1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 #include "llvm/Support/MachO.h" 12 13 #include "ObjectFileMachO.h" 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/FileSpecList.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Core/StreamFile.h" 22 #include "lldb/Core/StreamString.h" 23 #include "lldb/Core/Timer.h" 24 #include "lldb/Core/UUID.h" 25 #include "lldb/Host/Host.h" 26 #include "lldb/Host/FileSpec.h" 27 #include "lldb/Symbol/ClangNamespaceDecl.h" 28 #include "lldb/Symbol/ObjectFile.h" 29 #include "lldb/Target/Process.h" 30 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 31 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 32 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 33 34 35 using namespace lldb; 36 using namespace lldb_private; 37 using namespace llvm::MachO; 38 39 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 40 { 41 public: 42 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 43 RegisterContextDarwin_x86_64 (thread, 0) 44 { 45 SetRegisterDataFrom_LC_THREAD (data); 46 } 47 48 virtual void 49 InvalidateAllRegisters () 50 { 51 // Do nothing... registers are always valid... 52 } 53 54 void 55 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 56 { 57 uint32_t offset = 0; 58 SetError (GPRRegSet, Read, -1); 59 SetError (FPURegSet, Read, -1); 60 SetError (EXCRegSet, Read, -1); 61 bool done = false; 62 63 while (!done) 64 { 65 int flavor = data.GetU32 (&offset); 66 if (flavor == 0) 67 done = true; 68 else 69 { 70 uint32_t i; 71 uint32_t count = data.GetU32 (&offset); 72 switch (flavor) 73 { 74 case GPRRegSet: 75 for (i=0; i<count; ++i) 76 (&gpr.rax)[i] = data.GetU64(&offset); 77 SetError (GPRRegSet, Read, 0); 78 done = true; 79 80 break; 81 case FPURegSet: 82 // TODO: fill in FPU regs.... 83 //SetError (FPURegSet, Read, -1); 84 done = true; 85 86 break; 87 case EXCRegSet: 88 exc.trapno = data.GetU32(&offset); 89 exc.err = data.GetU32(&offset); 90 exc.faultvaddr = data.GetU64(&offset); 91 SetError (EXCRegSet, Read, 0); 92 done = true; 93 break; 94 case 7: 95 case 8: 96 case 9: 97 // fancy flavors that encapsulate of the the above 98 // falvors... 99 break; 100 101 default: 102 done = true; 103 break; 104 } 105 } 106 } 107 } 108 protected: 109 virtual int 110 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 111 { 112 return 0; 113 } 114 115 virtual int 116 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 117 { 118 return 0; 119 } 120 121 virtual int 122 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 123 { 124 return 0; 125 } 126 127 virtual int 128 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 129 { 130 return 0; 131 } 132 133 virtual int 134 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 135 { 136 return 0; 137 } 138 139 virtual int 140 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 141 { 142 return 0; 143 } 144 }; 145 146 147 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 148 { 149 public: 150 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 151 RegisterContextDarwin_i386 (thread, 0) 152 { 153 SetRegisterDataFrom_LC_THREAD (data); 154 } 155 156 virtual void 157 InvalidateAllRegisters () 158 { 159 // Do nothing... registers are always valid... 160 } 161 162 void 163 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 164 { 165 uint32_t offset = 0; 166 SetError (GPRRegSet, Read, -1); 167 SetError (FPURegSet, Read, -1); 168 SetError (EXCRegSet, Read, -1); 169 bool done = false; 170 171 while (!done) 172 { 173 int flavor = data.GetU32 (&offset); 174 if (flavor == 0) 175 done = true; 176 else 177 { 178 uint32_t i; 179 uint32_t count = data.GetU32 (&offset); 180 switch (flavor) 181 { 182 case GPRRegSet: 183 for (i=0; i<count; ++i) 184 (&gpr.eax)[i] = data.GetU32(&offset); 185 SetError (GPRRegSet, Read, 0); 186 done = true; 187 188 break; 189 case FPURegSet: 190 // TODO: fill in FPU regs.... 191 //SetError (FPURegSet, Read, -1); 192 done = true; 193 194 break; 195 case EXCRegSet: 196 exc.trapno = data.GetU32(&offset); 197 exc.err = data.GetU32(&offset); 198 exc.faultvaddr = data.GetU32(&offset); 199 SetError (EXCRegSet, Read, 0); 200 done = true; 201 break; 202 case 7: 203 case 8: 204 case 9: 205 // fancy flavors that encapsulate of the the above 206 // falvors... 207 break; 208 209 default: 210 done = true; 211 break; 212 } 213 } 214 } 215 } 216 protected: 217 virtual int 218 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 219 { 220 return 0; 221 } 222 223 virtual int 224 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 225 { 226 return 0; 227 } 228 229 virtual int 230 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 231 { 232 return 0; 233 } 234 235 virtual int 236 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 237 { 238 return 0; 239 } 240 241 virtual int 242 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 243 { 244 return 0; 245 } 246 247 virtual int 248 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 249 { 250 return 0; 251 } 252 }; 253 254 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 255 { 256 public: 257 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 258 RegisterContextDarwin_arm (thread, 0) 259 { 260 SetRegisterDataFrom_LC_THREAD (data); 261 } 262 263 virtual void 264 InvalidateAllRegisters () 265 { 266 // Do nothing... registers are always valid... 267 } 268 269 void 270 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 271 { 272 uint32_t offset = 0; 273 SetError (GPRRegSet, Read, -1); 274 SetError (FPURegSet, Read, -1); 275 SetError (EXCRegSet, Read, -1); 276 int flavor = data.GetU32 (&offset); 277 uint32_t count = data.GetU32 (&offset); 278 switch (flavor) 279 { 280 case GPRRegSet: 281 for (uint32_t i=0; i<count; ++i) 282 gpr.r[i] = data.GetU32(&offset); 283 SetError (GPRRegSet, Read, 0); 284 break; 285 case FPURegSet: 286 // TODO: fill in FPU regs.... 287 //SetError (FPURegSet, Read, -1); 288 break; 289 case EXCRegSet: 290 exc.exception = data.GetU32(&offset); 291 exc.fsr = data.GetU32(&offset); 292 exc.far = data.GetU32(&offset); 293 SetError (EXCRegSet, Read, 0); 294 break; 295 } 296 } 297 protected: 298 virtual int 299 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 300 { 301 return 0; 302 } 303 304 virtual int 305 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 306 { 307 return 0; 308 } 309 310 virtual int 311 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 312 { 313 return 0; 314 } 315 316 virtual int 317 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 318 { 319 return 0; 320 } 321 322 virtual int 323 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 324 { 325 return 0; 326 } 327 328 virtual int 329 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 330 { 331 return 0; 332 } 333 }; 334 335 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 336 337 void 338 ObjectFileMachO::Initialize() 339 { 340 PluginManager::RegisterPlugin (GetPluginNameStatic(), 341 GetPluginDescriptionStatic(), 342 CreateInstance, 343 CreateMemoryInstance); 344 } 345 346 void 347 ObjectFileMachO::Terminate() 348 { 349 PluginManager::UnregisterPlugin (CreateInstance); 350 } 351 352 353 const char * 354 ObjectFileMachO::GetPluginNameStatic() 355 { 356 return "object-file.mach-o"; 357 } 358 359 const char * 360 ObjectFileMachO::GetPluginDescriptionStatic() 361 { 362 return "Mach-o object file reader (32 and 64 bit)"; 363 } 364 365 366 ObjectFile * 367 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length) 368 { 369 if (ObjectFileMachO::MagicBytesMatch(data_sp, offset, length)) 370 { 371 std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, file, offset, length)); 372 if (objfile_ap.get() && objfile_ap->ParseHeader()) 373 return objfile_ap.release(); 374 } 375 return NULL; 376 } 377 378 ObjectFile * 379 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 380 DataBufferSP& data_sp, 381 const ProcessSP &process_sp, 382 lldb::addr_t header_addr) 383 { 384 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 385 { 386 std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 387 if (objfile_ap.get() && objfile_ap->ParseHeader()) 388 return objfile_ap.release(); 389 } 390 return NULL; 391 } 392 393 394 const ConstString & 395 ObjectFileMachO::GetSegmentNameTEXT() 396 { 397 static ConstString g_segment_name_TEXT ("__TEXT"); 398 return g_segment_name_TEXT; 399 } 400 401 const ConstString & 402 ObjectFileMachO::GetSegmentNameDATA() 403 { 404 static ConstString g_segment_name_DATA ("__DATA"); 405 return g_segment_name_DATA; 406 } 407 408 const ConstString & 409 ObjectFileMachO::GetSegmentNameOBJC() 410 { 411 static ConstString g_segment_name_OBJC ("__OBJC"); 412 return g_segment_name_OBJC; 413 } 414 415 const ConstString & 416 ObjectFileMachO::GetSegmentNameLINKEDIT() 417 { 418 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 419 return g_section_name_LINKEDIT; 420 } 421 422 const ConstString & 423 ObjectFileMachO::GetSectionNameEHFrame() 424 { 425 static ConstString g_section_name_eh_frame ("__eh_frame"); 426 return g_section_name_eh_frame; 427 } 428 429 430 431 static uint32_t 432 MachHeaderSizeFromMagic(uint32_t magic) 433 { 434 switch (magic) 435 { 436 case HeaderMagic32: 437 case HeaderMagic32Swapped: 438 return sizeof(struct mach_header); 439 440 case HeaderMagic64: 441 case HeaderMagic64Swapped: 442 return sizeof(struct mach_header_64); 443 break; 444 445 default: 446 break; 447 } 448 return 0; 449 } 450 451 452 bool 453 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 454 lldb::addr_t data_offset, 455 lldb::addr_t data_length) 456 { 457 DataExtractor data; 458 data.SetData (data_sp, data_offset, data_length); 459 uint32_t offset = 0; 460 