1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Progress.h"
21 #include "lldb/Core/Section.h"
22 #include "lldb/Core/StreamFile.h"
23 #include "lldb/Host/Host.h"
24 #include "lldb/Symbol/DWARFCallFrameInfo.h"
25 #include "lldb/Symbol/LocateSymbolFile.h"
26 #include "lldb/Symbol/ObjectFile.h"
27 #include "lldb/Target/DynamicLoader.h"
28 #include "lldb/Target/MemoryRegionInfo.h"
29 #include "lldb/Target/Platform.h"
30 #include "lldb/Target/Process.h"
31 #include "lldb/Target/SectionLoadList.h"
32 #include "lldb/Target/Target.h"
33 #include "lldb/Target/Thread.h"
34 #include "lldb/Target/ThreadList.h"
35 #include "lldb/Utility/ArchSpec.h"
36 #include "lldb/Utility/DataBuffer.h"
37 #include "lldb/Utility/FileSpec.h"
38 #include "lldb/Utility/Log.h"
39 #include "lldb/Utility/RangeMap.h"
40 #include "lldb/Utility/RegisterValue.h"
41 #include "lldb/Utility/Status.h"
42 #include "lldb/Utility/StreamString.h"
43 #include "lldb/Utility/Timer.h"
44 #include "lldb/Utility/UUID.h"
45 
46 #include "lldb/Host/SafeMachO.h"
47 
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 
52 #include "ObjectFileMachO.h"
53 
54 #if defined(__APPLE__)
55 #include <TargetConditionals.h>
56 // GetLLDBSharedCacheUUID() needs to call dlsym()
57 #include <dlfcn.h>
58 #endif
59 
60 #ifndef __APPLE__
61 #include "Utility/UuidCompatibility.h"
62 #else
63 #include <uuid/uuid.h>
64 #endif
65 
66 #include <bitset>
67 #include <memory>
68 
69 // Unfortunately the signpost header pulls in the system MachO header, too.
70 #ifdef CPU_TYPE_ARM
71 #undef CPU_TYPE_ARM
72 #endif
73 #ifdef CPU_TYPE_ARM64
74 #undef CPU_TYPE_ARM64
75 #endif
76 #ifdef CPU_TYPE_ARM64_32
77 #undef CPU_TYPE_ARM64_32
78 #endif
79 #ifdef CPU_TYPE_I386
80 #undef CPU_TYPE_I386
81 #endif
82 #ifdef CPU_TYPE_X86_64
83 #undef CPU_TYPE_X86_64
84 #endif
85 #ifdef MH_DYLINKER
86 #undef MH_DYLINKER
87 #endif
88 #ifdef MH_OBJECT
89 #undef MH_OBJECT
90 #endif
91 #ifdef LC_VERSION_MIN_MACOSX
92 #undef LC_VERSION_MIN_MACOSX
93 #endif
94 #ifdef LC_VERSION_MIN_IPHONEOS
95 #undef LC_VERSION_MIN_IPHONEOS
96 #endif
97 #ifdef LC_VERSION_MIN_TVOS
98 #undef LC_VERSION_MIN_TVOS
99 #endif
100 #ifdef LC_VERSION_MIN_WATCHOS
101 #undef LC_VERSION_MIN_WATCHOS
102 #endif
103 #ifdef LC_BUILD_VERSION
104 #undef LC_BUILD_VERSION
105 #endif
106 #ifdef PLATFORM_MACOS
107 #undef PLATFORM_MACOS
108 #endif
109 #ifdef PLATFORM_MACCATALYST
110 #undef PLATFORM_MACCATALYST
111 #endif
112 #ifdef PLATFORM_IOS
113 #undef PLATFORM_IOS
114 #endif
115 #ifdef PLATFORM_IOSSIMULATOR
116 #undef PLATFORM_IOSSIMULATOR
117 #endif
118 #ifdef PLATFORM_TVOS
119 #undef PLATFORM_TVOS
120 #endif
121 #ifdef PLATFORM_TVOSSIMULATOR
122 #undef PLATFORM_TVOSSIMULATOR
123 #endif
124 #ifdef PLATFORM_WATCHOS
125 #undef PLATFORM_WATCHOS
126 #endif
127 #ifdef PLATFORM_WATCHOSSIMULATOR
128 #undef PLATFORM_WATCHOSSIMULATOR
129 #endif
130 
131 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
132 using namespace lldb;
133 using namespace lldb_private;
134 using namespace llvm::MachO;
135 
136 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
137 
138 // Some structure definitions needed for parsing the dyld shared cache files
139 // found on iOS devices.
140 
141 struct lldb_copy_dyld_cache_header_v1 {
142   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
143   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
144   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
145   uint32_t imagesOffset;
146   uint32_t imagesCount;
147   uint64_t dyldBaseAddress;
148   uint64_t codeSignatureOffset;
149   uint64_t codeSignatureSize;
150   uint64_t slideInfoOffset;
151   uint64_t slideInfoSize;
152   uint64_t localSymbolsOffset;
153   uint64_t localSymbolsSize;
154   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
155                     // and later
156 };
157 
158 struct lldb_copy_dyld_cache_mapping_info {
159   uint64_t address;
160   uint64_t size;
161   uint64_t fileOffset;
162   uint32_t maxProt;
163   uint32_t initProt;
164 };
165 
166 struct lldb_copy_dyld_cache_local_symbols_info {
167   uint32_t nlistOffset;
168   uint32_t nlistCount;
169   uint32_t stringsOffset;
170   uint32_t stringsSize;
171   uint32_t entriesOffset;
172   uint32_t entriesCount;
173 };
174 struct lldb_copy_dyld_cache_local_symbols_entry {
175   uint32_t dylibOffset;
176   uint32_t nlistStartIndex;
177   uint32_t nlistCount;
178 };
179 
180 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
181                                const char *alt_name, size_t reg_byte_size,
182                                Stream &data) {
183   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
184   if (reg_info == nullptr)
185     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
186   if (reg_info) {
187     lldb_private::RegisterValue reg_value;
188     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
189       if (reg_info->byte_size >= reg_byte_size)
190         data.Write(reg_value.GetBytes(), reg_byte_size);
191       else {
192         data.Write(reg_value.GetBytes(), reg_info->byte_size);
193         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
194           data.PutChar(0);
195       }
196       return;
197     }
198   }
199   // Just write zeros if all else fails
200   for (size_t i = 0; i < reg_byte_size; ++i)
201     data.PutChar(0);
202 }
203 
204 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
205 public:
206   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
207                                     const DataExtractor &data)
208       : RegisterContextDarwin_x86_64(thread, 0) {
209     SetRegisterDataFrom_LC_THREAD(data);
210   }
211 
212   void InvalidateAllRegisters() override {
213     // Do nothing... registers are always valid...
214   }
215 
216   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
217     lldb::offset_t offset = 0;
218     SetError(GPRRegSet, Read, -1);
219     SetError(FPURegSet, Read, -1);
220     SetError(EXCRegSet, Read, -1);
221     bool done = false;
222 
223     while (!done) {
224       int flavor = data.GetU32(&offset);
225       if (flavor == 0)
226         done = true;
227       else {
228         uint32_t i;
229         uint32_t count = data.GetU32(&offset);
230         switch (flavor) {
231         case GPRRegSet:
232           for (i = 0; i < count; ++i)
233             (&gpr.rax)[i] = data.GetU64(&offset);
234           SetError(GPRRegSet, Read, 0);
235           done = true;
236 
237           break;
238         case FPURegSet:
239           // TODO: fill in FPU regs....
240           // SetError (FPURegSet, Read, -1);
241           done = true;
242 
243           break;
244         case EXCRegSet:
245           exc.trapno = data.GetU32(&offset);
246           exc.err = data.GetU32(&offset);
247           exc.faultvaddr = data.GetU64(&offset);
248           SetError(EXCRegSet, Read, 0);
249           done = true;
250           break;
251         case 7:
252         case 8:
253         case 9:
254           // fancy flavors that encapsulate of the above flavors...
255           break;
256 
257         default:
258           done = true;
259           break;
260         }
261       }
262     }
263   }
264 
265   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
266     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
267     if (reg_ctx_sp) {
268       RegisterContext *reg_ctx = reg_ctx_sp.get();
269 
270       data.PutHex32(GPRRegSet); // Flavor
271       data.PutHex32(GPRWordCount);
272       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
275       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
276       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
277       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
278       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
279       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
280       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
281       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
282       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
283       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
284       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
285       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
286       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
287       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
288       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
289       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
290       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
291       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
292       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
293 
294       //            // Write out the FPU registers
295       //            const size_t fpu_byte_size = sizeof(FPU);
296       //            size_t bytes_written = 0;
297       //            data.PutHex32 (FPURegSet);
298       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
299       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
300       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
301       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
302       //            data);   // uint16_t    fcw;    // "fctrl"
303       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
304       //            data);  // uint16_t    fsw;    // "fstat"
305       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
306       //            data);   // uint8_t     ftw;    // "ftag"
307       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
308       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
309       //            data);     // uint16_t    fop;    // "fop"
310       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
311       //            data);    // uint32_t    ip;     // "fioff"
312       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
313       //            data);    // uint16_t    cs;     // "fiseg"
314       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
315       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
316       //            data);   // uint32_t    dp;     // "fooff"
317       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
318       //            data);    // uint16_t    ds;     // "foseg"
319       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
320       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
321       //            data);    // uint32_t    mxcsr;
322       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
323       //            4, data);// uint32_t    mxcsrmask;
324       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
325       //            sizeof(MMSReg), data);
326       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
327       //            sizeof(MMSReg), data);
328       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
329       //            sizeof(MMSReg), data);
330       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
331       //            sizeof(MMSReg), data);
332       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
333       //            sizeof(MMSReg), data);
334       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
335       //            sizeof(MMSReg), data);
336       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
337       //            sizeof(MMSReg), data);
338       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
339       //            sizeof(MMSReg), data);
340       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
341       //            sizeof(XMMReg), data);
342       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
343       //            sizeof(XMMReg), data);
344       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
345       //            sizeof(XMMReg), data);
346       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
347       //            sizeof(XMMReg), data);
348       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
349       //            sizeof(XMMReg), data);
350       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
351       //            sizeof(XMMReg), data);
352       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
353       //            sizeof(XMMReg), data);
354       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
355       //            sizeof(XMMReg), data);
356       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
357       //            sizeof(XMMReg), data);
358       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
359       //            sizeof(XMMReg), data);
360       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
361       //            sizeof(XMMReg), data);
362       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
363       //            sizeof(XMMReg), data);
364       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
365       //            sizeof(XMMReg), data);
366       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
367       //            sizeof(XMMReg), data);
368       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
369       //            sizeof(XMMReg), data);
370       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
371       //            sizeof(XMMReg), data);
372       //
373       //            // Fill rest with zeros
374       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
375       //            i)
376       //                data.PutChar(0);
377 
378       // Write out the EXC registers
379       data.PutHex32(EXCRegSet);
380       data.PutHex32(EXCWordCount);
381       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
382       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
383       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
384       return true;
385     }
386     return false;
387   }
388 
389 protected:
390   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
391 
392   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
393 
394   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
395 
396   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
397     return 0;
398   }
399 
400   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
401     return 0;
402   }
403 
404   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
405     return 0;
406   }
407 };
408 
409 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
410 public:
411   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
412                                   const DataExtractor &data)
413       : RegisterContextDarwin_i386(thread, 0) {
414     SetRegisterDataFrom_LC_THREAD(data);
415   }
416 
417   void InvalidateAllRegisters() override {
418     // Do nothing... registers are always valid...
419   }
420 
421   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
422     lldb::offset_t offset = 0;
423     SetError(GPRRegSet, Read, -1);
424     SetError(FPURegSet, Read, -1);
425     SetError(EXCRegSet, Read, -1);
426     bool done = false;
427 
428     while (!done) {
429       int flavor = data.GetU32(&offset);
430       if (flavor == 0)
431         done = true;
432       else {
433         uint32_t i;
434         uint32_t count = data.GetU32(&offset);
435         switch (flavor) {
436         case GPRRegSet:
437           for (i = 0; i < count; ++i)
438             (&gpr.eax)[i] = data.GetU32(&offset);
439           SetError(GPRRegSet, Read, 0);
440           done = true;
441 
442           break;
443         case FPURegSet:
444           // TODO: fill in FPU regs....
445           // SetError (FPURegSet, Read, -1);
446           done = true;
447 
448           break;
449         case EXCRegSet:
450           exc.trapno = data.GetU32(&offset);
451           exc.err = data.GetU32(&offset);
452           exc.faultvaddr = data.GetU32(&offset);
453           SetError(EXCRegSet, Read, 0);
454           done = true;
455           break;
456         case 7:
457         case 8:
458         case 9:
459           // fancy flavors that encapsulate of the above flavors...
460           break;
461 
462         default:
463           done = true;
464           break;
465         }
466       }
467     }
468   }
469 
470   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
471     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
472     if (reg_ctx_sp) {
473       RegisterContext *reg_ctx = reg_ctx_sp.get();
474 
475       data.PutHex32(GPRRegSet); // Flavor
476       data.PutHex32(GPRWordCount);
477       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
478       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
479       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
480       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
481       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
482       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
483       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
484       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
485       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
486       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
487       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
488       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
489       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
490       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
491       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
492       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
493 
494       // Write out the EXC registers
495       data.PutHex32(EXCRegSet);
496       data.PutHex32(EXCWordCount);
497       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
498       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
499       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
500       return true;
501     }
502     return false;
503   }
504 
505 protected:
506   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
507 
508   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
509 
510   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
511 
512   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
513     return 0;
514   }
515 
516   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
517     return 0;
518   }
519 
520   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
521     return 0;
522   }
523 };
524 
525 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
526 public:
527   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
528                                  const DataExtractor &data)
529       : RegisterContextDarwin_arm(thread, 0) {
530     SetRegisterDataFrom_LC_THREAD(data);
531   }
532 
533   void InvalidateAllRegisters() override {
534     // Do nothing... registers are always valid...
535   }
536 
537   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
538     lldb::offset_t offset = 0;
539     SetError(GPRRegSet, Read, -1);
540     SetError(FPURegSet, Read, -1);
541     SetError(EXCRegSet, Read, -1);
542     bool done = false;
543 
544     while (!done) {
545       int flavor = data.GetU32(&offset);
546       uint32_t count = data.GetU32(&offset);
547       lldb::offset_t next_thread_state = offset + (count * 4);
548       switch (flavor) {
549       case GPRAltRegSet:
550       case GPRRegSet:
551         // On ARM, the CPSR register is also included in the count but it is
552         // not included in gpr.r so loop until (count-1).
553         for (uint32_t i = 0; i < (count - 1); ++i) {
554           gpr.r[i] = data.GetU32(&offset);
555         }
556         // Save cpsr explicitly.
557         gpr.cpsr = data.GetU32(&offset);
558 
559         SetError(GPRRegSet, Read, 0);
560         offset = next_thread_state;
561         break;
562 
563       case FPURegSet: {
564         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
565         const int fpu_reg_buf_size = sizeof(fpu.floats);
566         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
567                               fpu_reg_buf) == fpu_reg_buf_size) {
568           offset += fpu_reg_buf_size;
569           fpu.fpscr = data.GetU32(&offset);
570           SetError(FPURegSet, Read, 0);
571         } else {
572           done = true;
573         }
574       }
575         offset = next_thread_state;
576         break;
577 
578       case EXCRegSet:
579         if (count == 3) {
580           exc.exception = data.GetU32(&offset);
581           exc.fsr = data.GetU32(&offset);
582           exc.far = data.GetU32(&offset);
583           SetError(EXCRegSet, Read, 0);
584         }
585         done = true;
586         offset = next_thread_state;
587         break;
588 
589       // Unknown register set flavor, stop trying to parse.
590       default:
591         done = true;
592       }
593     }
594   }
595 
596   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
597     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
598     if (reg_ctx_sp) {
599       RegisterContext *reg_ctx = reg_ctx_sp.get();
600 
601       data.PutHex32(GPRRegSet); // Flavor
602       data.PutHex32(GPRWordCount);
603       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
604       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
605       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
606       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
607       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
608       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
609       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
610       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
611       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
612       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
613       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
614       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
615       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
616       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
617       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
618       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
619       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
620 
621       // Write out the EXC registers
622       //            data.PutHex32 (EXCRegSet);
623       //            data.PutHex32 (EXCWordCount);
624       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
625       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
626       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
627       return true;
628     }
629     return false;
630   }
631 
632 protected:
633   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
634 
635   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
636 
637   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
638 
639   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
640 
641   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
642     return 0;
643   }
644 
645   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
646     return 0;
647   }
648 
649   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
650     return 0;
651   }
652 
653   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
654     return -1;
655   }
656 };
657 
658 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
659 public:
660   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
661                                    const DataExtractor &data)
662       : RegisterContextDarwin_arm64(thread, 0) {
663     SetRegisterDataFrom_LC_THREAD(data);
664   }
665 
666   void InvalidateAllRegisters() override {
667     // Do nothing... registers are always valid...
