1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringRef.h" 14 15 // Project includes 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/FileSpecList.h" 21 #include "lldb/Core/Log.h" 22 #include "lldb/Core/Module.h" 23 #include "lldb/Core/ModuleSpec.h" 24 #include "lldb/Core/PluginManager.h" 25 #include "lldb/Core/RangeMap.h" 26 #include "lldb/Core/Section.h" 27 #include "lldb/Core/StreamFile.h" 28 #include "lldb/Core/StreamString.h" 29 #include "lldb/Core/Timer.h" 30 #include "lldb/Core/UUID.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/FileSpec.h" 33 #include "lldb/Symbol/DWARFCallFrameInfo.h" 34 #include "lldb/Symbol/ObjectFile.h" 35 #include "lldb/Target/MemoryRegionInfo.h" 36 #include "lldb/Target/Platform.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/SectionLoadList.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 43 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 44 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 45 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 46 47 #include "lldb/Utility/SafeMachO.h" 48 49 #include "ObjectFileMachO.h" 50 51 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 52 // GetLLDBSharedCacheUUID() needs to call dlsym() 53 #include <dlfcn.h> 54 #endif 55 56 #ifndef __APPLE__ 57 #include "Utility/UuidCompatibility.h" 58 #endif 59 60 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 61 using namespace lldb; 62 using namespace lldb_private; 63 using namespace llvm::MachO; 64 65 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 66 { 67 public: 68 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 69 RegisterContextDarwin_x86_64 (thread, 0) 70 { 71 SetRegisterDataFrom_LC_THREAD (data); 72 } 73 74 void 75 InvalidateAllRegisters() override 76 { 77 // Do nothing... registers are always valid... 78 } 79 80 void 81 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 82 { 83 lldb::offset_t offset = 0; 84 SetError (GPRRegSet, Read, -1); 85 SetError (FPURegSet, Read, -1); 86 SetError (EXCRegSet, Read, -1); 87 bool done = false; 88 89 while (!done) 90 { 91 int flavor = data.GetU32 (&offset); 92 if (flavor == 0) 93 done = true; 94 else 95 { 96 uint32_t i; 97 uint32_t count = data.GetU32 (&offset); 98 switch (flavor) 99 { 100 case GPRRegSet: 101 for (i=0; i<count; ++i) 102 (&gpr.rax)[i] = data.GetU64(&offset); 103 SetError (GPRRegSet, Read, 0); 104 done = true; 105 106 break; 107 case FPURegSet: 108 // TODO: fill in FPU regs.... 109 //SetError (FPURegSet, Read, -1); 110 done = true; 111 112 break; 113 case EXCRegSet: 114 exc.trapno = data.GetU32(&offset); 115 exc.err = data.GetU32(&offset); 116 exc.faultvaddr = data.GetU64(&offset); 117 SetError (EXCRegSet, Read, 0); 118 done = true; 119 break; 120 case 7: 121 case 8: 122 case 9: 123 // fancy flavors that encapsulate of the above 124 // flavors... 125 break; 126 127 default: 128 done = true; 129 break; 130 } 131 } 132 } 133 } 134 135 static size_t 136 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 137 { 138 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 139 if (reg_info == NULL) 140 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 141 if (reg_info) 142 { 143 lldb_private::RegisterValue reg_value; 144 if (reg_ctx->ReadRegister(reg_info, reg_value)) 145 { 146 if (reg_info->byte_size >= reg_byte_size) 147 data.Write(reg_value.GetBytes(), reg_byte_size); 148 else 149 { 150 data.Write(reg_value.GetBytes(), reg_info->byte_size); 151 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 152 data.PutChar(0); 153 } 154 return reg_byte_size; 155 } 156 } 157 // Just write zeros if all else fails 158 for (size_t i=0; i<reg_byte_size; ++ i) 159 data.PutChar(0); 160 return reg_byte_size; 161 } 162 163 static bool 164 Create_LC_THREAD (Thread *thread, Stream &data) 165 { 166 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 167 if (reg_ctx_sp) 168 { 169 RegisterContext *reg_ctx = reg_ctx_sp.get(); 170 171 data.PutHex32 (GPRRegSet); // Flavor 172 data.PutHex32 (GPRWordCount); 173 WriteRegister (reg_ctx, "rax", NULL, 8, data); 174 WriteRegister (reg_ctx, "rbx", NULL, 8, data); 175 WriteRegister (reg_ctx, "rcx", NULL, 8, data); 176 WriteRegister (reg_ctx, "rdx", NULL, 8, data); 177 WriteRegister (reg_ctx, "rdi", NULL, 8, data); 178 WriteRegister (reg_ctx, "rsi", NULL, 8, data); 179 WriteRegister (reg_ctx, "rbp", NULL, 8, data); 180 WriteRegister (reg_ctx, "rsp", NULL, 8, data); 181 WriteRegister (reg_ctx, "r8", NULL, 8, data); 182 WriteRegister (reg_ctx, "r9", NULL, 8, data); 183 WriteRegister (reg_ctx, "r10", NULL, 8, data); 184 WriteRegister (reg_ctx, "r11", NULL, 8, data); 185 WriteRegister (reg_ctx, "r12", NULL, 8, data); 186 WriteRegister (reg_ctx, "r13", NULL, 8, data); 187 WriteRegister (reg_ctx, "r14", NULL, 8, data); 188 WriteRegister (reg_ctx, "r15", NULL, 8, data); 189 WriteRegister (reg_ctx, "rip", NULL, 8, data); 190 WriteRegister (reg_ctx, "rflags", NULL, 8, data); 191 WriteRegister (reg_ctx, "cs", NULL, 8, data); 192 WriteRegister (reg_ctx, "fs", NULL, 8, data); 193 WriteRegister (reg_ctx, "gs", NULL, 8, data); 194 195 // // Write out the FPU registers 196 // const size_t fpu_byte_size = sizeof(FPU); 197 // size_t bytes_written = 0; 198 // data.PutHex32 (FPURegSet); 199 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 200 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 201 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 202 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" 203 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" 204 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" 205 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 206 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" 207 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" 208 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" 209 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 210 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" 211 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" 212 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 213 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; 214 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; 215 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); 216 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); 217 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); 218 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); 219 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); 220 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); 221 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); 222 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); 223 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); 224 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); 225 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); 226 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); 227 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); 228 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); 229 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); 230 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); 231 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); 232 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); 233 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); 234 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); 235 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); 236 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); 237 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); 238 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); 239 // 240 // // Fill rest with zeros 241 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ i) 242 // data.PutChar(0); 243 244 // Write out the EXC registers 245 data.PutHex32 (EXCRegSet); 246 data.PutHex32 (EXCWordCount); 247 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 248 WriteRegister (reg_ctx, "err", NULL, 4, data); 249 WriteRegister (reg_ctx, "faultvaddr", NULL, 8, data); 250 return true; 251 } 252 return false; 253 } 254 255 protected: 256 int 257 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 258 { 259 return 0; 260 } 261 262 int 263 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 264 { 265 return 0; 266 } 267 268 int 269 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 270 { 271 return 0; 272 } 273 274 int 275 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 276 { 277 return 0; 278 } 279 280 int 281 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 282 { 283 return 0; 284 } 285 286 int 287 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 288 { 289 return 0; 290 } 291 }; 292 293 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 294 { 295 public: 296 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 297 RegisterContextDarwin_i386 (thread, 0) 298 { 299 SetRegisterDataFrom_LC_THREAD (data); 300 } 301 302 void 303 InvalidateAllRegisters() override 304 { 305 // Do nothing... registers are always valid... 306 } 307 308 void 309 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 310 { 311 lldb::offset_t offset = 0; 312 SetError (GPRRegSet, Read, -1); 313 SetError (FPURegSet, Read, -1); 314 SetError (EXCRegSet, Read, -1); 315 bool done = false; 316 317 while (!done) 318 { 319 int flavor = data.GetU32 (&offset); 320 if (flavor == 0) 321 done = true; 322 else 323 { 324 uint32_t i; 325 uint32_t count = data.GetU32 (&offset); 326 switch (flavor) 327 { 328 case GPRRegSet: 329 for (i=0; i<count; ++i) 330 (&gpr.eax)[i] = data.GetU32(&offset); 331 SetError (GPRRegSet, Read, 0); 332 done = true; 333 334 break; 335 case FPURegSet: 336 // TODO: fill in FPU regs.... 337 //SetError (FPURegSet, Read, -1); 338 done = true; 339 340 break; 341 case EXCRegSet: 342 exc.trapno = data.GetU32(&offset); 343 exc.err = data.GetU32(&offset); 344 exc.faultvaddr = data.GetU32(&offset); 345 SetError (EXCRegSet, Read, 0); 346 done = true; 347 break; 348 case 7: 349 case 8: 350 case 9: 351 // fancy flavors that encapsulate of the above 352 // flavors... 353 break; 354 355 default: 356 done = true; 357 break; 358 } 359 } 360 } 361 } 362 363 static size_t 364 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 365 { 366 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 367 if (reg_info == NULL) 368 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 369 if (reg_info) 370 { 371 lldb_private::RegisterValue reg_value; 372 if (reg_ctx->ReadRegister(reg_info, reg_value)) 373 { 374 if (reg_info->byte_size >= reg_byte_size) 375 data.Write(reg_value.GetBytes(), reg_byte_size); 376 else 377 { 378 data.Write(reg_value.GetBytes(), reg_info->byte_size); 379 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 380 data.PutChar(0); 381 } 382 return reg_byte_size; 383 } 384 } 385 // Just write zeros if all else fails 386 for (size_t i=0; i<reg_byte_size; ++ i) 387 data.PutChar(0); 388 return reg_byte_size; 389 } 390 391 static bool 392 Create_LC_THREAD (Thread *thread, Stream &data) 393 { 394 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 395 if (reg_ctx_sp) 396 { 397 RegisterContext *reg_ctx = reg_ctx_sp.get(); 398 399 data.PutHex32 (GPRRegSet); // Flavor 400 data.PutHex32 (GPRWordCount); 401 WriteRegister (reg_ctx, "eax", NULL, 4, data); 402 WriteRegister (reg_ctx, "ebx", NULL, 4, data); 403 WriteRegister (reg_ctx, "ecx", NULL, 4, data); 404 WriteRegister (reg_ctx, "edx", NULL, 4, data); 405 WriteRegister (reg_ctx, "edi", NULL, 4, data); 406 WriteRegister (reg_ctx, "esi", NULL, 4, data); 407 WriteRegister (reg_ctx, "ebp", NULL, 4, data); 408 WriteRegister (reg_ctx, "esp", NULL, 4, data); 409 WriteRegister (reg_ctx, "ss", NULL, 4, data); 410 WriteRegister (reg_ctx, "eflags", NULL, 4, data); 411 WriteRegister (reg_ctx, "eip", NULL, 4, data); 412 WriteRegister (reg_ctx, "cs", NULL, 4, data); 413 WriteRegister (reg_ctx, "ds", NULL, 4, data); 414 WriteRegister (reg_ctx, "es", NULL, 4, data); 415 WriteRegister (reg_ctx, "fs", NULL, 4, data); 416 WriteRegister (reg_ctx, "gs", NULL, 4, data); 417 418 // Write out the EXC registers 419 data.PutHex32 (EXCRegSet); 420 data.PutHex32 (EXCWordCount); 421 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 422 WriteRegister (reg_ctx, "err", NULL, 4, data); 423 WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); 424 return true; 425 } 426 return false; 427 } 428 429 protected: 430 int 431 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 432 { 433 return 0; 434 } 435 436 int 437 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 438 { 439 return 0; 440 } 441 442 int 443 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 444 { 445 return 0; 446 } 447 448 int 449 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 450 { 451 return 0; 452 } 453 454 int 455 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 456 { 457 return 0; 458 } 459 460 int 461 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 462 { 463 return 0; 464 } 465 }; 466 467 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 468 { 469 public: 470 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 471 RegisterContextDarwin_arm (thread, 0) 472 { 473 SetRegisterDataFrom_LC_THREAD (data); 474 } 475 476 void 477 InvalidateAllRegisters() override 478 { 479 // Do nothing... registers are always valid... 480 } 481 482 void 483 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 484 { 485 lldb::offset_t offset = 0; 486 SetError (GPRRegSet, Read, -1); 487 SetError (FPURegSet, Read, -1); 488 SetError (EXCRegSet, Read, -1); 489 bool done = false; 490 491 while (!done) 492 { 493 int flavor = data.GetU32 (&offset); 494 uint32_t count = data.GetU32 (&offset); 495 lldb::offset_t next_thread_state = offset + (count * 4); 496 switch (flavor) 497 { 498 case GPRRegSet: 499 for (uint32_t i=0; i<count; ++i) 500 { 501 gpr.r[i] = data.GetU32(&offset); 502 } 503 504 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 505 // one element past the end of the gpr.r[] array. 506 507 SetError (GPRRegSet, Read, 0); 508 offset = next_thread_state; 509 break; 510 511 case FPURegSet: 512 { 513 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 514 const int fpu_reg_buf_size = sizeof (fpu.floats); 515 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 516 { 517 offset += fpu_reg_buf_size; 518 fpu.fpscr = data.GetU32(&offset); 519 SetError (FPURegSet, Read, 0); 520 } 521 else 522 { 523 done = true; 524 } 525 } 526 offset = next_thread_state; 527 break; 528 529 case EXCRegSet: 530 if (count == 3) 531 { 532 exc.exception = data.GetU32(&offset); 533 exc.fsr = data.GetU32(&offset); 534 exc.far = data.GetU32(&offset); 535 SetError (EXCRegSet, Read, 0); 536 } 537 done = true; 538 offset = next_thread_state; 539 break; 540 541 // Unknown register set flavor, stop trying to parse. 542 default: 543 done = true; 544 } 545 } 546 } 547 548 static size_t 549 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 550 { 551 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 552 if (reg_info == NULL) 553 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 554 if (reg_info) 555 { 556 lldb_private::RegisterValue reg_value; 557 if (reg_ctx->ReadRegister(reg_info, reg_value)) 558 { 559 if (reg_info->byte_size >= reg_byte_size) 560 data.Write(reg_value.GetBytes(), reg_byte_size); 561 else 562 { 563 data.Write(reg_value.GetBytes(), reg_info->byte_size); 564 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 565 data.PutChar(0); 566 } 567 return reg_byte_size; 568 } 569 } 570 // Just write zeros if all else fails 571 for (size_t i=0; i<reg_byte_size; ++ i) 572 data.PutChar(0); 573 return reg_byte_size; 574 } 575 576 static bool 577 Create_LC_THREAD (Thread *thread, Stream &data) 578 { 579 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 580 if (reg_ctx_sp) 581 { 582 RegisterContext *reg_ctx = reg_ctx_sp.get(); 583 584 data.PutHex32 (GPRRegSet); // Flavor 585 data.PutHex32 (GPRWordCount); 586 WriteRegister (reg_ctx, "r0", NULL, 4, data); 587 WriteRegister (reg_ctx, "r1", NULL, 4, data); 588 WriteRegister (reg_ctx, "r2", NULL, 4, data); 589 WriteRegister (reg_ctx, "r3", NULL, 4, data); 590 WriteRegister (reg_ctx, "r4", NULL, 4, data); 591 WriteRegister (reg_ctx, "r5", NULL, 4, data); 592 WriteRegister (reg_ctx, "r6", NULL, 4, data); 593 WriteRegister (reg_ctx, "r7", NULL, 4, data); 594 WriteRegister (reg_ctx, "r8", NULL, 4, data); 595 WriteRegister (reg_ctx, "r9", NULL, 4, data); 596 WriteRegister (reg_ctx, "r10", NULL, 4, data); 597 WriteRegister (reg_ctx, "r11", NULL, 4, data); 598 WriteRegister (reg_ctx, "r12", NULL, 4, data); 599 WriteRegister (reg_ctx, "sp", NULL, 4, data); 600 WriteRegister (reg_ctx, "lr", NULL, 4, data); 601 WriteRegister (reg_ctx, "pc", NULL, 4, data); 602 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 603 604 // Write out the EXC registers 605 // data.PutHex32 (EXCRegSet); 606 // data.PutHex32 (EXCWordCount); 607 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 608 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 609 // WriteRegister (reg_ctx, "far", NULL, 4, data); 610 return true; 611 } 612 return false; 613 } 614 615 protected: 616 int 617 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 618 { 619 return -1; 620 } 621 622 int 623 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 624 { 625 return -1; 626 } 627 628 int 629 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 630 { 631 return -1; 632 } 633 634 int 635 DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override 636 { 637 return -1; 638 } 639 640 int 641 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 642 { 643 return 0; 644 } 645 646 int 647 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 648 { 649 return 0; 650 } 651 652 int 653 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 654 { 655 return 0; 656 } 657 658 int 659 DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override 660 { 661 return -1; 662 } 663 }; 664 665 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 666 { 667 public: 668 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 669 RegisterContextDarwin_arm64 (thread, 0) 670 { 671 SetRegisterDataFrom_LC_THREAD (data); 672 } 673 674 void 675 InvalidateAllRegisters() override 676 { 677 // Do nothing... registers are always valid... 678 } 679 680 void 681 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 682 { 683 lldb::offset_t offset = 0; 684 SetError (GPRRegSet, Read, -1); 685 SetError (FPURegSet, Read, -1); 686 SetError (EXCRegSet, Read, -1); 687 bool done = false; 688 while (!done) 689 { 690 int flavor = data.GetU32 (&offset); 691 uint32_t count = data.GetU32 (&offset); 692 lldb::offset_t next_thread_state = offset + (count * 4); 693 switch (flavor) 694 { 695 case GPRRegSet: 696 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 697 if (count >= (33 * 2) + 1) 698 { 699 for (uint32_t i=0; i<33; ++i) 700 gpr.x[i] = data.GetU64(&offset); 701 gpr.cpsr = data.GetU32(&offset); 702 SetError (GPRRegSet, Read, 0); 703 } 704 offset = next_thread_state; 705 break; 706 case FPURegSet: 707 { 708 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 709 const int fpu_reg_buf_size = sizeof (fpu); 710 if (fpu_reg_buf_size == count 711 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 712 { 713 SetError (FPURegSet, Read, 0); 714 } 715 else 716 { 717 done = true; 718 } 719 } 720 offset = next_thread_state; 721 break; 722 case EXCRegSet: 723 if (count == 4) 724 { 725 exc.far = data.GetU64(&offset); 726 exc.esr = data.GetU32(&offset); 727 exc.exception = data.GetU32(&offset); 728 SetError (EXCRegSet, Read, 0); 729 } 730 offset = next_thread_state; 731 break; 732 default: 733 done = true; 734 break; 735 } 736 } 737 } 738 739 static size_t 740 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 741 { 742 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 743 if (reg_info == NULL) 744 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 745 if (reg_info) 746 { 747 lldb_private::RegisterValue reg_value; 748 if (reg_ctx->ReadRegister(reg_info, reg_value)) 749 { 750 if (reg_info->byte_size >= reg_byte_size) 751 data.Write(reg_value.GetBytes(), reg_byte_size); 752 else 753 { 754 data.Write(reg_value.GetBytes(), reg_info->byte_size); 755 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 756 data.PutChar(0); 757 } 758 return reg_byte_size; 759 } 760 } 761 // Just write zeros if all else fails 762 for (size_t i=0; i<reg_byte_size; ++ i) 763 data.PutChar(0); 764 return reg_byte_size; 765 } 766 767 static bool 768 Create_LC_THREAD (Thread *thread, Stream &data) 769 { 770 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 771 if (reg_ctx_sp) 772 { 773 RegisterContext *reg_ctx = reg_ctx_sp.get(); 774 775 data.PutHex32 (GPRRegSet); // Flavor 776 data.PutHex32 (GPRWordCount); 777 WriteRegister (reg_ctx, "x0", NULL, 8, data); 778 WriteRegister (reg_ctx, "x1", NULL, 8, data); 779 WriteRegister (reg_ctx, "x2", NULL, 8, data); 780 WriteRegister (reg_ctx, "x3", NULL, 8, data); 781 WriteRegister (reg_ctx, "x4", NULL, 8, data); 782 WriteRegister (reg_ctx, "x5", NULL, 8, data); 783 WriteRegister (reg_ctx, "x6", NULL, 8, data); 784 WriteRegister (reg_ctx, "x7", NULL, 8, data); 785 WriteRegister (reg_ctx, "x8", NULL, 8, data); 786 WriteRegister (reg_ctx, "x9", NULL, 8, data); 787 WriteRegister (reg_ctx, "x10", NULL, 8, data); 788 WriteRegister (reg_ctx, "x11", NULL, 8, data); 789 WriteRegister (reg_ctx, "x12", NULL, 8, data); 790 WriteRegister (reg_ctx, "x13", NULL, 8, data); 791 WriteRegister (reg_ctx, "x14", NULL, 8, data); 792 WriteRegister (reg_ctx, "x15", NULL, 8, data); 793 WriteRegister (reg_ctx, "x16", NULL, 8, data); 794 WriteRegister (reg_ctx, "x17", NULL, 8, data); 795 WriteRegister (reg_ctx, "x18", NULL, 8, data); 796 WriteRegister (reg_ctx, "x19", NULL, 8, data); 797 WriteRegister (reg_ctx, "x20", NULL, 8, data); 798 WriteRegister (reg_ctx, "x21", NULL, 8, data); 799 WriteRegister (reg_ctx, "x22", NULL, 8, data); 800 WriteRegister (reg_ctx, "x23", NULL, 8, data); 801 WriteRegister (reg_ctx, "x24", NULL, 8, data); 802 WriteRegister (reg_ctx, "x25", NULL, 8, data); 803 WriteRegister (reg_ctx, "x26", NULL, 8, data); 804 WriteRegister (reg_ctx, "x27", NULL, 8, data); 805 WriteRegister (reg_ctx, "x28", NULL, 8, data); 806 WriteRegister (reg_ctx, "fp", NULL, 8, data); 807 WriteRegister (reg_ctx, "lr", NULL, 8, data); 808 WriteRegister (reg_ctx, "sp", NULL, 8, data); 809 WriteRegister (reg_ctx, "pc", NULL, 8, data); 810 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 811 812 // Write out the EXC registers 813 // data.PutHex32 (EXCRegSet); 814 // data.PutHex32 (EXCWordCount); 815 // WriteRegister (reg_ctx, "far", NULL, 8, data); 816 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 817 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 818 return true; 819 } 820 return false; 821 } 822 823 protected: 824 int 825 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 826 { 827 return -1; 828 } 829 830 int 831 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 832 { 833 return -1; 834 } 835 836 int 837 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 838 { 839 return -1; 840 } 841 