uint32_t magic = data.GetU32(&offset); 461 return MachHeaderSizeFromMagic(magic) != 0; 462 } 463 464 465 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length) : 466 ObjectFile(module_sp, file, offset, length, data_sp), 467 m_mutex (Mutex::eMutexTypeRecursive), 468 m_sections_ap(), 469 m_symtab_ap(), 470 m_mach_segments(), 471 m_mach_sections(), 472 m_entry_point_address(), 473 m_thread_context_offsets(), 474 m_thread_context_offsets_valid(false) 475 { 476 ::memset (&m_header, 0, sizeof(m_header)); 477 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 478 } 479 480 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 481 lldb::DataBufferSP& header_data_sp, 482 const lldb::ProcessSP &process_sp, 483 lldb::addr_t header_addr) : 484 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 485 m_mutex (Mutex::eMutexTypeRecursive), 486 m_sections_ap(), 487 m_symtab_ap(), 488 m_mach_segments(), 489 m_mach_sections(), 490 m_entry_point_address(), 491 m_thread_context_offsets(), 492 m_thread_context_offsets_valid(false) 493 { 494 ::memset (&m_header, 0, sizeof(m_header)); 495 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 496 } 497 498 ObjectFileMachO::~ObjectFileMachO() 499 { 500 } 501 502 503 bool 504 ObjectFileMachO::ParseHeader () 505 { 506 lldb_private::Mutex::Locker locker(m_mutex); 507 bool can_parse = false; 508 uint32_t offset = 0; 509 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 510 // Leave magic in the original byte order 511 m_header.magic = m_data.GetU32(&offset); 512 switch (m_header.magic) 513 { 514 case HeaderMagic32: 515 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 516 m_data.SetAddressByteSize(4); 517 can_parse = true; 518 break; 519 520 case HeaderMagic64: 521 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 522 m_data.SetAddressByteSize(8); 523 can_parse = true; 524 break; 525 526 case HeaderMagic32Swapped: 527 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 528 m_data.SetAddressByteSize(4); 529 can_parse = true; 530 break; 531 532 case HeaderMagic64Swapped: 533 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 534 m_data.SetAddressByteSize(8); 535 can_parse = true; 536 break; 537 538 default: 539 break; 540 } 541 542 if (can_parse) 543 { 544 m_data.GetU32(&offset, &m_header.cputype, 6); 545 546 ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 547 548 if (SetModulesArchitecture (mach_arch)) 549 { 550 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 551 if (m_data.GetByteSize() < header_and_lc_size) 552 { 553 DataBufferSP data_sp; 554 ProcessSP process_sp (m_process_wp.lock()); 555 if (process_sp) 556 { 557 data_sp = ReadMemory (process_sp, m_offset, header_and_lc_size); 558 } 559 else 560 { 561 // Read in all only the load command data from the file on disk 562 data_sp = m_file.ReadFileContents(m_offset, header_and_lc_size); 563 if (data_sp->GetByteSize() != header_and_lc_size) 564 return false; 565 } 566 if (data_sp) 567 m_data.SetData (data_sp); 568 } 569 } 570 return true; 571 } 572 else 573 { 574 memset(&m_header, 0, sizeof(struct mach_header)); 575 } 576 return false; 577 } 578 579 580 ByteOrder 581 ObjectFileMachO::GetByteOrder () const 582 { 583 lldb_private::Mutex::Locker locker(m_mutex); 584 return m_data.GetByteOrder (); 585 } 586 587 bool 588 ObjectFileMachO::IsExecutable() const 589 { 590 return m_header.filetype == HeaderFileTypeExecutable; 591 } 592 593 size_t 594 ObjectFileMachO::GetAddressByteSize () const 595 { 596 lldb_private::Mutex::Locker locker(m_mutex); 597 return m_data.GetAddressByteSize (); 598 } 599 600 AddressClass 601 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 602 { 603 Symtab *symtab = GetSymtab(); 604 if (symtab) 605 { 606 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 607 if (symbol) 608 { 609 const AddressRange *range_ptr = symbol->GetAddressRangePtr(); 610 if (range_ptr) 611 { 612 SectionSP section_sp (range_ptr->GetBaseAddress().GetSection()); 613 if (section_sp) 614 { 615 const SectionType section_type = section_sp->GetType(); 616 switch (section_type) 617 { 618 case eSectionTypeInvalid: return eAddressClassUnknown; 619 case eSectionTypeCode: 620 if (m_header.cputype == llvm::MachO::CPUTypeARM) 621 { 622 // For ARM we have a bit in the n_desc field of the symbol 623 // that tells us ARM/Thumb which is bit 0x0008. 624 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 625 return eAddressClassCodeAlternateISA; 626 } 627 return eAddressClassCode; 628 629 case eSectionTypeContainer: return eAddressClassUnknown; 630 case eSectionTypeData: 631 case eSectionTypeDataCString: 632 case eSectionTypeDataCStringPointers: 633 case eSectionTypeDataSymbolAddress: 634 case eSectionTypeData4: 635 case eSectionTypeData8: 636 case eSectionTypeData16: 637 case eSectionTypeDataPointers: 638 case eSectionTypeZeroFill: 639 case eSectionTypeDataObjCMessageRefs: 640 case eSectionTypeDataObjCCFStrings: 641 return eAddressClassData; 642 case eSectionTypeDebug: 643 case eSectionTypeDWARFDebugAbbrev: 644 case eSectionTypeDWARFDebugAranges: 645 case eSectionTypeDWARFDebugFrame: 646 case eSectionTypeDWARFDebugInfo: 647 case eSectionTypeDWARFDebugLine: 648 case eSectionTypeDWARFDebugLoc: 649 case eSectionTypeDWARFDebugMacInfo: 650 case eSectionTypeDWARFDebugPubNames: 651 case eSectionTypeDWARFDebugPubTypes: 652 case eSectionTypeDWARFDebugRanges: 653 case eSectionTypeDWARFDebugStr: 654 case eSectionTypeDWARFAppleNames: 655 case eSectionTypeDWARFAppleTypes: 656 case eSectionTypeDWARFAppleNamespaces: 657 case eSectionTypeDWARFAppleObjC: 658 return eAddressClassDebug; 659 case eSectionTypeEHFrame: return eAddressClassRuntime; 660 case eSectionTypeOther: return eAddressClassUnknown; 661 } 662 } 663 } 664 665 const SymbolType symbol_type = symbol->GetType(); 666 switch (symbol_type) 667 { 668 case eSymbolTypeAny: return eAddressClassUnknown; 669 case eSymbolTypeAbsolute: return eAddressClassUnknown; 670 671 case eSymbolTypeCode: 672 case eSymbolTypeTrampoline: 673 if (m_header.cputype == llvm::MachO::CPUTypeARM) 674 { 675 // For ARM we have a bit in the n_desc field of the symbol 676 // that tells us ARM/Thumb which is bit 0x0008. 677 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 678 return eAddressClassCodeAlternateISA; 679 } 680 return eAddressClassCode; 681 682 case eSymbolTypeData: return eAddressClassData; 683 case eSymbolTypeRuntime: return eAddressClassRuntime; 684 case eSymbolTypeException: return eAddressClassRuntime; 685 case eSymbolTypeSourceFile: return eAddressClassDebug; 686 case eSymbolTypeHeaderFile: return eAddressClassDebug; 687 case eSymbolTypeObjectFile: return eAddressClassDebug; 688 case eSymbolTypeCommonBlock: return eAddressClassDebug; 689 case eSymbolTypeBlock: return eAddressClassDebug; 690 case eSymbolTypeLocal: return eAddressClassData; 691 case eSymbolTypeParam: return eAddressClassData; 692 case eSymbolTypeVariable: return eAddressClassData; 693 case eSymbolTypeVariableType: return eAddressClassDebug; 694 case eSymbolTypeLineEntry: return eAddressClassDebug; 695 case eSymbolTypeLineHeader: return eAddressClassDebug; 696 case eSymbolTypeScopeBegin: return eAddressClassDebug; 697 case eSymbolTypeScopeEnd: return eAddressClassDebug; 698 case eSymbolTypeAdditional: return eAddressClassUnknown; 699 case eSymbolTypeCompiler: return eAddressClassDebug; 700 case eSymbolTypeInstrumentation:return eAddressClassDebug; 701 case eSymbolTypeUndefined: return eAddressClassUnknown; 702 case eSymbolTypeObjCClass: return eAddressClassRuntime; 703 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 704 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 705 } 706 } 707 } 708 return eAddressClassUnknown; 709 } 710 711 Symtab * 712 ObjectFileMachO::GetSymtab() 713 { 714 lldb_private::Mutex::Locker symfile_locker(m_mutex); 715 if (m_symtab_ap.get() == NULL) 716 { 717 m_symtab_ap.reset(new Symtab(this)); 718 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 719 ParseSymtab (true); 720 m_symtab_ap->Finalize (); 721 } 722 return m_symtab_ap.get(); 723 } 724 725 726 SectionList * 727 ObjectFileMachO::GetSectionList() 728 { 729 lldb_private::Mutex::Locker locker(m_mutex); 730 if (m_sections_ap.get() == NULL) 731 { 732 m_sections_ap.reset(new SectionList()); 733 ParseSections(); 734 } 735 return m_sections_ap.get(); 736 } 737 738 739 size_t 740 ObjectFileMachO::ParseSections () 741 { 742 lldb::user_id_t segID = 0; 743 lldb::user_id_t sectID = 0; 744 struct segment_command_64 load_cmd; 745 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 746 uint32_t i; 747 const bool is_core = GetType() == eTypeCoreFile; 748 //bool dump_sections = false; 749 ModuleSP module_sp (GetModule()); 750 for (i=0; i<m_header.ncmds; ++i) 751 { 752 const uint32_t load_cmd_offset = offset; 753 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 754 break; 755 756 if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64) 757 { 758 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 759 { 760 load_cmd.vmaddr = m_data.GetAddress(&offset); 761 load_cmd.vmsize = m_data.GetAddress(&offset); 762 load_cmd.fileoff = m_data.GetAddress(&offset); 763 load_cmd.filesize = m_data.GetAddress(&offset); 764 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 765 { 766 767 const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0; 768 769 // Keep a list of mach segments around in case we need to 770 // get at data that isn't stored in the abstracted Sections. 771 m_mach_segments.push_back (load_cmd); 772 773 ConstString segment_name (load_cmd.segname, std::min<int>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 774 // Use a segment ID of the segment index shifted left by 8 so they 775 // never conflict with any of the sections. 