668   }
669 
670   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
671     lldb::offset_t offset = 0;
672     SetError(GPRRegSet, Read, -1);
673     SetError(FPURegSet, Read, -1);
674     SetError(EXCRegSet, Read, -1);
675     bool done = false;
676     while (!done) {
677       int flavor = data.GetU32(&offset);
678       uint32_t count = data.GetU32(&offset);
679       lldb::offset_t next_thread_state = offset + (count * 4);
680       switch (flavor) {
681       case GPRRegSet:
682         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
683         // 32-bit register)
684         if (count >= (33 * 2) + 1) {
685           for (uint32_t i = 0; i < 29; ++i)
686             gpr.x[i] = data.GetU64(&offset);
687           gpr.fp = data.GetU64(&offset);
688           gpr.lr = data.GetU64(&offset);
689           gpr.sp = data.GetU64(&offset);
690           gpr.pc = data.GetU64(&offset);
691           gpr.cpsr = data.GetU32(&offset);
692           SetError(GPRRegSet, Read, 0);
693         }
694         offset = next_thread_state;
695         break;
696       case FPURegSet: {
697         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
698         const int fpu_reg_buf_size = sizeof(fpu);
699         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
700             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
701                               fpu_reg_buf) == fpu_reg_buf_size) {
702           SetError(FPURegSet, Read, 0);
703         } else {
704           done = true;
705         }
706       }
707         offset = next_thread_state;
708         break;
709       case EXCRegSet:
710         if (count == 4) {
711           exc.far = data.GetU64(&offset);
712           exc.esr = data.GetU32(&offset);
713           exc.exception = data.GetU32(&offset);
714           SetError(EXCRegSet, Read, 0);
715         }
716         offset = next_thread_state;
717         break;
718       default:
719         done = true;
720         break;
721       }
722     }
723   }
724 
725   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
726     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
727     if (reg_ctx_sp) {
728       RegisterContext *reg_ctx = reg_ctx_sp.get();
729 
730       data.PutHex32(GPRRegSet); // Flavor
731       data.PutHex32(GPRWordCount);
732       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
748       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
749       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
750       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
751       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
752       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
753       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
754       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
755       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
756       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
757       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
758       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
759       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
760       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
761       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
762       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
763       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
764       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
765       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
766       data.PutHex32(0); // uint32_t pad at the end
767 
768       // Write out the EXC registers
769       data.PutHex32(EXCRegSet);
770       data.PutHex32(EXCWordCount);
771       PrintRegisterValue(reg_ctx, "far", NULL, 8, data);
772       PrintRegisterValue(reg_ctx, "esr", NULL, 4, data);
773       PrintRegisterValue(reg_ctx, "exception", NULL, 4, data);
774       return true;
775     }
776     return false;
777   }
778 
779 protected:
780   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
781 
782   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
783 
784   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
785 
786   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
787 
788   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
789     return 0;
790   }
791 
792   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
793     return 0;
794   }
795 
796   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
797     return 0;
798   }
799 
800   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
801     return -1;
802   }
803 };
804 
805 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
806   switch (magic) {
807   case MH_MAGIC:
808   case MH_CIGAM:
809     return sizeof(struct llvm::MachO::mach_header);
810 
811   case MH_MAGIC_64:
812   case MH_CIGAM_64:
813     return sizeof(struct llvm::MachO::mach_header_64);
814     break;
815 
816   default:
817     break;
818   }
819   return 0;
820 }
821 
822 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
823 
824 char ObjectFileMachO::ID;
825 
826 void ObjectFileMachO::Initialize() {
827   PluginManager::RegisterPlugin(
828       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
829       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
830 }
831 
832 void ObjectFileMachO::Terminate() {
833   PluginManager::UnregisterPlugin(CreateInstance);
834 }
835 
836 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
837                                             DataBufferSP &data_sp,
838                                             lldb::offset_t data_offset,
839                                             const FileSpec *file,
840                                             lldb::offset_t file_offset,
841                                             lldb::offset_t length) {
842   if (!data_sp) {
843     data_sp = MapFileData(*file, length, file_offset);
844     if (!data_sp)
845       return nullptr;
846     data_offset = 0;
847   }
848 
849   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
850     return nullptr;
851 
852   // Update the data to contain the entire file if it doesn't already
853   if (data_sp->GetByteSize() < length) {
854     data_sp = MapFileData(*file, length, file_offset);
855     if (!data_sp)
856       return nullptr;
857     data_offset = 0;
858   }
859   auto objfile_up = std::make_unique<ObjectFileMachO>(
860       module_sp, data_sp, data_offset, file, file_offset, length);
861   if (!objfile_up || !objfile_up->ParseHeader())
862     return nullptr;
863 
864   return objfile_up.release();
865 }
866 
867 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
868     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
869     const ProcessSP &process_sp, lldb::addr_t header_addr) {
870   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
871     std::unique_ptr<ObjectFile> objfile_up(
872         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
873     if (objfile_up.get() && objfile_up->ParseHeader())
874       return objfile_up.release();
875   }
876   return nullptr;
877 }
878 
879 size_t ObjectFileMachO::GetModuleSpecifications(
880     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
881     lldb::offset_t data_offset, lldb::offset_t file_offset,
882     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
883   const size_t initial_count = specs.GetSize();
884 
885   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
886     DataExtractor data;
887     data.SetData(data_sp);
888     llvm::MachO::mach_header header;
889     if (ParseHeader(data, &data_offset, header)) {
890       size_t header_and_load_cmds =
891           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
892       if (header_and_load_cmds >= data_sp->GetByteSize()) {
893         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
894         data.SetData(data_sp);
895         data_offset = MachHeaderSizeFromMagic(header.magic);
896       }
897       if (data_sp) {
898         ModuleSpec base_spec;
899         base_spec.GetFileSpec() = file;
900         base_spec.SetObjectOffset(file_offset);
901         base_spec.SetObjectSize(length);
902         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
903       }
904     }
905   }
906   return specs.GetSize() - initial_count;
907 }
908 
909 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
910   static ConstString g_segment_name_TEXT("__TEXT");
911   return g_segment_name_TEXT;
912 }
913 
914 ConstString ObjectFileMachO::GetSegmentNameDATA() {
915   static ConstString g_segment_name_DATA("__DATA");
916   return g_segment_name_DATA;
917 }
918 
919 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
920   static ConstString g_segment_name("__DATA_DIRTY");
921   return g_segment_name;
922 }
923 
924 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
925   static ConstString g_segment_name("__DATA_CONST");
926   return g_segment_name;
927 }
928 
929 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
930   static ConstString g_segment_name_OBJC("__OBJC");
931   return g_segment_name_OBJC;
932 }
933 
934 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
935   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
936   return g_section_name_LINKEDIT;
937 }
938 
939 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
940   static ConstString g_section_name("__DWARF");
941   return g_section_name;
942 }
943 
944 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
945   static ConstString g_section_name_eh_frame("__eh_frame");
946   return g_section_name_eh_frame;
947 }
948 
949 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
950                                       lldb::addr_t data_offset,
951                                       lldb::addr_t data_length) {
952   DataExtractor data;
953   data.SetData(data_sp, data_offset, data_length);
954   lldb::offset_t offset = 0;
955   uint32_t magic = data.GetU32(&offset);
956   return MachHeaderSizeFromMagic(magic) != 0;
957 }
958 
959 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
960                                  DataBufferSP &data_sp,
961                                  lldb::offset_t data_offset,
962                                  const FileSpec *file,
963                                  lldb::offset_t file_offset,
964                                  lldb::offset_t length)
965     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
966       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
967       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
968       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
969   ::memset(&m_header, 0, sizeof(m_header));
970   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
971 }
972 
973 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
974                                  lldb::DataBufferSP &header_data_sp,
975                                  const lldb::ProcessSP &process_sp,
976                                  lldb::addr_t header_addr)
977     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
978       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
979       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
980       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
981   ::memset(&m_header, 0, sizeof(m_header));
982   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
983 }
984 
985 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
986                                   lldb::offset_t *data_offset_ptr,
987                                   llvm::MachO::mach_header &header) {
988   data.SetByteOrder(endian::InlHostByteOrder());
989   // Leave magic in the original byte order
990   header.magic = data.GetU32(data_offset_ptr);
991   bool can_parse = false;
992   bool is_64_bit = false;
993   switch (header.magic) {
994   case MH_MAGIC:
995     data.SetByteOrder(endian::InlHostByteOrder());
996     data.SetAddressByteSize(4);
997     can_parse = true;
998     break;
999 
1000   case MH_MAGIC_64:
1001     data.SetByteOrder(endian::InlHostByteOrder());
1002     data.SetAddressByteSize(8);
1003     can_parse = true;
1004     is_64_bit = true;
1005     break;
1006 
1007   case MH_CIGAM:
1008     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1009                           ? eByteOrderLittle
1010                           : eByteOrderBig);
1011     data.SetAddressByteSize(4);
1012     can_parse = true;
1013     break;
1014 
1015   case MH_CIGAM_64:
1016     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1017                           ? eByteOrderLittle
1018                           : eByteOrderBig);
1019     data.SetAddressByteSize(8);
1020     is_64_bit = true;
1021     can_parse = true;
1022     break;
1023 
1024   default:
1025     break;
1026   }
1027 
1028   if (can_parse) {
1029     data.GetU32(data_offset_ptr, &header.cputype, 6);
1030     if (is_64_bit)
1031       *data_offset_ptr += 4;
1032     return true;
1033   } else {
1034     memset(&header, 0, sizeof(header));
1035   }
1036   return false;
1037 }
1038 
1039 bool ObjectFileMachO::ParseHeader() {
1040   ModuleSP module_sp(GetModule());
1041   if (!module_sp)
1042     return false;
1043 
1044   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1045   bool can_parse = false;
1046   lldb::offset_t offset = 0;
1047   m_data.SetByteOrder(endian::InlHostByteOrder());
1048   // Leave magic in the original byte order
1049   m_header.magic = m_data.GetU32(&offset);
1050   switch (m_header.magic) {
1051   case MH_MAGIC:
1052     m_data.SetByteOrder(endian::InlHostByteOrder());
1053     m_data.SetAddressByteSize(4);
1054     can_parse = true;
1055     break;
1056 
1057   case MH_MAGIC_64:
1058     m_data.SetByteOrder(endian::InlHostByteOrder());
1059     m_data.SetAddressByteSize(8);
1060     can_parse = true;
1061     break;
1062 
1063   case MH_CIGAM:
1064     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1065                             ? eByteOrderLittle
1066                             : eByteOrderBig);
1067     m_data.SetAddressByteSize(4);
1068     can_parse = true;
1069     break;
1070 
1071   case MH_CIGAM_64:
1072     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1073                             ? eByteOrderLittle
1074                             : eByteOrderBig);
1075     m_data.SetAddressByteSize(8);
1076     can_parse = true;
1077     break;
1078 
1079   default:
1080     break;
1081   }
1082 
1083   if (can_parse) {
1084     m_data.GetU32(&offset, &m_header.cputype, 6);
1085 
1086     ModuleSpecList all_specs;
1087     ModuleSpec base_spec;
1088     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1089                     base_spec, all_specs);
1090 
1091     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1092       ArchSpec mach_arch =
1093           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1094 
1095       // Check if the module has a required architecture
1096       const ArchSpec &module_arch = module_sp->GetArchitecture();
1097       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1098         continue;
1099 
1100       if (SetModulesArchitecture(mach_arch)) {
1101         const size_t header_and_lc_size =
1102             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1103         if (m_data.GetByteSize() < header_and_lc_size) {
1104           DataBufferSP data_sp;
1105           ProcessSP process_sp(m_process_wp.lock());
1106           if (process_sp) {
1107             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1108           } else {
1109             // Read in all only the load command data from the file on disk
1110             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1111             if (data_sp->GetByteSize() != header_and_lc_size)
1112               continue;
1113           }
1114           if (data_sp)
1115             m_data.SetData(data_sp);
1116         }
1117       }
1118       return true;
1119     }
1120     // None found.
1121     return false;
1122   } else {
1123     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1124   }
1125   return false;
1126 }
1127 
1128 ByteOrder ObjectFileMachO::GetByteOrder() const {
1129   return m_data.GetByteOrder();
1130 }
1131 
1132 bool ObjectFileMachO::IsExecutable() const {
1133   return m_header.filetype == MH_EXECUTE;
1134 }
1135 
1136 bool ObjectFileMachO::IsDynamicLoader() const {
1137   return m_header.filetype == MH_DYLINKER;
1138 }
1139 
1140 bool ObjectFileMachO::IsSharedCacheBinary() const {
1141   return m_header.flags & MH_DYLIB_IN_CACHE;
1142 }
1143 
1144 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1145   return m_data.GetAddressByteSize();
1146 }
1147 
1148 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1149   Symtab *symtab = GetSymtab();
1150   if (!symtab)
1151     return AddressClass::eUnknown;
1152 
1153   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1154   if (symbol) {
1155     if (symbol->ValueIsAddress()) {
1156       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1157       if (section_sp) {
1158         const lldb::SectionType section_type = section_sp->GetType();
1159         switch (section_type) {
1160         case eSectionTypeInvalid:
1161           return AddressClass::eUnknown;
1162 
1163         case eSectionTypeCode:
1164           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1165             // For ARM we have a bit in the n_desc field of the symbol that
1166             // tells us ARM/Thumb which is bit 0x0008.
1167             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1168               return AddressClass::eCodeAlternateISA;
1169           }
1170           return AddressClass::eCode;
1171 
1172         case eSectionTypeContainer:
1173           return AddressClass::eUnknown;
1174 
1175         case eSectionTypeData:
1176         case eSectionTypeDataCString:
1177         case eSectionTypeDataCStringPointers:
1178         case eSectionTypeDataSymbolAddress:
1179         case eSectionTypeData4:
1180         case eSectionTypeData8:
1181         case eSectionTypeData16:
1182         case eSectionTypeDataPointers:
1183         case eSectionTypeZeroFill:
1184         case eSectionTypeDataObjCMessageRefs:
1185         case eSectionTypeDataObjCCFStrings:
1186         case eSectionTypeGoSymtab:
1187           return AddressClass::eData;
1188 
1189         case eSectionTypeDebug:
1190         case eSectionTypeDWARFDebugAbbrev:
1191         case eSectionTypeDWARFDebugAbbrevDwo:
1192         case eSectionTypeDWARFDebugAddr:
1193         case eSectionTypeDWARFDebugAranges:
1194         case eSectionTypeDWARFDebugCuIndex:
1195         case eSectionTypeDWARFDebugFrame:
1196         case eSectionTypeDWARFDebugInfo:
1197         case eSectionTypeDWARFDebugInfoDwo:
1198         case eSectionTypeDWARFDebugLine:
1199         case eSectionTypeDWARFDebugLineStr:
1200         case eSectionTypeDWARFDebugLoc:
1201         case eSectionTypeDWARFDebugLocDwo:
1202         case eSectionTypeDWARFDebugLocLists:
1203         case eSectionTypeDWARFDebugLocListsDwo:
1204         case eSectionTypeDWARFDebugMacInfo:
1205         case eSectionTypeDWARFDebugMacro:
1206         case eSectionTypeDWARFDebugNames:
1207         case eSectionTypeDWARFDebugPubNames:
1208         case eSectionTypeDWARFDebugPubTypes:
1209         case eSectionTypeDWARFDebugRanges:
1210         case eSectionTypeDWARFDebugRngLists:
1211         case eSectionTypeDWARFDebugRngListsDwo:
1212         case eSectionTypeDWARFDebugStr:
1213         case eSectionTypeDWARFDebugStrDwo:
1214         case eSectionTypeDWARFDebugStrOffsets:
1215         case eSectionTypeDWARFDebugStrOffsetsDwo:
1216         case eSectionTypeDWARFDebugTuIndex:
1217         case eSectionTypeDWARFDebugTypes:
1218         case eSectionTypeDWARFDebugTypesDwo:
1219         case eSectionTypeDWARFAppleNames:
1220         case eSectionTypeDWARFAppleTypes:
1221         case eSectionTypeDWARFAppleNamespaces:
1222         case eSectionTypeDWARFAppleObjC:
1223         case eSectionTypeDWARFGNUDebugAltLink:
1224           return AddressClass::eDebug;
1225 
1226         case eSectionTypeEHFrame:
1227         case eSectionTypeARMexidx:
1228         case eSectionTypeARMextab:
1229         case eSectionTypeCompactUnwind:
1230           return AddressClass::eRuntime;
1231 
1232         case eSectionTypeAbsoluteAddress:
1233         case eSectionTypeELFSymbolTable:
1234         case eSectionTypeELFDynamicSymbols:
1235         case eSectionTypeELFRelocationEntries:
1236         case eSectionTypeELFDynamicLinkInfo:
1237         case eSectionTypeOther:
1238           return AddressClass::eUnknown;
1239         }
1240       }
1241     }
1242 
1243     const SymbolType symbol_type = symbol->GetType();
1244     switch (symbol_type) {
1245     case eSymbolTypeAny:
1246       return AddressClass::eUnknown;
1247     case eSymbolTypeAbsolute:
1248       return AddressClass::eUnknown;
1249 
1250     case eSymbolTypeCode:
1251     case eSymbolTypeTrampoline:
1252     case eSymbolTypeResolver:
1253       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1254         // For ARM we have a bit in the n_desc field of the symbol that tells
1255         // us ARM/Thumb which is bit 0x0008.