842 int 843 DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override 844 { 845 return -1; 846 } 847 848 int 849 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 850 { 851 return 0; 852 } 853 854 int 855 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 856 { 857 return 0; 858 } 859 860 int 861 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 862 { 863 return 0; 864 } 865 866 int 867 DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override 868 { 869 return -1; 870 } 871 }; 872 873 static uint32_t 874 MachHeaderSizeFromMagic(uint32_t magic) 875 { 876 switch (magic) 877 { 878 case MH_MAGIC: 879 case MH_CIGAM: 880 return sizeof(struct mach_header); 881 882 case MH_MAGIC_64: 883 case MH_CIGAM_64: 884 return sizeof(struct mach_header_64); 885 break; 886 887 default: 888 break; 889 } 890 return 0; 891 } 892 893 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 894 895 void 896 ObjectFileMachO::Initialize() 897 { 898 PluginManager::RegisterPlugin (GetPluginNameStatic(), 899 GetPluginDescriptionStatic(), 900 CreateInstance, 901 CreateMemoryInstance, 902 GetModuleSpecifications, 903 SaveCore); 904 } 905 906 void 907 ObjectFileMachO::Terminate() 908 { 909 PluginManager::UnregisterPlugin (CreateInstance); 910 } 911 912 lldb_private::ConstString 913 ObjectFileMachO::GetPluginNameStatic() 914 { 915 static ConstString g_name("mach-o"); 916 return g_name; 917 } 918 919 const char * 920 ObjectFileMachO::GetPluginDescriptionStatic() 921 { 922 return "Mach-o object file reader (32 and 64 bit)"; 923 } 924 925 ObjectFile * 926 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 927 DataBufferSP& data_sp, 928 lldb::offset_t data_offset, 929 const FileSpec* file, 930 lldb::offset_t file_offset, 931 lldb::offset_t length) 932 { 933 if (!data_sp) 934 { 935 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 936 data_offset = 0; 937 } 938 939 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 940 { 941 // Update the data to contain the entire file if it doesn't already 942 if (data_sp->GetByteSize() < length) 943 { 944 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 945 data_offset = 0; 946 } 947 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 948 if (objfile_ap.get() && objfile_ap->ParseHeader()) 949 return objfile_ap.release(); 950 } 951 return NULL; 952 } 953 954 ObjectFile * 955 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 956 DataBufferSP& data_sp, 957 const ProcessSP &process_sp, 958 lldb::addr_t header_addr) 959 { 960 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 961 { 962 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 963 if (objfile_ap.get() && objfile_ap->ParseHeader()) 964 return objfile_ap.release(); 965 } 966 return NULL; 967 } 968 969 size_t 970 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 971 lldb::DataBufferSP& data_sp, 972 lldb::offset_t data_offset, 973 lldb::offset_t file_offset, 974 lldb::offset_t length, 975 lldb_private::ModuleSpecList &specs) 976 { 977 const size_t initial_count = specs.GetSize(); 978 979 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 980 { 981 DataExtractor data; 982 data.SetData(data_sp); 983 llvm::MachO::mach_header header; 984 if (ParseHeader (data, &data_offset, header)) 985 { 986 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 987 if (header_and_load_cmds >= data_sp->GetByteSize()) 988 { 989 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 990 data.SetData(data_sp); 991 data_offset = MachHeaderSizeFromMagic(header.magic); 992 } 993 if (data_sp) 994 { 995 ModuleSpec spec; 996 spec.GetFileSpec() = file; 997 spec.SetObjectOffset(file_offset); 998 spec.SetObjectSize(length); 999 1000 if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) 1001 { 1002 if (spec.GetArchitecture().IsValid()) 1003 { 1004 GetUUID (header, data, data_offset, spec.GetUUID()); 1005 specs.Append(spec); 1006 } 1007 } 1008 } 1009 } 1010 } 1011 return specs.GetSize() - initial_count; 1012 } 1013 1014 const ConstString & 1015 ObjectFileMachO::GetSegmentNameTEXT() 1016 { 1017 static ConstString g_segment_name_TEXT ("__TEXT"); 1018 return g_segment_name_TEXT; 1019 } 1020 1021 const ConstString & 1022 ObjectFileMachO::GetSegmentNameDATA() 1023 { 1024 static ConstString g_segment_name_DATA ("__DATA"); 1025 return g_segment_name_DATA; 1026 } 1027 1028 const ConstString & 1029 ObjectFileMachO::GetSegmentNameDATA_DIRTY() 1030 { 1031 static ConstString g_segment_name ("__DATA_DIRTY"); 1032 return g_segment_name; 1033 } 1034 1035 const ConstString & 1036 ObjectFileMachO::GetSegmentNameDATA_CONST() 1037 { 1038 static ConstString g_segment_name ("__DATA_CONST"); 1039 return g_segment_name; 1040 } 1041 1042 const ConstString & 1043 ObjectFileMachO::GetSegmentNameOBJC() 1044 { 1045 static ConstString g_segment_name_OBJC ("__OBJC"); 1046 return g_segment_name_OBJC; 1047 } 1048 1049 const ConstString & 1050 ObjectFileMachO::GetSegmentNameLINKEDIT() 1051 { 1052 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 1053 return g_section_name_LINKEDIT; 1054 } 1055 1056 const ConstString & 1057 ObjectFileMachO::GetSectionNameEHFrame() 1058 { 1059 static ConstString g_section_name_eh_frame ("__eh_frame"); 1060 return g_section_name_eh_frame; 1061 } 1062 1063 bool 1064 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 1065 lldb::addr_t data_offset, 1066 lldb::addr_t data_length) 1067 { 1068 DataExtractor data; 1069 data.SetData (data_sp, data_offset, data_length); 1070 lldb::offset_t offset = 0; 1071 uint32_t magic = data.GetU32(&offset); 1072 return MachHeaderSizeFromMagic(magic) != 0; 1073 } 1074 1075 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 1076 DataBufferSP& data_sp, 1077 lldb::offset_t data_offset, 1078 const FileSpec* file, 1079 lldb::offset_t file_offset, 1080 lldb::offset_t length) : 1081 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 1082 m_mach_segments(), 1083 m_mach_sections(), 1084 m_entry_point_address(), 1085 m_thread_context_offsets(), 1086 m_thread_context_offsets_valid(false) 1087 { 1088 ::memset (&m_header, 0, sizeof(m_header)); 1089 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1090 } 1091 1092 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 1093 lldb::DataBufferSP& header_data_sp, 1094 const lldb::ProcessSP &process_sp, 1095 lldb::addr_t header_addr) : 1096 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 1097 m_mach_segments(), 1098 m_mach_sections(), 1099 m_entry_point_address(), 1100 m_thread_context_offsets(), 1101 m_thread_context_offsets_valid(false) 1102 { 1103 ::memset (&m_header, 0, sizeof(m_header)); 1104 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1105 } 1106 1107 bool 1108 ObjectFileMachO::ParseHeader (DataExtractor &data, 1109 lldb::offset_t *data_offset_ptr, 1110 llvm::MachO::mach_header &header) 1111 { 1112 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1113 // Leave magic in the original byte order 1114 header.magic = data.GetU32(data_offset_ptr); 1115 bool can_parse = false; 1116 bool is_64_bit = false; 1117 switch (header.magic) 1118 { 1119 case MH_MAGIC: 1120 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1121 data.SetAddressByteSize(4); 1122 can_parse = true; 1123 break; 1124 1125 case MH_MAGIC_64: 1126 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1127 data.SetAddressByteSize(8); 1128 can_parse = true; 1129 is_64_bit = true; 1130 break; 1131 1132 case MH_CIGAM: 1133 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1134 data.SetAddressByteSize(4); 1135 can_parse = true; 1136 break; 1137 1138 case MH_CIGAM_64: 1139 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1140 data.SetAddressByteSize(8); 1141 is_64_bit = true; 1142 can_parse = true; 1143 break; 1144 1145 default: 1146 break; 1147 } 1148 1149 if (can_parse) 1150 { 1151 data.GetU32(data_offset_ptr, &header.cputype, 6); 1152 if (is_64_bit) 1153 *data_offset_ptr += 4; 1154 return true; 1155 } 1156 else 1157 { 1158 memset(&header, 0, sizeof(header)); 1159 } 1160 return false; 1161 } 1162 1163 bool 1164 ObjectFileMachO::ParseHeader () 1165 { 1166 ModuleSP module_sp(GetModule()); 1167 if (module_sp) 1168 { 1169 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1170 bool can_parse = false; 1171 lldb::offset_t offset = 0; 1172 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1173 // Leave magic in the original byte order 1174 m_header.magic = m_data.GetU32(&offset); 1175 switch (m_header.magic) 1176 { 1177 case MH_MAGIC: 1178 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1179 m_data.SetAddressByteSize(4); 1180 can_parse = true; 1181 break; 1182 1183 case MH_MAGIC_64: 1184 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1185 m_data.SetAddressByteSize(8); 1186 can_parse = true; 1187 break; 1188 1189 case MH_CIGAM: 1190 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1191 m_data.SetAddressByteSize(4); 1192 can_parse = true; 1193 break; 1194 1195 case MH_CIGAM_64: 1196 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1197 m_data.SetAddressByteSize(8); 1198 can_parse = true; 1199 break; 1200 1201 default: 1202 break; 1203 } 1204 1205 if (can_parse) 1206 { 1207 m_data.GetU32(&offset, &m_header.cputype, 6); 1208 1209 1210 ArchSpec mach_arch; 1211 1212 if (GetArchitecture (mach_arch)) 1213 { 1214 // Check if the module has a required architecture 1215 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1216 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1217 return false; 1218 1219 if (SetModulesArchitecture (mach_arch)) 1220 { 1221 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1222 if (m_data.GetByteSize() < header_and_lc_size) 1223 { 1224 DataBufferSP data_sp; 1225 ProcessSP process_sp (m_process_wp.lock()); 1226 if (process_sp) 1227 { 1228 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 1229 } 1230 else 1231 { 1232 // Read in all only the load command data from the file on disk 1233 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 1234 if (data_sp->GetByteSize() != header_and_lc_size) 1235 return false; 1236 } 1237 if (data_sp) 1238 m_data.SetData (data_sp); 1239 } 1240 } 1241 return true; 1242 } 1243 } 1244 else 1245 { 1246 memset(&m_header, 0, sizeof(struct mach_header)); 1247 } 1248 } 1249 return false; 1250 } 1251 1252 ByteOrder 1253 ObjectFileMachO::GetByteOrder () const 1254 { 1255 return m_data.GetByteOrder (); 1256 } 1257 1258 bool 1259 ObjectFileMachO::IsExecutable() const 1260 { 1261 return m_header.filetype == MH_EXECUTE; 1262 } 1263 1264 uint32_t 1265 ObjectFileMachO::GetAddressByteSize () const 1266 { 1267 return m_data.GetAddressByteSize (); 1268 } 1269 1270 AddressClass 1271 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 1272 { 1273 Symtab *symtab = GetSymtab(); 1274 if (symtab) 1275 { 1276 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1277 if (symbol) 1278 { 1279 if (symbol->ValueIsAddress()) 1280 { 1281 SectionSP section_sp (symbol->GetAddressRef().GetSection()); 1282 if (section_sp) 1283 { 1284 const lldb::SectionType section_type = section_sp->GetType(); 1285 switch (section_type) 1286 { 1287 case eSectionTypeInvalid: 1288 return eAddressClassUnknown; 1289 1290 case eSectionTypeCode: 1291 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1292 { 1293 // For ARM we have a bit in the n_desc field of the symbol 1294 // that tells us ARM/Thumb which is bit 0x0008. 1295 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1296 return eAddressClassCodeAlternateISA; 1297 } 1298 return eAddressClassCode; 1299 1300 case eSectionTypeContainer: 1301 return eAddressClassUnknown; 1302 1303 case eSectionTypeData: 1304 case eSectionTypeDataCString: 1305 case eSectionTypeDataCStringPointers: 1306 case eSectionTypeDataSymbolAddress: 1307 case eSectionTypeData4: 1308 case eSectionTypeData8: 1309 case eSectionTypeData16: 1310 case eSectionTypeDataPointers: 1311 case eSectionTypeZeroFill: 1312 case eSectionTypeDataObjCMessageRefs: 1313 case eSectionTypeDataObjCCFStrings: 1314 case eSectionTypeGoSymtab: 1315 return eAddressClassData; 1316 1317 case eSectionTypeDebug: 1318 case eSectionTypeDWARFDebugAbbrev: 1319 case eSectionTypeDWARFDebugAddr: 1320 case eSectionTypeDWARFDebugAranges: 1321 case eSectionTypeDWARFDebugFrame: 1322 case eSectionTypeDWARFDebugInfo: 1323 case eSectionTypeDWARFDebugLine: 1324 case eSectionTypeDWARFDebugLoc: 1325 case eSectionTypeDWARFDebugMacInfo: 1326 case eSectionTypeDWARFDebugPubNames: 1327 case eSectionTypeDWARFDebugPubTypes: 1328 case eSectionTypeDWARFDebugRanges: 1329 case eSectionTypeDWARFDebugStr: 1330 case eSectionTypeDWARFDebugStrOffsets: 1331 case eSectionTypeDWARFAppleNames: 1332 case eSectionTypeDWARFAppleTypes: 1333 case eSectionTypeDWARFAppleNamespaces: 1334 case eSectionTypeDWARFAppleObjC: 1335 return eAddressClassDebug; 1336 1337 case eSectionTypeEHFrame: 1338 case eSectionTypeARMexidx: 1339 case eSectionTypeARMextab: 1340 case eSectionTypeCompactUnwind: 1341 return eAddressClassRuntime; 1342 1343 case eSectionTypeELFSymbolTable: 1344 case eSectionTypeELFDynamicSymbols: 1345 case eSectionTypeELFRelocationEntries: 1346 case eSectionTypeELFDynamicLinkInfo: 1347 case eSectionTypeOther: 1348 return eAddressClassUnknown; 1349 } 1350 } 1351 } 1352 1353 const SymbolType symbol_type = symbol->GetType(); 1354 switch (symbol_type) 1355 { 1356 case eSymbolTypeAny: return eAddressClassUnknown; 1357 case eSymbolTypeAbsolute: return eAddressClassUnknown; 1358 1359 case eSymbolTypeCode: 1360 case eSymbolTypeTrampoline: 1361 case eSymbolTypeResolver: 1362 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1363 { 1364 // For ARM we have a bit in the n_desc field of the symbol 1365 // that tells us ARM/Thumb which is bit 0x0008. 1366 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1367 return eAddressClassCodeAlternateISA; 1368 } 1369 return eAddressClassCode; 1370 1371 case eSymbolTypeData: return eAddressClassData; 1372 case eSymbolTypeRuntime: return eAddressClassRuntime; 1373 case eSymbolTypeException: return eAddressClassRuntime; 1374 case eSymbolTypeSourceFile: return eAddressClassDebug; 1375 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1376 case eSymbolTypeObjectFile: return eAddressClassDebug; 1377 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1378 case eSymbolTypeBlock: return eAddressClassDebug; 1379 case eSymbolTypeLocal: return eAddressClassData; 1380 case eSymbolTypeParam: return eAddressClassData; 1381 case eSymbolTypeVariable: return eAddressClassData; 1382 case eSymbolTypeVariableType: return eAddressClassDebug; 1383 case eSymbolTypeLineEntry: return eAddressClassDebug; 1384 case eSymbolTypeLineHeader: return eAddressClassDebug; 1385 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1386 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1387 case eSymbolTypeAdditional: return eAddressClassUnknown; 1388 case eSymbolTypeCompiler: return eAddressClassDebug; 1389 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1390 case eSymbolTypeUndefined: return eAddressClassUnknown; 1391 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1392 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1393 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1394 case eSymbolTypeReExported: return eAddressClassRuntime; 1395 } 1396 } 1397 } 1398 return eAddressClassUnknown; 1399 } 1400 1401 Symtab * 1402 ObjectFileMachO::GetSymtab() 1403 { 1404 ModuleSP module_sp(GetModule()); 1405 if (module_sp) 1406 { 1407 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1408 if (m_symtab_ap.get() == NULL) 1409 { 1410 m_symtab_ap.reset(new Symtab(this)); 1411 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1412 ParseSymtab (); 1413 m_symtab_ap->Finalize (); 1414 } 1415 } 1416 return m_symtab_ap.get(); 1417 } 1418 1419 bool 1420 ObjectFileMachO::IsStripped () 1421 { 1422 if (m_dysymtab.cmd == 0) 1423 { 1424 ModuleSP module_sp(GetModule()); 1425 if (module_sp) 1426 { 1427 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1428 for (uint32_t i=0; i<m_header.ncmds; ++i) 1429 { 1430 const lldb::offset_t load_cmd_offset = offset; 1431 1432 load_command lc; 1433 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1434 break; 1435 if (lc.cmd == LC_DYSYMTAB) 1436 { 1437 m_dysymtab.cmd = lc.cmd; 1438 m_dysymtab.cmdsize = lc.cmdsize; 1439 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1440 { 1441 // Clear m_dysymtab if we were unable to read all items from the load command 1442 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1443 } 1444 } 1445 offset = load_cmd_offset + lc.cmdsize; 1446 } 1447 } 1448 } 1449 if (m_dysymtab.cmd) 1450 return m_dysymtab.nlocalsym <= 1; 1451 return false; 1452 } 1453 1454 void 1455 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1456 { 1457 if (!m_sections_ap.get()) 1458 { 1459 m_sections_ap.reset(new SectionList()); 1460 1461 const bool is_dsym = (m_header.filetype == MH_DSYM); 1462 lldb::user_id_t segID = 0; 1463 lldb::user_id_t sectID = 0; 1464 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1465 uint32_t i; 1466 const bool is_core = GetType() == eTypeCoreFile; 1467 //bool dump_sections = false; 1468 ModuleSP module_sp (GetModule()); 1469 // First look up any LC_ENCRYPTION_INFO load commands 1470 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1471 EncryptedFileRanges encrypted_file_ranges; 1472 encryption_info_command encryption_cmd; 1473 for (i=0; i<m_header.ncmds; ++i) 1474 { 1475 const lldb::offset_t load_cmd_offset = offset; 1476 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1477 break; 1478 1479 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for 1480 // the 3 fields we care about, so treat them the same. 1481 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) 1482 { 1483 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1484 { 1485 if (encryption_cmd.cryptid != 0) 1486 { 1487 EncryptedFileRanges::Entry entry; 1488 entry.SetRangeBase(encryption_cmd.cryptoff); 1489 entry.SetByteSize(encryption_cmd.cryptsize); 1490 encrypted_file_ranges.Append(entry); 1491 } 1492 } 1493 } 1494 offset = load_cmd_offset + encryption_cmd.cmdsize; 1495 } 1496 1497 bool section_file_addresses_changed = false; 1498 1499 offset = MachHeaderSizeFromMagic(m_header.magic); 1500 1501 struct segment_command_64 load_cmd; 1502 for (i=0; i<m_header.ncmds; ++i) 1503 { 1504 const lldb::offset_t load_cmd_offset = offset; 1505 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1506 break; 1507 1508 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1509 { 1510 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1511 { 1512 bool add_section = true; 1513 bool add_to_unified = true; 1514 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1515 1516 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1517 if (is_dsym && unified_section_sp) 1518 { 1519 if (const_segname == GetSegmentNameLINKEDIT()) 1520 { 1521 // We need to keep the __LINKEDIT segment private to this object file only 1522 add_to_unified = false; 1523 } 1524 else 1525 { 1526 // This is the dSYM file and this section has already been created by 1527 // the object file, no need to create it. 1528 add_section = false; 1529 } 1530 } 1531 load_cmd.vmaddr = m_data.GetAddress(&offset); 1532 load_cmd.vmsize = m_data.GetAddress(&offset); 1533 load_cmd.fileoff = m_data.GetAddress(&offset); 1534 load_cmd.filesize = m_data.GetAddress(&offset); 1535 if (m_length != 0 && load_cmd.filesize != 0) 1536 { 1537 if (load_cmd.fileoff > m_length) 1538 { 1539 // We have a load command that says it extends past the end of the file. This is likely 1540 // a corrupt file. We don't have any way to return an error condition here (this method 1541 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1542 // is null out the SectionList vector and if a process has been set up, dump a message 1543 // to stdout. The most common case here is core file debugging with a truncated file. 1544 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1545 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1546 i, 1547 lc_segment_name, 1548 load_cmd.fileoff, 1549 m_length); 1550 1551 load_cmd.fileoff = 0; 1552 load_cmd.filesize = 0; 1553 } 1554 1555 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1556 { 1557 // We have a load command that says it extends past the end of the file. This is likely 1558 // a corrupt file. We don't have any way to return an error condition here (this method 1559 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1560 // is null out the SectionList vector and if a process has been set up, dump a message 1561 // to stdout. The most common case here is core file debugging with a truncated file. 1562 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1563 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1564 i, 1565 lc_segment_name, 1566 load_cmd.fileoff + load_cmd.filesize, 1567 m_length); 1568 1569 // Tuncase the length 1570 load_cmd.filesize = m_length - load_cmd.fileoff; 1571 } 1572 } 1573 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1574 { 1575 1576 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1577 1578 // Keep a list of mach segments around in case we need to 1579 // get at data that isn't stored in the abstracted Sections. 1580 m_mach_segments.push_back (load_cmd); 1581 1582 // Use a segment ID of the segment index shifted left by 8 so they 1583 // never conflict with any of the sections. 1584 SectionSP segment_sp; 1585 if (add_section && (const_segname || is_core)) 1586 { 1587 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1588 this, // Object file to which this sections belongs 1589 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1590 const_segname, // Name of this section 1591 eSectionTypeContainer, // This section is a container of other sections. 1592 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1593 load_cmd.vmsize, // VM size in bytes of this section 1594 load_cmd.fileoff, // Offset to the data for this section in the file 1595 load_cmd.filesize, // Size in bytes of this section as found in the file 1596 0, // Segments have no alignment information 1597 load_cmd.flags)); // Flags for this section 1598 1599 segment_sp->SetIsEncrypted (segment_is_encrypted); 1600 m_sections_ap->AddSection(segment_sp); 1601 if (add_to_unified) 1602 unified_section_list.AddSection(segment_sp); 1603 } 1604 else if (unified_section_sp) 1605 { 1606 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1607 { 1608 // Check to see if the module was read from memory? 1609 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1610 { 1611 // We have a module that is in memory and needs to have its 1612 // file address adjusted. We need to do this because when we 1613 // load a file from memory, its addresses will be slid already, 1614 // yet the addresses in the new symbol file will still be unslid. 1615 // Since everything is stored as section offset, this shouldn't 1616 // cause any problems. 1617 1618 // Make sure we've parsed the symbol table from the 1619 // ObjectFile before we go around changing its Sections. 