776 SectionSP segment_sp; 777 if (segment_name || is_core) 778 { 779 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 780 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 781 segment_name, // Name of this section 782 eSectionTypeContainer, // This section is a container of other sections. 783 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 784 load_cmd.vmsize, // VM size in bytes of this section 785 load_cmd.fileoff, // Offset to the data for this section in the file 786 load_cmd.filesize, // Size in bytes of this section as found in the the file 787 load_cmd.flags)); // Flags for this section 788 789 segment_sp->SetIsEncrypted (segment_is_encrypted); 790 m_sections_ap->AddSection(segment_sp); 791 } 792 793 struct section_64 sect64; 794 ::memset (§64, 0, sizeof(sect64)); 795 // Push a section into our mach sections for the section at 796 // index zero (NListSectionNoSection) if we don't have any 797 // mach sections yet... 798 if (m_mach_sections.empty()) 799 m_mach_sections.push_back(sect64); 800 uint32_t segment_sect_idx; 801 const lldb::user_id_t first_segment_sectID = sectID + 1; 802 803 804 const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8; 805 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 806 { 807 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 808 break; 809 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 810 break; 811 sect64.addr = m_data.GetAddress(&offset); 812 sect64.size = m_data.GetAddress(&offset); 813 814 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 815 break; 816 817 // Keep a list of mach sections around in case we need to 818 // get at data that isn't stored in the abstracted Sections. 819 m_mach_sections.push_back (sect64); 820 821 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 822 if (!segment_name) 823 { 824 // We have a segment with no name so we need to conjure up 825 // segments that correspond to the section's segname if there 826 // isn't already such a section. If there is such a section, 827 // we resize the section so that it spans all sections. 828 // We also mark these sections as fake so address matches don't 829 // hit if they land in the gaps between the child sections. 830 segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 831 segment_sp = m_sections_ap->FindSectionByName (segment_name); 832 if (segment_sp.get()) 833 { 834 Section *segment = segment_sp.get(); 835 // Grow the section size as needed. 836 const lldb::addr_t sect64_min_addr = sect64.addr; 837 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 838 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 839 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 840 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 841 if (sect64_min_addr >= curr_seg_min_addr) 842 { 843 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 844 // Only grow the section size if needed 845 if (new_seg_byte_size > curr_seg_byte_size) 846 segment->SetByteSize (new_seg_byte_size); 847 } 848 else 849 { 850 // We need to change the base address of the segment and 851 // adjust the child section offsets for all existing children. 852 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 853 segment->Slide(slide_amount, false); 854 segment->GetChildren().Slide (-slide_amount, false); 855 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 856 } 857 858 // Grow the section size as needed. 859 if (sect64.offset) 860 { 861 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 862 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 863 864 const lldb::addr_t section_min_file_offset = sect64.offset; 865 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 866 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 867 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 868 segment->SetFileOffset (new_file_offset); 869 segment->SetFileSize (new_file_size); 870 } 871 } 872 else 873 { 874 // Create a fake section for the section's named segment 875 segment_sp.reset(new Section (segment_sp, // Parent section 876 module_sp, // Module to which this section belongs 877 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 878 segment_name, // Name of this section 879 eSectionTypeContainer, // This section is a container of other sections. 880 sect64.addr, // File VM address == addresses as they are found in the object file 881 sect64.size, // VM size in bytes of this section 882 sect64.offset, // Offset to the data for this section in the file 883 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file 884 load_cmd.flags)); // Flags for this section 885 segment_sp->SetIsFake(true); 886 m_sections_ap->AddSection(segment_sp); 887 segment_sp->SetIsEncrypted (segment_is_encrypted); 888 } 889 } 890 assert (segment_sp.get()); 891 892 uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType; 893 static ConstString g_sect_name_objc_data ("__objc_data"); 894 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 895 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 896 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 897 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 898 static ConstString g_sect_name_objc_const ("__objc_const"); 899 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 900 static ConstString g_sect_name_cfstring ("__cfstring"); 901 902 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 903 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 904 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 905 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 906 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 907 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 908 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 909 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 910 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 911 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 912 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 913 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 914 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 915 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 916 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 917 static ConstString g_sect_name_eh_frame ("__eh_frame"); 918 static ConstString g_sect_name_DATA ("__DATA"); 919 static ConstString g_sect_name_TEXT ("__TEXT"); 920 921 SectionType sect_type = eSectionTypeOther; 922 923 if (section_name == g_sect_name_dwarf_debug_abbrev) 924 sect_type = eSectionTypeDWARFDebugAbbrev; 925 else if (section_name == g_sect_name_dwarf_debug_aranges) 926 sect_type = eSectionTypeDWARFDebugAranges; 927 else if (section_name == g_sect_name_dwarf_debug_frame) 928 sect_type = eSectionTypeDWARFDebugFrame; 929 else if (section_name == g_sect_name_dwarf_debug_info) 930 sect_type = eSectionTypeDWARFDebugInfo; 931 else if (section_name == g_sect_name_dwarf_debug_line) 932 sect_type = eSectionTypeDWARFDebugLine; 933 else if (section_name == g_sect_name_dwarf_debug_loc) 934 sect_type = eSectionTypeDWARFDebugLoc; 935 else if (section_name == g_sect_name_dwarf_debug_macinfo) 936 sect_type = eSectionTypeDWARFDebugMacInfo; 937 else if (section_name == g_sect_name_dwarf_debug_pubnames) 938 sect_type = eSectionTypeDWARFDebugPubNames; 939 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 940 sect_type = eSectionTypeDWARFDebugPubTypes; 941 else if (section_name == g_sect_name_dwarf_debug_ranges) 942 sect_type = eSectionTypeDWARFDebugRanges; 943 else if (section_name == g_sect_name_dwarf_debug_str) 944 sect_type = eSectionTypeDWARFDebugStr; 945 else if (section_name == g_sect_name_dwarf_apple_names) 946 sect_type = eSectionTypeDWARFAppleNames; 947 else if (section_name == g_sect_name_dwarf_apple_types) 948 sect_type = eSectionTypeDWARFAppleTypes; 949 else if (section_name == g_sect_name_dwarf_apple_namespaces) 950 sect_type = eSectionTypeDWARFAppleNamespaces; 951 else if (section_name == g_sect_name_dwarf_apple_objc) 952 sect_type = eSectionTypeDWARFAppleObjC; 953 else if (section_name == g_sect_name_objc_selrefs) 954 sect_type = eSectionTypeDataCStringPointers; 955 else if (section_name == g_sect_name_objc_msgrefs) 956 sect_type = eSectionTypeDataObjCMessageRefs; 957 else if (section_name == g_sect_name_eh_frame) 958 sect_type = eSectionTypeEHFrame; 959 else if (section_name == g_sect_name_cfstring) 960 sect_type = eSectionTypeDataObjCCFStrings; 961 else if (section_name == g_sect_name_objc_data || 962 section_name == g_sect_name_objc_classrefs || 963 section_name == g_sect_name_objc_superrefs || 964 section_name == g_sect_name_objc_const || 965 section_name == g_sect_name_objc_classlist) 966 { 967 sect_type = eSectionTypeDataPointers; 968 } 969 970 if (sect_type == eSectionTypeOther) 971 { 972 switch (mach_sect_type) 973 { 974 // TODO: categorize sections by other flags for regular sections 975 case SectionTypeRegular: 976 if (segment_sp->GetName() == g_sect_name_TEXT) 977 sect_type = eSectionTypeCode; 978 else if (segment_sp->GetName() == g_sect_name_DATA) 979 sect_type = eSectionTypeData; 980 else 981 sect_type = eSectionTypeOther; 982 break; 983 case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break; 984 case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 985 case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 986 case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 987 case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 988 case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 989 case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 990 case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 991 case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 992 case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 993 case SectionTypeCoalesced: sect_type = eSectionTypeOther; break; 994 case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break; 995 case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 996 case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 997 case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break; 998 case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break; 999 default: break; 1000 } 1001 } 1002 1003 SectionSP section_sp(new Section (segment_sp, 1004 module_sp, 1005 ++sectID, 1006 section_name, 1007 sect_type, 1008 sect64.addr - segment_sp->GetFileAddress(), 1009 sect64.size, 1010 sect64.offset, 1011 sect64.offset == 0 ? 