1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Progress.h"
21 #include "lldb/Core/Section.h"
22 #include "lldb/Core/StreamFile.h"
23 #include "lldb/Host/Host.h"
24 #include "lldb/Host/SafeMachO.h"
25 #include "lldb/Symbol/DWARFCallFrameInfo.h"
26 #include "lldb/Symbol/LocateSymbolFile.h"
27 #include "lldb/Symbol/ObjectFile.h"
28 #include "lldb/Target/DynamicLoader.h"
29 #include "lldb/Target/MemoryRegionInfo.h"
30 #include "lldb/Target/Platform.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/SectionLoadList.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Target/ThreadList.h"
36 #include "lldb/Utility/ArchSpec.h"
37 #include "lldb/Utility/DataBuffer.h"
38 #include "lldb/Utility/FileSpec.h"
39 #include "lldb/Utility/Log.h"
40 #include "lldb/Utility/RangeMap.h"
41 #include "lldb/Utility/RegisterValue.h"
42 #include "lldb/Utility/Status.h"
43 #include "lldb/Utility/StreamString.h"
44 #include "lldb/Utility/Timer.h"
45 #include "lldb/Utility/UUID.h"
46 
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/Support/FormatVariadic.h"
49 #include "llvm/Support/MemoryBuffer.h"
50 
51 #include "ObjectFileMachO.h"
52 
53 #if defined(__APPLE__)
54 #include <TargetConditionals.h>
55 // GetLLDBSharedCacheUUID() needs to call dlsym()
56 #include <dlfcn.h>
57 #endif
58 
59 #ifndef __APPLE__
60 #include "Utility/UuidCompatibility.h"
61 #else
62 #include <uuid/uuid.h>
63 #endif
64 
65 #include <bitset>
66 #include <memory>
67 
68 #if LLVM_SUPPORT_XCODE_SIGNPOSTS
69 // Unfortunately the signpost header pulls in the system MachO header, too.
70 #undef CPU_TYPE_ARM
71 #undef CPU_TYPE_ARM64
72 #undef CPU_TYPE_ARM64_32
73 #undef CPU_TYPE_I386
74 #undef CPU_TYPE_X86_64
75 #undef MH_BINDATLOAD
76 #undef MH_BUNDLE
77 #undef MH_CIGAM
78 #undef MH_CIGAM_64
79 #undef MH_CORE
80 #undef MH_DSYM
81 #undef MH_DYLDLINK
82 #undef MH_DYLIB
83 #undef MH_DYLIB_STUB
84 #undef MH_DYLINKER
85 #undef MH_DYLINKER
86 #undef MH_EXECUTE
87 #undef MH_FVMLIB
88 #undef MH_INCRLINK
89 #undef MH_KEXT_BUNDLE
90 #undef MH_MAGIC
91 #undef MH_MAGIC_64
92 #undef MH_NOUNDEFS
93 #undef MH_OBJECT
94 #undef MH_OBJECT
95 #undef MH_PRELOAD
96 
97 #undef LC_BUILD_VERSION
98 #undef LC_VERSION_MIN_MACOSX
99 #undef LC_VERSION_MIN_IPHONEOS
100 #undef LC_VERSION_MIN_TVOS
101 #undef LC_VERSION_MIN_WATCHOS
102 
103 #undef PLATFORM_MACOS
104 #undef PLATFORM_MACCATALYST
105 #undef PLATFORM_IOS
106 #undef PLATFORM_IOSSIMULATOR
107 #undef PLATFORM_TVOS
108 #undef PLATFORM_TVOSSIMULATOR
109 #undef PLATFORM_WATCHOS
110 #undef PLATFORM_WATCHOSSIMULATOR
111 #endif
112 
113 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
114 using namespace lldb;
115 using namespace lldb_private;
116 using namespace llvm::MachO;
117 
118 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
119 
120 // Some structure definitions needed for parsing the dyld shared cache files
121 // found on iOS devices.
122 
123 struct lldb_copy_dyld_cache_header_v1 {
124   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
125   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
126   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
127   uint32_t imagesOffset;
128   uint32_t imagesCount;
129   uint64_t dyldBaseAddress;
130   uint64_t codeSignatureOffset;
131   uint64_t codeSignatureSize;
132   uint64_t slideInfoOffset;
133   uint64_t slideInfoSize;
134   uint64_t localSymbolsOffset;
135   uint64_t localSymbolsSize;
136   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
137                     // and later
138 };
139 
140 struct lldb_copy_dyld_cache_mapping_info {
141   uint64_t address;
142   uint64_t size;
143   uint64_t fileOffset;
144   uint32_t maxProt;
145   uint32_t initProt;
146 };
147 
148 struct lldb_copy_dyld_cache_local_symbols_info {
149   uint32_t nlistOffset;
150   uint32_t nlistCount;
151   uint32_t stringsOffset;
152   uint32_t stringsSize;
153   uint32_t entriesOffset;
154   uint32_t entriesCount;
155 };
156 struct lldb_copy_dyld_cache_local_symbols_entry {
157   uint32_t dylibOffset;
158   uint32_t nlistStartIndex;
159   uint32_t nlistCount;
160 };
161 
162 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
163                                const char *alt_name, size_t reg_byte_size,
164                                Stream &data) {
165   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
166   if (reg_info == nullptr)
167     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
168   if (reg_info) {
169     lldb_private::RegisterValue reg_value;
170     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
171       if (reg_info->byte_size >= reg_byte_size)
172         data.Write(reg_value.GetBytes(), reg_byte_size);
173       else {
174         data.Write(reg_value.GetBytes(), reg_info->byte_size);
175         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
176           data.PutChar(0);
177       }
178       return;
179     }
180   }
181   // Just write zeros if all else fails
182   for (size_t i = 0; i < reg_byte_size; ++i)
183     data.PutChar(0);
184 }
185 
186 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
187 public:
188   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
189                                     const DataExtractor &data)
190       : RegisterContextDarwin_x86_64(thread, 0) {
191     SetRegisterDataFrom_LC_THREAD(data);
192   }
193 
194   void InvalidateAllRegisters() override {
195     // Do nothing... registers are always valid...
196   }
197 
198   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
199     lldb::offset_t offset = 0;
200     SetError(GPRRegSet, Read, -1);
201     SetError(FPURegSet, Read, -1);
202     SetError(EXCRegSet, Read, -1);
203     bool done = false;
204 
205     while (!done) {
206       int flavor = data.GetU32(&offset);
207       if (flavor == 0)
208         done = true;
209       else {
210         uint32_t i;
211         uint32_t count = data.GetU32(&offset);
212         switch (flavor) {
213         case GPRRegSet:
214           for (i = 0; i < count; ++i)
215             (&gpr.rax)[i] = data.GetU64(&offset);
216           SetError(GPRRegSet, Read, 0);
217           done = true;
218 
219           break;
220         case FPURegSet:
221           // TODO: fill in FPU regs....
222           // SetError (FPURegSet, Read, -1);
223           done = true;
224 
225           break;
226         case EXCRegSet:
227           exc.trapno = data.GetU32(&offset);
228           exc.err = data.GetU32(&offset);
229           exc.faultvaddr = data.GetU64(&offset);
230           SetError(EXCRegSet, Read, 0);
231           done = true;
232           break;
233         case 7:
234         case 8:
235         case 9:
236           // fancy flavors that encapsulate of the above flavors...
237           break;
238 
239         default:
240           done = true;
241           break;
242         }
243       }
244     }
245   }
246 
247   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
248     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
249     if (reg_ctx_sp) {
250       RegisterContext *reg_ctx = reg_ctx_sp.get();
251 
252       data.PutHex32(GPRRegSet); // Flavor
253       data.PutHex32(GPRWordCount);
254       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
255       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
258       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
259       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
260       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
261       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
262       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
263       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
264       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
265       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
266       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
267       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
268       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
269       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
270       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
271       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
272       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
275 
276       //            // Write out the FPU registers
277       //            const size_t fpu_byte_size = sizeof(FPU);
278       //            size_t bytes_written = 0;
279       //            data.PutHex32 (FPURegSet);
280       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
281       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
282       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
283       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
284       //            data);   // uint16_t    fcw;    // "fctrl"
285       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
286       //            data);  // uint16_t    fsw;    // "fstat"
287       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
288       //            data);   // uint8_t     ftw;    // "ftag"
289       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
290       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
291       //            data);     // uint16_t    fop;    // "fop"
292       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
293       //            data);    // uint32_t    ip;     // "fioff"
294       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
295       //            data);    // uint16_t    cs;     // "fiseg"
296       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
297       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
298       //            data);   // uint32_t    dp;     // "fooff"
299       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
300       //            data);    // uint16_t    ds;     // "foseg"
301       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
302       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
303       //            data);    // uint32_t    mxcsr;
304       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
305       //            4, data);// uint32_t    mxcsrmask;
306       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
307       //            sizeof(MMSReg), data);
308       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
309       //            sizeof(MMSReg), data);
310       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
311       //            sizeof(MMSReg), data);
312       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
313       //            sizeof(MMSReg), data);
314       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
315       //            sizeof(MMSReg), data);
316       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
317       //            sizeof(MMSReg), data);
318       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
319       //            sizeof(MMSReg), data);
320       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
321       //            sizeof(MMSReg), data);
322       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
323       //            sizeof(XMMReg), data);
324       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
325       //            sizeof(XMMReg), data);
326       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
327       //            sizeof(XMMReg), data);
328       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
329       //            sizeof(XMMReg), data);
330       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
331       //            sizeof(XMMReg), data);
332       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
333       //            sizeof(XMMReg), data);
334       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
335       //            sizeof(XMMReg), data);
336       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
337       //            sizeof(XMMReg), data);
338       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
339       //            sizeof(XMMReg), data);
340       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
341       //            sizeof(XMMReg), data);
342       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
343       //            sizeof(XMMReg), data);
344       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
345       //            sizeof(XMMReg), data);
346       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
347       //            sizeof(XMMReg), data);
348       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
349       //            sizeof(XMMReg), data);
350       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
351       //            sizeof(XMMReg), data);
352       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
353       //            sizeof(XMMReg), data);
354       //
355       //            // Fill rest with zeros
356       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
357       //            i)
358       //                data.PutChar(0);
359 
360       // Write out the EXC registers
361       data.PutHex32(EXCRegSet);
362       data.PutHex32(EXCWordCount);
363       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
364       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
365       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
366       return true;
367     }
368     return false;
369   }
370 
371 protected:
372   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
373 
374   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
375 
376   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
377 
378   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
379     return 0;
380   }
381 
382   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
383     return 0;
384   }
385 
386   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
387     return 0;
388   }
389 };
390 
391 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
392 public:
393   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
394                                   const DataExtractor &data)
395       : RegisterContextDarwin_i386(thread, 0) {
396     SetRegisterDataFrom_LC_THREAD(data);
397   }
398 
399   void InvalidateAllRegisters() override {
400     // Do nothing... registers are always valid...
401   }
402 
403   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
404     lldb::offset_t offset = 0;
405     SetError(GPRRegSet, Read, -1);
406     SetError(FPURegSet, Read, -1);
407     SetError(EXCRegSet, Read, -1);
408     bool done = false;
409 
410     while (!done) {
411       int flavor = data.GetU32(&offset);
412       if (flavor == 0)
413         done = true;
414       else {
415         uint32_t i;
416         uint32_t count = data.GetU32(&offset);
417         switch (flavor) {
418         case GPRRegSet:
419           for (i = 0; i < count; ++i)
420             (&gpr.eax)[i] = data.GetU32(&offset);
421           SetError(GPRRegSet, Read, 0);
422           done = true;
423 
424           break;
425         case FPURegSet:
426           // TODO: fill in FPU regs....
427           // SetError (FPURegSet, Read, -1);
428           done = true;
429 
430           break;
431         case EXCRegSet:
432           exc.trapno = data.GetU32(&offset);
433           exc.err = data.GetU32(&offset);
434           exc.faultvaddr = data.GetU32(&offset);
435           SetError(EXCRegSet, Read, 0);
436           done = true;
437           break;
438         case 7:
439         case 8:
440         case 9:
441           // fancy flavors that encapsulate of the above flavors...
442           break;
443 
444         default:
445           done = true;
446           break;
447         }
448       }
449     }
450   }
451 
452   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
453     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
454     if (reg_ctx_sp) {
455       RegisterContext *reg_ctx = reg_ctx_sp.get();
456 
457       data.PutHex32(GPRRegSet); // Flavor
458       data.PutHex32(GPRWordCount);
459       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
460       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
461       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
462       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
465       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
466       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
467       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
468       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
469       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
470       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
471       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
472       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
473       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
474       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
475 
476       // Write out the EXC registers
477       data.PutHex32(EXCRegSet);
478       data.PutHex32(EXCWordCount);
479       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
480       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
481       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
482       return true;
483     }
484     return false;
485   }
486 
487 protected:
488   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
489 
490   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
491 
492   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
493 
494   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
495     return 0;
496   }
497 
498   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
499     return 0;
500   }
501 
502   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
503     return 0;
504   }
505 };
506 
507 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
508 public:
509   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
510                                  const DataExtractor &data)
511       : RegisterContextDarwin_arm(thread, 0) {
512     SetRegisterDataFrom_LC_THREAD(data);
513   }
514 
515   void InvalidateAllRegisters() override {
516     // Do nothing... registers are always valid...
517   }
518 
519   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
520     lldb::offset_t offset = 0;
521     SetError(GPRRegSet, Read, -1);
522     SetError(FPURegSet, Read, -1);
523     SetError(EXCRegSet, Read, -1);
524     bool done = false;
525 
526     while (!done) {
527       int flavor = data.GetU32(&offset);
528       uint32_t count = data.GetU32(&offset);
529       lldb::offset_t next_thread_state = offset + (count * 4);
530       switch (flavor) {
531       case GPRAltRegSet:
532       case GPRRegSet:
533         // On ARM, the CPSR register is also included in the count but it is
534         // not included in gpr.r so loop until (count-1).
535         for (uint32_t i = 0; i < (count - 1); ++i) {
536           gpr.r[i] = data.GetU32(&offset);
537         }
538         // Save cpsr explicitly.
539         gpr.cpsr = data.GetU32(&offset);
540 
541         SetError(GPRRegSet, Read, 0);
542         offset = next_thread_state;
543         break;
544 
545       case FPURegSet: {
546         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
547         const int fpu_reg_buf_size = sizeof(fpu.floats);
548         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
549                               fpu_reg_buf) == fpu_reg_buf_size) {
550           offset += fpu_reg_buf_size;
551           fpu.fpscr = data.GetU32(&offset);
552           SetError(FPURegSet, Read, 0);
553         } else {
554           done = true;
555         }
556       }
557         offset = next_thread_state;
558         break;
559 
560       case EXCRegSet:
561         if (count == 3) {
562           exc.exception = data.GetU32(&offset);
563           exc.fsr = data.GetU32(&offset);
564           exc.far = data.GetU32(&offset);
565           SetError(EXCRegSet, Read, 0);
566         }
567         done = true;
568         offset = next_thread_state;
569         break;
570 
571       // Unknown register set flavor, stop trying to parse.
572       default:
573         done = true;
574       }
575     }
576   }
577 
578   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
579     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
580     if (reg_ctx_sp) {
581       RegisterContext *reg_ctx = reg_ctx_sp.get();
582 
583       data.PutHex32(GPRRegSet); // Flavor
584       data.PutHex32(GPRWordCount);
585       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
586       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
587       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
588       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
589       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
590       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
591       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
592       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
593       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
594       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
595       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
596       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
597       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
598       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
599       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
600       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
601       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
602 
603       // Write out the EXC registers
604       //            data.PutHex32 (EXCRegSet);
605       //            data.PutHex32 (EXCWordCount);
606       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
607       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
608       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
609       return true;
610     }
611     return false;
612   }
613 
614 protected:
615   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
616 
617   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
618 
619   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
620 
621   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
622 
623   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
624     return 0;
625   }
626 
627   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
628     return 0;
629   }
630 
631   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
632     return 0;
633   }
634 
635   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
636     return -1;
637   }
638 };
639 
640 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
641 public:
642   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
643                                    const DataExtractor &data)
644       : RegisterContextDarwin_arm64(thread, 0) {
645     SetRegisterDataFrom_LC_THREAD(data);
646   }
647 
648   void InvalidateAllRegisters() override {
649     // Do nothing... registers are always valid...
650   }
651 
652   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
653     lldb::offset_t offset = 0;
654     SetError(GPRRegSet, Read, -1);
655     SetError(FPURegSet, Read, -1);
656     SetError(EXCRegSet, Read, -1);
657     bool done = false;
658     while (!done) {
659       int flavor = data.GetU32(&offset);
660       uint32_t count = data.GetU32(&offset);
661       lldb::offset_t next_thread_state = offset + (count * 4);
662       switch (flavor) {
663       case GPRRegSet:
664         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
665         // 32-bit register)
666         if (count >= (33 * 2) + 1) {
667           for (uint32_t i = 0; i < 29; ++i)
668             gpr.x[i] = data.GetU64(&offset);
669           gpr.fp = data.GetU64(&offset);
670           gpr.lr = data.GetU64(&offset);
671           gpr.sp = data.GetU64(&offset);
672           gpr.pc = data.GetU64(&offset);
673           gpr.cpsr = data.GetU32(&offset);
674           SetError(GPRRegSet, Read, 0);
675         }
676         offset = next_thread_state;
677         break;
678       case FPURegSet: {
679         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
680         const int fpu_reg_buf_size = sizeof(fpu);
681         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
682             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
683                               fpu_reg_buf) == fpu_reg_buf_size) {
684           SetError(FPURegSet, Read, 0);
685         } else {
686           done = true;
687         }
688       }
689         offset = next_thread_state;
690         break;
691       case EXCRegSet:
692         if (count == 4) {
693           exc.far = data.GetU64(&offset);
694           exc.esr = data.GetU32(&offset);
695           exc.exception = data.GetU32(&offset);
696           SetError(EXCRegSet, Read, 0);
697         }
698         offset = next_thread_state;
699         break;
700       default:
701         done = true;
702         break;
703       }
704     }
705   }
706 
707   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
708     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
709     if (reg_ctx_sp) {
710       RegisterContext *reg_ctx = reg_ctx_sp.get();
711 
712       data.PutHex32(GPRRegSet); // Flavor
713       data.PutHex32(GPRWordCount);
714       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
715       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
748       data.PutHex32(0); // uint32_t pad at the end
749 
750       // Write out the EXC registers
751       data.PutHex32(EXCRegSet);
752       data.PutHex32(EXCWordCount);
753       PrintRegisterValue(reg_ctx, "far", NULL, 8, data);
754       PrintRegisterValue(reg_ctx, "esr", NULL, 4, data);
755       PrintRegisterValue(reg_ctx, "exception", NULL, 4, data);
756       return true;
757     }
758     return false;
759   }
760 
761 protected:
762   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
763 
764   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
765 
766   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
767 
768   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
769 
770   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
771     return 0;
772   }
773 
774   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
775     return 0;
776   }
777 
778   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
779     return 0;
780   }
781 
782   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
783     return -1;
784   }
785 };
786 
787 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
788   switch (magic) {
789   case MH_MAGIC:
790   case MH_CIGAM:
791     return sizeof(struct llvm::MachO::mach_header);
792 
793   case MH_MAGIC_64:
794   case MH_CIGAM_64:
795     return sizeof(struct llvm::MachO::mach_header_64);
796     break;
797 
798   default:
799     break;
800   }
801   return 0;
802 }
803 
804 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
805 
806 char ObjectFileMachO::ID;
807 
808 void ObjectFileMachO::Initialize() {
809   PluginManager::RegisterPlugin(
810       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
811       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
812 }
813 
814 void ObjectFileMachO::Terminate() {
815   PluginManager::UnregisterPlugin(CreateInstance);
816 }
817 
818 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
819   static ConstString g_name("mach-o");
820   return g_name;
821 }
822 
823 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
824   return "Mach-o object file reader (32 and 64 bit)";
825 }
826 
827 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
828                                             DataBufferSP &data_sp,
829                                             lldb::offset_t data_offset,
830                                             const FileSpec *file,
831                                             lldb::offset_t file_offset,
832                                             lldb::offset_t length) {
833   if (!data_sp) {
834     data_sp = MapFileData(*file, length, file_offset);
835     if (!data_sp)
836       return nullptr;
837     data_offset = 0;
838   }
839 
840   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
841     return nullptr;
842 
843   // Update the data to contain the entire file if it doesn't already
844   if (data_sp->GetByteSize() < length) {
845     data_sp = MapFileData(*file, length, file_offset);
846     if (!data_sp)
847       return nullptr;
848     data_offset = 0;
849   }
850   auto objfile_up = std::make_unique<ObjectFileMachO>(
851       module_sp, data_sp, data_offset, file, file_offset, length);
852   if (!objfile_up || !objfile_up->ParseHeader())
853     return nullptr;
854 
855   return objfile_up.release();
856 }
857 
858 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
859     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
860     const ProcessSP &process_sp, lldb::addr_t header_addr) {
861   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
862     std::unique_ptr<ObjectFile> objfile_up(
863         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
864     if (objfile_up.get() && objfile_up->ParseHeader())
865       return objfile_up.release();
866   }
867   return nullptr;
868 }
869 
870 size_t ObjectFileMachO::GetModuleSpecifications(
871     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
872     lldb::offset_t data_offset, lldb::offset_t file_offset,
873     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
874   const size_t initial_count = specs.GetSize();
875 
876   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
877     DataExtractor data;
878     data.SetData(data_sp);
879     llvm::MachO::mach_header header;
880     if (ParseHeader(data, &data_offset, header)) {
881       size_t header_and_load_cmds =
882           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
883       if (header_and_load_cmds >= data_sp->GetByteSize()) {
884         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
885         data.SetData(data_sp);
886         data_offset = MachHeaderSizeFromMagic(header.magic);
887       }
888       if (data_sp) {
889         ModuleSpec base_spec;
890         base_spec.GetFileSpec() = file;
891         base_spec.SetObjectOffset(file_offset);
892         base_spec.SetObjectSize(length);
893         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
894       }
895     }
896   }
897   return specs.GetSize() - initial_count;
898 }
899 
900 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
901   static ConstString g_segment_name_TEXT("__TEXT");
902   return g_segment_name_TEXT;
903 }
904 
905 ConstString ObjectFileMachO::GetSegmentNameDATA() {
906   static ConstString g_segment_name_DATA("__DATA");
907   return g_segment_name_DATA;
908 }
909 
910 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
911   static ConstString g_segment_name("__DATA_DIRTY");
912   return g_segment_name;
913 }
914 
915 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
916   static ConstString g_segment_name("__DATA_CONST");
917   return g_segment_name;
918 }
919 
920 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
921   static ConstString g_segment_name_OBJC("__OBJC");
922   return g_segment_name_OBJC;
923 }
924 
925 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
926   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
927   return g_section_name_LINKEDIT;
928 }
929 
930 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
931   static ConstString g_section_name("__DWARF");
932   return g_section_name;
933 }
934 
935 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
936   static ConstString g_section_name_eh_frame("__eh_frame");
937   return g_section_name_eh_frame;
938 }
939 
940 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
941                                       lldb::addr_t data_offset,
942                                       lldb::addr_t data_length) {
943   DataExtractor data;
944   data.SetData(data_sp, data_offset, data_length);
945   lldb::offset_t offset = 0;
946   uint32_t magic = data.GetU32(&offset);
947   return MachHeaderSizeFromMagic(magic) != 0;
948 }
949 
950 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
951                                  DataBufferSP &data_sp,
952                                  lldb::offset_t data_offset,
953                                  const FileSpec *file,
954                                  lldb::offset_t file_offset,
955                                  lldb::offset_t length)
956     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
957       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
958       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
959       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
960   ::memset(&m_header, 0, sizeof(m_header));
961   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
962 }
963 
964 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
965                                  lldb::DataBufferSP &header_data_sp,
966                                  const lldb::ProcessSP &process_sp,
967                                  lldb::addr_t header_addr)
968     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
969       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
970       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
971       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
972   ::memset(&m_header, 0, sizeof(m_header));
973   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
974 }
975 
976 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
977                                   lldb::offset_t *data_offset_ptr,
978                                   llvm::MachO::mach_header &header) {
979   data.SetByteOrder(endian::InlHostByteOrder());
980   // Leave magic in the original byte order
981   header.magic = data.GetU32(data_offset_ptr);
982   bool can_parse = false;
983   bool is_64_bit = false;
984   switch (header.magic) {
985   case MH_MAGIC:
986     data.SetByteOrder(endian::InlHostByteOrder());
987     data.SetAddressByteSize(4);
988     can_parse = true;
989     break;
990 
991   case MH_MAGIC_64:
992     data.SetByteOrder(endian::InlHostByteOrder());
993     data.SetAddressByteSize(8);
994     can_parse = true;
995     is_64_bit = true;
996     break;
997 
998   case MH_CIGAM:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(4);
1003     can_parse = true;
1004     break;
1005 
1006   case MH_CIGAM_64:
1007     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1008                           ? eByteOrderLittle
1009                           : eByteOrderBig);
1010     data.SetAddressByteSize(8);
1011     is_64_bit = true;
1012     can_parse = true;
1013     break;
1014 
1015   default:
1016     break;
1017   }
1018 
1019   if (can_parse) {
1020     data.GetU32(data_offset_ptr, &header.cputype, 6);
1021     if (is_64_bit)
1022       *data_offset_ptr += 4;
1023     return true;
1024   } else {
1025     memset(&header, 0, sizeof(header));
1026   }
1027   return false;
1028 }
1029 
1030 bool ObjectFileMachO::ParseHeader() {
1031   ModuleSP module_sp(GetModule());
1032   if (!module_sp)
1033     return false;
1034 
1035   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1036   bool can_parse = false;
1037   lldb::offset_t offset = 0;
1038   m_data.SetByteOrder(endian::InlHostByteOrder());
1039   // Leave magic in the original byte order
1040   m_header.magic = m_data.GetU32(&offset);
1041   switch (m_header.magic) {
1042   case MH_MAGIC:
1043     m_data.SetByteOrder(endian::InlHostByteOrder());
1044     m_data.SetAddressByteSize(4);
1045     can_parse = true;
1046     break;
1047 
1048   case MH_MAGIC_64:
1049     m_data.SetByteOrder(endian::InlHostByteOrder());
1050     m_data.SetAddressByteSize(8);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(4);
1059     can_parse = true;
1060     break;
1061 
1062   case MH_CIGAM_64:
1063     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1064                             ? eByteOrderLittle
1065                             : eByteOrderBig);
1066     m_data.SetAddressByteSize(8);
1067     can_parse = true;
1068     break;
1069 
1070   default:
1071     break;
1072   }
1073 
1074   if (can_parse) {
1075     m_data.GetU32(&offset, &m_header.cputype, 6);
1076 
1077     ModuleSpecList all_specs;
1078     ModuleSpec base_spec;
1079     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1080                     base_spec, all_specs);
1081 
1082     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1083       ArchSpec mach_arch =
1084           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1085 
1086       // Check if the module has a required architecture
1087       const ArchSpec &module_arch = module_sp->GetArchitecture();
1088       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1089         continue;
1090 
1091       if (SetModulesArchitecture(mach_arch)) {
1092         const size_t header_and_lc_size =
1093             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1094         if (m_data.GetByteSize() < header_and_lc_size) {
1095           DataBufferSP data_sp;
1096           ProcessSP process_sp(m_process_wp.lock());
1097           if (process_sp) {
1098             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1099           } else {
1100             // Read in all only the load command data from the file on disk
1101             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1102             if (data_sp->GetByteSize() != header_and_lc_size)
1103               continue;
1104           }
1105           if (data_sp)
1106             m_data.SetData(data_sp);
1107         }
1108       }
1109       return true;
1110     }
1111     // None found.
1112     return false;
1113   } else {
1114     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1115   }
1116   return false;
1117 }
1118 
1119 ByteOrder ObjectFileMachO::GetByteOrder() const {
1120   return m_data.GetByteOrder();
1121 }
1122 
1123 bool ObjectFileMachO::IsExecutable() const {
1124   return m_header.filetype == MH_EXECUTE;
1125 }
1126 
1127 bool ObjectFileMachO::IsDynamicLoader() const {
1128   return m_header.filetype == MH_DYLINKER;
1129 }
1130 
1131 bool ObjectFileMachO::IsSharedCacheBinary() const {
1132   return m_header.flags & MH_DYLIB_IN_CACHE;
1133 }
1134 
1135 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1136   return m_data.GetAddressByteSize();
1137 }
1138 
1139 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1140   Symtab *symtab = GetSymtab();
1141   if (!symtab)
1142     return AddressClass::eUnknown;
1143 
1144   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1145   if (symbol) {
1146     if (symbol->ValueIsAddress()) {
1147       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1148       if (section_sp) {
1149         const lldb::SectionType section_type = section_sp->GetType();
1150         switch (section_type) {
1151         case eSectionTypeInvalid:
1152           return AddressClass::eUnknown;
1153 
1154         case eSectionTypeCode:
1155           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1156             // For ARM we have a bit in the n_desc field of the symbol that
1157             // tells us ARM/Thumb which is bit 0x0008.
