: name,,NO_SECT,type,struct_offset
3892           type = eSymbolTypeVariableType;
3893           break;
3894 
3895         case N_SO:
3896           // source file name
3897           type = eSymbolTypeSourceFile;
3898           if (symbol_name == nullptr) {
3899             add_nlist = false;
3900             if (N_SO_index != UINT32_MAX) {
3901               // Set the size of the N_SO to the terminating index of this
3902               // N_SO so that we can always skip the entire N_SO if we need
3903               // to navigate more quickly at the source level when parsing
3904               // STABS
3905               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3906               symbol_ptr->SetByteSize(sym_idx);
3907               symbol_ptr->SetSizeIsSibling(true);
3908             }
3909             N_NSYM_indexes.clear();
3910             N_INCL_indexes.clear();
3911             N_BRAC_indexes.clear();
3912             N_COMM_indexes.clear();
3913             N_FUN_indexes.clear();
3914             N_SO_index = UINT32_MAX;
3915           } else {
3916             // We use the current number of symbols in the symbol table in
3917             // lieu of using nlist_idx in case we ever start trimming entries
3918             // out
3919             const bool N_SO_has_full_path = symbol_name[0] == '/';
3920             if (N_SO_has_full_path) {
3921               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3922                 // We have two consecutive N_SO entries where the first
3923                 // contains a directory and the second contains a full path.
3924                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3925                                                        false);
3926                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3927                 add_nlist = false;
3928               } else {
3929                 // This is the first entry in a N_SO that contains a
3930                 // directory or a full path to the source file
3931                 N_SO_index = sym_idx;
3932               }
3933             } else if ((N_SO_index == sym_idx - 1) &&
3934                        ((sym_idx - 1) < num_syms)) {
3935               // This is usually the second N_SO entry that contains just the
3936               // filename, so here we combine it with the first one if we are
3937               // minimizing the symbol table
3938               const char *so_path =
3939                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3940               if (so_path && so_path[0]) {
3941                 std::string full_so_path(so_path);
3942                 const size_t double_slash_pos = full_so_path.find("//");
3943                 if (double_slash_pos != std::string::npos) {
3944                   // The linker has been generating bad N_SO entries with
3945                   // doubled up paths in the format "%s%s" where the first
3946                   // string in the DW_AT_comp_dir, and the second is the
3947                   // directory for the source file so you end up with a path
3948                   // that looks like "/tmp/src//tmp/src/"
3949                   FileSpec so_dir(so_path);
3950                   if (!FileSystem::Instance().Exists(so_dir)) {
3951                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3952                                    FileSpec::Style::native);
3953                     if (FileSystem::Instance().Exists(so_dir)) {
3954                       // Trim off the incorrect path
3955                       full_so_path.erase(0, double_slash_pos + 1);
3956                     }
3957                   }
3958                 }
3959                 if (*full_so_path.rbegin() != '/')
3960                   full_so_path += '/';
3961                 full_so_path += symbol_name;
3962                 sym[sym_idx - 1].GetMangled().SetValue(
3963                     ConstString(full_so_path.c_str()), false);
3964                 add_nlist = false;
3965                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3966               }
3967             } else {
3968               // This could be a relative path to a N_SO
3969               N_SO_index = sym_idx;
3970             }
3971           }
3972           break;
3973 
3974         case N_OSO:
3975           // object file name: name,,0,0,st_mtime
3976           type = eSymbolTypeObjectFile;
3977           break;
3978 
3979         case N_LSYM:
3980           // local sym: name,,NO_SECT,type,offset
3981           type = eSymbolTypeLocal;
3982           break;
3983 
3984         // INCL scopes
3985         case N_BINCL:
3986           // include file beginning: name,,NO_SECT,0,sum We use the current
3987           // number of symbols in the symbol table in lieu of using nlist_idx
3988           // in case we ever start trimming entries out
3989           N_INCL_indexes.push_back(sym_idx);
3990           type = eSymbolTypeScopeBegin;
3991           break;
3992 
3993         case N_EINCL:
3994           // include file end: name,,NO_SECT,0,0
3995           // Set the size of the N_BINCL to the terminating index of this
3996           // N_EINCL so that we can always skip the entire symbol if we need
3997           // to navigate more quickly at the source level when parsing STABS
3998           if (!N_INCL_indexes.empty()) {
3999             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
4000             symbol_ptr->SetByteSize(sym_idx + 1);
4001             symbol_ptr->SetSizeIsSibling(true);
4002             N_INCL_indexes.pop_back();
4003           }
4004           type = eSymbolTypeScopeEnd;
4005           break;
4006 
4007         case N_SOL:
4008           // #included file name: name,,n_sect,0,address
4009           type = eSymbolTypeHeaderFile;
4010 
4011           // We currently don't use the header files on darwin
4012           add_nlist = false;
4013           break;
4014 
4015         case N_PARAMS:
4016           // compiler parameters: name,,NO_SECT,0,0
4017           type = eSymbolTypeCompiler;
4018           break;
4019 
4020         case N_VERSION:
4021           // compiler version: name,,NO_SECT,0,0
4022           type = eSymbolTypeCompiler;
4023           break;
4024 
4025         case N_OLEVEL:
4026           // compiler -O level: name,,NO_SECT,0,0
4027           type = eSymbolTypeCompiler;
4028           break;
4029 
4030         case N_PSYM:
4031           // parameter: name,,NO_SECT,type,offset
4032           type = eSymbolTypeVariable;
4033           break;
4034 
4035         case N_ENTRY:
4036           // alternate entry: name,,n_sect,linenumber,address
4037           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4038           type = eSymbolTypeLineEntry;
4039           break;
4040 
4041         // Left and Right Braces
4042         case N_LBRAC:
4043           // left bracket: 0,,NO_SECT,nesting level,address We use the
4044           // current number of symbols in the symbol table in lieu of using
4045           // nlist_idx in case we ever start trimming entries out
4046           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4047           N_BRAC_indexes.push_back(sym_idx);
4048           type = eSymbolTypeScopeBegin;
4049           break;
4050 
4051         case N_RBRAC:
4052           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4053           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4054           // can always skip the entire symbol if we need to navigate more
4055           // quickly at the source level when parsing STABS
4056           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4057           if (!N_BRAC_indexes.empty()) {
4058             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4059             symbol_ptr->SetByteSize(sym_idx + 1);
4060             symbol_ptr->SetSizeIsSibling(true);
4061             N_BRAC_indexes.pop_back();
4062           }
4063           type = eSymbolTypeScopeEnd;
4064           break;
4065 
4066         case N_EXCL:
4067           // deleted include file: name,,NO_SECT,0,sum
4068           type = eSymbolTypeHeaderFile;
4069           break;
4070 
4071         // COMM scopes
4072         case N_BCOMM:
4073           // begin common: name,,NO_SECT,0,0
4074           // We use the current number of symbols in the symbol table in lieu
4075           // of using nlist_idx in case we ever start trimming entries out
4076           type = eSymbolTypeScopeBegin;
4077           N_COMM_indexes.push_back(sym_idx);
4078           break;
4079 
4080         case N_ECOML:
4081           // end common (local name): 0,,n_sect,0,address
4082           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4083           LLVM_FALLTHROUGH;
4084 
4085         case N_ECOMM:
4086           // end common: name,,n_sect,0,0
4087           // Set the size of the N_BCOMM to the terminating index of this
4088           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4089           // we need to navigate more quickly at the source level when
4090           // parsing STABS
4091           if (!N_COMM_indexes.empty()) {
4092             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4093             symbol_ptr->SetByteSize(sym_idx + 1);
4094             symbol_ptr->SetSizeIsSibling(true);
4095             N_COMM_indexes.pop_back();
4096           }
4097           type = eSymbolTypeScopeEnd;
4098           break;
4099 
4100         case N_LENG:
4101           // second stab entry with length information
4102           type = eSymbolTypeAdditional;
4103           break;
4104 
4105         default:
4106           break;
4107         }
4108       } else {
4109         uint8_t n_type = N_TYPE & nlist.n_type;
4110         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4111 
4112         switch (n_type) {
4113         case N_INDR: {
4114           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4115           if (reexport_name_cstr && reexport_name_cstr[0]) {
4116             type = eSymbolTypeReExported;
4117             ConstString reexport_name(reexport_name_cstr +
4118                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4119             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4120             set_value = false;
4121             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4122             indirect_symbol_names.insert(
4123                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4124           } else
4125             type = eSymbolTypeUndefined;
4126         } break;
4127 
4128         case N_UNDF:
4129           if (symbol_name && symbol_name[0]) {
4130             ConstString undefined_name(symbol_name +
4131                                        ((symbol_name[0] == '_') ? 1 : 0));
4132             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4133           }
4134           LLVM_FALLTHROUGH;
4135 
4136         case N_PBUD:
4137           type = eSymbolTypeUndefined;
4138           break;
4139 
4140         case N_ABS:
4141           type = eSymbolTypeAbsolute;
4142           break;
4143 
4144         case N_SECT: {
4145           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4146 
4147           if (!symbol_section) {
4148             // TODO: warn about this?
4149             add_nlist = false;
4150             break;
4151           }
4152 
4153           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4154             type = eSymbolTypeException;
4155           } else {
4156             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4157 
4158             switch (section_type) {
4159             case S_CSTRING_LITERALS:
4160               type = eSymbolTypeData;
4161               break; // section with only literal C strings
4162             case S_4BYTE_LITERALS:
4163               type = eSymbolTypeData;
4164               break; // section with only 4 byte literals
4165             case S_8BYTE_LITERALS:
4166               type = eSymbolTypeData;
4167               break; // section with only 8 byte literals
4168             case S_LITERAL_POINTERS:
4169               type = eSymbolTypeTrampoline;
4170               break; // section with only pointers to literals
4171             case S_NON_LAZY_SYMBOL_POINTERS:
4172               type = eSymbolTypeTrampoline;
4173               break; // section with only non-lazy symbol pointers
4174             case S_LAZY_SYMBOL_POINTERS:
4175               type = eSymbolTypeTrampoline;
4176               break; // section with only lazy symbol pointers
4177             case S_SYMBOL_STUBS:
4178               type = eSymbolTypeTrampoline;
4179               break; // section with only symbol stubs, byte size of stub in
4180                      // the reserved2 field
4181             case S_MOD_INIT_FUNC_POINTERS:
4182               type = eSymbolTypeCode;
4183               break; // section with only function pointers for initialization
4184             case S_MOD_TERM_FUNC_POINTERS:
4185               type = eSymbolTypeCode;
4186               break; // section with only function pointers for termination
4187             case S_INTERPOSING:
4188               type = eSymbolTypeTrampoline;
4189               break; // section with only pairs of function pointers for
4190                      // interposing
4191             case S_16BYTE_LITERALS:
4192               type = eSymbolTypeData;
4193               break; // section with only 16 byte literals
4194             case S_DTRACE_DOF:
4195               type = eSymbolTypeInstrumentation;
4196               break;
4197             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4198               type = eSymbolTypeTrampoline;
4199               break;
4200             default:
4201               switch (symbol_section->GetType()) {
4202               case lldb::eSectionTypeCode:
4203                 type = eSymbolTypeCode;
4204                 break;
4205               case eSectionTypeData:
4206               case eSectionTypeDataCString:         // Inlined C string data
4207               case eSectionTypeDataCStringPointers: // Pointers to C string
4208                                                     // data
4209               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4210                                                     // the symbol table
4211               case eSectionTypeData4:
4212               case eSectionTypeData8:
4213               case eSectionTypeData16:
4214                 type = eSymbolTypeData;
4215                 break;
4216               default:
4217                 break;
4218               }
4219               break;
4220             }
4221 
4222             if (type == eSymbolTypeInvalid) {
4223               const char *symbol_sect_name =
4224                   symbol_section->GetName().AsCString();
4225               if (symbol_section->IsDescendant(text_section_sp.get())) {
4226                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4227                                             S_ATTR_SELF_MODIFYING_CODE |
4228                                             S_ATTR_SOME_INSTRUCTIONS))
4229                   type = eSymbolTypeData;
4230                 else
4231                   type = eSymbolTypeCode;
4232               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4233                          symbol_section->IsDescendant(
4234                              data_dirty_section_sp.get()) ||
4235                          symbol_section->IsDescendant(
4236                              data_const_section_sp.get())) {
4237                 if (symbol_sect_name &&
4238                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4239                   type = eSymbolTypeRuntime;
4240 
4241                   if (symbol_name) {
4242                     llvm::StringRef symbol_name_ref(symbol_name);
4243                     if (symbol_name_ref.startswith("_OBJC_")) {
4244                       llvm::StringRef g_objc_v2_prefix_class(
4245                           "_OBJC_CLASS_$_");
4246                       llvm::StringRef g_objc_v2_prefix_metaclass(
4247                           "_OBJC_METACLASS_$_");
4248                       llvm::StringRef g_objc_v2_prefix_ivar(
4249                           "_OBJC_IVAR_$_");
4250                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4251                         symbol_name_non_abi_mangled = symbol_name + 1;
4252                         symbol_name =
4253                             symbol_name + g_objc_v2_prefix_class.size();
4254                         type = eSymbolTypeObjCClass;
4255                         demangled_is_synthesized = true;
4256                       } else if (symbol_name_ref.startswith(
4257                                      g_objc_v2_prefix_metaclass)) {
4258                         symbol_name_non_abi_mangled = symbol_name + 1;
4259                         symbol_name =
4260                             symbol_name + g_objc_v2_prefix_metaclass.size();
4261                         type = eSymbolTypeObjCMetaClass;
4262                         demangled_is_synthesized = true;
4263                       } else if (symbol_name_ref.startswith(
4264                                      g_objc_v2_prefix_ivar)) {
4265                         symbol_name_non_abi_mangled = symbol_name + 1;
4266                         symbol_name =
4267                             symbol_name + g_objc_v2_prefix_ivar.size();
4268                         type = eSymbolTypeObjCIVar;
4269                         demangled_is_synthesized = true;
4270                       }
4271                     }
4272                   }
4273                 } else if (symbol_sect_name &&
4274                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4275                                symbol_sect_name) {
4276                   type = eSymbolTypeException;
4277                 } else {
4278                   type = eSymbolTypeData;
4279                 }
4280               } else if (symbol_sect_name &&
4281                          ::strstr(symbol_sect_name, "__IMPORT") ==
4282                              symbol_sect_name) {
4283                 type = eSymbolTypeTrampoline;
4284               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4285                 type = eSymbolTypeRuntime;
4286                 if (symbol_name && symbol_name[0] == '.') {
4287                   llvm::StringRef symbol_name_ref(symbol_name);
4288                   llvm::StringRef g_objc_v1_prefix_class(
4289                       ".objc_class_name_");
4290                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4291                     symbol_name_non_abi_mangled = symbol_name;
4292                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4293                     type = eSymbolTypeObjCClass;
4294                     demangled_is_synthesized = true;
4295                   }
4296                 }
4297               }
4298             }
4299           }
4300         } break;
4301         }
4302       }
4303 
4304       if (!add_nlist) {
4305         sym[sym_idx].Clear();
4306         return true;
4307       }
4308 
4309       uint64_t symbol_value = nlist.n_value;
4310 
4311       if (symbol_name_non_abi_mangled) {
4312         sym[sym_idx].GetMangled().SetMangledName(
4313             ConstString(symbol_name_non_abi_mangled));
4314         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4315       } else {
4316         bool symbol_name_is_mangled = false;
4317 
4318         if (symbol_name && symbol_name[0] == '_') {
4319           symbol_name_is_mangled = symbol_name[1] == '_';
4320           symbol_name++; // Skip the leading underscore
4321         }
4322 
4323         if (symbol_name) {
4324           ConstString const_symbol_name(symbol_name);
4325           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4326                                              symbol_name_is_mangled);
4327         }
4328       }
4329 
4330       if (is_gsym) {
4331         const char *gsym_name = sym[sym_idx]
4332                                     .GetMangled()
4333                                     .GetName(Mangled::ePreferMangled)
4334                                     .GetCString();
4335         if (gsym_name)
4336           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4337       }
4338 
4339       if (symbol_section) {
4340         const addr_t section_file_addr = symbol_section->GetFileAddress();
4341         if (symbol_byte_size == 0 && function_starts_count > 0) {
4342           addr_t symbol_lookup_file_addr = nlist.n_value;
4343           // Do an exact address match for non-ARM addresses, else get the
4344           // closest since the symbol might be a thumb symbol which has an
4345           // address with bit zero set.