0 : sect64.size, 1012 sect64.flags)); 1013 // Set the section to be encrypted to match the segment 1014 section_sp->SetIsEncrypted (segment_is_encrypted); 1015 1016 segment_sp->GetChildren().AddSection(section_sp); 1017 1018 if (segment_sp->IsFake()) 1019 { 1020 segment_sp.reset(); 1021 segment_name.Clear(); 1022 } 1023 } 1024 if (segment_sp && m_header.filetype == HeaderFileTypeDSYM) 1025 { 1026 if (first_segment_sectID <= sectID) 1027 { 1028 lldb::user_id_t sect_uid; 1029 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1030 { 1031 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1032 SectionSP next_section_sp; 1033 if (sect_uid + 1 <= sectID) 1034 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1035 1036 if (curr_section_sp.get()) 1037 { 1038 if (curr_section_sp->GetByteSize() == 0) 1039 { 1040 if (next_section_sp.get() != NULL) 1041 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1042 else 1043 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1044 } 1045 } 1046 } 1047 } 1048 } 1049 } 1050 } 1051 } 1052 else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo) 1053 { 1054 m_dysymtab.cmd = load_cmd.cmd; 1055 m_dysymtab.cmdsize = load_cmd.cmdsize; 1056 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1057 } 1058 1059 offset = load_cmd_offset + load_cmd.cmdsize; 1060 } 1061 // if (dump_sections) 1062 // { 1063 // StreamFile s(stdout); 1064 // m_sections_ap->Dump(&s, true); 1065 // } 1066 return sectID; // Return the number of sections we registered with the module 1067 } 1068 1069 class MachSymtabSectionInfo 1070 { 1071 public: 1072 1073 MachSymtabSectionInfo (SectionList *section_list) : 1074 m_section_list (section_list), 1075 m_section_infos() 1076 { 1077 // Get the number of sections down to a depth of 1 to include 1078 // all segments and their sections, but no other sections that 1079 // may be added for debug map or 1080 m_section_infos.resize(section_list->GetNumSections(1)); 1081 } 1082 1083 1084 SectionSP 1085 GetSection (uint8_t n_sect, addr_t file_addr) 1086 { 1087 if (n_sect == 0) 1088 return SectionSP(); 1089 if (n_sect < m_section_infos.size()) 1090 { 1091 if (!m_section_infos[n_sect].section_sp) 1092 { 1093 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1094 m_section_infos[n_sect].section_sp = section_sp; 1095 if (section_sp != NULL) 1096 { 1097 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1098 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1099 } 1100 else 1101 { 1102 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1103 } 1104 } 1105 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1106 { 1107 // Symbol is in section. 1108 return m_section_infos[n_sect].section_sp; 1109 } 1110 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1111 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1112 { 1113 // Symbol is in section with zero size, but has the same start 1114 // address as the section. This can happen with linker symbols 1115 // (symbols that start with the letter 'l' or 'L'. 1116 return m_section_infos[n_sect].section_sp; 1117 } 1118 } 1119 return m_section_list->FindSectionContainingFileAddress(file_addr); 1120 } 1121 1122 protected: 1123 struct SectionInfo 1124 { 1125 SectionInfo () : 1126 vm_range(), 1127 section_sp () 1128 { 1129 } 1130 1131 VMRange vm_range; 1132 SectionSP section_sp; 1133 }; 1134 SectionList *m_section_list; 1135 std::vector<SectionInfo> m_section_infos; 1136 }; 1137 1138 1139 1140 size_t 1141 ObjectFileMachO::ParseSymtab (bool minimize) 1142 { 1143 Timer scoped_timer(__PRETTY_FUNCTION__, 1144 "ObjectFileMachO::ParseSymtab () module = %s", 1145 m_file.GetFilename().AsCString("")); 1146 struct symtab_command symtab_load_command; 1147 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 1148 uint32_t i; 1149 1150 LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 1151 1152 for (i=0; i<m_header.ncmds; ++i) 1153 { 1154 const uint32_t cmd_offset = offset; 1155 // Read in the load command and load command size 1156 if (m_data.GetU32(&offset, &symtab_load_command, 2) == NULL) 1157 break; 1158 // Watch for the symbol table load command 1159 if (symtab_load_command.cmd == LoadCommandSymtab) 1160 { 1161 // Read in the rest of the symtab load command 1162 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4)) // fill in symoff, nsyms, stroff, strsize fields 1163 { 1164 if (symtab_load_command.symoff == 0) 1165 { 1166 if (log) 1167 GetModule()->LogMessage(log.get(), "LC_SYMTAB.symoff == 0"); 1168 return 0; 1169 } 1170 1171 if (symtab_load_command.stroff == 0) 1172 { 1173 if (log) 1174 GetModule()->LogMessage(log.get(), "LC_SYMTAB.stroff == 0"); 1175 return 0; 1176 } 1177 1178 if (symtab_load_command.nsyms == 0) 1179 { 1180 if (log) 1181 GetModule()->LogMessage(log.get(), "LC_SYMTAB.nsyms == 0"); 1182 return 0; 1183 } 1184 1185 if (symtab_load_command.strsize == 0) 1186 { 1187 if (log) 1188 GetModule()->LogMessage(log.get(), "LC_SYMTAB.strsize == 0"); 1189 return 0; 1190 } 1191 1192 Symtab *symtab = m_symtab_ap.get(); 1193 SectionList *section_list = GetSectionList(); 1194 if (section_list == NULL) 1195 return 0; 1196 1197 ProcessSP process_sp (m_process_wp.lock()); 1198 1199 const size_t addr_byte_size = m_data.GetAddressByteSize(); 1200 bool bit_width_32 = addr_byte_size == 4; 1201 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 1202 1203 DataExtractor nlist_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize()); 1204 DataExtractor strtab_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize()); 1205 1206 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 1207 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 1208 if (process_sp) 1209 { 1210 Target &target = process_sp->GetTarget(); 1211 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 1212 // Reading mach file from memory in a process or core file... 1213 1214 if (linkedit_section_sp) 1215 { 1216 const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 1217 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 1218 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 1219 const addr_t stroff_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 1220 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 1221 if (nlist_data_sp) 1222 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 1223 DataBufferSP strtab_data_sp (ReadMemory (process_sp, stroff_addr, strtab_data_byte_size)); 1224 if (strtab_data_sp) 1225 strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 1226 } 1227 } 1228 else 1229 { 1230 nlist_data.SetData (m_data, 1231 symtab_load_command.symoff, 1232 nlist_data_byte_size); 1233 strtab_data.SetData (m_data, 1234 symtab_load_command.stroff, 1235 strtab_data_byte_size); 1236 1237 } 1238 1239 if (nlist_data.GetByteSize() == 0) 1240 { 1241 if (log) 1242 GetModule()->LogMessage(log.get(), "failed to read nlist data"); 1243 return 0; 1244 } 1245 1246 1247 if (strtab_data.GetByteSize() == 0) 1248 { 1249 if (log) 1250 GetModule()->LogMessage(log.get(), "failed to read strtab data"); 1251 return 0; 1252 } 1253 1254 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 1255 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 1256 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 1257 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 1258 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 1259 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 1260 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 1261 SectionSP eh_frame_section_sp; 1262 if (text_section_sp.get()) 1263 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 1264 else 1265 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 1266 1267 uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection; 1268 1269 uint32_t nlist_data_offset = 0; 1270 1271 uint32_t N_SO_index = UINT32_MAX; 1272 1273 MachSymtabSectionInfo section_info (section_list); 1274 std::vector<uint32_t> N_FUN_indexes; 1275 std::vector<uint32_t> N_NSYM_indexes; 1276 std::vector<uint32_t> N_INCL_indexes; 1277 std::vector<uint32_t> N_BRAC_indexes; 1278 std::vector<uint32_t> N_COMM_indexes; 1279 typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap; 1280 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 1281 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 1282 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 1283 // Any symbols that get merged into another will get an entry 1284 // in this map so we know 1285 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 1286 uint32_t nlist_idx = 0; 1287 Symbol *symbol_ptr = NULL; 1288 1289 uint32_t sym_idx = 0; 1290 Symbol *sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 1291 uint32_t num_syms = symtab->GetNumSymbols(); 1292 1293 //symtab->Reserve (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 1294 