1158             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1159               return AddressClass::eCodeAlternateISA;
1160           }
1161           return AddressClass::eCode;
1162 
1163         case eSectionTypeContainer:
1164           return AddressClass::eUnknown;
1165 
1166         case eSectionTypeData:
1167         case eSectionTypeDataCString:
1168         case eSectionTypeDataCStringPointers:
1169         case eSectionTypeDataSymbolAddress:
1170         case eSectionTypeData4:
1171         case eSectionTypeData8:
1172         case eSectionTypeData16:
1173         case eSectionTypeDataPointers:
1174         case eSectionTypeZeroFill:
1175         case eSectionTypeDataObjCMessageRefs:
1176         case eSectionTypeDataObjCCFStrings:
1177         case eSectionTypeGoSymtab:
1178           return AddressClass::eData;
1179 
1180         case eSectionTypeDebug:
1181         case eSectionTypeDWARFDebugAbbrev:
1182         case eSectionTypeDWARFDebugAbbrevDwo:
1183         case eSectionTypeDWARFDebugAddr:
1184         case eSectionTypeDWARFDebugAranges:
1185         case eSectionTypeDWARFDebugCuIndex:
1186         case eSectionTypeDWARFDebugFrame:
1187         case eSectionTypeDWARFDebugInfo:
1188         case eSectionTypeDWARFDebugInfoDwo:
1189         case eSectionTypeDWARFDebugLine:
1190         case eSectionTypeDWARFDebugLineStr:
1191         case eSectionTypeDWARFDebugLoc:
1192         case eSectionTypeDWARFDebugLocDwo:
1193         case eSectionTypeDWARFDebugLocLists:
1194         case eSectionTypeDWARFDebugLocListsDwo:
1195         case eSectionTypeDWARFDebugMacInfo:
1196         case eSectionTypeDWARFDebugMacro:
1197         case eSectionTypeDWARFDebugNames:
1198         case eSectionTypeDWARFDebugPubNames:
1199         case eSectionTypeDWARFDebugPubTypes:
1200         case eSectionTypeDWARFDebugRanges:
1201         case eSectionTypeDWARFDebugRngLists:
1202         case eSectionTypeDWARFDebugRngListsDwo:
1203         case eSectionTypeDWARFDebugStr:
1204         case eSectionTypeDWARFDebugStrDwo:
1205         case eSectionTypeDWARFDebugStrOffsets:
1206         case eSectionTypeDWARFDebugStrOffsetsDwo:
1207         case eSectionTypeDWARFDebugTuIndex:
1208         case eSectionTypeDWARFDebugTypes:
1209         case eSectionTypeDWARFDebugTypesDwo:
1210         case eSectionTypeDWARFAppleNames:
1211         case eSectionTypeDWARFAppleTypes:
1212         case eSectionTypeDWARFAppleNamespaces:
1213         case eSectionTypeDWARFAppleObjC:
1214         case eSectionTypeDWARFGNUDebugAltLink:
1215           return AddressClass::eDebug;
1216 
1217         case eSectionTypeEHFrame:
1218         case eSectionTypeARMexidx:
1219         case eSectionTypeARMextab:
1220         case eSectionTypeCompactUnwind:
1221           return AddressClass::eRuntime;
1222 
1223         case eSectionTypeAbsoluteAddress:
1224         case eSectionTypeELFSymbolTable:
1225         case eSectionTypeELFDynamicSymbols:
1226         case eSectionTypeELFRelocationEntries:
1227         case eSectionTypeELFDynamicLinkInfo:
1228         case eSectionTypeOther:
1229           return AddressClass::eUnknown;
1230         }
1231       }
1232     }
1233 
1234     const SymbolType symbol_type = symbol->GetType();
1235     switch (symbol_type) {
1236     case eSymbolTypeAny:
1237       return AddressClass::eUnknown;
1238     case eSymbolTypeAbsolute:
1239       return AddressClass::eUnknown;
1240 
1241     case eSymbolTypeCode:
1242     case eSymbolTypeTrampoline:
1243     case eSymbolTypeResolver:
1244       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1245         // For ARM we have a bit in the n_desc field of the symbol that tells
1246         // us ARM/Thumb which is bit 0x0008.
1247         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1248           return AddressClass::eCodeAlternateISA;
1249       }
1250       return AddressClass::eCode;
1251 
1252     case eSymbolTypeData:
1253       return AddressClass::eData;
1254     case eSymbolTypeRuntime:
1255       return AddressClass::eRuntime;
1256     case eSymbolTypeException:
1257       return AddressClass::eRuntime;
1258     case eSymbolTypeSourceFile:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeHeaderFile:
1261       return AddressClass::eDebug;
1262     case eSymbolTypeObjectFile:
1263       return AddressClass::eDebug;
1264     case eSymbolTypeCommonBlock:
1265       return AddressClass::eDebug;
1266     case eSymbolTypeBlock:
1267       return AddressClass::eDebug;
1268     case eSymbolTypeLocal:
1269       return AddressClass::eData;
1270     case eSymbolTypeParam:
1271       return AddressClass::eData;
1272     case eSymbolTypeVariable:
1273       return AddressClass::eData;
1274     case eSymbolTypeVariableType:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeLineEntry:
1277       return AddressClass::eDebug;
1278     case eSymbolTypeLineHeader:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeScopeBegin:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeScopeEnd:
1283       return AddressClass::eDebug;
1284     case eSymbolTypeAdditional:
1285       return AddressClass::eUnknown;
1286     case eSymbolTypeCompiler:
1287       return AddressClass::eDebug;
1288     case eSymbolTypeInstrumentation:
1289       return AddressClass::eDebug;
1290     case eSymbolTypeUndefined:
1291       return AddressClass::eUnknown;
1292     case eSymbolTypeObjCClass:
1293       return AddressClass::eRuntime;
1294     case eSymbolTypeObjCMetaClass:
1295       return AddressClass::eRuntime;
1296     case eSymbolTypeObjCIVar:
1297       return AddressClass::eRuntime;
1298     case eSymbolTypeReExported:
1299       return AddressClass::eRuntime;
1300     }
1301   }
1302   return AddressClass::eUnknown;
1303 }
1304 
1305 Symtab *ObjectFileMachO::GetSymtab() {
1306   ModuleSP module_sp(GetModule());
1307   if (module_sp) {
1308     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1309     if (m_symtab_up == nullptr) {
1310       m_symtab_up = std::make_unique<Symtab>(this);
1311       std::lock_guard<std::recursive_mutex> symtab_guard(
1312           m_symtab_up->GetMutex());
1313       ParseSymtab();
1314       m_symtab_up->Finalize();
1315     }
1316   }
1317   return m_symtab_up.get();
1318 }
1319 
1320 bool ObjectFileMachO::IsStripped() {
1321   if (m_dysymtab.cmd == 0) {
1322     ModuleSP module_sp(GetModule());
1323     if (module_sp) {
1324       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1325       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1326         const lldb::offset_t load_cmd_offset = offset;
1327 
1328         llvm::MachO::load_command lc;
1329         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1330           break;
1331         if (lc.cmd == LC_DYSYMTAB) {
1332           m_dysymtab.cmd = lc.cmd;
1333           m_dysymtab.cmdsize = lc.cmdsize;
1334           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1335                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1336               nullptr) {
1337             // Clear m_dysymtab if we were unable to read all items from the
1338             // load command
1339             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1340           }
1341         }
1342         offset = load_cmd_offset + lc.cmdsize;
1343       }
1344     }
1345   }
1346   if (m_dysymtab.cmd)
1347     return m_dysymtab.nlocalsym <= 1;
1348   return false;
1349 }
1350 
1351 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1352   EncryptedFileRanges result;
1353   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1354 
1355   llvm::MachO::encryption_info_command encryption_cmd;
1356   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1357     const lldb::offset_t load_cmd_offset = offset;
1358     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1359       break;
1360 
1361     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1362     // 3 fields we care about, so treat them the same.
1363     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1364         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1365       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1366         if (encryption_cmd.cryptid != 0) {
1367           EncryptedFileRanges::Entry entry;
1368           entry.SetRangeBase(encryption_cmd.cryptoff);
1369           entry.SetByteSize(encryption_cmd.cryptsize);
1370           result.Append(entry);
1371         }
1372       }
1373     }
1374     offset = load_cmd_offset + encryption_cmd.cmdsize;
1375   }
1376 
1377   return result;
1378 }
1379 
1380 void ObjectFileMachO::SanitizeSegmentCommand(
1381     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1382   if (m_length == 0 || seg_cmd.filesize == 0)
1383     return;
1384 
1385   if (IsSharedCacheBinary() && !IsInMemory()) {
1386     // In shared cache images, the load commands are relative to the
1387     // shared cache file, and not the specific image we are
1388     // examining. Let's fix this up so that it looks like a normal
1389     // image.
1390     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1391       m_text_address = seg_cmd.vmaddr;
1392     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1393       m_linkedit_original_offset = seg_cmd.fileoff;
1394 
1395     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1396   }
1397 
1398   if (seg_cmd.fileoff > m_length) {
1399     // We have a load command that says it extends past the end of the file.
1400     // This is likely a corrupt file.  We don't have any way to return an error
1401     // condition here (this method was likely invoked from something like
1402     // ObjectFile::GetSectionList()), so we just null out the section contents,
1403     // and dump a message to stdout.  The most common case here is core file
1404     // debugging with a truncated file.
1405     const char *lc_segment_name =
1406         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1407     GetModule()->ReportWarning(
1408         "load command %u %s has a fileoff (0x%" PRIx64
1409         ") that extends beyond the end of the file (0x%" PRIx64
1410         "), ignoring this section",
1411         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1412 
1413     seg_cmd.fileoff = 0;
1414     seg_cmd.filesize = 0;
1415   }
1416 
1417   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1418     // We have a load command that says it extends past the end of the file.
1419     // This is likely a corrupt file.  We don't have any way to return an error
1420     // condition here (this method was likely invoked from something like
1421     // ObjectFile::GetSectionList()), so we just null out the section contents,
1422     // and dump a message to stdout.  The most common case here is core file
1423     // debugging with a truncated file.
1424     const char *lc_segment_name =
1425         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1426     GetModule()->ReportWarning(
1427         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1428         ") that extends beyond the end of the file (0x%" PRIx64
1429         "), the segment will be truncated to match",
1430         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1431 
1432     // Truncate the length
1433     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1434   }
1435 }
1436 
1437 static uint32_t
1438 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1439   uint32_t result = 0;
1440   if (seg_cmd.initprot & VM_PROT_READ)
1441     result |= ePermissionsReadable;
1442   if (seg_cmd.initprot & VM_PROT_WRITE)
1443     result |= ePermissionsWritable;
1444   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1445     result |= ePermissionsExecutable;
1446   return result;
1447 }
1448 
1449 static lldb::SectionType GetSectionType(uint32_t flags,
1450                                         ConstString section_name) {
1451 
1452   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1453     return eSectionTypeCode;
1454 
1455   uint32_t mach_sect_type = flags & SECTION_TYPE;
1456   static ConstString g_sect_name_objc_data("__objc_data");
1457   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1458   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1459   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1460   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1461   static ConstString g_sect_name_objc_const("__objc_const");
1462   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1463   static ConstString g_sect_name_cfstring("__cfstring");
1464 
1465   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1466   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1467   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1468   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1469   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1470   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1471   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1472   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1473   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1474   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1475   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1476   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1477   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1478   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1479   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1480   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1481   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1482   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1483   static ConstString g_sect_name_eh_frame("__eh_frame");
1484   static ConstString g_sect_name_compact_unwind("__unwind_info");
1485   static ConstString g_sect_name_text("__text");
1486   static ConstString g_sect_name_data("__data");
1487   static ConstString g_sect_name_go_symtab("__gosymtab");
1488 
1489   if (section_name == g_sect_name_dwarf_debug_abbrev)
1490     return eSectionTypeDWARFDebugAbbrev;
1491   if (section_name == g_sect_name_dwarf_debug_aranges)
1492     return eSectionTypeDWARFDebugAranges;
1493   if (section_name == g_sect_name_dwarf_debug_frame)
1494     return eSectionTypeDWARFDebugFrame;
1495   if (section_name == g_sect_name_dwarf_debug_info)
1496     return eSectionTypeDWARFDebugInfo;
1497   if (section_name == g_sect_name_dwarf_debug_line)
1498     return eSectionTypeDWARFDebugLine;
1499   if (section_name == g_sect_name_dwarf_debug_loc)
1500     return eSectionTypeDWARFDebugLoc;
1501   if (section_name == g_sect_name_dwarf_debug_loclists)
1502     return eSectionTypeDWARFDebugLocLists;
1503   if (section_name == g_sect_name_dwarf_debug_macinfo)
1504     return eSectionTypeDWARFDebugMacInfo;
1505   if (section_name == g_sect_name_dwarf_debug_names)
1506     return eSectionTypeDWARFDebugNames;
1507   if (section_name == g_sect_name_dwarf_debug_pubnames)
1508     return eSectionTypeDWARFDebugPubNames;
1509   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1510     return eSectionTypeDWARFDebugPubTypes;
1511   if (section_name == g_sect_name_dwarf_debug_ranges)
1512     return eSectionTypeDWARFDebugRanges;
1513   if (section_name == g_sect_name_dwarf_debug_str)
1514     return eSectionTypeDWARFDebugStr;
1515   if (section_name == g_sect_name_dwarf_debug_types)
1516     return eSectionTypeDWARFDebugTypes;
1517   if (section_name == g_sect_name_dwarf_apple_names)
1518     return eSectionTypeDWARFAppleNames;
1519   if (section_name == g_sect_name_dwarf_apple_types)
1520     return eSectionTypeDWARFAppleTypes;
1521   if (section_name == g_sect_name_dwarf_apple_namespaces)
1522     return eSectionTypeDWARFAppleNamespaces;
1523   if (section_name == g_sect_name_dwarf_apple_objc)
1524     return eSectionTypeDWARFAppleObjC;
1525   if (section_name == g_sect_name_objc_selrefs)
1526     return eSectionTypeDataCStringPointers;
1527   if (section_name == g_sect_name_objc_msgrefs)
1528     return eSectionTypeDataObjCMessageRefs;
1529   if (section_name == g_sect_name_eh_frame)
1530     return eSectionTypeEHFrame;
1531   if (section_name == g_sect_name_compact_unwind)
1532     return eSectionTypeCompactUnwind;
1533   if (section_name == g_sect_name_cfstring)
1534     return eSectionTypeDataObjCCFStrings;
1535   if (section_name == g_sect_name_go_symtab)
1536     return eSectionTypeGoSymtab;
1537   if (section_name == g_sect_name_objc_data ||
1538       section_name == g_sect_name_objc_classrefs ||
1539       section_name == g_sect_name_objc_superrefs ||
1540       section_name == g_sect_name_objc_const ||
1541       section_name == g_sect_name_objc_classlist) {
1542     return eSectionTypeDataPointers;
1543   }
1544 
1545   switch (mach_sect_type) {
1546   // TODO: categorize sections by other flags for regular sections
1547   case S_REGULAR:
1548     if (section_name == g_sect_name_text)
1549       return eSectionTypeCode;
1550     if (section_name == g_sect_name_data)
1551       return eSectionTypeData;
1552     return eSectionTypeOther;
1553   case S_ZEROFILL:
1554     return eSectionTypeZeroFill;
1555   case S_CSTRING_LITERALS: // section with only literal C strings
1556     return eSectionTypeDataCString;
1557   case S_4BYTE_LITERALS: // section with only 4 byte literals
1558     return eSectionTypeData4;
1559   case S_8BYTE_LITERALS: // section with only 8 byte literals
1560     return eSectionTypeData8;
1561   case S_LITERAL_POINTERS: // section with only pointers to literals
1562     return eSectionTypeDataPointers;
1563   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1564     return eSectionTypeDataPointers;
1565   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1566     return eSectionTypeDataPointers;
1567   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1568                        // the reserved2 field
1569     return eSectionTypeCode;
1570   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1571                                  // initialization
1572     return eSectionTypeDataPointers;
1573   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1574                                  // termination
1575     return eSectionTypeDataPointers;
1576   case S_COALESCED:
1577     return eSectionTypeOther;
1578   case S_GB_ZEROFILL:
1579     return eSectionTypeZeroFill;
1580   case S_INTERPOSING: // section with only pairs of function pointers for
1581                       // interposing
1582     return eSectionTypeCode;
1583   case S_16BYTE_LITERALS: // section with only 16 byte literals
1584     return eSectionTypeData16;
1585   case S_DTRACE_DOF:
1586     return eSectionTypeDebug;
1587   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1588     return eSectionTypeDataPointers;
1589   default:
1590     return eSectionTypeOther;
1591   }
1592 }
1593 
1594 struct ObjectFileMachO::SegmentParsingContext {
1595   const EncryptedFileRanges EncryptedRanges;
1596   lldb_private::SectionList &UnifiedList;
1597   uint32_t NextSegmentIdx = 0;
1598   uint32_t NextSectionIdx = 0;
1599   bool FileAddressesChanged = false;
1600 
1601   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1602                         lldb_private::SectionList &UnifiedList)
1603       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1604 };
1605 
1606 void ObjectFileMachO::ProcessSegmentCommand(
1607     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1608     uint32_t cmd_idx, SegmentParsingContext &context) {
1609   llvm::MachO::segment_command_64 load_cmd;
1610   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1611 
1612   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1613     return;
1614 
1615   ModuleSP module_sp = GetModule();
1616   const bool is_core = GetType() == eTypeCoreFile;
1617   const bool is_dsym = (m_header.filetype == MH_DSYM);
1618   bool add_section = true;
1619   bool add_to_unified = true;
1620   ConstString const_segname(
1621       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1622 
1623   SectionSP unified_section_sp(
1624       context.UnifiedList.FindSectionByName(const_segname));
1625   if (is_dsym && unified_section_sp) {
1626     if (const_segname == GetSegmentNameLINKEDIT()) {
1627       // We need to keep the __LINKEDIT segment private to this object file
1628       // only
1629       add_to_unified = false;
1630     } else {
1631       // This is the dSYM file and this section has already been created by the
1632       // object file, no need to create it.
1633       add_section = false;
1634     }
1635   }
1636   load_cmd.vmaddr = m_data.GetAddress(&offset);
1637   load_cmd.vmsize = m_data.GetAddress(&offset);
1638   load_cmd.fileoff = m_data.GetAddress(&offset);
1639   load_cmd.filesize = m_data.GetAddress(&offset);
1640   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1641     return;
1642 
1643   SanitizeSegmentCommand(load_cmd, cmd_idx);
1644 
1645   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1646   const bool segment_is_encrypted =
1647       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1648 
1649   // Keep a list of mach segments around in case we need to get at data that
1650   // isn't stored in the abstracted Sections.
1651   m_mach_segments.push_back(load_cmd);
1652 
1653   // Use a segment ID of the segment index shifted left by 8 so they never
1654   // conflict with any of the sections.
1655   SectionSP segment_sp;
1656   if (add_section && (const_segname || is_core)) {
1657     segment_sp = std::make_shared<Section>(
1658         module_sp, // Module to which this section belongs
1659         this,      // Object file to which this sections belongs
1660         ++context.NextSegmentIdx
1661             << 8, // Section ID is the 1 based segment index
1662         // shifted right by 8 bits as not to collide with any of the 256
1663         // section IDs that are possible
1664         const_segname,         // Name of this section
1665         eSectionTypeContainer, // This section is a container of other
1666         // sections.
1667         load_cmd.vmaddr, // File VM address == addresses as they are
1668         // found in the object file
1669         load_cmd.vmsize,  // VM size in bytes of this section
1670         load_cmd.fileoff, // Offset to the data for this section in
1671         // the file
1672         load_cmd.filesize, // Size in bytes of this section as found
1673         // in the file
1674         0,               // Segments have no alignment information
1675         load_cmd.flags); // Flags for this section
1676 
1677     segment_sp->SetIsEncrypted(segment_is_encrypted);
1678     m_sections_up->AddSection(segment_sp);
1679     segment_sp->SetPermissions(segment_permissions);
1680     if (add_to_unified)
1681       context.UnifiedList.AddSection(segment_sp);
1682   } else if (unified_section_sp) {
1683     // If this is a dSYM and the file addresses in the dSYM differ from the
1684     // file addresses in the ObjectFile, we must use the file base address for
1685     // the Section from the dSYM for the DWARF to resolve correctly.
1686     // This only happens with binaries in the shared cache in practice;
1687     // normally a mismatch like this would give a binary & dSYM that do not
1688     // match UUIDs. When a binary is included in the shared cache, its
1689     // segments are rearranged to optimize the shared cache, so its file
1690     // addresses will differ from what the ObjectFile had originally,
1691     // and what the dSYM has.
1692     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1693       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
1694       if (log) {
1695         log->Printf(
1696             "Installing dSYM's %s segment file address over ObjectFile's "
1697             "so symbol table/debug info resolves correctly for %s",
1698             const_segname.AsCString(),
1699             module_sp->GetFileSpec().GetFilename().AsCString());
1700       }
1701 
1702       // Make sure we've parsed the symbol table from the ObjectFile before
1703       // we go around changing its Sections.
1704       module_sp->GetObjectFile()->GetSymtab();
1705       // eh_frame would present the same problems but we parse that on a per-
1706       // function basis as-needed so it's more difficult to remove its use of
1707       // the Sections.  Realistically, the environments where this code path
1708       // will be taken will not have eh_frame sections.
1709 
1710       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1711 
1712       // Notify the module that the section addresses have been changed once
1713       // we're done so any file-address caches can be updated.
1714       context.FileAddressesChanged = true;
1715     }
1716     m_sections_up->AddSection(unified_section_sp);
1717   }
1718 
1719   llvm::MachO::section_64 sect64;
1720   ::memset(&sect64, 0, sizeof(sect64));
1721   // Push a section into our mach sections for the section at index zero
1722   // (NO_SECT) if we don't have any mach sections yet...
1723   if (m_mach_sections.empty())
1724     m_mach_sections.push_back(sect64);
1725   uint32_t segment_sect_idx;
1726   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1727 
1728   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1729   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1730        ++segment_sect_idx) {
1731     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1732                      sizeof(sect64.sectname)) == nullptr)
1733       break;
1734     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1735                      sizeof(sect64.segname)) == nullptr)
1736       break;
1737     sect64.addr = m_data.GetAddress(&offset);
1738     sect64.size = m_data.GetAddress(&offset);
1739 
1740     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1741       break;
1742 
1743     if (IsSharedCacheBinary() && !IsInMemory()) {
1744       sect64.offset = sect64.addr - m_text_address;
1745     }
1746 
1747     // Keep a list of mach sections around in case we need to get at data that
1748     // isn't stored in the abstracted Sections.
1749     m_mach_sections.push_back(sect64);
1750 
1751     if (add_section) {
1752       ConstString section_name(
1753           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1754       if (!const_segname) {
1755         // We have a segment with no name so we need to conjure up segments
1756         // that correspond to the section's segname if there isn't already such
1757         // a section. If there is such a section, we resize the section so that
1758         // it spans all sections.  We also mark these sections as fake so
1759         // address matches don't hit if they land in the gaps between the child
1760         // sections.
1761         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1762                                                   sizeof(sect64.segname));
1763         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1764         if (segment_sp.get()) {
1765           Section *segment = segment_sp.get();
1766           // Grow the section size as needed.
1767           const lldb::addr_t sect64_min_addr = sect64.addr;
1768           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1769           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1770           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1771           const lldb::addr_t curr_seg_max_addr =
1772               curr_seg_min_addr + curr_seg_byte_size;
1773           if (sect64_min_addr >= curr_seg_min_addr) {
1774             const lldb::addr_t new_seg_byte_size =
1775                 sect64_max_addr - curr_seg_min_addr;
1776             // Only grow the section size if needed
1777             if (new_seg_byte_size > curr_seg_byte_size)
1778               segment->SetByteSize(new_seg_byte_size);
1779           } else {
1780             // We need to change the base address of the segment and adjust the
1781             // child section offsets for all existing children.
1782             const lldb::addr_t slide_amount =
1783                 sect64_min_addr - curr_seg_min_addr;
1784             segment->Slide(slide_amount, false);
1785             segment->GetChildren().Slide(-slide_amount, false);
1786             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1787           }
1788 
1789           // Grow the section size as needed.
1790           if (sect64.offset) {
1791             const lldb::addr_t segment_min_file_offset =
1792                 segment->GetFileOffset();
1793             const lldb::addr_t segment_max_file_offset =
1794                 segment_min_file_offset + segment->GetFileSize();
1795 
1796             const lldb::addr_t section_min_file_offset = sect64.offset;
1797             const lldb::addr_t section_max_file_offset =
1798                 section_min_file_offset + sect64.size;
1799             const lldb::addr_t new_file_offset =
1800                 std::min(section_min_file_offset, segment_min_file_offset);
1801             const lldb::addr_t new_file_size =
1802                 std::max(section_max_file_offset, segment_max_file_offset) -
1803                 new_file_offset;
1804             segment->SetFileOffset(new_file_offset);
1805             segment->SetFileSize(new_file_size);
1806           }
1807         } else {
1808           // Create a fake section for the section's named segment
1809           segment_sp = std::make_shared<Section>(
1810               segment_sp, // Parent section
1811               module_sp,  // Module to which this section belongs
1812               this,       // Object file to which this section belongs
1813               ++context.NextSegmentIdx
1814                   << 8, // Section ID is the 1 based segment index
1815               // shifted right by 8 bits as not to
1816               // collide with any of the 256 section IDs
1817               // that are possible
1818               const_segname,         // Name of this section
1819               eSectionTypeContainer, // This section is a container of
1820               // other sections.
1821               sect64.addr, // File VM address == addresses as they are
1822               // found in the object file
1823               sect64.size,   // VM size in bytes of this section
1824               sect64.offset, // Offset to the data for this section in
1825               // the file
1826               sect64.offset ? sect64.size : 0, // Size in bytes of
1827               // this section as
1828               // found in the file
1829               sect64.align,
1830               load_cmd.flags); // Flags for this section
1831           segment_sp->SetIsFake(true);
1832           segment_sp->SetPermissions(segment_permissions);
1833           m_sections_up->AddSection(segment_sp);
1834           if (add_to_unified)
1835             context.UnifiedList.AddSection(segment_sp);
1836           segment_sp->SetIsEncrypted(segment_is_encrypted);
1837         }
1838       }
1839       assert(segment_sp.get());
1840 
1841       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1842 
1843       SectionSP section_sp(new Section(
1844           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1845           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1846           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1847           sect64.flags));
1848       // Set the section to be encrypted to match the segment
1849 
1850       bool section_is_encrypted = false;
1851       if (!segment_is_encrypted && load_cmd.filesize != 0)
1852         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1853                                    sect64.offset) != nullptr;
1854 
1855       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1856       section_sp->SetPermissions(segment_permissions);
1857       segment_sp->GetChildren().AddSection(section_sp);
1858 
1859       if (segment_sp->IsFake()) {
1860         segment_sp.reset();
1861         const_segname.Clear();
1862       }
1863     }
1864   }
1865   if (segment_sp && is_dsym) {
1866     if (first_segment_sectID <= context.NextSectionIdx) {
1867       lldb::user_id_t sect_uid;
1868       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1869            ++sect_uid) {
1870         SectionSP curr_section_sp(
1871             segment_sp->GetChildren().FindSectionByID(sect_uid));
1872         SectionSP next_section_sp;
1873         if (sect_uid + 1 <= context.NextSectionIdx)
1874           next_section_sp =
1875               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1876 
1877         if (curr_section_sp.get()) {
1878           if (curr_section_sp->GetByteSize() == 0) {
1879             if (next_section_sp.get() != nullptr)
1880               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1881                                            curr_section_sp->GetFileAddress());
1882             else
1883               curr_section_sp->SetByteSize(load_cmd.vmsize);
1884           }
1885         }
1886       }
1887     }
1888   }
1889 }
1890 
1891 void ObjectFileMachO::ProcessDysymtabCommand(
1892     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1893   m_dysymtab.cmd = load_cmd.cmd;
1894   m_dysymtab.cmdsize = load_cmd.cmdsize;
1895   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1896                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1897 }
1898 
1899 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1900   if (m_sections_up)
1901     return;
1902 
1903   m_sections_up = std::make_unique<SectionList>();
1904 
1905   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1906   // bool dump_sections = false;
1907   ModuleSP module_sp(GetModule());
1908 
1909   offset = MachHeaderSizeFromMagic(m_header.magic);
1910 
1911   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1912   llvm::MachO::load_command load_cmd;
1913   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1914     const lldb::offset_t load_cmd_offset = offset;
1915     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1916       break;
1917 
1918     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1919       ProcessSegmentCommand(load_cmd, offset, i, context);
1920     else if (load_cmd.cmd == LC_DYSYMTAB)
1921       ProcessDysymtabCommand(load_cmd, offset);
1922 
1923     offset = load_cmd_offset + load_cmd.cmdsize;
1924   }
1925 
1926   if (context.FileAddressesChanged && module_sp)
1927     module_sp->SectionFileAddressesChanged();
1928 }
1929 
1930 class MachSymtabSectionInfo {
1931 public:
1932   MachSymtabSectionInfo(SectionList *section_list)
1933       : m_section_list(section_list), m_section_infos() {
1934     // Get the number of sections down to a depth of 1 to include all segments
1935     // and their sections, but no other sections that may be added for debug
1936     // map or
1937     m_section_infos.resize(section_list->GetNumSections(1));
1938   }
1939 
1940   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1941     if (n_sect == 0)
1942       return SectionSP();
1943     if (n_sect < m_section_infos.size()) {
1944       if (!m_section_infos[n_sect].section_sp) {
1945         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1946         m_section_infos[n_sect].section_sp = section_sp;
1947         if (section_sp) {
1948           m_section_infos[n_sect].vm_range.SetBaseAddress(
1949               section_sp->GetFileAddress());
1950           m_section_infos[n_sect].vm_range.SetByteSize(
1951               section_sp->GetByteSize());
1952         } else {
1953           std::string filename = "<unknown>";
1954           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1955           if (first_section_sp)
1956             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1957 
1958           Host::SystemLog(Host::eSystemLogError,
1959                           "error: unable to find section %d for a symbol in "
1960                           "%s, corrupt file?\n",
1961                           n_sect, filename.c_str());
1962         }
1963       }
1964       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1965         // Symbol is in section.