1256         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1257           return AddressClass::eCodeAlternateISA;
1258       }
1259       return AddressClass::eCode;
1260 
1261     case eSymbolTypeData:
1262       return AddressClass::eData;
1263     case eSymbolTypeRuntime:
1264       return AddressClass::eRuntime;
1265     case eSymbolTypeException:
1266       return AddressClass::eRuntime;
1267     case eSymbolTypeSourceFile:
1268       return AddressClass::eDebug;
1269     case eSymbolTypeHeaderFile:
1270       return AddressClass::eDebug;
1271     case eSymbolTypeObjectFile:
1272       return AddressClass::eDebug;
1273     case eSymbolTypeCommonBlock:
1274       return AddressClass::eDebug;
1275     case eSymbolTypeBlock:
1276       return AddressClass::eDebug;
1277     case eSymbolTypeLocal:
1278       return AddressClass::eData;
1279     case eSymbolTypeParam:
1280       return AddressClass::eData;
1281     case eSymbolTypeVariable:
1282       return AddressClass::eData;
1283     case eSymbolTypeVariableType:
1284       return AddressClass::eDebug;
1285     case eSymbolTypeLineEntry:
1286       return AddressClass::eDebug;
1287     case eSymbolTypeLineHeader:
1288       return AddressClass::eDebug;
1289     case eSymbolTypeScopeBegin:
1290       return AddressClass::eDebug;
1291     case eSymbolTypeScopeEnd:
1292       return AddressClass::eDebug;
1293     case eSymbolTypeAdditional:
1294       return AddressClass::eUnknown;
1295     case eSymbolTypeCompiler:
1296       return AddressClass::eDebug;
1297     case eSymbolTypeInstrumentation:
1298       return AddressClass::eDebug;
1299     case eSymbolTypeUndefined:
1300       return AddressClass::eUnknown;
1301     case eSymbolTypeObjCClass:
1302       return AddressClass::eRuntime;
1303     case eSymbolTypeObjCMetaClass:
1304       return AddressClass::eRuntime;
1305     case eSymbolTypeObjCIVar:
1306       return AddressClass::eRuntime;
1307     case eSymbolTypeReExported:
1308       return AddressClass::eRuntime;
1309     }
1310   }
1311   return AddressClass::eUnknown;
1312 }
1313 
1314 Symtab *ObjectFileMachO::GetSymtab() {
1315   ModuleSP module_sp(GetModule());
1316   if (module_sp) {
1317     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1318     if (m_symtab_up == nullptr) {
1319       m_symtab_up = std::make_unique<Symtab>(this);
1320       std::lock_guard<std::recursive_mutex> symtab_guard(
1321           m_symtab_up->GetMutex());
1322       ParseSymtab();
1323       m_symtab_up->Finalize();
1324     }
1325   }
1326   return m_symtab_up.get();
1327 }
1328 
1329 bool ObjectFileMachO::IsStripped() {
1330   if (m_dysymtab.cmd == 0) {
1331     ModuleSP module_sp(GetModule());
1332     if (module_sp) {
1333       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1334       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1335         const lldb::offset_t load_cmd_offset = offset;
1336 
1337         llvm::MachO::load_command lc;
1338         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1339           break;
1340         if (lc.cmd == LC_DYSYMTAB) {
1341           m_dysymtab.cmd = lc.cmd;
1342           m_dysymtab.cmdsize = lc.cmdsize;
1343           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1344                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1345               nullptr) {
1346             // Clear m_dysymtab if we were unable to read all items from the
1347             // load command
1348             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1349           }
1350         }
1351         offset = load_cmd_offset + lc.cmdsize;
1352       }
1353     }
1354   }
1355   if (m_dysymtab.cmd)
1356     return m_dysymtab.nlocalsym <= 1;
1357   return false;
1358 }
1359 
1360 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1361   EncryptedFileRanges result;
1362   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1363 
1364   llvm::MachO::encryption_info_command encryption_cmd;
1365   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1366     const lldb::offset_t load_cmd_offset = offset;
1367     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1368       break;
1369 
1370     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1371     // 3 fields we care about, so treat them the same.
1372     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1373         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1374       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1375         if (encryption_cmd.cryptid != 0) {
1376           EncryptedFileRanges::Entry entry;
1377           entry.SetRangeBase(encryption_cmd.cryptoff);
1378           entry.SetByteSize(encryption_cmd.cryptsize);
1379           result.Append(entry);
1380         }
1381       }
1382     }
1383     offset = load_cmd_offset + encryption_cmd.cmdsize;
1384   }
1385 
1386   return result;
1387 }
1388 
1389 void ObjectFileMachO::SanitizeSegmentCommand(
1390     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1391   if (m_length == 0 || seg_cmd.filesize == 0)
1392     return;
1393 
1394   if (IsSharedCacheBinary() && !IsInMemory()) {
1395     // In shared cache images, the load commands are relative to the
1396     // shared cache file, and not the specific image we are
1397     // examining. Let's fix this up so that it looks like a normal
1398     // image.
1399     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1400       m_text_address = seg_cmd.vmaddr;
1401     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1402       m_linkedit_original_offset = seg_cmd.fileoff;
1403 
1404     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1405   }
1406 
1407   if (seg_cmd.fileoff > m_length) {
1408     // We have a load command that says it extends past the end of the file.
1409     // This is likely a corrupt file.  We don't have any way to return an error
1410     // condition here (this method was likely invoked from something like
1411     // ObjectFile::GetSectionList()), so we just null out the section contents,
1412     // and dump a message to stdout.  The most common case here is core file
1413     // debugging with a truncated file.
1414     const char *lc_segment_name =
1415         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1416     GetModule()->ReportWarning(
1417         "load command %u %s has a fileoff (0x%" PRIx64
1418         ") that extends beyond the end of the file (0x%" PRIx64
1419         "), ignoring this section",
1420         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1421 
1422     seg_cmd.fileoff = 0;
1423     seg_cmd.filesize = 0;
1424   }
1425 
1426   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1427     // We have a load command that says it extends past the end of the file.
1428     // This is likely a corrupt file.  We don't have any way to return an error
1429     // condition here (this method was likely invoked from something like
1430     // ObjectFile::GetSectionList()), so we just null out the section contents,
1431     // and dump a message to stdout.  The most common case here is core file
1432     // debugging with a truncated file.
1433     const char *lc_segment_name =
1434         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1435     GetModule()->ReportWarning(
1436         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1437         ") that extends beyond the end of the file (0x%" PRIx64
1438         "), the segment will be truncated to match",
1439         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1440 
1441     // Truncate the length
1442     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1443   }
1444 }
1445 
1446 static uint32_t
1447 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1448   uint32_t result = 0;
1449   if (seg_cmd.initprot & VM_PROT_READ)
1450     result |= ePermissionsReadable;
1451   if (seg_cmd.initprot & VM_PROT_WRITE)
1452     result |= ePermissionsWritable;
1453   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1454     result |= ePermissionsExecutable;
1455   return result;
1456 }
1457 
1458 static lldb::SectionType GetSectionType(uint32_t flags,
1459                                         ConstString section_name) {
1460 
1461   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1462     return eSectionTypeCode;
1463 
1464   uint32_t mach_sect_type = flags & SECTION_TYPE;
1465   static ConstString g_sect_name_objc_data("__objc_data");
1466   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1467   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1468   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1469   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1470   static ConstString g_sect_name_objc_const("__objc_const");
1471   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1472   static ConstString g_sect_name_cfstring("__cfstring");
1473 
1474   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1475   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1476   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1477   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1478   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1479   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1480   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1481   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1482   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1483   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1484   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1485   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1486   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1487   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1488   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1489   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1490   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1491   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1492   static ConstString g_sect_name_eh_frame("__eh_frame");
1493   static ConstString g_sect_name_compact_unwind("__unwind_info");
1494   static ConstString g_sect_name_text("__text");
1495   static ConstString g_sect_name_data("__data");
1496   static ConstString g_sect_name_go_symtab("__gosymtab");
1497 
1498   if (section_name == g_sect_name_dwarf_debug_abbrev)
1499     return eSectionTypeDWARFDebugAbbrev;
1500   if (section_name == g_sect_name_dwarf_debug_aranges)
1501     return eSectionTypeDWARFDebugAranges;
1502   if (section_name == g_sect_name_dwarf_debug_frame)
1503     return eSectionTypeDWARFDebugFrame;
1504   if (section_name == g_sect_name_dwarf_debug_info)
1505     return eSectionTypeDWARFDebugInfo;
1506   if (section_name == g_sect_name_dwarf_debug_line)
1507     return eSectionTypeDWARFDebugLine;
1508   if (section_name == g_sect_name_dwarf_debug_loc)
1509     return eSectionTypeDWARFDebugLoc;
1510   if (section_name == g_sect_name_dwarf_debug_loclists)
1511     return eSectionTypeDWARFDebugLocLists;
1512   if (section_name == g_sect_name_dwarf_debug_macinfo)
1513     return eSectionTypeDWARFDebugMacInfo;
1514   if (section_name == g_sect_name_dwarf_debug_names)
1515     return eSectionTypeDWARFDebugNames;
1516   if (section_name == g_sect_name_dwarf_debug_pubnames)
1517     return eSectionTypeDWARFDebugPubNames;
1518   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1519     return eSectionTypeDWARFDebugPubTypes;
1520   if (section_name == g_sect_name_dwarf_debug_ranges)
1521     return eSectionTypeDWARFDebugRanges;
1522   if (section_name == g_sect_name_dwarf_debug_str)
1523     return eSectionTypeDWARFDebugStr;
1524   if (section_name == g_sect_name_dwarf_debug_types)
1525     return eSectionTypeDWARFDebugTypes;
1526   if (section_name == g_sect_name_dwarf_apple_names)
1527     return eSectionTypeDWARFAppleNames;
1528   if (section_name == g_sect_name_dwarf_apple_types)
1529     return eSectionTypeDWARFAppleTypes;
1530   if (section_name == g_sect_name_dwarf_apple_namespaces)
1531     return eSectionTypeDWARFAppleNamespaces;
1532   if (section_name == g_sect_name_dwarf_apple_objc)
1533     return eSectionTypeDWARFAppleObjC;
1534   if (section_name == g_sect_name_objc_selrefs)
1535     return eSectionTypeDataCStringPointers;
1536   if (section_name == g_sect_name_objc_msgrefs)
1537     return eSectionTypeDataObjCMessageRefs;
1538   if (section_name == g_sect_name_eh_frame)
1539     return eSectionTypeEHFrame;
1540   if (section_name == g_sect_name_compact_unwind)
1541     return eSectionTypeCompactUnwind;
1542   if (section_name == g_sect_name_cfstring)
1543     return eSectionTypeDataObjCCFStrings;
1544   if (section_name == g_sect_name_go_symtab)
1545     return eSectionTypeGoSymtab;
1546   if (section_name == g_sect_name_objc_data ||
1547       section_name == g_sect_name_objc_classrefs ||
1548       section_name == g_sect_name_objc_superrefs ||
1549       section_name == g_sect_name_objc_const ||
1550       section_name == g_sect_name_objc_classlist) {
1551     return eSectionTypeDataPointers;
1552   }
1553 
1554   switch (mach_sect_type) {
1555   // TODO: categorize sections by other flags for regular sections
1556   case S_REGULAR:
1557     if (section_name == g_sect_name_text)
1558       return eSectionTypeCode;
1559     if (section_name == g_sect_name_data)
1560       return eSectionTypeData;
1561     return eSectionTypeOther;
1562   case S_ZEROFILL:
1563     return eSectionTypeZeroFill;
1564   case S_CSTRING_LITERALS: // section with only literal C strings
1565     return eSectionTypeDataCString;
1566   case S_4BYTE_LITERALS: // section with only 4 byte literals
1567     return eSectionTypeData4;
1568   case S_8BYTE_LITERALS: // section with only 8 byte literals
1569     return eSectionTypeData8;
1570   case S_LITERAL_POINTERS: // section with only pointers to literals
1571     return eSectionTypeDataPointers;
1572   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1573     return eSectionTypeDataPointers;
1574   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1575     return eSectionTypeDataPointers;
1576   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1577                        // the reserved2 field
1578     return eSectionTypeCode;
1579   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1580                                  // initialization
1581     return eSectionTypeDataPointers;
1582   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1583                                  // termination
1584     return eSectionTypeDataPointers;
1585   case S_COALESCED:
1586     return eSectionTypeOther;
1587   case S_GB_ZEROFILL:
1588     return eSectionTypeZeroFill;
1589   case S_INTERPOSING: // section with only pairs of function pointers for
1590                       // interposing
1591     return eSectionTypeCode;
1592   case S_16BYTE_LITERALS: // section with only 16 byte literals
1593     return eSectionTypeData16;
1594   case S_DTRACE_DOF:
1595     return eSectionTypeDebug;
1596   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1597     return eSectionTypeDataPointers;
1598   default:
1599     return eSectionTypeOther;
1600   }
1601 }
1602 
1603 struct ObjectFileMachO::SegmentParsingContext {
1604   const EncryptedFileRanges EncryptedRanges;
1605   lldb_private::SectionList &UnifiedList;
1606   uint32_t NextSegmentIdx = 0;
1607   uint32_t NextSectionIdx = 0;
1608   bool FileAddressesChanged = false;
1609 
1610   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1611                         lldb_private::SectionList &UnifiedList)
1612       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1613 };
1614 
1615 void ObjectFileMachO::ProcessSegmentCommand(
1616     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1617     uint32_t cmd_idx, SegmentParsingContext &context) {
1618   llvm::MachO::segment_command_64 load_cmd;
1619   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1620 
1621   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1622     return;
1623 
1624   ModuleSP module_sp = GetModule();
1625   const bool is_core = GetType() == eTypeCoreFile;
1626   const bool is_dsym = (m_header.filetype == MH_DSYM);
1627   bool add_section = true;
1628   bool add_to_unified = true;
1629   ConstString const_segname(
1630       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1631 
1632   SectionSP unified_section_sp(
1633       context.UnifiedList.FindSectionByName(const_segname));
1634   if (is_dsym && unified_section_sp) {
1635     if (const_segname == GetSegmentNameLINKEDIT()) {
1636       // We need to keep the __LINKEDIT segment private to this object file
1637       // only
1638       add_to_unified = false;
1639     } else {
1640       // This is the dSYM file and this section has already been created by the
1641       // object file, no need to create it.
1642       add_section = false;
1643     }
1644   }
1645   load_cmd.vmaddr = m_data.GetAddress(&offset);
1646   load_cmd.vmsize = m_data.GetAddress(&offset);
1647   load_cmd.fileoff = m_data.GetAddress(&offset);
1648   load_cmd.filesize = m_data.GetAddress(&offset);
1649   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1650     return;
1651 
1652   SanitizeSegmentCommand(load_cmd, cmd_idx);
1653 
1654   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1655   const bool segment_is_encrypted =
1656       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1657 
1658   // Keep a list of mach segments around in case we need to get at data that
1659   // isn't stored in the abstracted Sections.
1660   m_mach_segments.push_back(load_cmd);
1661 
1662   // Use a segment ID of the segment index shifted left by 8 so they never
1663   // conflict with any of the sections.
1664   SectionSP segment_sp;
1665   if (add_section && (const_segname || is_core)) {
1666     segment_sp = std::make_shared<Section>(
1667         module_sp, // Module to which this section belongs
1668         this,      // Object file to which this sections belongs
1669         ++context.NextSegmentIdx
1670             << 8, // Section ID is the 1 based segment index
1671         // shifted right by 8 bits as not to collide with any of the 256
1672         // section IDs that are possible
1673         const_segname,         // Name of this section
1674         eSectionTypeContainer, // This section is a container of other
1675         // sections.
1676         load_cmd.vmaddr, // File VM address == addresses as they are
1677         // found in the object file
1678         load_cmd.vmsize,  // VM size in bytes of this section
1679         load_cmd.fileoff, // Offset to the data for this section in
1680         // the file
1681         load_cmd.filesize, // Size in bytes of this section as found
1682         // in the file
1683         0,               // Segments have no alignment information
1684         load_cmd.flags); // Flags for this section
1685 
1686     segment_sp->SetIsEncrypted(segment_is_encrypted);
1687     m_sections_up->AddSection(segment_sp);
1688     segment_sp->SetPermissions(segment_permissions);
1689     if (add_to_unified)
1690       context.UnifiedList.AddSection(segment_sp);
1691   } else if (unified_section_sp) {
1692     // If this is a dSYM and the file addresses in the dSYM differ from the
1693     // file addresses in the ObjectFile, we must use the file base address for
1694     // the Section from the dSYM for the DWARF to resolve correctly.