4346           FunctionStarts::Entry *func_start_entry =
4347               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4348           if (is_arm && func_start_entry) {
4349             // Verify that the function start address is the symbol address
4350             // (ARM) or the symbol address + 1 (thumb).
4351             if (func_start_entry->addr != symbol_lookup_file_addr &&
4352                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4353               // Not the right entry, NULL it out...
4354               func_start_entry = nullptr;
4355             }
4356           }
4357           if (func_start_entry) {
4358             func_start_entry->data = true;
4359 
4360             addr_t symbol_file_addr = func_start_entry->addr;
4361             if (is_arm)
4362               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4363 
4364             const FunctionStarts::Entry *next_func_start_entry =
4365                 function_starts.FindNextEntry(func_start_entry);
4366             const addr_t section_end_file_addr =
4367                 section_file_addr + symbol_section->GetByteSize();
4368             if (next_func_start_entry) {
4369               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4370               // Be sure the clear the Thumb address bit when we calculate the
4371               // size from the current and next address
4372               if (is_arm)
4373                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4374               symbol_byte_size = std::min<lldb::addr_t>(
4375                   next_symbol_file_addr - symbol_file_addr,
4376                   section_end_file_addr - symbol_file_addr);
4377             } else {
4378               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4379             }
4380           }
4381         }
4382         symbol_value -= section_file_addr;
4383       }
4384 
4385       if (!is_debug) {
4386         if (type == eSymbolTypeCode) {
4387           // See if we can find a N_FUN entry for any code symbols. If we do
4388           // find a match, and the name matches, then we can merge the two into
4389           // just the function symbol to avoid duplicate entries in the symbol
4390           // table.
4391           std::pair<ValueToSymbolIndexMap::const_iterator,
4392                     ValueToSymbolIndexMap::const_iterator>
4393               range;
4394           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4395           if (range.first != range.second) {
4396             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4397                  pos != range.second; ++pos) {
4398               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4399                   sym[pos->second].GetMangled().GetName(
4400                       Mangled::ePreferMangled)) {
4401                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4402                 // We just need the flags from the linker symbol, so put these
4403                 // flags into the N_FUN flags to avoid duplicate symbols in the
4404                 // symbol table.
4405                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4406                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4407                 if (resolver_addresses.find(nlist.n_value) !=
4408                     resolver_addresses.end())
4409                   sym[pos->second].SetType(eSymbolTypeResolver);
4410                 sym[sym_idx].Clear();
4411                 return true;
4412               }
4413             }
4414           } else {
4415             if (resolver_addresses.find(nlist.n_value) !=
4416                 resolver_addresses.end())
4417               type = eSymbolTypeResolver;
4418           }
4419         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4420                    type == eSymbolTypeObjCMetaClass ||
4421                    type == eSymbolTypeObjCIVar) {
4422           // See if we can find a N_STSYM entry for any data symbols. If we do
4423           // find a match, and the name matches, then we can merge the two into
4424           // just the Static symbol to avoid duplicate entries in the symbol
4425           // table.
4426           std::pair<ValueToSymbolIndexMap::const_iterator,
4427                     ValueToSymbolIndexMap::const_iterator>
4428               range;
4429           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4430           if (range.first != range.second) {
4431             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4432                  pos != range.second; ++pos) {
4433               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4434                   sym[pos->second].GetMangled().GetName(
4435                       Mangled::ePreferMangled)) {
4436                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4437                 // We just need the flags from the linker symbol, so put these
4438                 // flags into the N_STSYM flags to avoid duplicate symbols in
4439                 // the symbol table.
4440                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4441                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4442                 sym[sym_idx].Clear();
4443                 return true;
4444               }
4445             }
4446           } else {
4447             // Combine N_GSYM stab entries with the non stab symbol.
4448             const char *gsym_name = sym[sym_idx]
4449                                         .GetMangled()
4450                                         .GetName(Mangled::ePreferMangled)
4451                                         .GetCString();
4452             if (gsym_name) {
4453               ConstNameToSymbolIndexMap::const_iterator pos =
4454                   N_GSYM_name_to_sym_idx.find(gsym_name);
4455               if (pos != N_GSYM_name_to_sym_idx.end()) {
4456                 const uint32_t GSYM_sym_idx = pos->second;
4457                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4458                 // Copy the address, because often the N_GSYM address has an
4459                 // invalid address of zero when the global is a common symbol.
4460                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4461                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4462                 add_symbol_addr(
4463                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4464                 // We just need the flags from the linker symbol, so put these
4465                 // flags into the N_GSYM flags to avoid duplicate symbols in
4466                 // the symbol table.
4467                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4468                 sym[sym_idx].Clear();
4469                 return true;
4470               }
4471             }
4472           }
4473         }
4474       }
4475 
4476       sym[sym_idx].SetID(nlist_idx);
4477       sym[sym_idx].SetType(type);
4478       if (set_value) {
4479         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4480         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4481         if (symbol_section)
4482           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4483       }
4484       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4485       if (nlist.n_desc & N_WEAK_REF)
4486         sym[sym_idx].SetIsWeak(true);
4487 
4488       if (symbol_byte_size > 0)
4489         sym[sym_idx].SetByteSize(symbol_byte_size);
4490 
4491       if (demangled_is_synthesized)
4492         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4493 
4494       ++sym_idx;
4495       return true;
4496     };
4497 
4498     // First parse all the nlists but don't process them yet. See the next
4499     // comment for an explanation why.
4500     std::vector<struct nlist_64> nlists;
4501     nlists.reserve(symtab_load_command.nsyms);
4502     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4503       if (auto nlist =
4504               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4505         nlists.push_back(*nlist);
4506       else
4507         break;
4508     }
4509 
4510     // Now parse all the debug symbols. This is needed to merge non-debug
4511     // symbols in the next step. Non-debug symbols are always coalesced into
4512     // the debug symbol. Doing this in one step would mean that some symbols
4513     // won't be merged.
4514     nlist_idx = 0;
4515     for (auto &nlist : nlists) {
4516       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4517         break;
4518     }
4519 
4520     // Finally parse all the non debug symbols.
4521     nlist_idx = 0;
4522     for (auto &nlist : nlists) {
4523       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4524         break;
4525     }
4526 
4527     for (const auto &pos : reexport_shlib_needs_fixup) {
4528       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4529       if (undef_pos != undefined_name_to_desc.end()) {
4530         const uint8_t dylib_ordinal =
4531             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4532         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4533           sym[pos.first].SetReExportedSymbolSharedLibrary(
4534               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4535       }
4536     }
4537   }
4538 
4539   // Count how many trie symbols we'll add to the symbol table
4540   int trie_symbol_table_augment_count = 0;
4541   for (auto &e : external_sym_trie_entries) {
4542     if (symbols_added.find(e.entry.address) == symbols_added.end())
4543       trie_symbol_table_augment_count++;
4544   }
4545 
4546   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4547     num_syms = sym_idx + trie_symbol_table_augment_count;
4548     sym = symtab.Resize(num_syms);
4549   }
4550   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4551 
4552   // Add symbols from the trie to the symbol table.
4553   for (auto &e : external_sym_trie_entries) {
4554     if (symbols_added.contains(e.entry.address))
4555       continue;
4556 
4557     // Find the section that this trie address is in, use that to annotate
4558     // symbol type as we add the trie address and name to the symbol table.
4559     Address symbol_addr;
4560     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4561       SectionSP symbol_section(symbol_addr.GetSection());
4562       const char *symbol_name = e.entry.name.GetCString();
4563       bool demangled_is_synthesized = false;
4564       SymbolType type =
4565           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4566                         data_section_sp, data_dirty_section_sp,
4567                         data_const_section_sp, symbol_section);
4568 
4569       sym[sym_idx].SetType(type);
4570       if (symbol_section) {
4571         sym[sym_idx].SetID(synthetic_sym_id++);
4572         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4573         if (demangled_is_synthesized)
4574           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4575         sym[sym_idx].SetIsSynthetic(true);
4576         sym[sym_idx].SetExternal(true);
4577         sym[sym_idx].GetAddressRef() = symbol_addr;
4578         add_symbol_addr(symbol_addr.GetFileAddress());
4579         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4580           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4581         ++sym_idx;
4582       }
4583     }
4584   }
4585 
4586   if (function_starts_count > 0) {
4587     uint32_t num_synthetic_function_symbols = 0;
4588     for (i = 0; i < function_starts_count; ++i) {
4589       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4590           symbols_added.end())
4591         ++num_synthetic_function_symbols;
4592     }
4593 
4594     if (num_synthetic_function_symbols > 0) {
4595       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4596         num_syms = sym_idx + num_synthetic_function_symbols;
4597         sym = symtab.Resize(num_syms);
4598       }
4599       for (i = 0; i < function_starts_count; ++i) {
4600         const FunctionStarts::Entry *func_start_entry =
4601             function_starts.GetEntryAtIndex(i);
4602         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4603           addr_t symbol_file_addr = func_start_entry->addr;
4604           uint32_t symbol_flags = 0;
4605           if (func_start_entry->data)
4606             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4607           Address symbol_addr;
4608           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4609             SectionSP symbol_section(symbol_addr.GetSection());
4610             uint32_t symbol_byte_size = 0;
4611             if (symbol_section) {
4612               const addr_t section_file_addr = symbol_section->GetFileAddress();
4613               const FunctionStarts::Entry *next_func_start_entry =
4614                   function_starts.FindNextEntry(func_start_entry);
4615               const addr_t section_end_file_addr =
4616                   section_file_addr + symbol_section->GetByteSize();
4617               if (next_func_start_entry) {
4618                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4619                 if (is_arm)
4620                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4621                 symbol_byte_size = std::min<lldb::addr_t>(
4622                     next_symbol_file_addr - symbol_file_addr,
4623                     section_end_file_addr - symbol_file_addr);
4624               } else {
4625                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4626               }
4627               sym[sym_idx].SetID(synthetic_sym_id++);
4628               // Don't set the name for any synthetic symbols, the Symbol
4629               // object will generate one if needed when the name is accessed
4630               // via accessors.