1966         return m_section_infos[n_sect].section_sp;
1967       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1968                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1969                      file_addr) {
1970         // Symbol is in section with zero size, but has the same start address
1971         // as the section. This can happen with linker symbols (symbols that
1972         // start with the letter 'l' or 'L'.
1973         return m_section_infos[n_sect].section_sp;
1974       }
1975     }
1976     return m_section_list->FindSectionContainingFileAddress(file_addr);
1977   }
1978 
1979 protected:
1980   struct SectionInfo {
1981     SectionInfo() : vm_range(), section_sp() {}
1982 
1983     VMRange vm_range;
1984     SectionSP section_sp;
1985   };
1986   SectionList *m_section_list;
1987   std::vector<SectionInfo> m_section_infos;
1988 };
1989 
1990 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1991 struct TrieEntry {
1992   void Dump() const {
1993     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1994            static_cast<unsigned long long>(address),
1995            static_cast<unsigned long long>(flags),
1996            static_cast<unsigned long long>(other), name.GetCString());
1997     if (import_name)
1998       printf(" -> \"%s\"\n", import_name.GetCString());
1999     else
2000       printf("\n");
2001   }
2002   ConstString name;
2003   uint64_t address = LLDB_INVALID_ADDRESS;
2004   uint64_t flags =
2005       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
2006          // TRIE_SYMBOL_IS_THUMB
2007   uint64_t other = 0;
2008   ConstString import_name;
2009 };
2010 
2011 struct TrieEntryWithOffset {
2012   lldb::offset_t nodeOffset;
2013   TrieEntry entry;
2014 
2015   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2016 
2017   void Dump(uint32_t idx) const {
2018     printf("[%3u] 0x%16.16llx: ", idx,
2019            static_cast<unsigned long long>(nodeOffset));
2020     entry.Dump();
2021   }
2022 
2023   bool operator<(const TrieEntryWithOffset &other) const {
2024     return (nodeOffset < other.nodeOffset);
2025   }
2026 };
2027 
2028 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2029                              const bool is_arm, addr_t text_seg_base_addr,
2030                              std::vector<llvm::StringRef> &nameSlices,
2031                              std::set<lldb::addr_t> &resolver_addresses,
2032                              std::vector<TrieEntryWithOffset> &reexports,
2033                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2034   if (!data.ValidOffset(offset))
2035     return true;
2036 
2037   // Terminal node -- end of a branch, possibly add this to
2038   // the symbol table or resolver table.
2039   const uint64_t terminalSize = data.GetULEB128(&offset);
2040   lldb::offset_t children_offset = offset + terminalSize;
2041   if (terminalSize != 0) {
2042     TrieEntryWithOffset e(offset);
2043     e.entry.flags = data.GetULEB128(&offset);
2044     const char *import_name = nullptr;
2045     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2046       e.entry.address = 0;
2047       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2048       import_name = data.GetCStr(&offset);
2049     } else {
2050       e.entry.address = data.GetULEB128(&offset);
2051       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2052         e.entry.address += text_seg_base_addr;
2053       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2054         e.entry.other = data.GetULEB128(&offset);
2055         uint64_t resolver_addr = e.entry.other;
2056         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2057           resolver_addr += text_seg_base_addr;
2058         if (is_arm)
2059           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2060         resolver_addresses.insert(resolver_addr);
2061       } else
2062         e.entry.other = 0;
2063     }
2064     bool add_this_entry = false;
2065     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2066         import_name && import_name[0]) {
2067       // add symbols that are reexport symbols with a valid import name.
2068       add_this_entry = true;
2069     } else if (e.entry.flags == 0 &&
2070                (import_name == nullptr || import_name[0] == '\0')) {
2071       // add externally visible symbols, in case the nlist record has
2072       // been stripped/omitted.
2073       add_this_entry = true;
2074     }
2075     if (add_this_entry) {
2076       std::string name;
2077       if (!nameSlices.empty()) {
2078         for (auto name_slice : nameSlices)
2079           name.append(name_slice.data(), name_slice.size());
2080       }
2081       if (name.size() > 1) {
2082         // Skip the leading '_'
2083         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2084       }
2085       if (import_name) {
2086         // Skip the leading '_'
2087         e.entry.import_name.SetCString(import_name + 1);
2088       }
2089       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2090         reexports.push_back(e);
2091       } else {
2092         if (is_arm && (e.entry.address & 1)) {
2093           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2094           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2095         }
2096         ext_symbols.push_back(e);
2097       }
2098     }
2099   }
2100 
2101   const uint8_t childrenCount = data.GetU8(&children_offset);
2102   for (uint8_t i = 0; i < childrenCount; ++i) {
2103     const char *cstr = data.GetCStr(&children_offset);
2104     if (cstr)
2105       nameSlices.push_back(llvm::StringRef(cstr));
2106     else
2107       return false; // Corrupt data
2108     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2109     if (childNodeOffset) {
2110       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2111                             nameSlices, resolver_addresses, reexports,
2112                             ext_symbols)) {
2113         return false;
2114       }
2115     }
2116     nameSlices.pop_back();
2117   }
2118   return true;
2119 }
2120 
2121 static SymbolType GetSymbolType(const char *&symbol_name,
2122                                 bool &demangled_is_synthesized,
2123                                 const SectionSP &text_section_sp,
2124                                 const SectionSP &data_section_sp,
2125                                 const SectionSP &data_dirty_section_sp,
2126                                 const SectionSP &data_const_section_sp,
2127                                 const SectionSP &symbol_section) {
2128   SymbolType type = eSymbolTypeInvalid;
2129 
2130   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2131   if (symbol_section->IsDescendant(text_section_sp.get())) {
2132     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2133                                 S_ATTR_SELF_MODIFYING_CODE |
2134                                 S_ATTR_SOME_INSTRUCTIONS))
2135       type = eSymbolTypeData;
2136     else
2137       type = eSymbolTypeCode;
2138   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2139              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2140              symbol_section->IsDescendant(data_const_section_sp.get())) {
2141     if (symbol_sect_name &&
2142         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2143       type = eSymbolTypeRuntime;
2144 
2145       if (symbol_name) {
2146         llvm::StringRef symbol_name_ref(symbol_name);
2147         if (symbol_name_ref.startswith("OBJC_")) {
2148           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2149           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2150               "OBJC_METACLASS_$_");
2151           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2152           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2153             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2154             type = eSymbolTypeObjCClass;
2155             demangled_is_synthesized = true;
2156           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2157             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2158             type = eSymbolTypeObjCMetaClass;
2159             demangled_is_synthesized = true;
2160           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2161             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2162             type = eSymbolTypeObjCIVar;
2163             demangled_is_synthesized = true;
2164           }
2165         }
2166       }
2167     } else if (symbol_sect_name &&
2168                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2169                    symbol_sect_name) {
2170       type = eSymbolTypeException;
2171     } else {
2172       type = eSymbolTypeData;
2173     }
2174   } else if (symbol_sect_name &&
2175              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2176     type = eSymbolTypeTrampoline;
2177   }
2178   return type;
2179 }
2180 
2181 // Read the UUID out of a dyld_shared_cache file on-disk.
2182 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2183                                          const ByteOrder byte_order,
2184                                          const uint32_t addr_byte_size) {
2185   UUID dsc_uuid;
2186   DataBufferSP DscData = MapFileData(
2187       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2188   if (!DscData)
2189     return dsc_uuid;
2190   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2191 
2192   char version_str[7];
2193   lldb::offset_t offset = 0;
2194   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2195   version_str[6] = '\0';
2196   if (strcmp(version_str, "dyld_v") == 0) {
2197     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2198     dsc_uuid = UUID::fromOptionalData(
2199         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2200   }
2201   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2202   if (log && dsc_uuid.IsValid()) {
2203     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2204               dyld_shared_cache.GetPath().c_str(),
2205               dsc_uuid.GetAsString().c_str());
2206   }
2207   return dsc_uuid;
2208 }
2209 
2210 static llvm::Optional<struct nlist_64>
2211 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2212            size_t nlist_byte_size) {
2213   struct nlist_64 nlist;
2214   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2215     return {};
2216   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2217   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2218   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2219   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2220   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2221   return nlist;
2222 }
2223 
2224 enum { DebugSymbols = true, NonDebugSymbols = false };
2225 
2226 size_t ObjectFileMachO::ParseSymtab() {
2227   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s",
2228                      m_file.GetFilename().AsCString(""));
2229   ModuleSP module_sp(GetModule());
2230   if (!module_sp)
2231     return 0;
2232 
2233   Progress progress(llvm::formatv("Parsing symbol table for {0}",
2234                                   m_file.GetFilename().AsCString("<Unknown>")));
2235 
2236   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2237   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2238   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2239   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2240   // The data element of type bool indicates that this entry is thumb
2241   // code.
2242   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2243 
2244   // Record the address of every function/data that we add to the symtab.
2245   // We add symbols to the table in the order of most information (nlist
2246   // records) to least (function starts), and avoid duplicating symbols
2247   // via this set.
2248   llvm::DenseSet<addr_t> symbols_added;
2249 
2250   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2251   // do not add the tombstone or empty keys to the set.
2252   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2253     // Don't add the tombstone or empty keys.
2254     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2255       return;
2256     symbols_added.insert(file_addr);
2257   };
2258   FunctionStarts function_starts;
2259   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2260   uint32_t i;
2261   FileSpecList dylib_files;
2262   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2263   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2264   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2265   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2266 
2267   for (i = 0; i < m_header.ncmds; ++i) {
2268     const lldb::offset_t cmd_offset = offset;
2269     // Read in the load command and load command size
2270     llvm::MachO::load_command lc;
2271     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2272       break;
2273     // Watch for the symbol table load command
2274     switch (lc.cmd) {
2275     case LC_SYMTAB:
2276       symtab_load_command.cmd = lc.cmd;
2277       symtab_load_command.cmdsize = lc.cmdsize;
2278       // Read in the rest of the symtab load command
2279       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2280           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2281         return 0;
2282       break;
2283 
2284     case LC_DYLD_INFO:
2285     case LC_DYLD_INFO_ONLY:
2286       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2287         dyld_info.cmd = lc.cmd;
2288         dyld_info.cmdsize = lc.cmdsize;
2289       } else {
2290         memset(&dyld_info, 0, sizeof(dyld_info));
2291       }
2292       break;
2293 
2294     case LC_LOAD_DYLIB:
2295     case LC_LOAD_WEAK_DYLIB:
2296     case LC_REEXPORT_DYLIB:
2297     case LC_LOADFVMLIB:
2298     case LC_LOAD_UPWARD_DYLIB: {
2299       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2300       const char *path = m_data.PeekCStr(name_offset);
2301       if (path) {
2302         FileSpec file_spec(path);
2303         // Strip the path if there is @rpath, @executable, etc so we just use
2304         // the basename
2305         if (path[0] == '@')
2306           file_spec.GetDirectory().Clear();
2307 
2308         if (lc.cmd == LC_REEXPORT_DYLIB) {
2309           m_reexported_dylibs.AppendIfUnique(file_spec);
2310         }
2311 
2312         dylib_files.Append(file_spec);
2313       }
2314     } break;
2315 
2316     case LC_DYLD_EXPORTS_TRIE:
2317       exports_trie_load_command.cmd = lc.cmd;
2318       exports_trie_load_command.cmdsize = lc.cmdsize;
2319       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2320           nullptr) // fill in offset and size fields
2321         memset(&exports_trie_load_command, 0,
2322                sizeof(exports_trie_load_command));
2323       break;
2324     case LC_FUNCTION_STARTS:
2325       function_starts_load_command.cmd = lc.cmd;
2326       function_starts_load_command.cmdsize = lc.cmdsize;
2327       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2328           nullptr) // fill in data offset and size fields
2329         memset(&function_starts_load_command, 0,
2330                sizeof(function_starts_load_command));
2331       break;
2332 
2333     default:
2334       break;
2335     }
2336     offset = cmd_offset + lc.cmdsize;
2337   }
2338 
2339   if (!symtab_load_command.cmd)
2340     return 0;
2341 
2342   Symtab *symtab = m_symtab_up.get();
2343   SectionList *section_list = GetSectionList();
2344   if (section_list == nullptr)
2345     return 0;
2346 
2347   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2348   const ByteOrder byte_order = m_data.GetByteOrder();
2349   bool bit_width_32 = addr_byte_size == 4;
2350   const size_t nlist_byte_size =
2351       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2352 
2353   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2354   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2355   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2356   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2357                                            addr_byte_size);
2358   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2359 
2360   const addr_t nlist_data_byte_size =
2361       symtab_load_command.nsyms * nlist_byte_size;
2362   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2363   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2364 
2365   ProcessSP process_sp(m_process_wp.lock());
2366   Process *process = process_sp.get();
2367 
2368   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2369   bool is_shared_cache_image = IsSharedCacheBinary();
2370   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2371   SectionSP linkedit_section_sp(
2372       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2373 
2374   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2375       !is_local_shared_cache_image) {
2376     Target &target = process->GetTarget();
2377 
2378     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2379 
2380     // Reading mach file from memory in a process or core file...
2381 
2382     if (linkedit_section_sp) {
2383       addr_t linkedit_load_addr =
2384           linkedit_section_sp->GetLoadBaseAddress(&target);
2385       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2386         // We might be trying to access the symbol table before the
2387         // __LINKEDIT's load address has been set in the target. We can't
2388         // fail to read the symbol table, so calculate the right address
2389         // manually
2390         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2391             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2392       }
2393 
2394       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2395       const addr_t symoff_addr = linkedit_load_addr +
2396                                  symtab_load_command.symoff -
2397                                  linkedit_file_offset;
2398       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2399                     linkedit_file_offset;
2400 
2401         // Always load dyld - the dynamic linker - from memory if we didn't
2402         // find a binary anywhere else. lldb will not register
2403         // dylib/framework/bundle loads/unloads if we don't have the dyld
2404         // symbols, we force dyld to load from memory despite the user's
2405         // target.memory-module-load-level setting.
2406         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2407             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2408           DataBufferSP nlist_data_sp(
2409               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2410           if (nlist_data_sp)
2411             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2412           if (m_dysymtab.nindirectsyms != 0) {
2413             const addr_t indirect_syms_addr = linkedit_load_addr +
2414                                               m_dysymtab.indirectsymoff -
2415                                               linkedit_file_offset;
2416             DataBufferSP indirect_syms_data_sp(ReadMemory(
2417                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2418             if (indirect_syms_data_sp)
2419               indirect_symbol_index_data.SetData(
2420                   indirect_syms_data_sp, 0,
2421                   indirect_syms_data_sp->GetByteSize());
2422             // If this binary is outside the shared cache,
2423             // cache the string table.
2424             // Binaries in the shared cache all share a giant string table,
2425             // and we can't share the string tables across multiple
2426             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2427             // for every binary in the shared cache - it would be a big perf
2428             // problem. For binaries outside the shared cache, it's faster to
2429             // read the entire strtab at once instead of piece-by-piece as we
2430             // process the nlist records.
2431             if (!is_shared_cache_image) {
2432               DataBufferSP strtab_data_sp(
2433                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2434               if (strtab_data_sp) {
2435                 strtab_data.SetData(strtab_data_sp, 0,
2436                                     strtab_data_sp->GetByteSize());
2437               }
2438             }
2439           }
2440         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2441           if (function_starts_load_command.cmd) {
2442             const addr_t func_start_addr =
2443                 linkedit_load_addr + function_starts_load_command.dataoff -
2444                 linkedit_file_offset;
2445             DataBufferSP func_start_data_sp(
2446                 ReadMemory(process_sp, func_start_addr,
2447                            function_starts_load_command.datasize));
2448             if (func_start_data_sp)
2449               function_starts_data.SetData(func_start_data_sp, 0,
2450                                            func_start_data_sp->GetByteSize());
2451           }
2452         }
2453       }
2454     }
2455   } else {
2456     if (is_local_shared_cache_image) {
2457       // The load commands in shared cache images are relative to the
2458       // beginning of the shared cache, not the library image. The
2459       // data we get handed when creating the ObjectFileMachO starts
2460       // at the beginning of a specific library and spans to the end
2461       // of the cache to be able to reach the shared LINKEDIT
2462       // segments. We need to convert the load command offsets to be
2463       // relative to the beginning of our specific image.
2464       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2465       lldb::offset_t linkedit_slide =
2466           linkedit_offset - m_linkedit_original_offset;
2467       symtab_load_command.symoff += linkedit_slide;
2468       symtab_load_command.stroff += linkedit_slide;
2469       dyld_info.export_off += linkedit_slide;
2470       m_dysymtab.indirectsymoff += linkedit_slide;
2471       function_starts_load_command.dataoff += linkedit_slide;
2472       exports_trie_load_command.dataoff += linkedit_slide;
2473     }
2474 
2475     nlist_data.SetData(m_data, symtab_load_command.symoff,
2476                        nlist_data_byte_size);
2477     strtab_data.SetData(m_data, symtab_load_command.stroff,
2478                         strtab_data_byte_size);
2479 
2480     // We shouldn't have exports data from both the LC_DYLD_INFO command
2481     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2482     lldbassert(!((dyld_info.export_size > 0)
2483                  && (exports_trie_load_command.datasize > 0)));
2484     if (dyld_info.export_size > 0) {
2485       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2486                              dyld_info.export_size);
2487     } else if (exports_trie_load_command.datasize > 0) {
2488       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2489                              exports_trie_load_command.datasize);
2490     }
2491 
2492     if (m_dysymtab.nindirectsyms != 0) {
2493       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2494                                          m_dysymtab.nindirectsyms * 4);
2495     }
2496     if (function_starts_load_command.cmd) {
2497       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2498                                    function_starts_load_command.datasize);
2499     }
2500   }
2501 
2502   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2503 
2504   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2505   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2506   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2507   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2508   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2509   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2510   SectionSP text_section_sp(
2511       section_list->FindSectionByName(g_segment_name_TEXT));
2512   SectionSP data_section_sp(
2513       section_list->FindSectionByName(g_segment_name_DATA));
2514   SectionSP data_dirty_section_sp(
2515       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2516   SectionSP data_const_section_sp(
2517       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2518   SectionSP objc_section_sp(
2519       section_list->FindSectionByName(g_segment_name_OBJC));
2520   SectionSP eh_frame_section_sp;
2521   if (text_section_sp.get())
2522     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2523         g_section_name_eh_frame);
2524   else
2525     eh_frame_section_sp =
2526         section_list->FindSectionByName(g_section_name_eh_frame);
2527 
2528   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2529   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2530 
2531   // lldb works best if it knows the start address of all functions in a
2532   // module. Linker symbols or debug info are normally the best source of
2533   // information for start addr / size but they may be stripped in a released
2534   // binary. Two additional sources of information exist in Mach-O binaries:
2535   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2536   //    function's start address in the
2537   //                         binary, relative to the text section.
2538   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2539   //    each function
2540   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2541   //  all modern binaries.
2542   //  Binaries built to run on older releases may need to use eh_frame
2543   //  information.
2544 
2545   if (text_section_sp && function_starts_data.GetByteSize()) {
2546     FunctionStarts::Entry function_start_entry;
2547     function_start_entry.data = false;
2548     lldb::offset_t function_start_offset = 0;
2549     function_start_entry.addr = text_section_sp->GetFileAddress();
2550     uint64_t delta;
2551     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2552            0) {
2553       // Now append the current entry
2554       function_start_entry.addr += delta;
2555       if (is_arm) {
2556         if (function_start_entry.addr & 1) {
2557           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2558           function_start_entry.data = true;
2559         } else if (always_thumb) {
2560           function_start_entry.data = true;
2561         }
2562       }
2563       function_starts.Append(function_start_entry);
2564     }
2565   } else {
2566     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2567     // load command claiming an eh_frame but it doesn't actually have the
2568     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2569     // this fill-in-the-missing-symbols works anyway - the debug info should
2570     // give us all the functions in the module.
2571     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2572         m_type != eTypeDebugInfo) {
2573       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2574                                   DWARFCallFrameInfo::EH);
2575       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2576       eh_frame.GetFunctionAddressAndSizeVector(functions);
2577       addr_t text_base_addr = text_section_sp->GetFileAddress();
2578       size_t count = functions.GetSize();
2579       for (size_t i = 0; i < count; ++i) {
2580         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2581             functions.GetEntryAtIndex(i);
2582         if (func) {
2583           FunctionStarts::Entry function_start_entry;
2584           function_start_entry.addr = func->base - text_base_addr;
2585           if (is_arm) {
2586             if (function_start_entry.addr & 1) {
2587               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2588               function_start_entry.data = true;
2589             } else if (always_thumb) {
2590               function_start_entry.data = true;
2591             }
2592           }
2593           function_starts.Append(function_start_entry);
2594         }
2595       }
2596     }
2597   }
2598 
2599   const size_t function_starts_count = function_starts.GetSize();
2600 
2601   // For user process binaries (executables, dylibs, frameworks, bundles), if
2602   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2603   // going to assume the binary has been stripped.  Don't allow assembly
2604   // language instruction emulation because we don't know proper function
2605   // start boundaries.
2606   //
2607   // For all other types of binaries (kernels, stand-alone bare board
2608   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2609   // sections - we should not make any assumptions about them based on that.
2610   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2611     m_allow_assembly_emulation_unwind_plans = false;
2612     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2613         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2614 
2615     if (unwind_or_symbol_log)
2616       module_sp->LogMessage(
2617           unwind_or_symbol_log,
2618           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2619   }
2620 
2621   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2622                                              ? eh_frame_section_sp->GetID()
2623                                              : static_cast<user_id_t>(NO_SECT);
2624 
2625   lldb::offset_t nlist_data_offset = 0;
2626 
2627   uint32_t N_SO_index = UINT32_MAX;
2628 
2629   MachSymtabSectionInfo section_info(section_list);
2630   std::vector<uint32_t> N_FUN_indexes;
2631   std::vector<uint32_t> N_NSYM_indexes;
2632   std::vector<uint32_t> N_INCL_indexes;
2633   std::vector<uint32_t> N_BRAC_indexes;
2634   std::vector<uint32_t> N_COMM_indexes;
2635   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2636   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2637   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2638   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2639   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2640   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2641   // Any symbols that get merged into another will get an entry in this map
2642   // so we know
2643   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2644   uint32_t nlist_idx = 0;
2645   Symbol *symbol_ptr = nullptr;
2646 
2647   uint32_t sym_idx = 0;
2648   Symbol *sym = nullptr;
2649   size_t num_syms = 0;
2650   std::string memory_symbol_name;
2651   uint32_t unmapped_local_symbols_found = 0;
2652 
2653   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2654   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2655   std::set<lldb::addr_t> resolver_addresses;
2656 
2657   if (dyld_trie_data.GetByteSize() > 0) {
2658     ConstString text_segment_name("__TEXT");
2659     SectionSP text_segment_sp =
2660         GetSectionList()->FindSectionByName(text_segment_name);
2661     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2662     if (text_segment_sp)
2663       text_segment_file_addr = text_segment_sp->GetFileAddress();
2664     std::vector<llvm::StringRef> nameSlices;
2665     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2666                      nameSlices, resolver_addresses, reexport_trie_entries,
2667                      external_sym_trie_entries);
2668   }
2669 
2670   typedef std::set<ConstString> IndirectSymbols;
2671   IndirectSymbols indirect_symbol_names;
2672 
2673 #if TARGET_OS_IPHONE
2674 
2675   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2676   // optimized by moving LOCAL symbols out of the memory mapped portion of
2677   // the DSC. The symbol information has all been retained, but it isn't
2678   // available in the normal nlist data. However, there *are* duplicate
2679   // entries of *some*
2680   // LOCAL symbols in the normal nlist data. To handle this situation
2681   // correctly, we must first attempt
2682   // to parse any DSC unmapped symbol information. If we find any, we set a
2683   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2684 
2685   if (IsSharedCacheBinary()) {
2686     // Before we can start mapping the DSC, we need to make certain the
2687     // target process is actually using the cache we can find.
2688 
2689     // Next we need to determine the correct path for the dyld shared cache.
2690 
2691     ArchSpec header_arch = GetArchitecture();
2692     char dsc_path[PATH_MAX];
2693     char dsc_path_development[PATH_MAX];
2694 
2695     snprintf(
2696         dsc_path, sizeof(dsc_path), "%s%s%s",
2697         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2698                                                    */
2699         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2700         header_arch.GetArchitectureName());
2701 
2702     snprintf(
2703         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2704         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2705                                                    */
2706         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2707         header_arch.GetArchitectureName(), ".development");
2708 
2709     FileSpec dsc_nondevelopment_filespec(dsc_path);
2710     FileSpec dsc_development_filespec(dsc_path_development);
2711     FileSpec dsc_filespec;
2712 
2713     UUID dsc_uuid;
2714     UUID process_shared_cache_uuid;
2715     addr_t process_shared_cache_base_addr;
2716 
2717     if (process) {
2718       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2719                                 process_shared_cache_uuid);
2720     }
2721 
2722     // First see if we can find an exact match for the inferior process
2723     // shared cache UUID in the development or non-development shared caches
2724     // on disk.
2725     if (process_shared_cache_uuid.IsValid()) {
2726       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2727         UUID dsc_development_uuid = GetSharedCacheUUID(
2728             dsc_development_filespec, byte_order, addr_byte_size);
2729         if (dsc_development_uuid.IsValid() &&
2730             dsc_development_uuid == process_shared_cache_uuid) {
2731           dsc_filespec = dsc_development_filespec;
2732           dsc_uuid = dsc_development_uuid;
2733         }
2734       }
2735       if (!dsc_uuid.IsValid() &&
2736           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2737         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2738             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2739         if (dsc_nondevelopment_uuid.IsValid() &&
2740             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2741           dsc_filespec = dsc_nondevelopment_filespec;
2742           dsc_uuid = dsc_nondevelopment_uuid;
2743         }
2744       }
2745     }
2746 
2747     // Failing a UUID match, prefer the development dyld_shared cache if both
2748     // are present.
2749     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2750       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2751         dsc_filespec = dsc_development_filespec;
2752       } else {
2753         dsc_filespec = dsc_nondevelopment_filespec;
2754       }
2755     }
2756 
2757     /* The dyld_cache_header has a pointer to the
2758        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2759        The dyld_cache_local_symbols_info structure gives us three things:
2760          1. The start and count of the nlist records in the dyld_shared_cache
2761        file
2762          2. The start and size of the strings for these nlist records
2763          3. The start and count of dyld_cache_local_symbols_entry entries
2764 
2765        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2766        dyld shared cache.
2767        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2768        the dyld shared cache.
2769        The dyld_cache_local_symbols_entry also lists the start of this
2770        dylib/framework's nlist records
2771        and the count of how many nlist records there are for this
2772        dylib/framework.
2773     */
2774 
2775     // Process the dyld shared cache header to find the unmapped symbols
2776 
2777     DataBufferSP dsc_data_sp = MapFileData(
2778         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2779     if (!dsc_uuid.IsValid()) {
2780       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2781     }
2782     if (dsc_data_sp) {
2783       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2784 
2785       bool uuid_match = true;
2786       if (dsc_uuid.IsValid() && process) {
2787         if (process_shared_cache_uuid.IsValid() &&
2788             dsc_uuid != process_shared_cache_uuid) {
2789           // The on-disk dyld_shared_cache file is not the same as the one in
2790           // this process' memory, don't use it.
2791           uuid_match = false;
2792           ModuleSP module_sp(GetModule());
2793           if (module_sp)
2794             module_sp->ReportWarning("process shared cache does not match "
2795                                      "on-disk dyld_shared_cache file, some "
2796                                      "symbol names will be missing.");
2797         }
2798       }
2799 
2800       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2801 
2802       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2803 
2804       // If the mappingOffset points to a location inside the header, we've
2805       // opened an old dyld shared cache, and should not proceed further.