1620 module_sp->GetObjectFile()->GetSymtab(); 1621 // eh_frame would present the same problems but we parse that on 1622 // a per-function basis as-needed so it's more difficult to 1623 // remove its use of the Sections. Realistically, the environments 1624 // where this code path will be taken will not have eh_frame sections. 1625 1626 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1627 1628 // Notify the module that the section addresses have been changed once 1629 // we're done so any file-address caches can be updated. 1630 section_file_addresses_changed = true; 1631 } 1632 } 1633 m_sections_ap->AddSection(unified_section_sp); 1634 } 1635 1636 struct section_64 sect64; 1637 ::memset (§64, 0, sizeof(sect64)); 1638 // Push a section into our mach sections for the section at 1639 // index zero (NO_SECT) if we don't have any mach sections yet... 1640 if (m_mach_sections.empty()) 1641 m_mach_sections.push_back(sect64); 1642 uint32_t segment_sect_idx; 1643 const lldb::user_id_t first_segment_sectID = sectID + 1; 1644 1645 1646 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1647 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1648 { 1649 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1650 break; 1651 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1652 break; 1653 sect64.addr = m_data.GetAddress(&offset); 1654 sect64.size = m_data.GetAddress(&offset); 1655 1656 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1657 break; 1658 1659 // Keep a list of mach sections around in case we need to 1660 // get at data that isn't stored in the abstracted Sections. 1661 m_mach_sections.push_back (sect64); 1662 1663 if (add_section) 1664 { 1665 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1666 if (!const_segname) 1667 { 1668 // We have a segment with no name so we need to conjure up 1669 // segments that correspond to the section's segname if there 1670 // isn't already such a section. If there is such a section, 1671 // we resize the section so that it spans all sections. 1672 // We also mark these sections as fake so address matches don't 1673 // hit if they land in the gaps between the child sections. 1674 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1675 segment_sp = unified_section_list.FindSectionByName (const_segname); 1676 if (segment_sp.get()) 1677 { 1678 Section *segment = segment_sp.get(); 1679 // Grow the section size as needed. 1680 const lldb::addr_t sect64_min_addr = sect64.addr; 1681 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1682 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1683 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1684 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1685 if (sect64_min_addr >= curr_seg_min_addr) 1686 { 1687 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1688 // Only grow the section size if needed 1689 if (new_seg_byte_size > curr_seg_byte_size) 1690 segment->SetByteSize (new_seg_byte_size); 1691 } 1692 else 1693 { 1694 // We need to change the base address of the segment and 1695 // adjust the child section offsets for all existing children. 1696 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1697 segment->Slide(slide_amount, false); 1698 segment->GetChildren().Slide(-slide_amount, false); 1699 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1700 } 1701 1702 // Grow the section size as needed. 1703 if (sect64.offset) 1704 { 1705 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1706 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1707 1708 const lldb::addr_t section_min_file_offset = sect64.offset; 1709 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1710 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1711 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1712 segment->SetFileOffset (new_file_offset); 1713 segment->SetFileSize (new_file_size); 1714 } 1715 } 1716 else 1717 { 1718 // Create a fake section for the section's named segment 1719 segment_sp.reset(new Section (segment_sp, // Parent section 1720 module_sp, // Module to which this section belongs 1721 this, // Object file to which this section belongs 1722 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1723 const_segname, // Name of this section 1724 eSectionTypeContainer, // This section is a container of other sections. 1725 sect64.addr, // File VM address == addresses as they are found in the object file 1726 sect64.size, // VM size in bytes of this section 1727 sect64.offset, // Offset to the data for this section in the file 1728 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file 1729 sect64.align, 1730 load_cmd.flags)); // Flags for this section 1731 segment_sp->SetIsFake(true); 1732 1733 m_sections_ap->AddSection(segment_sp); 1734 if (add_to_unified) 1735 unified_section_list.AddSection(segment_sp); 1736 segment_sp->SetIsEncrypted (segment_is_encrypted); 1737 } 1738 } 1739 assert (segment_sp.get()); 1740 1741 lldb::SectionType sect_type = eSectionTypeOther; 1742 1743 if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1744 sect_type = eSectionTypeCode; 1745 else 1746 { 1747 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1748 static ConstString g_sect_name_objc_data ("__objc_data"); 1749 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1750 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1751 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1752 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1753 static ConstString g_sect_name_objc_const ("__objc_const"); 1754 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1755 static ConstString g_sect_name_cfstring ("__cfstring"); 1756 1757 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1758 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1759 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1760 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1761 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1762 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1763 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1764 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1765 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1766 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1767 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1768 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1769 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1770 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1771 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1772 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1773 static ConstString g_sect_name_compact_unwind ("__unwind_info"); 1774 static ConstString g_sect_name_text ("__text"); 1775 static ConstString g_sect_name_data ("__data"); 1776 static ConstString g_sect_name_go_symtab ("__gosymtab"); 1777 1778 1779 if (section_name == g_sect_name_dwarf_debug_abbrev) 1780 sect_type = eSectionTypeDWARFDebugAbbrev; 1781 else if (section_name == g_sect_name_dwarf_debug_aranges) 1782 sect_type = eSectionTypeDWARFDebugAranges; 1783 else if (section_name == g_sect_name_dwarf_debug_frame) 1784 sect_type = eSectionTypeDWARFDebugFrame; 1785 else if (section_name == g_sect_name_dwarf_debug_info) 1786 sect_type = eSectionTypeDWARFDebugInfo; 1787 else if (section_name == g_sect_name_dwarf_debug_line) 1788 sect_type = eSectionTypeDWARFDebugLine; 1789 else if (section_name == g_sect_name_dwarf_debug_loc) 1790 sect_type = eSectionTypeDWARFDebugLoc; 1791 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1792 sect_type = eSectionTypeDWARFDebugMacInfo; 1793 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1794 sect_type = eSectionTypeDWARFDebugPubNames; 1795 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1796 sect_type = eSectionTypeDWARFDebugPubTypes; 1797 else if (section_name == g_sect_name_dwarf_debug_ranges) 1798 sect_type = eSectionTypeDWARFDebugRanges; 1799 else if (section_name == g_sect_name_dwarf_debug_str) 1800 sect_type = eSectionTypeDWARFDebugStr; 1801 else if (section_name == g_sect_name_dwarf_apple_names) 1802 sect_type = eSectionTypeDWARFAppleNames; 1803 else if (section_name == g_sect_name_dwarf_apple_types) 1804 sect_type = eSectionTypeDWARFAppleTypes; 1805 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1806 sect_type = eSectionTypeDWARFAppleNamespaces; 1807 else if (section_name == g_sect_name_dwarf_apple_objc) 1808 sect_type = eSectionTypeDWARFAppleObjC; 1809 else if (section_name == g_sect_name_objc_selrefs) 1810 sect_type = eSectionTypeDataCStringPointers; 1811 else if (section_name == g_sect_name_objc_msgrefs) 1812 sect_type = eSectionTypeDataObjCMessageRefs; 1813 else if (section_name == g_sect_name_eh_frame) 1814 sect_type = eSectionTypeEHFrame; 1815 else if (section_name == g_sect_name_compact_unwind) 1816 sect_type = eSectionTypeCompactUnwind; 1817 else if (section_name == g_sect_name_cfstring) 1818 sect_type = eSectionTypeDataObjCCFStrings; 1819 else if (section_name == g_sect_name_go_symtab) 1820 sect_type = eSectionTypeGoSymtab; 1821 else if (section_name == g_sect_name_objc_data || 1822 section_name == g_sect_name_objc_classrefs || 1823 section_name == g_sect_name_objc_superrefs || 1824 section_name == g_sect_name_objc_const || 1825 section_name == g_sect_name_objc_classlist) 1826 { 1827 sect_type = eSectionTypeDataPointers; 1828 } 1829 1830 if (sect_type == eSectionTypeOther) 1831 { 1832 switch (mach_sect_type) 1833 { 1834 // TODO: categorize sections by other flags for regular sections 1835 case S_REGULAR: 1836 if (section_name == g_sect_name_text) 1837 sect_type = eSectionTypeCode; 1838 else if (section_name == g_sect_name_data) 1839 sect_type = eSectionTypeData; 1840 else 1841 sect_type = eSectionTypeOther; 1842 break; 1843 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1844 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1845 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1846 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1847 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1848 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1849 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1850 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1851 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1852 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1853 case S_COALESCED: sect_type = eSectionTypeOther; break; 1854 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1855 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1856 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1857 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1858 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1859 default: break; 1860 } 1861 } 1862 } 1863 1864 SectionSP section_sp(new Section (segment_sp, 1865 module_sp, 1866 this, 1867 ++sectID, 1868 section_name, 1869 sect_type, 1870 sect64.addr - segment_sp->GetFileAddress(), 1871 sect64.size, 1872 sect64.offset, 1873 sect64.offset == 0 ? 0 : sect64.size, 1874 sect64.align, 1875 sect64.flags)); 1876 // Set the section to be encrypted to match the segment 1877 1878 bool section_is_encrypted = false; 1879 if (!segment_is_encrypted && load_cmd.filesize != 0) 1880 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1881 1882 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1883 segment_sp->GetChildren().AddSection(section_sp); 1884 1885 if (segment_sp->IsFake()) 1886 { 1887 segment_sp.reset(); 1888 const_segname.Clear(); 1889 } 1890 } 1891 } 1892 if (segment_sp && is_dsym) 1893 { 1894 if (first_segment_sectID <= sectID) 1895 { 1896 lldb::user_id_t sect_uid; 1897 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1898 { 1899 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1900 SectionSP next_section_sp; 1901 if (sect_uid + 1 <= sectID) 1902 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1903 1904 if (curr_section_sp.get()) 1905 { 1906 if (curr_section_sp->GetByteSize() == 0) 1907 { 1908 if (next_section_sp.get() != NULL) 1909 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1910 else 1911 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1912 } 1913 } 1914 } 1915 } 1916 } 1917 } 1918 } 1919 } 1920 else if (load_cmd.cmd == LC_DYSYMTAB) 1921 { 1922 m_dysymtab.cmd = load_cmd.cmd; 1923 m_dysymtab.cmdsize = load_cmd.cmdsize; 1924 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1925 } 1926 1927 offset = load_cmd_offset + load_cmd.cmdsize; 1928 } 1929 1930 1931 if (section_file_addresses_changed && module_sp.get()) 1932 { 1933 module_sp->SectionFileAddressesChanged(); 1934 } 1935 } 1936 } 1937 1938 class MachSymtabSectionInfo 1939 { 1940 public: 1941 MachSymtabSectionInfo (SectionList *section_list) : 1942 m_section_list (section_list), 1943 m_section_infos() 1944 { 1945 // Get the number of sections down to a depth of 1 to include 1946 // all segments and their sections, but no other sections that 1947 // may be added for debug map or 1948 m_section_infos.resize(section_list->GetNumSections(1)); 1949 } 1950 1951 SectionSP 1952 GetSection (uint8_t n_sect, addr_t file_addr) 1953 { 1954 if (n_sect == 0) 1955 return SectionSP(); 1956 if (n_sect < m_section_infos.size()) 1957 { 1958 if (!m_section_infos[n_sect].section_sp) 1959 { 1960 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1961 m_section_infos[n_sect].section_sp = section_sp; 1962 if (section_sp) 1963 { 1964 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1965 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1966 } 1967 else 1968 { 1969 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1970 } 1971 } 1972 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1973 { 1974 // Symbol is in section. 1975 return m_section_infos[n_sect].section_sp; 1976 } 1977 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1978 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1979 { 1980 // Symbol is in section with zero size, but has the same start 1981 // address as the section. This can happen with linker symbols 1982 // (symbols that start with the letter 'l' or 'L'. 1983 return m_section_infos[n_sect].section_sp; 1984 } 1985 } 1986 return m_section_list->FindSectionContainingFileAddress(file_addr); 1987 } 1988 1989 protected: 1990 struct SectionInfo 1991 { 1992 SectionInfo () : 1993 vm_range(), 1994 section_sp () 1995 { 1996 } 1997 1998 VMRange vm_range; 1999 SectionSP section_sp; 2000 }; 2001 SectionList *m_section_list; 2002 std::vector<SectionInfo> m_section_infos; 2003 }; 2004 2005 struct TrieEntry 2006 { 2007 TrieEntry () : 2008 name(), 2009 address(LLDB_INVALID_ADDRESS), 2010 flags (0), 2011 other(0), 2012 import_name() 2013 { 2014 } 2015 2016 void 2017 Clear () 2018 { 2019 name.Clear(); 2020 address = LLDB_INVALID_ADDRESS; 2021 flags = 0; 2022 other = 0; 2023 import_name.Clear(); 2024 } 2025 2026 void 2027 Dump () const 2028 { 2029 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 2030 static_cast<unsigned long long>(address), 2031 static_cast<unsigned long long>(flags), 2032 static_cast<unsigned long long>(other), name.GetCString()); 2033 if (import_name) 2034 printf (" -> \"%s\"\n", import_name.GetCString()); 2035 else 2036 printf ("\n"); 2037 } 2038 ConstString name; 2039 uint64_t address; 2040 uint64_t flags; 2041 uint64_t other; 2042 ConstString import_name; 2043 }; 2044 2045 struct TrieEntryWithOffset 2046 { 2047 lldb::offset_t nodeOffset; 2048 TrieEntry entry; 2049 2050 TrieEntryWithOffset (lldb::offset_t offset) : 2051 nodeOffset (offset), 2052 entry() 2053 { 2054 } 2055 2056 void 2057 Dump (uint32_t idx) const 2058 { 2059 printf ("[%3u] 0x%16.16llx: ", idx, 2060 static_cast<unsigned long long>(nodeOffset)); 2061 entry.Dump(); 2062 } 2063 2064 bool 2065 operator<(const TrieEntryWithOffset& other) const 2066 { 2067 return ( nodeOffset < other.nodeOffset ); 2068 } 2069 }; 2070 2071 static void 2072 ParseTrieEntries (DataExtractor &data, 2073 lldb::offset_t offset, 2074 const bool is_arm, 2075 std::vector<llvm::StringRef> &nameSlices, 2076 std::set<lldb::addr_t> &resolver_addresses, 2077 std::vector<TrieEntryWithOffset>& output) 2078 { 2079 if (!data.ValidOffset(offset)) 2080 return; 2081 2082 const uint64_t terminalSize = data.GetULEB128(&offset); 2083 lldb::offset_t children_offset = offset + terminalSize; 2084 if ( terminalSize != 0 ) { 2085 TrieEntryWithOffset e (offset); 2086 e.entry.flags = data.GetULEB128(&offset); 2087 const char *import_name = NULL; 2088 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 2089 e.entry.address = 0; 2090 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2091 import_name = data.GetCStr(&offset); 2092 } 2093 else { 2094 e.entry.address = data.GetULEB128(&offset); 2095 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 2096 { 2097 e.entry.other = data.GetULEB128(&offset); 2098 uint64_t resolver_addr = e.entry.other; 2099 if (is_arm) 2100 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2101 resolver_addresses.insert(resolver_addr); 2102 } 2103 else 2104 e.entry.other = 0; 2105 } 2106 // Only add symbols that are reexport symbols with a valid import name 2107 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 2108 { 2109 std::string name; 2110 if (!nameSlices.empty()) 2111 { 2112 for (auto name_slice: nameSlices) 2113 name.append(name_slice.data(), name_slice.size()); 2114 } 2115 if (name.size() > 1) 2116 { 2117 // Skip the leading '_' 2118 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 2119 } 2120 if (import_name) 2121 { 2122 // Skip the leading '_' 2123 e.entry.import_name.SetCString(import_name+1); 2124 } 2125 output.push_back(e); 2126 } 2127 } 2128 2129 const uint8_t childrenCount = data.GetU8(&children_offset); 2130 for (uint8_t i=0; i < childrenCount; ++i) { 2131 nameSlices.push_back(data.GetCStr(&children_offset)); 2132 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2133 if (childNodeOffset) 2134 { 2135 ParseTrieEntries(data, 2136 childNodeOffset, 2137 is_arm, 2138 nameSlices, 2139 resolver_addresses, 2140 output); 2141 } 2142 nameSlices.pop_back(); 2143 } 2144 } 2145 2146 size_t 2147 ObjectFileMachO::ParseSymtab () 2148 { 2149 Timer scoped_timer(__PRETTY_FUNCTION__, 2150 "ObjectFileMachO::ParseSymtab () module = %s", 2151 m_file.GetFilename().AsCString("")); 2152 ModuleSP module_sp (GetModule()); 2153 if (!module_sp) 2154 return 0; 2155 2156 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 2157 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 2158 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2159 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2160 FunctionStarts function_starts; 2161 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2162 uint32_t i; 2163 FileSpecList dylib_files; 2164 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 2165 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2166 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2167 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2168 2169 for (i=0; i<m_header.ncmds; ++i) 2170 { 2171 const lldb::offset_t cmd_offset = offset; 2172 // Read in the load command and load command size 2173 struct load_command lc; 2174 if (m_data.GetU32(&offset, &lc, 2) == NULL) 2175 break; 2176 // Watch for the symbol table load command 2177 switch (lc.cmd) 2178 { 2179 case LC_SYMTAB: 2180 symtab_load_command.cmd = lc.cmd; 2181 symtab_load_command.cmdsize = lc.cmdsize; 2182 // Read in the rest of the symtab load command 2183 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 2184 return 0; 2185 if (symtab_load_command.symoff == 0) 2186 { 2187 if (log) 2188 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2189 return 0; 2190 } 2191 2192 if (symtab_load_command.stroff == 0) 2193 { 2194 if (log) 2195 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2196 return 0; 2197 } 2198 2199 if (symtab_load_command.nsyms == 0) 2200 { 2201 if (log) 2202 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2203 return 0; 2204 } 2205 2206 if (symtab_load_command.strsize == 0) 2207 { 2208 if (log) 2209 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2210 return 0; 2211 } 2212 break; 2213 2214 case LC_DYLD_INFO: 2215 case LC_DYLD_INFO_ONLY: 2216 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 2217 { 2218 dyld_info.cmd = lc.cmd; 2219 dyld_info.cmdsize = lc.cmdsize; 2220 } 2221 else 2222 { 2223 memset (&dyld_info, 0, sizeof(dyld_info)); 2224 } 2225 break; 2226 2227 case LC_LOAD_DYLIB: 2228 case LC_LOAD_WEAK_DYLIB: 2229 case LC_REEXPORT_DYLIB: 2230 case LC_LOADFVMLIB: 2231 case LC_LOAD_UPWARD_DYLIB: 2232 { 2233 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2234 const char *path = m_data.PeekCStr(name_offset); 2235 if (path) 2236 { 2237 FileSpec file_spec(path, false); 2238 // Strip the path if there is @rpath, @executable, etc so we just use the basename 2239 if (path[0] == '@') 2240 file_spec.GetDirectory().Clear(); 2241 2242 if (lc.cmd == LC_REEXPORT_DYLIB) 2243 { 2244 m_reexported_dylibs.AppendIfUnique(file_spec); 2245 } 2246 2247 dylib_files.Append(file_spec); 2248 } 2249 } 2250 break; 2251 2252 case LC_FUNCTION_STARTS: 2253 function_starts_load_command.cmd = lc.cmd; 2254 function_starts_load_command.cmdsize = lc.cmdsize; 2255 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 2256 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 2257 break; 2258 2259 default: 2260 break; 2261 } 2262 offset = cmd_offset + lc.cmdsize; 2263 } 2264 2265 if (symtab_load_command.cmd) 2266 { 2267 Symtab *symtab = m_symtab_ap.get(); 2268 SectionList *section_list = GetSectionList(); 2269 if (section_list == NULL) 2270 return 0; 2271 2272 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2273 const ByteOrder byte_order = m_data.GetByteOrder(); 2274 bool bit_width_32 = addr_byte_size == 4; 2275 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2276 2277 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 2278 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 2279 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 2280 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 2281 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 2282 2283 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 2284 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2285 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2286 2287 ProcessSP process_sp (m_process_wp.lock()); 2288 Process *process = process_sp.get(); 2289 2290 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2291 2292 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) 2293 { 2294 Target &target = process->GetTarget(); 2295 2296 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2297 2298 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2299 // Reading mach file from memory in a process or core file... 2300 2301 if (linkedit_section_sp) 2302 { 2303 addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 2304 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) 2305 { 2306 // We might be trying to access the symbol table before the __LINKEDIT's load 2307 // address has been set in the target. We can't fail to read the symbol table, 2308 // so calculate the right address manually 2309 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2310 } 2311 2312 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2313 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 2314 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 2315 2316 bool data_was_read = false; 2317 2318 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2319 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 2320 { 2321 // This mach-o memory file is in the dyld shared cache. If this 2322 // program is not remote and this is iOS, then this process will 2323 // share the same shared cache as the process we are debugging and 2324 // we can read the entire __LINKEDIT from the address space in this 2325 // process. This is a needed optimization that is used for local iOS 2326 // debugging only since all shared libraries in the shared cache do 2327 // not have corresponding files that exist in the file system of the 2328 // device. They have been combined into a single file. This means we 2329 // always have to load these files from memory. All of the symbol and 2330 // string tables from all of the __LINKEDIT sections from the shared 2331 // libraries in the shared cache have been merged into a single large 2332 // symbol and string table. Reading all of this symbol and string table 2333 // data across can slow down debug launch times, so we optimize this by 2334 // reading the memory for the __LINKEDIT section from this process. 