1695     // This only happens with binaries in the shared cache in practice;
1696     // normally a mismatch like this would give a binary & dSYM that do not
1697     // match UUIDs. When a binary is included in the shared cache, its
1698     // segments are rearranged to optimize the shared cache, so its file
1699     // addresses will differ from what the ObjectFile had originally,
1700     // and what the dSYM has.
1701     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1702       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
1703       if (log) {
1704         log->Printf(
1705             "Installing dSYM's %s segment file address over ObjectFile's "
1706             "so symbol table/debug info resolves correctly for %s",
1707             const_segname.AsCString(),
1708             module_sp->GetFileSpec().GetFilename().AsCString());
1709       }
1710 
1711       // Make sure we've parsed the symbol table from the ObjectFile before
1712       // we go around changing its Sections.
1713       module_sp->GetObjectFile()->GetSymtab();
1714       // eh_frame would present the same problems but we parse that on a per-
1715       // function basis as-needed so it's more difficult to remove its use of
1716       // the Sections.  Realistically, the environments where this code path
1717       // will be taken will not have eh_frame sections.
1718 
1719       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1720 
1721       // Notify the module that the section addresses have been changed once
1722       // we're done so any file-address caches can be updated.
1723       context.FileAddressesChanged = true;
1724     }
1725     m_sections_up->AddSection(unified_section_sp);
1726   }
1727 
1728   llvm::MachO::section_64 sect64;
1729   ::memset(&sect64, 0, sizeof(sect64));
1730   // Push a section into our mach sections for the section at index zero
1731   // (NO_SECT) if we don't have any mach sections yet...
1732   if (m_mach_sections.empty())
1733     m_mach_sections.push_back(sect64);
1734   uint32_t segment_sect_idx;
1735   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1736 
1737   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1738   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1739        ++segment_sect_idx) {
1740     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1741                      sizeof(sect64.sectname)) == nullptr)
1742       break;
1743     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1744                      sizeof(sect64.segname)) == nullptr)
1745       break;
1746     sect64.addr = m_data.GetAddress(&offset);
1747     sect64.size = m_data.GetAddress(&offset);
1748 
1749     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1750       break;
1751 
1752     if (IsSharedCacheBinary() && !IsInMemory()) {
1753       sect64.offset = sect64.addr - m_text_address;
1754     }
1755 
1756     // Keep a list of mach sections around in case we need to get at data that
1757     // isn't stored in the abstracted Sections.
1758     m_mach_sections.push_back(sect64);
1759 
1760     if (add_section) {
1761       ConstString section_name(
1762           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1763       if (!const_segname) {
1764         // We have a segment with no name so we need to conjure up segments
1765         // that correspond to the section's segname if there isn't already such
1766         // a section. If there is such a section, we resize the section so that
1767         // it spans all sections.  We also mark these sections as fake so
1768         // address matches don't hit if they land in the gaps between the child
1769         // sections.
1770         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1771                                                   sizeof(sect64.segname));
1772         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1773         if (segment_sp.get()) {
1774           Section *segment = segment_sp.get();
1775           // Grow the section size as needed.
1776           const lldb::addr_t sect64_min_addr = sect64.addr;
1777           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1778           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1779           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1780           const lldb::addr_t curr_seg_max_addr =
1781               curr_seg_min_addr + curr_seg_byte_size;
1782           if (sect64_min_addr >= curr_seg_min_addr) {
1783             const lldb::addr_t new_seg_byte_size =
1784                 sect64_max_addr - curr_seg_min_addr;
1785             // Only grow the section size if needed
1786             if (new_seg_byte_size > curr_seg_byte_size)
1787               segment->SetByteSize(new_seg_byte_size);
1788           } else {
1789             // We need to change the base address of the segment and adjust the
1790             // child section offsets for all existing children.
1791             const lldb::addr_t slide_amount =
1792                 sect64_min_addr - curr_seg_min_addr;
1793             segment->Slide(slide_amount, false);
1794             segment->GetChildren().Slide(-slide_amount, false);
1795             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1796           }
1797 
1798           // Grow the section size as needed.
1799           if (sect64.offset) {
1800             const lldb::addr_t segment_min_file_offset =
1801                 segment->GetFileOffset();
1802             const lldb::addr_t segment_max_file_offset =
1803                 segment_min_file_offset + segment->GetFileSize();
1804 
1805             const lldb::addr_t section_min_file_offset = sect64.offset;
1806             const lldb::addr_t section_max_file_offset =
1807                 section_min_file_offset + sect64.size;
1808             const lldb::addr_t new_file_offset =
1809                 std::min(section_min_file_offset, segment_min_file_offset);
1810             const lldb::addr_t new_file_size =
1811                 std::max(section_max_file_offset, segment_max_file_offset) -
1812                 new_file_offset;
1813             segment->SetFileOffset(new_file_offset);
1814             segment->SetFileSize(new_file_size);
1815           }
1816         } else {
1817           // Create a fake section for the section's named segment
1818           segment_sp = std::make_shared<Section>(
1819               segment_sp, // Parent section
1820               module_sp,  // Module to which this section belongs
1821               this,       // Object file to which this section belongs
1822               ++context.NextSegmentIdx
1823                   << 8, // Section ID is the 1 based segment index
1824               // shifted right by 8 bits as not to
1825               // collide with any of the 256 section IDs
1826               // that are possible
1827               const_segname,         // Name of this section
1828               eSectionTypeContainer, // This section is a container of
1829               // other sections.
1830               sect64.addr, // File VM address == addresses as they are
1831               // found in the object file
1832               sect64.size,   // VM size in bytes of this section
1833               sect64.offset, // Offset to the data for this section in
1834               // the file
1835               sect64.offset ? sect64.size : 0, // Size in bytes of
1836               // this section as
1837               // found in the file
1838               sect64.align,
1839               load_cmd.flags); // Flags for this section
1840           segment_sp->SetIsFake(true);
1841           segment_sp->SetPermissions(segment_permissions);
1842           m_sections_up->AddSection(segment_sp);
1843           if (add_to_unified)
1844             context.UnifiedList.AddSection(segment_sp);
1845           segment_sp->SetIsEncrypted(segment_is_encrypted);
1846         }
1847       }
1848       assert(segment_sp.get());
1849 
1850       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1851 
1852       SectionSP section_sp(new Section(
1853           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1854           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1855           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1856           sect64.flags));
1857       // Set the section to be encrypted to match the segment
1858 
1859       bool section_is_encrypted = false;
1860       if (!segment_is_encrypted && load_cmd.filesize != 0)
1861         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1862                                    sect64.offset) != nullptr;
1863 
1864       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1865       section_sp->SetPermissions(segment_permissions);
1866       segment_sp->GetChildren().AddSection(section_sp);
1867 
1868       if (segment_sp->IsFake()) {
1869         segment_sp.reset();
1870         const_segname.Clear();
1871       }
1872     }
1873   }
1874   if (segment_sp && is_dsym) {
1875     if (first_segment_sectID <= context.NextSectionIdx) {
1876       lldb::user_id_t sect_uid;
1877       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1878            ++sect_uid) {
1879         SectionSP curr_section_sp(
1880             segment_sp->GetChildren().FindSectionByID(sect_uid));
1881         SectionSP next_section_sp;
1882         if (sect_uid + 1 <= context.NextSectionIdx)
1883           next_section_sp =
1884               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1885 
1886         if (curr_section_sp.get()) {
1887           if (curr_section_sp->GetByteSize() == 0) {
1888             if (next_section_sp.get() != nullptr)
1889               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1890                                            curr_section_sp->GetFileAddress());
1891             else
1892               curr_section_sp->SetByteSize(load_cmd.vmsize);
1893           }
1894         }
1895       }
1896     }
1897   }
1898 }
1899 
1900 void ObjectFileMachO::ProcessDysymtabCommand(
1901     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1902   m_dysymtab.cmd = load_cmd.cmd;
1903   m_dysymtab.cmdsize = load_cmd.cmdsize;
1904   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1905                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1906 }
1907 
1908 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1909   if (m_sections_up)
1910     return;
1911 
1912   m_sections_up = std::make_unique<SectionList>();
1913 
1914   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1915   // bool dump_sections = false;
1916   ModuleSP module_sp(GetModule());
1917 
1918   offset = MachHeaderSizeFromMagic(m_header.magic);
1919 
1920   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1921   llvm::MachO::load_command load_cmd;
1922   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1923     const lldb::offset_t load_cmd_offset = offset;
1924     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1925       break;
1926 
1927     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1928       ProcessSegmentCommand(load_cmd, offset, i, context);
1929     else if (load_cmd.cmd == LC_DYSYMTAB)
1930       ProcessDysymtabCommand(load_cmd, offset);
1931 
1932     offset = load_cmd_offset + load_cmd.cmdsize;
1933   }
1934 
1935   if (context.FileAddressesChanged && module_sp)
1936     module_sp->SectionFileAddressesChanged();
1937 }
1938 
1939 class MachSymtabSectionInfo {
1940 public:
1941   MachSymtabSectionInfo(SectionList *section_list)
1942       : m_section_list(section_list), m_section_infos() {
1943     // Get the number of sections down to a depth of 1 to include all segments
1944     // and their sections, but no other sections that may be added for debug
1945     // map or
1946     m_section_infos.resize(section_list->GetNumSections(1));
1947   }
1948 
1949   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1950     if (n_sect == 0)
1951       return SectionSP();
1952     if (n_sect < m_section_infos.size()) {
1953       if (!m_section_infos[n_sect].section_sp) {
1954         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1955         m_section_infos[n_sect].section_sp = section_sp;
1956         if (section_sp) {
1957           m_section_infos[n_sect].vm_range.SetBaseAddress(
1958               section_sp->GetFileAddress());
1959           m_section_infos[n_sect].vm_range.SetByteSize(
1960               section_sp->GetByteSize());
1961         } else {
1962           std::string filename = "<unknown>";
1963           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1964           if (first_section_sp)
1965             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1966 
1967           Host::SystemLog(Host::eSystemLogError,
1968                           "error: unable to find section %d for a symbol in "
1969                           "%s, corrupt file?\n",
1970                           n_sect, filename.c_str());
1971         }
1972       }
1973       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1974         // Symbol is in section.
1975         return m_section_infos[n_sect].section_sp;
1976       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1977                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1978                      file_addr) {
1979         // Symbol is in section with zero size, but has the same start address
1980         // as the section. This can happen with linker symbols (symbols that
1981         // start with the letter 'l' or 'L'.
1982         return m_section_infos[n_sect].section_sp;
1983       }
1984     }
1985     return m_section_list->FindSectionContainingFileAddress(file_addr);
1986   }
1987 
1988 protected:
1989   struct SectionInfo {
1990     SectionInfo() : vm_range(), section_sp() {}
1991 
1992     VMRange vm_range;
1993     SectionSP section_sp;
1994   };
1995   SectionList *m_section_list;
1996   std::vector<SectionInfo> m_section_infos;
1997 };
1998 
1999 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
2000 struct TrieEntry {
2001   void Dump() const {
2002     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
2003            static_cast<unsigned long long>(address),
2004            static_cast<unsigned long long>(flags),
2005            static_cast<unsigned long long>(other), name.GetCString());
2006     if (import_name)
2007       printf(" -> \"%s\"\n", import_name.GetCString());
2008     else
2009       printf("\n");
2010   }
2011   ConstString name;
2012   uint64_t address = LLDB_INVALID_ADDRESS;
2013   uint64_t flags =
2014       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
2015          // TRIE_SYMBOL_IS_THUMB
2016   uint64_t other = 0;
2017   ConstString import_name;
2018 };
2019 
2020 struct TrieEntryWithOffset {
2021   lldb::offset_t nodeOffset;
2022   TrieEntry entry;
2023 
2024   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2025 
2026   void Dump(uint32_t idx) const {
2027     printf("[%3u] 0x%16.16llx: ", idx,
2028            static_cast<unsigned long long>(nodeOffset));
2029     entry.Dump();
2030   }
2031 
2032   bool operator<(const TrieEntryWithOffset &other) const {
2033     return (nodeOffset < other.nodeOffset);
2034   }
2035 };
2036 
2037 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2038                              const bool is_arm, addr_t text_seg_base_addr,
2039                              std::vector<llvm::StringRef> &nameSlices,
2040                              std::set<lldb::addr_t> &resolver_addresses,
2041                              std::vector<TrieEntryWithOffset> &reexports,
2042                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2043   if (!data.ValidOffset(offset))
2044     return true;
2045 
2046   // Terminal node -- end of a branch, possibly add this to
2047   // the symbol table or resolver table.
2048   const uint64_t terminalSize = data.GetULEB128(&offset);
2049   lldb::offset_t children_offset = offset + terminalSize;
2050   if (terminalSize != 0) {
2051     TrieEntryWithOffset e(offset);
2052     e.entry.flags = data.GetULEB128(&offset);
2053     const char *import_name = nullptr;
2054     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2055       e.entry.address = 0;
2056       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2057       import_name = data.GetCStr(&offset);
2058     } else {
2059       e.entry.address = data.GetULEB128(&offset);
2060       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2061         e.entry.address += text_seg_base_addr;
2062       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2063         e.entry.other = data.GetULEB128(&offset);
2064         uint64_t resolver_addr = e.entry.other;
2065         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2066           resolver_addr += text_seg_base_addr;
2067         if (is_arm)
2068           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2069         resolver_addresses.insert(resolver_addr);
2070       } else
2071         e.entry.other = 0;
2072     }
2073     bool add_this_entry = false;
2074     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2075         import_name && import_name[0]) {
2076       // add symbols that are reexport symbols with a valid import name.
2077       add_this_entry = true;
2078     } else if (e.entry.flags == 0 &&
2079                (import_name == nullptr || import_name[0] == '\0')) {
2080       // add externally visible symbols, in case the nlist record has
2081       // been stripped/omitted.
2082       add_this_entry = true;
2083     }
2084     if (add_this_entry) {
2085       std::string name;
2086       if (!nameSlices.empty()) {
2087         for (auto name_slice : nameSlices)
2088           name.append(name_slice.data(), name_slice.size());
2089       }
2090       if (name.size() > 1) {
2091         // Skip the leading '_'
2092         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2093       }
2094       if (import_name) {
2095         // Skip the leading '_'
2096         e.entry.import_name.SetCString(import_name + 1);
2097       }
2098       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2099         reexports.push_back(e);
2100       } else {
2101         if (is_arm && (e.entry.address & 1)) {
2102           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2103           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2104         }
2105         ext_symbols.push_back(e);
2106       }
2107     }
2108   }
2109 
2110   const uint8_t childrenCount = data.GetU8(&children_offset);
2111   for (uint8_t i = 0; i < childrenCount; ++i) {
2112     const char *cstr = data.GetCStr(&children_offset);
2113     if (cstr)
2114       nameSlices.push_back(llvm::StringRef(cstr));
2115     else
2116       return false; // Corrupt data
2117     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2118     if (childNodeOffset) {
2119       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2120                             nameSlices, resolver_addresses, reexports,
2121                             ext_symbols)) {
2122         return false;
2123       }
2124     }
2125     nameSlices.pop_back();
2126   }
2127   return true;
2128 }
2129 
2130 static SymbolType GetSymbolType(const char *&symbol_name,
2131                                 bool &demangled_is_synthesized,
2132                                 const SectionSP &text_section_sp,
2133                                 const SectionSP &data_section_sp,
2134                                 const SectionSP &data_dirty_section_sp,
2135                                 const SectionSP &data_const_section_sp,
2136                                 const SectionSP &symbol_section) {
2137   SymbolType type = eSymbolTypeInvalid;
2138 
2139   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2140   if (symbol_section->IsDescendant(text_section_sp.get())) {
2141     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2142                                 S_ATTR_SELF_MODIFYING_CODE |
2143                                 S_ATTR_SOME_INSTRUCTIONS))
2144       type = eSymbolTypeData;
2145     else
2146       type = eSymbolTypeCode;
2147   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2148              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2149              symbol_section->IsDescendant(data_const_section_sp.get())) {
2150     if (symbol_sect_name &&
2151         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2152       type = eSymbolTypeRuntime;
2153 
2154       if (symbol_name) {
2155         llvm::StringRef symbol_name_ref(symbol_name);
2156         if (symbol_name_ref.startswith("OBJC_")) {
2157           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2158           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2159               "OBJC_METACLASS_$_");
2160           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2161           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2162             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2163             type = eSymbolTypeObjCClass;
2164             demangled_is_synthesized = true;
2165           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2166             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2167             type = eSymbolTypeObjCMetaClass;
2168             demangled_is_synthesized = true;
2169           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2170             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2171             type = eSymbolTypeObjCIVar;
2172             demangled_is_synthesized = true;
2173           }
2174         }
2175       }
2176     } else if (symbol_sect_name &&
2177                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2178                    symbol_sect_name) {
2179       type = eSymbolTypeException;
2180     } else {
2181       type = eSymbolTypeData;
2182     }
2183   } else if (symbol_sect_name &&
2184              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2185     type = eSymbolTypeTrampoline;
2186   }
2187   return type;
2188 }
2189 
2190 // Read the UUID out of a dyld_shared_cache file on-disk.