4631               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4632               sym[sym_idx].SetType(eSymbolTypeCode);
4633               sym[sym_idx].SetIsSynthetic(true);
4634               sym[sym_idx].GetAddressRef() = symbol_addr;
4635               add_symbol_addr(symbol_addr.GetFileAddress());
4636               if (symbol_flags)
4637                 sym[sym_idx].SetFlags(symbol_flags);
4638               if (symbol_byte_size)
4639                 sym[sym_idx].SetByteSize(symbol_byte_size);
4640               ++sym_idx;
4641             }
4642           }
4643         }
4644       }
4645     }
4646   }
4647 
4648   // Trim our symbols down to just what we ended up with after removing any
4649   // symbols.
4650   if (sym_idx < num_syms) {
4651     num_syms = sym_idx;
4652     sym = symtab.Resize(num_syms);
4653   }
4654 
4655   // Now synthesize indirect symbols
4656   if (m_dysymtab.nindirectsyms != 0) {
4657     if (indirect_symbol_index_data.GetByteSize()) {
4658       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4659           m_nlist_idx_to_sym_idx.end();
4660 
4661       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4662            ++sect_idx) {
4663         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4664             S_SYMBOL_STUBS) {
4665           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4666           if (symbol_stub_byte_size == 0)
4667             continue;
4668 
4669           const uint32_t num_symbol_stubs =
4670               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4671 
4672           if (num_symbol_stubs == 0)
4673             continue;
4674 
4675           const uint32_t symbol_stub_index_offset =
4676               m_mach_sections[sect_idx].reserved1;
4677           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4678             const uint32_t symbol_stub_index =
4679                 symbol_stub_index_offset + stub_idx;
4680             const lldb::addr_t symbol_stub_addr =
4681                 m_mach_sections[sect_idx].addr +
4682                 (stub_idx * symbol_stub_byte_size);
4683             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4684             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4685                     symbol_stub_offset, 4)) {
4686               const uint32_t stub_sym_id =
4687                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4688               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4689                 continue;
4690 
4691               NListIndexToSymbolIndexMap::const_iterator index_pos =
4692                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4693               Symbol *stub_symbol = nullptr;
4694               if (index_pos != end_index_pos) {
4695                 // We have a remapping from the original nlist index to a
4696                 // current symbol index, so just look this up by index
4697                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4698               } else {
4699                 // We need to lookup a symbol using the original nlist symbol
4700                 // index since this index is coming from the S_SYMBOL_STUBS
4701                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4702               }
4703 
4704               if (stub_symbol) {
4705                 Address so_addr(symbol_stub_addr, section_list);
4706 
4707                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4708                   // Change the external symbol into a trampoline that makes
4709                   // sense These symbols were N_UNDF N_EXT, and are useless
4710                   // to us, so we can re-use them so we don't have to make up
4711                   // a synthetic symbol for no good reason.
4712                   if (resolver_addresses.find(symbol_stub_addr) ==
4713                       resolver_addresses.end())
4714                     stub_symbol->SetType(eSymbolTypeTrampoline);
4715                   else
4716                     stub_symbol->SetType(eSymbolTypeResolver);
4717                   stub_symbol->SetExternal(false);
4718                   stub_symbol->GetAddressRef() = so_addr;
4719                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4720                 } else {
4721                   // Make a synthetic symbol to describe the trampoline stub
4722                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4723                   if (sym_idx >= num_syms) {
4724                     sym = symtab.Resize(++num_syms);
4725                     stub_symbol = nullptr; // this pointer no longer valid
4726                   }
4727                   sym[sym_idx].SetID(synthetic_sym_id++);
4728                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4729                   if (resolver_addresses.find(symbol_stub_addr) ==
4730                       resolver_addresses.end())
4731                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4732                   else
4733                     sym[sym_idx].SetType(eSymbolTypeResolver);
4734                   sym[sym_idx].SetIsSynthetic(true);
4735                   sym[sym_idx].GetAddressRef() = so_addr;
4736                   add_symbol_addr(so_addr.GetFileAddress());
4737                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4738                   ++sym_idx;
4739                 }
4740               } else {
4741                 if (log)
4742                   log->Warning("symbol stub referencing symbol table symbol "
4743                                "%u that isn't in our minimal symbol table, "
4744                                "fix this!!!",
4745                                stub_sym_id);
4746               }
4747             }
4748           }
4749         }
4750       }
4751     }
4752   }
4753 
4754   if (!reexport_trie_entries.empty()) {
4755     for (const auto &e : reexport_trie_entries) {
4756       if (e.entry.import_name) {
4757         // Only add indirect symbols from the Trie entries if we didn't have
4758         // a N_INDR nlist entry for this already
4759         if (indirect_symbol_names.find(e.entry.name) ==
4760             indirect_symbol_names.end()) {
4761           // Make a synthetic symbol to describe re-exported symbol.
4762           if (sym_idx >= num_syms)
4763             sym = symtab.Resize(++num_syms);
4764           sym[sym_idx].SetID(synthetic_sym_id++);
4765           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4766           sym[sym_idx].SetType(eSymbolTypeReExported);
4767           sym[sym_idx].SetIsSynthetic(true);
4768           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4769           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4770             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4771                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4772           }
4773           ++sym_idx;
4774         }
4775       }
4776     }
4777   }
4778 }
4779 
4780 void ObjectFileMachO::Dump(Stream *s) {
4781   ModuleSP module_sp(GetModule());
4782   if (module_sp) {
4783     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4784     s->Printf("%p: ", static_cast<void *>(this));
4785     s->Indent();
4786     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4787       s->PutCString("ObjectFileMachO64");
4788     else
4789       s->PutCString("ObjectFileMachO32");
4790 
4791     *s << ", file = '" << m_file;
4792     ModuleSpecList all_specs;
4793     ModuleSpec base_spec;
4794     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4795                     base_spec, all_specs);
4796     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4797       *s << "', triple";
4798       if (e)
4799         s->Printf("[%d]", i);
4800       *s << " = ";
4801       *s << all_specs.GetModuleSpecRefAtIndex(i)
4802                 .GetArchitecture()
4803                 .GetTriple()
4804                 .getTriple();
4805     }
4806     *s << "\n";
4807     SectionList *sections = GetSectionList();
4808     if (sections)
4809       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4810                      UINT32_MAX);
4811 
4812     if (m_symtab_up)
4813       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4814   }
4815 }
4816 
4817 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4818                               const lldb_private::DataExtractor &data,
4819                               lldb::offset_t lc_offset) {
4820   uint32_t i;
4821   llvm::MachO::uuid_command load_cmd;
4822 
4823   lldb::offset_t offset = lc_offset;
4824   for (i = 0; i < header.ncmds; ++i) {
4825     const lldb::offset_t cmd_offset = offset;
4826     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4827       break;
4828 
4829     if (load_cmd.cmd == LC_UUID) {
4830       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4831 
4832       if (uuid_bytes) {
4833         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4834         // We pretend these object files have no UUID to prevent crashing.
4835 
4836         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4837                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4838                                        0xbb, 0x14, 0xf0, 0x0d};
4839 
4840         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4841           return UUID();
4842 
4843         return UUID::fromOptionalData(uuid_bytes, 16);
4844       }
4845       return UUID();
4846     }
4847     offset = cmd_offset + load_cmd.cmdsize;
4848   }
4849   return UUID();
4850 }
4851 
4852 static llvm::StringRef GetOSName(uint32_t cmd) {
4853   switch (cmd) {
4854   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4855     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4856   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4857     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4858   case llvm::MachO::LC_VERSION_MIN_TVOS:
4859     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4860   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4861     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4862   default:
4863     llvm_unreachable("unexpected LC_VERSION load command");
4864   }
4865 }
4866 
4867 namespace {
4868 struct OSEnv {
4869   llvm::StringRef os_type;
4870   llvm::StringRef environment;
4871   OSEnv(uint32_t cmd) {
4872     switch (cmd) {
4873     case llvm::MachO::PLATFORM_MACOS:
4874       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4875       return;
4876     case llvm::MachO::PLATFORM_IOS:
4877       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4878       return;
4879     case llvm::MachO::PLATFORM_TVOS:
4880       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4881       return;
4882     case llvm::MachO::PLATFORM_WATCHOS:
4883       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4884       return;
4885     // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
4886     // NEED_BRIDGEOS_TRIPLE
4887     // case llvm::MachO::PLATFORM_BRIDGEOS:
4888     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4889     //   return;
4890     // case llvm::MachO::PLATFORM_DRIVERKIT:
4891     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4892     //   return;
4893     case llvm::MachO::PLATFORM_MACCATALYST:
4894       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4895       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4896       return;
4897     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4898       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4899       environment =
4900           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4901       return;
4902     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4903       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4904       environment =
4905           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4906       return;
4907     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4908       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4909       environment =
4910           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4911       return;
4912     default: {
4913       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4914       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4915     }
4916     }
4917   }
4918 };
4919 
4920 struct MinOS {
4921   uint32_t major_version, minor_version, patch_version;
4922   MinOS(uint32_t version)
4923       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4924         patch_version(version & 0xffu) {}
4925 };
4926 } // namespace
4927 
4928 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4929                                       const lldb_private::DataExtractor &data,
4930                                       lldb::offset_t lc_offset,
4931                                       ModuleSpec &base_spec,
4932                                       lldb_private::ModuleSpecList &all_specs) {
4933   auto &base_arch = base_spec.GetArchitecture();
4934   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4935   if (!base_arch.IsValid())
4936     return;
4937 
4938   bool found_any = false;
4939   auto add_triple = [&](const llvm::Triple &triple) {
4940     auto spec = base_spec;
4941     spec.GetArchitecture().GetTriple() = triple;
4942     if (spec.GetArchitecture().IsValid()) {
4943       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4944       all_specs.Append(spec);
4945       found_any = true;
4946     }
4947   };
4948 
4949   // Set OS to an unspecified unknown or a "*" so it can match any OS
4950   llvm::Triple base_triple = base_arch.GetTriple();
4951   base_triple.setOS(llvm::Triple::UnknownOS);
4952   base_triple.setOSName(llvm::StringRef());
4953 
4954   if (header.filetype == MH_PRELOAD) {
4955     if (header.cputype == CPU_TYPE_ARM) {
4956       // If this is a 32-bit arm binary, and it's a standalone binary, force
4957       // the Vendor to Apple so we don't accidentally pick up the generic
4958       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4959       // frame pointer register; most other armv7 ABIs use a combination of
4960       // r7 and r11.
4961       base_triple.setVendor(llvm::Triple::Apple);
4962     } else {
4963       // Set vendor to an unspecified unknown or a "*" so it can match any
4964       // vendor This is required for correct behavior of EFI debugging on
4965       // x86_64
4966       base_triple.setVendor(llvm::Triple::UnknownVendor);
4967       base_triple.setVendorName(llvm::StringRef());
4968     }
4969     return add_triple(base_triple);
4970   }
4971 
4972   llvm::MachO::load_command load_cmd;
4973 
4974   // See if there is an LC_VERSION_MIN_* load command that can give
4975   // us the OS type.
4976   lldb::offset_t offset = lc_offset;
4977   for (uint32_t i = 0; i < header.ncmds; ++i) {
4978     const lldb::offset_t cmd_offset = offset;
4979     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4980       break;
4981 
4982     llvm::MachO::version_min_command version_min;
4983     switch (load_cmd.cmd) {
4984     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4985     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4986     case llvm::MachO::LC_VERSION_MIN_TVOS:
4987     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4988       if (load_cmd.cmdsize != sizeof(version_min))
4989         break;
4990       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4991                             data.GetByteOrder(), &version_min) == 0)
4992         break;
4993       MinOS min_os(version_min.version);
4994       llvm::SmallString<32> os_name;
4995       llvm::raw_svector_ostream os(os_name);
4996       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4997          << min_os.minor_version << '.' << min_os.patch_version;
4998 
4999       auto triple = base_triple;
5000       triple.setOSName(os.str());
5001 
5002       // Disambiguate legacy simulator platforms.
5003       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5004           (base_triple.getArch() == llvm::Triple::x86_64 ||
5005            base_triple.getArch() == llvm::Triple::x86)) {
5006         // The combination of legacy LC_VERSION_MIN load command and
5007         // x86 architecture always indicates a simulator environment.
5008         // The combination of LC_VERSION_MIN and arm architecture only
5009         // appears for native binaries. Back-deploying simulator
5010         // binaries on Apple Silicon Macs use the modern unambigous
5011         // LC_BUILD_VERSION load commands; no special handling required.
5012         triple.setEnvironment(llvm::Triple::Simulator);
5013       }
5014       add_triple(triple);
5015       break;
5016     }
5017     default:
5018       break;
5019     }
5020 
5021     offset = cmd_offset + load_cmd.cmdsize;
5022   }
5023 
5024   // See if there are LC_BUILD_VERSION load commands that can give
5025   // us the OS type.
5026   offset = lc_offset;
5027   for (uint32_t i = 0; i < header.ncmds; ++i) {
5028     const lldb::offset_t cmd_offset = offset;
5029     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5030       break;
5031 
5032     do {
5033       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5034         llvm::MachO::build_version_command build_version;
5035         if (load_cmd.cmdsize < sizeof(build_version)) {
5036           // Malformed load command.