2806       if (uuid_match &&
2807           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2808 
2809         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2810             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2811             mappingOffset);
2812 
2813         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2814                                             byte_order, addr_byte_size);
2815         offset = 0;
2816 
2817         // The File addresses (from the in-memory Mach-O load commands) for
2818         // the shared libraries in the shared library cache need to be
2819         // adjusted by an offset to match up with the dylibOffset identifying
2820         // field in the dyld_cache_local_symbol_entry's.  This offset is
2821         // recorded in mapping_offset_value.
2822         const uint64_t mapping_offset_value =
2823             dsc_mapping_info_data.GetU64(&offset);
2824 
2825         offset =
2826             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2827         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2828         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2829 
2830         if (localSymbolsOffset && localSymbolsSize) {
2831           // Map the local symbols
2832           DataBufferSP dsc_local_symbols_data_sp =
2833               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2834 
2835           if (dsc_local_symbols_data_sp) {
2836             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2837                                                  byte_order, addr_byte_size);
2838 
2839             offset = 0;
2840 
2841             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2842             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2843             UndefinedNameToDescMap undefined_name_to_desc;
2844             SymbolIndexToName reexport_shlib_needs_fixup;
2845 
2846             // Read the local_symbols_infos struct in one shot
2847             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2848             dsc_local_symbols_data.GetU32(&offset,
2849                                           &local_symbols_info.nlistOffset, 6);
2850 
2851             SectionSP text_section_sp(
2852                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2853 
2854             uint32_t header_file_offset =
2855                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2856 
2857             offset = local_symbols_info.entriesOffset;
2858             for (uint32_t entry_index = 0;
2859                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2860               struct lldb_copy_dyld_cache_local_symbols_entry
2861                   local_symbols_entry;
2862               local_symbols_entry.dylibOffset =
2863                   dsc_local_symbols_data.GetU32(&offset);
2864               local_symbols_entry.nlistStartIndex =
2865                   dsc_local_symbols_data.GetU32(&offset);
2866               local_symbols_entry.nlistCount =
2867                   dsc_local_symbols_data.GetU32(&offset);
2868 
2869               if (header_file_offset == local_symbols_entry.dylibOffset) {
2870                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2871 
2872                 // The normal nlist code cannot correctly size the Symbols
2873                 // array, we need to allocate it here.
2874                 sym = symtab->Resize(
2875                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2876                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2877                 num_syms = symtab->GetNumSymbols();
2878 
2879                 nlist_data_offset =
2880                     local_symbols_info.nlistOffset +
2881                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2882                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2883 
2884                 for (uint32_t nlist_index = 0;
2885                      nlist_index < local_symbols_entry.nlistCount;
2886                      nlist_index++) {
2887                   /////////////////////////////
2888                   {
2889                     llvm::Optional<struct nlist_64> nlist_maybe =
2890                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2891                                    nlist_byte_size);
2892                     if (!nlist_maybe)
2893                       break;
2894                     struct nlist_64 nlist = *nlist_maybe;
2895 
2896                     SymbolType type = eSymbolTypeInvalid;
2897                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2898                         string_table_offset + nlist.n_strx);
2899 
2900                     if (symbol_name == NULL) {
2901                       // No symbol should be NULL, even the symbols with no
2902                       // string values should have an offset zero which
2903                       // points to an empty C-string
2904                       Host::SystemLog(
2905                           Host::eSystemLogError,
2906                           "error: DSC unmapped local symbol[%u] has invalid "
2907                           "string table offset 0x%x in %s, ignoring symbol\n",
2908                           entry_index, nlist.n_strx,
2909                           module_sp->GetFileSpec().GetPath().c_str());
2910                       continue;
2911                     }
2912                     if (symbol_name[0] == '\0')
2913                       symbol_name = NULL;
2914 
2915                     const char *symbol_name_non_abi_mangled = NULL;
2916 
2917                     SectionSP symbol_section;
2918                     uint32_t symbol_byte_size = 0;
2919                     bool add_nlist = true;
2920                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2921                     bool demangled_is_synthesized = false;
2922                     bool is_gsym = false;
2923                     bool set_value = true;
2924 
2925                     assert(sym_idx < num_syms);
2926 
2927                     sym[sym_idx].SetDebug(is_debug);
2928 
2929                     if (is_debug) {
2930                       switch (nlist.n_type) {
2931                       case N_GSYM:
2932                         // global symbol: name,,NO_SECT,type,0
2933                         // Sometimes the N_GSYM value contains the address.
2934 
2935                         // FIXME: In the .o files, we have a GSYM and a debug
2936                         // symbol for all the ObjC data.  They
2937                         // have the same address, but we want to ensure that
2938                         // we always find only the real symbol, 'cause we
2939                         // don't currently correctly attribute the
2940                         // GSYM one to the ObjCClass/Ivar/MetaClass
2941                         // symbol type.  This is a temporary hack to make
2942                         // sure the ObjectiveC symbols get treated correctly.
2943                         // To do this right, we should coalesce all the GSYM
2944                         // & global symbols that have the same address.
2945 
2946                         is_gsym = true;
2947                         sym[sym_idx].SetExternal(true);
2948 
2949                         if (symbol_name && symbol_name[0] == '_' &&
2950                             symbol_name[1] == 'O') {
2951                           llvm::StringRef symbol_name_ref(symbol_name);
2952                           if (symbol_name_ref.startswith(
2953                                   g_objc_v2_prefix_class)) {
2954                             symbol_name_non_abi_mangled = symbol_name + 1;
2955                             symbol_name =
2956                                 symbol_name + g_objc_v2_prefix_class.size();
2957                             type = eSymbolTypeObjCClass;
2958                             demangled_is_synthesized = true;
2959 
2960                           } else if (symbol_name_ref.startswith(
2961                                          g_objc_v2_prefix_metaclass)) {
2962                             symbol_name_non_abi_mangled = symbol_name + 1;
2963                             symbol_name =
2964                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2965                             type = eSymbolTypeObjCMetaClass;
2966                             demangled_is_synthesized = true;
2967                           } else if (symbol_name_ref.startswith(
2968                                          g_objc_v2_prefix_ivar)) {
2969                             symbol_name_non_abi_mangled = symbol_name + 1;
2970                             symbol_name =
2971                                 symbol_name + g_objc_v2_prefix_ivar.size();
2972                             type = eSymbolTypeObjCIVar;
2973                             demangled_is_synthesized = true;
2974                           }
2975                         } else {
2976                           if (nlist.n_value != 0)
2977                             symbol_section = section_info.GetSection(
2978                                 nlist.n_sect, nlist.n_value);
2979                           type = eSymbolTypeData;
2980                         }
2981                         break;
2982 
2983                       case N_FNAME:
2984                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2985                         type = eSymbolTypeCompiler;
2986                         break;
2987 
2988                       case N_FUN:
2989                         // procedure: name,,n_sect,linenumber,address
2990                         if (symbol_name) {
2991                           type = eSymbolTypeCode;
2992                           symbol_section = section_info.GetSection(
2993                               nlist.n_sect, nlist.n_value);
2994 
2995                           N_FUN_addr_to_sym_idx.insert(
2996                               std::make_pair(nlist.n_value, sym_idx));
2997                           // We use the current number of symbols in the
2998                           // symbol table in lieu of using nlist_idx in case
2999                           // we ever start trimming entries out
3000                           N_FUN_indexes.push_back(sym_idx);
3001                         } else {
3002                           type = eSymbolTypeCompiler;
3003 
3004                           if (!N_FUN_indexes.empty()) {
3005                             // Copy the size of the function into the
3006                             // original
3007                             // STAB entry so we don't have
3008                             // to hunt for it later
3009                             symtab->SymbolAtIndex(N_FUN_indexes.back())
3010                                 ->SetByteSize(nlist.n_value);
3011                             N_FUN_indexes.pop_back();
3012                             // We don't really need the end function STAB as
3013                             // it contains the size which we already placed
3014                             // with the original symbol, so don't add it if
3015                             // we want a minimal symbol table
3016                             add_nlist = false;
3017                           }
3018                         }
3019                         break;
3020 
3021                       case N_STSYM:
3022                         // static symbol: name,,n_sect,type,address
3023                         N_STSYM_addr_to_sym_idx.insert(
3024                             std::make_pair(nlist.n_value, sym_idx));
3025                         symbol_section = section_info.GetSection(nlist.n_sect,
3026                                                                  nlist.n_value);
3027                         if (symbol_name && symbol_name[0]) {
3028                           type = ObjectFile::GetSymbolTypeFromName(
3029                               symbol_name + 1, eSymbolTypeData);
3030                         }
3031                         break;
3032 
3033                       case N_LCSYM:
3034                         // .lcomm symbol: name,,n_sect,type,address
3035                         symbol_section = section_info.GetSection(nlist.n_sect,
3036                                                                  nlist.n_value);
3037                         type = eSymbolTypeCommonBlock;
3038                         break;
3039 
3040                       case N_BNSYM:
3041                         // We use the current number of symbols in the symbol
3042                         // table in lieu of using nlist_idx in case we ever
3043                         // start trimming entries out Skip these if we want
3044                         // minimal symbol tables
3045                         add_nlist = false;
3046                         break;
3047 
3048                       case N_ENSYM:
3049                         // Set the size of the N_BNSYM to the terminating
3050                         // index of this N_ENSYM so that we can always skip
3051                         // the entire symbol if we need to navigate more
3052                         // quickly at the source level when parsing STABS
3053                         // Skip these if we want minimal symbol tables
3054                         add_nlist = false;
3055                         break;
3056 
3057                       case N_OPT:
3058                         // emitted with gcc2_compiled and in gcc source
3059                         type = eSymbolTypeCompiler;
3060                         break;
3061 
3062                       case N_RSYM:
3063                         // register sym: name,,NO_SECT,type,register
3064                         type = eSymbolTypeVariable;
3065                         break;
3066 
3067                       case N_SLINE:
3068                         // src line: 0,,n_sect,linenumber,address
3069                         symbol_section = section_info.GetSection(nlist.n_sect,
3070                                                                  nlist.n_value);
3071                         type = eSymbolTypeLineEntry;
3072                         break;
3073 
3074                       case N_SSYM:
3075                         // structure elt: name,,NO_SECT,type,struct_offset
3076                         type = eSymbolTypeVariableType;
3077                         break;
3078 
3079                       case N_SO:
3080                         // source file name
3081                         type = eSymbolTypeSourceFile;
3082                         if (symbol_name == NULL) {
3083                           add_nlist = false;
3084                           if (N_SO_index != UINT32_MAX) {
3085                             // Set the size of the N_SO to the terminating
3086                             // index of this N_SO so that we can always skip
3087                             // the entire N_SO if we need to navigate more
3088                             // quickly at the source level when parsing STABS
3089                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3090                             symbol_ptr->SetByteSize(sym_idx);
3091                             symbol_ptr->SetSizeIsSibling(true);
3092                           }
3093                           N_NSYM_indexes.clear();
3094                           N_INCL_indexes.clear();
3095                           N_BRAC_indexes.clear();
3096                           N_COMM_indexes.clear();
3097                           N_FUN_indexes.clear();
3098                           N_SO_index = UINT32_MAX;
3099                         } else {
3100                           // We use the current number of symbols in the
3101                           // symbol table in lieu of using nlist_idx in case
3102                           // we ever start trimming entries out
3103                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3104                           if (N_SO_has_full_path) {
3105                             if ((N_SO_index == sym_idx - 1) &&
3106                                 ((sym_idx - 1) < num_syms)) {
3107                               // We have two consecutive N_SO entries where
3108                               // the first contains a directory and the
3109                               // second contains a full path.
3110                               sym[sym_idx - 1].GetMangled().SetValue(
3111                                   ConstString(symbol_name), false);
3112                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3113                               add_nlist = false;
3114                             } else {
3115                               // This is the first entry in a N_SO that
3116                               // contains a directory or
3117                               // a full path to the source file
3118                               N_SO_index = sym_idx;
3119                             }
3120                           } else if ((N_SO_index == sym_idx - 1) &&
3121                                      ((sym_idx - 1) < num_syms)) {
3122                             // This is usually the second N_SO entry that
3123                             // contains just the filename, so here we combine
3124                             // it with the first one if we are minimizing the
3125                             // symbol table
3126                             const char *so_path = sym[sym_idx - 1]
3127                                                       .GetMangled()
3128                                                       .GetDemangledName()
3129                                                       .AsCString();
3130                             if (so_path && so_path[0]) {
3131                               std::string full_so_path(so_path);
3132                               const size_t double_slash_pos =
3133                                   full_so_path.find("//");
3134                               if (double_slash_pos != std::string::npos) {
3135                                 // The linker has been generating bad N_SO
3136                                 // entries with doubled up paths
3137                                 // in the format "%s%s" where the first
3138                                 // string in the DW_AT_comp_dir, and the
3139                                 // second is the directory for the source
3140                                 // file so you end up with a path that looks
3141                                 // like "/tmp/src//tmp/src/"
3142                                 FileSpec so_dir(so_path);
3143                                 if (!FileSystem::Instance().Exists(so_dir)) {
3144                                   so_dir.SetFile(
3145                                       &full_so_path[double_slash_pos + 1],
3146                                       FileSpec::Style::native);
3147                                   if (FileSystem::Instance().Exists(so_dir)) {
3148                                     // Trim off the incorrect path
3149                                     full_so_path.erase(0, double_slash_pos + 1);
3150                                   }
3151                                 }
3152                               }
3153                               if (*full_so_path.rbegin() != '/')
3154                                 full_so_path += '/';
3155                               full_so_path += symbol_name;
3156                               sym[sym_idx - 1].GetMangled().SetValue(
3157                                   ConstString(full_so_path.c_str()), false);
3158                               add_nlist = false;
3159                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3160                             }
3161                           } else {
3162                             // This could be a relative path to a N_SO
3163                             N_SO_index = sym_idx;
3164                           }
3165                         }
3166                         break;
3167 
3168                       case N_OSO:
3169                         // object file name: name,,0,0,st_mtime
3170                         type = eSymbolTypeObjectFile;
3171                         break;
3172 
3173                       case N_LSYM:
3174                         // local sym: name,,NO_SECT,type,offset
3175                         type = eSymbolTypeLocal;
3176                         break;
3177 
3178                       // INCL scopes
3179                       case N_BINCL:
3180                         // include file beginning: name,,NO_SECT,0,sum We use
3181                         // the current number of symbols in the symbol table
3182                         // in lieu of using nlist_idx in case we ever start
3183                         // trimming entries out
3184                         N_INCL_indexes.push_back(sym_idx);
3185                         type = eSymbolTypeScopeBegin;
3186                         break;
3187 
3188                       case N_EINCL:
3189                         // include file end: name,,NO_SECT,0,0
3190                         // Set the size of the N_BINCL to the terminating
3191                         // index of this N_EINCL so that we can always skip
3192                         // the entire symbol if we need to navigate more
3193                         // quickly at the source level when parsing STABS
3194                         if (!N_INCL_indexes.empty()) {
3195                           symbol_ptr =
3196                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3197                           symbol_ptr->SetByteSize(sym_idx + 1);
3198                           symbol_ptr->SetSizeIsSibling(true);
3199                           N_INCL_indexes.pop_back();
3200                         }
3201                         type = eSymbolTypeScopeEnd;
3202                         break;
3203 
3204                       case N_SOL:
3205                         // #included file name: name,,n_sect,0,address
3206                         type = eSymbolTypeHeaderFile;
3207 
3208                         // We currently don't use the header files on darwin
3209                         add_nlist = false;
3210                         break;
3211 
3212                       case N_PARAMS:
3213                         // compiler parameters: name,,NO_SECT,0,0
3214                         type = eSymbolTypeCompiler;
3215                         break;
3216 
3217                       case N_VERSION:
3218                         // compiler version: name,,NO_SECT,0,0
3219                         type = eSymbolTypeCompiler;
3220                         break;
3221 
3222                       case N_OLEVEL:
3223                         // compiler -O level: name,,NO_SECT,0,0
3224                         type = eSymbolTypeCompiler;
3225                         break;
3226 
3227                       case N_PSYM:
3228                         // parameter: name,,NO_SECT,type,offset
3229                         type = eSymbolTypeVariable;
3230                         break;
3231 
3232                       case N_ENTRY:
3233                         // alternate entry: name,,n_sect,linenumber,address
3234                         symbol_section = section_info.GetSection(nlist.n_sect,
3235                                                                  nlist.n_value);
3236                         type = eSymbolTypeLineEntry;
3237                         break;
3238 
3239                       // Left and Right Braces
3240                       case N_LBRAC:
3241                         // left bracket: 0,,NO_SECT,nesting level,address We
3242                         // use the current number of symbols in the symbol
3243                         // table in lieu of using nlist_idx in case we ever
3244                         // start trimming entries out
3245                         symbol_section = section_info.GetSection(nlist.n_sect,
3246                                                                  nlist.n_value);
3247                         N_BRAC_indexes.push_back(sym_idx);
3248                         type = eSymbolTypeScopeBegin;
3249                         break;
3250 
3251                       case N_RBRAC:
3252                         // right bracket: 0,,NO_SECT,nesting level,address
3253                         // Set the size of the N_LBRAC to the terminating
3254                         // index of this N_RBRAC so that we can always skip
3255                         // the entire symbol if we need to navigate more
3256                         // quickly at the source level when parsing STABS
3257                         symbol_section = section_info.GetSection(nlist.n_sect,
3258                                                                  nlist.n_value);
3259                         if (!N_BRAC_indexes.empty()) {
3260                           symbol_ptr =
3261                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3262                           symbol_ptr->SetByteSize(sym_idx + 1);
3263                           symbol_ptr->SetSizeIsSibling(true);
3264                           N_BRAC_indexes.pop_back();
3265                         }
3266                         type = eSymbolTypeScopeEnd;
3267                         break;
3268 
3269                       case N_EXCL:
3270                         // deleted include file: name,,NO_SECT,0,sum
3271                         type = eSymbolTypeHeaderFile;
3272                         break;
3273 
3274                       // COMM scopes
3275                       case N_BCOMM:
3276                         // begin common: name,,NO_SECT,0,0
3277                         // We use the current number of symbols in the symbol
3278                         // table in lieu of using nlist_idx in case we ever
3279                         // start trimming entries out
3280                         type = eSymbolTypeScopeBegin;
3281                         N_COMM_indexes.push_back(sym_idx);
3282                         break;
3283 
3284                       case N_ECOML:
3285                         // end common (local name): 0,,n_sect,0,address
3286                         symbol_section = section_info.GetSection(nlist.n_sect,
3287                                                                  nlist.n_value);
3288                         // Fall through
3289 
3290                       case N_ECOMM:
3291                         // end common: name,,n_sect,0,0
3292                         // Set the size of the N_BCOMM to the terminating
3293                         // index of this N_ECOMM/N_ECOML so that we can
3294                         // always skip the entire symbol if we need to
3295                         // navigate more quickly at the source level when
3296                         // parsing STABS
3297                         if (!N_COMM_indexes.empty()) {
3298                           symbol_ptr =
3299                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3300                           symbol_ptr->SetByteSize(sym_idx + 1);
3301                           symbol_ptr->SetSizeIsSibling(true);
3302                           N_COMM_indexes.pop_back();
3303                         }
3304                         type = eSymbolTypeScopeEnd;
3305                         break;
3306 
3307                       case N_LENG:
3308                         // second stab entry with length information
3309                         type = eSymbolTypeAdditional;
3310                         break;
3311 
3312                       default:
3313                         break;
3314                       }
3315                     } else {
3316                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3317                       uint8_t n_type = N_TYPE & nlist.n_type;
3318                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3319 
3320                       switch (n_type) {
3321                       case N_INDR: {
3322                         const char *reexport_name_cstr =
3323                             strtab_data.PeekCStr(nlist.n_value);
3324                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3325                           type = eSymbolTypeReExported;
3326                           ConstString reexport_name(
3327                               reexport_name_cstr +
3328                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3329                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3330                           set_value = false;
3331                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3332                           indirect_symbol_names.insert(ConstString(
3333                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3334                         } else
3335                           type = eSymbolTypeUndefined;
3336                       } break;
3337 
3338                       case N_UNDF:
3339                         if (symbol_name && symbol_name[0]) {
3340                           ConstString undefined_name(
3341                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3342                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3343                         }
3344                       // Fall through
3345                       case N_PBUD:
3346                         type = eSymbolTypeUndefined;
3347                         break;
3348 
3349                       case N_ABS:
3350                         type = eSymbolTypeAbsolute;
3351                         break;
3352 
3353                       case N_SECT: {
3354                         symbol_section = section_info.GetSection(nlist.n_sect,
3355                                                                  nlist.n_value);
3356 
3357                         if (symbol_section == NULL) {
3358                           // TODO: warn about this?
3359                           add_nlist = false;
3360                           break;
3361                         }
3362 
3363                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3364                           type = eSymbolTypeException;
3365                         } else {
3366                           uint32_t section_type =
3367                               symbol_section->Get() & SECTION_TYPE;
3368 
3369                           switch (section_type) {
3370                           case S_CSTRING_LITERALS:
3371                             type = eSymbolTypeData;
3372                             break; // section with only literal C strings
3373                           case S_4BYTE_LITERALS:
3374                             type = eSymbolTypeData;
3375                             break; // section with only 4 byte literals
3376                           case S_8BYTE_LITERALS:
3377                             type = eSymbolTypeData;
3378                             break; // section with only 8 byte literals
3379                           case S_LITERAL_POINTERS:
3380                             type = eSymbolTypeTrampoline;
3381                             break; // section with only pointers to literals
3382                           case S_NON_LAZY_SYMBOL_POINTERS:
3383                             type = eSymbolTypeTrampoline;
3384                             break; // section with only non-lazy symbol
3385                                    // pointers
3386                           case S_LAZY_SYMBOL_POINTERS:
3387                             type = eSymbolTypeTrampoline;
3388                             break; // section with only lazy symbol pointers
3389                           case S_SYMBOL_STUBS:
3390                             type = eSymbolTypeTrampoline;
3391                             break; // section with only symbol stubs, byte
3392                                    // size of stub in the reserved2 field
3393                           case S_MOD_INIT_FUNC_POINTERS:
3394                             type = eSymbolTypeCode;
3395                             break; // section with only function pointers for
3396                                    // initialization
3397                           case S_MOD_TERM_FUNC_POINTERS:
3398                             type = eSymbolTypeCode;
3399                             break; // section with only function pointers for
3400                                    // termination
3401                           case S_INTERPOSING:
3402                             type = eSymbolTypeTrampoline;
3403                             break; // section with only pairs of function
3404                                    // pointers for interposing
3405                           case S_16BYTE_LITERALS:
3406                             type = eSymbolTypeData;
3407                             break; // section with only 16 byte literals
3408                           case S_DTRACE_DOF:
3409                             type = eSymbolTypeInstrumentation;
3410                             break;
3411                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3412                             type = eSymbolTypeTrampoline;
3413                             break;
3414                           default:
3415                             switch (symbol_section->GetType()) {
3416                             case lldb::eSectionTypeCode:
3417                               type = eSymbolTypeCode;
3418                               break;
3419                             case eSectionTypeData:
3420                             case eSectionTypeDataCString: // Inlined C string
3421                                                           // data
3422                             case eSectionTypeDataCStringPointers: // Pointers
3423                                                                   // to C
3424                                                                   // string
3425                                                                   // data
3426                             case eSectionTypeDataSymbolAddress:   // Address of
3427                                                                   // a symbol in
3428                                                                   // the symbol
3429                                                                   // table
3430                             case eSectionTypeData4:
3431                             case eSectionTypeData8:
3432                             case eSectionTypeData16:
3433                               type = eSymbolTypeData;
3434                               break;
3435                             default:
3436                               break;
3437                             }
3438                             break;
3439                           }
3440 
3441                           if (type == eSymbolTypeInvalid) {
3442                             const char *symbol_sect_name =
3443                                 symbol_section->GetName().AsCString();
3444                             if (symbol_section->IsDescendant(
3445                                     text_section_sp.get())) {
3446                               if (symbol_section->IsClear(
3447                                       S_ATTR_PURE_INSTRUCTIONS |
3448                                       S_ATTR_SELF_MODIFYING_CODE |
3449                                       S_ATTR_SOME_INSTRUCTIONS))
3450                                 type = eSymbolTypeData;
3451                               else
3452                                 type = eSymbolTypeCode;
3453                             } else if (symbol_section->IsDescendant(
3454                                            data_section_sp.get()) ||
3455                                        symbol_section->IsDescendant(
3456                                            data_dirty_section_sp.get()) ||
3457                                        symbol_section->IsDescendant(
3458                                            data_const_section_sp.get())) {
3459                               if (symbol_sect_name &&
3460                                   ::strstr(symbol_sect_name, "__objc") ==
3461                                       symbol_sect_name) {
3462                                 type = eSymbolTypeRuntime;
3463 
3464                                 if (symbol_name) {
3465                                   llvm::StringRef symbol_name_ref(symbol_name);
3466                                   if (symbol_name_ref.startswith("_OBJC_")) {
3467                                     llvm::StringRef
3468                                         g_objc_v2_prefix_class(
3469                                             "_OBJC_CLASS_$_");
3470                                     llvm::StringRef
3471                                         g_objc_v2_prefix_metaclass(
3472                                             "_OBJC_METACLASS_$_");
3473                                     llvm::StringRef
3474                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3475                                     if (symbol_name_ref.startswith(
3476                                             g_objc_v2_prefix_class)) {
3477                                       symbol_name_non_abi_mangled =
3478                                           symbol_name + 1;
3479                                       symbol_name =
3480                                           symbol_name +
3481                                           g_objc_v2_prefix_class.size();
3482                                       type = eSymbolTypeObjCClass;
3483                                       demangled_is_synthesized = true;
3484                                     } else if (
3485                                         symbol_name_ref.startswith(
3486                                             g_objc_v2_prefix_metaclass)) {
3487                                       symbol_name_non_abi_mangled =
3488                                           symbol_name + 1;
3489                                       symbol_name =
3490                                           symbol_name +
3491                                           g_objc_v2_prefix_metaclass.size();
3492                                       type = eSymbolTypeObjCMetaClass;
3493                                       demangled_is_synthesized = true;
3494                                     } else if (symbol_name_ref.startswith(
3495                                                    g_objc_v2_prefix_ivar)) {
3496                                       symbol_name_non_abi_mangled =
3497                                           symbol_name + 1;
3498                                       symbol_name =
3499                                           symbol_name +
3500                                           g_objc_v2_prefix_ivar.size();
3501                                       type = eSymbolTypeObjCIVar;
3502                                       demangled_is_synthesized = true;
3503                                     }
3504                                   }
3505                                 }
3506                               } else if (symbol_sect_name &&
3507                                          ::strstr(symbol_sect_name,
3508                                                   "__gcc_except_tab") ==
3509                                              symbol_sect_name) {
3510                                 type = eSymbolTypeException;
3511                               } else {
3512                                 type = eSymbolTypeData;
3513                               }
3514                             } else if (symbol_sect_name &&
3515                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3516                                            symbol_sect_name) {
3517                               type = eSymbolTypeTrampoline;
3518                             } else if (symbol_section->IsDescendant(
3519                                            objc_section_sp.get())) {
3520                               type = eSymbolTypeRuntime;
3521                               if (symbol_name && symbol_name[0] == '.') {
3522                                 llvm::StringRef symbol_name_ref(symbol_name);
3523                                 llvm::StringRef
3524                                     g_objc_v1_prefix_class(".objc_class_name_");
3525                                 if (symbol_name_ref.startswith(
3526                                         g_objc_v1_prefix_class)) {
3527                                   symbol_name_non_abi_mangled = symbol_name;
3528                                   symbol_name = symbol_name +
3529                                                 g_objc_v1_prefix_class.size();
3530                                   type = eSymbolTypeObjCClass;
3531                                   demangled_is_synthesized = true;
3532                                 }
3533                               }
3534                             }
3535                           }
3536                         }
3537                       } break;
3538                       }
3539                     }
3540 
3541                     if (add_nlist) {
3542                       uint64_t symbol_value = nlist.n_value;
3543                       if (symbol_name_non_abi_mangled) {
3544                         sym[sym_idx].GetMangled().SetMangledName(
3545                             ConstString(symbol_name_non_abi_mangled));
3546                         sym[sym_idx].GetMangled().SetDemangledName(
3547                             ConstString(symbol_name));
3548                       } else {
3549                         bool symbol_name_is_mangled = false;
3550 
3551                         if (symbol_name && symbol_name[0] == '_') {
3552                           symbol_name_is_mangled = symbol_name[1] == '_';
3553                           symbol_name++; // Skip the leading underscore
3554                         }
3555 
3556                         if (symbol_name) {
3557                           ConstString const_symbol_name(symbol_name);
3558                           sym[sym_idx].GetMangled().SetValue(
3559                               const_symbol_name, symbol_name_is_mangled);
3560                           if (is_gsym && is_debug) {
3561                             const char *gsym_name =
3562                                 sym[sym_idx]
3563                                     .GetMangled()
3564                                     .GetName(Mangled::ePreferMangled)
3565                                     .GetCString();
3566                             if (gsym_name)
3567                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3568                           }
3569                         }
3570                       }
3571                       if (symbol_section) {
3572                         const addr_t section_file_addr =
3573                             symbol_section->GetFileAddress();
3574                         if (symbol_byte_size == 0 &&
3575                             function_starts_count > 0) {
3576                           addr_t symbol_lookup_file_addr = nlist.n_value;
3577                           // Do an exact address match for non-ARM addresses,
3578                           // else get the closest since the symbol might be a
3579                           // thumb symbol which has an address with bit zero
3580                           // set
3581                           FunctionStarts::Entry *func_start_entry =
3582                               function_starts.FindEntry(symbol_lookup_file_addr,
3583                                                         !is_arm);
3584                           if (is_arm && func_start_entry) {
3585                             // Verify that the function start address is the
3586                             // symbol address (ARM) or the symbol address + 1
3587                             // (thumb)
3588                             if (func_start_entry->addr !=
3589                                     symbol_lookup_file_addr &&
3590                                 func_start_entry->addr !=
3591                                     (symbol_lookup_file_addr + 1)) {
3592                               // Not the right entry, NULL it out...