2335 2336 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 2337 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 2338 bool use_lldb_cache = true; 2339 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 2340 { 2341 use_lldb_cache = false; 2342 ModuleSP module_sp (GetModule()); 2343 if (module_sp) 2344 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 2345 2346 } 2347 2348 PlatformSP platform_sp (target.GetPlatform()); 2349 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 2350 { 2351 data_was_read = true; 2352 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 2353 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 2354 if (function_starts_load_command.cmd) 2355 { 2356 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2357 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 2358 } 2359 } 2360 } 2361 #endif 2362 2363 if (!data_was_read) 2364 { 2365 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 2366 { 2367 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 2368 if (nlist_data_sp) 2369 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2370 // Load strings individually from memory when loading from memory since shared cache 2371 // string tables contain strings for all symbols from all shared cached libraries 2372 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 2373 //if (strtab_data_sp) 2374 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2375 if (m_dysymtab.nindirectsyms != 0) 2376 { 2377 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 2378 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2379 if (indirect_syms_data_sp) 2380 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 2381 } 2382 } 2383 2384 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 2385 { 2386 if (function_starts_load_command.cmd) 2387 { 2388 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2389 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 2390 if (func_start_data_sp) 2391 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 2392 } 2393 } 2394 } 2395 } 2396 } 2397 else 2398 { 2399 nlist_data.SetData (m_data, 2400 symtab_load_command.symoff, 2401 nlist_data_byte_size); 2402 strtab_data.SetData (m_data, 2403 symtab_load_command.stroff, 2404 strtab_data_byte_size); 2405 2406 if (dyld_info.export_size > 0) 2407 { 2408 dyld_trie_data.SetData (m_data, 2409 dyld_info.export_off, 2410 dyld_info.export_size); 2411 } 2412 2413 if (m_dysymtab.nindirectsyms != 0) 2414 { 2415 indirect_symbol_index_data.SetData (m_data, 2416 m_dysymtab.indirectsymoff, 2417 m_dysymtab.nindirectsyms * 4); 2418 } 2419 if (function_starts_load_command.cmd) 2420 { 2421 function_starts_data.SetData (m_data, 2422 function_starts_load_command.dataoff, 2423 function_starts_load_command.datasize); 2424 } 2425 } 2426 2427 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2428 { 2429 if (log) 2430 module_sp->LogMessage(log, "failed to read nlist data"); 2431 return 0; 2432 } 2433 2434 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2435 if (!have_strtab_data) 2436 { 2437 if (process) 2438 { 2439 if (strtab_addr == LLDB_INVALID_ADDRESS) 2440 { 2441 if (log) 2442 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2443 return 0; 2444 } 2445 } 2446 else 2447 { 2448 if (log) 2449 module_sp->LogMessage(log, "failed to read strtab data"); 2450 return 0; 2451 } 2452 } 2453 2454 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2455 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2456 const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2457 const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2458 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2459 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2460 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2461 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2462 SectionSP data_dirty_section_sp(section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2463 SectionSP data_const_section_sp(section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2464 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2465 SectionSP eh_frame_section_sp; 2466 if (text_section_sp.get()) 2467 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2468 else 2469 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2470 2471 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2472 2473 // lldb works best if it knows the start address of all functions in a module. 2474 // Linker symbols or debug info are normally the best source of information for start addr / size but 2475 // they may be stripped in a released binary. 2476 // Two additional sources of information exist in Mach-O binaries: 2477 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2478 // binary, relative to the text section. 2479 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2480 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2481 // Binaries built to run on older releases may need to use eh_frame information. 2482 2483 if (text_section_sp && function_starts_data.GetByteSize()) 2484 { 2485 FunctionStarts::Entry function_start_entry; 2486 function_start_entry.data = false; 2487 lldb::offset_t function_start_offset = 0; 2488 function_start_entry.addr = text_section_sp->GetFileAddress(); 2489 uint64_t delta; 2490 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2491 { 2492 // Now append the current entry 2493 function_start_entry.addr += delta; 2494 function_starts.Append(function_start_entry); 2495 } 2496 } 2497 else 2498 { 2499 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2500 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2501 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2502 // the module. 2503 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2504 { 2505 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindEHFrame, true); 2506 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2507 eh_frame.GetFunctionAddressAndSizeVector (functions); 2508 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2509 size_t count = functions.GetSize(); 2510 for (size_t i = 0; i < count; ++i) 2511 { 2512 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2513 if (func) 2514 { 2515 FunctionStarts::Entry function_start_entry; 2516 function_start_entry.addr = func->base - text_base_addr; 2517 function_starts.Append(function_start_entry); 2518 } 2519 } 2520 } 2521 } 2522 2523 const size_t function_starts_count = function_starts.GetSize(); 2524 2525 const user_id_t TEXT_eh_frame_sectID = 2526 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2527 : static_cast<user_id_t>(NO_SECT); 2528 2529 lldb::offset_t nlist_data_offset = 0; 2530 2531 uint32_t N_SO_index = UINT32_MAX; 2532 2533 MachSymtabSectionInfo section_info (section_list); 2534 std::vector<uint32_t> N_FUN_indexes; 2535 std::vector<uint32_t> N_NSYM_indexes; 2536 std::vector<uint32_t> N_INCL_indexes; 2537 std::vector<uint32_t> N_BRAC_indexes; 2538 std::vector<uint32_t> N_COMM_indexes; 2539 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2540 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2541 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2542 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2543 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2544 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2545 // Any symbols that get merged into another will get an entry 2546 // in this map so we know 2547 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2548 uint32_t nlist_idx = 0; 2549 Symbol *symbol_ptr = NULL; 2550 2551 uint32_t sym_idx = 0; 2552 Symbol *sym = NULL; 2553 size_t num_syms = 0; 2554 std::string memory_symbol_name; 2555 uint32_t unmapped_local_symbols_found = 0; 2556 2557 std::vector<TrieEntryWithOffset> trie_entries; 2558 std::set<lldb::addr_t> resolver_addresses; 2559 2560 if (dyld_trie_data.GetByteSize() > 0) 2561 { 2562 std::vector<llvm::StringRef> nameSlices; 2563 ParseTrieEntries (dyld_trie_data, 2564 0, 2565 is_arm, 2566 nameSlices, 2567 resolver_addresses, 2568 trie_entries); 2569 2570 ConstString text_segment_name ("__TEXT"); 2571 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2572 if (text_segment_sp) 2573 { 2574 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2575 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2576 { 2577 for (auto &e : trie_entries) 2578 e.entry.address += text_segment_file_addr; 2579 } 2580 } 2581 } 2582 2583 typedef std::set<ConstString> IndirectSymbols; 2584 IndirectSymbols indirect_symbol_names; 2585 2586 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2587 2588 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2589 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2590 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2591 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2592 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2593 // nlist parser to ignore all LOCAL symbols. 2594 2595 if (m_header.flags & 0x80000000u) 2596 { 2597 // Before we can start mapping the DSC, we need to make certain the target process is actually 2598 // using the cache we can find. 2599 2600 // Next we need to determine the correct path for the dyld shared cache. 2601 2602 ArchSpec header_arch; 2603 GetArchitecture(header_arch); 2604 char dsc_path[PATH_MAX]; 2605 2606 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2607 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2608 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2609 header_arch.GetArchitectureName()); 2610 2611 FileSpec dsc_filespec(dsc_path, false); 2612 2613 // We need definitions of two structures in the on-disk DSC, copy them here manually 2614 struct lldb_copy_dyld_cache_header_v0 2615 { 2616 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2617 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2618 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2619 uint32_t imagesOffset; 2620 uint32_t imagesCount; 2621 uint64_t dyldBaseAddress; 2622 uint64_t codeSignatureOffset; 2623 uint64_t codeSignatureSize; 2624 uint64_t slideInfoOffset; 2625 uint64_t slideInfoSize; 2626 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2627 uint64_t localSymbolsSize; // size of local symbols information 2628 }; 2629 2630 struct lldb_copy_dyld_cache_header_v1 2631 { 2632 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2633 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2634 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2635 uint32_t imagesOffset; 2636 uint32_t imagesCount; 2637 uint64_t dyldBaseAddress; 2638 uint64_t codeSignatureOffset; 2639 uint64_t codeSignatureSize; 2640 uint64_t slideInfoOffset; 2641 uint64_t slideInfoSize; 2642 uint64_t localSymbolsOffset; 2643 uint64_t localSymbolsSize; 2644 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2645 }; 2646 2647 struct lldb_copy_dyld_cache_mapping_info 2648 { 2649 uint64_t address; 2650 uint64_t size; 2651 uint64_t fileOffset; 2652 uint32_t maxProt; 2653 uint32_t initProt; 2654 }; 2655 2656 struct lldb_copy_dyld_cache_local_symbols_info 2657 { 2658 uint32_t nlistOffset; 2659 uint32_t nlistCount; 2660 uint32_t stringsOffset; 2661 uint32_t stringsSize; 2662 uint32_t entriesOffset; 2663 uint32_t entriesCount; 2664 }; 2665 2666 struct lldb_copy_dyld_cache_local_symbols_entry 2667 { 2668 uint32_t dylibOffset; 2669 uint32_t nlistStartIndex; 2670 uint32_t nlistCount; 2671 }; 2672 2673 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2674 The dyld_cache_local_symbols_info structure gives us three things: 2675 1. The start and count of the nlist records in the dyld_shared_cache file 2676 2. The start and size of the strings for these nlist records 2677 3. The start and count of dyld_cache_local_symbols_entry entries 2678 2679 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2680 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2681 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2682 and the count of how many nlist records there are for this dylib/framework. 2683 */ 2684 2685 // Process the dsc header to find the unmapped symbols 2686 // 2687 // Save some VM space, do not map the entire cache in one shot. 2688 2689 DataBufferSP dsc_data_sp; 2690 dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2691 2692 if (dsc_data_sp) 2693 { 2694 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2695 2696 char version_str[17]; 2697 int version = -1; 2698 lldb::offset_t offset = 0; 2699 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2700 version_str[16] = '\0'; 2701 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2702 { 2703 int v; 2704 if (::sscanf (version_str + 6, "%d", &v) == 1) 2705 { 2706 version = v; 2707 } 2708 } 2709 2710 UUID dsc_uuid; 2711 if (version >= 1) 2712 { 2713 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2714 uint8_t uuid_bytes[sizeof (uuid_t)]; 2715 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2716 dsc_uuid.SetBytes (uuid_bytes); 2717 } 2718 2719 bool uuid_match = true; 2720 if (dsc_uuid.IsValid() && process) 2721 { 2722 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2723 2724 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2725 { 2726 // The on-disk dyld_shared_cache file is not the same as the one in this 2727 // process' memory, don't use it. 2728 uuid_match = false; 2729 ModuleSP module_sp (GetModule()); 2730 if (module_sp) 2731 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2732 } 2733 } 2734 2735 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2736 2737 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2738 2739 // If the mappingOffset points to a location inside the header, we've 2740 // opened an old dyld shared cache, and should not proceed further. 2741 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2742 { 2743 2744 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2745 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2746 offset = 0; 2747 2748 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2749 // in the shared library cache need to be adjusted by an offset to match up with the 2750 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2751 // recorded in mapping_offset_value. 2752 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2753 2754 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2755 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2756 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2757 2758 if (localSymbolsOffset && localSymbolsSize) 2759 { 2760 // Map the local symbols 2761 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) 2762 { 2763 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2764 2765 offset = 0; 2766 2767 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2768 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2769 UndefinedNameToDescMap undefined_name_to_desc; 2770 SymbolIndexToName reexport_shlib_needs_fixup; 2771 2772 2773 // Read the local_symbols_infos struct in one shot 2774 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2775 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2776 2777 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2778 2779 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2780 2781 offset = local_symbols_info.entriesOffset; 2782 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2783 { 2784 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2785 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2786 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2787 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2788 2789 if (header_file_offset == local_symbols_entry.dylibOffset) 2790 { 2791 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2792 2793 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2794 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2795 num_syms = symtab->GetNumSymbols(); 2796 2797 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2798 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2799 2800 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2801 { 2802 ///////////////////////////// 2803 { 2804 struct nlist_64 nlist; 2805 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2806 break; 2807 2808 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2809 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2810 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2811 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2812 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2813 2814 SymbolType type = eSymbolTypeInvalid; 2815 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2816 2817 if (symbol_name == NULL) 2818 { 2819 // No symbol should be NULL, even the symbols with no 2820 // string values should have an offset zero which points 2821 // to an empty C-string 2822 Host::SystemLog (Host::eSystemLogError, 2823 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2824 entry_index, 2825 nlist.n_strx, 2826 module_sp->GetFileSpec().GetPath().c_str()); 2827 continue; 2828 } 2829 if (symbol_name[0] == '\0') 2830 symbol_name = NULL; 2831 2832 const char *symbol_name_non_abi_mangled = NULL; 2833 2834 SectionSP symbol_section; 2835 uint32_t symbol_byte_size = 0; 2836 bool add_nlist = true; 2837 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2838 bool demangled_is_synthesized = false; 2839 bool is_gsym = false; 2840 bool set_value = true; 2841 2842 assert (sym_idx < num_syms); 2843 2844 sym[sym_idx].SetDebug (is_debug); 2845 2846 if (is_debug) 2847 { 2848 switch (nlist.n_type) 2849 { 2850 case N_GSYM: 2851 // global symbol: name,,NO_SECT,type,0 2852 // Sometimes the N_GSYM value contains the address. 2853 2854 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2855 // have the same address, but we want to ensure that we always find only the real symbol, 2856 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2857 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2858 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2859 // same address. 2860 2861 is_gsym = true; 2862 sym[sym_idx].SetExternal(true); 2863 2864 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 2865 { 2866 llvm::StringRef symbol_name_ref(symbol_name); 2867 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2868 { 2869 symbol_name_non_abi_mangled = symbol_name + 1; 2870 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2871 type = eSymbolTypeObjCClass; 2872 demangled_is_synthesized = true; 2873 2874 } 2875 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2876 { 2877 symbol_name_non_abi_mangled = symbol_name + 1; 2878 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2879 type = eSymbolTypeObjCMetaClass; 2880 demangled_is_synthesized = true; 2881 } 2882 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2883 { 2884 symbol_name_non_abi_mangled = symbol_name + 1; 2885 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2886 type = eSymbolTypeObjCIVar; 2887 demangled_is_synthesized = true; 2888 } 2889 } 2890 else 2891 { 2892 if (nlist.n_value != 0) 2893 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2894 type = eSymbolTypeData; 2895 } 2896 break; 2897 2898 case N_FNAME: 2899 // procedure name (f77 kludge): name,,NO_SECT,0,0 2900 type = eSymbolTypeCompiler; 2901 break; 2902 2903 case N_FUN: 2904 // procedure: name,,n_sect,linenumber,address 2905 if (symbol_name) 2906 { 2907 type = eSymbolTypeCode; 2908 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2909 2910 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2911 // We use the current number of symbols in the symbol table in lieu of 2912 // using nlist_idx in case we ever start trimming entries out 2913 N_FUN_indexes.push_back(sym_idx); 2914 } 2915 else 2916 { 2917 type = eSymbolTypeCompiler; 2918 2919 if ( !N_FUN_indexes.empty() ) 2920 { 2921 // Copy the size of the function into the original STAB entry so we don't have 2922 // to hunt for it later 2923 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2924 N_FUN_indexes.pop_back(); 2925 // We don't really need the end function STAB as it contains the size which 2926 // we already placed with the original symbol, so don't add it if we want a 2927 // minimal symbol table 2928 add_nlist = false; 2929 } 2930 } 2931 break; 2932 2933 case N_STSYM: 2934 // static symbol: name,,n_sect,type,address 2935 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2936 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2937 type = eSymbolTypeData; 2938 break; 2939 2940 case N_LCSYM: 2941 // .lcomm symbol: name,,n_sect,type,address 2942 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2943 type = eSymbolTypeCommonBlock; 2944 break; 2945 2946 case N_BNSYM: 2947 // We use the current number of symbols in the symbol table in lieu of 2948 // using nlist_idx in case we ever start trimming entries out 2949 // Skip these if we want minimal symbol tables 2950 add_nlist = false; 2951 break; 2952 2953 case N_ENSYM: 2954 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2955 // so that we can always skip the entire symbol if we need to navigate 2956 // more quickly at the source level when parsing STABS 2957 // Skip these if we want minimal symbol tables 2958 add_nlist = false; 2959 break; 2960 2961 case N_OPT: 2962 // emitted with gcc2_compiled and in gcc source 2963 type = eSymbolTypeCompiler; 2964 break; 2965 2966 case N_RSYM: 2967 // register sym: name,,NO_SECT,type,register 2968 type = eSymbolTypeVariable; 2969 break; 2970 2971 case N_SLINE: 2972 // src line: 0,,n_sect,linenumber,address 2973 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2974 type = eSymbolTypeLineEntry; 2975 break; 2976 2977 case N_SSYM: 2978 // structure elt: name,,NO_SECT,type,struct_offset 2979 type = eSymbolTypeVariableType; 2980 break; 2981 2982 case N_SO: 2983 // source file name 2984 type = eSymbolTypeSourceFile; 2985 if (symbol_name == NULL) 2986 { 2987 add_nlist = false; 2988 