5037           break;
5038         }
5039         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5040                               data.GetByteOrder(), &build_version) == 0)
5041           break;
5042         MinOS min_os(build_version.minos);
5043         OSEnv os_env(build_version.platform);
5044         llvm::SmallString<16> os_name;
5045         llvm::raw_svector_ostream os(os_name);
5046         os << os_env.os_type << min_os.major_version << '.'
5047            << min_os.minor_version << '.' << min_os.patch_version;
5048         auto triple = base_triple;
5049         triple.setOSName(os.str());
5050         os_name.clear();
5051         if (!os_env.environment.empty())
5052           triple.setEnvironmentName(os_env.environment);
5053         add_triple(triple);
5054       }
5055     } while (false);
5056     offset = cmd_offset + load_cmd.cmdsize;
5057   }
5058 
5059   if (!found_any) {
5060     add_triple(base_triple);
5061   }
5062 }
5063 
5064 ArchSpec ObjectFileMachO::GetArchitecture(
5065     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5066     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5067   ModuleSpecList all_specs;
5068   ModuleSpec base_spec;
5069   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5070                   base_spec, all_specs);
5071 
5072   // If the object file offers multiple alternative load commands,
5073   // pick the one that matches the module.
5074   if (module_sp) {
5075     const ArchSpec &module_arch = module_sp->GetArchitecture();
5076     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5077       ArchSpec mach_arch =
5078           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5079       if (module_arch.IsCompatibleMatch(mach_arch))
5080         return mach_arch;
5081     }
5082   }
5083 
5084   // Return the first arch we found.
5085   if (all_specs.GetSize() == 0)
5086     return {};
5087   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5088 }
5089 
5090 UUID ObjectFileMachO::GetUUID() {
5091   ModuleSP module_sp(GetModule());
5092   if (module_sp) {
5093     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5094     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5095     return GetUUID(m_header, m_data, offset);
5096   }
5097   return UUID();
5098 }
5099 
5100 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5101   uint32_t count = 0;
5102   ModuleSP module_sp(GetModule());
5103   if (module_sp) {
5104     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5105     llvm::MachO::load_command load_cmd;
5106     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5107     std::vector<std::string> rpath_paths;
5108     std::vector<std::string> rpath_relative_paths;
5109     std::vector<std::string> at_exec_relative_paths;
5110     uint32_t i;
5111     for (i = 0; i < m_header.ncmds; ++i) {
5112       const uint32_t cmd_offset = offset;
5113       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5114         break;
5115 
5116       switch (load_cmd.cmd) {
5117       case LC_RPATH:
5118       case LC_LOAD_DYLIB:
5119       case LC_LOAD_WEAK_DYLIB:
5120       case LC_REEXPORT_DYLIB:
5121       case LC_LOAD_DYLINKER:
5122       case LC_LOADFVMLIB:
5123       case LC_LOAD_UPWARD_DYLIB: {
5124         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5125         const char *path = m_data.PeekCStr(name_offset);
5126         if (path) {
5127           if (load_cmd.cmd == LC_RPATH)
5128             rpath_paths.push_back(path);
5129           else {
5130             if (path[0] == '@') {
5131               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5132                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5133               else if (strncmp(path, "@executable_path",
5134                                strlen("@executable_path")) == 0)
5135                 at_exec_relative_paths.push_back(path +
5136                                                  strlen("@executable_path"));
5137             } else {
5138               FileSpec file_spec(path);
5139               if (files.AppendIfUnique(file_spec))
5140                 count++;
5141             }
5142           }
5143         }
5144       } break;
5145 
5146       default:
5147         break;
5148       }
5149       offset = cmd_offset + load_cmd.cmdsize;
5150     }
5151 
5152     FileSpec this_file_spec(m_file);
5153     FileSystem::Instance().Resolve(this_file_spec);
5154 
5155     if (!rpath_paths.empty()) {
5156       // Fixup all LC_RPATH values to be absolute paths
5157       std::string loader_path("@loader_path");
5158       std::string executable_path("@executable_path");
5159       for (auto &rpath : rpath_paths) {
5160         if (llvm::StringRef(rpath).startswith(loader_path)) {
5161           rpath.erase(0, loader_path.size());
5162           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5163         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5164           rpath.erase(0, executable_path.size());
5165           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5166         }
5167       }
5168 
5169       for (const auto &rpath_relative_path : rpath_relative_paths) {
5170         for (const auto &rpath : rpath_paths) {
5171           std::string path = rpath;
5172           path += rpath_relative_path;
5173           // It is OK to resolve this path because we must find a file on disk
5174           // for us to accept it anyway if it is rpath relative.
5175           FileSpec file_spec(path);
5176           FileSystem::Instance().Resolve(file_spec);
5177           if (FileSystem::Instance().Exists(file_spec) &&
5178               files.AppendIfUnique(file_spec)) {
5179             count++;
5180             break;
5181           }
5182         }
5183       }
5184     }
5185 
5186     // We may have @executable_paths but no RPATHS.  Figure those out here.
5187     // Only do this if this object file is the executable.  We have no way to
5188     // get back to the actual executable otherwise, so we won't get the right
5189     // path.
5190     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5191       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5192       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5193         FileSpec file_spec =
5194             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5195         if (FileSystem::Instance().Exists(file_spec) &&
5196             files.AppendIfUnique(file_spec))
5197           count++;
5198       }
5199     }
5200   }
5201   return count;
5202 }
5203 
5204 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5205   // If the object file is not an executable it can't hold the entry point.
5206   // m_entry_point_address is initialized to an invalid address, so we can just
5207   // return that. If m_entry_point_address is valid it means we've found it
5208   // already, so return the cached value.
5209 
5210   if ((!IsExecutable() && !IsDynamicLoader()) ||
5211       m_entry_point_address.IsValid()) {
5212     return m_entry_point_address;
5213   }
5214 
5215   // Otherwise, look for the UnixThread or Thread command.  The data for the
5216   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5217   //
5218   //  uint32_t flavor  - this is the flavor argument you would pass to
5219   //  thread_get_state
5220   //  uint32_t count   - this is the count of longs in the thread state data
5221   //  struct XXX_thread_state state - this is the structure from
5222   //  <machine/thread_status.h> corresponding to the flavor.
5223   //  <repeat this trio>
5224   //
5225   // So we just keep reading the various register flavors till we find the GPR
5226   // one, then read the PC out of there.
5227   // FIXME: We will need to have a "RegisterContext data provider" class at some
5228   // point that can get all the registers
5229   // out of data in this form & attach them to a given thread.  That should
5230   // underlie the MacOS X User process plugin, and we'll also need it for the
5231   // MacOS X Core File process plugin.  When we have that we can also use it
5232   // here.
5233   //
5234   // For now we hard-code the offsets and flavors we need:
5235   //
5236   //
5237 
5238   ModuleSP module_sp(GetModule());
5239   if (module_sp) {
5240     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5241     llvm::MachO::load_command load_cmd;
5242     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5243     uint32_t i;
5244     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5245     bool done = false;
5246 
5247     for (i = 0; i < m_header.ncmds; ++i) {
5248       const lldb::offset_t cmd_offset = offset;
5249       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5250         break;
5251 
5252       switch (load_cmd.cmd) {
5253       case LC_UNIXTHREAD:
5254       case LC_THREAD: {
5255         while (offset < cmd_offset + load_cmd.cmdsize) {
5256           uint32_t flavor = m_data.GetU32(&offset);
5257           uint32_t count = m_data.GetU32(&offset);
5258           if (count == 0) {
5259             // We've gotten off somehow, log and exit;
5260             return m_entry_point_address;
5261           }
5262 
5263           switch (m_header.cputype) {
5264           case llvm::MachO::CPU_TYPE_ARM:
5265             if (flavor == 1 ||
5266                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5267                              // from mach/arm/thread_status.h
5268             {
5269               offset += 60; // This is the offset of pc in the GPR thread state
5270                             // data structure.
5271               start_address = m_data.GetU32(&offset);
5272               done = true;
5273             }
5274             break;
5275           case llvm::MachO::CPU_TYPE_ARM64:
5276           case llvm::MachO::CPU_TYPE_ARM64_32:
5277             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5278             {
5279               offset += 256; // This is the offset of pc in the GPR thread state
5280                              // data structure.
5281               start_address = m_data.GetU64(&offset);
5282               done = true;
5283             }
5284             break;
5285           case llvm::MachO::CPU_TYPE_I386:
5286             if (flavor ==
5287                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5288             {
5289               offset += 40; // This is the offset of eip in the GPR thread state
5290                             // data structure.
5291               start_address = m_data.GetU32(&offset);
5292               done = true;
5293             }
5294             break;
5295           case llvm::MachO::CPU_TYPE_X86_64:
5296             if (flavor ==
5297                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5298             {
5299               offset += 16 * 8; // This is the offset of rip in the GPR thread
5300                                 // state data structure.
5301               start_address = m_data.GetU64(&offset);
5302               done = true;
5303             }
5304             break;
5305           default:
5306             return m_entry_point_address;
5307           }
5308           // Haven't found the GPR flavor yet, skip over the data for this
5309           // flavor:
5310           if (done)
5311             break;
5312           offset += count * 4;
5313         }
5314       } break;
5315       case LC_MAIN: {
5316         ConstString text_segment_name("__TEXT");
5317         uint64_t entryoffset = m_data.GetU64(&offset);
5318         SectionSP text_segment_sp =
5319             GetSectionList()->FindSectionByName(text_segment_name);
5320         if (text_segment_sp) {
5321           done = true;
5322           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5323         }
5324       } break;
5325 
5326       default:
5327         break;
5328       }
5329       if (done)
5330         break;
5331 
5332       // Go to the next load command:
5333       offset = cmd_offset + load_cmd.cmdsize;
5334     }
5335 
5336     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5337       if (GetSymtab()) {
5338         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5339             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5340             Symtab::eDebugAny, Symtab::eVisibilityAny);
5341         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5342           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5343         }
5344       }
5345     }
5346 
5347     if (start_address != LLDB_INVALID_ADDRESS) {
5348       // We got the start address from the load commands, so now resolve that
5349       // address in the sections of this ObjectFile:
5350       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5351               start_address, GetSectionList())) {
5352         m_entry_point_address.Clear();
5353       }
5354     } else {
5355       // We couldn't read the UnixThread load command - maybe it wasn't there.
5356       // As a fallback look for the "start" symbol in the main executable.
5357 
5358       ModuleSP module_sp(GetModule());
5359 
5360       if (module_sp) {
5361         SymbolContextList contexts;
5362         SymbolContext context;
5363         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5364                                               eSymbolTypeCode, contexts);
5365         if (contexts.GetSize()) {
5366           if (contexts.GetContextAtIndex(0, context))
5367             m_entry_point_address = context.symbol->GetAddress();
5368         }
5369       }
5370     }
5371   }
5372 
5373   return m_entry_point_address;
5374 }
5375 
5376 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5377   lldb_private::Address header_addr;
5378   SectionList *section_list = GetSectionList();
5379   if (section_list) {
5380     SectionSP text_segment_sp(
5381         section_list->FindSectionByName(GetSegmentNameTEXT()));
5382     if (text_segment_sp) {
5383       header_addr.SetSection(text_segment_sp);
5384       header_addr.SetOffset(0);
5385     }
5386   }
5387   return header_addr;
5388 }
5389 
5390 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5391   ModuleSP module_sp(GetModule());
5392   if (module_sp) {
5393     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5394     if (!m_thread_context_offsets_valid) {
5395       m_thread_context_offsets_valid = true;
5396       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5397       FileRangeArray::Entry file_range;
5398       llvm::MachO::thread_command thread_cmd;
5399       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5400         const uint32_t cmd_offset = offset;
5401         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5402           break;
5403 
5404         if (thread_cmd.cmd == LC_THREAD) {
5405           file_range.SetRangeBase(offset);
5406           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5407           m_thread_context_offsets.Append(file_range);
5408         }
5409         offset = cmd_offset + thread_cmd.cmdsize;
5410       }
5411     }
5412   }
5413   return m_thread_context_offsets.GetSize();
5414 }
5415 
5416 std::string ObjectFileMachO::GetIdentifierString() {
5417   std::string result;
5418   ModuleSP module_sp(GetModule());
5419   if (module_sp) {
5420     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5421 
5422     // First, look over the load commands for an LC_NOTE load command with
5423     // data_owner string "kern ver str" & use that if found.
5424     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5425     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5426       const uint32_t cmd_offset = offset;
5427       llvm::MachO::load_command lc;
5428       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5429         break;
5430       if (lc.cmd == LC_NOTE) {
5431         char data_owner[17];
5432         m_data.CopyData(offset, 16, data_owner);
5433         data_owner[16] = '\0';
5434         offset += 16;
5435         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5436         uint64_t size = m_data.GetU64_unchecked(&offset);
5437 
5438         // "kern ver str" has a uint32_t version and then a nul terminated
5439         // c-string.