for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 1295 { 1296 struct nlist_64 nlist; 1297 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 1298 break; 1299 1300 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 1301 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 1302 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 1303 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 1304 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 1305 1306 SymbolType type = eSymbolTypeInvalid; 1307 const char *symbol_name = strtab_data.PeekCStr(nlist.n_strx); 1308 if (symbol_name == NULL) 1309 { 1310 ModuleSP module_sp (GetModule()); 1311 // No symbol should be NULL, even the symbols with no 1312 // string values should have an offset zero which points 1313 // to an empty C-string 1314 if (module_sp) 1315 { 1316 Host::SystemLog (Host::eSystemLogError, 1317 "error: symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n", 1318 nlist_idx, 1319 nlist.n_strx, 1320 module_sp->GetFileSpec().GetDirectory().GetCString(), 1321 module_sp->GetFileSpec().GetFilename().GetCString()); 1322 } 1323 continue; 1324 } 1325 const char *symbol_name_non_abi_mangled = NULL; 1326 1327 if (symbol_name[0] == '\0') 1328 symbol_name = NULL; 1329 SectionSP symbol_section; 1330 bool add_nlist = true; 1331 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 1332 1333 assert (sym_idx < num_syms); 1334 1335 sym[sym_idx].SetDebug (is_debug); 1336 1337 if (is_debug) 1338 { 1339 switch (nlist.n_type) 1340 { 1341 case StabGlobalSymbol: 1342 // N_GSYM -- global symbol: name,,NO_SECT,type,0 1343 // Sometimes the N_GSYM value contains the address. 1344 1345 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 1346 // have the same address, but we want to ensure that we always find only the real symbol, 1347 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 1348 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 1349 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 1350 // same address. 1351 1352 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 1353 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 1354 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 1355 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 1356 add_nlist = false; 1357 else 1358 { 1359 sym[sym_idx].SetExternal(true); 1360 if (nlist.n_value != 0) 1361 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1362 type = eSymbolTypeData; 1363 } 1364 break; 1365 1366 case StabFunctionName: 1367 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 1368 type = eSymbolTypeCompiler; 1369 break; 1370 1371 case StabFunction: 1372 // N_FUN -- procedure: name,,n_sect,linenumber,address 1373 if (symbol_name) 1374 { 1375 type = eSymbolTypeCode; 1376 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1377 1378 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 1379 // We use the current number of symbols in the symbol table in lieu of 1380 // using nlist_idx in case we ever start trimming entries out 1381 N_FUN_indexes.push_back(sym_idx); 1382 } 1383 else 1384 { 1385 type = eSymbolTypeCompiler; 1386 1387 if ( !N_FUN_indexes.empty() ) 1388 { 1389 // Copy the size of the function into the original STAB entry so we don't have 1390 // to hunt for it later 1391 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 1392 N_FUN_indexes.pop_back(); 1393 // We don't really need the end function STAB as it contains the size which 1394 // we already placed with the original symbol, so don't add it if we want a 1395 // minimal symbol table 1396 if (minimize) 1397 add_nlist = false; 1398 } 1399 } 1400 break; 1401 1402 case StabStaticSymbol: 1403 // N_STSYM -- static symbol: name,,n_sect,type,address 1404 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 1405 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1406 type = eSymbolTypeData; 1407 break; 1408 1409 case StabLocalCommon: 1410 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 1411 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1412 type = eSymbolTypeCommonBlock; 1413 break; 1414 1415 case StabBeginSymbol: 1416 // N_BNSYM 1417 // We use the current number of symbols in the symbol table in lieu of 1418 // using nlist_idx in case we ever start trimming entries out 1419 if (minimize) 1420 { 1421 // Skip these if we want minimal symbol tables 1422 add_nlist = false; 1423 } 1424 else 1425 { 1426 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1427 N_NSYM_indexes.push_back(sym_idx); 1428 type = eSymbolTypeScopeBegin; 1429 } 1430 break; 1431 1432 case StabEndSymbol: 1433 // N_ENSYM 1434 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 1435 // so that we can always skip the entire symbol if we need to navigate 1436 // more quickly at the source level when parsing STABS 1437 if (minimize) 1438 { 1439 // Skip these if we want minimal symbol tables 1440 add_nlist = false; 1441 } 1442 else 1443 { 1444 if ( !N_NSYM_indexes.empty() ) 1445 { 1446 symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back()); 1447 symbol_ptr->SetByteSize(sym_idx + 1); 1448 symbol_ptr->SetSizeIsSibling(true); 1449 N_NSYM_indexes.pop_back(); 1450 } 1451 type = eSymbolTypeScopeEnd; 1452 } 1453 break; 1454 1455 1456 case StabSourceFileOptions: 1457 // N_OPT - emitted with gcc2_compiled and in gcc source 1458 type = eSymbolTypeCompiler; 1459 break; 1460 1461 case StabRegisterSymbol: 1462 // N_RSYM - register sym: name,,NO_SECT,type,register 1463 type = eSymbolTypeVariable; 1464 break; 1465 1466 case StabSourceLine: 1467 // N_SLINE - src line: 0,,n_sect,linenumber,address 1468 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1469 type = eSymbolTypeLineEntry; 1470 break; 1471 1472 case StabStructureType: 1473 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 1474 type = eSymbolTypeVariableType; 1475 break; 1476 1477 case StabSourceFileName: 1478 // N_SO - source file name 1479 type = eSymbolTypeSourceFile; 1480 if (symbol_name == NULL) 1481 { 1482 if (minimize) 1483 add_nlist = false; 1484 if (N_SO_index != UINT32_MAX) 1485 { 1486 // Set the size of the N_SO to the terminating index of this N_SO 1487 // so that we can always skip the entire N_SO if we need to navigate 1488 // more quickly at the source level when parsing STABS 1489 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 1490 symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1)); 1491 symbol_ptr->SetSizeIsSibling(true); 1492 } 1493 N_NSYM_indexes.clear(); 1494 N_INCL_indexes.clear(); 1495 N_BRAC_indexes.clear(); 1496 N_COMM_indexes.clear(); 1497 N_FUN_indexes.clear(); 1498 N_SO_index = UINT32_MAX; 1499 } 1500 else 1501 { 1502 // We use the current number of symbols in the symbol table in lieu of 1503 // using nlist_idx in case we ever start trimming entries out 1504 if (symbol_name[0] == '/') 1505 N_SO_index = sym_idx; 1506 else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 1507 { 1508 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 1509 if (so_path && so_path[0]) 1510 { 1511 std::string full_so_path (so_path); 1512 if (*full_so_path.rbegin() != '/') 1513 full_so_path += '/'; 1514 full_so_path += symbol_name; 1515 sym[sym_idx - 1].GetMangled().SetValue(full_so_path.c_str(), false); 1516 add_nlist = false; 1517 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 1518 } 1519 } 1520 } 1521 1522 break; 1523 1524 case StabObjectFileName: 1525 // N_OSO - object file name: name,,0,0,st_mtime 1526 type = eSymbolTypeObjectFile; 1527 break; 1528 1529 case StabLocalSymbol: 1530 // N_LSYM - local sym: name,,NO_SECT,type,offset 1531 type = eSymbolTypeLocal; 1532 break; 1533 1534 //---------------------------------------------------------------------- 1535 // INCL scopes 1536 //---------------------------------------------------------------------- 1537 case StabBeginIncludeFileName: 1538 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 1539 // We use the current number of symbols in the symbol table in lieu of 1540 // using nlist_idx in case we ever start trimming entries out 1541 N_INCL_indexes.push_back(sym_idx); 1542 type = eSymbolTypeScopeBegin; 1543 break; 1544 1545 case StabEndIncludeFile: 1546 // N_EINCL - include file end: name,,NO_SECT,0,0 1547 // Set the size of the N_BINCL to the terminating index of this N_EINCL 1548 // so that we can always skip the entire symbol if we need to navigate 1549 // more quickly at the source level when parsing STABS 1550 if ( !N_INCL_indexes.empty() ) 1551 { 1552 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 1553 symbol_ptr->SetByteSize(sym_idx + 1); 1554 symbol_ptr->SetSizeIsSibling(true); 1555 N_INCL_indexes.pop_back(); 1556 } 1557 type = eSymbolTypeScopeEnd; 1558 break; 1559 1560 case StabIncludeFileName: 1561 // N_SOL - #included file name: name,,n_sect,0,address 1562 type = eSymbolTypeHeaderFile; 1563 1564 // We currently don't use the header files on darwin 1565 if (minimize) 1566 add_nlist = false; 1567 break; 1568 1569 case StabCompilerParameters: 1570 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 1571 type = eSymbolTypeCompiler; 1572 break; 1573 1574 case StabCompilerVersion: 1575 // N_VERSION - compiler version: name,,NO_SECT,0,0 1576 type = eSymbolTypeCompiler; 1577 break; 1578 1579 case StabCompilerOptLevel: 1580 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 1581 type = eSymbolTypeCompiler; 1582 break; 1583 1584 case StabParameter: 1585 // N_PSYM - parameter: name,,NO_SECT,type,offset 1586 type = eSymbolTypeVariable; 1587 break; 1588 1589 case StabAlternateEntry: 1590 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 1591 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1592 type = eSymbolTypeLineEntry; 