if (N_SO_index != UINT32_MAX) 2989 { 2990 // Set the size of the N_SO to the terminating index of this N_SO 2991 // so that we can always skip the entire N_SO if we need to navigate 2992 // more quickly at the source level when parsing STABS 2993 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2994 symbol_ptr->SetByteSize(sym_idx); 2995 symbol_ptr->SetSizeIsSibling(true); 2996 } 2997 N_NSYM_indexes.clear(); 2998 N_INCL_indexes.clear(); 2999 N_BRAC_indexes.clear(); 3000 N_COMM_indexes.clear(); 3001 N_FUN_indexes.clear(); 3002 N_SO_index = UINT32_MAX; 3003 } 3004 else 3005 { 3006 // We use the current number of symbols in the symbol table in lieu of 3007 // using nlist_idx in case we ever start trimming entries out 3008 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3009 if (N_SO_has_full_path) 3010 { 3011 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3012 { 3013 // We have two consecutive N_SO entries where the first contains a directory 3014 // and the second contains a full path. 3015 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3016 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3017 add_nlist = false; 3018 } 3019 else 3020 { 3021 // This is the first entry in a N_SO that contains a directory or 3022 // a full path to the source file 3023 N_SO_index = sym_idx; 3024 } 3025 } 3026 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3027 { 3028 // This is usually the second N_SO entry that contains just the filename, 3029 // so here we combine it with the first one if we are minimizing the symbol table 3030 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3031 if (so_path && so_path[0]) 3032 { 3033 std::string full_so_path (so_path); 3034 const size_t double_slash_pos = full_so_path.find("//"); 3035 if (double_slash_pos != std::string::npos) 3036 { 3037 // The linker has been generating bad N_SO entries with doubled up paths 3038 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3039 // and the second is the directory for the source file so you end up with 3040 // a path that looks like "/tmp/src//tmp/src/" 3041 FileSpec so_dir(so_path, false); 3042 if (!so_dir.Exists()) 3043 { 3044 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3045 if (so_dir.Exists()) 3046 { 3047 // Trim off the incorrect path 3048 full_so_path.erase(0, double_slash_pos + 1); 3049 } 3050 } 3051 } 3052 if (*full_so_path.rbegin() != '/') 3053 full_so_path += '/'; 3054 full_so_path += symbol_name; 3055 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3056 add_nlist = false; 3057 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3058 } 3059 } 3060 else 3061 { 3062 // This could be a relative path to a N_SO 3063 N_SO_index = sym_idx; 3064 } 3065 } 3066 break; 3067 3068 case N_OSO: 3069 // object file name: name,,0,0,st_mtime 3070 type = eSymbolTypeObjectFile; 3071 break; 3072 3073 case N_LSYM: 3074 // local sym: name,,NO_SECT,type,offset 3075 type = eSymbolTypeLocal; 3076 break; 3077 3078 //---------------------------------------------------------------------- 3079 // INCL scopes 3080 //---------------------------------------------------------------------- 3081 case N_BINCL: 3082 // include file beginning: name,,NO_SECT,0,sum 3083 // We use the current number of symbols in the symbol table in lieu of 3084 // using nlist_idx in case we ever start trimming entries out 3085 N_INCL_indexes.push_back(sym_idx); 3086 type = eSymbolTypeScopeBegin; 3087 break; 3088 3089 case N_EINCL: 3090 // include file end: name,,NO_SECT,0,0 3091 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3092 // so that we can always skip the entire symbol if we need to navigate 3093 // more quickly at the source level when parsing STABS 3094 if ( !N_INCL_indexes.empty() ) 3095 { 3096 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3097 symbol_ptr->SetByteSize(sym_idx + 1); 3098 symbol_ptr->SetSizeIsSibling(true); 3099 N_INCL_indexes.pop_back(); 3100 } 3101 type = eSymbolTypeScopeEnd; 3102 break; 3103 3104 case N_SOL: 3105 // #included file name: name,,n_sect,0,address 3106 type = eSymbolTypeHeaderFile; 3107 3108 // We currently don't use the header files on darwin 3109 add_nlist = false; 3110 break; 3111 3112 case N_PARAMS: 3113 // compiler parameters: name,,NO_SECT,0,0 3114 type = eSymbolTypeCompiler; 3115 break; 3116 3117 case N_VERSION: 3118 // compiler version: name,,NO_SECT,0,0 3119 type = eSymbolTypeCompiler; 3120 break; 3121 3122 case N_OLEVEL: 3123 // compiler -O level: name,,NO_SECT,0,0 3124 type = eSymbolTypeCompiler; 3125 break; 3126 3127 case N_PSYM: 3128 // parameter: name,,NO_SECT,type,offset 3129 type = eSymbolTypeVariable; 3130 break; 3131 3132 case N_ENTRY: 3133 // alternate entry: name,,n_sect,linenumber,address 3134 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3135 type = eSymbolTypeLineEntry; 3136 break; 3137 3138 //---------------------------------------------------------------------- 3139 // Left and Right Braces 3140 //---------------------------------------------------------------------- 3141 case N_LBRAC: 3142 // left bracket: 0,,NO_SECT,nesting level,address 3143 // We use the current number of symbols in the symbol table in lieu of 3144 // using nlist_idx in case we ever start trimming entries out 3145 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3146 N_BRAC_indexes.push_back(sym_idx); 3147 type = eSymbolTypeScopeBegin; 3148 break; 3149 3150 case N_RBRAC: 3151 // right bracket: 0,,NO_SECT,nesting level,address 3152 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3153 // so that we can always skip the entire symbol if we need to navigate 3154 // more quickly at the source level when parsing STABS 3155 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3156 if ( !N_BRAC_indexes.empty() ) 3157 { 3158 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3159 symbol_ptr->SetByteSize(sym_idx + 1); 3160 symbol_ptr->SetSizeIsSibling(true); 3161 N_BRAC_indexes.pop_back(); 3162 } 3163 type = eSymbolTypeScopeEnd; 3164 break; 3165 3166 case N_EXCL: 3167 // deleted include file: name,,NO_SECT,0,sum 3168 type = eSymbolTypeHeaderFile; 3169 break; 3170 3171 //---------------------------------------------------------------------- 3172 // COMM scopes 3173 //---------------------------------------------------------------------- 3174 case N_BCOMM: 3175 // begin common: name,,NO_SECT,0,0 3176 // We use the current number of symbols in the symbol table in lieu of 3177 // using nlist_idx in case we ever start trimming entries out 3178 type = eSymbolTypeScopeBegin; 3179 N_COMM_indexes.push_back(sym_idx); 3180 break; 3181 3182 case N_ECOML: 3183 // end common (local name): 0,,n_sect,0,address 3184 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3185 // Fall through 3186 3187 case N_ECOMM: 3188 // end common: name,,n_sect,0,0 3189 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3190 // so that we can always skip the entire symbol if we need to navigate 3191 // more quickly at the source level when parsing STABS 3192 if ( !N_COMM_indexes.empty() ) 3193 { 3194 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3195 symbol_ptr->SetByteSize(sym_idx + 1); 3196 symbol_ptr->SetSizeIsSibling(true); 3197 N_COMM_indexes.pop_back(); 3198 } 3199 type = eSymbolTypeScopeEnd; 3200 break; 3201 3202 case N_LENG: 3203 // second stab entry with length information 3204 type = eSymbolTypeAdditional; 3205 break; 3206 3207 default: break; 3208 } 3209 } 3210 else 3211 { 3212 //uint8_t n_pext = N_PEXT & nlist.n_type; 3213 uint8_t n_type = N_TYPE & nlist.n_type; 3214 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3215 3216 switch (n_type) 3217 { 3218 case N_INDR: 3219 { 3220 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3221 if (reexport_name_cstr && reexport_name_cstr[0]) 3222 { 3223 type = eSymbolTypeReExported; 3224 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3225 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3226 set_value = false; 3227 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3228 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3229 } 3230 else 3231 type = eSymbolTypeUndefined; 3232 } 3233 break; 3234 3235 case N_UNDF: 3236 if (symbol_name && symbol_name[0]) 3237 { 3238 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3239 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3240 } 3241 // Fall through 3242 case N_PBUD: 3243 type = eSymbolTypeUndefined; 3244 break; 3245 3246 case N_ABS: 3247 type = eSymbolTypeAbsolute; 3248 break; 3249 3250 case N_SECT: 3251 { 3252 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3253 3254 if (symbol_section == NULL) 3255 { 3256 // TODO: warn about this? 3257 add_nlist = false; 3258 break; 3259 } 3260 3261 if (TEXT_eh_frame_sectID == nlist.n_sect) 3262 { 3263 type = eSymbolTypeException; 3264 } 3265 else 3266 { 3267 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3268 3269 switch (section_type) 3270 { 3271 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3272 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3273 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3274 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3275 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3276 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3277 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3278 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3279 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3280 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3281 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3282 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3283 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3284 default: 3285 switch (symbol_section->GetType()) 3286 { 3287 case lldb::eSectionTypeCode: 3288 type = eSymbolTypeCode; 3289 break; 3290 case eSectionTypeData: 3291 case eSectionTypeDataCString: // Inlined C string data 3292 case eSectionTypeDataCStringPointers: // Pointers to C string data 3293 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 3294 case eSectionTypeData4: 3295 case eSectionTypeData8: 3296 case eSectionTypeData16: 3297 type = eSymbolTypeData; 3298 break; 3299 default: 3300 break; 3301 } 3302 break; 3303 } 3304 3305 if (type == eSymbolTypeInvalid) 3306 { 3307 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3308 if (symbol_section->IsDescendant (text_section_sp.get())) 3309 { 3310 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3311 S_ATTR_SELF_MODIFYING_CODE | 3312 S_ATTR_SOME_INSTRUCTIONS)) 3313 type = eSymbolTypeData; 3314 else 3315 type = eSymbolTypeCode; 3316 } 3317 else if (symbol_section->IsDescendant(data_section_sp.get()) || 3318 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 3319 symbol_section->IsDescendant(data_const_section_sp.get())) 3320 { 3321 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3322 { 3323 type = eSymbolTypeRuntime; 3324 3325 if (symbol_name && 3326 symbol_name[0] == '_' && 3327 symbol_name[1] == 'O' && 3328 symbol_name[2] == 'B') 3329 { 3330 llvm::StringRef symbol_name_ref(symbol_name); 3331 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3332 { 3333 symbol_name_non_abi_mangled = symbol_name + 1; 3334 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3335 type = eSymbolTypeObjCClass; 3336 demangled_is_synthesized = true; 3337 } 3338 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3339 { 3340 symbol_name_non_abi_mangled = symbol_name + 1; 3341 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3342 type = eSymbolTypeObjCMetaClass; 3343 demangled_is_synthesized = true; 3344 } 3345 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3346 { 3347 symbol_name_non_abi_mangled = symbol_name + 1; 3348 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3349 type = eSymbolTypeObjCIVar; 3350 demangled_is_synthesized = true; 3351 } 3352 } 3353 } 3354 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3355 { 3356 type = eSymbolTypeException; 3357 } 3358 else 3359 { 3360 type = eSymbolTypeData; 3361 } 3362 } 3363 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3364 { 3365 type = eSymbolTypeTrampoline; 3366 } 3367 else if (symbol_section->IsDescendant(objc_section_sp.get())) 3368 { 3369 type = eSymbolTypeRuntime; 3370 if (symbol_name && symbol_name[0] == '.') 3371 { 3372 llvm::StringRef symbol_name_ref(symbol_name); 3373 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3374 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3375 { 3376 symbol_name_non_abi_mangled = symbol_name; 3377 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3378 type = eSymbolTypeObjCClass; 3379 demangled_is_synthesized = true; 3380 } 3381 } 3382 } 3383 } 3384 } 3385 } 3386 break; 3387 } 3388 } 3389 3390 if (add_nlist) 3391 { 3392 uint64_t symbol_value = nlist.n_value; 3393 if (symbol_name_non_abi_mangled) 3394 { 3395 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3396 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3397 } 3398 else 3399 { 3400 bool symbol_name_is_mangled = false; 3401 3402 if (symbol_name && symbol_name[0] == '_') 3403 { 3404 symbol_name_is_mangled = symbol_name[1] == '_'; 3405 symbol_name++; // Skip the leading underscore 3406 } 3407 3408 if (symbol_name) 3409 { 3410 ConstString const_symbol_name(symbol_name); 3411 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3412 if (is_gsym && is_debug) 3413 { 3414 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3415 if (gsym_name) 3416 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3417 } 3418 } 3419 } 3420 if (symbol_section) 3421 { 3422 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3423 if (symbol_byte_size == 0 && function_starts_count > 0) 3424 { 3425 addr_t symbol_lookup_file_addr = nlist.n_value; 3426 // Do an exact address match for non-ARM addresses, else get the closest since 3427 // the symbol might be a thumb symbol which has an address with bit zero set 3428 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3429 if (is_arm && func_start_entry) 3430 { 3431 // Verify that the function start address is the symbol address (ARM) 3432 // or the symbol address + 1 (thumb) 3433 if (func_start_entry->addr != symbol_lookup_file_addr && 3434 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3435 { 3436 // Not the right entry, NULL it out... 3437 func_start_entry = NULL; 3438 } 3439 } 3440 if (func_start_entry) 3441 { 3442 func_start_entry->data = true; 3443 3444 addr_t symbol_file_addr = func_start_entry->addr; 3445 uint32_t symbol_flags = 0; 3446 if (is_arm) 3447 { 3448 if (symbol_file_addr & 1) 3449 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3450 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3451 } 3452 3453 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3454 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3455 if (next_func_start_entry) 3456 { 3457 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3458 // Be sure the clear the Thumb address bit when we calculate the size 3459 // from the current and next address 3460 if (is_arm) 3461 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3462 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3463 } 3464 else 3465 { 3466 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3467 } 3468 } 3469 } 3470 symbol_value -= section_file_addr; 3471 } 3472 3473 if (is_debug == false) 3474 { 3475 if (type == eSymbolTypeCode) 3476 { 3477 // See if we can find a N_FUN entry for any code symbols. 3478 // If we do find a match, and the name matches, then we 3479 // can merge the two into just the function symbol to avoid 3480 // duplicate entries in the symbol table 3481 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3482 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3483 if (range.first != range.second) 3484 { 3485 bool found_it = false; 3486 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3487 { 3488 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3489 { 3490 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3491 // We just need the flags from the linker symbol, so put these flags 3492 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3493 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3494 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3495 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3496 sym[pos->second].SetType (eSymbolTypeResolver); 3497 sym[sym_idx].Clear(); 3498 found_it = true; 3499 break; 3500 } 3501 } 3502 if (found_it) 3503 continue; 3504 } 3505 else 3506 { 3507 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3508 type = eSymbolTypeResolver; 3509 } 3510 } 3511 else if (type == eSymbolTypeData || 3512 type == eSymbolTypeObjCClass || 3513 type == eSymbolTypeObjCMetaClass || 3514 type == eSymbolTypeObjCIVar ) 3515 { 3516 // See if we can find a N_STSYM entry for any data symbols. 3517 // If we do find a match, and the name matches, then we 3518 // can merge the two into just the Static symbol to avoid 3519 // duplicate entries in the symbol table 3520 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3521 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3522 if (range.first != range.second) 3523 { 3524 bool found_it = false; 3525 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3526 { 3527 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3528 { 3529 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3530 // We just need the flags from the linker symbol, so put these flags 3531 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3532 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3533 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3534 sym[sym_idx].Clear(); 3535 found_it = true; 3536 break; 3537 } 3538 } 3539 if (found_it) 3540 continue; 3541 } 3542 else 3543 { 3544 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3545 if (gsym_name) 3546 { 3547 // Combine N_GSYM stab entries with the non stab symbol 3548 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 3549 if (pos != N_GSYM_name_to_sym_idx.end()) 3550 { 3551 const uint32_t GSYM_sym_idx = pos->second; 3552 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3553 // Copy the address, because often the N_GSYM address has an invalid address of zero 3554 // when the global is a common symbol 3555 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 3556 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 3557 // We just need the flags from the linker symbol, so put these flags 3558 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 3559 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3560 sym[sym_idx].Clear(); 3561 continue; 3562 } 3563 } 3564 } 3565 } 3566 } 3567 3568 sym[sym_idx].SetID (nlist_idx); 3569 sym[sym_idx].SetType (type); 3570 if (set_value) 3571 { 3572 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 3573 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 3574 } 3575 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3576 3577 if (symbol_byte_size > 0) 3578 sym[sym_idx].SetByteSize(symbol_byte_size); 3579 3580 if (demangled_is_synthesized) 3581 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3582 ++sym_idx; 3583 } 3584 else 3585 { 3586 sym[sym_idx].Clear(); 3587 } 3588 3589 } 3590 ///////////////////////////// 3591 } 3592 break; // No more entries to consider 3593 } 3594 } 3595 3596 for (const auto &pos :reexport_shlib_needs_fixup) 3597 { 3598 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3599 if (undef_pos != undefined_name_to_desc.end()) 3600 { 3601 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3602 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3603 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 3604 } 3605 } 3606 } 3607 } 3608 } 3609 } 3610 } 3611 3612 // Must reset this in case it was mutated above! 3613 nlist_data_offset = 0; 3614 #endif 3615 3616 if (nlist_data.GetByteSize() > 0) 3617 { 3618 3619 // If the sym array was not created while parsing the DSC unmapped 3620 // symbols, create it now. 3621 if (sym == NULL) 3622 { 3623 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3624 num_syms = symtab->GetNumSymbols(); 3625 } 3626 3627 if (unmapped_local_symbols_found) 3628 { 3629 assert(m_dysymtab.ilocalsym == 0); 3630 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3631 nlist_idx = m_dysymtab.nlocalsym; 3632 } 3633 else 3634 { 3635 nlist_idx = 0; 3636 } 3637 3638 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3639 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3640 UndefinedNameToDescMap undefined_name_to_desc; 3641 SymbolIndexToName reexport_shlib_needs_fixup; 3642 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3643 { 3644 struct nlist_64 nlist; 3645 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3646 break; 3647 3648 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3649 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3650 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3651 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3652 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3653 3654 SymbolType type = eSymbolTypeInvalid; 3655 const char *symbol_name = NULL; 3656 3657 if (have_strtab_data) 3658 { 3659 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3660 3661 if (symbol_name == NULL) 3662 { 3663 // No symbol should be NULL, even the symbols with no 3664 // string values should have an offset zero which points 3665 // to an empty C-string 3666 Host::SystemLog (Host::eSystemLogError, 3667 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3668 nlist_idx, 3669 nlist.n_strx, 3670 module_sp->GetFileSpec().GetPath().c_str()); 3671 continue; 3672 } 3673 if (symbol_name[0] == '\0') 3674 symbol_name = NULL; 3675 } 3676 else 3677 { 3678 const addr_t str_addr = strtab_addr + nlist.n_strx; 3679 Error str_error; 3680 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3681 symbol_name = memory_symbol_name.c_str(); 3682 } 3683 const char *symbol_name_non_abi_mangled = NULL; 3684 3685 SectionSP symbol_section; 3686 lldb::addr_t symbol_byte_size = 0; 3687 bool add_nlist = true; 3688 bool is_gsym = false; 3689 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3690 bool demangled_is_synthesized = false; 3691 bool set_value = true; 3692 assert (sym_idx < num_syms); 3693 3694 sym[sym_idx].SetDebug (is_debug); 3695 3696 if (is_debug) 3697 { 3698 switch (nlist.n_type) 3699 { 3700 case N_GSYM: 3701 // global symbol: name,,NO_SECT,type,0 3702 // Sometimes the N_GSYM value contains the address. 3703 3704 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3705 // have the same address, but we want to ensure that we always find only the real symbol, 3706 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3707 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3708 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3709 // same address. 