5440         if (strcmp("kern ver str", data_owner) == 0) {
5441           offset = fileoff;
5442           uint32_t version;
5443           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5444             if (version == 1) {
5445               uint32_t strsize = size - sizeof(uint32_t);
5446               char *buf = (char *)malloc(strsize);
5447               if (buf) {
5448                 m_data.CopyData(offset, strsize, buf);
5449                 buf[strsize - 1] = '\0';
5450                 result = buf;
5451                 if (buf)
5452                   free(buf);
5453                 return result;
5454               }
5455             }
5456           }
5457         }
5458       }
5459       offset = cmd_offset + lc.cmdsize;
5460     }
5461 
5462     // Second, make a pass over the load commands looking for an obsolete
5463     // LC_IDENT load command.
5464     offset = MachHeaderSizeFromMagic(m_header.magic);
5465     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5466       const uint32_t cmd_offset = offset;
5467       llvm::MachO::ident_command ident_command;
5468       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5469         break;
5470       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5471         char *buf = (char *)malloc(ident_command.cmdsize);
5472         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5473                                               buf) == ident_command.cmdsize) {
5474           buf[ident_command.cmdsize - 1] = '\0';
5475           result = buf;
5476         }
5477         if (buf)
5478           free(buf);
5479       }
5480       offset = cmd_offset + ident_command.cmdsize;
5481     }
5482   }
5483   return result;
5484 }
5485 
5486 addr_t ObjectFileMachO::GetAddressMask() {
5487   addr_t mask = 0;
5488   ModuleSP module_sp(GetModule());
5489   if (module_sp) {
5490     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5491     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5492     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5493       const uint32_t cmd_offset = offset;
5494       llvm::MachO::load_command lc;
5495       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5496         break;
5497       if (lc.cmd == LC_NOTE) {
5498         char data_owner[17];
5499         m_data.CopyData(offset, 16, data_owner);
5500         data_owner[16] = '\0';
5501         offset += 16;
5502         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5503 
5504         // "addrable bits" has a uint32_t version and a uint32_t
5505         // number of bits used in addressing.
5506         if (strcmp("addrable bits", data_owner) == 0) {
5507           offset = fileoff;
5508           uint32_t version;
5509           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5510             if (version == 3) {
5511               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5512               if (num_addr_bits != 0) {
5513                 mask = ~((1ULL << num_addr_bits) - 1);
5514               }
5515               break;
5516             }
5517           }
5518         }
5519       }
5520       offset = cmd_offset + lc.cmdsize;
5521     }
5522   }
5523   return mask;
5524 }
5525 
5526 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5527                                                 bool &value_is_offset,
5528                                                 UUID &uuid,
5529                                                 ObjectFile::BinaryType &type) {
5530   value = LLDB_INVALID_ADDRESS;
5531   value_is_offset = false;
5532   uuid.Clear();
5533   uint32_t log2_pagesize = 0; // not currently passed up to caller
5534   uint32_t platform = 0;      // not currently passed up to caller
5535   ModuleSP module_sp(GetModule());
5536   if (module_sp) {
5537     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5538     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5539     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5540       const uint32_t cmd_offset = offset;
5541       llvm::MachO::load_command lc;
5542       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5543         break;
5544       if (lc.cmd == LC_NOTE) {
5545         char data_owner[17];
5546         memset(data_owner, 0, sizeof(data_owner));
5547         m_data.CopyData(offset, 16, data_owner);
5548         offset += 16;
5549         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5550         uint64_t size = m_data.GetU64_unchecked(&offset);
5551 
5552         // struct main_bin_spec
5553         // {
5554         //     uint32_t version;       // currently 2
5555         //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5556         //                             // 2 == user process,
5557         //                             // 3 == standalone binary
5558         //     uint64_t address;       // UINT64_MAX if address not specified
5559         //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5560         //                             // 0 if no slide needs to be applied to
5561         //                             // file address
5562         //     uuid_t   uuid;          // all zero's if uuid not specified
5563         //     uint32_t log2_pagesize; // process page size in log base 2,
5564         //                             // e.g. 4k pages are 12.
5565         //                             // 0 for unspecified
5566         //     uint32_t platform;      // The Mach-O platform for this corefile.
5567         //                             // 0 for unspecified.
5568         //                             // The values are defined in
5569         //                             // <mach-o/loader.h>, PLATFORM_*.
5570         // } __attribute((packed));
5571 
5572         // "main bin spec" (main binary specification) data payload is
5573         // formatted:
5574         //    uint32_t version       [currently 1]
5575         //    uint32_t type          [0 == unspecified, 1 == kernel,
5576         //                            2 == user process, 3 == firmware ]
5577         //    uint64_t address       [ UINT64_MAX if address not specified ]
5578         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5579         //    uint32_t log2_pagesize [ process page size in log base
5580         //                             2, e.g. 4k pages are 12.
5581         //                             0 for unspecified ]
5582         //    uint32_t unused        [ for alignment ]
5583 
5584         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5585           offset = fileoff;
5586           uint32_t version;
5587           if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
5588             uint32_t binspec_type = 0;
5589             uuid_t raw_uuid;
5590             memset(raw_uuid, 0, sizeof(uuid_t));
5591 
5592             if (!m_data.GetU32(&offset, &binspec_type, 1))
5593               return false;
5594             if (!m_data.GetU64(&offset, &value, 1))
5595               return false;
5596             uint64_t slide = LLDB_INVALID_ADDRESS;
5597             if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
5598               return false;
5599             if (value == LLDB_INVALID_ADDRESS &&
5600                 slide != LLDB_INVALID_ADDRESS) {
5601               value = slide;
5602               value_is_offset = true;
5603             }
5604 
5605             if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5606               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5607               // convert the "main bin spec" type into our
5608               // ObjectFile::BinaryType enum
5609               switch (binspec_type) {
5610               case 0:
5611                 type = eBinaryTypeUnknown;
5612                 break;
5613               case 1:
5614                 type = eBinaryTypeKernel;
5615                 break;
5616               case 2:
5617                 type = eBinaryTypeUser;
5618                 break;
5619               case 3:
5620                 type = eBinaryTypeStandalone;
5621                 break;
5622               }
5623               if (!m_data.GetU32(&offset, &log2_pagesize, 1))
5624                 return false;
5625               if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
5626                 return false;
5627               return true;
5628             }
5629           }
5630         }
5631       }
5632       offset = cmd_offset + lc.cmdsize;
5633     }
5634   }
5635   return false;
5636 }
5637 
5638 lldb::RegisterContextSP
5639 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5640                                          lldb_private::Thread &thread) {
5641   lldb::RegisterContextSP reg_ctx_sp;
5642 
5643   ModuleSP module_sp(GetModule());
5644   if (module_sp) {
5645     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5646     if (!m_thread_context_offsets_valid)
5647       GetNumThreadContexts();
5648 
5649     const FileRangeArray::Entry *thread_context_file_range =
5650         m_thread_context_offsets.GetEntryAtIndex(idx);
5651     if (thread_context_file_range) {
5652 
5653       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5654                          thread_context_file_range->GetByteSize());
5655 
5656       switch (m_header.cputype) {
5657       case llvm::MachO::CPU_TYPE_ARM64:
5658       case llvm::MachO::CPU_TYPE_ARM64_32:
5659         reg_ctx_sp =
5660             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5661         break;
5662 
5663       case llvm::MachO::CPU_TYPE_ARM:
5664         reg_ctx_sp =
5665             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5666         break;
5667 
5668       case llvm::MachO::CPU_TYPE_I386:
5669         reg_ctx_sp =
5670             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5671         break;
5672 
5673       case llvm::MachO::CPU_TYPE_X86_64:
5674         reg_ctx_sp =
5675             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5676         break;
5677       }
5678     }
5679   }
5680   return reg_ctx_sp;
5681 }
5682 
5683 ObjectFile::Type ObjectFileMachO::CalculateType() {
5684   switch (m_header.filetype) {
5685   case MH_OBJECT: // 0x1u
5686     if (GetAddressByteSize() == 4) {
5687       // 32 bit kexts are just object files, but they do have a valid
5688       // UUID load command.
5689       if (GetUUID()) {
5690         // this checking for the UUID load command is not enough we could
5691         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5692         // this is required of kexts
5693         if (m_strata == eStrataInvalid)
5694           m_strata = eStrataKernel;
5695         return eTypeSharedLibrary;
5696       }
5697     }
5698     return eTypeObjectFile;
5699 
5700   case MH_EXECUTE:
5701     return eTypeExecutable; // 0x2u
5702   case MH_FVMLIB:
5703     return eTypeSharedLibrary; // 0x3u
5704   case MH_CORE:
5705     return eTypeCoreFile; // 0x4u
5706   case MH_PRELOAD:
5707     return eTypeSharedLibrary; // 0x5u
5708   case MH_DYLIB:
5709     return eTypeSharedLibrary; // 0x6u
5710   case MH_DYLINKER:
5711     return eTypeDynamicLinker; // 0x7u
5712   case MH_BUNDLE:
5713     return eTypeSharedLibrary; // 0x8u
5714   case MH_DYLIB_STUB:
5715     return eTypeStubLibrary; // 0x9u
5716   case MH_DSYM:
5717     return eTypeDebugInfo; // 0xAu
5718   case MH_KEXT_BUNDLE:
5719     return eTypeSharedLibrary; // 0xBu
5720   default:
5721     break;
5722   }
5723   return eTypeUnknown;
5724 }
5725 
5726 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5727   switch (m_header.filetype) {
5728   case MH_OBJECT: // 0x1u
5729   {
5730     // 32 bit kexts are just object files, but they do have a valid
5731     // UUID load command.
5732     if (GetUUID()) {
5733       // this checking for the UUID load command is not enough we could
5734       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5735       // this is required of kexts
5736       if (m_type == eTypeInvalid)
5737         m_type = eTypeSharedLibrary;
5738 
5739       return eStrataKernel;
5740     }
5741   }
5742     return eStrataUnknown;
5743 
5744   case MH_EXECUTE: // 0x2u
5745     // Check for the MH_DYLDLINK bit in the flags
5746     if (m_header.flags & MH_DYLDLINK) {
5747       return eStrataUser;
5748     } else {
5749       SectionList *section_list = GetSectionList();
5750       if (section_list) {
5751         static ConstString g_kld_section_name("__KLD");
5752         if (section_list->FindSectionByName(g_kld_section_name))
5753           return eStrataKernel;
5754       }
5755     }
5756     return eStrataRawImage;
5757 
5758   case MH_FVMLIB:
5759     return eStrataUser; // 0x3u
5760   case MH_CORE:
5761     return eStrataUnknown; // 0x4u
5762   case MH_PRELOAD:
5763     return eStrataRawImage; // 0x5u
5764   case MH_DYLIB:
5765     return eStrataUser; // 0x6u
5766   case MH_DYLINKER:
5767     return eStrataUser; // 0x7u
5768   case MH_BUNDLE:
5769     return eStrataUser; // 0x8u
5770   case MH_DYLIB_STUB:
5771     return eStrataUser; // 0x9u
5772   case MH_DSYM:
5773     return eStrataUnknown; // 0xAu
5774   case MH_KEXT_BUNDLE:
5775     return eStrataKernel; // 0xBu
5776   default:
5777     break;
5778   }
5779   return eStrataUnknown;
5780 }
5781 
5782 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5783   ModuleSP module_sp(GetModule());
5784   if (module_sp) {
5785     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5786     llvm::MachO::dylib_command load_cmd;
5787     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5788     uint32_t version_cmd = 0;
5789     uint64_t version = 0;
5790     uint32_t i;
5791     for (i = 0; i < m_header.ncmds; ++i) {
5792       const lldb::offset_t cmd_offset = offset;
5793       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5794         break;
5795 
5796       if (load_cmd.cmd == LC_ID_DYLIB) {
5797         if (version_cmd == 0) {
5798           version_cmd = load_cmd.cmd;
5799           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5800             break;
5801           version = load_cmd.dylib.current_version;
5802         }
5803         break; // Break for now unless there is another more complete version
5804                // number load command in the future.
5805       }
5806       offset = cmd_offset + load_cmd.cmdsize;
5807     }
5808 
5809     if (version_cmd == LC_ID_DYLIB) {
5810       unsigned major = (version & 0xFFFF0000ull) >> 16;
5811       unsigned minor = (version & 0x0000FF00ull) >> 8;
5812       unsigned subminor = (version & 0x000000FFull);
5813       return llvm::VersionTuple(major, minor, subminor);
5814     }
5815   }
5816   return llvm::VersionTuple();
5817 }
5818 
5819 ArchSpec ObjectFileMachO::GetArchitecture() {
5820   ModuleSP module_sp(GetModule());
5821   ArchSpec arch;
5822   if (module_sp) {
5823     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5824 
5825     return GetArchitecture(module_sp, m_header, m_data,
5826                            MachHeaderSizeFromMagic(m_header.magic));
5827   }
5828   return arch;
5829 }
5830 
5831 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5832                                                 addr_t &base_addr, UUID &uuid) {
5833   uuid.Clear();
5834   base_addr = LLDB_INVALID_ADDRESS;
5835   if (process && process->GetDynamicLoader()) {
5836     DynamicLoader *dl = process->GetDynamicLoader();
5837     LazyBool using_shared_cache;
5838     LazyBool private_shared_cache;
5839     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5840                                   private_shared_cache);
5841   }
5842   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5843   LLDB_LOGF(
5844       log,
5845       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5846       uuid.GetAsString().c_str(), base_addr);
5847 }
5848 
5849 // From dyld SPI header dyld_process_info.h
5850 typedef void *dyld_process_info;
5851 struct lldb_copy__dyld_process_cache_info {
5852   uuid_t cacheUUID;          // UUID of cache used by process
5853   uint64_t cacheBaseAddress; // load address of dyld shared cache
5854   bool noCache;              // process is running without a dyld cache
5855   bool privateCache; // process is using a private copy of its dyld cache
5856 };
5857 
5858 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5859 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5860 // errors. So we need to use the actual underlying types of task_t and
5861 // kern_return_t below.