3593                               func_start_entry = NULL;
3594                             }
3595                           }
3596                           if (func_start_entry) {
3597                             func_start_entry->data = true;
3598 
3599                             addr_t symbol_file_addr = func_start_entry->addr;
3600                             uint32_t symbol_flags = 0;
3601                             if (is_arm) {
3602                               if (symbol_file_addr & 1)
3603                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3604                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3605                             }
3606 
3607                             const FunctionStarts::Entry *next_func_start_entry =
3608                                 function_starts.FindNextEntry(func_start_entry);
3609                             const addr_t section_end_file_addr =
3610                                 section_file_addr +
3611                                 symbol_section->GetByteSize();
3612                             if (next_func_start_entry) {
3613                               addr_t next_symbol_file_addr =
3614                                   next_func_start_entry->addr;
3615                               // Be sure the clear the Thumb address bit when
3616                               // we calculate the size from the current and
3617                               // next address
3618                               if (is_arm)
3619                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3620                               symbol_byte_size = std::min<lldb::addr_t>(
3621                                   next_symbol_file_addr - symbol_file_addr,
3622                                   section_end_file_addr - symbol_file_addr);
3623                             } else {
3624                               symbol_byte_size =
3625                                   section_end_file_addr - symbol_file_addr;
3626                             }
3627                           }
3628                         }
3629                         symbol_value -= section_file_addr;
3630                       }
3631 
3632                       if (is_debug == false) {
3633                         if (type == eSymbolTypeCode) {
3634                           // See if we can find a N_FUN entry for any code
3635                           // symbols. If we do find a match, and the name
3636                           // matches, then we can merge the two into just the
3637                           // function symbol to avoid duplicate entries in
3638                           // the symbol table
3639                           auto range =
3640                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3641                           if (range.first != range.second) {
3642                             bool found_it = false;
3643                             for (auto pos = range.first; pos != range.second;
3644                                  ++pos) {
3645                               if (sym[sym_idx].GetMangled().GetName(
3646                                       Mangled::ePreferMangled) ==
3647                                   sym[pos->second].GetMangled().GetName(
3648                                       Mangled::ePreferMangled)) {
3649                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3650                                 // We just need the flags from the linker
3651                                 // symbol, so put these flags
3652                                 // into the N_FUN flags to avoid duplicate
3653                                 // symbols in the symbol table
3654                                 sym[pos->second].SetExternal(
3655                                     sym[sym_idx].IsExternal());
3656                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3657                                                           nlist.n_desc);
3658                                 if (resolver_addresses.find(nlist.n_value) !=
3659                                     resolver_addresses.end())
3660                                   sym[pos->second].SetType(eSymbolTypeResolver);
3661                                 sym[sym_idx].Clear();
3662                                 found_it = true;
3663                                 break;
3664                               }
3665                             }
3666                             if (found_it)
3667                               continue;
3668                           } else {
3669                             if (resolver_addresses.find(nlist.n_value) !=
3670                                 resolver_addresses.end())
3671                               type = eSymbolTypeResolver;
3672                           }
3673                         } else if (type == eSymbolTypeData ||
3674                                    type == eSymbolTypeObjCClass ||
3675                                    type == eSymbolTypeObjCMetaClass ||
3676                                    type == eSymbolTypeObjCIVar) {
3677                           // See if we can find a N_STSYM entry for any data
3678                           // symbols. If we do find a match, and the name
3679                           // matches, then we can merge the two into just the
3680                           // Static symbol to avoid duplicate entries in the
3681                           // symbol table
3682                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3683                               nlist.n_value);
3684                           if (range.first != range.second) {
3685                             bool found_it = false;
3686                             for (auto pos = range.first; pos != range.second;
3687                                  ++pos) {
3688                               if (sym[sym_idx].GetMangled().GetName(
3689                                       Mangled::ePreferMangled) ==
3690                                   sym[pos->second].GetMangled().GetName(
3691                                       Mangled::ePreferMangled)) {
3692                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3693                                 // We just need the flags from the linker
3694                                 // symbol, so put these flags
3695                                 // into the N_STSYM flags to avoid duplicate
3696                                 // symbols in the symbol table
3697                                 sym[pos->second].SetExternal(
3698                                     sym[sym_idx].IsExternal());
3699                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3700                                                           nlist.n_desc);
3701                                 sym[sym_idx].Clear();
3702                                 found_it = true;
3703                                 break;
3704                               }
3705                             }
3706                             if (found_it)
3707                               continue;
3708                           } else {
3709                             const char *gsym_name =
3710                                 sym[sym_idx]
3711                                     .GetMangled()
3712                                     .GetName(Mangled::ePreferMangled)
3713                                     .GetCString();
3714                             if (gsym_name) {
3715                               // Combine N_GSYM stab entries with the non
3716                               // stab symbol
3717                               ConstNameToSymbolIndexMap::const_iterator pos =
3718                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3719                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3720                                 const uint32_t GSYM_sym_idx = pos->second;
3721                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3722                                     GSYM_sym_idx;
3723                                 // Copy the address, because often the N_GSYM
3724                                 // address has an invalid address of zero
3725                                 // when the global is a common symbol
3726                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3727                                     symbol_section);
3728                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3729                                     symbol_value);
3730                                 add_symbol_addr(sym[GSYM_sym_idx]
3731                                                     .GetAddress()
3732                                                     .GetFileAddress());
3733                                 // We just need the flags from the linker
3734                                 // symbol, so put these flags
3735                                 // into the N_GSYM flags to avoid duplicate
3736                                 // symbols in the symbol table
3737                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3738                                                            nlist.n_desc);
3739                                 sym[sym_idx].Clear();
3740                                 continue;
3741                               }
3742                             }
3743                           }
3744                         }
3745                       }
3746 
3747                       sym[sym_idx].SetID(nlist_idx);
3748                       sym[sym_idx].SetType(type);
3749                       if (set_value) {
3750                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3751                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3752                         add_symbol_addr(
3753                             sym[sym_idx].GetAddress().GetFileAddress());
3754                       }
3755                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3756 
3757                       if (symbol_byte_size > 0)
3758                         sym[sym_idx].SetByteSize(symbol_byte_size);
3759 
3760                       if (demangled_is_synthesized)
3761                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3762                       ++sym_idx;
3763                     } else {
3764                       sym[sym_idx].Clear();
3765                     }
3766                   }
3767                   /////////////////////////////
3768                 }
3769                 break; // No more entries to consider
3770               }
3771             }
3772 
3773             for (const auto &pos : reexport_shlib_needs_fixup) {
3774               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3775               if (undef_pos != undefined_name_to_desc.end()) {
3776                 const uint8_t dylib_ordinal =
3777                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3778                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3779                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3780                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3781               }
3782             }
3783           }
3784         }
3785       }
3786     }
3787   }
3788 
3789   // Must reset this in case it was mutated above!
3790   nlist_data_offset = 0;
3791 #endif
3792 
3793   if (nlist_data.GetByteSize() > 0) {
3794 
3795     // If the sym array was not created while parsing the DSC unmapped
3796     // symbols, create it now.
3797     if (sym == nullptr) {
3798       sym =
3799           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3800       num_syms = symtab->GetNumSymbols();
3801     }
3802 
3803     if (unmapped_local_symbols_found) {
3804       assert(m_dysymtab.ilocalsym == 0);
3805       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3806       nlist_idx = m_dysymtab.nlocalsym;
3807     } else {
3808       nlist_idx = 0;
3809     }
3810 
3811     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3812     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3813     UndefinedNameToDescMap undefined_name_to_desc;
3814     SymbolIndexToName reexport_shlib_needs_fixup;
3815 
3816     // Symtab parsing is a huge mess. Everything is entangled and the code
3817     // requires access to a ridiculous amount of variables. LLDB depends
3818     // heavily on the proper merging of symbols and to get that right we need
3819     // to make sure we have parsed all the debug symbols first. Therefore we
3820     // invoke the lambda twice, once to parse only the debug symbols and then
3821     // once more to parse the remaining symbols.
3822     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3823                                  bool debug_only) {
3824       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3825       if (is_debug != debug_only)
3826         return true;
3827 
3828       const char *symbol_name_non_abi_mangled = nullptr;
3829       const char *symbol_name = nullptr;
3830 
3831       if (have_strtab_data) {
3832         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3833 
3834         if (symbol_name == nullptr) {
3835           // No symbol should be NULL, even the symbols with no string values
3836           // should have an offset zero which points to an empty C-string
3837           Host::SystemLog(Host::eSystemLogError,
3838                           "error: symbol[%u] has invalid string table offset "
3839                           "0x%x in %s, ignoring symbol\n",
3840                           nlist_idx, nlist.n_strx,
3841                           module_sp->GetFileSpec().GetPath().c_str());
3842           return true;
3843         }
3844         if (symbol_name[0] == '\0')
3845           symbol_name = nullptr;
3846       } else {
3847         const addr_t str_addr = strtab_addr + nlist.n_strx;
3848         Status str_error;
3849         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3850                                            str_error))
3851           symbol_name = memory_symbol_name.c_str();
3852       }
3853 
3854       SymbolType type = eSymbolTypeInvalid;
3855       SectionSP symbol_section;
3856       lldb::addr_t symbol_byte_size = 0;
3857       bool add_nlist = true;
3858       bool is_gsym = false;
3859       bool demangled_is_synthesized = false;
3860       bool set_value = true;
3861 
3862       assert(sym_idx < num_syms);
3863       sym[sym_idx].SetDebug(is_debug);
3864 
3865       if (is_debug) {
3866         switch (nlist.n_type) {
3867         case N_GSYM:
3868           // global symbol: name,,NO_SECT,type,0
3869           // Sometimes the N_GSYM value contains the address.
3870 
3871           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3872           // the ObjC data.  They
3873           // have the same address, but we want to ensure that we always find
3874           // only the real symbol, 'cause we don't currently correctly
3875           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3876           // type.  This is a temporary hack to make sure the ObjectiveC
3877           // symbols get treated correctly.  To do this right, we should
3878           // coalesce all the GSYM & global symbols that have the same
3879           // address.
3880           is_gsym = true;
3881           sym[sym_idx].SetExternal(true);
3882 
3883           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3884             llvm::StringRef symbol_name_ref(symbol_name);
3885             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3886               symbol_name_non_abi_mangled = symbol_name + 1;
3887               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3888               type = eSymbolTypeObjCClass;
3889               demangled_is_synthesized = true;
3890 
3891             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3892               symbol_name_non_abi_mangled = symbol_name + 1;
3893               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3894               type = eSymbolTypeObjCMetaClass;
3895               demangled_is_synthesized = true;
3896             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3897               symbol_name_non_abi_mangled = symbol_name + 1;
3898               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3899               type = eSymbolTypeObjCIVar;
3900               demangled_is_synthesized = true;
3901             }
3902           } else {
3903             if (nlist.n_value != 0)
3904               symbol_section =
3905                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3906             type = eSymbolTypeData;
3907           }
3908           break;
3909 
3910         case N_FNAME:
3911           // procedure name (f77 kludge): name,,NO_SECT,0,0
3912           type = eSymbolTypeCompiler;
3913           break;
3914 
3915         case N_FUN:
3916           // procedure: name,,n_sect,linenumber,address
3917           if (symbol_name) {
3918             type = eSymbolTypeCode;
3919             symbol_section =
3920                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3921 
3922             N_FUN_addr_to_sym_idx.insert(
3923                 std::make_pair(nlist.n_value, sym_idx));
3924             // We use the current number of symbols in the symbol table in
3925             // lieu of using nlist_idx in case we ever start trimming entries
3926             // out
3927             N_FUN_indexes.push_back(sym_idx);
3928           } else {
3929             type = eSymbolTypeCompiler;
3930 
3931             if (!N_FUN_indexes.empty()) {
3932               // Copy the size of the function into the original STAB entry
3933               // so we don't have to hunt for it later
3934               symtab->SymbolAtIndex(N_FUN_indexes.back())
3935                   ->SetByteSize(nlist.n_value);
3936               N_FUN_indexes.pop_back();
3937               // We don't really need the end function STAB as it contains
3938               // the size which we already placed with the original symbol,
3939               // so don't add it if we want a minimal symbol table
3940               add_nlist = false;
3941             }
3942           }
3943           break;
3944 
3945         case N_STSYM:
3946           // static symbol: name,,n_sect,type,address
3947           N_STSYM_addr_to_sym_idx.insert(
3948               std::make_pair(nlist.n_value, sym_idx));
3949           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3950           if (symbol_name && symbol_name[0]) {
3951             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3952                                                      eSymbolTypeData);
3953           }
3954           break;
3955 
3956         case N_LCSYM:
3957           // .lcomm symbol: name,,n_sect,type,address
3958           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3959           type = eSymbolTypeCommonBlock;
3960           break;
3961 
3962         case N_BNSYM:
3963           // We use the current number of symbols in the symbol table in lieu
3964           // of using nlist_idx in case we ever start trimming entries out
3965           // Skip these if we want minimal symbol tables
3966           add_nlist = false;
3967           break;
3968 
3969         case N_ENSYM:
3970           // Set the size of the N_BNSYM to the terminating index of this
3971           // N_ENSYM so that we can always skip the entire symbol if we need
3972           // to navigate more quickly at the source level when parsing STABS
3973           // Skip these if we want minimal symbol tables
3974           add_nlist = false;
3975           break;
3976 
3977         case N_OPT:
3978           // emitted with gcc2_compiled and in gcc source
3979           type = eSymbolTypeCompiler;
3980           break;
3981 
3982         case N_RSYM:
3983           // register sym: name,,NO_SECT,type,register
3984           type = eSymbolTypeVariable;
3985           break;
3986 
3987         case N_SLINE:
3988           // src line: 0,,n_sect,linenumber,address
3989           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3990           type = eSymbolTypeLineEntry;
3991           break;
3992 
3993         case N_SSYM:
3994           // structure elt: name,,NO_SECT,type,struct_offset
3995           type = eSymbolTypeVariableType;
3996           break;
3997 
3998         case N_SO:
3999           // source file name
4000           type = eSymbolTypeSourceFile;
4001           if (symbol_name == nullptr) {
4002             add_nlist = false;
4003             if (N_SO_index != UINT32_MAX) {
4004               // Set the size of the N_SO to the terminating index of this
4005               // N_SO so that we can always skip the entire N_SO if we need
4006               // to navigate more quickly at the source level when parsing
4007               // STABS
4008               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
4009               symbol_ptr->SetByteSize(sym_idx);
4010               symbol_ptr->SetSizeIsSibling(true);
4011             }
4012             N_NSYM_indexes.clear();
4013             N_INCL_indexes.clear();
4014             N_BRAC_indexes.clear();
4015             N_COMM_indexes.clear();
4016             N_FUN_indexes.clear();
4017             N_SO_index = UINT32_MAX;
4018           } else {
4019             // We use the current number of symbols in the symbol table in
4020             // lieu of using nlist_idx in case we ever start trimming entries
4021             // out
4022             const bool N_SO_has_full_path = symbol_name[0] == '/';
4023             if (N_SO_has_full_path) {
4024               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
4025                 // We have two consecutive N_SO entries where the first
4026                 // contains a directory and the second contains a full path.
4027                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
4028                                                        false);
4029                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4030                 add_nlist = false;
4031               } else {
4032                 // This is the first entry in a N_SO that contains a
4033                 // directory or a full path to the source file
4034                 N_SO_index = sym_idx;
4035               }
4036             } else if ((N_SO_index == sym_idx - 1) &&
4037                        ((sym_idx - 1) < num_syms)) {
4038               // This is usually the second N_SO entry that contains just the
4039               // filename, so here we combine it with the first one if we are
4040               // minimizing the symbol table
4041               const char *so_path =
4042                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
4043               if (so_path && so_path[0]) {
4044                 std::string full_so_path(so_path);
4045                 const size_t double_slash_pos = full_so_path.find("//");
4046                 if (double_slash_pos != std::string::npos) {
4047                   // The linker has been generating bad N_SO entries with
4048                   // doubled up paths in the format "%s%s" where the first
4049                   // string in the DW_AT_comp_dir, and the second is the
4050                   // directory for the source file so you end up with a path
4051                   // that looks like "/tmp/src//tmp/src/"
4052                   FileSpec so_dir(so_path);
4053                   if (!FileSystem::Instance().Exists(so_dir)) {
4054                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4055                                    FileSpec::Style::native);
4056                     if (FileSystem::Instance().Exists(so_dir)) {
4057                       // Trim off the incorrect path
4058                       full_so_path.erase(0, double_slash_pos + 1);
4059                     }
4060                   }
4061                 }
4062                 if (*full_so_path.rbegin() != '/')
4063                   full_so_path += '/';
4064                 full_so_path += symbol_name;
4065                 sym[sym_idx - 1].GetMangled().SetValue(
4066                     ConstString(full_so_path.c_str()), false);
4067                 add_nlist = false;
4068                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4069               }
4070             } else {
4071               // This could be a relative path to a N_SO
4072               N_SO_index = sym_idx;
4073             }
4074           }
4075           break;
4076 
4077         case N_OSO:
4078           // object file name: name,,0,0,st_mtime
4079           type = eSymbolTypeObjectFile;
4080           break;
4081 
4082         case N_LSYM:
4083           // local sym: name,,NO_SECT,type,offset
4084           type = eSymbolTypeLocal;
4085           break;
4086 
4087         // INCL scopes
4088         case N_BINCL:
4089           // include file beginning: name,,NO_SECT,0,sum We use the current
4090           // number of symbols in the symbol table in lieu of using nlist_idx
4091           // in case we ever start trimming entries out
4092           N_INCL_indexes.push_back(sym_idx);
4093           type = eSymbolTypeScopeBegin;
4094           break;
4095 
4096         case N_EINCL:
4097           // include file end: name,,NO_SECT,0,0
4098           // Set the size of the N_BINCL to the terminating index of this
4099           // N_EINCL so that we can always skip the entire symbol if we need
4100           // to navigate more quickly at the source level when parsing STABS
4101           if (!N_INCL_indexes.empty()) {
4102             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4103             symbol_ptr->SetByteSize(sym_idx + 1);
4104             symbol_ptr->SetSizeIsSibling(true);
4105             N_INCL_indexes.pop_back();
4106           }
4107           type = eSymbolTypeScopeEnd;
4108           break;
4109 
4110         case N_SOL:
4111           // #included file name: name,,n_sect,0,address
4112           type = eSymbolTypeHeaderFile;
4113 
4114           // We currently don't use the header files on darwin
4115           add_nlist = false;
4116           break;
4117 
4118         case N_PARAMS:
4119           // compiler parameters: name,,NO_SECT,0,0
4120           type = eSymbolTypeCompiler;
4121           break;
4122 
4123         case N_VERSION:
4124           // compiler version: name,,NO_SECT,0,0
4125           type = eSymbolTypeCompiler;
4126           break;
4127 
4128         case N_OLEVEL:
4129           // compiler -O level: name,,NO_SECT,0,0
4130           type = eSymbolTypeCompiler;
4131           break;
4132 
4133         case N_PSYM:
4134           // parameter: name,,NO_SECT,type,offset
4135           type = eSymbolTypeVariable;
4136           break;
4137 
4138         case N_ENTRY:
4139           // alternate entry: name,,n_sect,linenumber,address
4140           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4141           type = eSymbolTypeLineEntry;
4142           break;
4143 
4144         // Left and Right Braces
4145         case N_LBRAC:
4146           // left bracket: 0,,NO_SECT,nesting level,address We use the
4147           // current number of symbols in the symbol table in lieu of using
4148           // nlist_idx in case we ever start trimming entries out
4149           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4150           N_BRAC_indexes.push_back(sym_idx);
4151           type = eSymbolTypeScopeBegin;
4152           break;
4153 
4154         case N_RBRAC:
4155           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4156           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4157           // can always skip the entire symbol if we need to navigate more
4158           // quickly at the source level when parsing STABS
4159           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4160           if (!N_BRAC_indexes.empty()) {
4161             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4162             symbol_ptr->SetByteSize(sym_idx + 1);
4163             symbol_ptr->SetSizeIsSibling(true);
4164             N_BRAC_indexes.pop_back();
4165           }
4166           type = eSymbolTypeScopeEnd;
4167           break;
4168 
4169         case N_EXCL:
4170           // deleted include file: name,,NO_SECT,0,sum
4171           type = eSymbolTypeHeaderFile;
4172           break;
4173 
4174         // COMM scopes
4175         case N_BCOMM:
4176           // begin common: name,,NO_SECT,0,0
4177           // We use the current number of symbols in the symbol table in lieu
4178           // of using nlist_idx in case we ever start trimming entries out
4179           type = eSymbolTypeScopeBegin;
4180           N_COMM_indexes.push_back(sym_idx);
4181           break;
4182 
4183         case N_ECOML:
4184           // end common (local name): 0,,n_sect,0,address
4185           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4186           LLVM_FALLTHROUGH;
4187 
4188         case N_ECOMM:
4189           // end common: name,,n_sect,0,0
4190           // Set the size of the N_BCOMM to the terminating index of this
4191           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4192           // we need to navigate more quickly at the source level when
4193           // parsing STABS
4194           if (!N_COMM_indexes.empty()) {
4195             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4196             symbol_ptr->SetByteSize(sym_idx + 1);
4197             symbol_ptr->SetSizeIsSibling(true);
4198             N_COMM_indexes.pop_back();
4199           }
4200           type = eSymbolTypeScopeEnd;
4201           break;
4202 
4203         case N_LENG:
4204           // second stab entry with length information
4205           type = eSymbolTypeAdditional;
4206           break;
4207 
4208         default:
4209           break;
4210         }
4211       } else {
4212         uint8_t n_type = N_TYPE & nlist.n_type;
4213         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4214 
4215         switch (n_type) {
4216         case N_INDR: {
4217           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4218           if (reexport_name_cstr && reexport_name_cstr[0]) {
4219             type = eSymbolTypeReExported;
4220             ConstString reexport_name(reexport_name_cstr +
4221                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4222             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4223             set_value = false;
4224             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4225             indirect_symbol_names.insert(
4226                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4227           } else
4228             type = eSymbolTypeUndefined;
4229         } break;
4230 
4231         case N_UNDF:
4232           if (symbol_name && symbol_name[0]) {
4233             ConstString undefined_name(symbol_name +
4234                                        ((symbol_name[0] == '_') ? 1 : 0));
4235             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4236           }
4237           LLVM_FALLTHROUGH;
4238 
4239         case N_PBUD:
4240           type = eSymbolTypeUndefined;
4241           break;
4242 
4243         case N_ABS:
4244           type = eSymbolTypeAbsolute;
4245           break;
4246 
4247         case N_SECT: {
4248           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4249 
4250           if (!symbol_section) {
4251             // TODO: warn about this?
4252             add_nlist = false;
4253             break;
4254           }
4255 
4256           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4257             type = eSymbolTypeException;
4258           } else {
4259             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4260 
4261             switch (section_type) {
4262             case S_CSTRING_LITERALS:
4263               type = eSymbolTypeData;
4264               break; // section with only literal C strings
4265             case S_4BYTE_LITERALS:
4266               type = eSymbolTypeData;
4267               break; // section with only 4 byte literals
4268             case S_8BYTE_LITERALS:
4269               type = eSymbolTypeData;
4270               break; // section with only 8 byte literals
4271             case S_LITERAL_POINTERS:
4272               type = eSymbolTypeTrampoline;
4273               break; // section with only pointers to literals
4274             case S_NON_LAZY_SYMBOL_POINTERS:
4275               type = eSymbolTypeTrampoline;
4276               break; // section with only non-lazy symbol pointers
4277             case S_LAZY_SYMBOL_POINTERS:
4278               type = eSymbolTypeTrampoline;
4279               break; // section with only lazy symbol pointers
4280             case S_SYMBOL_STUBS:
4281               type = eSymbolTypeTrampoline;
4282               break; // section with only symbol stubs, byte size of stub in
4283                      // the reserved2 field
4284             case S_MOD_INIT_FUNC_POINTERS:
4285               type = eSymbolTypeCode;
4286               break; // section with only function pointers for initialization
4287             case S_MOD_TERM_FUNC_POINTERS:
4288               type = eSymbolTypeCode;
4289               break; // section with only function pointers for termination
4290             case S_INTERPOSING:
4291               type = eSymbolTypeTrampoline;
4292               break; // section with only pairs of function pointers for
4293                      // interposing
4294             case S_16BYTE_LITERALS:
4295               type = eSymbolTypeData;
4296               break; // section with only 16 byte literals
4297             case S_DTRACE_DOF:
4298               type = eSymbolTypeInstrumentation;
4299               break;
4300             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4301               type = eSymbolTypeTrampoline;
4302               break;
4303             default:
4304               switch (symbol_section->GetType()) {
4305               case lldb::eSectionTypeCode:
4306                 type = eSymbolTypeCode;
4307                 break;
4308               case eSectionTypeData:
4309               case eSectionTypeDataCString:         // Inlined C string data
4310               case eSectionTypeDataCStringPointers: // Pointers to C string
4311                                                     // data
4312               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4313                                                     // the symbol table
4314               case eSectionTypeData4:
4315               case eSectionTypeData8:
4316               case eSectionTypeData16:
4317                 type = eSymbolTypeData;
4318                 break;
4319               default:
4320                 break;
4321               }
4322               break;
4323             }
4324 
4325             if (type == eSymbolTypeInvalid) {
4326               const char *symbol_sect_name =
4327                   symbol_section->GetName().AsCString();
4328               if (symbol_section->IsDescendant(text_section_sp.get())) {
4329                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4330                                             S_ATTR_SELF_MODIFYING_CODE |
4331                                             S_ATTR_SOME_INSTRUCTIONS))
4332                   type = eSymbolTypeData;
4333                 else
4334                   type = eSymbolTypeCode;
4335               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4336                          symbol_section->IsDescendant(
4337                              data_dirty_section_sp.get()) ||
4338                          symbol_section->IsDescendant(
4339                              data_const_section_sp.get())) {
4340                 if (symbol_sect_name &&
4341                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4342                   type = eSymbolTypeRuntime;
4343 
4344                   if (symbol_name) {
4345                     llvm::StringRef symbol_name_ref(symbol_name);
4346                     if (symbol_name_ref.startswith("_OBJC_")) {
4347                       llvm::StringRef g_objc_v2_prefix_class(
4348                           "_OBJC_CLASS_$_");
4349                       llvm::StringRef g_objc_v2_prefix_metaclass(
4350                           "_OBJC_METACLASS_$_");
4351                       llvm::StringRef g_objc_v2_prefix_ivar(
4352                           "_OBJC_IVAR_$_");
4353                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4354                         symbol_name_non_abi_mangled = symbol_name + 1;
4355                         symbol_name =
4356                             symbol_name + g_objc_v2_prefix_class.size();
4357                         type = eSymbolTypeObjCClass;
4358                         demangled_is_synthesized = true;
4359                       } else if (symbol_name_ref.startswith(
4360                                      g_objc_v2_prefix_metaclass)) {
4361                         symbol_name_non_abi_mangled = symbol_name + 1;
4362                         symbol_name =
4363                             symbol_name + g_objc_v2_prefix_metaclass.size();
4364                         type = eSymbolTypeObjCMetaClass;
4365                         demangled_is_synthesized = true;
4366                       } else if (symbol_name_ref.startswith(
4367                                      g_objc_v2_prefix_ivar)) {
4368                         symbol_name_non_abi_mangled = symbol_name + 1;
4369                         symbol_name =
4370                             symbol_name + g_objc_v2_prefix_ivar.size();
4371                         type = eSymbolTypeObjCIVar;
4372                         demangled_is_synthesized = true;
4373                       }
4374                     }
4375                   }
4376                 } else if (symbol_sect_name &&
4377                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4378                                symbol_sect_name) {
4379                   type = eSymbolTypeException;
4380                 } else {
4381                   type = eSymbolTypeData;
4382                 }
4383               } else if (symbol_sect_name &&
4384                          ::strstr(symbol_sect_name, "__IMPORT") ==
4385                              symbol_sect_name) {
4386                 type = eSymbolTypeTrampoline;
4387               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4388                 type = eSymbolTypeRuntime;
4389                 if (symbol_name && symbol_name[0] == '.') {
4390                   llvm::StringRef symbol_name_ref(symbol_name);
4391                   llvm::StringRef g_objc_v1_prefix_class(
4392                       ".objc_class_name_");
4393                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4394                     symbol_name_non_abi_mangled = symbol_name;
4395                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4396                     type = eSymbolTypeObjCClass;
4397                     demangled_is_synthesized = true;
4398                   }
4399                 }
4400               }
4401             }
4402           }
4403         } break;
4404         }
4405       }
4406 
4407       if (!add_nlist) {
4408         sym[sym_idx].Clear();
4409         return true;
4410       }
4411 
4412       uint64_t symbol_value = nlist.n_value;
4413 
4414       if (symbol_name_non_abi_mangled) {
4415         sym[sym_idx].GetMangled().SetMangledName(
4416             ConstString(symbol_name_non_abi_mangled));
4417         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4418       } else {
4419         bool symbol_name_is_mangled = false;
4420 
4421         if (symbol_name && symbol_name[0] == '_') {
4422           symbol_name_is_mangled = symbol_name[1] == '_';
4423           symbol_name++; // Skip the leading underscore
4424         }
4425 
4426         if (symbol_name) {
4427           ConstString const_symbol_name(symbol_name);
4428           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4429                                              symbol_name_is_mangled);
4430         }
4431       }
4432 
4433       if (is_gsym) {
4434         const char *gsym_name = sym[sym_idx]
4435                                     .GetMangled()
4436                                     .GetName(Mangled::ePreferMangled)
4437                                     .GetCString();
4438         if (gsym_name)
4439           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4440       }
4441 
4442       if (symbol_section) {
4443         const addr_t section_file_addr = symbol_section->GetFileAddress();
4444         if (symbol_byte_size == 0 && function_starts_count > 0) {
4445           addr_t symbol_lookup_file_addr = nlist.n_value;
4446           // Do an exact address match for non-ARM addresses, else get the
4447           // closest since the symbol might be a thumb symbol which has an
4448           // address with bit zero set.