3710 is_gsym = true; 3711 sym[sym_idx].SetExternal(true); 3712 3713 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 3714 { 3715 llvm::StringRef symbol_name_ref(symbol_name); 3716 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3717 { 3718 symbol_name_non_abi_mangled = symbol_name + 1; 3719 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3720 type = eSymbolTypeObjCClass; 3721 demangled_is_synthesized = true; 3722 3723 } 3724 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3725 { 3726 symbol_name_non_abi_mangled = symbol_name + 1; 3727 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3728 type = eSymbolTypeObjCMetaClass; 3729 demangled_is_synthesized = true; 3730 } 3731 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3732 { 3733 symbol_name_non_abi_mangled = symbol_name + 1; 3734 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3735 type = eSymbolTypeObjCIVar; 3736 demangled_is_synthesized = true; 3737 } 3738 } 3739 else 3740 { 3741 if (nlist.n_value != 0) 3742 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3743 type = eSymbolTypeData; 3744 } 3745 break; 3746 3747 case N_FNAME: 3748 // procedure name (f77 kludge): name,,NO_SECT,0,0 3749 type = eSymbolTypeCompiler; 3750 break; 3751 3752 case N_FUN: 3753 // procedure: name,,n_sect,linenumber,address 3754 if (symbol_name) 3755 { 3756 type = eSymbolTypeCode; 3757 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3758 3759 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3760 // We use the current number of symbols in the symbol table in lieu of 3761 // using nlist_idx in case we ever start trimming entries out 3762 N_FUN_indexes.push_back(sym_idx); 3763 } 3764 else 3765 { 3766 type = eSymbolTypeCompiler; 3767 3768 if ( !N_FUN_indexes.empty() ) 3769 { 3770 // Copy the size of the function into the original STAB entry so we don't have 3771 // to hunt for it later 3772 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3773 N_FUN_indexes.pop_back(); 3774 // We don't really need the end function STAB as it contains the size which 3775 // we already placed with the original symbol, so don't add it if we want a 3776 // minimal symbol table 3777 add_nlist = false; 3778 } 3779 } 3780 break; 3781 3782 case N_STSYM: 3783 // static symbol: name,,n_sect,type,address 3784 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3785 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3786 type = eSymbolTypeData; 3787 break; 3788 3789 case N_LCSYM: 3790 // .lcomm symbol: name,,n_sect,type,address 3791 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3792 type = eSymbolTypeCommonBlock; 3793 break; 3794 3795 case N_BNSYM: 3796 // We use the current number of symbols in the symbol table in lieu of 3797 // using nlist_idx in case we ever start trimming entries out 3798 // Skip these if we want minimal symbol tables 3799 add_nlist = false; 3800 break; 3801 3802 case N_ENSYM: 3803 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3804 // so that we can always skip the entire symbol if we need to navigate 3805 // more quickly at the source level when parsing STABS 3806 // Skip these if we want minimal symbol tables 3807 add_nlist = false; 3808 break; 3809 3810 3811 case N_OPT: 3812 // emitted with gcc2_compiled and in gcc source 3813 type = eSymbolTypeCompiler; 3814 break; 3815 3816 case N_RSYM: 3817 // register sym: name,,NO_SECT,type,register 3818 type = eSymbolTypeVariable; 3819 break; 3820 3821 case N_SLINE: 3822 // src line: 0,,n_sect,linenumber,address 3823 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3824 type = eSymbolTypeLineEntry; 3825 break; 3826 3827 case N_SSYM: 3828 // structure elt: name,,NO_SECT,type,struct_offset 3829 type = eSymbolTypeVariableType; 3830 break; 3831 3832 case N_SO: 3833 // source file name 3834 type = eSymbolTypeSourceFile; 3835 if (symbol_name == NULL) 3836 { 3837 add_nlist = false; 3838 if (N_SO_index != UINT32_MAX) 3839 { 3840 // Set the size of the N_SO to the terminating index of this N_SO 3841 // so that we can always skip the entire N_SO if we need to navigate 3842 // more quickly at the source level when parsing STABS 3843 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3844 symbol_ptr->SetByteSize(sym_idx); 3845 symbol_ptr->SetSizeIsSibling(true); 3846 } 3847 N_NSYM_indexes.clear(); 3848 N_INCL_indexes.clear(); 3849 N_BRAC_indexes.clear(); 3850 N_COMM_indexes.clear(); 3851 N_FUN_indexes.clear(); 3852 N_SO_index = UINT32_MAX; 3853 } 3854 else 3855 { 3856 // We use the current number of symbols in the symbol table in lieu of 3857 // using nlist_idx in case we ever start trimming entries out 3858 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3859 if (N_SO_has_full_path) 3860 { 3861 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3862 { 3863 // We have two consecutive N_SO entries where the first contains a directory 3864 // and the second contains a full path. 3865 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3866 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3867 add_nlist = false; 3868 } 3869 else 3870 { 3871 // This is the first entry in a N_SO that contains a directory or 3872 // a full path to the source file 3873 N_SO_index = sym_idx; 3874 } 3875 } 3876 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3877 { 3878 // This is usually the second N_SO entry that contains just the filename, 3879 // so here we combine it with the first one if we are minimizing the symbol table 3880 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName(lldb::eLanguageTypeUnknown).AsCString(); 3881 if (so_path && so_path[0]) 3882 { 3883 std::string full_so_path (so_path); 3884 const size_t double_slash_pos = full_so_path.find("//"); 3885 if (double_slash_pos != std::string::npos) 3886 { 3887 // The linker has been generating bad N_SO entries with doubled up paths 3888 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3889 // and the second is the directory for the source file so you end up with 3890 // a path that looks like "/tmp/src//tmp/src/" 3891 FileSpec so_dir(so_path, false); 3892 if (!so_dir.Exists()) 3893 { 3894 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3895 if (so_dir.Exists()) 3896 { 3897 // Trim off the incorrect path 3898 full_so_path.erase(0, double_slash_pos + 1); 3899 } 3900 } 3901 } 3902 if (*full_so_path.rbegin() != '/') 3903 full_so_path += '/'; 3904 full_so_path += symbol_name; 3905 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3906 add_nlist = false; 3907 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3908 } 3909 } 3910 else 3911 { 3912 // This could be a relative path to a N_SO 3913 N_SO_index = sym_idx; 3914 } 3915 } 3916 break; 3917 3918 case N_OSO: 3919 // object file name: name,,0,0,st_mtime 3920 type = eSymbolTypeObjectFile; 3921 break; 3922 3923 case N_LSYM: 3924 // local sym: name,,NO_SECT,type,offset 3925 type = eSymbolTypeLocal; 3926 break; 3927 3928 //---------------------------------------------------------------------- 3929 // INCL scopes 3930 //---------------------------------------------------------------------- 3931 case N_BINCL: 3932 // include file beginning: name,,NO_SECT,0,sum 3933 // We use the current number of symbols in the symbol table in lieu of 3934 // using nlist_idx in case we ever start trimming entries out 3935 N_INCL_indexes.push_back(sym_idx); 3936 type = eSymbolTypeScopeBegin; 3937 break; 3938 3939 case N_EINCL: 3940 // include file end: name,,NO_SECT,0,0 3941 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3942 // so that we can always skip the entire symbol if we need to navigate 3943 // more quickly at the source level when parsing STABS 3944 if ( !N_INCL_indexes.empty() ) 3945 { 3946 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3947 symbol_ptr->SetByteSize(sym_idx + 1); 3948 symbol_ptr->SetSizeIsSibling(true); 3949 N_INCL_indexes.pop_back(); 3950 } 3951 type = eSymbolTypeScopeEnd; 3952 break; 3953 3954 case N_SOL: 3955 // #included file name: name,,n_sect,0,address 3956 type = eSymbolTypeHeaderFile; 3957 3958 // We currently don't use the header files on darwin 3959 add_nlist = false; 3960 break; 3961 3962 case N_PARAMS: 3963 // compiler parameters: name,,NO_SECT,0,0 3964 type = eSymbolTypeCompiler; 3965 break; 3966 3967 case N_VERSION: 3968 // compiler version: name,,NO_SECT,0,0 3969 type = eSymbolTypeCompiler; 3970 break; 3971 3972 case N_OLEVEL: 3973 // compiler -O level: name,,NO_SECT,0,0 3974 type = eSymbolTypeCompiler; 3975 break; 3976 3977 case N_PSYM: 3978 // parameter: name,,NO_SECT,type,offset 3979 type = eSymbolTypeVariable; 3980 break; 3981 3982 case N_ENTRY: 3983 // alternate entry: name,,n_sect,linenumber,address 3984 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3985 type = eSymbolTypeLineEntry; 3986 break; 3987 3988 //---------------------------------------------------------------------- 3989 // Left and Right Braces 3990 //---------------------------------------------------------------------- 3991 case N_LBRAC: 3992 // left bracket: 0,,NO_SECT,nesting level,address 3993 // We use the current number of symbols in the symbol table in lieu of 3994 // using nlist_idx in case we ever start trimming entries out 3995 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3996 N_BRAC_indexes.push_back(sym_idx); 3997 type = eSymbolTypeScopeBegin; 3998 break; 3999 4000 case N_RBRAC: 4001 // right bracket: 0,,NO_SECT,nesting level,address 4002 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 4003 // so that we can always skip the entire symbol if we need to navigate 4004 // more quickly at the source level when parsing STABS 4005 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4006 if ( !N_BRAC_indexes.empty() ) 4007 { 4008 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4009 symbol_ptr->SetByteSize(sym_idx + 1); 4010 symbol_ptr->SetSizeIsSibling(true); 4011 N_BRAC_indexes.pop_back(); 4012 } 4013 type = eSymbolTypeScopeEnd; 4014 break; 4015 4016 case N_EXCL: 4017 // deleted include file: name,,NO_SECT,0,sum 4018 type = eSymbolTypeHeaderFile; 4019 break; 4020 4021 //---------------------------------------------------------------------- 4022 // COMM scopes 4023 //---------------------------------------------------------------------- 4024 case N_BCOMM: 4025 // begin common: name,,NO_SECT,0,0 4026 // We use the current number of symbols in the symbol table in lieu of 4027 // using nlist_idx in case we ever start trimming entries out 4028 type = eSymbolTypeScopeBegin; 4029 N_COMM_indexes.push_back(sym_idx); 4030 break; 4031 4032 case N_ECOML: 4033 // end common (local name): 0,,n_sect,0,address 4034 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4035 // Fall through 4036 4037 case N_ECOMM: 4038 // end common: name,,n_sect,0,0 4039 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 4040 // so that we can always skip the entire symbol if we need to navigate 4041 // more quickly at the source level when parsing STABS 4042 if ( !N_COMM_indexes.empty() ) 4043 { 4044 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4045 symbol_ptr->SetByteSize(sym_idx + 1); 4046 symbol_ptr->SetSizeIsSibling(true); 4047 N_COMM_indexes.pop_back(); 4048 } 4049 type = eSymbolTypeScopeEnd; 4050 break; 4051 4052 case N_LENG: 4053 // second stab entry with length information 4054 type = eSymbolTypeAdditional; 4055 break; 4056 4057 default: break; 4058 } 4059 } 4060 else 4061 { 4062 //uint8_t n_pext = N_PEXT & nlist.n_type; 4063 uint8_t n_type = N_TYPE & nlist.n_type; 4064 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4065 4066 switch (n_type) 4067 { 4068 case N_INDR: 4069 { 4070 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4071 if (reexport_name_cstr && reexport_name_cstr[0]) 4072 { 4073 type = eSymbolTypeReExported; 4074 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4075 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4076 set_value = false; 4077 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4078 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4079 } 4080 else 4081 type = eSymbolTypeUndefined; 4082 } 4083 break; 4084 4085 case N_UNDF: 4086 if (symbol_name && symbol_name[0]) 4087 { 4088 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 4089 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4090 } 4091 // Fall through 4092 case N_PBUD: 4093 type = eSymbolTypeUndefined; 4094 break; 4095 4096 case N_ABS: 4097 type = eSymbolTypeAbsolute; 4098 break; 4099 4100 case N_SECT: 4101 { 4102 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4103 4104 if (!symbol_section) 4105 { 4106 // TODO: warn about this? 4107 add_nlist = false; 4108 break; 4109 } 4110 4111 if (TEXT_eh_frame_sectID == nlist.n_sect) 4112 { 4113 type = eSymbolTypeException; 4114 } 4115 else 4116 { 4117 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4118 4119 switch (section_type) 4120 { 4121 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 4122 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 4123 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 4124 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 4125 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 4126 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 4127 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 4128 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 4129 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 4130 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 4131 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 4132 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 4133 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 4134 default: 4135 switch (symbol_section->GetType()) 4136 { 4137 case lldb::eSectionTypeCode: 4138 type = eSymbolTypeCode; 4139 break; 4140 case eSectionTypeData: 4141 case eSectionTypeDataCString: // Inlined C string data 4142 case eSectionTypeDataCStringPointers: // Pointers to C string data 4143 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 4144 case eSectionTypeData4: 4145 case eSectionTypeData8: 4146 case eSectionTypeData16: 4147 type = eSymbolTypeData; 4148 break; 4149 default: 4150 break; 4151 } 4152 break; 4153 } 4154 4155 if (type == eSymbolTypeInvalid) 4156 { 4157 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 4158 if (symbol_section->IsDescendant (text_section_sp.get())) 4159 { 4160 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4161 S_ATTR_SELF_MODIFYING_CODE | 4162 S_ATTR_SOME_INSTRUCTIONS)) 4163 type = eSymbolTypeData; 4164 else 4165 type = eSymbolTypeCode; 4166 } 4167 else 4168 if (symbol_section->IsDescendant(data_section_sp.get()) || 4169 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 4170 symbol_section->IsDescendant(data_const_section_sp.get())) 4171 { 4172 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 4173 { 4174 type = eSymbolTypeRuntime; 4175 4176 if (symbol_name && 4177 symbol_name[0] == '_' && 4178 symbol_name[1] == 'O' && 4179 symbol_name[2] == 'B') 4180 { 4181 llvm::StringRef symbol_name_ref(symbol_name); 4182 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 4183 { 4184 symbol_name_non_abi_mangled = symbol_name + 1; 4185 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 4186 type = eSymbolTypeObjCClass; 4187 demangled_is_synthesized = true; 4188 } 4189 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 4190 { 4191 symbol_name_non_abi_mangled = symbol_name + 1; 4192 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 4193 type = eSymbolTypeObjCMetaClass; 4194 demangled_is_synthesized = true; 4195 } 4196 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 4197 { 4198 symbol_name_non_abi_mangled = symbol_name + 1; 4199 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 4200 type = eSymbolTypeObjCIVar; 4201 demangled_is_synthesized = true; 4202 } 4203 } 4204 } 4205 else 4206 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 4207 { 4208 type = eSymbolTypeException; 4209 } 4210 else 4211 { 4212 type = eSymbolTypeData; 4213 } 4214 } 4215 else 4216 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 4217 { 4218 type = eSymbolTypeTrampoline; 4219 } 4220 else 4221 if (symbol_section->IsDescendant(objc_section_sp.get())) 4222 { 4223 type = eSymbolTypeRuntime; 4224 if (symbol_name && symbol_name[0] == '.') 4225 { 4226 llvm::StringRef symbol_name_ref(symbol_name); 4227 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 4228 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 4229 { 4230 symbol_name_non_abi_mangled = symbol_name; 4231 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4232 type = eSymbolTypeObjCClass; 4233 demangled_is_synthesized = true; 4234 } 4235 } 4236 } 4237 } 4238 } 4239 } 4240 break; 4241 } 4242 } 4243 4244 if (add_nlist) 4245 { 4246 uint64_t symbol_value = nlist.n_value; 4247 4248 if (symbol_name_non_abi_mangled) 4249 { 4250 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 4251 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 4252 } 4253 else 4254 { 4255 bool symbol_name_is_mangled = false; 4256 4257 if (symbol_name && symbol_name[0] == '_') 4258 { 4259 symbol_name_is_mangled = symbol_name[1] == '_'; 4260 symbol_name++; // Skip the leading underscore 4261 } 4262 4263 if (symbol_name) 4264 { 4265 ConstString const_symbol_name(symbol_name); 4266 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 4267 } 4268 } 4269 4270 if (is_gsym) 4271 { 4272 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4273 if (gsym_name) 4274 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4275 } 4276 4277 if (symbol_section) 4278 { 4279 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4280 if (symbol_byte_size == 0 && function_starts_count > 0) 4281 { 4282 addr_t symbol_lookup_file_addr = nlist.n_value; 4283 // Do an exact address match for non-ARM addresses, else get the closest since 4284 // the symbol might be a thumb symbol which has an address with bit zero set 4285 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 4286 if (is_arm && func_start_entry) 4287 { 4288 // Verify that the function start address is the symbol address (ARM) 4289 // or the symbol address + 1 (thumb) 4290 if (func_start_entry->addr != symbol_lookup_file_addr && 4291 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 4292 { 4293 // Not the right entry, NULL it out... 4294 func_start_entry = NULL; 4295 } 4296 } 4297 if (func_start_entry) 4298 { 4299 func_start_entry->data = true; 4300 4301 addr_t symbol_file_addr = func_start_entry->addr; 4302 if (is_arm) 4303 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4304 4305 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4306 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4307 if (next_func_start_entry) 4308 { 4309 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4310 // Be sure the clear the Thumb address bit when we calculate the size 4311 // from the current and next address 4312 if (is_arm) 4313 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4314 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4315 } 4316 else 4317 { 4318 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4319 } 4320 } 4321 } 4322 symbol_value -= section_file_addr; 4323 } 4324 4325 if (is_debug == false) 4326 { 4327 if (type == eSymbolTypeCode) 4328 { 4329 // See if we can find a N_FUN entry for any code symbols. 4330 // If we do find a match, and the name matches, then we 4331 // can merge the two into just the function symbol to avoid 4332 // duplicate entries in the symbol table 4333 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4334 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4335 if (range.first != range.second) 4336 { 4337 bool found_it = false; 4338 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4339 { 4340 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4341 { 4342 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4343 // We just need the flags from the linker symbol, so put these flags 4344 // into the N_FUN flags to avoid duplicate symbols in the symbol table 4345 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4346 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4347 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4348 sym[pos->second].SetType (eSymbolTypeResolver); 4349 sym[sym_idx].Clear(); 4350 found_it = true; 4351 break; 4352 } 4353 } 4354 if (found_it) 4355 continue; 4356 } 4357 else 4358 { 4359 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4360 type = eSymbolTypeResolver; 4361 } 4362 } 4363 else if (type == eSymbolTypeData || 4364 type == eSymbolTypeObjCClass || 4365 type == eSymbolTypeObjCMetaClass || 4366 type == eSymbolTypeObjCIVar ) 4367 { 4368 // See if we can find a N_STSYM entry for any data symbols. 4369 // If we do find a match, and the name matches, then we 4370 // can merge the two into just the Static symbol to avoid 4371 // duplicate entries in the symbol table 4372 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4373 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4374 if (range.first != range.second) 4375 { 4376 bool found_it = false; 4377 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4378 { 4379 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4380 { 4381 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4382 // We just need the flags from the linker symbol, so put these flags 4383 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4384 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4385 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4386 sym[sym_idx].Clear(); 4387 found_it = true; 4388 break; 4389 } 4390 } 4391 if (found_it) 4392 continue; 4393 } 4394 else 4395 { 4396 // Combine N_GSYM stab entries with the non stab symbol 4397 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4398 if (gsym_name) 4399 { 4400 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 4401 if (pos != N_GSYM_name_to_sym_idx.end()) 4402 { 4403 const uint32_t GSYM_sym_idx = pos->second; 4404 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4405 // Copy the address, because often the N_GSYM address has an invalid address of zero 4406 // when the global is a common symbol 4407 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 4408 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 4409 // We just need the flags from the linker symbol, so put these flags 4410 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 4411 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4412 sym[sym_idx].Clear(); 4413 continue; 4414 } 4415 } 4416 } 4417 } 4418 } 4419 4420 sym[sym_idx].SetID (nlist_idx); 4421 sym[sym_idx].SetType (type); 4422 if (set_value) 4423 { 4424 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 4425 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 4426 } 4427 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4428 4429 if (symbol_byte_size > 0) 4430 sym[sym_idx].SetByteSize(symbol_byte_size); 4431 4432 if (demangled_is_synthesized) 4433 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4434 4435 ++sym_idx; 4436 } 4437 else 4438 { 4439 sym[sym_idx].Clear(); 4440 } 4441 } 4442 4443 for (const auto &pos :reexport_shlib_needs_fixup) 4444 { 4445 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4446 if (undef_pos != undefined_name_to_desc.end()) 4447 { 4448 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4449 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4450 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 4451 } 4452 } 4453 } 4454 4455 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4456 4457 if (function_starts_count > 0) 4458 { 4459 char synthetic_function_symbol[PATH_MAX]; 4460 uint32_t num_synthetic_function_symbols = 0; 4461 for (i=0; i<function_starts_count; ++i) 4462 { 4463 if (function_starts.GetEntryRef (i).data == false) 4464 ++num_synthetic_function_symbols; 4465 } 4466 4467 if (num_synthetic_function_symbols > 0) 4468 { 4469 if (num_syms < sym_idx + num_synthetic_function_symbols) 4470 { 4471 num_syms = sym_idx + num_synthetic_function_symbols; 4472 sym = symtab->Resize (num_syms); 4473 } 4474 uint32_t synthetic_function_symbol_idx = 0; 4475 for (i=0; i<function_starts_count; ++i) 4476 { 4477 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 4478 if (func_start_entry->data == false) 4479 { 4480 addr_t symbol_file_addr = func_start_entry->addr; 4481 uint32_t symbol_flags = 0; 4482 if (is_arm) 4483 { 4484 if (symbol_file_addr & 1) 4485 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4486 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4487 } 4488 Address symbol_addr; 4489 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 4490 { 4491 SectionSP symbol_section (symbol_addr.GetSection()); 4492 uint32_t symbol_byte_size = 0; 4493 if (symbol_section) 4494 { 4495 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4496 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4497 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4498 if (next_func_start_entry) 4499 { 4500 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4501 if (is_arm) 4502 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4503 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4504 } 4505 else 4506 { 4507 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4508 } 4509 snprintf (synthetic_function_symbol, 4510 sizeof(synthetic_function_symbol), 4511 "___lldb_unnamed_function%u$$%s", 4512 ++synthetic_function_symbol_idx, 4513 module_sp->GetFileSpec().GetFilename().GetCString()); 4514 sym[sym_idx].SetID (synthetic_sym_id++); 4515 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 4516 sym[sym_idx].SetType (eSymbolTypeCode); 4517 sym[sym_idx].SetIsSynthetic (true); 4518 sym[sym_idx].GetAddressRef() = symbol_addr; 4519 if (symbol_flags) 4520 sym[sym_idx].SetFlags (symbol_flags); 4521 if (symbol_byte_size) 4522 sym[sym_idx].SetByteSize (symbol_byte_size); 4523 ++sym_idx; 4524 } 4525 } 4526 } 4527 } 4528 } 4529 } 4530 4531 // Trim our symbols down to just what we ended up with after 4532 // removing any symbols. 