5862 extern "C" unsigned int /*task_t*/ mach_task_self();
5863 
5864 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5865   uuid.Clear();
5866   base_addr = LLDB_INVALID_ADDRESS;
5867 
5868 #if defined(__APPLE__)
5869   uint8_t *(*dyld_get_all_image_infos)(void);
5870   dyld_get_all_image_infos =
5871       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5872   if (dyld_get_all_image_infos) {
5873     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5874     if (dyld_all_image_infos_address) {
5875       uint32_t *version = (uint32_t *)
5876           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5877       if (*version >= 13) {
5878         uuid_t *sharedCacheUUID_address = 0;
5879         int wordsize = sizeof(uint8_t *);
5880         if (wordsize == 8) {
5881           sharedCacheUUID_address =
5882               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5883                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5884           if (*version >= 15)
5885             base_addr =
5886                 *(uint64_t
5887                       *)((uint8_t *)dyld_all_image_infos_address +
5888                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5889         } else {
5890           sharedCacheUUID_address =
5891               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5892                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5893           if (*version >= 15) {
5894             base_addr = 0;
5895             base_addr =
5896                 *(uint32_t
5897                       *)((uint8_t *)dyld_all_image_infos_address +
5898                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5899           }
5900         }
5901         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5902       }
5903     }
5904   } else {
5905     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5906     dyld_process_info (*dyld_process_info_create)(
5907         unsigned int /* task_t */ task, uint64_t timestamp,
5908         unsigned int /*kern_return_t*/ *kernelError);
5909     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5910     void (*dyld_process_info_release)(dyld_process_info info);
5911 
5912     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5913                                           unsigned int /*kern_return_t*/ *))
5914         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5915     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5916         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5917     dyld_process_info_release =
5918         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5919 
5920     if (dyld_process_info_create && dyld_process_info_get_cache) {
5921       unsigned int /*kern_return_t */ kern_ret;
5922       dyld_process_info process_info =
5923           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5924       if (process_info) {
5925         struct lldb_copy__dyld_process_cache_info sc_info;
5926         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5927         dyld_process_info_get_cache(process_info, &sc_info);
5928         if (sc_info.cacheBaseAddress != 0) {
5929           base_addr = sc_info.cacheBaseAddress;
5930           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5931         }
5932         dyld_process_info_release(process_info);
5933       }
5934     }
5935   }
5936   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5937   if (log && uuid.IsValid())
5938     LLDB_LOGF(log,
5939               "lldb's in-memory shared cache has a UUID of %s base address of "
5940               "0x%" PRIx64,
5941               uuid.GetAsString().c_str(), base_addr);
5942 #endif
5943 }
5944 
5945 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5946   if (!m_min_os_version) {
5947     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5948     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5949       const lldb::offset_t load_cmd_offset = offset;
5950 
5951       llvm::MachO::version_min_command lc;
5952       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5953         break;
5954       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5955           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5956           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5957           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5958         if (m_data.GetU32(&offset, &lc.version,
5959                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5960           const uint32_t xxxx = lc.version >> 16;
5961           const uint32_t yy = (lc.version >> 8) & 0xffu;
5962           const uint32_t zz = lc.version & 0xffu;
5963           if (xxxx) {
5964             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5965             break;
5966           }
5967         }
5968       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5969         // struct build_version_command {
5970         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5971         //     uint32_t    cmdsize;        /* sizeof(struct
5972         //     build_version_command) plus */
5973         //                                 /* ntools * sizeof(struct
5974         //                                 build_tool_version) */
5975         //     uint32_t    platform;       /* platform */
5976         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5977         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5978         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5979         //     tool entries following this */
5980         // };
5981 
5982         offset += 4; // skip platform
5983         uint32_t minos = m_data.GetU32(&offset);
5984 
5985         const uint32_t xxxx = minos >> 16;
5986         const uint32_t yy = (minos >> 8) & 0xffu;
5987         const uint32_t zz = minos & 0xffu;
5988         if (xxxx) {
5989           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5990           break;
5991         }
5992       }
5993 
5994       offset = load_cmd_offset + lc.cmdsize;
5995     }
5996 
5997     if (!m_min_os_version) {
5998       // Set version to an empty value so we don't keep trying to
5999       m_min_os_version = llvm::VersionTuple();
6000     }
6001   }
6002 
6003   return *m_min_os_version;
6004 }
6005 
6006 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6007   if (!m_sdk_versions.hasValue()) {
6008     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6009     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6010       const lldb::offset_t load_cmd_offset = offset;
6011 
6012       llvm::MachO::version_min_command lc;
6013       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6014         break;
6015       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6016           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6017           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6018           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6019         if (m_data.GetU32(&offset, &lc.version,
6020                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6021           const uint32_t xxxx = lc.sdk >> 16;
6022           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6023           const uint32_t zz = lc.sdk & 0xffu;
6024           if (xxxx) {
6025             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6026             break;
6027           } else {
6028             GetModule()->ReportWarning("minimum OS version load command with "
6029                                        "invalid (0) version found.");
6030           }
6031         }
6032       }
6033       offset = load_cmd_offset + lc.cmdsize;
6034     }
6035 
6036     if (!m_sdk_versions.hasValue()) {
6037       offset = MachHeaderSizeFromMagic(m_header.magic);
6038       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6039         const lldb::offset_t load_cmd_offset = offset;
6040 
6041         llvm::MachO::version_min_command lc;
6042         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6043           break;
6044         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6045           // struct build_version_command {
6046           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6047           //     uint32_t    cmdsize;        /* sizeof(struct
6048           //     build_version_command) plus */
6049           //                                 /* ntools * sizeof(struct
6050           //                                 build_tool_version) */
6051           //     uint32_t    platform;       /* platform */
6052           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6053           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6054           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6055           //     of tool entries following this */
6056           // };
6057 
6058           offset += 4; // skip platform
6059           uint32_t minos = m_data.GetU32(&offset);
6060 
6061           const uint32_t xxxx = minos >> 16;
6062           const uint32_t yy = (minos >> 8) & 0xffu;
6063           const uint32_t zz = minos & 0xffu;
6064           if (xxxx) {
6065             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6066             break;
6067           }
6068         }
6069         offset = load_cmd_offset + lc.cmdsize;
6070       }
6071     }
6072 
6073     if (!m_sdk_versions.hasValue())
6074       m_sdk_versions = llvm::VersionTuple();
6075   }
6076 
6077   return m_sdk_versions.getValue();
6078 }
6079 
6080 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6081   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6082 }
6083 
6084 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6085   return m_allow_assembly_emulation_unwind_plans;
6086 }
6087 
6088 Section *ObjectFileMachO::GetMachHeaderSection() {
6089   // Find the first address of the mach header which is the first non-zero file
6090   // sized section whose file offset is zero. This is the base file address of
6091   // the mach-o file which can be subtracted from the vmaddr of the other
6092   // segments found in memory and added to the load address
6093   ModuleSP module_sp = GetModule();
6094   if (!module_sp)
6095     return nullptr;
6096   SectionList *section_list = GetSectionList();
6097   if (!section_list)
6098     return nullptr;
6099   const size_t num_sections = section_list->GetSize();
6100   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6101     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6102     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6103       return section;
6104   }
6105 
6106   // We may have a binary in the shared cache that has a non-zero
6107   // file address for its first segment, traditionally the __TEXT segment.
6108   // Search for it by name and return it as our next best guess.
6109   SectionSP text_segment_sp =
6110       GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
6111   if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6112     return text_segment_sp.get();
6113 
6114   return nullptr;
6115 }
6116 
6117 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6118   if (!section)
6119     return false;
6120   const bool is_dsym = (m_header.filetype == MH_DSYM);
6121   if (section->GetFileSize() == 0 && !is_dsym)
6122     return false;
6123   if (section->IsThreadSpecific())
6124     return false;
6125   if (GetModule().get() != section->GetModule().get())
6126     return false;
6127   // Be careful with __LINKEDIT and __DWARF segments
6128   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6129       section->GetName() == GetSegmentNameDWARF()) {
6130     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6131     // this isn't a kernel binary like a kext or mach_kernel.
6132     const bool is_memory_image = (bool)m_process_wp.lock();
6133     const Strata strata = GetStrata();
6134     if (is_memory_image == false || strata == eStrataKernel)
6135       return false;
6136   }
6137   return true;
6138 }
6139 
6140 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6141     lldb::addr_t header_load_address, const Section *header_section,
6142     const Section *section) {
6143   ModuleSP module_sp = GetModule();
6144   if (module_sp && header_section && section &&
6145       header_load_address != LLDB_INVALID_ADDRESS) {
6146     lldb::addr_t file_addr = header_section->GetFileAddress();
6147     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6148       return section->GetFileAddress() - file_addr + header_load_address;
6149   }
6150   return LLDB_INVALID_ADDRESS;
6151 }
6152 
6153 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6154                                      bool value_is_offset) {
6155   ModuleSP module_sp = GetModule();
6156   if (!module_sp)
6157     return false;
6158 
6159   SectionList *section_list = GetSectionList();
6160   if (!section_list)
6161     return false;
6162 
6163   size_t num_loaded_sections = 0;
6164   const size_t num_sections = section_list->GetSize();
6165 
6166   if (value_is_offset) {
6167     // "value" is an offset to apply to each top level segment
6168     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6169       // Iterate through the object file sections to find all of the
6170       // sections that size on disk (to avoid __PAGEZERO) and load them
6171       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6172       if (SectionIsLoadable(section_sp.get()))
6173         if (target.GetSectionLoadList().SetSectionLoadAddress(
6174                 section_sp, section_sp->GetFileAddress() + value))
6175           ++num_loaded_sections;
6176     }
6177   } else {
6178     // "value" is the new base address of the mach_header, adjust each
6179     // section accordingly
6180 
6181     Section *mach_header_section = GetMachHeaderSection();
6182     if (mach_header_section) {
6183       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6184         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6185 
6186         lldb::addr_t section_load_addr =
6187             CalculateSectionLoadAddressForMemoryImage(
6188                 value, mach_header_section, section_sp.get());
6189         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6190           if (target.GetSectionLoadList().SetSectionLoadAddress(
6191                   section_sp, section_load_addr))
6192             ++num_loaded_sections;
6193         }
6194       }
6195     }
6196   }
6197   return num_loaded_sections > 0;
6198 }
6199 
6200 struct all_image_infos_header {
6201   uint32_t version;         // currently 1
6202   uint32_t imgcount;        // number of binary images
6203   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6204                             // struct entry's begin.
6205   uint32_t entries_size;    // size of 'struct entry'.
6206   uint32_t unused;
6207 };
6208 
6209 struct image_entry {
6210   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6211                              // UINT64_MAX if unavailable.
6212   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6213                              // uuid is unknown.
6214   uint64_t load_address;     // UINT64_MAX if unknown.
6215   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6216   uint32_t segment_count;    // The number of segments for this binary.
6217   uint32_t unused;
6218 
6219   image_entry() {
6220     filepath_offset = UINT64_MAX;
6221     memset(&uuid, 0, sizeof(uuid_t));
6222     segment_count = 0;
6223     load_address = UINT64_MAX;
6224     seg_addrs_offset = UINT64_MAX;
6225     unused = 0;
6226   }
6227   image_entry(const image_entry &rhs) {
6228     filepath_offset = rhs.filepath_offset;
6229     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6230     segment_count = rhs.segment_count;
6231     seg_addrs_offset = rhs.seg_addrs_offset;
6232     load_address = rhs.load_address;
6233     unused = rhs.unused;
6234   }
6235 };
6236 
6237 struct segment_vmaddr {
6238   char segname[16];
6239   uint64_t vmaddr;
6240   uint64_t unused;
6241 
6242   segment_vmaddr() {
6243     memset(&segname, 0, 16);
6244     vmaddr = UINT64_MAX;
6245     unused = 0;
6246   }
6247   segment_vmaddr(const segment_vmaddr &rhs) {
6248     memcpy(&segname, &rhs.segname, 16);
6249     vmaddr = rhs.vmaddr;
6250     unused = rhs.unused;
6251   }
6252 };
6253 
6254 // Write the payload for the "all image infos" LC_NOTE into
6255 // the supplied all_image_infos_payload, assuming that this
6256 // will be written into the corefile starting at
6257 // initial_file_offset.
6258 //
6259 // The placement of this payload is a little tricky.  We're
6260 // laying this out as
6261 //
6262 // 1. header (struct all_image_info_header)
6263 // 2. Array of fixed-size (struct image_entry)'s, one
6264 //    per binary image present in the process.
6265 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6266 //    for each binary image.
6267 // 4. Variable length c-strings of binary image filepaths,
6268 //    one per binary.