2191 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2192                                          const ByteOrder byte_order,
2193                                          const uint32_t addr_byte_size) {
2194   UUID dsc_uuid;
2195   DataBufferSP DscData = MapFileData(
2196       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2197   if (!DscData)
2198     return dsc_uuid;
2199   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2200 
2201   char version_str[7];
2202   lldb::offset_t offset = 0;
2203   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2204   version_str[6] = '\0';
2205   if (strcmp(version_str, "dyld_v") == 0) {
2206     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2207     dsc_uuid = UUID::fromOptionalData(
2208         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2209   }
2210   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2211   if (log && dsc_uuid.IsValid()) {
2212     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2213               dyld_shared_cache.GetPath().c_str(),
2214               dsc_uuid.GetAsString().c_str());
2215   }
2216   return dsc_uuid;
2217 }
2218 
2219 static llvm::Optional<struct nlist_64>
2220 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2221            size_t nlist_byte_size) {
2222   struct nlist_64 nlist;
2223   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2224     return {};
2225   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2226   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2227   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2228   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2229   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2230   return nlist;
2231 }
2232 
2233 enum { DebugSymbols = true, NonDebugSymbols = false };
2234 
2235 size_t ObjectFileMachO::ParseSymtab() {
2236   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s",
2237                      m_file.GetFilename().AsCString(""));
2238   ModuleSP module_sp(GetModule());
2239   if (!module_sp)
2240     return 0;
2241 
2242   Progress progress(llvm::formatv("Parsing symbol table for {0}",
2243                                   m_file.GetFilename().AsCString("<Unknown>")));
2244 
2245   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2246   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2247   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2248   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2249   // The data element of type bool indicates that this entry is thumb
2250   // code.
2251   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2252 
2253   // Record the address of every function/data that we add to the symtab.
2254   // We add symbols to the table in the order of most information (nlist
2255   // records) to least (function starts), and avoid duplicating symbols
2256   // via this set.
2257   llvm::DenseSet<addr_t> symbols_added;
2258 
2259   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2260   // do not add the tombstone or empty keys to the set.
2261   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2262     // Don't add the tombstone or empty keys.
2263     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2264       return;
2265     symbols_added.insert(file_addr);
2266   };
2267   FunctionStarts function_starts;
2268   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2269   uint32_t i;
2270   FileSpecList dylib_files;
2271   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2272   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2273   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2274   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2275 
2276   for (i = 0; i < m_header.ncmds; ++i) {
2277     const lldb::offset_t cmd_offset = offset;
2278     // Read in the load command and load command size
2279     llvm::MachO::load_command lc;
2280     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2281       break;
2282     // Watch for the symbol table load command
2283     switch (lc.cmd) {
2284     case LC_SYMTAB:
2285       symtab_load_command.cmd = lc.cmd;
2286       symtab_load_command.cmdsize = lc.cmdsize;
2287       // Read in the rest of the symtab load command
2288       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2289           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2290         return 0;
2291       break;
2292 
2293     case LC_DYLD_INFO:
2294     case LC_DYLD_INFO_ONLY:
2295       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2296         dyld_info.cmd = lc.cmd;
2297         dyld_info.cmdsize = lc.cmdsize;
2298       } else {
2299         memset(&dyld_info, 0, sizeof(dyld_info));
2300       }
2301       break;
2302 
2303     case LC_LOAD_DYLIB:
2304     case LC_LOAD_WEAK_DYLIB:
2305     case LC_REEXPORT_DYLIB:
2306     case LC_LOADFVMLIB:
2307     case LC_LOAD_UPWARD_DYLIB: {
2308       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2309       const char *path = m_data.PeekCStr(name_offset);
2310       if (path) {
2311         FileSpec file_spec(path);
2312         // Strip the path if there is @rpath, @executable, etc so we just use
2313         // the basename
2314         if (path[0] == '@')
2315           file_spec.GetDirectory().Clear();
2316 
2317         if (lc.cmd == LC_REEXPORT_DYLIB) {
2318           m_reexported_dylibs.AppendIfUnique(file_spec);
2319         }
2320 
2321         dylib_files.Append(file_spec);
2322       }
2323     } break;
2324 
2325     case LC_DYLD_EXPORTS_TRIE:
2326       exports_trie_load_command.cmd = lc.cmd;
2327       exports_trie_load_command.cmdsize = lc.cmdsize;
2328       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2329           nullptr) // fill in offset and size fields
2330         memset(&exports_trie_load_command, 0,
2331                sizeof(exports_trie_load_command));
2332       break;
2333     case LC_FUNCTION_STARTS:
2334       function_starts_load_command.cmd = lc.cmd;
2335       function_starts_load_command.cmdsize = lc.cmdsize;
2336       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2337           nullptr) // fill in data offset and size fields
2338         memset(&function_starts_load_command, 0,
2339                sizeof(function_starts_load_command));
2340       break;
2341 
2342     default:
2343       break;
2344     }
2345     offset = cmd_offset + lc.cmdsize;
2346   }
2347 
2348   if (!symtab_load_command.cmd)
2349     return 0;
2350 
2351   Symtab *symtab = m_symtab_up.get();
2352   SectionList *section_list = GetSectionList();
2353   if (section_list == nullptr)
2354     return 0;
2355 
2356   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2357   const ByteOrder byte_order = m_data.GetByteOrder();
2358   bool bit_width_32 = addr_byte_size == 4;
2359   const size_t nlist_byte_size =
2360       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2361 
2362   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2363   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2364   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2365   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2366                                            addr_byte_size);
2367   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2368 
2369   const addr_t nlist_data_byte_size =
2370       symtab_load_command.nsyms * nlist_byte_size;
2371   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2372   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2373 
2374   ProcessSP process_sp(m_process_wp.lock());
2375   Process *process = process_sp.get();
2376 
2377   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2378   bool is_shared_cache_image = IsSharedCacheBinary();
2379   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2380   SectionSP linkedit_section_sp(
2381       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2382 
2383   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2384       !is_local_shared_cache_image) {
2385     Target &target = process->GetTarget();
2386 
2387     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2388 
2389     // Reading mach file from memory in a process or core file...
2390 
2391     if (linkedit_section_sp) {
2392       addr_t linkedit_load_addr =
2393           linkedit_section_sp->GetLoadBaseAddress(&target);
2394       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2395         // We might be trying to access the symbol table before the
2396         // __LINKEDIT's load address has been set in the target. We can't
2397         // fail to read the symbol table, so calculate the right address
2398         // manually
2399         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2400             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2401       }
2402 
2403       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2404       const addr_t symoff_addr = linkedit_load_addr +
2405                                  symtab_load_command.symoff -
2406                                  linkedit_file_offset;
2407       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2408                     linkedit_file_offset;
2409 
2410         // Always load dyld - the dynamic linker - from memory if we didn't
2411         // find a binary anywhere else. lldb will not register
2412         // dylib/framework/bundle loads/unloads if we don't have the dyld
2413         // symbols, we force dyld to load from memory despite the user's
2414         // target.memory-module-load-level setting.
2415         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2416             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2417           DataBufferSP nlist_data_sp(
2418               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2419           if (nlist_data_sp)
2420             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2421           if (m_dysymtab.nindirectsyms != 0) {
2422             const addr_t indirect_syms_addr = linkedit_load_addr +
2423                                               m_dysymtab.indirectsymoff -
2424                                               linkedit_file_offset;
2425             DataBufferSP indirect_syms_data_sp(ReadMemory(
2426                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2427             if (indirect_syms_data_sp)
2428               indirect_symbol_index_data.SetData(
2429                   indirect_syms_data_sp, 0,
2430                   indirect_syms_data_sp->GetByteSize());
2431             // If this binary is outside the shared cache,
2432             // cache the string table.
2433             // Binaries in the shared cache all share a giant string table,
2434             // and we can't share the string tables across multiple
2435             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2436             // for every binary in the shared cache - it would be a big perf
2437             // problem. For binaries outside the shared cache, it's faster to
2438             // read the entire strtab at once instead of piece-by-piece as we
2439             // process the nlist records.
2440             if (!is_shared_cache_image) {
2441               DataBufferSP strtab_data_sp(
2442                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2443               if (strtab_data_sp) {
2444                 strtab_data.SetData(strtab_data_sp, 0,
2445                                     strtab_data_sp->GetByteSize());
2446               }
2447             }
2448           }
2449         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2450           if (function_starts_load_command.cmd) {
2451             const addr_t func_start_addr =
2452                 linkedit_load_addr + function_starts_load_command.dataoff -
2453                 linkedit_file_offset;
2454             DataBufferSP func_start_data_sp(
2455                 ReadMemory(process_sp, func_start_addr,
2456                            function_starts_load_command.datasize));
2457             if (func_start_data_sp)
2458               function_starts_data.SetData(func_start_data_sp, 0,
2459                                            func_start_data_sp->GetByteSize());
2460           }
2461         }
2462       }
2463     }
2464   } else {
2465     if (is_local_shared_cache_image) {
2466       // The load commands in shared cache images are relative to the
2467       // beginning of the shared cache, not the library image. The
2468       // data we get handed when creating the ObjectFileMachO starts
2469       // at the beginning of a specific library and spans to the end
2470       // of the cache to be able to reach the shared LINKEDIT
2471       // segments. We need to convert the load command offsets to be
2472       // relative to the beginning of our specific image.
2473       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2474       lldb::offset_t linkedit_slide =
2475           linkedit_offset - m_linkedit_original_offset;
2476       symtab_load_command.symoff += linkedit_slide;
2477       symtab_load_command.stroff += linkedit_slide;
2478       dyld_info.export_off += linkedit_slide;
2479       m_dysymtab.indirectsymoff += linkedit_slide;
2480       function_starts_load_command.dataoff += linkedit_slide;
2481       exports_trie_load_command.dataoff += linkedit_slide;
2482     }
2483 
2484     nlist_data.SetData(m_data, symtab_load_command.symoff,
2485                        nlist_data_byte_size);
2486     strtab_data.SetData(m_data, symtab_load_command.stroff,
2487                         strtab_data_byte_size);
2488 
2489     // We shouldn't have exports data from both the LC_DYLD_INFO command
2490     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2491     lldbassert(!((dyld_info.export_size > 0)
2492                  && (exports_trie_load_command.datasize > 0)));
2493     if (dyld_info.export_size > 0) {
2494       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2495                              dyld_info.export_size);
2496     } else if (exports_trie_load_command.datasize > 0) {
2497       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2498                              exports_trie_load_command.datasize);
2499     }
2500 
2501     if (m_dysymtab.nindirectsyms != 0) {
2502       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2503                                          m_dysymtab.nindirectsyms * 4);
2504     }
2505     if (function_starts_load_command.cmd) {
2506       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2507                                    function_starts_load_command.datasize);
2508     }
2509   }
2510 
2511   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2512 
2513   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2514   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2515   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2516   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2517   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2518   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2519   SectionSP text_section_sp(
2520       section_list->FindSectionByName(g_segment_name_TEXT));
2521   SectionSP data_section_sp(
2522       section_list->FindSectionByName(g_segment_name_DATA));
2523   SectionSP data_dirty_section_sp(
2524       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2525   SectionSP data_const_section_sp(
2526       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2527   SectionSP objc_section_sp(
2528       section_list->FindSectionByName(g_segment_name_OBJC));
2529   SectionSP eh_frame_section_sp;
2530   if (text_section_sp.get())
2531     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2532         g_section_name_eh_frame);
2533   else
2534     eh_frame_section_sp =
2535         section_list->FindSectionByName(g_section_name_eh_frame);
2536 
2537   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2538   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2539 
2540   // lldb works best if it knows the start address of all functions in a
2541   // module. Linker symbols or debug info are normally the best source of
2542   // information for start addr / size but they may be stripped in a released
2543   // binary. Two additional sources of information exist in Mach-O binaries:
2544   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2545   //    function's start address in the
2546   //                         binary, relative to the text section.
2547   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2548   //    each function
2549   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2550   //  all modern binaries.
2551   //  Binaries built to run on older releases may need to use eh_frame
2552   //  information.
2553 
2554   if (text_section_sp && function_starts_data.GetByteSize()) {
2555     FunctionStarts::Entry function_start_entry;
2556     function_start_entry.data = false;
2557     lldb::offset_t function_start_offset = 0;
2558     function_start_entry.addr = text_section_sp->GetFileAddress();
2559     uint64_t delta;
2560     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2561            0) {
2562       // Now append the current entry
2563       function_start_entry.addr += delta;
2564       if (is_arm) {
2565         if (function_start_entry.addr & 1) {
2566           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2567           function_start_entry.data = true;
2568         } else if (always_thumb) {
2569           function_start_entry.data = true;
2570         }
2571       }
2572       function_starts.Append(function_start_entry);
2573     }
2574   } else {
2575     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2576     // load command claiming an eh_frame but it doesn't actually have the
2577     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2578     // this fill-in-the-missing-symbols works anyway - the debug info should
2579     // give us all the functions in the module.
2580     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2581         m_type != eTypeDebugInfo) {
2582       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2583                                   DWARFCallFrameInfo::EH);
2584       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2585       eh_frame.GetFunctionAddressAndSizeVector(functions);
2586       addr_t text_base_addr = text_section_sp->GetFileAddress();
2587       size_t count = functions.GetSize();
2588       for (size_t i = 0; i < count; ++i) {
2589         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2590             functions.GetEntryAtIndex(i);
2591         if (func) {
2592           FunctionStarts::Entry function_start_entry;
2593           function_start_entry.addr = func->base - text_base_addr;
2594           if (is_arm) {
2595             if (function_start_entry.addr & 1) {
2596               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2597               function_start_entry.data = true;
2598             } else if (always_thumb) {
2599               function_start_entry.data = true;
2600             }
2601           }
2602           function_starts.Append(function_start_entry);
2603         }
2604       }
2605     }
2606   }
2607 
2608   const size_t function_starts_count = function_starts.GetSize();
2609 
2610   // For user process binaries (executables, dylibs, frameworks, bundles), if
2611   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2612   // going to assume the binary has been stripped.  Don't allow assembly
2613   // language instruction emulation because we don't know proper function
2614   // start boundaries.
2615   //
2616   // For all other types of binaries (kernels, stand-alone bare board
2617   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2618   // sections - we should not make any assumptions about them based on that.
2619   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2620     m_allow_assembly_emulation_unwind_plans = false;
2621     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2622         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2623 
2624     if (unwind_or_symbol_log)
2625       module_sp->LogMessage(
2626           unwind_or_symbol_log,
2627           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2628   }
2629 
2630   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2631                                              ? eh_frame_section_sp->GetID()
2632                                              : static_cast<user_id_t>(NO_SECT);
2633 
2634   lldb::offset_t nlist_data_offset = 0;
2635 
2636   uint32_t N_SO_index = UINT32_MAX;
2637 
2638   MachSymtabSectionInfo section_info(section_list);
2639   std::vector<uint32_t> N_FUN_indexes;
2640   std::vector<uint32_t> N_NSYM_indexes;
2641   std::vector<uint32_t> N_INCL_indexes;
2642   std::vector<uint32_t> N_BRAC_indexes;
2643   std::vector<uint32_t> N_COMM_indexes;
2644   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2645   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2646   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2647   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2648   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2649   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2650   // Any symbols that get merged into another will get an entry in this map
2651   // so we know
2652   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2653   uint32_t nlist_idx = 0;
2654   Symbol *symbol_ptr = nullptr;
2655 
2656   uint32_t sym_idx = 0;
2657   Symbol *sym = nullptr;
2658   size_t num_syms = 0;
2659   std::string memory_symbol_name;
2660   uint32_t unmapped_local_symbols_found = 0;
2661 
2662   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2663   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2664   std::set<lldb::addr_t> resolver_addresses;
2665 
2666   if (dyld_trie_data.GetByteSize() > 0) {
2667     ConstString text_segment_name("__TEXT");
2668     SectionSP text_segment_sp =
2669         GetSectionList()->FindSectionByName(text_segment_name);
2670     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2671     if (text_segment_sp)
2672       text_segment_file_addr = text_segment_sp->GetFileAddress();
2673     std::vector<llvm::StringRef> nameSlices;
2674     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2675                      nameSlices, resolver_addresses, reexport_trie_entries,
2676                      external_sym_trie_entries);
2677   }
2678 
2679   typedef std::set<ConstString> IndirectSymbols;
2680   IndirectSymbols indirect_symbol_names;
2681 
2682 #if TARGET_OS_IPHONE
2683 
2684   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2685   // optimized by moving LOCAL symbols out of the memory mapped portion of
2686   // the DSC. The symbol information has all been retained, but it isn't
2687   // available in the normal nlist data. However, there *are* duplicate
2688   // entries of *some*
2689   // LOCAL symbols in the normal nlist data. To handle this situation
2690   // correctly, we must first attempt
2691   // to parse any DSC unmapped symbol information. If we find any, we set a
2692   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2693 
2694   if (IsSharedCacheBinary()) {
2695     // Before we can start mapping the DSC, we need to make certain the
2696     // target process is actually using the cache we can find.