4533 if (sym_idx < num_syms) 4534 { 4535 num_syms = sym_idx; 4536 sym = symtab->Resize (num_syms); 4537 } 4538 4539 // Now synthesize indirect symbols 4540 if (m_dysymtab.nindirectsyms != 0) 4541 { 4542 if (indirect_symbol_index_data.GetByteSize()) 4543 { 4544 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 4545 4546 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 4547 { 4548 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 4549 { 4550 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4551 if (symbol_stub_byte_size == 0) 4552 continue; 4553 4554 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4555 4556 if (num_symbol_stubs == 0) 4557 continue; 4558 4559 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 4560 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 4561 { 4562 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 4563 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 4564 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4565 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 4566 { 4567 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 4568 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4569 continue; 4570 4571 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 4572 Symbol *stub_symbol = NULL; 4573 if (index_pos != end_index_pos) 4574 { 4575 // We have a remapping from the original nlist index to 4576 // a current symbol index, so just look this up by index 4577 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 4578 } 4579 else 4580 { 4581 // We need to lookup a symbol using the original nlist 4582 // symbol index since this index is coming from the 4583 // S_SYMBOL_STUBS 4584 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 4585 } 4586 4587 if (stub_symbol) 4588 { 4589 Address so_addr(symbol_stub_addr, section_list); 4590 4591 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4592 { 4593 // Change the external symbol into a trampoline that makes sense 4594 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4595 // can re-use them so we don't have to make up a synthetic symbol 4596 // for no good reason. 4597 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4598 stub_symbol->SetType (eSymbolTypeTrampoline); 4599 else 4600 stub_symbol->SetType (eSymbolTypeResolver); 4601 stub_symbol->SetExternal (false); 4602 stub_symbol->GetAddressRef() = so_addr; 4603 stub_symbol->SetByteSize (symbol_stub_byte_size); 4604 } 4605 else 4606 { 4607 // Make a synthetic symbol to describe the trampoline stub 4608 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4609 if (sym_idx >= num_syms) 4610 { 4611 sym = symtab->Resize (++num_syms); 4612 stub_symbol = NULL; // this pointer no longer valid 4613 } 4614 sym[sym_idx].SetID (synthetic_sym_id++); 4615 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4616 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4617 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4618 else 4619 sym[sym_idx].SetType (eSymbolTypeResolver); 4620 sym[sym_idx].SetIsSynthetic (true); 4621 sym[sym_idx].GetAddressRef() = so_addr; 4622 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4623 ++sym_idx; 4624 } 4625 } 4626 else 4627 { 4628 if (log) 4629 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4630 } 4631 } 4632 } 4633 } 4634 } 4635 } 4636 } 4637 4638 if (!trie_entries.empty()) 4639 { 4640 for (const auto &e : trie_entries) 4641 { 4642 if (e.entry.import_name) 4643 { 4644 // Only add indirect symbols from the Trie entries if we 4645 // didn't have a N_INDR nlist entry for this already 4646 if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) 4647 { 4648 // Make a synthetic symbol to describe re-exported symbol. 4649 if (sym_idx >= num_syms) 4650 sym = symtab->Resize (++num_syms); 4651 sym[sym_idx].SetID (synthetic_sym_id++); 4652 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4653 sym[sym_idx].SetType (eSymbolTypeReExported); 4654 sym[sym_idx].SetIsSynthetic (true); 4655 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4656 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4657 { 4658 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4659 } 4660 ++sym_idx; 4661 } 4662 } 4663 } 4664 } 4665 4666 // StreamFile s(stdout, false); 4667 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4668 // symtab->Dump(&s, NULL, eSortOrderNone); 4669 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4670 symtab->CalculateSymbolSizes(); 4671 4672 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4673 // symtab->Dump(&s, NULL, eSortOrderNone); 4674 4675 return symtab->GetNumSymbols(); 4676 } 4677 return 0; 4678 } 4679 4680 void 4681 ObjectFileMachO::Dump (Stream *s) 4682 { 4683 ModuleSP module_sp(GetModule()); 4684 if (module_sp) 4685 { 4686 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4687 s->Printf("%p: ", static_cast<void*>(this)); 4688 s->Indent(); 4689 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4690 s->PutCString("ObjectFileMachO64"); 4691 else 4692 s->PutCString("ObjectFileMachO32"); 4693 4694 ArchSpec header_arch; 4695 GetArchitecture(header_arch); 4696 4697 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4698 4699 SectionList *sections = GetSectionList(); 4700 if (sections) 4701 sections->Dump(s, NULL, true, UINT32_MAX); 4702 4703 if (m_symtab_ap.get()) 4704 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4705 } 4706 } 4707 4708 bool 4709 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4710 const lldb_private::DataExtractor &data, 4711 lldb::offset_t lc_offset, 4712 lldb_private::UUID& uuid) 4713 { 4714 uint32_t i; 4715 struct uuid_command load_cmd; 4716 4717 lldb::offset_t offset = lc_offset; 4718 for (i=0; i<header.ncmds; ++i) 4719 { 4720 const lldb::offset_t cmd_offset = offset; 4721 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4722 break; 4723 4724 if (load_cmd.cmd == LC_UUID) 4725 { 4726 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4727 4728 if (uuid_bytes) 4729 { 4730 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4731 // We pretend these object files have no UUID to prevent crashing. 4732 4733 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4734 0x3b, 0xa8, 4735 0x4b, 0x16, 4736 0xb6, 0xa4, 4737 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4738 4739 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4740 return false; 4741 4742 uuid.SetBytes (uuid_bytes); 4743 return true; 4744 } 4745 return false; 4746 } 4747 offset = cmd_offset + load_cmd.cmdsize; 4748 } 4749 return false; 4750 } 4751 4752 bool 4753 ObjectFileMachO::GetArchitecture (const llvm::MachO::mach_header &header, 4754 const lldb_private::DataExtractor &data, 4755 lldb::offset_t lc_offset, 4756 ArchSpec &arch) 4757 { 4758 arch.SetArchitecture (eArchTypeMachO, header.cputype, header.cpusubtype); 4759 4760 if (arch.IsValid()) 4761 { 4762 llvm::Triple &triple = arch.GetTriple(); 4763 if (header.filetype == MH_PRELOAD) 4764 { 4765 // Set OS to "unknown" - this is a standalone binary with no dyld et al 4766 triple.setOS(llvm::Triple::UnknownOS); 4767 return true; 4768 } 4769 else 4770 { 4771 struct load_command load_cmd; 4772 4773 lldb::offset_t offset = lc_offset; 4774 for (uint32_t i=0; i<header.ncmds; ++i) 4775 { 4776 const lldb::offset_t cmd_offset = offset; 4777 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4778 break; 4779 4780 switch (load_cmd.cmd) 4781 { 4782 case LC_VERSION_MIN_IPHONEOS: 4783 triple.setOS (llvm::Triple::IOS); 4784 return true; 4785 4786 case LC_VERSION_MIN_MACOSX: 4787 triple.setOS (llvm::Triple::MacOSX); 4788 return true; 4789 4790 default: 4791 break; 4792 } 4793 4794 offset = cmd_offset + load_cmd.cmdsize; 4795 } 4796 4797 // Only set the OS to iOS for ARM, we don't want to set it for x86 and x86_64. 4798 // We do this because we now have MacOSX or iOS as the OS value for x86 and 4799 // x86_64 for normal desktop (MacOSX) and simulator (iOS) binaries. And if 4800 // we compare a "x86_64-apple-ios" to a "x86_64-apple-" triple, it will say 4801 // it is compatible (because the OS is unspecified in the second one and will 4802 // match anything in the first 4803 if (header.cputype == CPU_TYPE_ARM || header.cputype == CPU_TYPE_ARM64) 4804 triple.setOS (llvm::Triple::IOS); 4805 } 4806 } 4807 return arch.IsValid(); 4808 } 4809 4810 bool 4811 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4812 { 4813 ModuleSP module_sp(GetModule()); 4814 if (module_sp) 4815 { 4816 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4817 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4818 return GetUUID (m_header, m_data, offset, *uuid); 4819 } 4820 return false; 4821 } 4822 4823 uint32_t 4824 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4825 { 4826 uint32_t count = 0; 4827 ModuleSP module_sp(GetModule()); 4828 if (module_sp) 4829 { 4830 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4831 struct load_command load_cmd; 4832 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4833 std::vector<std::string> rpath_paths; 4834 std::vector<std::string> rpath_relative_paths; 4835 const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system 4836 uint32_t i; 4837 for (i=0; i<m_header.ncmds; ++i) 4838 { 4839 const uint32_t cmd_offset = offset; 4840 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4841 break; 4842 4843 switch (load_cmd.cmd) 4844 { 4845 case LC_RPATH: 4846 case LC_LOAD_DYLIB: 4847 case LC_LOAD_WEAK_DYLIB: 4848 case LC_REEXPORT_DYLIB: 4849 case LC_LOAD_DYLINKER: 4850 case LC_LOADFVMLIB: 4851 case LC_LOAD_UPWARD_DYLIB: 4852 { 4853 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4854 const char *path = m_data.PeekCStr(name_offset); 4855 if (path) 4856 { 4857 if (load_cmd.cmd == LC_RPATH) 4858 rpath_paths.push_back(path); 4859 else 4860 { 4861 if (path[0] == '@') 4862 { 4863 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 4864 rpath_relative_paths.push_back(path + strlen("@rpath")); 4865 } 4866 else 4867 { 4868 FileSpec file_spec(path, resolve_path); 4869 if (files.AppendIfUnique(file_spec)) 4870 count++; 4871 } 4872 } 4873 } 4874 } 4875 break; 4876 4877 default: 4878 break; 4879 } 4880 offset = cmd_offset + load_cmd.cmdsize; 4881 } 4882 4883 if (!rpath_paths.empty()) 4884 { 4885 // Fixup all LC_RPATH values to be absolute paths 4886 FileSpec this_file_spec(m_file); 4887 this_file_spec.ResolvePath(); 4888 std::string loader_path("@loader_path"); 4889 std::string executable_path("@executable_path"); 4890 for (auto &rpath : rpath_paths) 4891 { 4892 if (rpath.find(loader_path) == 0) 4893 { 4894 rpath.erase(0, loader_path.size()); 4895 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4896 } 4897 else if (rpath.find(executable_path) == 0) 4898 { 4899 rpath.erase(0, executable_path.size()); 4900 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4901 } 4902 } 4903 4904 for (const auto &rpath_relative_path : rpath_relative_paths) 4905 { 4906 for (const auto &rpath : rpath_paths) 4907 { 4908 std::string path = rpath; 4909 path += rpath_relative_path; 4910 // It is OK to resolve this path because we must find a file on 4911 // disk for us to accept it anyway if it is rpath relative. 4912 FileSpec file_spec(path, true); 4913 // Remove any redundant parts of the path (like "../foo") since 4914 // LC_RPATH values often contain "..". 4915 file_spec.NormalizePath (); 4916 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) 4917 { 4918 count++; 4919 break; 4920 } 4921 } 4922 } 4923 } 4924 } 4925 return count; 4926 } 4927 4928 lldb_private::Address 4929 ObjectFileMachO::GetEntryPointAddress () 4930 { 4931 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4932 // is initialized to an invalid address, so we can just return that. 4933 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4934 4935 if (!IsExecutable() || m_entry_point_address.IsValid()) 4936 return m_entry_point_address; 4937 4938 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4939 // /usr/include/mach-o.h, but it is basically: 4940 // 4941 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4942 // uint32_t count - this is the count of longs in the thread state data 4943 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4944 // <repeat this trio> 4945 // 4946 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4947 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4948 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4949 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4950 // 4951 // For now we hard-code the offsets and flavors we need: 4952 // 4953 // 4954 4955 ModuleSP module_sp(GetModule()); 4956 if (module_sp) 4957 { 4958 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4959 struct load_command load_cmd; 4960 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4961 uint32_t i; 4962 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4963 bool done = false; 4964 4965 for (i=0; i<m_header.ncmds; ++i) 4966 { 4967 const lldb::offset_t cmd_offset = offset; 4968 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4969 break; 4970 4971 switch (load_cmd.cmd) 4972 { 4973 case LC_UNIXTHREAD: 4974 case LC_THREAD: 4975 { 4976 while (offset < cmd_offset + load_cmd.cmdsize) 4977 { 4978 uint32_t flavor = m_data.GetU32(&offset); 4979 uint32_t count = m_data.GetU32(&offset); 4980 if (count == 0) 4981 { 4982 // We've gotten off somehow, log and exit; 4983 return m_entry_point_address; 4984 } 4985 4986 switch (m_header.cputype) 4987 { 4988 case llvm::MachO::CPU_TYPE_ARM: 4989 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 4990 { 4991 offset += 60; // This is the offset of pc in the GPR thread state data structure. 4992 start_address = m_data.GetU32(&offset); 4993 done = true; 4994 } 4995 break; 4996 case llvm::MachO::CPU_TYPE_ARM64: 4997 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 4998 { 4999 offset += 256; // This is the offset of pc in the GPR thread state data structure. 5000 start_address = m_data.GetU64(&offset); 5001 done = true; 5002 } 5003 break; 5004 case llvm::MachO::CPU_TYPE_I386: 5005 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5006 { 5007 offset += 40; // This is the offset of eip in the GPR thread state data structure. 5008 start_address = m_data.GetU32(&offset); 5009 done = true; 5010 } 5011 break; 5012 case llvm::MachO::CPU_TYPE_X86_64: 5013 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5014 { 5015 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 5016 start_address = m_data.GetU64(&offset); 5017 done = true; 5018 } 5019 break; 5020 default: 5021 return m_entry_point_address; 5022 } 5023 // Haven't found the GPR flavor yet, skip over the data for this flavor: 5024 if (done) 5025 break; 5026 offset += count * 4; 5027 } 5028 } 5029 break; 5030 case LC_MAIN: 5031 { 5032 ConstString text_segment_name ("__TEXT"); 5033 uint64_t entryoffset = m_data.GetU64(&offset); 5034 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 5035 if (text_segment_sp) 5036 { 5037 done = true; 5038 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5039 } 5040 } 5041 5042 default: 5043 break; 5044 } 5045 if (done) 5046 break; 5047 5048 // Go to the next load command: 5049 offset = cmd_offset + load_cmd.cmdsize; 5050 } 5051 5052 if (start_address != LLDB_INVALID_ADDRESS) 5053 { 5054 // We got the start address from the load commands, so now resolve that address in the sections 5055 // of this ObjectFile: 5056 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 5057 { 5058 m_entry_point_address.Clear(); 5059 } 5060 } 5061 else 5062 { 5063 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 5064 // "start" symbol in the main executable. 5065 5066 ModuleSP module_sp (GetModule()); 5067 5068 if (module_sp) 5069 { 5070 SymbolContextList contexts; 5071 SymbolContext context; 5072 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 5073 { 5074 if (contexts.GetContextAtIndex(0, context)) 5075 m_entry_point_address = context.symbol->GetAddress(); 5076 } 5077 } 5078 } 5079 } 5080 5081 return m_entry_point_address; 5082 } 5083 5084 lldb_private::Address 5085 ObjectFileMachO::GetHeaderAddress () 5086 { 5087 lldb_private::Address header_addr; 5088 SectionList *section_list = GetSectionList(); 5089 if (section_list) 5090 { 5091 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 5092 if (text_segment_sp) 5093 { 5094 header_addr.SetSection (text_segment_sp); 5095 header_addr.SetOffset (0); 5096 } 5097 } 5098 return header_addr; 5099 } 5100 5101 uint32_t 5102 ObjectFileMachO::GetNumThreadContexts () 5103 { 5104 ModuleSP module_sp(GetModule()); 5105 if (module_sp) 5106 { 5107 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5108 if (!m_thread_context_offsets_valid) 5109 { 5110 m_thread_context_offsets_valid = true; 5111 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5112 FileRangeArray::Entry file_range; 5113 thread_command thread_cmd; 5114 for (uint32_t i=0; i<m_header.ncmds; ++i) 5115 { 5116 const uint32_t cmd_offset = offset; 5117 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 5118 break; 5119 5120 if (thread_cmd.cmd == LC_THREAD) 5121 { 5122 file_range.SetRangeBase (offset); 5123 file_range.SetByteSize (thread_cmd.cmdsize - 8); 5124 m_thread_context_offsets.Append (file_range); 5125 } 5126 offset = cmd_offset + thread_cmd.cmdsize; 5127 } 5128 } 5129 } 5130 return m_thread_context_offsets.GetSize(); 5131 } 5132 5133 lldb::RegisterContextSP 5134 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 5135 { 5136 lldb::RegisterContextSP reg_ctx_sp; 5137 5138 ModuleSP module_sp(GetModule()); 5139 if (module_sp) 5140 { 5141 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5142 if (!m_thread_context_offsets_valid) 5143 GetNumThreadContexts (); 5144 5145 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 5146 if (thread_context_file_range) 5147 { 5148 5149 DataExtractor data (m_data, 5150 thread_context_file_range->GetRangeBase(), 5151 thread_context_file_range->GetByteSize()); 5152 5153 switch (m_header.cputype) 5154 { 5155 case llvm::MachO::CPU_TYPE_ARM64: 5156 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 5157 break; 5158 5159 case llvm::MachO::CPU_TYPE_ARM: 5160 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 5161 break; 5162 5163 case llvm::MachO::CPU_TYPE_I386: 5164 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 5165 break; 5166 5167 case llvm::MachO::CPU_TYPE_X86_64: 5168 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 5169 break; 5170 } 5171 } 5172 } 5173 return reg_ctx_sp; 5174 } 5175 5176 ObjectFile::Type 5177 ObjectFileMachO::CalculateType() 5178 { 5179 switch (m_header.filetype) 5180 { 5181 case MH_OBJECT: // 0x1u 5182 if (GetAddressByteSize () == 4) 5183 { 5184 // 32 bit kexts are just object files, but they do have a valid 5185 // UUID load command. 5186 UUID uuid; 5187 if (GetUUID(&uuid)) 5188 { 5189 // this checking for the UUID load command is not enough 5190 // we could eventually look for the symbol named 5191 // "OSKextGetCurrentIdentifier" as this is required of kexts 5192 if (m_strata == eStrataInvalid) 5193 m_strata = eStrataKernel; 5194 return eTypeSharedLibrary; 5195 } 5196 } 5197 return eTypeObjectFile; 5198 5199 case MH_EXECUTE: return eTypeExecutable; // 0x2u 5200 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 5201 case MH_CORE: return eTypeCoreFile; // 0x4u 5202 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 5203 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 5204 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 5205 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 5206 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 5207 case MH_DSYM: return eTypeDebugInfo; // 0xAu 5208 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 5209 default: 5210 break; 5211 } 5212 return eTypeUnknown; 5213 } 5214 5215 ObjectFile::Strata 5216 ObjectFileMachO::CalculateStrata() 5217 { 5218 switch (m_header.filetype) 5219 { 5220 case MH_OBJECT: // 0x1u 5221 { 5222 // 32 bit kexts are just object files, but they do have a valid 5223 // UUID load command. 