1593 break; 1594 1595 //---------------------------------------------------------------------- 1596 // Left and Right Braces 1597 //---------------------------------------------------------------------- 1598 case StabLeftBracket: 1599 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 1600 // We use the current number of symbols in the symbol table in lieu of 1601 // using nlist_idx in case we ever start trimming entries out 1602 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1603 N_BRAC_indexes.push_back(sym_idx); 1604 type = eSymbolTypeScopeBegin; 1605 break; 1606 1607 case StabRightBracket: 1608 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 1609 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 1610 // so that we can always skip the entire symbol if we need to navigate 1611 // more quickly at the source level when parsing STABS 1612 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1613 if ( !N_BRAC_indexes.empty() ) 1614 { 1615 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 1616 symbol_ptr->SetByteSize(sym_idx + 1); 1617 symbol_ptr->SetSizeIsSibling(true); 1618 N_BRAC_indexes.pop_back(); 1619 } 1620 type = eSymbolTypeScopeEnd; 1621 break; 1622 1623 case StabDeletedIncludeFile: 1624 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 1625 type = eSymbolTypeHeaderFile; 1626 break; 1627 1628 //---------------------------------------------------------------------- 1629 // COMM scopes 1630 //---------------------------------------------------------------------- 1631 case StabBeginCommon: 1632 // N_BCOMM - begin common: name,,NO_SECT,0,0 1633 // We use the current number of symbols in the symbol table in lieu of 1634 // using nlist_idx in case we ever start trimming entries out 1635 type = eSymbolTypeScopeBegin; 1636 N_COMM_indexes.push_back(sym_idx); 1637 break; 1638 1639 case StabEndCommonLocal: 1640 // N_ECOML - end common (local name): 0,,n_sect,0,address 1641 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1642 // Fall through 1643 1644 case StabEndCommon: 1645 // N_ECOMM - end common: name,,n_sect,0,0 1646 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 1647 // so that we can always skip the entire symbol if we need to navigate 1648 // more quickly at the source level when parsing STABS 1649 if ( !N_COMM_indexes.empty() ) 1650 { 1651 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 1652 symbol_ptr->SetByteSize(sym_idx + 1); 1653 symbol_ptr->SetSizeIsSibling(true); 1654 N_COMM_indexes.pop_back(); 1655 } 1656 type = eSymbolTypeScopeEnd; 1657 break; 1658 1659 case StabLength: 1660 // N_LENG - second stab entry with length information 1661 type = eSymbolTypeAdditional; 1662 break; 1663 1664 default: break; 1665 } 1666 } 1667 else 1668 { 1669 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 1670 uint8_t n_type = NlistMaskType & nlist.n_type; 1671 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 1672 1673 switch (n_type) 1674 { 1675 case NListTypeIndirect: // N_INDR - Fall through 1676 case NListTypePreboundUndefined:// N_PBUD - Fall through 1677 case NListTypeUndefined: // N_UNDF 1678 type = eSymbolTypeUndefined; 1679 break; 1680 1681 case NListTypeAbsolute: // N_ABS 1682 type = eSymbolTypeAbsolute; 1683 break; 1684 1685 case NListTypeSection: // N_SECT 1686 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1687 1688 if (symbol_section == NULL) 1689 { 1690 // TODO: warn about this? 1691 add_nlist = false; 1692 break; 1693 } 1694 1695 if (TEXT_eh_frame_sectID == nlist.n_sect) 1696 { 1697 type = eSymbolTypeException; 1698 } 1699 else 1700 { 1701 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 1702 1703 switch (section_type) 1704 { 1705 case SectionTypeRegular: break; // regular section 1706 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 1707 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 1708 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 1709 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 1710 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 1711 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 1712 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 1713 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1714 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 1715 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 1716 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 1717 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 1718 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 1719 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 1720 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 1721 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 1722 default: break; 1723 } 1724 1725 if (type == eSymbolTypeInvalid) 1726 { 1727 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 1728 if (symbol_section->IsDescendant (text_section_sp.get())) 1729 { 1730 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 1731 SectionAttrUserSelfModifyingCode | 1732 SectionAttrSytemSomeInstructions)) 1733 type = eSymbolTypeData; 1734 else 1735 type = eSymbolTypeCode; 1736 } 1737 else 1738 if (symbol_section->IsDescendant(data_section_sp.get())) 1739 { 1740 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 1741 { 1742 type = eSymbolTypeRuntime; 1743 1744 if (symbol_name && 1745 symbol_name[0] == '_' && 1746 symbol_name[1] == 'O' && 1747 symbol_name[2] == 'B') 1748 { 1749 llvm::StringRef symbol_name_ref(symbol_name); 1750 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 1751 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 1752 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 1753 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 1754 { 1755 symbol_name_non_abi_mangled = symbol_name + 1; 1756 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 1757 type = eSymbolTypeObjCClass; 1758 } 1759 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 1760 { 1761 symbol_name_non_abi_mangled = symbol_name + 1; 1762 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 1763 type = eSymbolTypeObjCMetaClass; 1764 } 1765 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 1766 { 1767 symbol_name_non_abi_mangled = symbol_name + 1; 1768 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 1769 type = eSymbolTypeObjCIVar; 1770 } 1771 } 1772 } 1773 else 1774 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 1775 { 1776 type = eSymbolTypeException; 1777 } 1778 else 1779 { 1780 type = eSymbolTypeData; 1781 } 1782 } 1783 else 1784 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 1785 { 1786 type = eSymbolTypeTrampoline; 1787 } 1788 else 1789 if (symbol_section->IsDescendant(objc_section_sp.get())) 1790 { 1791 type = eSymbolTypeRuntime; 1792 if (symbol_name && symbol_name[0] == '.') 1793 { 1794 llvm::StringRef symbol_name_ref(symbol_name); 1795 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 1796 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 1797 { 1798 symbol_name_non_abi_mangled = symbol_name; 1799 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 1800 type = eSymbolTypeObjCClass; 1801 } 1802 } 1803 } 1804 } 1805 } 1806 break; 1807 } 1808 } 1809 1810 if (add_nlist) 1811 { 1812 uint64_t symbol_value = nlist.n_value; 1813 bool symbol_name_is_mangled = false; 1814 1815 if (symbol_name_non_abi_mangled) 1816 { 1817 sym[sym_idx].GetMangled().SetMangledName (symbol_name_non_abi_mangled); 1818 sym[sym_idx].GetMangled().SetDemangledName (symbol_name); 1819 } 1820 else 1821 { 1822 if (symbol_name && symbol_name[0] == '_') 1823 { 1824 symbol_name_is_mangled = symbol_name[1] == '_'; 1825 symbol_name++; // Skip the leading underscore 1826 } 1827 1828 if (symbol_name) 1829 { 1830 sym[sym_idx].GetMangled().SetValue(symbol_name, symbol_name_is_mangled); 1831 } 1832 } 1833 1834 if (is_debug == false) 1835 { 1836 if (type == eSymbolTypeCode) 1837 { 1838 // See if we can find a N_FUN entry for any code symbols. 1839 // If we do find a match, and the name matches, then we 1840 // can merge the two into just the function symbol to avoid 1841 // duplicate entries in the symbol table 1842 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 1843 if (pos != N_FUN_addr_to_sym_idx.end()) 1844 { 1845 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 1846 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 1847 { 1848 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 1849 // We just need the flags from the linker symbol, so put these flags 1850 // into the N_FUN flags to avoid duplicate symbols in the symbol table 1851 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1852 sym[sym_idx].Clear(); 1853 continue; 1854 } 1855 } 1856 } 1857 else if (type == eSymbolTypeData) 1858 { 1859 // See if we can find a N_STSYM entry for any data symbols. 1860 // If we do find a match, and the name matches, then we 1861 // can merge the two into just the Static symbol to avoid 1862 // duplicate entries in the symbol table 1863 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 1864 if (pos != N_STSYM_addr_to_sym_idx.end()) 1865 { 1866 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 1867 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 1868 { 1869 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 1870 // We just need the flags from the linker symbol, so put these flags 1871 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 1872 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1873 sym[sym_idx].Clear(); 1874 continue; 1875 } 1876 } 1877 } 1878 } 1879 if (symbol_section != NULL) 1880 symbol_value -= symbol_section->GetFileAddress(); 1881 1882 sym[sym_idx].SetID (nlist_idx); 1883 sym[sym_idx].SetType (type); 1884 sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetSection (symbol_section); 1885 sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetOffset (symbol_value); 1886 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1887 1888 ++sym_idx; 1889 } 1890 else 1891 { 1892 sym[sym_idx].Clear(); 1893 } 1894 1895 } 1896 1897 // STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value 1898 // is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all 1899 // such entries by figuring out what the address for the global is by looking up this non-STAB 1900 // entry and copying the value into the debug symbol's value to save us the hassle in the 1901 // debug symbol parser. 