6269 //
6270 // To compute where everything will be laid out in the
6271 // payload, we need to iterate over the images and calculate
6272 // how many segment_vmaddr structures each image will need,
6273 // and how long each image's filepath c-string is. There
6274 // are some multiple passes over the image list while calculating
6275 // everything.
6276 
6277 static offset_t CreateAllImageInfosPayload(
6278     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6279     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6280   Target &target = process_sp->GetTarget();
6281   ModuleList modules = target.GetImages();
6282 
6283   // stack-only corefiles have no reason to include binaries that
6284   // are not executing; we're trying to make the smallest corefile
6285   // we can, so leave the rest out.
6286   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6287     modules.Clear();
6288 
6289   std::set<std::string> executing_uuids;
6290   ThreadList &thread_list(process_sp->GetThreadList());
6291   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6292     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6293     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6294     for (uint32_t j = 0; j < stack_frame_count; j++) {
6295       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6296       Address pc = stack_frame_sp->GetFrameCodeAddress();
6297       ModuleSP module_sp = pc.GetModule();
6298       if (module_sp) {
6299         UUID uuid = module_sp->GetUUID();
6300         if (uuid.IsValid()) {
6301           executing_uuids.insert(uuid.GetAsString());
6302           modules.AppendIfNeeded(module_sp);
6303         }
6304       }
6305     }
6306   }
6307   size_t modules_count = modules.GetSize();
6308 
6309   struct all_image_infos_header infos;
6310   infos.version = 1;
6311   infos.imgcount = modules_count;
6312   infos.entries_size = sizeof(image_entry);
6313   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6314   infos.unused = 0;
6315 
6316   all_image_infos_payload.PutHex32(infos.version);
6317   all_image_infos_payload.PutHex32(infos.imgcount);
6318   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6319   all_image_infos_payload.PutHex32(infos.entries_size);
6320   all_image_infos_payload.PutHex32(infos.unused);
6321 
6322   // First create the structures for all of the segment name+vmaddr vectors
6323   // for each module, so we will know the size of them as we add the
6324   // module entries.
6325   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6326   for (size_t i = 0; i < modules_count; i++) {
6327     ModuleSP module = modules.GetModuleAtIndex(i);
6328 
6329     SectionList *sections = module->GetSectionList();
6330     size_t sections_count = sections->GetSize();
6331     std::vector<segment_vmaddr> segment_vmaddrs;
6332     for (size_t j = 0; j < sections_count; j++) {
6333       SectionSP section = sections->GetSectionAtIndex(j);
6334       if (!section->GetParent().get()) {
6335         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6336         if (vmaddr == LLDB_INVALID_ADDRESS)
6337           continue;
6338         ConstString name = section->GetName();
6339         segment_vmaddr seg_vmaddr;
6340         strncpy(seg_vmaddr.segname, name.AsCString(),
6341                 sizeof(seg_vmaddr.segname));
6342         seg_vmaddr.vmaddr = vmaddr;
6343         seg_vmaddr.unused = 0;
6344         segment_vmaddrs.push_back(seg_vmaddr);
6345       }
6346     }
6347     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6348   }
6349 
6350   offset_t size_of_vmaddr_structs = 0;
6351   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6352     size_of_vmaddr_structs +=
6353         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6354   }
6355 
6356   offset_t size_of_filepath_cstrings = 0;
6357   for (size_t i = 0; i < modules_count; i++) {
6358     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6359     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6360   }
6361 
6362   // Calculate the file offsets of our "all image infos" payload in the
6363   // corefile. initial_file_offset the original value passed in to this method.
6364 
6365   offset_t start_of_entries =
6366       initial_file_offset + sizeof(all_image_infos_header);
6367   offset_t start_of_seg_vmaddrs =
6368       start_of_entries + sizeof(image_entry) * modules_count;
6369   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6370 
6371   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6372 
6373   // Now write the one-per-module 'struct image_entry' into the
6374   // StringStream; keep track of where the struct segment_vmaddr
6375   // entries for each module will end up in the corefile.
6376 
6377   offset_t current_string_offset = start_of_filenames;
6378   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6379   std::vector<struct image_entry> image_entries;
6380   for (size_t i = 0; i < modules_count; i++) {
6381     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6382 
6383     struct image_entry ent;
6384     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6385     if (modules_segment_vmaddrs[i].size() > 0) {
6386       ent.segment_count = modules_segment_vmaddrs[i].size();
6387       ent.seg_addrs_offset = current_segaddrs_offset;
6388     }
6389     ent.filepath_offset = current_string_offset;
6390     ObjectFile *objfile = module_sp->GetObjectFile();
6391     if (objfile) {
6392       Address base_addr(objfile->GetBaseAddress());
6393       if (base_addr.IsValid()) {
6394         ent.load_address = base_addr.GetLoadAddress(&target);
6395       }
6396     }
6397 
6398     all_image_infos_payload.PutHex64(ent.filepath_offset);
6399     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6400     all_image_infos_payload.PutHex64(ent.load_address);
6401     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6402     all_image_infos_payload.PutHex32(ent.segment_count);
6403 
6404     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6405         executing_uuids.end())
6406       all_image_infos_payload.PutHex32(1);
6407     else
6408       all_image_infos_payload.PutHex32(0);
6409 
6410     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6411     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6412   }
6413 
6414   // Now write the struct segment_vmaddr entries into the StringStream.
6415 
6416   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6417     if (modules_segment_vmaddrs[i].size() == 0)
6418       continue;
6419     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6420       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6421       all_image_infos_payload.PutHex64(segvm.vmaddr);
6422       all_image_infos_payload.PutHex64(segvm.unused);
6423     }
6424   }
6425 
6426   for (size_t i = 0; i < modules_count; i++) {
6427     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6428     std::string filepath = module_sp->GetFileSpec().GetPath();
6429     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6430   }
6431 
6432   return final_file_offset;
6433 }
6434 
6435 // Temp struct used to combine contiguous memory regions with
6436 // identical permissions.
6437 struct page_object {
6438   addr_t addr;
6439   addr_t size;
6440   uint32_t prot;
6441 };
6442 
6443 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6444                                const FileSpec &outfile,
6445                                lldb::SaveCoreStyle &core_style, Status &error) {
6446   if (!process_sp)
6447     return false;
6448 
6449   // Default on macOS is to create a dirty-memory-only corefile.
6450   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6451     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6452   }
6453 
6454   Target &target = process_sp->GetTarget();
6455   const ArchSpec target_arch = target.GetArchitecture();
6456   const llvm::Triple &target_triple = target_arch.GetTriple();
6457   if (target_triple.getVendor() == llvm::Triple::Apple &&
6458       (target_triple.getOS() == llvm::Triple::MacOSX ||
6459        target_triple.getOS() == llvm::Triple::IOS ||
6460        target_triple.getOS() == llvm::Triple::WatchOS ||
6461        target_triple.getOS() == llvm::Triple::TvOS)) {
6462     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6463     // {
6464     bool make_core = false;
6465     switch (target_arch.GetMachine()) {
6466     case llvm::Triple::aarch64:
6467     case llvm::Triple::aarch64_32:
6468     case llvm::Triple::arm:
6469     case llvm::Triple::thumb:
6470     case llvm::Triple::x86:
6471     case llvm::Triple::x86_64:
6472       make_core = true;
6473       break;
6474     default:
6475       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6476                                      target_triple.str().c_str());
6477       break;
6478     }
6479 
6480     if (make_core) {
6481       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6482       //                uint32_t range_info_idx = 0;
6483       MemoryRegionInfo range_info;
6484       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6485       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6486       const ByteOrder byte_order = target_arch.GetByteOrder();
6487       std::vector<page_object> pages_to_copy;
6488 
6489       if (range_error.Success()) {
6490         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6491           // Calculate correct protections
6492           uint32_t prot = 0;
6493           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6494             prot |= VM_PROT_READ;
6495           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6496             prot |= VM_PROT_WRITE;
6497           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6498             prot |= VM_PROT_EXECUTE;
6499 
6500           const addr_t addr = range_info.GetRange().GetRangeBase();
6501           const addr_t size = range_info.GetRange().GetByteSize();
6502 
6503           if (size == 0)
6504             break;
6505 
6506           bool include_this_region = true;
6507           bool dirty_pages_only = false;
6508           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6509             dirty_pages_only = true;
6510             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6511               include_this_region = false;
6512             }
6513           }
6514           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6515             dirty_pages_only = true;
6516           }
6517 
6518           if (prot != 0 && include_this_region) {
6519             addr_t pagesize = range_info.GetPageSize();
6520             const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6521                 range_info.GetDirtyPageList();
6522             if (dirty_pages_only && dirty_page_list.hasValue()) {
6523               for (addr_t dirtypage : dirty_page_list.getValue()) {
6524                 page_object obj;
6525                 obj.addr = dirtypage;
6526                 obj.size = pagesize;
6527                 obj.prot = prot;
6528                 pages_to_copy.push_back(obj);
6529               }
6530             } else {
6531               page_object obj;
6532               obj.addr = addr;
6533               obj.size = size;
6534               obj.prot = prot;
6535               pages_to_copy.push_back(obj);
6536             }
6537           }
6538 
6539           range_error = process_sp->GetMemoryRegionInfo(
6540               range_info.GetRange().GetRangeEnd(), range_info);
6541           if (range_error.Fail())
6542             break;
6543         }
6544 
6545         // Combine contiguous entries that have the same
6546         // protections so we don't have an excess of
6547         // load commands.
6548         std::vector<page_object> combined_page_objects;
6549         page_object last_obj;
6550         last_obj.addr = LLDB_INVALID_ADDRESS;
6551         last_obj.size = 0;
6552         for (page_object obj : pages_to_copy) {
6553           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6554             last_obj = obj;
6555             continue;
6556           }
6557           if (last_obj.addr + last_obj.size == obj.addr &&
6558               last_obj.prot == obj.prot) {
6559             last_obj.size += obj.size;
6560             continue;
6561           }
6562           combined_page_objects.push_back(last_obj);
6563           last_obj = obj;
6564         }
6565         // Add the last entry we were looking to combine
6566         // on to the array.
6567         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6568           combined_page_objects.push_back(last_obj);
6569 
6570         for (page_object obj : combined_page_objects) {
6571           uint32_t cmd_type = LC_SEGMENT_64;
6572           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6573           if (addr_byte_size == 4) {
6574             cmd_type = LC_SEGMENT;
6575             segment_size = sizeof(llvm::MachO::segment_command);
6576           }
6577           llvm::MachO::segment_command_64 segment = {
6578               cmd_type,     // uint32_t cmd;
6579               segment_size, // uint32_t cmdsize;
6580               {0},          // char segname[16];
6581               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6582                             // Mach-O
6583               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6584                             // Mach-O
6585               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6586               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6587                             // Mach-O
6588               obj.prot,     // uint32_t maxprot;
6589               obj.prot,     // uint32_t initprot;
6590               0,            // uint32_t nsects;
6591               0};           // uint32_t flags;
6592           segment_load_commands.push_back(segment);
6593         }
6594 
6595         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6596 
6597         llvm::MachO::mach_header_64 mach_header;
6598         if (addr_byte_size == 8) {
6599           mach_header.magic = MH_MAGIC_64;
6600         } else {
6601           mach_header.magic = MH_MAGIC;
6602         }
6603         mach_header.cputype = target_arch.GetMachOCPUType();
6604         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6605         mach_header.filetype = MH_CORE;
6606         mach_header.ncmds = segment_load_commands.size();
6607         mach_header.flags = 0;
6608         mach_header.reserved = 0;
6609         ThreadList &thread_list = process_sp->GetThreadList();
6610         const uint32_t num_threads = thread_list.GetSize();
6611 
6612         // Make an array of LC_THREAD data items. Each one contains the
6613         // contents of the LC_THREAD load command. The data doesn't contain
6614         // the load command + load command size, we will add the load command
6615         // and load command size as we emit the data.
6616         std::vector<StreamString> LC_THREAD_datas(num_threads);
6617         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6618           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6619           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6620           LC_THREAD_data.SetByteOrder(byte_order);
6621         }
6622         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6623           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6624           if (thread_sp) {
6625             switch (mach_header.cputype) {
6626             case llvm::MachO::CPU_TYPE_ARM64:
6627             case llvm::MachO::CPU_TYPE_ARM64_32:
6628               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6629                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6630               break;
6631 
6632             case llvm::MachO::CPU_TYPE_ARM:
6633               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6634                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6635               break;
6636 
6637             case llvm::MachO::CPU_TYPE_I386:
6638               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6639                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6640               break;
6641 
6642             case llvm::MachO::CPU_TYPE_X86_64:
6643               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6644                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6645               break;
6646             }
6647           }
6648         }
6649 
6650         // The size of the load command is the size of the segments...
6651         if (addr_byte_size == 8) {
6652           mach_header.sizeofcmds = segment_load_commands.size() *
6653                                    sizeof(llvm::MachO::segment_command_64);
6654         } else {
6655           mach_header.sizeofcmds = segment_load_commands.size() *
6656                                    sizeof(llvm::MachO::segment_command);
6657         }
6658 
6659         // and the size of all LC_THREAD load command
6660         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6661           ++mach_header.ncmds;
6662           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6663         }
6664 
6665         // Bits will be set to indicate which bits are NOT used in
6666         // addressing in this process or 0 for unknown.