5224 UUID uuid; 5225 if (GetUUID(&uuid)) 5226 { 5227 // this checking for the UUID load command is not enough 5228 // we could eventually look for the symbol named 5229 // "OSKextGetCurrentIdentifier" as this is required of kexts 5230 if (m_type == eTypeInvalid) 5231 m_type = eTypeSharedLibrary; 5232 5233 return eStrataKernel; 5234 } 5235 } 5236 return eStrataUnknown; 5237 5238 case MH_EXECUTE: // 0x2u 5239 // Check for the MH_DYLDLINK bit in the flags 5240 if (m_header.flags & MH_DYLDLINK) 5241 { 5242 return eStrataUser; 5243 } 5244 else 5245 { 5246 SectionList *section_list = GetSectionList(); 5247 if (section_list) 5248 { 5249 static ConstString g_kld_section_name ("__KLD"); 5250 if (section_list->FindSectionByName(g_kld_section_name)) 5251 return eStrataKernel; 5252 } 5253 } 5254 return eStrataRawImage; 5255 5256 case MH_FVMLIB: return eStrataUser; // 0x3u 5257 case MH_CORE: return eStrataUnknown; // 0x4u 5258 case MH_PRELOAD: return eStrataRawImage; // 0x5u 5259 case MH_DYLIB: return eStrataUser; // 0x6u 5260 case MH_DYLINKER: return eStrataUser; // 0x7u 5261 case MH_BUNDLE: return eStrataUser; // 0x8u 5262 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 5263 case MH_DSYM: return eStrataUnknown; // 0xAu 5264 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 5265 default: 5266 break; 5267 } 5268 return eStrataUnknown; 5269 } 5270 5271 uint32_t 5272 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 5273 { 5274 ModuleSP module_sp(GetModule()); 5275 if (module_sp) 5276 { 5277 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5278 struct dylib_command load_cmd; 5279 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5280 uint32_t version_cmd = 0; 5281 uint64_t version = 0; 5282 uint32_t i; 5283 for (i=0; i<m_header.ncmds; ++i) 5284 { 5285 const lldb::offset_t cmd_offset = offset; 5286 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 5287 break; 5288 5289 if (load_cmd.cmd == LC_ID_DYLIB) 5290 { 5291 if (version_cmd == 0) 5292 { 5293 version_cmd = load_cmd.cmd; 5294 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 5295 break; 5296 version = load_cmd.dylib.current_version; 5297 } 5298 break; // Break for now unless there is another more complete version 5299 // number load command in the future. 5300 } 5301 offset = cmd_offset + load_cmd.cmdsize; 5302 } 5303 5304 if (version_cmd == LC_ID_DYLIB) 5305 { 5306 if (versions != NULL && num_versions > 0) 5307 { 5308 if (num_versions > 0) 5309 versions[0] = (version & 0xFFFF0000ull) >> 16; 5310 if (num_versions > 1) 5311 versions[1] = (version & 0x0000FF00ull) >> 8; 5312 if (num_versions > 2) 5313 versions[2] = (version & 0x000000FFull); 5314 // Fill in an remaining version numbers with invalid values 5315 for (i=3; i<num_versions; ++i) 5316 versions[i] = UINT32_MAX; 5317 } 5318 // The LC_ID_DYLIB load command has a version with 3 version numbers 5319 // in it, so always return 3 5320 return 3; 5321 } 5322 } 5323 return false; 5324 } 5325 5326 bool 5327 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 5328 { 5329 ModuleSP module_sp(GetModule()); 5330 if (module_sp) 5331 { 5332 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5333 return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); 5334 } 5335 return false; 5336 } 5337 5338 UUID 5339 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 5340 { 5341 UUID uuid; 5342 if (process) 5343 { 5344 addr_t all_image_infos = process->GetImageInfoAddress(); 5345 5346 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 5347 // or it may be the address of the dyld_all_image_infos structure (want). The first four 5348 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 5349 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 5350 5351 Error err; 5352 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 5353 if (version_or_magic != static_cast<uint32_t>(-1) 5354 && version_or_magic != MH_MAGIC 5355 && version_or_magic != MH_CIGAM 5356 && version_or_magic != MH_MAGIC_64 5357 && version_or_magic != MH_CIGAM_64 5358 && version_or_magic >= 13) 5359 { 5360 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 5361 int wordsize = process->GetAddressByteSize(); 5362 if (wordsize == 8) 5363 { 5364 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 5365 } 5366 if (wordsize == 4) 5367 { 5368 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 5369 } 5370 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 5371 { 5372 uuid_t shared_cache_uuid; 5373 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 5374 { 5375 uuid.SetBytes (shared_cache_uuid); 5376 } 5377 } 5378 } 5379 } 5380 return uuid; 5381 } 5382 5383 UUID 5384 ObjectFileMachO::GetLLDBSharedCacheUUID () 5385 { 5386 UUID uuid; 5387 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 5388 uint8_t *(*dyld_get_all_image_infos)(void); 5389 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5390 if (dyld_get_all_image_infos) 5391 { 5392 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5393 if (dyld_all_image_infos_address) 5394 { 5395 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5396 if (*version >= 13) 5397 { 5398 uuid_t *sharedCacheUUID_address = 0; 5399 int wordsize = sizeof (uint8_t *); 5400 if (wordsize == 8) 5401 { 5402 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 5403 } 5404 else 5405 { 5406 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 5407 } 5408 uuid.SetBytes (sharedCacheUUID_address); 5409 } 5410 } 5411 } 5412 #endif 5413 return uuid; 5414 } 5415 5416 uint32_t 5417 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 5418 { 5419 if (m_min_os_versions.empty()) 5420 { 5421 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5422 bool success = false; 5423 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5424 { 5425 const lldb::offset_t load_cmd_offset = offset; 5426 5427 version_min_command lc; 5428 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5429 break; 5430 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5431 { 5432 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5433 { 5434 const uint32_t xxxx = lc.version >> 16; 5435 const uint32_t yy = (lc.version >> 8) & 0xffu; 5436 const uint32_t zz = lc.version & 0xffu; 5437 if (xxxx) 5438 { 5439 m_min_os_versions.push_back(xxxx); 5440 m_min_os_versions.push_back(yy); 5441 m_min_os_versions.push_back(zz); 5442 } 5443 success = true; 5444 } 5445 } 5446 offset = load_cmd_offset + lc.cmdsize; 5447 } 5448 5449 if (success == false) 5450 { 5451 // Push an invalid value so we don't keep trying to 5452 m_min_os_versions.push_back(UINT32_MAX); 5453 } 5454 } 5455 5456 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 5457 { 5458 if (versions != NULL && num_versions > 0) 5459 { 5460 for (size_t i=0; i<num_versions; ++i) 5461 { 5462 if (i < m_min_os_versions.size()) 5463 versions[i] = m_min_os_versions[i]; 5464 else 5465 versions[i] = 0; 5466 } 5467 } 5468 return m_min_os_versions.size(); 5469 } 5470 // Call the superclasses version that will empty out the data 5471 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 5472 } 5473 5474 uint32_t 5475 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 5476 { 5477 if (m_sdk_versions.empty()) 5478 { 5479 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5480 bool success = false; 5481 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5482 { 5483 const lldb::offset_t load_cmd_offset = offset; 5484 5485 version_min_command lc; 5486 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5487 break; 5488 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5489 { 5490 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5491 { 5492 const uint32_t xxxx = lc.sdk >> 16; 5493 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5494 const uint32_t zz = lc.sdk & 0xffu; 5495 if (xxxx) 5496 { 5497 m_sdk_versions.push_back(xxxx); 5498 m_sdk_versions.push_back(yy); 5499 m_sdk_versions.push_back(zz); 5500 } 5501 success = true; 5502 } 5503 } 5504 offset = load_cmd_offset + lc.cmdsize; 5505 } 5506 5507 if (success == false) 5508 { 5509 // Push an invalid value so we don't keep trying to 5510 m_sdk_versions.push_back(UINT32_MAX); 5511 } 5512 } 5513 5514 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 5515 { 5516 if (versions != NULL && num_versions > 0) 5517 { 5518 for (size_t i=0; i<num_versions; ++i) 5519 { 5520 if (i < m_sdk_versions.size()) 5521 versions[i] = m_sdk_versions[i]; 5522 else 5523 versions[i] = 0; 5524 } 5525 } 5526 return m_sdk_versions.size(); 5527 } 5528 // Call the superclasses version that will empty out the data 5529 return ObjectFile::GetSDKVersion (versions, num_versions); 5530 } 5531 5532 bool 5533 ObjectFileMachO::GetIsDynamicLinkEditor() 5534 { 5535 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5536 } 5537 5538 //------------------------------------------------------------------ 5539 // PluginInterface protocol 5540 //------------------------------------------------------------------ 5541 lldb_private::ConstString 5542 ObjectFileMachO::GetPluginName() 5543 { 5544 return GetPluginNameStatic(); 5545 } 5546 5547 uint32_t 5548 ObjectFileMachO::GetPluginVersion() 5549 { 5550 return 1; 5551 } 5552 5553 Section * 5554 ObjectFileMachO::GetMachHeaderSection() 5555 { 5556 // Find the first address of the mach header which is the first non-zero 5557 // file sized section whose file offset is zero. This is the base file address 5558 // of the mach-o file which can be subtracted from the vmaddr of the other 5559 // segments found in memory and added to the load address 5560 ModuleSP module_sp = GetModule(); 5561 if (module_sp) 5562 { 5563 SectionList *section_list = GetSectionList (); 5564 if (section_list) 5565 { 5566 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 5567 const size_t num_sections = section_list->GetSize(); 5568 5569 for (size_t sect_idx = 0; 5570 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 5571 ++sect_idx) 5572 { 5573 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 5574 if (section && 5575 section->GetFileSize() > 0 && 5576 section->GetFileOffset() == 0 && 5577 section->IsThreadSpecific() == false && 5578 module_sp.get() == section->GetModule().get()) 5579 { 5580 return section; 5581 } 5582 } 5583 } 5584 } 5585 return nullptr; 5586 } 5587 5588 lldb::addr_t 5589 ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) 5590 { 5591 ModuleSP module_sp = GetModule(); 5592 if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) 5593 { 5594 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); 5595 if (mach_header_file_addr != LLDB_INVALID_ADDRESS) 5596 { 5597 if (section && 5598 section->GetFileSize() > 0 && 5599 section->IsThreadSpecific() == false && 5600 module_sp.get() == section->GetModule().get()) 5601 { 5602 // Ignore __LINKEDIT and __DWARF segments 5603 if (section->GetName() == GetSegmentNameLINKEDIT()) 5604 { 5605 // Only map __LINKEDIT if we have an in memory image and this isn't 5606 // a kernel binary like a kext or mach_kernel. 5607 const bool is_memory_image = (bool)m_process_wp.lock(); 5608 const Strata strata = GetStrata(); 5609 if (is_memory_image == false || strata == eStrataKernel) 5610 return LLDB_INVALID_ADDRESS; 5611 } 5612 return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; 5613 } 5614 } 5615 } 5616 return LLDB_INVALID_ADDRESS; 5617 } 5618 5619 bool 5620 ObjectFileMachO::SetLoadAddress (Target &target, 5621 lldb::addr_t value, 5622 bool value_is_offset) 5623 { 5624 ModuleSP module_sp = GetModule(); 5625 if (module_sp) 5626 { 5627 size_t num_loaded_sections = 0; 5628 SectionList *section_list = GetSectionList (); 5629 if (section_list) 5630 { 5631 const size_t num_sections = section_list->GetSize(); 5632 5633 if (value_is_offset) 5634 { 5635 // "value" is an offset to apply to each top level segment 5636 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5637 { 5638 // Iterate through the object file sections to find all 5639 // of the sections that size on disk (to avoid __PAGEZERO) 5640 // and load them 5641 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5642 if (section_sp && 5643 section_sp->GetFileSize() > 0 && 5644 section_sp->IsThreadSpecific() == false && 5645 module_sp.get() == section_sp->GetModule().get()) 5646 { 5647 // Ignore __LINKEDIT and __DWARF segments 5648 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) 5649 { 5650 // Only map __LINKEDIT if we have an in memory image and this isn't 5651 // a kernel binary like a kext or mach_kernel. 5652 const bool is_memory_image = (bool)m_process_wp.lock(); 5653 const Strata strata = GetStrata(); 5654 if (is_memory_image == false || strata == eStrataKernel) 5655 continue; 5656 } 5657 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 5658 ++num_loaded_sections; 5659 } 5660 } 5661 } 5662 else 5663 { 5664 // "value" is the new base address of the mach_header, adjust each 5665 // section accordingly 5666 5667 Section *mach_header_section = GetMachHeaderSection(); 5668 if (mach_header_section) 5669 { 5670 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5671 { 5672 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5673 5674 lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage(value, mach_header_section, section_sp.get()); 5675 if (section_load_addr != LLDB_INVALID_ADDRESS) 5676 { 5677 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_load_addr)) 5678 ++num_loaded_sections; 5679 } 5680 } 5681 } 5682 } 5683 } 5684 return num_loaded_sections > 0; 5685 } 5686 return false; 5687 } 5688 5689 bool 5690 ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, 5691 const FileSpec &outfile, 5692 Error &error) 5693 { 5694 if (process_sp) 5695 { 5696 Target &target = process_sp->GetTarget(); 5697 const ArchSpec target_arch = target.GetArchitecture(); 5698 const llvm::Triple &target_triple = target_arch.GetTriple(); 5699 if (target_triple.getVendor() == llvm::Triple::Apple && 5700 (target_triple.getOS() == llvm::Triple::MacOSX || 5701 target_triple.getOS() == llvm::Triple::IOS)) 5702 { 5703 bool make_core = false; 5704 switch (target_arch.GetMachine()) 5705 { 5706 case llvm::Triple::aarch64: 5707 case llvm::Triple::arm: 5708 case llvm::Triple::thumb: 5709 case llvm::Triple::x86: 5710 case llvm::Triple::x86_64: 5711 make_core = true; 5712 break; 5713 default: 5714 error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); 5715 break; 5716 } 5717 5718 if (make_core) 5719 { 5720 std::vector<segment_command_64> segment_load_commands; 5721 // uint32_t range_info_idx = 0; 5722 MemoryRegionInfo range_info; 5723 Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); 5724 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 5725 const ByteOrder byte_order = target_arch.GetByteOrder(); 5726 if (range_error.Success()) 5727 { 5728 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) 5729 { 5730 const addr_t addr = range_info.GetRange().GetRangeBase(); 5731 const addr_t size = range_info.GetRange().GetByteSize(); 5732 5733 if (size == 0) 5734 break; 5735 5736 // Calculate correct protections 5737 uint32_t prot = 0; 5738 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 5739 prot |= VM_PROT_READ; 5740 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 5741 prot |= VM_PROT_WRITE; 5742 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 5743 prot |= VM_PROT_EXECUTE; 5744 5745 // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", 5746 // range_info_idx, 5747 // addr, 5748 // size, 5749 // (prot & VM_PROT_READ ) ? 'r' : '-', 5750 // (prot & VM_PROT_WRITE ) ? 'w' : '-', 5751 // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); 5752 5753 if (prot != 0) 5754 { 5755 uint32_t cmd_type = LC_SEGMENT_64; 5756 uint32_t segment_size = sizeof (segment_command_64); 5757 if (addr_byte_size == 4) 5758 { 5759 cmd_type = LC_SEGMENT; 5760 segment_size = sizeof (segment_command); 5761 } 5762 segment_command_64 segment = { 5763 cmd_type, // uint32_t cmd; 5764 segment_size, // uint32_t cmdsize; 5765 {0}, // char segname[16]; 5766 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 5767 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 5768 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 5769 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 5770 prot, // uint32_t maxprot; 5771 prot, // uint32_t initprot; 5772 0, // uint32_t nsects; 5773 0 }; // uint32_t flags; 5774 segment_load_commands.push_back(segment); 5775 } 5776 else 5777 { 5778 // No protections and a size of 1 used to be returned from old 5779 // debugservers when we asked about a region that was past the 5780 // last memory region and it indicates the end... 5781 if (size == 1) 5782 break; 5783 } 5784 5785 range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); 5786 if (range_error.Fail()) 5787 break; 5788 } 5789 5790 StreamString buffer (Stream::eBinary, 5791 addr_byte_size, 5792 byte_order); 5793 5794 mach_header_64 mach_header; 5795 if (addr_byte_size == 8) 5796 { 5797 mach_header.magic = MH_MAGIC_64; 5798 } 5799 else 5800 { 5801 mach_header.magic = MH_MAGIC; 5802 } 5803 mach_header.cputype = target_arch.GetMachOCPUType(); 5804 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 5805 mach_header.filetype = MH_CORE; 5806 mach_header.ncmds = segment_load_commands.size(); 5807 mach_header.flags = 0; 5808 mach_header.reserved = 0; 5809 ThreadList &thread_list = process_sp->GetThreadList(); 5810 const uint32_t num_threads = thread_list.GetSize(); 5811 5812 // Make an array of LC_THREAD data items. Each one contains 5813 // the contents of the LC_THREAD load command. The data doesn't 5814 // contain the load command + load command size, we will 5815 // add the load command and load command size as we emit the data. 5816 std::vector<StreamString> LC_THREAD_datas(num_threads); 5817 for (auto &LC_THREAD_data : LC_THREAD_datas) 5818 { 5819 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 5820 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 5821 LC_THREAD_data.SetByteOrder(byte_order); 5822 } 5823 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) 5824 { 5825 ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); 5826 if (thread_sp) 5827 { 5828 switch (mach_header.cputype) 5829 { 5830 case llvm::MachO::CPU_TYPE_ARM64: 5831 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5832 break; 5833 5834 case llvm::MachO::CPU_TYPE_ARM: 5835 RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5836 break; 5837 5838 case llvm::MachO::CPU_TYPE_I386: 5839 RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5840 break; 5841 5842 case llvm::MachO::CPU_TYPE_X86_64: 5843 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5844 break; 5845 } 5846 5847 } 5848 } 5849 5850 // The size of the load command is the size of the segments... 5851 if (addr_byte_size == 8) 5852 { 5853 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); 5854 } 5855 else 5856 { 5857 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); 5858 } 5859 5860 // and the size of all LC_THREAD load command 5861 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5862 { 5863 ++mach_header.ncmds; 5864 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 5865 } 5866 5867 printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 5868 mach_header.magic, 5869 mach_header.cputype, 5870 mach_header.cpusubtype, 5871 mach_header.filetype, 5872 mach_header.ncmds, 5873 mach_header.sizeofcmds, 5874 mach_header.flags, 5875 mach_header.reserved); 5876 5877 // Write the mach header 5878 buffer.PutHex32(mach_header.magic); 5879 buffer.PutHex32(mach_header.cputype); 5880 buffer.PutHex32(mach_header.cpusubtype); 5881 buffer.PutHex32(mach_header.filetype); 5882 buffer.PutHex32(mach_header.ncmds); 5883 buffer.PutHex32(mach_header.sizeofcmds); 5884 buffer.PutHex32(mach_header.flags); 5885 if (addr_byte_size == 8) 5886 { 5887 buffer.PutHex32(mach_header.reserved); 5888 } 5889 5890 // Skip the mach header and all load commands and align to the next 5891 // 0x1000 byte boundary 5892 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 5893 if (file_offset & 0x00000fff) 5894 { 5895 file_offset += 0x00001000ull; 5896 file_offset &= (~0x00001000ull + 1); 5897 } 5898 5899 for (auto &segment : segment_load_commands) 5900 { 5901 segment.fileoff = file_offset; 5902 file_offset += segment.filesize; 5903 } 5904 5905 // Write out all of the LC_THREAD load commands 5906 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5907 { 5908 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 5909 buffer.PutHex32(LC_THREAD); 5910 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 5911 buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); 5912 } 5913 5914 // Write out all of the segment load commands 5915 for (const auto &segment : segment_load_commands) 5916 { 5917 printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 5918 segment.cmd, 5919 segment.cmdsize, 5920 segment.vmaddr, 5921 segment.vmaddr + segment.vmsize, 5922 segment.fileoff, 5923 segment.filesize, 5924 segment.maxprot, 5925 segment.initprot, 5926 segment.nsects, 5927 segment.flags); 5928 5929 buffer.PutHex32(segment.cmd); 5930 buffer.PutHex32(segment.cmdsize); 5931 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 5932 if (addr_byte_size == 8) 5933 { 5934 buffer.PutHex64(segment.vmaddr); 5935 buffer.PutHex64(segment.vmsize); 5936 buffer.PutHex64(segment.fileoff); 5937 buffer.PutHex64(segment.filesize); 5938 } 5939 else 5940 { 5941 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 5942 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 5943 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 5944 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 5945 } 5946 buffer.PutHex32(segment.maxprot); 5947 buffer.PutHex32(segment.initprot); 5948 buffer.PutHex32(segment.nsects); 5949 buffer.PutHex32(segment.flags); 5950 } 5951 5952 File core_file; 5953 std::string core_file_path(outfile.GetPath()); 5954 error = core_file.Open(core_file_path.c_str(), 5955 File::eOpenOptionWrite | 5956 File::eOpenOptionTruncate | 5957 File::eOpenOptionCanCreate); 5958 if (error.Success()) 5959 { 5960 // Read 1 page at a time 5961 uint8_t bytes[0x1000]; 5962 // Write the mach header and load commands out to the core file 5963 size_t bytes_written = buffer.GetString().size(); 5964 error = core_file.Write(buffer.GetString().data(), bytes_written); 5965 if (error.Success()) 5966 { 5967 // Now write the file data for all memory segments in the process 5968 for (const auto &segment : segment_load_commands) 5969 { 5970 if (core_file.SeekFromStart(segment.fileoff) == -1) 5971 { 5972 error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); 5973 break; 5974 } 5975 5976 printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); 5977 addr_t bytes_left = segment.vmsize; 5978 addr_t addr = segment.vmaddr; 5979 Error memory_read_error; 5980 while (bytes_left > 0 && error.Success()) 5981 { 5982 const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 5983 const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); 5984 if (bytes_read == bytes_to_read) 5985 { 5986 size_t bytes_written = bytes_read; 5987 error = core_file.Write(bytes, bytes_written); 5988 bytes_left -= bytes_read; 5989 addr += bytes_read; 5990 } 5991 else 5992 { 5993 // Some pages within regions are not readable, those 5994 // should be zero filled 5995 memset (bytes, 0, bytes_to_read); 5996 size_t bytes_written = bytes_to_read; 5997 error = core_file.Write(bytes, bytes_written); 5998 bytes_left -= bytes_to_read; 5999 addr += bytes_to_read; 6000 } 6001 } 6002 } 6003 } 6004 } 6005 } 6006 else 6007 { 6008 error.SetErrorString("process doesn't support getting memory region info"); 6009 } 6010 } 6011 return true; // This is the right plug to handle saving core files for this process 6012 } 6013 } 6014 return false; 6015 } 6016