2697 
2698     // Next we need to determine the correct path for the dyld shared cache.
2699 
2700     ArchSpec header_arch = GetArchitecture();
2701     char dsc_path[PATH_MAX];
2702     char dsc_path_development[PATH_MAX];
2703 
2704     snprintf(
2705         dsc_path, sizeof(dsc_path), "%s%s%s",
2706         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2707                                                    */
2708         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2709         header_arch.GetArchitectureName());
2710 
2711     snprintf(
2712         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2713         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2714                                                    */
2715         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2716         header_arch.GetArchitectureName(), ".development");
2717 
2718     FileSpec dsc_nondevelopment_filespec(dsc_path);
2719     FileSpec dsc_development_filespec(dsc_path_development);
2720     FileSpec dsc_filespec;
2721 
2722     UUID dsc_uuid;
2723     UUID process_shared_cache_uuid;
2724     addr_t process_shared_cache_base_addr;
2725 
2726     if (process) {
2727       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2728                                 process_shared_cache_uuid);
2729     }
2730 
2731     // First see if we can find an exact match for the inferior process
2732     // shared cache UUID in the development or non-development shared caches
2733     // on disk.
2734     if (process_shared_cache_uuid.IsValid()) {
2735       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2736         UUID dsc_development_uuid = GetSharedCacheUUID(
2737             dsc_development_filespec, byte_order, addr_byte_size);
2738         if (dsc_development_uuid.IsValid() &&
2739             dsc_development_uuid == process_shared_cache_uuid) {
2740           dsc_filespec = dsc_development_filespec;
2741           dsc_uuid = dsc_development_uuid;
2742         }
2743       }
2744       if (!dsc_uuid.IsValid() &&
2745           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2746         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2747             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2748         if (dsc_nondevelopment_uuid.IsValid() &&
2749             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2750           dsc_filespec = dsc_nondevelopment_filespec;
2751           dsc_uuid = dsc_nondevelopment_uuid;
2752         }
2753       }
2754     }
2755 
2756     // Failing a UUID match, prefer the development dyld_shared cache if both
2757     // are present.
2758     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2759       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2760         dsc_filespec = dsc_development_filespec;
2761       } else {
2762         dsc_filespec = dsc_nondevelopment_filespec;
2763       }
2764     }
2765 
2766     /* The dyld_cache_header has a pointer to the
2767        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2768        The dyld_cache_local_symbols_info structure gives us three things:
2769          1. The start and count of the nlist records in the dyld_shared_cache
2770        file
2771          2. The start and size of the strings for these nlist records
2772          3. The start and count of dyld_cache_local_symbols_entry entries
2773 
2774        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2775        dyld shared cache.
2776        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2777        the dyld shared cache.
2778        The dyld_cache_local_symbols_entry also lists the start of this
2779        dylib/framework's nlist records
2780        and the count of how many nlist records there are for this
2781        dylib/framework.
2782     */
2783 
2784     // Process the dyld shared cache header to find the unmapped symbols
2785 
2786     DataBufferSP dsc_data_sp = MapFileData(
2787         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2788     if (!dsc_uuid.IsValid()) {
2789       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2790     }
2791     if (dsc_data_sp) {
2792       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2793 
2794       bool uuid_match = true;
2795       if (dsc_uuid.IsValid() && process) {
2796         if (process_shared_cache_uuid.IsValid() &&
2797             dsc_uuid != process_shared_cache_uuid) {
2798           // The on-disk dyld_shared_cache file is not the same as the one in
2799           // this process' memory, don't use it.
2800           uuid_match = false;
2801           ModuleSP module_sp(GetModule());
2802           if (module_sp)
2803             module_sp->ReportWarning("process shared cache does not match "
2804                                      "on-disk dyld_shared_cache file, some "
2805                                      "symbol names will be missing.");
2806         }
2807       }
2808 
2809       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2810 
2811       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2812 
2813       // If the mappingOffset points to a location inside the header, we've
2814       // opened an old dyld shared cache, and should not proceed further.
2815       if (uuid_match &&
2816           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2817 
2818         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2819             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2820             mappingOffset);
2821 
2822         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2823                                             byte_order, addr_byte_size);
2824         offset = 0;
2825 
2826         // The File addresses (from the in-memory Mach-O load commands) for
2827         // the shared libraries in the shared library cache need to be
2828         // adjusted by an offset to match up with the dylibOffset identifying
2829         // field in the dyld_cache_local_symbol_entry's.  This offset is
2830         // recorded in mapping_offset_value.
2831         const uint64_t mapping_offset_value =
2832             dsc_mapping_info_data.GetU64(&offset);
2833 
2834         offset =
2835             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2836         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2837         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2838 
2839         if (localSymbolsOffset && localSymbolsSize) {
2840           // Map the local symbols
2841           DataBufferSP dsc_local_symbols_data_sp =
2842               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2843 
2844           if (dsc_local_symbols_data_sp) {
2845             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2846                                                  byte_order, addr_byte_size);
2847 
2848             offset = 0;
2849 
2850             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2851             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2852             UndefinedNameToDescMap undefined_name_to_desc;
2853             SymbolIndexToName reexport_shlib_needs_fixup;
2854 
2855             // Read the local_symbols_infos struct in one shot
2856             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2857             dsc_local_symbols_data.GetU32(&offset,
2858                                           &local_symbols_info.nlistOffset, 6);
2859 
2860             SectionSP text_section_sp(
2861                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2862 
2863             uint32_t header_file_offset =
2864                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2865 
2866             offset = local_symbols_info.entriesOffset;
2867             for (uint32_t entry_index = 0;
2868                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2869               struct lldb_copy_dyld_cache_local_symbols_entry
2870                   local_symbols_entry;
2871               local_symbols_entry.dylibOffset =
2872                   dsc_local_symbols_data.GetU32(&offset);
2873               local_symbols_entry.nlistStartIndex =
2874                   dsc_local_symbols_data.GetU32(&offset);
2875               local_symbols_entry.nlistCount =
2876                   dsc_local_symbols_data.GetU32(&offset);
2877 
2878               if (header_file_offset == local_symbols_entry.dylibOffset) {
2879                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2880 
2881                 // The normal nlist code cannot correctly size the Symbols
2882                 // array, we need to allocate it here.
2883                 sym = symtab->Resize(
2884                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2885                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2886                 num_syms = symtab->GetNumSymbols();
2887 
2888                 nlist_data_offset =
2889                     local_symbols_info.nlistOffset +
2890                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2891                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2892 
2893                 for (uint32_t nlist_index = 0;
2894                      nlist_index < local_symbols_entry.nlistCount;
2895                      nlist_index++) {
2896                   /////////////////////////////
2897                   {
2898                     llvm::Optional<struct nlist_64> nlist_maybe =
2899                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2900                                    nlist_byte_size);
2901                     if (!nlist_maybe)
2902                       break;
2903                     struct nlist_64 nlist = *nlist_maybe;
2904 
2905                     SymbolType type = eSymbolTypeInvalid;
2906                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2907                         string_table_offset + nlist.n_strx);
2908 
2909                     if (symbol_name == NULL) {
2910                       // No symbol should be NULL, even the symbols with no
2911                       // string values should have an offset zero which
2912                       // points to an empty C-string
2913                       Host::SystemLog(
2914                           Host::eSystemLogError,
2915                           "error: DSC unmapped local symbol[%u] has invalid "
2916                           "string table offset 0x%x in %s, ignoring symbol\n",
2917                           entry_index, nlist.n_strx,
2918                           module_sp->GetFileSpec().GetPath().c_str());
2919                       continue;
2920                     }
2921                     if (symbol_name[0] == '\0')
2922                       symbol_name = NULL;
2923 
2924                     const char *symbol_name_non_abi_mangled = NULL;
2925 
2926                     SectionSP symbol_section;
2927                     uint32_t symbol_byte_size = 0;
2928                     bool add_nlist = true;
2929                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2930                     bool demangled_is_synthesized = false;
2931                     bool is_gsym = false;
2932                     bool set_value = true;
2933 
2934                     assert(sym_idx < num_syms);
2935 
2936                     sym[sym_idx].SetDebug(is_debug);
2937 
2938                     if (is_debug) {
2939                       switch (nlist.n_type) {
2940                       case N_GSYM:
2941                         // global symbol: name,,NO_SECT,type,0
2942                         // Sometimes the N_GSYM value contains the address.
2943 
2944                         // FIXME: In the .o files, we have a GSYM and a debug
2945                         // symbol for all the ObjC data.  They
2946                         // have the same address, but we want to ensure that
2947                         // we always find only the real symbol, 'cause we
2948                         // don't currently correctly attribute the
2949                         // GSYM one to the ObjCClass/Ivar/MetaClass
2950                         // symbol type.  This is a temporary hack to make
2951                         // sure the ObjectiveC symbols get treated correctly.
2952                         // To do this right, we should coalesce all the GSYM
2953                         // & global symbols that have the same address.
2954 
2955                         is_gsym = true;
2956                         sym[sym_idx].SetExternal(true);
2957 
2958                         if (symbol_name && symbol_name[0] == '_' &&
2959                             symbol_name[1] == 'O') {
2960                           llvm::StringRef symbol_name_ref(symbol_name);
2961                           if (symbol_name_ref.startswith(
2962                                   g_objc_v2_prefix_class)) {
2963                             symbol_name_non_abi_mangled = symbol_name + 1;
2964                             symbol_name =
2965                                 symbol_name + g_objc_v2_prefix_class.size();
2966                             type = eSymbolTypeObjCClass;
2967                             demangled_is_synthesized = true;
2968 
2969                           } else if (symbol_name_ref.startswith(
2970                                          g_objc_v2_prefix_metaclass)) {
2971                             symbol_name_non_abi_mangled = symbol_name + 1;
2972                             symbol_name =
2973                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2974                             type = eSymbolTypeObjCMetaClass;
2975                             demangled_is_synthesized = true;
2976                           } else if (symbol_name_ref.startswith(
2977                                          g_objc_v2_prefix_ivar)) {
2978                             symbol_name_non_abi_mangled = symbol_name + 1;
2979                             symbol_name =
2980                                 symbol_name + g_objc_v2_prefix_ivar.size();
2981                             type = eSymbolTypeObjCIVar;
2982                             demangled_is_synthesized = true;
2983                           }
2984                         } else {
2985                           if (nlist.n_value != 0)
2986                             symbol_section = section_info.GetSection(
2987                                 nlist.n_sect, nlist.n_value);
2988                           type = eSymbolTypeData;
2989                         }
2990                         break;
2991 
2992                       case N_FNAME:
2993                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2994                         type = eSymbolTypeCompiler;
2995                         break;
2996 
2997                       case N_FUN:
2998                         // procedure: name,,n_sect,linenumber,address
2999                         if (symbol_name) {
3000                           type = eSymbolTypeCode;
3001                           symbol_section = section_info.GetSection(
3002                               nlist.n_sect, nlist.n_value);
3003 
3004                           N_FUN_addr_to_sym_idx.insert(
3005                               std::make_pair(nlist.n_value, sym_idx));
3006                           // We use the current number of symbols in the
3007                           // symbol table in lieu of using nlist_idx in case
3008                           // we ever start trimming entries out
3009                           N_FUN_indexes.push_back(sym_idx);
3010                         } else {
3011                           type = eSymbolTypeCompiler;
3012 
3013                           if (!N_FUN_indexes.empty()) {
3014                             // Copy the size of the function into the
3015                             // original
3016                             // STAB entry so we don't have
3017                             // to hunt for it later
3018                             symtab->SymbolAtIndex(N_FUN_indexes.back())
3019                                 ->SetByteSize(nlist.n_value);
3020                             N_FUN_indexes.pop_back();
3021                             // We don't really need the end function STAB as
3022                             // it contains the size which we already placed
3023                             // with the original symbol, so don't add it if
3024                             // we want a minimal symbol table
3025                             add_nlist = false;
3026                           }
3027                         }
3028                         break;
3029 
3030                       case N_STSYM:
3031                         // static symbol: name,,n_sect,type,address
3032                         N_STSYM_addr_to_sym_idx.insert(
3033                             std::make_pair(nlist.n_value, sym_idx));
3034                         symbol_section = section_info.GetSection(nlist.n_sect,
3035                                                                  nlist.n_value);
3036                         if (symbol_name && symbol_name[0]) {
3037                           type = ObjectFile::GetSymbolTypeFromName(
3038                               symbol_name + 1, eSymbolTypeData);
3039                         }
3040                         break;
3041 
3042                       case N_LCSYM:
3043                         // .lcomm symbol: name,,n_sect,type,address
3044                         symbol_section = section_info.GetSection(nlist.n_sect,
3045                                                                  nlist.n_value);
3046                         type = eSymbolTypeCommonBlock;
3047                         break;
3048 
3049                       case N_BNSYM:
3050                         // We use the current number of symbols in the symbol
3051                         // table in lieu of using nlist_idx in case we ever
3052                         // start trimming entries out Skip these if we want
3053                         // minimal symbol tables
3054                         add_nlist = false;
3055                         break;
3056 
3057                       case N_ENSYM:
3058                         // Set the size of the N_BNSYM to the terminating
3059                         // index of this N_ENSYM so that we can always skip
3060                         // the entire symbol if we need to navigate more
3061                         // quickly at the source level when parsing STABS
3062                         // Skip these if we want minimal symbol tables
3063                         add_nlist = false;
3064                         break;
3065 
3066                       case N_OPT:
3067                         // emitted with gcc2_compiled and in gcc source
3068                         type = eSymbolTypeCompiler;
3069                         break;
3070 
3071                       case N_RSYM:
3072                         // register sym: name,,NO_SECT,type,register
3073                         type = eSymbolTypeVariable;
3074                         break;
3075 
3076                       case N_SLINE:
3077                         // src line: 0,,n_sect,linenumber,address
3078                         symbol_section = section_info.GetSection(nlist.n_sect,
3079                                                                  nlist.n_value);
3080                         type = eSymbolTypeLineEntry;
3081                         break;
3082 
3083                       case N_SSYM:
3084                         // structure elt: name,,NO_SECT,type,struct_offset
3085                         type = eSymbolTypeVariableType;
3086                         break;
3087 
3088                       case N_SO:
3089                         // source file name
3090                         type = eSymbolTypeSourceFile;
3091                         if (symbol_name == NULL) {
3092                           add_nlist = false;
3093                           if (N_SO_index != UINT32_MAX) {
3094                             // Set the size of the N_SO to the terminating
3095                             // index of this N_SO so that we can always skip
3096                             // the entire N_SO if we need to navigate more
3097                             // quickly at the source level when parsing STABS
3098                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3099                             symbol_ptr->SetByteSize(sym_idx);
3100                             symbol_ptr->SetSizeIsSibling(true);
3101                           }
3102                           N_NSYM_indexes.clear();
3103                           N_INCL_indexes.clear();
3104                           N_BRAC_indexes.clear();
3105                           N_COMM_indexes.clear();
3106                           N_FUN_indexes.clear();
3107                           N_SO_index = UINT32_MAX;
3108                         } else {
3109                           // We use the current number of symbols in the
3110                           // symbol table in lieu of using nlist_idx in case
3111                           // we ever start trimming entries out
3112                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3113                           if (N_SO_has_full_path) {
3114                             if ((N_SO_index == sym_idx - 1) &&
3115                                 ((sym_idx - 1) < num_syms)) {
3116                               // We have two consecutive N_SO entries where
3117                               // the first contains a directory and the
3118                               // second contains a full path.