4449           FunctionStarts::Entry *func_start_entry =
4450               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4451           if (is_arm && func_start_entry) {
4452             // Verify that the function start address is the symbol address
4453             // (ARM) or the symbol address + 1 (thumb).
4454             if (func_start_entry->addr != symbol_lookup_file_addr &&
4455                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4456               // Not the right entry, NULL it out...
4457               func_start_entry = nullptr;
4458             }
4459           }
4460           if (func_start_entry) {
4461             func_start_entry->data = true;
4462 
4463             addr_t symbol_file_addr = func_start_entry->addr;
4464             if (is_arm)
4465               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4466 
4467             const FunctionStarts::Entry *next_func_start_entry =
4468                 function_starts.FindNextEntry(func_start_entry);
4469             const addr_t section_end_file_addr =
4470                 section_file_addr + symbol_section->GetByteSize();
4471             if (next_func_start_entry) {
4472               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4473               // Be sure the clear the Thumb address bit when we calculate the
4474               // size from the current and next address
4475               if (is_arm)
4476                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4477               symbol_byte_size = std::min<lldb::addr_t>(
4478                   next_symbol_file_addr - symbol_file_addr,
4479                   section_end_file_addr - symbol_file_addr);
4480             } else {
4481               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4482             }
4483           }
4484         }
4485         symbol_value -= section_file_addr;
4486       }
4487 
4488       if (!is_debug) {
4489         if (type == eSymbolTypeCode) {
4490           // See if we can find a N_FUN entry for any code symbols. If we do
4491           // find a match, and the name matches, then we can merge the two into
4492           // just the function symbol to avoid duplicate entries in the symbol
4493           // table.
4494           std::pair<ValueToSymbolIndexMap::const_iterator,
4495                     ValueToSymbolIndexMap::const_iterator>
4496               range;
4497           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4498           if (range.first != range.second) {
4499             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4500                  pos != range.second; ++pos) {
4501               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4502                   sym[pos->second].GetMangled().GetName(
4503                       Mangled::ePreferMangled)) {
4504                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4505                 // We just need the flags from the linker symbol, so put these
4506                 // flags into the N_FUN flags to avoid duplicate symbols in the
4507                 // symbol table.
4508                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4509                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4510                 if (resolver_addresses.find(nlist.n_value) !=
4511                     resolver_addresses.end())
4512                   sym[pos->second].SetType(eSymbolTypeResolver);
4513                 sym[sym_idx].Clear();
4514                 return true;
4515               }
4516             }
4517           } else {
4518             if (resolver_addresses.find(nlist.n_value) !=
4519                 resolver_addresses.end())
4520               type = eSymbolTypeResolver;
4521           }
4522         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4523                    type == eSymbolTypeObjCMetaClass ||
4524                    type == eSymbolTypeObjCIVar) {
4525           // See if we can find a N_STSYM entry for any data symbols. If we do
4526           // find a match, and the name matches, then we can merge the two into
4527           // just the Static symbol to avoid duplicate entries in the symbol
4528           // table.
4529           std::pair<ValueToSymbolIndexMap::const_iterator,
4530                     ValueToSymbolIndexMap::const_iterator>
4531               range;
4532           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4533           if (range.first != range.second) {
4534             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4535                  pos != range.second; ++pos) {
4536               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4537                   sym[pos->second].GetMangled().GetName(
4538                       Mangled::ePreferMangled)) {
4539                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4540                 // We just need the flags from the linker symbol, so put these
4541                 // flags into the N_STSYM flags to avoid duplicate symbols in
4542                 // the symbol table.
4543                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4544                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4545                 sym[sym_idx].Clear();
4546                 return true;
4547               }
4548             }
4549           } else {
4550             // Combine N_GSYM stab entries with the non stab symbol.
4551             const char *gsym_name = sym[sym_idx]
4552                                         .GetMangled()
4553                                         .GetName(Mangled::ePreferMangled)
4554                                         .GetCString();
4555             if (gsym_name) {
4556               ConstNameToSymbolIndexMap::const_iterator pos =
4557                   N_GSYM_name_to_sym_idx.find(gsym_name);
4558               if (pos != N_GSYM_name_to_sym_idx.end()) {
4559                 const uint32_t GSYM_sym_idx = pos->second;
4560                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4561                 // Copy the address, because often the N_GSYM address has an
4562                 // invalid address of zero when the global is a common symbol.
4563                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4564                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4565                 add_symbol_addr(
4566                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4567                 // We just need the flags from the linker symbol, so put these
4568                 // flags into the N_GSYM flags to avoid duplicate symbols in
4569                 // the symbol table.
4570                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4571                 sym[sym_idx].Clear();
4572                 return true;
4573               }
4574             }
4575           }
4576         }
4577       }
4578 
4579       sym[sym_idx].SetID(nlist_idx);
4580       sym[sym_idx].SetType(type);
4581       if (set_value) {
4582         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4583         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4584         if (symbol_section)
4585           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4586       }
4587       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4588       if (nlist.n_desc & N_WEAK_REF)
4589         sym[sym_idx].SetIsWeak(true);
4590 
4591       if (symbol_byte_size > 0)
4592         sym[sym_idx].SetByteSize(symbol_byte_size);
4593 
4594       if (demangled_is_synthesized)
4595         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4596 
4597       ++sym_idx;
4598       return true;
4599     };
4600 
4601     // First parse all the nlists but don't process them yet. See the next
4602     // comment for an explanation why.
4603     std::vector<struct nlist_64> nlists;
4604     nlists.reserve(symtab_load_command.nsyms);
4605     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4606       if (auto nlist =
4607               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4608         nlists.push_back(*nlist);
4609       else
4610         break;
4611     }
4612 
4613     // Now parse all the debug symbols. This is needed to merge non-debug
4614     // symbols in the next step. Non-debug symbols are always coalesced into
4615     // the debug symbol. Doing this in one step would mean that some symbols
4616     // won't be merged.
4617     nlist_idx = 0;
4618     for (auto &nlist : nlists) {
4619       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4620         break;
4621     }
4622 
4623     // Finally parse all the non debug symbols.
4624     nlist_idx = 0;
4625     for (auto &nlist : nlists) {
4626       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4627         break;
4628     }
4629 
4630     for (const auto &pos : reexport_shlib_needs_fixup) {
4631       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4632       if (undef_pos != undefined_name_to_desc.end()) {
4633         const uint8_t dylib_ordinal =
4634             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4635         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4636           sym[pos.first].SetReExportedSymbolSharedLibrary(
4637               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4638       }
4639     }
4640   }
4641 
4642   // Count how many trie symbols we'll add to the symbol table
4643   int trie_symbol_table_augment_count = 0;
4644   for (auto &e : external_sym_trie_entries) {
4645     if (symbols_added.find(e.entry.address) == symbols_added.end())
4646       trie_symbol_table_augment_count++;
4647   }
4648 
4649   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4650     num_syms = sym_idx + trie_symbol_table_augment_count;
4651     sym = symtab->Resize(num_syms);
4652   }
4653   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4654 
4655   // Add symbols from the trie to the symbol table.
4656   for (auto &e : external_sym_trie_entries) {
4657     if (symbols_added.find(e.entry.address) != symbols_added.end())
4658       continue;
4659 
4660     // Find the section that this trie address is in, use that to annotate
4661     // symbol type as we add the trie address and name to the symbol table.
4662     Address symbol_addr;
4663     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4664       SectionSP symbol_section(symbol_addr.GetSection());
4665       const char *symbol_name = e.entry.name.GetCString();
4666       bool demangled_is_synthesized = false;
4667       SymbolType type =
4668           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4669                         data_section_sp, data_dirty_section_sp,
4670                         data_const_section_sp, symbol_section);
4671 
4672       sym[sym_idx].SetType(type);
4673       if (symbol_section) {
4674         sym[sym_idx].SetID(synthetic_sym_id++);
4675         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4676         if (demangled_is_synthesized)
4677           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4678         sym[sym_idx].SetIsSynthetic(true);
4679         sym[sym_idx].SetExternal(true);
4680         sym[sym_idx].GetAddressRef() = symbol_addr;
4681         add_symbol_addr(symbol_addr.GetFileAddress());
4682         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4683           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4684         ++sym_idx;
4685       }
4686     }
4687   }
4688 
4689   if (function_starts_count > 0) {
4690     uint32_t num_synthetic_function_symbols = 0;
4691     for (i = 0; i < function_starts_count; ++i) {
4692       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4693           symbols_added.end())
4694         ++num_synthetic_function_symbols;
4695     }
4696 
4697     if (num_synthetic_function_symbols > 0) {
4698       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4699         num_syms = sym_idx + num_synthetic_function_symbols;
4700         sym = symtab->Resize(num_syms);
4701       }
4702       for (i = 0; i < function_starts_count; ++i) {
4703         const FunctionStarts::Entry *func_start_entry =
4704             function_starts.GetEntryAtIndex(i);
4705         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4706           addr_t symbol_file_addr = func_start_entry->addr;
4707           uint32_t symbol_flags = 0;
4708           if (func_start_entry->data)
4709             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4710           Address symbol_addr;
4711           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4712             SectionSP symbol_section(symbol_addr.GetSection());
4713             uint32_t symbol_byte_size = 0;
4714             if (symbol_section) {
4715               const addr_t section_file_addr = symbol_section->GetFileAddress();
4716               const FunctionStarts::Entry *next_func_start_entry =
4717                   function_starts.FindNextEntry(func_start_entry);
4718               const addr_t section_end_file_addr =
4719                   section_file_addr + symbol_section->GetByteSize();
4720               if (next_func_start_entry) {
4721                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4722                 if (is_arm)
4723                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4724                 symbol_byte_size = std::min<lldb::addr_t>(
4725                     next_symbol_file_addr - symbol_file_addr,
4726                     section_end_file_addr - symbol_file_addr);
4727               } else {
4728                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4729               }
4730               sym[sym_idx].SetID(synthetic_sym_id++);
4731               // Don't set the name for any synthetic symbols, the Symbol
4732               // object will generate one if needed when the name is accessed
4733               // via accessors.
4734               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4735               sym[sym_idx].SetType(eSymbolTypeCode);
4736               sym[sym_idx].SetIsSynthetic(true);
4737               sym[sym_idx].GetAddressRef() = symbol_addr;
4738               add_symbol_addr(symbol_addr.GetFileAddress());
4739               if (symbol_flags)
4740                 sym[sym_idx].SetFlags(symbol_flags);
4741               if (symbol_byte_size)
4742                 sym[sym_idx].SetByteSize(symbol_byte_size);
4743               ++sym_idx;
4744             }
4745           }
4746         }
4747       }
4748     }
4749   }
4750 
4751   // Trim our symbols down to just what we ended up with after removing any
4752   // symbols.
4753   if (sym_idx < num_syms) {
4754     num_syms = sym_idx;
4755     sym = symtab->Resize(num_syms);
4756   }
4757 
4758   // Now synthesize indirect symbols
4759   if (m_dysymtab.nindirectsyms != 0) {
4760     if (indirect_symbol_index_data.GetByteSize()) {
4761       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4762           m_nlist_idx_to_sym_idx.end();
4763 
4764       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4765            ++sect_idx) {
4766         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4767             S_SYMBOL_STUBS) {
4768           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4769           if (symbol_stub_byte_size == 0)
4770             continue;
4771 
4772           const uint32_t num_symbol_stubs =
4773               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4774 
4775           if (num_symbol_stubs == 0)
4776             continue;
4777 
4778           const uint32_t symbol_stub_index_offset =
4779               m_mach_sections[sect_idx].reserved1;
4780           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4781             const uint32_t symbol_stub_index =
4782                 symbol_stub_index_offset + stub_idx;
4783             const lldb::addr_t symbol_stub_addr =
4784                 m_mach_sections[sect_idx].addr +
4785                 (stub_idx * symbol_stub_byte_size);
4786             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4787             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4788                     symbol_stub_offset, 4)) {
4789               const uint32_t stub_sym_id =
4790                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4791               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4792                 continue;
4793 
4794               NListIndexToSymbolIndexMap::const_iterator index_pos =
4795                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4796               Symbol *stub_symbol = nullptr;
4797               if (index_pos != end_index_pos) {
4798                 // We have a remapping from the original nlist index to a
4799                 // current symbol index, so just look this up by index
4800                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4801               } else {
4802                 // We need to lookup a symbol using the original nlist symbol
4803                 // index since this index is coming from the S_SYMBOL_STUBS
4804                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4805               }
4806 
4807               if (stub_symbol) {
4808                 Address so_addr(symbol_stub_addr, section_list);
4809 
4810                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4811                   // Change the external symbol into a trampoline that makes
4812                   // sense These symbols were N_UNDF N_EXT, and are useless
4813                   // to us, so we can re-use them so we don't have to make up
4814                   // a synthetic symbol for no good reason.
4815                   if (resolver_addresses.find(symbol_stub_addr) ==
4816                       resolver_addresses.end())
4817                     stub_symbol->SetType(eSymbolTypeTrampoline);
4818                   else
4819                     stub_symbol->SetType(eSymbolTypeResolver);
4820                   stub_symbol->SetExternal(false);
4821                   stub_symbol->GetAddressRef() = so_addr;
4822                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4823                 } else {
4824                   // Make a synthetic symbol to describe the trampoline stub
4825                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4826                   if (sym_idx >= num_syms) {
4827                     sym = symtab->Resize(++num_syms);
4828                     stub_symbol = nullptr; // this pointer no longer valid
4829                   }
4830                   sym[sym_idx].SetID(synthetic_sym_id++);
4831                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4832                   if (resolver_addresses.find(symbol_stub_addr) ==
4833                       resolver_addresses.end())
4834                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4835                   else
4836                     sym[sym_idx].SetType(eSymbolTypeResolver);
4837                   sym[sym_idx].SetIsSynthetic(true);
4838                   sym[sym_idx].GetAddressRef() = so_addr;
4839                   add_symbol_addr(so_addr.GetFileAddress());
4840                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4841                   ++sym_idx;
4842                 }
4843               } else {
4844                 if (log)
4845                   log->Warning("symbol stub referencing symbol table symbol "
4846                                "%u that isn't in our minimal symbol table, "
4847                                "fix this!!!",
4848                                stub_sym_id);
4849               }
4850             }
4851           }
4852         }
4853       }
4854     }
4855   }
4856 
4857   if (!reexport_trie_entries.empty()) {
4858     for (const auto &e : reexport_trie_entries) {
4859       if (e.entry.import_name) {
4860         // Only add indirect symbols from the Trie entries if we didn't have
4861         // a N_INDR nlist entry for this already
4862         if (indirect_symbol_names.find(e.entry.name) ==
4863             indirect_symbol_names.end()) {
4864           // Make a synthetic symbol to describe re-exported symbol.
4865           if (sym_idx >= num_syms)
4866             sym = symtab->Resize(++num_syms);
4867           sym[sym_idx].SetID(synthetic_sym_id++);
4868           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4869           sym[sym_idx].SetType(eSymbolTypeReExported);
4870           sym[sym_idx].SetIsSynthetic(true);
4871           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4872           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4873             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4874                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4875           }
4876           ++sym_idx;
4877         }
4878       }
4879     }
4880   }
4881 
4882   //        StreamFile s(stdout, false);
4883   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4884   //        symtab->Dump(&s, NULL, eSortOrderNone);
4885   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4886   // sizes
4887   symtab->CalculateSymbolSizes();
4888 
4889   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4890   //        symtab->Dump(&s, NULL, eSortOrderNone);
4891 
4892   return symtab->GetNumSymbols();
4893 }
4894 
4895 void ObjectFileMachO::Dump(Stream *s) {
4896   ModuleSP module_sp(GetModule());
4897   if (module_sp) {
4898     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4899     s->Printf("%p: ", static_cast<void *>(this));
4900     s->Indent();
4901     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4902       s->PutCString("ObjectFileMachO64");
4903     else
4904       s->PutCString("ObjectFileMachO32");
4905 
4906     *s << ", file = '" << m_file;
4907     ModuleSpecList all_specs;
4908     ModuleSpec base_spec;
4909     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4910                     base_spec, all_specs);
4911     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4912       *s << "', triple";
4913       if (e)
4914         s->Printf("[%d]", i);
4915       *s << " = ";
4916       *s << all_specs.GetModuleSpecRefAtIndex(i)
4917                 .GetArchitecture()
4918                 .GetTriple()
4919                 .getTriple();
4920     }
4921     *s << "\n";
4922     SectionList *sections = GetSectionList();
4923     if (sections)
4924       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4925                      UINT32_MAX);
4926 
4927     if (m_symtab_up)
4928       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4929   }
4930 }
4931 
4932 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4933                               const lldb_private::DataExtractor &data,
4934                               lldb::offset_t lc_offset) {
4935   uint32_t i;
4936   llvm::MachO::uuid_command load_cmd;
4937 
4938   lldb::offset_t offset = lc_offset;
4939   for (i = 0; i < header.ncmds; ++i) {
4940     const lldb::offset_t cmd_offset = offset;
4941     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4942       break;
4943 
4944     if (load_cmd.cmd == LC_UUID) {
4945       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4946 
4947       if (uuid_bytes) {
4948         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4949         // We pretend these object files have no UUID to prevent crashing.
4950 
4951         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4952                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4953                                        0xbb, 0x14, 0xf0, 0x0d};
4954 
4955         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4956           return UUID();
4957 
4958         return UUID::fromOptionalData(uuid_bytes, 16);
4959       }
4960       return UUID();
4961     }
4962     offset = cmd_offset + load_cmd.cmdsize;
4963   }
4964   return UUID();
4965 }
4966 
4967 static llvm::StringRef GetOSName(uint32_t cmd) {
4968   switch (cmd) {
4969   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4970     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4971   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4972     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4973   case llvm::MachO::LC_VERSION_MIN_TVOS:
4974     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4975   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4976     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4977   default:
4978     llvm_unreachable("unexpected LC_VERSION load command");
4979   }
4980 }
4981 
4982 namespace {
4983 struct OSEnv {
4984   llvm::StringRef os_type;
4985   llvm::StringRef environment;
4986   OSEnv(uint32_t cmd) {
4987     switch (cmd) {
4988     case llvm::MachO::PLATFORM_MACOS:
4989       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4990       return;
4991     case llvm::MachO::PLATFORM_IOS:
4992       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4993       return;
4994     case llvm::MachO::PLATFORM_TVOS:
4995       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4996       return;
4997     case llvm::MachO::PLATFORM_WATCHOS:
4998       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4999       return;
5000     // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
5001     // NEED_BRIDGEOS_TRIPLE
5002     // case llvm::MachO::PLATFORM_BRIDGEOS:
5003     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
5004     //   return;
5005     // case llvm::MachO::PLATFORM_DRIVERKIT:
5006     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
5007     //   return;
5008     case llvm::MachO::PLATFORM_MACCATALYST:
5009       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
5010       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
5011       return;
5012     case llvm::MachO::PLATFORM_IOSSIMULATOR:
5013       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
5014       environment =
5015           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5016       return;
5017     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
5018       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
5019       environment =
5020           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5021       return;
5022     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
5023       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
5024       environment =
5025           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5026       return;
5027     default: {
5028       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5029                                                       LIBLLDB_LOG_PROCESS));
5030       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
5031     }
5032     }
5033   }
5034 };
5035 
5036 struct MinOS {
5037   uint32_t major_version, minor_version, patch_version;
5038   MinOS(uint32_t version)
5039       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
5040         patch_version(version & 0xffu) {}
5041 };
5042 } // namespace
5043 
5044 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
5045                                       const lldb_private::DataExtractor &data,
5046                                       lldb::offset_t lc_offset,
5047                                       ModuleSpec &base_spec,
5048                                       lldb_private::ModuleSpecList &all_specs) {
5049   auto &base_arch = base_spec.GetArchitecture();
5050   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
5051   if (!base_arch.IsValid())
5052     return;
5053 
5054   bool found_any = false;
5055   auto add_triple = [&](const llvm::Triple &triple) {
5056     auto spec = base_spec;
5057     spec.GetArchitecture().GetTriple() = triple;
5058     if (spec.GetArchitecture().IsValid()) {
5059       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
5060       all_specs.Append(spec);
5061       found_any = true;
5062     }
5063   };
5064 
5065   // Set OS to an unspecified unknown or a "*" so it can match any OS
5066   llvm::Triple base_triple = base_arch.GetTriple();
5067   base_triple.setOS(llvm::Triple::UnknownOS);
5068   base_triple.setOSName(llvm::StringRef());
5069 
5070   if (header.filetype == MH_PRELOAD) {
5071     if (header.cputype == CPU_TYPE_ARM) {
5072       // If this is a 32-bit arm binary, and it's a standalone binary, force
5073       // the Vendor to Apple so we don't accidentally pick up the generic
5074       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
5075       // frame pointer register; most other armv7 ABIs use a combination of
5076       // r7 and r11.
5077       base_triple.setVendor(llvm::Triple::Apple);
5078     } else {
5079       // Set vendor to an unspecified unknown or a "*" so it can match any
5080       // vendor This is required for correct behavior of EFI debugging on
5081       // x86_64
5082       base_triple.setVendor(llvm::Triple::UnknownVendor);
5083       base_triple.setVendorName(llvm::StringRef());
5084     }
5085     return add_triple(base_triple);
5086   }
5087 
5088   llvm::MachO::load_command load_cmd;
5089 
5090   // See if there is an LC_VERSION_MIN_* load command that can give
5091   // us the OS type.
5092   lldb::offset_t offset = lc_offset;
5093   for (uint32_t i = 0; i < header.ncmds; ++i) {
5094     const lldb::offset_t cmd_offset = offset;
5095     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5096       break;
5097 
5098     llvm::MachO::version_min_command version_min;
5099     switch (load_cmd.cmd) {
5100     case llvm::MachO::LC_VERSION_MIN_MACOSX:
5101     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5102     case llvm::MachO::LC_VERSION_MIN_TVOS:
5103     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5104       if (load_cmd.cmdsize != sizeof(version_min))
5105         break;
5106       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5107                             data.GetByteOrder(), &version_min) == 0)
5108         break;
5109       MinOS min_os(version_min.version);
5110       llvm::SmallString<32> os_name;
5111       llvm::raw_svector_ostream os(os_name);
5112       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5113          << min_os.minor_version << '.' << min_os.patch_version;
5114 
5115       auto triple = base_triple;
5116       triple.setOSName(os.str());
5117 
5118       // Disambiguate legacy simulator platforms.
5119       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5120           (base_triple.getArch() == llvm::Triple::x86_64 ||
5121            base_triple.getArch() == llvm::Triple::x86)) {
5122         // The combination of legacy LC_VERSION_MIN load command and
5123         // x86 architecture always indicates a simulator environment.
5124         // The combination of LC_VERSION_MIN and arm architecture only
5125         // appears for native binaries. Back-deploying simulator
5126         // binaries on Apple Silicon Macs use the modern unambigous
5127         // LC_BUILD_VERSION load commands; no special handling required.
5128         triple.setEnvironment(llvm::Triple::Simulator);
5129       }
5130       add_triple(triple);
5131       break;
5132     }
5133     default:
5134       break;
5135     }
5136 
5137     offset = cmd_offset + load_cmd.cmdsize;
5138   }
5139 
5140   // See if there are LC_BUILD_VERSION load commands that can give
5141   // us the OS type.
5142   offset = lc_offset;
5143   for (uint32_t i = 0; i < header.ncmds; ++i) {
5144     const lldb::offset_t cmd_offset = offset;
5145     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5146       break;
5147 
5148     do {
5149       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5150         llvm::MachO::build_version_command build_version;
5151         if (load_cmd.cmdsize < sizeof(build_version)) {
5152           // Malformed load command.
5153           break;
5154         }
5155         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5156                               data.GetByteOrder(), &build_version) == 0)
5157           break;
5158         MinOS min_os(build_version.minos);
5159         OSEnv os_env(build_version.platform);
5160         llvm::SmallString<16> os_name;
5161         llvm::raw_svector_ostream os(os_name);
5162         os << os_env.os_type << min_os.major_version << '.'
5163            << min_os.minor_version << '.' << min_os.patch_version;
5164         auto triple = base_triple;
5165         triple.setOSName(os.str());
5166         os_name.clear();
5167         if (!os_env.environment.empty())
5168           triple.setEnvironmentName(os_env.environment);
5169         add_triple(triple);
5170       }
5171     } while (0);
5172     offset = cmd_offset + load_cmd.cmdsize;
5173   }
5174 
5175   if (!found_any) {
5176     if (header.filetype == MH_KEXT_BUNDLE) {
5177       base_triple.setVendor(llvm::Triple::Apple);
5178       add_triple(base_triple);
5179     } else {
5180       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5181       // so lets not say our Vendor is Apple, leave it as an unspecified
5182       // unknown.
5183       base_triple.setVendor(llvm::Triple::UnknownVendor);
5184       base_triple.setVendorName(llvm::StringRef());
5185       add_triple(base_triple);
5186     }
5187   }
5188 }
5189 
5190 ArchSpec ObjectFileMachO::GetArchitecture(
5191     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5192     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5193   ModuleSpecList all_specs;
5194   ModuleSpec base_spec;
5195   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5196                   base_spec, all_specs);
5197 
5198   // If the object file offers multiple alternative load commands,
5199   // pick the one that matches the module.
5200   if (module_sp) {
5201     const ArchSpec &module_arch = module_sp->GetArchitecture();
5202     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5203       ArchSpec mach_arch =
5204           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5205       if (module_arch.IsCompatibleMatch(mach_arch))
5206         return mach_arch;
5207     }
5208   }
5209 
5210   // Return the first arch we found.