1902 1903 Symbol *global_symbol = NULL; 1904 for (nlist_idx = 0; 1905 nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL; 1906 nlist_idx++) 1907 { 1908 if (global_symbol->GetValue().GetFileAddress() == 0) 1909 { 1910 std::vector<uint32_t> indexes; 1911 if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0) 1912 { 1913 std::vector<uint32_t>::const_iterator pos; 1914 std::vector<uint32_t>::const_iterator end = indexes.end(); 1915 for (pos = indexes.begin(); pos != end; ++pos) 1916 { 1917 symbol_ptr = symtab->SymbolAtIndex(*pos); 1918 if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false) 1919 { 1920 global_symbol->SetValue(symbol_ptr->GetValue()); 1921 break; 1922 } 1923 } 1924 } 1925 } 1926 } 1927 1928 // Trim our symbols down to just what we ended up with after 1929 // removing any symbols. 1930 if (sym_idx < num_syms) 1931 { 1932 num_syms = sym_idx; 1933 sym = symtab->Resize (num_syms); 1934 } 1935 1936 // Now synthesize indirect symbols 1937 if (m_dysymtab.nindirectsyms != 0) 1938 { 1939 DataExtractor indirect_symbol_index_data (m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4); 1940 1941 if (indirect_symbol_index_data.GetByteSize()) 1942 { 1943 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 1944 1945 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 1946 { 1947 if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs) 1948 { 1949 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 1950 if (symbol_stub_byte_size == 0) 1951 continue; 1952 1953 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 1954 1955 if (num_symbol_stubs == 0) 1956 continue; 1957 1958 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 1959 uint32_t synthetic_stub_sym_id = symtab_load_command.nsyms; 1960 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 1961 { 1962 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 1963 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 1964 uint32_t symbol_stub_offset = symbol_stub_index * 4; 1965 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 1966 { 1967 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 1968 if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal)) 1969 continue; 1970 1971 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 1972 Symbol *stub_symbol = NULL; 1973 if (index_pos != end_index_pos) 1974 { 1975 // We have a remapping from the original nlist index to 1976 // a current symbol index, so just look this up by index 1977 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 1978 } 1979 else 1980 { 1981 // We need to lookup a symbol using the original nlist 1982 // symbol index since this index is coming from the 1983 // S_SYMBOL_STUBS 1984 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 1985 } 1986 1987 assert (stub_symbol); 1988 if (stub_symbol) 1989 { 1990 Address so_addr(symbol_stub_addr, section_list); 1991 1992 if (stub_symbol->GetType() == eSymbolTypeUndefined) 1993 { 1994 // Change the external symbol into a trampoline that makes sense 1995 // These symbols were N_UNDF N_EXT, and are useless to us, so we 1996 // can re-use them so we don't have to make up a synthetic symbol 1997 // for no good reason. 1998 stub_symbol->SetType (eSymbolTypeTrampoline); 1999 stub_symbol->SetExternal (false); 2000 stub_symbol->GetAddressRangeRef().GetBaseAddress() = so_addr; 2001 stub_symbol->GetAddressRangeRef().SetByteSize (symbol_stub_byte_size); 2002 } 2003 else 2004 { 2005 // Make a synthetic symbol to describe the trampoline stub 2006 if (sym_idx >= num_syms) 2007 sym = symtab->Resize (++num_syms); 2008 sym[sym_idx].SetID (synthetic_stub_sym_id++); 2009 sym[sym_idx].GetMangled() = stub_symbol->GetMangled(); 2010 sym[sym_idx].SetType (eSymbolTypeTrampoline); 2011 sym[sym_idx].SetIsSynthetic (true); 2012 sym[sym_idx].GetAddressRangeRef().GetBaseAddress() = so_addr; 2013 sym[sym_idx].GetAddressRangeRef().SetByteSize (symbol_stub_byte_size); 2014 ++sym_idx; 2015 } 2016 } 2017 } 2018 } 2019 } 2020 } 2021 } 2022 } 2023 return symtab->GetNumSymbols(); 2024 } 2025 } 2026 offset = cmd_offset + symtab_load_command.cmdsize; 2027 } 2028 return 0; 2029 } 2030 2031 2032 void 2033 ObjectFileMachO::Dump (Stream *s) 2034 { 2035 lldb_private::Mutex::Locker locker(m_mutex); 2036 s->Printf("%p: ", this); 2037 s->Indent(); 2038 if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped) 2039 s->PutCString("ObjectFileMachO64"); 2040 else 2041 s->PutCString("ObjectFileMachO32"); 2042 2043 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 2044 2045 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2046 2047 if (m_sections_ap.get()) 2048 m_sections_ap->Dump(s, NULL, true, UINT32_MAX); 2049 2050 if (m_symtab_ap.get()) 2051 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 2052 } 2053 2054 2055 bool 2056 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 2057 { 2058 lldb_private::Mutex::Locker locker(m_mutex); 2059 struct uuid_command load_cmd; 2060 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2061 uint32_t i; 2062 for (i=0; i<m_header.ncmds; ++i) 2063 { 2064 const uint32_t cmd_offset = offset; 2065 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 2066 break; 2067 2068 if (load_cmd.cmd == LoadCommandUUID) 2069 { 2070 const uint8_t *uuid_bytes = m_data.PeekData(offset, 16); 2071 if (uuid_bytes) 2072 { 2073 uuid->SetBytes (uuid_bytes); 2074 return true; 2075 } 2076 return false; 2077 } 2078 offset = cmd_offset + load_cmd.cmdsize; 2079 } 2080 return false; 2081 } 2082 2083 2084 uint32_t 2085 ObjectFileMachO::GetDependentModules (FileSpecList& files) 2086 { 2087 lldb_private::Mutex::Locker locker(m_mutex); 2088 struct load_command load_cmd; 2089 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2090 uint32_t count = 0; 2091 const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system 2092 uint32_t i; 2093 for (i=0; i<m_header.ncmds; ++i) 2094 { 2095 const uint32_t cmd_offset = offset; 2096 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 2097 break; 2098 2099 switch (load_cmd.cmd) 2100 { 2101 case LoadCommandDylibLoad: 2102 case LoadCommandDylibLoadWeak: 2103 case LoadCommandDylibReexport: 2104 case LoadCommandDynamicLinkerLoad: 2105 case LoadCommandFixedVMShlibLoad: 2106 case LoadCommandDylibLoadUpward: 2107 { 2108 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2109 const char *path = m_data.PeekCStr(name_offset); 2110 // Skip any path that starts with '@' since these are usually: 2111 // @executable_path/.../file 2112 // @rpath/.../file 2113 if (path && path[0] != '@') 2114 { 2115 FileSpec file_spec(path, resolve_path); 2116 if (files.AppendIfUnique(file_spec)) 2117 count++; 2118 } 2119 } 2120 break; 2121 2122 default: 2123 break; 2124 } 2125 offset = cmd_offset + load_cmd.cmdsize; 2126 } 2127 return count; 2128 } 2129 2130 lldb_private::Address 2131 ObjectFileMachO::GetEntryPointAddress () 2132 { 2133 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 2134 // is initialized to an invalid address, so we can just return that. 2135 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 2136 2137 if (!IsExecutable() || m_entry_point_address.IsValid()) 2138 return m_entry_point_address; 2139 2140 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 2141 // /usr/include/mach-o.h, but it is basically: 2142 // 2143 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 2144 // uint32_t count - this is the count of longs in the thread state data 2145 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 2146 // <repeat this trio> 2147 // 2148 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 2149 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 2150 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 2151 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 2152 // 2153 // For now we hard-code the offsets and flavors we need: 2154 // 2155 // 2156 2157 lldb_private::Mutex::Locker locker(m_mutex); 2158 struct load_command load_cmd; 2159 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2160 uint32_t i; 2161 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 2162 bool done = false; 2163 2164 for (i=0; i<m_header.ncmds; ++i) 2165 { 2166 const uint32_t cmd_offset = offset; 2167 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 2168 break; 2169 2170 switch (load_cmd.cmd) 2171 { 2172 case LoadCommandUnixThread: 2173 case LoadCommandThread: 2174 { 2175 while (offset < cmd_offset + load_cmd.cmdsize) 2176 { 2177 uint32_t flavor = m_data.GetU32(&offset); 2178 uint32_t count = m_data.GetU32(&offset); 2179 if (count == 0) 2180 { 2181 // We've gotten off somehow, log and exit; 2182 return m_entry_point_address; 2183 } 2184 2185 switch (m_header.cputype) 2186 { 2187 case llvm::MachO::CPUTypeARM: 2188 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 2189 { 2190 offset += 60; // This is the offset of pc in the GPR thread state data structure. 