3119                               sym[sym_idx - 1].GetMangled().SetValue(
3120                                   ConstString(symbol_name), false);
3121                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3122                               add_nlist = false;
3123                             } else {
3124                               // This is the first entry in a N_SO that
3125                               // contains a directory or
3126                               // a full path to the source file
3127                               N_SO_index = sym_idx;
3128                             }
3129                           } else if ((N_SO_index == sym_idx - 1) &&
3130                                      ((sym_idx - 1) < num_syms)) {
3131                             // This is usually the second N_SO entry that
3132                             // contains just the filename, so here we combine
3133                             // it with the first one if we are minimizing the
3134                             // symbol table
3135                             const char *so_path = sym[sym_idx - 1]
3136                                                       .GetMangled()
3137                                                       .GetDemangledName()
3138                                                       .AsCString();
3139                             if (so_path && so_path[0]) {
3140                               std::string full_so_path(so_path);
3141                               const size_t double_slash_pos =
3142                                   full_so_path.find("//");
3143                               if (double_slash_pos != std::string::npos) {
3144                                 // The linker has been generating bad N_SO
3145                                 // entries with doubled up paths
3146                                 // in the format "%s%s" where the first
3147                                 // string in the DW_AT_comp_dir, and the
3148                                 // second is the directory for the source
3149                                 // file so you end up with a path that looks
3150                                 // like "/tmp/src//tmp/src/"
3151                                 FileSpec so_dir(so_path);
3152                                 if (!FileSystem::Instance().Exists(so_dir)) {
3153                                   so_dir.SetFile(
3154                                       &full_so_path[double_slash_pos + 1],
3155                                       FileSpec::Style::native);
3156                                   if (FileSystem::Instance().Exists(so_dir)) {
3157                                     // Trim off the incorrect path
3158                                     full_so_path.erase(0, double_slash_pos + 1);
3159                                   }
3160                                 }
3161                               }
3162                               if (*full_so_path.rbegin() != '/')
3163                                 full_so_path += '/';
3164                               full_so_path += symbol_name;
3165                               sym[sym_idx - 1].GetMangled().SetValue(
3166                                   ConstString(full_so_path.c_str()), false);
3167                               add_nlist = false;
3168                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3169                             }
3170                           } else {
3171                             // This could be a relative path to a N_SO
3172                             N_SO_index = sym_idx;
3173                           }
3174                         }
3175                         break;
3176 
3177                       case N_OSO:
3178                         // object file name: name,,0,0,st_mtime
3179                         type = eSymbolTypeObjectFile;
3180                         break;
3181 
3182                       case N_LSYM:
3183                         // local sym: name,,NO_SECT,type,offset
3184                         type = eSymbolTypeLocal;
3185                         break;
3186 
3187                       // INCL scopes
3188                       case N_BINCL:
3189                         // include file beginning: name,,NO_SECT,0,sum We use
3190                         // the current number of symbols in the symbol table
3191                         // in lieu of using nlist_idx in case we ever start
3192                         // trimming entries out
3193                         N_INCL_indexes.push_back(sym_idx);
3194                         type = eSymbolTypeScopeBegin;
3195                         break;
3196 
3197                       case N_EINCL:
3198                         // include file end: name,,NO_SECT,0,0
3199                         // Set the size of the N_BINCL to the terminating
3200                         // index of this N_EINCL so that we can always skip
3201                         // the entire symbol if we need to navigate more
3202                         // quickly at the source level when parsing STABS
3203                         if (!N_INCL_indexes.empty()) {
3204                           symbol_ptr =
3205                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3206                           symbol_ptr->SetByteSize(sym_idx + 1);
3207                           symbol_ptr->SetSizeIsSibling(true);
3208                           N_INCL_indexes.pop_back();
3209                         }
3210                         type = eSymbolTypeScopeEnd;
3211                         break;
3212 
3213                       case N_SOL:
3214                         // #included file name: name,,n_sect,0,address
3215                         type = eSymbolTypeHeaderFile;
3216 
3217                         // We currently don't use the header files on darwin
3218                         add_nlist = false;
3219                         break;
3220 
3221                       case N_PARAMS:
3222                         // compiler parameters: name,,NO_SECT,0,0
3223                         type = eSymbolTypeCompiler;
3224                         break;
3225 
3226                       case N_VERSION:
3227                         // compiler version: name,,NO_SECT,0,0
3228                         type = eSymbolTypeCompiler;
3229                         break;
3230 
3231                       case N_OLEVEL:
3232                         // compiler -O level: name,,NO_SECT,0,0
3233                         type = eSymbolTypeCompiler;
3234                         break;
3235 
3236                       case N_PSYM:
3237                         // parameter: name,,NO_SECT,type,offset
3238                         type = eSymbolTypeVariable;
3239                         break;
3240 
3241                       case N_ENTRY:
3242                         // alternate entry: name,,n_sect,linenumber,address
3243                         symbol_section = section_info.GetSection(nlist.n_sect,
3244                                                                  nlist.n_value);
3245                         type = eSymbolTypeLineEntry;
3246                         break;
3247 
3248                       // Left and Right Braces
3249                       case N_LBRAC:
3250                         // left bracket: 0,,NO_SECT,nesting level,address We
3251                         // use the current number of symbols in the symbol
3252                         // table in lieu of using nlist_idx in case we ever
3253                         // start trimming entries out
3254                         symbol_section = section_info.GetSection(nlist.n_sect,
3255                                                                  nlist.n_value);
3256                         N_BRAC_indexes.push_back(sym_idx);
3257                         type = eSymbolTypeScopeBegin;
3258                         break;
3259 
3260                       case N_RBRAC:
3261                         // right bracket: 0,,NO_SECT,nesting level,address
3262                         // Set the size of the N_LBRAC to the terminating
3263                         // index of this N_RBRAC so that we can always skip
3264                         // the entire symbol if we need to navigate more
3265                         // quickly at the source level when parsing STABS
3266                         symbol_section = section_info.GetSection(nlist.n_sect,
3267                                                                  nlist.n_value);
3268                         if (!N_BRAC_indexes.empty()) {
3269                           symbol_ptr =
3270                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3271                           symbol_ptr->SetByteSize(sym_idx + 1);
3272                           symbol_ptr->SetSizeIsSibling(true);
3273                           N_BRAC_indexes.pop_back();
3274                         }
3275                         type = eSymbolTypeScopeEnd;
3276                         break;
3277 
3278                       case N_EXCL:
3279                         // deleted include file: name,,NO_SECT,0,sum
3280                         type = eSymbolTypeHeaderFile;
3281                         break;
3282 
3283                       // COMM scopes
3284                       case N_BCOMM:
3285                         // begin common: name,,NO_SECT,0,0
3286                         // We use the current number of symbols in the symbol
3287                         // table in lieu of using nlist_idx in case we ever
3288                         // start trimming entries out
3289                         type = eSymbolTypeScopeBegin;
3290                         N_COMM_indexes.push_back(sym_idx);
3291                         break;
3292 
3293                       case N_ECOML:
3294                         // end common (local name): 0,,n_sect,0,address
3295                         symbol_section = section_info.GetSection(nlist.n_sect,
3296                                                                  nlist.n_value);
3297                         // Fall through
3298 
3299                       case N_ECOMM:
3300                         // end common: name,,n_sect,0,0
3301                         // Set the size of the N_BCOMM to the terminating
3302                         // index of this N_ECOMM/N_ECOML so that we can
3303                         // always skip the entire symbol if we need to
3304                         // navigate more quickly at the source level when
3305                         // parsing STABS
3306                         if (!N_COMM_indexes.empty()) {
3307                           symbol_ptr =
3308                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3309                           symbol_ptr->SetByteSize(sym_idx + 1);
3310                           symbol_ptr->SetSizeIsSibling(true);
3311                           N_COMM_indexes.pop_back();
3312                         }
3313                         type = eSymbolTypeScopeEnd;
3314                         break;
3315 
3316                       case N_LENG:
3317                         // second stab entry with length information
3318                         type = eSymbolTypeAdditional;
3319                         break;
3320 
3321                       default:
3322                         break;
3323                       }
3324                     } else {
3325                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3326                       uint8_t n_type = N_TYPE & nlist.n_type;
3327                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3328 
3329                       switch (n_type) {
3330                       case N_INDR: {
3331                         const char *reexport_name_cstr =
3332                             strtab_data.PeekCStr(nlist.n_value);
3333                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3334                           type = eSymbolTypeReExported;
3335                           ConstString reexport_name(
3336                               reexport_name_cstr +
3337                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3338                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3339                           set_value = false;
3340                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3341                           indirect_symbol_names.insert(ConstString(
3342                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3343                         } else
3344                           type = eSymbolTypeUndefined;
3345                       } break;
3346 
3347                       case N_UNDF:
3348                         if (symbol_name && symbol_name[0]) {
3349                           ConstString undefined_name(
3350                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3351                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3352                         }
3353                       // Fall through
3354                       case N_PBUD:
3355                         type = eSymbolTypeUndefined;
3356                         break;
3357 
3358                       case N_ABS:
3359                         type = eSymbolTypeAbsolute;
3360                         break;
3361 
3362                       case N_SECT: {
3363                         symbol_section = section_info.GetSection(nlist.n_sect,
3364                                                                  nlist.n_value);
3365 
3366                         if (symbol_section == NULL) {
3367                           // TODO: warn about this?
3368                           add_nlist = false;
3369                           break;
3370                         }
3371 
3372                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3373                           type = eSymbolTypeException;
3374                         } else {
3375                           uint32_t section_type =
3376                               symbol_section->Get() & SECTION_TYPE;
3377 
3378                           switch (section_type) {
3379                           case S_CSTRING_LITERALS:
3380                             type = eSymbolTypeData;
3381                             break; // section with only literal C strings
3382                           case S_4BYTE_LITERALS:
3383                             type = eSymbolTypeData;
3384                             break; // section with only 4 byte literals
3385                           case S_8BYTE_LITERALS:
3386                             type = eSymbolTypeData;
3387                             break; // section with only 8 byte literals
3388                           case S_LITERAL_POINTERS:
3389                             type = eSymbolTypeTrampoline;
3390                             break; // section with only pointers to literals
3391                           case S_NON_LAZY_SYMBOL_POINTERS:
3392                             type = eSymbolTypeTrampoline;
3393                             break; // section with only non-lazy symbol
3394                                    // pointers
3395                           case S_LAZY_SYMBOL_POINTERS:
3396                             type = eSymbolTypeTrampoline;
3397                             break; // section with only lazy symbol pointers
3398                           case S_SYMBOL_STUBS:
3399                             type = eSymbolTypeTrampoline;
3400                             break; // section with only symbol stubs, byte
3401                                    // size of stub in the reserved2 field
3402                           case S_MOD_INIT_FUNC_POINTERS:
3403                             type = eSymbolTypeCode;
3404                             break; // section with only function pointers for
3405                                    // initialization
3406                           case S_MOD_TERM_FUNC_POINTERS:
3407                             type = eSymbolTypeCode;
3408                             break; // section with only function pointers for
3409                                    // termination
3410                           case S_INTERPOSING:
3411                             type = eSymbolTypeTrampoline;
3412                             break; // section with only pairs of function
3413                                    // pointers for interposing
3414                           case S_16BYTE_LITERALS:
3415                             type = eSymbolTypeData;
3416                             break; // section with only 16 byte literals
3417                           case S_DTRACE_DOF:
3418                             type = eSymbolTypeInstrumentation;
3419                             break;
3420                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3421                             type = eSymbolTypeTrampoline;
3422                             break;
3423                           default:
3424                             switch (symbol_section->GetType()) {
3425                             case lldb::eSectionTypeCode:
3426                               type = eSymbolTypeCode;
3427                               break;
3428                             case eSectionTypeData:
3429                             case eSectionTypeDataCString: // Inlined C string
3430                                                           // data
3431                             case eSectionTypeDataCStringPointers: // Pointers
3432                                                                   // to C
3433                                                                   // string
3434                                                                   // data
3435                             case eSectionTypeDataSymbolAddress:   // Address of
3436                                                                   // a symbol in
3437                                                                   // the symbol
3438                                                                   // table
3439                             case eSectionTypeData4:
3440                             case eSectionTypeData8:
3441                             case eSectionTypeData16:
3442                               type = eSymbolTypeData;
3443                               break;
3444                             default:
3445                               break;
3446                             }
3447                             break;
3448                           }
3449 
3450                           if (type == eSymbolTypeInvalid) {
3451                             const char *symbol_sect_name =
3452                                 symbol_section->GetName().AsCString();
3453                             if (symbol_section->IsDescendant(
3454                                     text_section_sp.get())) {
3455                               if (symbol_section->IsClear(
3456                                       S_ATTR_PURE_INSTRUCTIONS |
3457                                       S_ATTR_SELF_MODIFYING_CODE |
3458                                       S_ATTR_SOME_INSTRUCTIONS))
3459                                 type = eSymbolTypeData;
3460                               else
3461                                 type = eSymbolTypeCode;
3462                             } else if (symbol_section->IsDescendant(
3463                                            data_section_sp.get()) ||
3464                                        symbol_section->IsDescendant(
3465                                            data_dirty_section_sp.get()) ||
3466                                        symbol_section->IsDescendant(
3467                                            data_const_section_sp.get())) {
3468                               if (symbol_sect_name &&
3469                                   ::strstr(symbol_sect_name, "__objc") ==
3470                                       symbol_sect_name) {
3471                                 type = eSymbolTypeRuntime;
3472 
3473                                 if (symbol_name) {
3474                                   llvm::StringRef symbol_name_ref(symbol_name);
3475                                   if (symbol_name_ref.startswith("_OBJC_")) {
3476                                     llvm::StringRef
3477                                         g_objc_v2_prefix_class(
3478                                             "_OBJC_CLASS_$_");
3479                                     llvm::StringRef
3480                                         g_objc_v2_prefix_metaclass(
3481                                             "_OBJC_METACLASS_$_");
3482                                     llvm::StringRef
3483                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3484                                     if (symbol_name_ref.startswith(
3485                                             g_objc_v2_prefix_class)) {
3486                                       symbol_name_non_abi_mangled =
3487                                           symbol_name + 1;
3488                                       symbol_name =
3489                                           symbol_name +
3490                                           g_objc_v2_prefix_class.size();
3491                                       type = eSymbolTypeObjCClass;
3492                                       demangled_is_synthesized = true;
3493                                     } else if (
3494                                         symbol_name_ref.startswith(
3495                                             g_objc_v2_prefix_metaclass)) {
3496                                       symbol_name_non_abi_mangled =
3497                                           symbol_name + 1;
3498                                       symbol_name =
3499                                           symbol_name +
3500                                           g_objc_v2_prefix_metaclass.size();
3501                                       type = eSymbolTypeObjCMetaClass;
3502                                       demangled_is_synthesized = true;
3503                                     } else if (symbol_name_ref.startswith(
3504                                                    g_objc_v2_prefix_ivar)) {
3505                                       symbol_name_non_abi_mangled =
3506                                           symbol_name + 1;
3507                                       symbol_name =
3508                                           symbol_name +
3509                                           g_objc_v2_prefix_ivar.size();
3510                                       type = eSymbolTypeObjCIVar;
3511                                       demangled_is_synthesized = true;
3512                                     }
3513                                   }
3514                                 }
3515                               } else if (symbol_sect_name &&
3516                                          ::strstr(symbol_sect_name,
3517                                                   "__gcc_except_tab") ==
3518                                              symbol_sect_name) {
3519                                 type = eSymbolTypeException;
3520                               } else {
3521                                 type = eSymbolTypeData;
3522                               }
3523                             } else if (symbol_sect_name &&
3524                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3525                                            symbol_sect_name) {
3526                               type = eSymbolTypeTrampoline;
3527                             } else if (symbol_section->IsDescendant(
3528                                            objc_section_sp.get())) {
3529                               type = eSymbolTypeRuntime;
3530                               if (symbol_name && symbol_name[0] == '.') {
3531                                 llvm::StringRef symbol_name_ref(symbol_name);
3532                                 llvm::StringRef
3533                                     g_objc_v1_prefix_class(".objc_class_name_");
3534                                 if (symbol_name_ref.startswith(
3535                                         g_objc_v1_prefix_class)) {
3536                                   symbol_name_non_abi_mangled = symbol_name;
3537                                   symbol_name = symbol_name +
3538                                                 g_objc_v1_prefix_class.size();
3539                                   type = eSymbolTypeObjCClass;
3540                                   demangled_is_synthesized = true;
3541                                 }
3542                               }
3543                             }
3544                           }
3545                         }
3546                       } break;
3547                       }
3548                     }
3549 
3550                     if (add_nlist) {
3551                       uint64_t symbol_value = nlist.n_value;
3552                       if (symbol_name_non_abi_mangled) {
3553                         sym[sym_idx].GetMangled().SetMangledName(
3554                             ConstString(symbol_name_non_abi_mangled));
3555                         sym[sym_idx].GetMangled().SetDemangledName(
3556                             ConstString(symbol_name));
3557                       } else {
3558                         bool symbol_name_is_mangled = false;
3559 
3560                         if (symbol_name && symbol_name[0] == '_') {
3561                           symbol_name_is_mangled = symbol_name[1] == '_';
3562                           symbol_name++; // Skip the leading underscore
3563                         }
3564 
3565                         if (symbol_name) {
3566                           ConstString const_symbol_name(symbol_name);
3567                           sym[sym_idx].GetMangled().SetValue(
3568                               const_symbol_name, symbol_name_is_mangled);
3569                           if (is_gsym && is_debug) {
3570                             const char *gsym_name =
3571                                 sym[sym_idx]
3572                                     .GetMangled()
3573                                     .GetName(Mangled::ePreferMangled)
3574                                     .GetCString();
3575                             if (gsym_name)
3576                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3577                           }
3578                         }
3579                       }
3580                       if (symbol_section) {
3581                         const addr_t section_file_addr =
3582                             symbol_section->GetFileAddress();
3583                         if (symbol_byte_size == 0 &&
3584                             function_starts_count > 0) {
3585                           addr_t symbol_lookup_file_addr = nlist.n_value;
3586                           // Do an exact address match for non-ARM addresses,
3587                           // else get the closest since the symbol might be a
3588                           // thumb symbol which has an address with bit zero
3589                           // set
3590                           FunctionStarts::Entry *func_start_entry =
3591                               function_starts.FindEntry(symbol_lookup_file_addr,
3592                                                         !is_arm);
3593                           if (is_arm && func_start_entry) {
3594                             // Verify that the function start address is the
3595                             // symbol address (ARM) or the symbol address + 1
3596                             // (thumb)
3597                             if (func_start_entry->addr !=
3598                                     symbol_lookup_file_addr &&
3599                                 func_start_entry->addr !=
3600                                     (symbol_lookup_file_addr + 1)) {
3601                               // Not the right entry, NULL it out...