5211   if (all_specs.GetSize() == 0)
5212     return {};
5213   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5214 }
5215 
5216 UUID ObjectFileMachO::GetUUID() {
5217   ModuleSP module_sp(GetModule());
5218   if (module_sp) {
5219     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5220     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5221     return GetUUID(m_header, m_data, offset);
5222   }
5223   return UUID();
5224 }
5225 
5226 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5227   uint32_t count = 0;
5228   ModuleSP module_sp(GetModule());
5229   if (module_sp) {
5230     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5231     llvm::MachO::load_command load_cmd;
5232     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5233     std::vector<std::string> rpath_paths;
5234     std::vector<std::string> rpath_relative_paths;
5235     std::vector<std::string> at_exec_relative_paths;
5236     uint32_t i;
5237     for (i = 0; i < m_header.ncmds; ++i) {
5238       const uint32_t cmd_offset = offset;
5239       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5240         break;
5241 
5242       switch (load_cmd.cmd) {
5243       case LC_RPATH:
5244       case LC_LOAD_DYLIB:
5245       case LC_LOAD_WEAK_DYLIB:
5246       case LC_REEXPORT_DYLIB:
5247       case LC_LOAD_DYLINKER:
5248       case LC_LOADFVMLIB:
5249       case LC_LOAD_UPWARD_DYLIB: {
5250         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5251         const char *path = m_data.PeekCStr(name_offset);
5252         if (path) {
5253           if (load_cmd.cmd == LC_RPATH)
5254             rpath_paths.push_back(path);
5255           else {
5256             if (path[0] == '@') {
5257               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5258                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5259               else if (strncmp(path, "@executable_path",
5260                                strlen("@executable_path")) == 0)
5261                 at_exec_relative_paths.push_back(path +
5262                                                  strlen("@executable_path"));
5263             } else {
5264               FileSpec file_spec(path);
5265               if (files.AppendIfUnique(file_spec))
5266                 count++;
5267             }
5268           }
5269         }
5270       } break;
5271 
5272       default:
5273         break;
5274       }
5275       offset = cmd_offset + load_cmd.cmdsize;
5276     }
5277 
5278     FileSpec this_file_spec(m_file);
5279     FileSystem::Instance().Resolve(this_file_spec);
5280 
5281     if (!rpath_paths.empty()) {
5282       // Fixup all LC_RPATH values to be absolute paths
5283       std::string loader_path("@loader_path");
5284       std::string executable_path("@executable_path");
5285       for (auto &rpath : rpath_paths) {
5286         if (llvm::StringRef(rpath).startswith(loader_path)) {
5287           rpath.erase(0, loader_path.size());
5288           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5289         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5290           rpath.erase(0, executable_path.size());
5291           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5292         }
5293       }
5294 
5295       for (const auto &rpath_relative_path : rpath_relative_paths) {
5296         for (const auto &rpath : rpath_paths) {
5297           std::string path = rpath;
5298           path += rpath_relative_path;
5299           // It is OK to resolve this path because we must find a file on disk
5300           // for us to accept it anyway if it is rpath relative.
5301           FileSpec file_spec(path);
5302           FileSystem::Instance().Resolve(file_spec);
5303           if (FileSystem::Instance().Exists(file_spec) &&
5304               files.AppendIfUnique(file_spec)) {
5305             count++;
5306             break;
5307           }
5308         }
5309       }
5310     }
5311 
5312     // We may have @executable_paths but no RPATHS.  Figure those out here.
5313     // Only do this if this object file is the executable.  We have no way to
5314     // get back to the actual executable otherwise, so we won't get the right
5315     // path.
5316     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5317       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5318       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5319         FileSpec file_spec =
5320             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5321         if (FileSystem::Instance().Exists(file_spec) &&
5322             files.AppendIfUnique(file_spec))
5323           count++;
5324       }
5325     }
5326   }
5327   return count;
5328 }
5329 
5330 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5331   // If the object file is not an executable it can't hold the entry point.
5332   // m_entry_point_address is initialized to an invalid address, so we can just
5333   // return that. If m_entry_point_address is valid it means we've found it
5334   // already, so return the cached value.
5335 
5336   if ((!IsExecutable() && !IsDynamicLoader()) ||
5337       m_entry_point_address.IsValid()) {
5338     return m_entry_point_address;
5339   }
5340 
5341   // Otherwise, look for the UnixThread or Thread command.  The data for the
5342   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5343   //
5344   //  uint32_t flavor  - this is the flavor argument you would pass to
5345   //  thread_get_state
5346   //  uint32_t count   - this is the count of longs in the thread state data
5347   //  struct XXX_thread_state state - this is the structure from
5348   //  <machine/thread_status.h> corresponding to the flavor.
5349   //  <repeat this trio>
5350   //
5351   // So we just keep reading the various register flavors till we find the GPR
5352   // one, then read the PC out of there.
5353   // FIXME: We will need to have a "RegisterContext data provider" class at some
5354   // point that can get all the registers
5355   // out of data in this form & attach them to a given thread.  That should
5356   // underlie the MacOS X User process plugin, and we'll also need it for the
5357   // MacOS X Core File process plugin.  When we have that we can also use it
5358   // here.
5359   //
5360   // For now we hard-code the offsets and flavors we need:
5361   //
5362   //
5363 
5364   ModuleSP module_sp(GetModule());
5365   if (module_sp) {
5366     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5367     llvm::MachO::load_command load_cmd;
5368     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5369     uint32_t i;
5370     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5371     bool done = false;
5372 
5373     for (i = 0; i < m_header.ncmds; ++i) {
5374       const lldb::offset_t cmd_offset = offset;
5375       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5376         break;
5377 
5378       switch (load_cmd.cmd) {
5379       case LC_UNIXTHREAD:
5380       case LC_THREAD: {
5381         while (offset < cmd_offset + load_cmd.cmdsize) {
5382           uint32_t flavor = m_data.GetU32(&offset);
5383           uint32_t count = m_data.GetU32(&offset);
5384           if (count == 0) {
5385             // We've gotten off somehow, log and exit;
5386             return m_entry_point_address;
5387           }
5388 
5389           switch (m_header.cputype) {
5390           case llvm::MachO::CPU_TYPE_ARM:
5391             if (flavor == 1 ||
5392                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5393                              // from mach/arm/thread_status.h
5394             {
5395               offset += 60; // This is the offset of pc in the GPR thread state
5396                             // data structure.
5397               start_address = m_data.GetU32(&offset);
5398               done = true;
5399             }
5400             break;
5401           case llvm::MachO::CPU_TYPE_ARM64:
5402           case llvm::MachO::CPU_TYPE_ARM64_32:
5403             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5404             {
5405               offset += 256; // This is the offset of pc in the GPR thread state
5406                              // data structure.
5407               start_address = m_data.GetU64(&offset);
5408               done = true;
5409             }
5410             break;
5411           case llvm::MachO::CPU_TYPE_I386:
5412             if (flavor ==
5413                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5414             {
5415               offset += 40; // This is the offset of eip in the GPR thread state
5416                             // data structure.
5417               start_address = m_data.GetU32(&offset);
5418               done = true;
5419             }
5420             break;
5421           case llvm::MachO::CPU_TYPE_X86_64:
5422             if (flavor ==
5423                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5424             {
5425               offset += 16 * 8; // This is the offset of rip in the GPR thread
5426                                 // state data structure.
5427               start_address = m_data.GetU64(&offset);
5428               done = true;
5429             }
5430             break;
5431           default:
5432             return m_entry_point_address;
5433           }
5434           // Haven't found the GPR flavor yet, skip over the data for this
5435           // flavor:
5436           if (done)
5437             break;
5438           offset += count * 4;
5439         }
5440       } break;
5441       case LC_MAIN: {
5442         ConstString text_segment_name("__TEXT");
5443         uint64_t entryoffset = m_data.GetU64(&offset);
5444         SectionSP text_segment_sp =
5445             GetSectionList()->FindSectionByName(text_segment_name);
5446         if (text_segment_sp) {
5447           done = true;
5448           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5449         }
5450       } break;
5451 
5452       default:
5453         break;
5454       }
5455       if (done)
5456         break;
5457 
5458       // Go to the next load command:
5459       offset = cmd_offset + load_cmd.cmdsize;
5460     }
5461 
5462     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5463       if (GetSymtab()) {
5464         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5465             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5466             Symtab::eDebugAny, Symtab::eVisibilityAny);
5467         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5468           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5469         }
5470       }
5471     }
5472 
5473     if (start_address != LLDB_INVALID_ADDRESS) {
5474       // We got the start address from the load commands, so now resolve that
5475       // address in the sections of this ObjectFile:
5476       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5477               start_address, GetSectionList())) {
5478         m_entry_point_address.Clear();
5479       }
5480     } else {
5481       // We couldn't read the UnixThread load command - maybe it wasn't there.
5482       // As a fallback look for the "start" symbol in the main executable.
5483 
5484       ModuleSP module_sp(GetModule());
5485 
5486       if (module_sp) {
5487         SymbolContextList contexts;
5488         SymbolContext context;
5489         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5490                                               eSymbolTypeCode, contexts);
5491         if (contexts.GetSize()) {
5492           if (contexts.GetContextAtIndex(0, context))
5493             m_entry_point_address = context.symbol->GetAddress();
5494         }
5495       }
5496     }
5497   }
5498 
5499   return m_entry_point_address;
5500 }
5501 
5502 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5503   lldb_private::Address header_addr;
5504   SectionList *section_list = GetSectionList();
5505   if (section_list) {
5506     SectionSP text_segment_sp(
5507         section_list->FindSectionByName(GetSegmentNameTEXT()));
5508     if (text_segment_sp) {
5509       header_addr.SetSection(text_segment_sp);
5510       header_addr.SetOffset(0);
5511     }
5512   }
5513   return header_addr;
5514 }
5515 
5516 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5517   ModuleSP module_sp(GetModule());
5518   if (module_sp) {
5519     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5520     if (!m_thread_context_offsets_valid) {
5521       m_thread_context_offsets_valid = true;
5522       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5523       FileRangeArray::Entry file_range;
5524       llvm::MachO::thread_command thread_cmd;
5525       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5526         const uint32_t cmd_offset = offset;
5527         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5528           break;
5529 
5530         if (thread_cmd.cmd == LC_THREAD) {
5531           file_range.SetRangeBase(offset);
5532           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5533           m_thread_context_offsets.Append(file_range);
5534         }
5535         offset = cmd_offset + thread_cmd.cmdsize;
5536       }
5537     }
5538   }
5539   return m_thread_context_offsets.GetSize();
5540 }
5541 
5542 std::string ObjectFileMachO::GetIdentifierString() {
5543   std::string result;
5544   ModuleSP module_sp(GetModule());
5545   if (module_sp) {
5546     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5547 
5548     // First, look over the load commands for an LC_NOTE load command with
5549     // data_owner string "kern ver str" & use that if found.
5550     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5551     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5552       const uint32_t cmd_offset = offset;
5553       llvm::MachO::load_command lc;
5554       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5555         break;
5556       if (lc.cmd == LC_NOTE) {
5557         char data_owner[17];
5558         m_data.CopyData(offset, 16, data_owner);
5559         data_owner[16] = '\0';
5560         offset += 16;
5561         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5562         uint64_t size = m_data.GetU64_unchecked(&offset);
5563 
5564         // "kern ver str" has a uint32_t version and then a nul terminated
5565         // c-string.
5566         if (strcmp("kern ver str", data_owner) == 0) {
5567           offset = fileoff;
5568           uint32_t version;
5569           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5570             if (version == 1) {
5571               uint32_t strsize = size - sizeof(uint32_t);
5572               char *buf = (char *)malloc(strsize);
5573               if (buf) {
5574                 m_data.CopyData(offset, strsize, buf);
5575                 buf[strsize - 1] = '\0';
5576                 result = buf;
5577                 if (buf)
5578                   free(buf);
5579                 return result;
5580               }
5581             }
5582           }
5583         }
5584       }
5585       offset = cmd_offset + lc.cmdsize;
5586     }
5587 
5588     // Second, make a pass over the load commands looking for an obsolete
5589     // LC_IDENT load command.
5590     offset = MachHeaderSizeFromMagic(m_header.magic);
5591     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5592       const uint32_t cmd_offset = offset;
5593       llvm::MachO::ident_command ident_command;
5594       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5595         break;
5596       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5597         char *buf = (char *)malloc(ident_command.cmdsize);
5598         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5599                                               buf) == ident_command.cmdsize) {
5600           buf[ident_command.cmdsize - 1] = '\0';
5601           result = buf;
5602         }
5603         if (buf)
5604           free(buf);
5605       }
5606       offset = cmd_offset + ident_command.cmdsize;
5607     }
5608   }
5609   return result;
5610 }
5611 
5612 addr_t ObjectFileMachO::GetAddressMask() {
5613   addr_t mask = 0;
5614   ModuleSP module_sp(GetModule());
5615   if (module_sp) {
5616     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5617     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5618     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5619       const uint32_t cmd_offset = offset;
5620       llvm::MachO::load_command lc;
5621       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5622         break;
5623       if (lc.cmd == LC_NOTE) {
5624         char data_owner[17];
5625         m_data.CopyData(offset, 16, data_owner);
5626         data_owner[16] = '\0';
5627         offset += 16;
5628         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5629 
5630         // "addrable bits" has a uint32_t version and a uint32_t
5631         // number of bits used in addressing.
5632         if (strcmp("addrable bits", data_owner) == 0) {
5633           offset = fileoff;
5634           uint32_t version;
5635           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5636             if (version == 3) {
5637               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5638               if (num_addr_bits != 0) {
5639                 mask = ~((1ULL << num_addr_bits) - 1);
5640               }
5641               break;
5642             }
5643           }
5644         }
5645       }
5646       offset = cmd_offset + lc.cmdsize;
5647     }
5648   }
5649   return mask;
5650 }
5651 
5652 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid,
5653                                                 ObjectFile::BinaryType &type) {
5654   address = LLDB_INVALID_ADDRESS;
5655   uuid.Clear();
5656   ModuleSP module_sp(GetModule());
5657   if (module_sp) {
5658     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5659     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5660     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5661       const uint32_t cmd_offset = offset;
5662       llvm::MachO::load_command lc;
5663       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5664         break;
5665       if (lc.cmd == LC_NOTE) {
5666         char data_owner[17];
5667         memset(data_owner, 0, sizeof(data_owner));
5668         m_data.CopyData(offset, 16, data_owner);
5669         offset += 16;
5670         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5671         uint64_t size = m_data.GetU64_unchecked(&offset);
5672 
5673         // "main bin spec" (main binary specification) data payload is
5674         // formatted:
5675         //    uint32_t version       [currently 1]
5676         //    uint32_t type          [0 == unspecified, 1 == kernel,
5677         //                            2 == user process, 3 == firmware ]
5678         //    uint64_t address       [ UINT64_MAX if address not specified ]
5679         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5680         //    uint32_t log2_pagesize [ process page size in log base
5681         //                             2, e.g. 4k pages are 12.
5682         //                             0 for unspecified ]
5683         //    uint32_t unused        [ for alignment ]
5684 
5685         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5686           offset = fileoff;
5687           uint32_t version;
5688           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5689             uint32_t binspec_type = 0;
5690             uuid_t raw_uuid;
5691             memset(raw_uuid, 0, sizeof(uuid_t));
5692 
5693             if (m_data.GetU32(&offset, &binspec_type, 1) &&
5694                 m_data.GetU64(&offset, &address, 1) &&
5695                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5696               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5697               // convert the "main bin spec" type into our
5698               // ObjectFile::BinaryType enum
5699               switch (binspec_type) {
5700               case 0:
5701                 type = eBinaryTypeUnknown;
5702                 break;
5703               case 1:
5704                 type = eBinaryTypeKernel;
5705                 break;
5706               case 2:
5707                 type = eBinaryTypeUser;
5708                 break;
5709               case 3:
5710                 type = eBinaryTypeStandalone;
5711                 break;
5712               }
5713               return true;
5714             }
5715           }
5716         }
5717       }
5718       offset = cmd_offset + lc.cmdsize;
5719     }
5720   }
5721   return false;
5722 }
5723 
5724 lldb::RegisterContextSP
5725 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5726                                          lldb_private::Thread &thread) {
5727   lldb::RegisterContextSP reg_ctx_sp;
5728 
5729   ModuleSP module_sp(GetModule());
5730   if (module_sp) {
5731     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5732     if (!m_thread_context_offsets_valid)
5733       GetNumThreadContexts();
5734 
5735     const FileRangeArray::Entry *thread_context_file_range =
5736         m_thread_context_offsets.GetEntryAtIndex(idx);
5737     if (thread_context_file_range) {
5738 
5739       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5740                          thread_context_file_range->GetByteSize());
5741 
5742       switch (m_header.cputype) {
5743       case llvm::MachO::CPU_TYPE_ARM64:
5744       case llvm::MachO::CPU_TYPE_ARM64_32:
5745         reg_ctx_sp =
5746             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5747         break;
5748 
5749       case llvm::MachO::CPU_TYPE_ARM:
5750         reg_ctx_sp =
5751             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5752         break;
5753 
5754       case llvm::MachO::CPU_TYPE_I386:
5755         reg_ctx_sp =
5756             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5757         break;
5758 
5759       case llvm::MachO::CPU_TYPE_X86_64:
5760         reg_ctx_sp =
5761             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5762         break;
5763       }
5764     }
5765   }
5766   return reg_ctx_sp;
5767 }
5768 
5769 ObjectFile::Type ObjectFileMachO::CalculateType() {
5770   switch (m_header.filetype) {
5771   case MH_OBJECT: // 0x1u
5772     if (GetAddressByteSize() == 4) {
5773       // 32 bit kexts are just object files, but they do have a valid
5774       // UUID load command.
5775       if (GetUUID()) {
5776         // this checking for the UUID load command is not enough we could
5777         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5778         // this is required of kexts
5779         if (m_strata == eStrataInvalid)
5780           m_strata = eStrataKernel;
5781         return eTypeSharedLibrary;
5782       }
5783     }
5784     return eTypeObjectFile;
5785 
5786   case MH_EXECUTE:
5787     return eTypeExecutable; // 0x2u
5788   case MH_FVMLIB:
5789     return eTypeSharedLibrary; // 0x3u
5790   case MH_CORE:
5791     return eTypeCoreFile; // 0x4u
5792   case MH_PRELOAD:
5793     return eTypeSharedLibrary; // 0x5u
5794   case MH_DYLIB:
5795     return eTypeSharedLibrary; // 0x6u
5796   case MH_DYLINKER:
5797     return eTypeDynamicLinker; // 0x7u
5798   case MH_BUNDLE:
5799     return eTypeSharedLibrary; // 0x8u
5800   case MH_DYLIB_STUB:
5801     return eTypeStubLibrary; // 0x9u
5802   case MH_DSYM:
5803     return eTypeDebugInfo; // 0xAu
5804   case MH_KEXT_BUNDLE:
5805     return eTypeSharedLibrary; // 0xBu
5806   default:
5807     break;
5808   }
5809   return eTypeUnknown;
5810 }
5811 
5812 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5813   switch (m_header.filetype) {
5814   case MH_OBJECT: // 0x1u
5815   {
5816     // 32 bit kexts are just object files, but they do have a valid
5817     // UUID load command.
5818     if (GetUUID()) {
5819       // this checking for the UUID load command is not enough we could
5820       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5821       // this is required of kexts
5822       if (m_type == eTypeInvalid)
5823         m_type = eTypeSharedLibrary;
5824 
5825       return eStrataKernel;
5826     }
5827   }
5828     return eStrataUnknown;
5829 
5830   case MH_EXECUTE: // 0x2u
5831     // Check for the MH_DYLDLINK bit in the flags
5832     if (m_header.flags & MH_DYLDLINK) {
5833       return eStrataUser;
5834     } else {
5835       SectionList *section_list = GetSectionList();
5836       if (section_list) {
5837         static ConstString g_kld_section_name("__KLD");
5838         if (section_list->FindSectionByName(g_kld_section_name))
5839           return eStrataKernel;
5840       }
5841     }
5842     return eStrataRawImage;
5843 
5844   case MH_FVMLIB:
5845     return eStrataUser; // 0x3u
5846   case MH_CORE:
5847     return eStrataUnknown; // 0x4u
5848   case MH_PRELOAD:
5849     return eStrataRawImage; // 0x5u
5850   case MH_DYLIB:
5851     return eStrataUser; // 0x6u
5852   case MH_DYLINKER:
5853     return eStrataUser; // 0x7u
5854   case MH_BUNDLE:
5855     return eStrataUser; // 0x8u
5856   case MH_DYLIB_STUB:
5857     return eStrataUser; // 0x9u
5858   case MH_DSYM:
5859     return eStrataUnknown; // 0xAu
5860   case MH_KEXT_BUNDLE:
5861     return eStrataKernel; // 0xBu
5862   default:
5863     break;
5864   }
5865   return eStrataUnknown;
5866 }
5867 
5868 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5869   ModuleSP module_sp(GetModule());
5870   if (module_sp) {
5871     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5872     llvm::MachO::dylib_command load_cmd;
5873     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5874     uint32_t version_cmd = 0;
5875     uint64_t version = 0;
5876     uint32_t i;
5877     for (i = 0; i < m_header.ncmds; ++i) {
5878       const lldb::offset_t cmd_offset = offset;
5879       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5880         break;
5881 
5882       if (load_cmd.cmd == LC_ID_DYLIB) {
5883         if (version_cmd == 0) {
5884           version_cmd = load_cmd.cmd;
5885           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5886             break;
5887           version = load_cmd.dylib.current_version;
5888         }
5889         break; // Break for now unless there is another more complete version
5890                // number load command in the future.
5891       }
5892       offset = cmd_offset + load_cmd.cmdsize;
5893     }
5894 
5895     if (version_cmd == LC_ID_DYLIB) {
5896       unsigned major = (version & 0xFFFF0000ull) >> 16;
5897       unsigned minor = (version & 0x0000FF00ull) >> 8;
5898       unsigned subminor = (version & 0x000000FFull);
5899       return llvm::VersionTuple(major, minor, subminor);
5900     }
5901   }
5902   return llvm::VersionTuple();
5903 }
5904 
5905 ArchSpec ObjectFileMachO::GetArchitecture() {
5906   ModuleSP module_sp(GetModule());
5907   ArchSpec arch;
5908   if (module_sp) {
5909     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5910 
5911     return GetArchitecture(module_sp, m_header, m_data,
5912                            MachHeaderSizeFromMagic(m_header.magic));
5913   }
5914   return arch;
5915 }
5916 
5917 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5918                                                 addr_t &base_addr, UUID &uuid) {
5919   uuid.Clear();
5920   base_addr = LLDB_INVALID_ADDRESS;
5921   if (process && process->GetDynamicLoader()) {
5922     DynamicLoader *dl = process->GetDynamicLoader();
5923     LazyBool using_shared_cache;
5924     LazyBool private_shared_cache;
5925     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5926                                   private_shared_cache);
5927   }
5928   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5929                                                   LIBLLDB_LOG_PROCESS));
5930   LLDB_LOGF(
5931       log,
5932       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5933       uuid.GetAsString().c_str(), base_addr);
5934 }
5935 
5936 // From dyld SPI header dyld_process_info.h
5937 typedef void *dyld_process_info;
5938 struct lldb_copy__dyld_process_cache_info {
5939   uuid_t cacheUUID;          // UUID of cache used by process
5940   uint64_t cacheBaseAddress; // load address of dyld shared cache
5941   bool noCache;              // process is running without a dyld cache
5942   bool privateCache; // process is using a private copy of its dyld cache
5943 };
5944 
5945 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5946 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5947 // errors. So we need to use the actual underlying types of task_t and
5948 // kern_return_t below.
5949 extern "C" unsigned int /*task_t*/ mach_task_self();
5950 
5951 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5952   uuid.Clear();
5953   base_addr = LLDB_INVALID_ADDRESS;
5954 
5955 #if defined(__APPLE__)
5956   uint8_t *(*dyld_get_all_image_infos)(void);
5957   dyld_get_all_image_infos =
5958       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5959   if (dyld_get_all_image_infos) {
5960     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5961     if (dyld_all_image_infos_address) {
5962       uint32_t *version = (uint32_t *)
5963           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5964       if (*version >= 13) {
5965         uuid_t *sharedCacheUUID_address = 0;
5966         int wordsize = sizeof(uint8_t *);
5967         if (wordsize == 8) {
5968           sharedCacheUUID_address =
5969               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5970                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5971           if (*version >= 15)
5972             base_addr =
5973                 *(uint64_t
5974                       *)((uint8_t *)dyld_all_image_infos_address +
5975                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5976         } else {
5977           sharedCacheUUID_address =
5978               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5979                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5980           if (*version >= 15) {
5981             base_addr = 0;
5982             base_addr =
5983                 *(uint32_t
5984                       *)((uint8_t *)dyld_all_image_infos_address +
5985                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5986           }
5987         }
5988         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5989       }
5990     }
5991   } else {
5992     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5993     dyld_process_info (*dyld_process_info_create)(
5994         unsigned int /* task_t */ task, uint64_t timestamp,
5995         unsigned int /*kern_return_t*/ *kernelError);
5996     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5997     void (*dyld_process_info_release)(dyld_process_info info);
5998 
5999     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
6000                                           unsigned int /*kern_return_t*/ *))
6001         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
6002     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
6003         RTLD_DEFAULT, "_dyld_process_info_get_cache");
6004     dyld_process_info_release =
6005         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
6006 
6007     if (dyld_process_info_create && dyld_process_info_get_cache) {
6008       unsigned int /*kern_return_t */ kern_ret;
6009       dyld_process_info process_info =
6010           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
6011       if (process_info) {
6012         struct lldb_copy__dyld_process_cache_info sc_info;
6013         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
6014         dyld_process_info_get_cache(process_info, &sc_info);
6015         if (sc_info.cacheBaseAddress != 0) {
6016           base_addr = sc_info.cacheBaseAddress;
6017           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
6018         }
6019         dyld_process_info_release(process_info);
6020       }
6021     }
6022   }
6023   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
6024                                                   LIBLLDB_LOG_PROCESS));
6025   if (log && uuid.IsValid())
6026     LLDB_LOGF(log,
6027               "lldb's in-memory shared cache has a UUID of %s base address of "
6028               "0x%" PRIx64,
6029               uuid.GetAsString().c_str(), base_addr);
6030 #endif
6031 }
6032 
6033 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
6034   if (!m_min_os_version) {
6035     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6036     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6037       const lldb::offset_t load_cmd_offset = offset;
6038 
6039       llvm::MachO::version_min_command lc;
6040       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6041         break;
6042       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6043           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6044           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6045           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6046         if (m_data.GetU32(&offset, &lc.version,
6047                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6048           const uint32_t xxxx = lc.version >> 16;
6049           const uint32_t yy = (lc.version >> 8) & 0xffu;
6050           const uint32_t zz = lc.version & 0xffu;
6051           if (xxxx) {
6052             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6053             break;
6054           }
6055         }
6056       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6057         // struct build_version_command {
6058         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6059         //     uint32_t    cmdsize;        /* sizeof(struct
6060         //     build_version_command) plus */
6061         //                                 /* ntools * sizeof(struct
6062         //                                 build_tool_version) */
6063         //     uint32_t    platform;       /* platform */
6064         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6065         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
6066         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
6067         //     tool entries following this */
6068         // };
6069 
6070         offset += 4; // skip platform
6071         uint32_t minos = m_data.GetU32(&offset);
6072 
6073         const uint32_t xxxx = minos >> 16;
6074         const uint32_t yy = (minos >> 8) & 0xffu;
6075         const uint32_t zz = minos & 0xffu;
6076         if (xxxx) {
6077           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6078           break;
6079         }
6080       }
6081 
6082       offset = load_cmd_offset + lc.cmdsize;
6083     }
6084 
6085     if (!m_min_os_version) {
6086       // Set version to an empty value so we don't keep trying to
6087       m_min_os_version = llvm::VersionTuple();
6088     }
6089   }
6090 
6091   return *m_min_os_version;
6092 }
6093 
6094 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6095   if (!m_sdk_versions.hasValue()) {
6096     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6097     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6098       const lldb::offset_t load_cmd_offset = offset;
6099 
6100       llvm::MachO::version_min_command lc;
6101       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6102         break;
6103       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6104           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6105           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6106           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6107         if (m_data.GetU32(&offset, &lc.version,
6108                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6109           const uint32_t xxxx = lc.sdk >> 16;
6110           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6111           const uint32_t zz = lc.sdk & 0xffu;
6112           if (xxxx) {
6113             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6114             break;
6115           } else {
6116             GetModule()->ReportWarning("minimum OS version load command with "
6117                                        "invalid (0) version found.");
6118           }
6119         }
6120       }
6121       offset = load_cmd_offset + lc.cmdsize;
6122     }
6123 
6124     if (!m_sdk_versions.hasValue()) {
6125       offset = MachHeaderSizeFromMagic(m_header.magic);
6126       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6127         const lldb::offset_t load_cmd_offset = offset;
6128 
6129         llvm::MachO::version_min_command lc;
6130         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6131           break;
6132         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6133           // struct build_version_command {
6134           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6135           //     uint32_t    cmdsize;        /* sizeof(struct
6136           //     build_version_command) plus */
6137           //                                 /* ntools * sizeof(struct
6138           //                                 build_tool_version) */
6139           //     uint32_t    platform;       /* platform */
6140           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6141           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6142           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6143           //     of tool entries following this */
6144           // };
6145 
6146           offset += 4; // skip platform
6147           uint32_t minos = m_data.GetU32(&offset);
6148 
6149           const uint32_t xxxx = minos >> 16;
6150           const uint32_t yy = (minos >> 8) & 0xffu;
6151           const uint32_t zz = minos & 0xffu;
6152           if (xxxx) {
6153             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6154             break;
6155           }
6156         }
6157         offset = load_cmd_offset + lc.cmdsize;
6158       }
6159     }
6160 
6161     if (!m_sdk_versions.hasValue())
6162       m_sdk_versions = llvm::VersionTuple();
6163   }
6164 
6165   return m_sdk_versions.getValue();
6166 }
6167 
6168 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6169   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6170 }
6171 
6172 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6173   return m_allow_assembly_emulation_unwind_plans;
6174 }
6175 
6176 // PluginInterface protocol
6177 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
6178   return GetPluginNameStatic();
6179 }
6180 
6181 Section *ObjectFileMachO::GetMachHeaderSection() {
6182   // Find the first address of the mach header which is the first non-zero file
6183   // sized section whose file offset is zero. This is the base file address of
6184   // the mach-o file which can be subtracted from the vmaddr of the other
6185   // segments found in memory and added to the load address
6186   ModuleSP module_sp = GetModule();
6187   if (!module_sp)
6188     return nullptr;
6189   SectionList *section_list = GetSectionList();
6190   if (!section_list)
6191     return nullptr;
6192   const size_t num_sections = section_list->GetSize();
6193   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6194     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6195     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6196       return section;
6197   }
6198   return nullptr;
6199 }
6200 
6201 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6202   if (!section)
6203     return false;
6204   const bool is_dsym = (m_header.filetype == MH_DSYM);
6205   if (section->GetFileSize() == 0 && !is_dsym)
6206     return false;
6207   if (section->IsThreadSpecific())
6208     return false;
6209   if (GetModule().get() != section->GetModule().get())
6210     return false;
6211   // Be careful with __LINKEDIT and __DWARF segments
6212   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6213       section->GetName() == GetSegmentNameDWARF()) {
6214     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6215     // this isn't a kernel binary like a kext or mach_kernel.