6667         uint64_t address_mask = process_sp->GetCodeAddressMask();
6668         if (address_mask != 0) {
6669           // LC_NOTE "addrable bits"
6670           mach_header.ncmds++;
6671           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6672         }
6673 
6674         // LC_NOTE "all image infos"
6675         mach_header.ncmds++;
6676         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6677 
6678         // Write the mach header
6679         buffer.PutHex32(mach_header.magic);
6680         buffer.PutHex32(mach_header.cputype);
6681         buffer.PutHex32(mach_header.cpusubtype);
6682         buffer.PutHex32(mach_header.filetype);
6683         buffer.PutHex32(mach_header.ncmds);
6684         buffer.PutHex32(mach_header.sizeofcmds);
6685         buffer.PutHex32(mach_header.flags);
6686         if (addr_byte_size == 8) {
6687           buffer.PutHex32(mach_header.reserved);
6688         }
6689 
6690         // Skip the mach header and all load commands and align to the next
6691         // 0x1000 byte boundary
6692         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6693 
6694         file_offset = llvm::alignTo(file_offset, 16);
6695         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6696 
6697         // Add "addrable bits" LC_NOTE when an address mask is available
6698         if (address_mask != 0) {
6699           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6700               new LCNoteEntry(addr_byte_size, byte_order));
6701           addrable_bits_lcnote_up->name = "addrable bits";
6702           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6703           int bits = std::bitset<64>(~address_mask).count();
6704           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6705           addrable_bits_lcnote_up->payload.PutHex32(
6706               bits); // # of bits used for addressing
6707           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6708 
6709           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6710 
6711           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6712         }
6713 
6714         // Add "all image infos" LC_NOTE
6715         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6716             new LCNoteEntry(addr_byte_size, byte_order));
6717         all_image_infos_lcnote_up->name = "all image infos";
6718         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6719         file_offset = CreateAllImageInfosPayload(
6720             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6721             core_style);
6722         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6723 
6724         // Add LC_NOTE load commands
6725         for (auto &lcnote : lc_notes) {
6726           // Add the LC_NOTE load command to the file.
6727           buffer.PutHex32(LC_NOTE);
6728           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6729           char namebuf[16];
6730           memset(namebuf, 0, sizeof(namebuf));
6731           // this is the uncommon case where strncpy is exactly
6732           // the right one, doesn't need to be nul terminated.
6733           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6734           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6735           buffer.PutHex64(lcnote->payload_file_offset);
6736           buffer.PutHex64(lcnote->payload.GetSize());
6737         }
6738 
6739         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6740         file_offset = llvm::alignTo(file_offset, 4096);
6741 
6742         for (auto &segment : segment_load_commands) {
6743           segment.fileoff = file_offset;
6744           file_offset += segment.filesize;
6745         }
6746 
6747         // Write out all of the LC_THREAD load commands
6748         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6749           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6750           buffer.PutHex32(LC_THREAD);
6751           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6752           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6753         }
6754 
6755         // Write out all of the segment load commands
6756         for (const auto &segment : segment_load_commands) {
6757           buffer.PutHex32(segment.cmd);
6758           buffer.PutHex32(segment.cmdsize);
6759           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6760           if (addr_byte_size == 8) {
6761             buffer.PutHex64(segment.vmaddr);
6762             buffer.PutHex64(segment.vmsize);
6763             buffer.PutHex64(segment.fileoff);
6764             buffer.PutHex64(segment.filesize);
6765           } else {
6766             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6767             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6768             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6769             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6770           }
6771           buffer.PutHex32(segment.maxprot);
6772           buffer.PutHex32(segment.initprot);
6773           buffer.PutHex32(segment.nsects);
6774           buffer.PutHex32(segment.flags);
6775         }
6776 
6777         std::string core_file_path(outfile.GetPath());
6778         auto core_file = FileSystem::Instance().Open(
6779             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6780                          File::eOpenOptionCanCreate);
6781         if (!core_file) {
6782           error = core_file.takeError();
6783         } else {
6784           // Read 1 page at a time
6785           uint8_t bytes[0x1000];
6786           // Write the mach header and load commands out to the core file
6787           size_t bytes_written = buffer.GetString().size();
6788           error =
6789               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6790           if (error.Success()) {
6791 
6792             for (auto &lcnote : lc_notes) {
6793               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6794                   -1) {
6795                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6796                                                "to write '%s' LC_NOTE payload",
6797                                                lcnote->name.c_str());
6798                 return false;
6799               }
6800               bytes_written = lcnote->payload.GetSize();
6801               error = core_file.get()->Write(lcnote->payload.GetData(),
6802                                              bytes_written);
6803               if (!error.Success())
6804                 return false;
6805             }
6806 
6807             // Now write the file data for all memory segments in the process
6808             for (const auto &segment : segment_load_commands) {
6809               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6810                 error.SetErrorStringWithFormat(
6811                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6812                     segment.fileoff, core_file_path.c_str());
6813                 break;
6814               }
6815 
6816               target.GetDebugger().GetAsyncOutputStream()->Printf(
6817                   "Saving %" PRId64
6818                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6819                   segment.vmsize, segment.vmaddr);
6820               addr_t bytes_left = segment.vmsize;
6821               addr_t addr = segment.vmaddr;
6822               Status memory_read_error;
6823               while (bytes_left > 0 && error.Success()) {
6824                 const size_t bytes_to_read =
6825                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6826 
6827                 // In a savecore setting, we don't really care about caching,
6828                 // as the data is dumped and very likely never read again,
6829                 // so we call ReadMemoryFromInferior to bypass it.
6830                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6831                     addr, bytes, bytes_to_read, memory_read_error);
6832 
6833                 if (bytes_read == bytes_to_read) {
6834                   size_t bytes_written = bytes_read;
6835                   error = core_file.get()->Write(bytes, bytes_written);
6836                   bytes_left -= bytes_read;
6837                   addr += bytes_read;
6838                 } else {
6839                   // Some pages within regions are not readable, those should
6840                   // be zero filled
6841                   memset(bytes, 0, bytes_to_read);
6842                   size_t bytes_written = bytes_to_read;
6843                   error = core_file.get()->Write(bytes, bytes_written);
6844                   bytes_left -= bytes_to_read;
6845                   addr += bytes_to_read;
6846                 }
6847               }
6848             }
6849           }
6850         }
6851       } else {
6852         error.SetErrorString(
6853             "process doesn't support getting memory region info");
6854       }
6855     }
6856     return true; // This is the right plug to handle saving core files for
6857                  // this process
6858   }
6859   return false;
6860 }
6861 
6862 ObjectFileMachO::MachOCorefileAllImageInfos
6863 ObjectFileMachO::GetCorefileAllImageInfos() {
6864   MachOCorefileAllImageInfos image_infos;
6865 
6866   // Look for an "all image infos" LC_NOTE.
6867   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6868   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6869     const uint32_t cmd_offset = offset;
6870     llvm::MachO::load_command lc;
6871     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6872       break;
6873     if (lc.cmd == LC_NOTE) {
6874       char data_owner[17];
6875       m_data.CopyData(offset, 16, data_owner);
6876       data_owner[16] = '\0';
6877       offset += 16;
6878       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6879       offset += 4; /* size unused */
6880 
6881       if (strcmp("all image infos", data_owner) == 0) {
6882         offset = fileoff;
6883         // Read the struct all_image_infos_header.
6884         uint32_t version = m_data.GetU32(&offset);
6885         if (version != 1) {
6886           return image_infos;
6887         }
6888         uint32_t imgcount = m_data.GetU32(&offset);
6889         uint64_t entries_fileoff = m_data.GetU64(&offset);
6890         offset += 4; // uint32_t entries_size;
6891         offset += 4; // uint32_t unused;
6892 
6893         offset = entries_fileoff;
6894         for (uint32_t i = 0; i < imgcount; i++) {
6895           // Read the struct image_entry.
6896           offset_t filepath_offset = m_data.GetU64(&offset);
6897           uuid_t uuid;
6898           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6899                  sizeof(uuid_t));
6900           uint64_t load_address = m_data.GetU64(&offset);
6901           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6902           uint32_t segment_count = m_data.GetU32(&offset);
6903           uint32_t currently_executing = m_data.GetU32(&offset);
6904 
6905           MachOCorefileImageEntry image_entry;
6906           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6907           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6908           image_entry.load_address = load_address;
6909           image_entry.currently_executing = currently_executing;
6910 
6911           offset_t seg_vmaddrs_offset = seg_addrs_offset;
6912           for (uint32_t j = 0; j < segment_count; j++) {
6913             char segname[17];
6914             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6915             segname[16] = '\0';
6916             seg_vmaddrs_offset += 16;
6917             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6918             seg_vmaddrs_offset += 8; /* unused */
6919 
6920             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
6921                                                     vmaddr};
6922             image_entry.segment_load_addresses.push_back(new_seg);
6923           }
6924           image_infos.all_image_infos.push_back(image_entry);
6925         }
6926       } else if (strcmp("load binary", data_owner) == 0) {
6927         uint32_t version = m_data.GetU32(&fileoff);
6928         if (version == 1) {
6929           uuid_t uuid;
6930           memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
6931                  sizeof(uuid_t));
6932           uint64_t load_address = m_data.GetU64(&fileoff);
6933           uint64_t slide = m_data.GetU64(&fileoff);
6934           std::string filename = m_data.GetCStr(&fileoff);
6935 
6936           MachOCorefileImageEntry image_entry;
6937           image_entry.filename = filename;
6938           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6939           image_entry.load_address = load_address;
6940           image_entry.slide = slide;
6941           image_infos.all_image_infos.push_back(image_entry);
6942         }
6943       }
6944     }
6945     offset = cmd_offset + lc.cmdsize;
6946   }
6947 
6948   return image_infos;
6949 }
6950 
6951 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6952   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6953   Log *log = GetLog(LLDBLog::DynamicLoader);
6954 
6955   ModuleList added_modules;
6956   for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6957     ModuleSpec module_spec;
6958     module_spec.GetUUID() = image.uuid;
6959     if (image.filename.empty()) {
6960       char namebuf[80];
6961       if (image.load_address != LLDB_INVALID_ADDRESS)
6962         snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
6963                  image.load_address);
6964       else
6965         snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64, image.slide);
6966       module_spec.GetFileSpec() = FileSpec(namebuf);
6967     } else {
6968       module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
6969     }
6970     if (image.currently_executing) {
6971       Symbols::DownloadObjectAndSymbolFile(module_spec, true);
6972       if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
6973         process.GetTarget().GetOrCreateModule(module_spec, false);
6974       }
6975     }
6976     Status error;
6977     ModuleSP module_sp =
6978         process.GetTarget().GetOrCreateModule(module_spec, false, &error);
6979     if (!module_sp.get() || !module_sp->GetObjectFile()) {
6980       if (image.load_address != LLDB_INVALID_ADDRESS) {
6981         module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
6982                                                  image.load_address);
6983       }
6984     }
6985     if (module_sp.get()) {
6986       // Will call ModulesDidLoad with all modules once they've all
6987       // been added to the Target with load addresses.  Don't notify
6988       // here, before the load address is set.
6989       const bool notify = false;
6990       process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
6991       added_modules.Append(module_sp, notify);
6992       if (image.segment_load_addresses.size() > 0) {
6993         if (log) {
6994           std::string uuidstr = image.uuid.GetAsString();
6995           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
6996                       "UUID %s with section load addresses",
6997                       image.filename.c_str(), uuidstr.c_str());
6998         }
6999         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7000           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7001           if (sectlist) {
7002             SectionSP sect_sp =
7003                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7004             if (sect_sp) {
7005               process.GetTarget().SetSectionLoadAddress(
7006                   sect_sp, std::get<1>(name_vmaddr_tuple));
7007             }
7008           }
7009         }
7010       } else if (image.load_address != LLDB_INVALID_ADDRESS) {
7011         if (log) {
7012           std::string uuidstr = image.uuid.GetAsString();
7013           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7014                       "UUID %s with load address 0x%" PRIx64,
7015                       image.filename.c_str(), uuidstr.c_str(),
7016                       image.load_address);
7017         }
7018         const bool address_is_slide = false;
7019         bool changed = false;
7020         module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
7021                                   address_is_slide, changed);
7022       } else if (image.slide != 0) {
7023         if (log) {
7024           std::string uuidstr = image.uuid.GetAsString();
7025           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7026                       "UUID %s with slide amount 0x%" PRIx64,
7027                       image.filename.c_str(), uuidstr.c_str(), image.slide);
7028         }
7029         const bool address_is_slide = true;
7030         bool changed = false;
7031         module_sp->SetLoadAddress(process.GetTarget(), image.slide,
7032                                   address_is_slide, changed);
7033       } else {
7034         if (log) {
7035           std::string uuidstr = image.uuid.GetAsString();
7036           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7037                       "UUID %s at its file address, no slide applied",
7038                       image.filename.c_str(), uuidstr.c_str());
7039         }
7040         const bool address_is_slide = true;
7041         bool changed = false;
7042         module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
7043                                   changed);
7044       }
7045     }
7046   }
7047   if (added_modules.GetSize() > 0) {
7048     process.GetTarget().ModulesDidLoad(added_modules);
7049     process.Flush();
7050     return true;
7051   }
7052   return false;
7053 }
7054