2191 start_address = m_data.GetU32(&offset); 2192 done = true; 2193 } 2194 break; 2195 case llvm::MachO::CPUTypeI386: 2196 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 2197 { 2198 offset += 40; // This is the offset of eip in the GPR thread state data structure. 2199 start_address = m_data.GetU32(&offset); 2200 done = true; 2201 } 2202 break; 2203 case llvm::MachO::CPUTypeX86_64: 2204 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 2205 { 2206 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 2207 start_address = m_data.GetU64(&offset); 2208 done = true; 2209 } 2210 break; 2211 default: 2212 return m_entry_point_address; 2213 } 2214 // Haven't found the GPR flavor yet, skip over the data for this flavor: 2215 if (done) 2216 break; 2217 offset += count * 4; 2218 } 2219 } 2220 break; 2221 2222 default: 2223 break; 2224 } 2225 if (done) 2226 break; 2227 2228 // Go to the next load command: 2229 offset = cmd_offset + load_cmd.cmdsize; 2230 } 2231 2232 if (start_address != LLDB_INVALID_ADDRESS) 2233 { 2234 // We got the start address from the load commands, so now resolve that address in the sections 2235 // of this ObjectFile: 2236 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 2237 { 2238 m_entry_point_address.Clear(); 2239 } 2240 } 2241 else 2242 { 2243 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 2244 // "start" symbol in the main executable. 2245 2246 ModuleSP module_sp (GetModule()); 2247 2248 if (module_sp) 2249 { 2250 SymbolContextList contexts; 2251 SymbolContext context; 2252 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 2253 { 2254 if (contexts.GetContextAtIndex(0, context)) 2255 m_entry_point_address = context.symbol->GetValue(); 2256 } 2257 } 2258 } 2259 2260 return m_entry_point_address; 2261 2262 } 2263 2264 lldb_private::Address 2265 ObjectFileMachO::GetHeaderAddress () 2266 { 2267 lldb_private::Address header_addr; 2268 SectionList *section_list = GetSectionList(); 2269 if (section_list) 2270 { 2271 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 2272 if (text_segment_sp) 2273 { 2274 header_addr.SetSection (text_segment_sp); 2275 header_addr.SetOffset (0); 2276 } 2277 } 2278 return header_addr; 2279 } 2280 2281 uint32_t 2282 ObjectFileMachO::GetNumThreadContexts () 2283 { 2284 lldb_private::Mutex::Locker locker(m_mutex); 2285 if (!m_thread_context_offsets_valid) 2286 { 2287 m_thread_context_offsets_valid = true; 2288 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2289 FileRangeArray::Entry file_range; 2290 thread_command thread_cmd; 2291 for (uint32_t i=0; i<m_header.ncmds; ++i) 2292 { 2293 const uint32_t cmd_offset = offset; 2294 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 2295 break; 2296 2297 if (thread_cmd.cmd == LoadCommandThread) 2298 { 2299 file_range.SetRangeBase (offset); 2300 file_range.SetByteSize (thread_cmd.cmdsize - 8); 2301 m_thread_context_offsets.Append (file_range); 2302 } 2303 offset = cmd_offset + thread_cmd.cmdsize; 2304 } 2305 } 2306 return m_thread_context_offsets.GetSize(); 2307 } 2308 2309 lldb::RegisterContextSP 2310 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 2311 { 2312 lldb_private::Mutex::Locker locker(m_mutex); 2313 if (!m_thread_context_offsets_valid) 2314 GetNumThreadContexts (); 2315 2316 lldb::RegisterContextSP reg_ctx_sp; 2317 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 2318 2319 DataExtractor data (m_data, 2320 thread_context_file_range->GetRangeBase(), 2321 thread_context_file_range->GetByteSize()); 2322 2323 switch (m_header.cputype) 2324 { 2325 case llvm::MachO::CPUTypeARM: 2326 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 2327 break; 2328 2329 case llvm::MachO::CPUTypeI386: 2330 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 2331 break; 2332 2333 case llvm::MachO::CPUTypeX86_64: 2334 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 2335 break; 2336 } 2337 return reg_ctx_sp; 2338 } 2339 2340 2341 ObjectFile::Type 2342 ObjectFileMachO::CalculateType() 2343 { 2344 switch (m_header.filetype) 2345 { 2346 case HeaderFileTypeObject: // 0x1u MH_OBJECT 2347 if (GetAddressByteSize () == 4) 2348 { 2349 // 32 bit kexts are just object files, but they do have a valid 2350 // UUID load command. 2351 UUID uuid; 2352 if (GetUUID(&uuid)) 2353 { 2354 // this checking for the UUID load command is not enough 2355 // we could eventually look for the symbol named 2356 // "OSKextGetCurrentIdentifier" as this is required of kexts 2357 if (m_strata == eStrataInvalid) 2358 m_strata = eStrataKernel; 2359 return eTypeSharedLibrary; 2360 } 2361 } 2362 return eTypeObjectFile; 2363 2364 case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE 2365 case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB 2366 case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE 2367 case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD 2368 case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB 2369 case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER 2370 case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE 2371 case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB 2372 case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM 2373 case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE 2374 default: 2375 break; 2376 } 2377 return eTypeUnknown; 2378 } 2379 2380 ObjectFile::Strata 2381 ObjectFileMachO::CalculateStrata() 2382 { 2383 switch (m_header.filetype) 2384 { 2385 case HeaderFileTypeObject: // 0x1u MH_OBJECT 2386 { 2387 // 32 bit kexts are just object files, but they do have a valid 2388 // UUID load command. 2389 UUID uuid; 2390 if (GetUUID(&uuid)) 2391 { 2392 // this checking for the UUID load command is not enough 2393 // we could eventually look for the symbol named 2394 // "OSKextGetCurrentIdentifier" as this is required of kexts 2395 if (m_type == eTypeInvalid) 2396 m_type = eTypeSharedLibrary; 2397 2398 return eStrataKernel; 2399 } 2400 } 2401 return eStrataUnknown; 2402 2403 case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE 2404 // Check for the MH_DYLDLINK bit in the flags 2405 if (m_header.flags & HeaderFlagBitIsDynamicLinkObject) 2406 { 2407 return eStrataUser; 2408 } 2409 else 2410 { 2411 SectionList *section_list = GetSectionList(); 2412 if (section_list) 2413 { 2414 static ConstString g_kld_section_name ("__KLD"); 2415 if (section_list->FindSectionByName(g_kld_section_name)) 2416 return eStrataKernel; 2417 } 2418 } 2419 return eStrataRawImage; 2420 2421 case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB 2422 case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE 2423 case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD 2424 case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB 2425 case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER 2426 case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE 2427 case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB 2428 case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM 2429 case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE 2430 default: 2431 break; 2432 } 2433 return eStrataUnknown; 2434 } 2435 2436 2437 uint32_t 2438 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 2439 { 2440 lldb_private::Mutex::Locker locker(m_mutex); 2441 struct dylib_command load_cmd; 2442 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 2443 uint32_t version_cmd = 0; 2444 uint64_t version = 0; 2445 uint32_t i; 2446 for (i=0; i<m_header.ncmds; ++i) 2447 { 2448 const uint32_t cmd_offset = offset; 2449 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 2450 break; 2451 2452 if (load_cmd.cmd == LoadCommandDylibIdent) 2453 { 2454 if (version_cmd == 0) 2455 { 2456 version_cmd = load_cmd.cmd; 2457 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 2458 break; 2459 version = load_cmd.dylib.current_version; 2460 } 2461 break; // Break for now unless there is another more complete version 2462 // number load command in the future. 2463 } 2464 offset = cmd_offset + load_cmd.cmdsize; 2465 } 2466 2467 if (version_cmd == LoadCommandDylibIdent) 2468 { 2469 if (versions != NULL && num_versions > 0) 2470 { 2471 if (num_versions > 0) 2472 versions[0] = (version & 0xFFFF0000ull) >> 16; 2473 if (num_versions > 1) 2474 versions[1] = (version & 0x0000FF00ull) >> 8; 2475 if (num_versions > 2) 2476 versions[2] = (version & 0x000000FFull); 2477 // Fill in an remaining version numbers with invalid values 2478 for (i=3; i<num_versions; ++i) 2479 versions[i] = UINT32_MAX; 2480 } 2481 // The LC_ID_DYLIB load command has a version with 3 version numbers 2482 // in it, so always return 3 2483 return 3; 2484 } 2485 return false; 2486 } 2487 2488 bool 2489 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 2490 { 2491 lldb_private::Mutex::Locker locker(m_mutex); 2492 arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 2493 2494 // Files with type MH_PRELOAD are currently used in cases where the image 2495 // debugs at the addresses in the file itself. Below we set the OS to 2496 // unknown to make sure we use the DynamicLoaderStatic()... 2497 if (m_header.filetype == HeaderFileTypePreloadedExecutable) 2498 { 2499 arch.GetTriple().setOS (llvm::Triple::UnknownOS); 2500 } 2501 2502 return true; 2503 } 2504 2505 2506 //------------------------------------------------------------------ 2507 // PluginInterface protocol 2508 //------------------------------------------------------------------ 2509 const char * 2510 ObjectFileMachO::GetPluginName() 2511 { 2512 return "ObjectFileMachO"; 2513 } 2514 2515 const char * 2516 ObjectFileMachO::GetShortPluginName() 2517 { 2518 return GetPluginNameStatic(); 2519 } 2520 2521 uint32_t 2522 ObjectFileMachO::GetPluginVersion() 2523 { 2524 return 1; 2525 } 2526 2527