6216     const bool is_memory_image = (bool)m_process_wp.lock();
6217     const Strata strata = GetStrata();
6218     if (is_memory_image == false || strata == eStrataKernel)
6219       return false;
6220   }
6221   return true;
6222 }
6223 
6224 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6225     lldb::addr_t header_load_address, const Section *header_section,
6226     const Section *section) {
6227   ModuleSP module_sp = GetModule();
6228   if (module_sp && header_section && section &&
6229       header_load_address != LLDB_INVALID_ADDRESS) {
6230     lldb::addr_t file_addr = header_section->GetFileAddress();
6231     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6232       return section->GetFileAddress() - file_addr + header_load_address;
6233   }
6234   return LLDB_INVALID_ADDRESS;
6235 }
6236 
6237 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6238                                      bool value_is_offset) {
6239   ModuleSP module_sp = GetModule();
6240   if (!module_sp)
6241     return false;
6242 
6243   SectionList *section_list = GetSectionList();
6244   if (!section_list)
6245     return false;
6246 
6247   size_t num_loaded_sections = 0;
6248   const size_t num_sections = section_list->GetSize();
6249 
6250   if (value_is_offset) {
6251     // "value" is an offset to apply to each top level segment
6252     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6253       // Iterate through the object file sections to find all of the
6254       // sections that size on disk (to avoid __PAGEZERO) and load them
6255       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6256       if (SectionIsLoadable(section_sp.get()))
6257         if (target.GetSectionLoadList().SetSectionLoadAddress(
6258                 section_sp, section_sp->GetFileAddress() + value))
6259           ++num_loaded_sections;
6260     }
6261   } else {
6262     // "value" is the new base address of the mach_header, adjust each
6263     // section accordingly
6264 
6265     Section *mach_header_section = GetMachHeaderSection();
6266     if (mach_header_section) {
6267       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6268         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6269 
6270         lldb::addr_t section_load_addr =
6271             CalculateSectionLoadAddressForMemoryImage(
6272                 value, mach_header_section, section_sp.get());
6273         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6274           if (target.GetSectionLoadList().SetSectionLoadAddress(
6275                   section_sp, section_load_addr))
6276             ++num_loaded_sections;
6277         }
6278       }
6279     }
6280   }
6281   return num_loaded_sections > 0;
6282 }
6283 
6284 struct all_image_infos_header {
6285   uint32_t version;         // currently 1
6286   uint32_t imgcount;        // number of binary images
6287   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6288                             // struct entry's begin.
6289   uint32_t entries_size;    // size of 'struct entry'.
6290   uint32_t unused;
6291 };
6292 
6293 struct image_entry {
6294   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6295                              // UINT64_MAX if unavailable.
6296   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6297                              // uuid is unknown.
6298   uint64_t load_address;     // UINT64_MAX if unknown.
6299   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6300   uint32_t segment_count;    // The number of segments for this binary.
6301   uint32_t unused;
6302 
6303   image_entry() {
6304     filepath_offset = UINT64_MAX;
6305     memset(&uuid, 0, sizeof(uuid_t));
6306     segment_count = 0;
6307     load_address = UINT64_MAX;
6308     seg_addrs_offset = UINT64_MAX;
6309     unused = 0;
6310   }
6311   image_entry(const image_entry &rhs) {
6312     filepath_offset = rhs.filepath_offset;
6313     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6314     segment_count = rhs.segment_count;
6315     seg_addrs_offset = rhs.seg_addrs_offset;
6316     load_address = rhs.load_address;
6317     unused = rhs.unused;
6318   }
6319 };
6320 
6321 struct segment_vmaddr {
6322   char segname[16];
6323   uint64_t vmaddr;
6324   uint64_t unused;
6325 
6326   segment_vmaddr() {
6327     memset(&segname, 0, 16);
6328     vmaddr = UINT64_MAX;
6329     unused = 0;
6330   }
6331   segment_vmaddr(const segment_vmaddr &rhs) {
6332     memcpy(&segname, &rhs.segname, 16);
6333     vmaddr = rhs.vmaddr;
6334     unused = rhs.unused;
6335   }
6336 };
6337 
6338 // Write the payload for the "all image infos" LC_NOTE into
6339 // the supplied all_image_infos_payload, assuming that this
6340 // will be written into the corefile starting at
6341 // initial_file_offset.
6342 //
6343 // The placement of this payload is a little tricky.  We're
6344 // laying this out as
6345 //
6346 // 1. header (struct all_image_info_header)
6347 // 2. Array of fixed-size (struct image_entry)'s, one
6348 //    per binary image present in the process.
6349 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6350 //    for each binary image.
6351 // 4. Variable length c-strings of binary image filepaths,
6352 //    one per binary.
6353 //
6354 // To compute where everything will be laid out in the
6355 // payload, we need to iterate over the images and calculate
6356 // how many segment_vmaddr structures each image will need,
6357 // and how long each image's filepath c-string is. There
6358 // are some multiple passes over the image list while calculating
6359 // everything.
6360 
6361 static offset_t CreateAllImageInfosPayload(
6362     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6363     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6364   Target &target = process_sp->GetTarget();
6365   ModuleList modules = target.GetImages();
6366 
6367   // stack-only corefiles have no reason to include binaries that
6368   // are not executing; we're trying to make the smallest corefile
6369   // we can, so leave the rest out.
6370   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6371     modules.Clear();
6372 
6373   std::set<std::string> executing_uuids;
6374   ThreadList &thread_list(process_sp->GetThreadList());
6375   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6376     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6377     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6378     for (uint32_t j = 0; j < stack_frame_count; j++) {
6379       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6380       Address pc = stack_frame_sp->GetFrameCodeAddress();
6381       ModuleSP module_sp = pc.GetModule();
6382       if (module_sp) {
6383         UUID uuid = module_sp->GetUUID();
6384         if (uuid.IsValid()) {
6385           executing_uuids.insert(uuid.GetAsString());
6386           modules.AppendIfNeeded(module_sp);
6387         }
6388       }
6389     }
6390   }
6391   size_t modules_count = modules.GetSize();
6392 
6393   struct all_image_infos_header infos;
6394   infos.version = 1;
6395   infos.imgcount = modules_count;
6396   infos.entries_size = sizeof(image_entry);
6397   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6398   infos.unused = 0;
6399 
6400   all_image_infos_payload.PutHex32(infos.version);
6401   all_image_infos_payload.PutHex32(infos.imgcount);
6402   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6403   all_image_infos_payload.PutHex32(infos.entries_size);
6404   all_image_infos_payload.PutHex32(infos.unused);
6405 
6406   // First create the structures for all of the segment name+vmaddr vectors
6407   // for each module, so we will know the size of them as we add the
6408   // module entries.
6409   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6410   for (size_t i = 0; i < modules_count; i++) {
6411     ModuleSP module = modules.GetModuleAtIndex(i);
6412 
6413     SectionList *sections = module->GetSectionList();
6414     size_t sections_count = sections->GetSize();
6415     std::vector<segment_vmaddr> segment_vmaddrs;
6416     for (size_t j = 0; j < sections_count; j++) {
6417       SectionSP section = sections->GetSectionAtIndex(j);
6418       if (!section->GetParent().get()) {
6419         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6420         if (vmaddr == LLDB_INVALID_ADDRESS)
6421           continue;
6422         ConstString name = section->GetName();
6423         segment_vmaddr seg_vmaddr;
6424         strncpy(seg_vmaddr.segname, name.AsCString(),
6425                 sizeof(seg_vmaddr.segname));
6426         seg_vmaddr.vmaddr = vmaddr;
6427         seg_vmaddr.unused = 0;
6428         segment_vmaddrs.push_back(seg_vmaddr);
6429       }
6430     }
6431     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6432   }
6433 
6434   offset_t size_of_vmaddr_structs = 0;
6435   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6436     size_of_vmaddr_structs +=
6437         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6438   }
6439 
6440   offset_t size_of_filepath_cstrings = 0;
6441   for (size_t i = 0; i < modules_count; i++) {
6442     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6443     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6444   }
6445 
6446   // Calculate the file offsets of our "all image infos" payload in the
6447   // corefile. initial_file_offset the original value passed in to this method.
6448 
6449   offset_t start_of_entries =
6450       initial_file_offset + sizeof(all_image_infos_header);
6451   offset_t start_of_seg_vmaddrs =
6452       start_of_entries + sizeof(image_entry) * modules_count;
6453   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6454 
6455   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6456 
6457   // Now write the one-per-module 'struct image_entry' into the
6458   // StringStream; keep track of where the struct segment_vmaddr
6459   // entries for each module will end up in the corefile.
6460 
6461   offset_t current_string_offset = start_of_filenames;
6462   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6463   std::vector<struct image_entry> image_entries;
6464   for (size_t i = 0; i < modules_count; i++) {
6465     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6466 
6467     struct image_entry ent;
6468     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6469     if (modules_segment_vmaddrs[i].size() > 0) {
6470       ent.segment_count = modules_segment_vmaddrs[i].size();
6471       ent.seg_addrs_offset = current_segaddrs_offset;
6472     }
6473     ent.filepath_offset = current_string_offset;
6474     ObjectFile *objfile = module_sp->GetObjectFile();
6475     if (objfile) {
6476       Address base_addr(objfile->GetBaseAddress());
6477       if (base_addr.IsValid()) {
6478         ent.load_address = base_addr.GetLoadAddress(&target);
6479       }
6480     }
6481 
6482     all_image_infos_payload.PutHex64(ent.filepath_offset);
6483     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6484     all_image_infos_payload.PutHex64(ent.load_address);
6485     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6486     all_image_infos_payload.PutHex32(ent.segment_count);
6487 
6488     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6489         executing_uuids.end())
6490       all_image_infos_payload.PutHex32(1);
6491     else
6492       all_image_infos_payload.PutHex32(0);
6493 
6494     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6495     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6496   }
6497 
6498   // Now write the struct segment_vmaddr entries into the StringStream.
6499 
6500   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6501     if (modules_segment_vmaddrs[i].size() == 0)
6502       continue;
6503     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6504       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6505       all_image_infos_payload.PutHex64(segvm.vmaddr);
6506       all_image_infos_payload.PutHex64(segvm.unused);
6507     }
6508   }
6509 
6510   for (size_t i = 0; i < modules_count; i++) {
6511     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6512     std::string filepath = module_sp->GetFileSpec().GetPath();
6513     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6514   }
6515 
6516   return final_file_offset;
6517 }
6518 
6519 // Temp struct used to combine contiguous memory regions with
6520 // identical permissions.
6521 struct page_object {
6522   addr_t addr;
6523   addr_t size;
6524   uint32_t prot;
6525 };
6526 
6527 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6528                                const FileSpec &outfile,
6529                                lldb::SaveCoreStyle &core_style, Status &error) {
6530   if (!process_sp)
6531     return false;
6532 
6533   // Default on macOS is to create a dirty-memory-only corefile.
6534   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6535     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6536   }
6537 
6538   Target &target = process_sp->GetTarget();
6539   const ArchSpec target_arch = target.GetArchitecture();
6540   const llvm::Triple &target_triple = target_arch.GetTriple();
6541   if (target_triple.getVendor() == llvm::Triple::Apple &&
6542       (target_triple.getOS() == llvm::Triple::MacOSX ||
6543        target_triple.getOS() == llvm::Triple::IOS ||
6544        target_triple.getOS() == llvm::Triple::WatchOS ||
6545        target_triple.getOS() == llvm::Triple::TvOS)) {
6546     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6547     // {
6548     bool make_core = false;
6549     switch (target_arch.GetMachine()) {
6550     case llvm::Triple::aarch64:
6551     case llvm::Triple::aarch64_32:
6552     case llvm::Triple::arm:
6553     case llvm::Triple::thumb:
6554     case llvm::Triple::x86:
6555     case llvm::Triple::x86_64:
6556       make_core = true;
6557       break;
6558     default:
6559       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6560                                      target_triple.str().c_str());
6561       break;
6562     }
6563 
6564     if (make_core) {
6565       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6566       //                uint32_t range_info_idx = 0;
6567       MemoryRegionInfo range_info;
6568       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6569       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6570       const ByteOrder byte_order = target_arch.GetByteOrder();
6571       std::vector<page_object> pages_to_copy;
6572 
6573       if (range_error.Success()) {
6574         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6575           // Calculate correct protections
6576           uint32_t prot = 0;
6577           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6578             prot |= VM_PROT_READ;
6579           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6580             prot |= VM_PROT_WRITE;
6581           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6582             prot |= VM_PROT_EXECUTE;
6583 
6584           const addr_t addr = range_info.GetRange().GetRangeBase();
6585           const addr_t size = range_info.GetRange().GetByteSize();
6586 
6587           if (size == 0)
6588             break;
6589 
6590           bool include_this_region = true;
6591           bool dirty_pages_only = false;
6592           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6593             dirty_pages_only = true;
6594             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6595               include_this_region = false;
6596             }
6597           }
6598           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6599             dirty_pages_only = true;
6600           }
6601 
6602           if (prot != 0 && include_this_region) {
6603             addr_t pagesize = range_info.GetPageSize();
6604             const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6605                 range_info.GetDirtyPageList();
6606             if (dirty_pages_only && dirty_page_list.hasValue()) {
6607               for (addr_t dirtypage : dirty_page_list.getValue()) {
6608                 page_object obj;
6609                 obj.addr = dirtypage;
6610                 obj.size = pagesize;
6611                 obj.prot = prot;
6612                 pages_to_copy.push_back(obj);
6613               }
6614             } else {
6615               page_object obj;
6616               obj.addr = addr;
6617               obj.size = size;
6618               obj.prot = prot;
6619               pages_to_copy.push_back(obj);
6620             }
6621           }
6622 
6623           range_error = process_sp->GetMemoryRegionInfo(
6624               range_info.GetRange().GetRangeEnd(), range_info);
6625           if (range_error.Fail())
6626             break;
6627         }
6628 
6629         // Combine contiguous entries that have the same
6630         // protections so we don't have an excess of
6631         // load commands.
6632         std::vector<page_object> combined_page_objects;
6633         page_object last_obj;
6634         last_obj.addr = LLDB_INVALID_ADDRESS;
6635         last_obj.size = 0;
6636         for (page_object obj : pages_to_copy) {
6637           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6638             last_obj = obj;
6639             continue;
6640           }
6641           if (last_obj.addr + last_obj.size == obj.addr &&
6642               last_obj.prot == obj.prot) {
6643             last_obj.size += obj.size;
6644             continue;
6645           }
6646           combined_page_objects.push_back(last_obj);
6647           last_obj = obj;
6648         }
6649         // Add the last entry we were looking to combine
6650         // on to the array.
6651         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6652           combined_page_objects.push_back(last_obj);
6653 
6654         for (page_object obj : combined_page_objects) {
6655           uint32_t cmd_type = LC_SEGMENT_64;
6656           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6657           if (addr_byte_size == 4) {
6658             cmd_type = LC_SEGMENT;
6659             segment_size = sizeof(llvm::MachO::segment_command);
6660           }
6661           llvm::MachO::segment_command_64 segment = {
6662               cmd_type,     // uint32_t cmd;
6663               segment_size, // uint32_t cmdsize;
6664               {0},          // char segname[16];
6665               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6666                             // Mach-O
6667               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6668                             // Mach-O
6669               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6670               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6671                             // Mach-O
6672               obj.prot,     // uint32_t maxprot;
6673               obj.prot,     // uint32_t initprot;
6674               0,            // uint32_t nsects;
6675               0};           // uint32_t flags;
6676           segment_load_commands.push_back(segment);
6677         }
6678 
6679         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6680 
6681         llvm::MachO::mach_header_64 mach_header;
6682         if (addr_byte_size == 8) {
6683           mach_header.magic = MH_MAGIC_64;
6684         } else {
6685           mach_header.magic = MH_MAGIC;
6686         }
6687         mach_header.cputype = target_arch.GetMachOCPUType();
6688         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6689         mach_header.filetype = MH_CORE;
6690         mach_header.ncmds = segment_load_commands.size();
6691         mach_header.flags = 0;
6692         mach_header.reserved = 0;
6693         ThreadList &thread_list = process_sp->GetThreadList();
6694         const uint32_t num_threads = thread_list.GetSize();
6695 
6696         // Make an array of LC_THREAD data items. Each one contains the
6697         // contents of the LC_THREAD load command. The data doesn't contain
6698         // the load command + load command size, we will add the load command
6699         // and load command size as we emit the data.
6700         std::vector<StreamString> LC_THREAD_datas(num_threads);
6701         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6702           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6703           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6704           LC_THREAD_data.SetByteOrder(byte_order);
6705         }
6706         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6707           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6708           if (thread_sp) {
6709             switch (mach_header.cputype) {
6710             case llvm::MachO::CPU_TYPE_ARM64:
6711             case llvm::MachO::CPU_TYPE_ARM64_32:
6712               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6713                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6714               break;
6715 
6716             case llvm::MachO::CPU_TYPE_ARM:
6717               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6718                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6719               break;
6720 
6721             case llvm::MachO::CPU_TYPE_I386:
6722               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6723                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6724               break;
6725 
6726             case llvm::MachO::CPU_TYPE_X86_64:
6727               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6728                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6729               break;
6730             }
6731           }
6732         }
6733 
6734         // The size of the load command is the size of the segments...
6735         if (addr_byte_size == 8) {
6736           mach_header.sizeofcmds = segment_load_commands.size() *
6737                                    sizeof(llvm::MachO::segment_command_64);
6738         } else {
6739           mach_header.sizeofcmds = segment_load_commands.size() *
6740                                    sizeof(llvm::MachO::segment_command);
6741         }
6742 
6743         // and the size of all LC_THREAD load command
6744         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6745           ++mach_header.ncmds;
6746           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6747         }
6748 
6749         // Bits will be set to indicate which bits are NOT used in
6750         // addressing in this process or 0 for unknown.
6751         uint64_t address_mask = process_sp->GetCodeAddressMask();
6752         if (address_mask != 0) {
6753           // LC_NOTE "addrable bits"
6754           mach_header.ncmds++;
6755           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6756         }
6757 
6758         // LC_NOTE "all image infos"
6759         mach_header.ncmds++;
6760         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6761 
6762         // Write the mach header
6763         buffer.PutHex32(mach_header.magic);
6764         buffer.PutHex32(mach_header.cputype);
6765         buffer.PutHex32(mach_header.cpusubtype);
6766         buffer.PutHex32(mach_header.filetype);
6767         buffer.PutHex32(mach_header.ncmds);
6768         buffer.PutHex32(mach_header.sizeofcmds);
6769         buffer.PutHex32(mach_header.flags);
6770         if (addr_byte_size == 8) {
6771           buffer.PutHex32(mach_header.reserved);
6772         }
6773 
6774         // Skip the mach header and all load commands and align to the next
6775         // 0x1000 byte boundary
6776         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6777 
6778         file_offset = llvm::alignTo(file_offset, 16);
6779         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6780 
6781         // Add "addrable bits" LC_NOTE when an address mask is available
6782         if (address_mask != 0) {
6783           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6784               new LCNoteEntry(addr_byte_size, byte_order));
6785           addrable_bits_lcnote_up->name = "addrable bits";
6786           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6787           int bits = std::bitset<64>(~address_mask).count();
6788           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6789           addrable_bits_lcnote_up->payload.PutHex32(
6790               bits); // # of bits used for addressing
6791           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6792 
6793           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6794 
6795           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6796         }
6797 
6798         // Add "all image infos" LC_NOTE
6799         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6800             new LCNoteEntry(addr_byte_size, byte_order));
6801         all_image_infos_lcnote_up->name = "all image infos";
6802         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6803         file_offset = CreateAllImageInfosPayload(
6804             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6805             core_style);
6806         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6807 
6808         // Add LC_NOTE load commands
6809         for (auto &lcnote : lc_notes) {
6810           // Add the LC_NOTE load command to the file.
6811           buffer.PutHex32(LC_NOTE);
6812           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6813           char namebuf[16];
6814           memset(namebuf, 0, sizeof(namebuf));
6815           // this is the uncommon case where strncpy is exactly
6816           // the right one, doesn't need to be nul terminated.
6817           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6818           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6819           buffer.PutHex64(lcnote->payload_file_offset);
6820           buffer.PutHex64(lcnote->payload.GetSize());
6821         }
6822 
6823         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6824         file_offset = llvm::alignTo(file_offset, 4096);
6825 
6826         for (auto &segment : segment_load_commands) {
6827           segment.fileoff = file_offset;
6828           file_offset += segment.filesize;
6829         }
6830 
6831         // Write out all of the LC_THREAD load commands
6832         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6833           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6834           buffer.PutHex32(LC_THREAD);
6835           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6836           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6837         }
6838 
6839         // Write out all of the segment load commands
6840         for (const auto &segment : segment_load_commands) {
6841           buffer.PutHex32(segment.cmd);
6842           buffer.PutHex32(segment.cmdsize);
6843           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6844           if (addr_byte_size == 8) {
6845             buffer.PutHex64(segment.vmaddr);
6846             buffer.PutHex64(segment.vmsize);
6847             buffer.PutHex64(segment.fileoff);
6848             buffer.PutHex64(segment.filesize);
6849           } else {
6850             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6851             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6852             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6853             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6854           }
6855           buffer.PutHex32(segment.maxprot);
6856           buffer.PutHex32(segment.initprot);
6857           buffer.PutHex32(segment.nsects);
6858           buffer.PutHex32(segment.flags);
6859         }
6860 
6861         std::string core_file_path(outfile.GetPath());
6862         auto core_file = FileSystem::Instance().Open(
6863             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6864                          File::eOpenOptionCanCreate);
6865         if (!core_file) {
6866           error = core_file.takeError();
6867         } else {
6868           // Read 1 page at a time
6869           uint8_t bytes[0x1000];
6870           // Write the mach header and load commands out to the core file
6871           size_t bytes_written = buffer.GetString().size();
6872           error =
6873               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6874           if (error.Success()) {
6875 
6876             for (auto &lcnote : lc_notes) {
6877               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6878                   -1) {
6879                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6880                                                "to write '%s' LC_NOTE payload",
6881                                                lcnote->name.c_str());
6882                 return false;
6883               }
6884               bytes_written = lcnote->payload.GetSize();
6885               error = core_file.get()->Write(lcnote->payload.GetData(),
6886                                              bytes_written);
6887               if (!error.Success())
6888                 return false;
6889             }
6890 
6891             // Now write the file data for all memory segments in the process
6892             for (const auto &segment : segment_load_commands) {
6893               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6894                 error.SetErrorStringWithFormat(
6895                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6896                     segment.fileoff, core_file_path.c_str());
6897                 break;
6898               }
6899 
6900               target.GetDebugger().GetAsyncOutputStream()->Printf(
6901                   "Saving %" PRId64
6902                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6903                   segment.vmsize, segment.vmaddr);
6904               addr_t bytes_left = segment.vmsize;
6905               addr_t addr = segment.vmaddr;
6906               Status memory_read_error;
6907               while (bytes_left > 0 && error.Success()) {
6908                 const size_t bytes_to_read =
6909                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6910 
6911                 // In a savecore setting, we don't really care about caching,
6912                 // as the data is dumped and very likely never read again,
6913                 // so we call ReadMemoryFromInferior to bypass it.
6914                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6915                     addr, bytes, bytes_to_read, memory_read_error);
6916 
6917                 if (bytes_read == bytes_to_read) {
6918                   size_t bytes_written = bytes_read;
6919                   error = core_file.get()->Write(bytes, bytes_written);
6920                   bytes_left -= bytes_read;
6921                   addr += bytes_read;
6922                 } else {
6923                   // Some pages within regions are not readable, those should
6924                   // be zero filled
6925                   memset(bytes, 0, bytes_to_read);
6926                   size_t bytes_written = bytes_to_read;
6927                   error = core_file.get()->Write(bytes, bytes_written);
6928                   bytes_left -= bytes_to_read;
6929                   addr += bytes_to_read;
6930                 }
6931               }
6932             }
6933           }
6934         }
6935       } else {
6936         error.SetErrorString(
6937             "process doesn't support getting memory region info");
6938       }
6939     }
6940     return true; // This is the right plug to handle saving core files for
6941                  // this process
6942   }
6943   return false;
6944 }
6945 
6946 ObjectFileMachO::MachOCorefileAllImageInfos
6947 ObjectFileMachO::GetCorefileAllImageInfos() {
6948   MachOCorefileAllImageInfos image_infos;
6949 
6950   // Look for an "all image infos" LC_NOTE.
6951   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6952   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6953     const uint32_t cmd_offset = offset;
6954     llvm::MachO::load_command lc;
6955     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6956       break;
6957     if (lc.cmd == LC_NOTE) {
6958       char data_owner[17];
6959       m_data.CopyData(offset, 16, data_owner);
6960       data_owner[16] = '\0';
6961       offset += 16;
6962       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6963       offset += 4; /* size unused */
6964 
6965       if (strcmp("all image infos", data_owner) == 0) {
6966         offset = fileoff;
6967         // Read the struct all_image_infos_header.
6968         uint32_t version = m_data.GetU32(&offset);
6969         if (version != 1) {
6970           return image_infos;
6971         }
6972         uint32_t imgcount = m_data.GetU32(&offset);
6973         uint64_t entries_fileoff = m_data.GetU64(&offset);
6974         offset += 4; // uint32_t entries_size;
6975         offset += 4; // uint32_t unused;
6976 
6977         offset = entries_fileoff;
6978         for (uint32_t i = 0; i < imgcount; i++) {
6979           // Read the struct image_entry.
6980           offset_t filepath_offset = m_data.GetU64(&offset);
6981           uuid_t uuid;
6982           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6983                  sizeof(uuid_t));
6984           uint64_t load_address = m_data.GetU64(&offset);
6985           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6986           uint32_t segment_count = m_data.GetU32(&offset);
6987           uint32_t currently_executing = m_data.GetU32(&offset);
6988 
6989           MachOCorefileImageEntry image_entry;
6990           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6991           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6992           image_entry.load_address = load_address;
6993           image_entry.currently_executing = currently_executing;
6994 
6995           offset_t seg_vmaddrs_offset = seg_addrs_offset;
6996           for (uint32_t j = 0; j < segment_count; j++) {
6997             char segname[17];
6998             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6999             segname[16] = '\0';
7000             seg_vmaddrs_offset += 16;
7001             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
7002             seg_vmaddrs_offset += 8; /* unused */
7003 
7004             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
7005                                                     vmaddr};
7006             image_entry.segment_load_addresses.push_back(new_seg);
7007           }
7008           image_infos.all_image_infos.push_back(image_entry);
7009         }
7010       }
7011     }
7012     offset = cmd_offset + lc.cmdsize;
7013   }
7014 
7015   return image_infos;
7016 }
7017 
7018 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
7019   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
7020   bool added_images = false;
7021   if (image_infos.IsValid()) {
7022     for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
7023       ModuleSpec module_spec;
7024       module_spec.GetUUID() = image.uuid;
7025       module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
7026       if (image.currently_executing) {
7027         Symbols::DownloadObjectAndSymbolFile(module_spec, true);
7028         if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
7029           process.GetTarget().GetOrCreateModule(module_spec, false);
7030         }
7031       }
7032       Status error;
7033       ModuleSP module_sp =
7034           process.GetTarget().GetOrCreateModule(module_spec, false, &error);
7035       if (!module_sp.get() || !module_sp->GetObjectFile()) {
7036         if (image.load_address != LLDB_INVALID_ADDRESS) {
7037           module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
7038                                                    image.load_address);
7039         }
7040       }
7041       if (module_sp.get()) {
7042         added_images = true;
7043         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7044           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7045           if (sectlist) {
7046             SectionSP sect_sp =
7047                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7048             if (sect_sp) {
7049               process.GetTarget().SetSectionLoadAddress(
7050                   sect_sp, std::get<1>(name_vmaddr_tuple));
7051             }
7052           }
7053         }
7054       }
7055     }
7056   }
7057   return added_images;
7058 }
7059