3602                               func_start_entry = NULL;
3603                             }
3604                           }
3605                           if (func_start_entry) {
3606                             func_start_entry->data = true;
3607 
3608                             addr_t symbol_file_addr = func_start_entry->addr;
3609                             uint32_t symbol_flags = 0;
3610                             if (is_arm) {
3611                               if (symbol_file_addr & 1)
3612                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3613                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3614                             }
3615 
3616                             const FunctionStarts::Entry *next_func_start_entry =
3617                                 function_starts.FindNextEntry(func_start_entry);
3618                             const addr_t section_end_file_addr =
3619                                 section_file_addr +
3620                                 symbol_section->GetByteSize();
3621                             if (next_func_start_entry) {
3622                               addr_t next_symbol_file_addr =
3623                                   next_func_start_entry->addr;
3624                               // Be sure the clear the Thumb address bit when
3625                               // we calculate the size from the current and
3626                               // next address
3627                               if (is_arm)
3628                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3629                               symbol_byte_size = std::min<lldb::addr_t>(
3630                                   next_symbol_file_addr - symbol_file_addr,
3631                                   section_end_file_addr - symbol_file_addr);
3632                             } else {
3633                               symbol_byte_size =
3634                                   section_end_file_addr - symbol_file_addr;
3635                             }
3636                           }
3637                         }
3638                         symbol_value -= section_file_addr;
3639                       }
3640 
3641                       if (is_debug == false) {
3642                         if (type == eSymbolTypeCode) {
3643                           // See if we can find a N_FUN entry for any code
3644                           // symbols. If we do find a match, and the name
3645                           // matches, then we can merge the two into just the
3646                           // function symbol to avoid duplicate entries in
3647                           // the symbol table
3648                           auto range =
3649                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3650                           if (range.first != range.second) {
3651                             bool found_it = false;
3652                             for (auto pos = range.first; pos != range.second;
3653                                  ++pos) {
3654                               if (sym[sym_idx].GetMangled().GetName(
3655                                       Mangled::ePreferMangled) ==
3656                                   sym[pos->second].GetMangled().GetName(
3657                                       Mangled::ePreferMangled)) {
3658                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3659                                 // We just need the flags from the linker
3660                                 // symbol, so put these flags
3661                                 // into the N_FUN flags to avoid duplicate
3662                                 // symbols in the symbol table
3663                                 sym[pos->second].SetExternal(
3664                                     sym[sym_idx].IsExternal());
3665                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3666                                                           nlist.n_desc);
3667                                 if (resolver_addresses.find(nlist.n_value) !=
3668                                     resolver_addresses.end())
3669                                   sym[pos->second].SetType(eSymbolTypeResolver);
3670                                 sym[sym_idx].Clear();
3671                                 found_it = true;
3672                                 break;
3673                               }
3674                             }
3675                             if (found_it)
3676                               continue;
3677                           } else {
3678                             if (resolver_addresses.find(nlist.n_value) !=
3679                                 resolver_addresses.end())
3680                               type = eSymbolTypeResolver;
3681                           }
3682                         } else if (type == eSymbolTypeData ||
3683                                    type == eSymbolTypeObjCClass ||
3684                                    type == eSymbolTypeObjCMetaClass ||
3685                                    type == eSymbolTypeObjCIVar) {
3686                           // See if we can find a N_STSYM entry for any data
3687                           // symbols. If we do find a match, and the name
3688                           // matches, then we can merge the two into just the
3689                           // Static symbol to avoid duplicate entries in the
3690                           // symbol table
3691                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3692                               nlist.n_value);
3693                           if (range.first != range.second) {
3694                             bool found_it = false;
3695                             for (auto pos = range.first; pos != range.second;
3696                                  ++pos) {
3697                               if (sym[sym_idx].GetMangled().GetName(
3698                                       Mangled::ePreferMangled) ==
3699                                   sym[pos->second].GetMangled().GetName(
3700                                       Mangled::ePreferMangled)) {
3701                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3702                                 // We just need the flags from the linker
3703                                 // symbol, so put these flags
3704                                 // into the N_STSYM flags to avoid duplicate
3705                                 // symbols in the symbol table
3706                                 sym[pos->second].SetExternal(
3707                                     sym[sym_idx].IsExternal());
3708                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3709                                                           nlist.n_desc);
3710                                 sym[sym_idx].Clear();
3711                                 found_it = true;
3712                                 break;
3713                               }
3714                             }
3715                             if (found_it)
3716                               continue;
3717                           } else {
3718                             const char *gsym_name =
3719                                 sym[sym_idx]
3720                                     .GetMangled()
3721                                     .GetName(Mangled::ePreferMangled)
3722                                     .GetCString();
3723                             if (gsym_name) {
3724                               // Combine N_GSYM stab entries with the non
3725                               // stab symbol
3726                               ConstNameToSymbolIndexMap::const_iterator pos =
3727                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3728                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3729                                 const uint32_t GSYM_sym_idx = pos->second;
3730                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3731                                     GSYM_sym_idx;
3732                                 // Copy the address, because often the N_GSYM
3733                                 // address has an invalid address of zero
3734                                 // when the global is a common symbol
3735                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3736                                     symbol_section);
3737                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3738                                     symbol_value);
3739                                 add_symbol_addr(sym[GSYM_sym_idx]
3740                                                     .GetAddress()
3741                                                     .GetFileAddress());
3742                                 // We just need the flags from the linker
3743                                 // symbol, so put these flags
3744                                 // into the N_GSYM flags to avoid duplicate
3745                                 // symbols in the symbol table
3746                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3747                                                            nlist.n_desc);
3748                                 sym[sym_idx].Clear();
3749                                 continue;
3750                               }
3751                             }
3752                           }
3753                         }
3754                       }
3755 
3756                       sym[sym_idx].SetID(nlist_idx);
3757                       sym[sym_idx].SetType(type);
3758                       if (set_value) {
3759                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3760                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3761                         add_symbol_addr(
3762                             sym[sym_idx].GetAddress().GetFileAddress());
3763                       }
3764                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3765 
3766                       if (symbol_byte_size > 0)
3767                         sym[sym_idx].SetByteSize(symbol_byte_size);
3768 
3769                       if (demangled_is_synthesized)
3770                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3771                       ++sym_idx;
3772                     } else {
3773                       sym[sym_idx].Clear();
3774                     }
3775                   }
3776                   /////////////////////////////
3777                 }
3778                 break; // No more entries to consider
3779               }
3780             }
3781 
3782             for (const auto &pos : reexport_shlib_needs_fixup) {
3783               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3784               if (undef_pos != undefined_name_to_desc.end()) {
3785                 const uint8_t dylib_ordinal =
3786                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3787                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3788                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3789                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3790               }
3791             }
3792           }
3793         }
3794       }
3795     }
3796   }
3797 
3798   // Must reset this in case it was mutated above!
3799   nlist_data_offset = 0;
3800 #endif
3801 
3802   if (nlist_data.GetByteSize() > 0) {
3803 
3804     // If the sym array was not created while parsing the DSC unmapped
3805     // symbols, create it now.
3806     if (sym == nullptr) {
3807       sym =
3808           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3809       num_syms = symtab->GetNumSymbols();
3810     }
3811 
3812     if (unmapped_local_symbols_found) {
3813       assert(m_dysymtab.ilocalsym == 0);
3814       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3815       nlist_idx = m_dysymtab.nlocalsym;
3816     } else {
3817       nlist_idx = 0;
3818     }
3819 
3820     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3821     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3822     UndefinedNameToDescMap undefined_name_to_desc;
3823     SymbolIndexToName reexport_shlib_needs_fixup;
3824 
3825     // Symtab parsing is a huge mess. Everything is entangled and the code
3826     // requires access to a ridiculous amount of variables. LLDB depends
3827     // heavily on the proper merging of symbols and to get that right we need
3828     // to make sure we have parsed all the debug symbols first. Therefore we
3829     // invoke the lambda twice, once to parse only the debug symbols and then
3830     // once more to parse the remaining symbols.
3831     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3832                                  bool debug_only) {
3833       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3834       if (is_debug != debug_only)
3835         return true;
3836 
3837       const char *symbol_name_non_abi_mangled = nullptr;
3838       const char *symbol_name = nullptr;
3839 
3840       if (have_strtab_data) {
3841         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3842 
3843         if (symbol_name == nullptr) {
3844           // No symbol should be NULL, even the symbols with no string values
3845           // should have an offset zero which points to an empty C-string
3846           Host::SystemLog(Host::eSystemLogError,
3847                           "error: symbol[%u] has invalid string table offset "
3848                           "0x%x in %s, ignoring symbol\n",
3849                           nlist_idx, nlist.n_strx,
3850                           module_sp->GetFileSpec().GetPath().c_str());
3851           return true;
3852         }
3853         if (symbol_name[0] == '\0')
3854           symbol_name = nullptr;
3855       } else {
3856         const addr_t str_addr = strtab_addr + nlist.n_strx;
3857         Status str_error;
3858         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3859                                            str_error))
3860           symbol_name = memory_symbol_name.c_str();
3861       }
3862 
3863       SymbolType type = eSymbolTypeInvalid;
3864       SectionSP symbol_section;
3865       lldb::addr_t symbol_byte_size = 0;
3866       bool add_nlist = true;
3867       bool is_gsym = false;
3868       bool demangled_is_synthesized = false;
3869       bool set_value = true;
3870 
3871       assert(sym_idx < num_syms);
3872       sym[sym_idx].SetDebug(is_debug);
3873 
3874       if (is_debug) {
3875         switch (nlist.n_type) {
3876         case N_GSYM:
3877           // global symbol: name,,NO_SECT,type,0
3878           // Sometimes the N_GSYM value contains the address.
3879 
3880           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3881           // the ObjC data.  They
3882           // have the same address, but we want to ensure that we always find
3883           // only the real symbol, 'cause we don't currently correctly
3884           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3885           // type.  This is a temporary hack to make sure the ObjectiveC
3886           // symbols get treated correctly.  To do this right, we should
3887           // coalesce all the GSYM & global symbols that have the same
3888           // address.
3889           is_gsym = true;
3890           sym[sym_idx].SetExternal(true);
3891 
3892           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3893             llvm::StringRef symbol_name_ref(symbol_name);
3894             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3895               symbol_name_non_abi_mangled = symbol_name + 1;
3896               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3897               type = eSymbolTypeObjCClass;
3898               demangled_is_synthesized = true;
3899 
3900             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3901               symbol_name_non_abi_mangled = symbol_name + 1;
3902               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3903               type = eSymbolTypeObjCMetaClass;
3904               demangled_is_synthesized = true;
3905             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3906               symbol_name_non_abi_mangled = symbol_name + 1;
3907               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3908               type = eSymbolTypeObjCIVar;
3909               demangled_is_synthesized = true;
3910             }
3911           } else {
3912             if (nlist.n_value != 0)
3913               symbol_section =
3914                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3915             type = eSymbolTypeData;
3916           }
3917           break;
3918 
3919         case N_FNAME:
3920           // procedure name (f77 kludge): name,,NO_SECT,0,0
3921           type = eSymbolTypeCompiler;
3922           break;
3923 
3924         case N_FUN:
3925           // procedure: name,,n_sect,linenumber,address
3926           if (symbol_name) {
3927             type = eSymbolTypeCode;
3928             symbol_section =
3929                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3930 
3931             N_FUN_addr_to_sym_idx.insert(
3932                 std::make_pair(nlist.n_value, sym_idx));
3933             // We use the current number of symbols in the symbol table in
3934             // lieu of using nlist_idx in case we ever start trimming entries
3935             // out
3936             N_FUN_indexes.push_back(sym_idx);
3937           } else {
3938             type = eSymbolTypeCompiler;
3939 
3940             if (!N_FUN_indexes.empty()) {
3941               // Copy the size of the function into the original STAB entry
3942               // so we don't have to hunt for it later
3943               symtab->SymbolAtIndex(N_FUN_indexes.back())
3944                   ->SetByteSize(nlist.n_value);
3945               N_FUN_indexes.pop_back();
3946               // We don't really need the end function STAB as it contains
3947               // the size which we already placed with the original symbol,
3948               // so don't add it if we want a minimal symbol table
3949               add_nlist = false;
3950             }
3951           }
3952           break;
3953 
3954         case N_STSYM:
3955           // static symbol: name,,n_sect,type,address
3956           N_STSYM_addr_to_sym_idx.insert(
3957               std::make_pair(nlist.n_value, sym_idx));
3958           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3959           if (symbol_name && symbol_name[0]) {
3960             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3961                                                      eSymbolTypeData);
3962           }
3963           break;
3964 
3965         case N_LCSYM:
3966           // .lcomm symbol: name,,n_sect,type,address
3967           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3968           type = eSymbolTypeCommonBlock;
3969           break;
3970 
3971         case N_BNSYM:
3972           // We use the current number of symbols in the symbol table in lieu
3973           // of using nlist_idx in case we ever start trimming entries out
3974           // Skip these if we want minimal symbol tables
3975           add_nlist = false;
3976           break;
3977 
3978         case N_ENSYM:
3979           // Set the size of the N_BNSYM to the terminating index of this
3980           // N_ENSYM so that we can always skip the entire symbol if we need
3981           // to navigate more quickly at the source level when parsing STABS
3982           // Skip these if we want minimal symbol tables
3983           add_nlist = false;
3984           break;
3985 
3986         case N_OPT:
3987           // emitted with gcc2_compiled and in gcc source
3988           type = eSymbolTypeCompiler;
3989           break;
3990 
3991         case N_RSYM:
3992           // register sym: name,,NO_SECT,type,register
3993           type = eSymbolTypeVariable;
3994           break;
3995 
3996         case N_SLINE:
3997           // src line: 0,,n_sect,linenumber,address
3998           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3999           type = eSymbolTypeLineEntry;
4000           break;
4001 
4002         case N_SSYM:
4003           // structure elt: name,,NO_SECT,type,struct_offset
4004           type = eSymbolTypeVariableType;
4005           break;
4006 
4007         case N_SO:
4008           // source file name
4009           type = eSymbolTypeSourceFile;
4010           if (symbol_name == nullptr) {
4011             add_nlist = false;
4012             if (N_SO_index != UINT32_MAX) {
4013               // Set the size of the N_SO to the terminating index of this
4014               // N_SO so that we can always skip the entire N_SO if we need
4015               // to navigate more quickly at the source level when parsing
4016               // STABS
4017               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
4018               symbol_ptr->SetByteSize(sym_idx);
4019               symbol_ptr->SetSizeIsSibling(true);
4020             }
4021             N_NSYM_indexes.clear();
4022             N_INCL_indexes.clear();
4023             N_BRAC_indexes.clear();
4024             N_COMM_indexes.clear();
4025             N_FUN_indexes.clear();
4026             N_SO_index = UINT32_MAX;
4027           } else {
4028             // We use the current number of symbols in the symbol table in
4029             // lieu of using nlist_idx in case we ever start trimming entries
4030             // out
4031             const bool N_SO_has_full_path = symbol_name[0] == '/';
4032             if (N_SO_has_full_path) {
4033               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
4034                 // We have two consecutive N_SO entries where the first
4035                 // contains a directory and the second contains a full path.
4036                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
4037                                                        false);
4038                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4039                 add_nlist = false;
4040               } else {
4041                 // This is the first entry in a N_SO that contains a
4042                 // directory or a full path to the source file
4043                 N_SO_index = sym_idx;
4044               }
4045             } else if ((N_SO_index == sym_idx - 1) &&
4046                        ((sym_idx - 1) < num_syms)) {
4047               // This is usually the second N_SO entry that contains just the
4048               // filename, so here we combine it with the first one if we are
4049               // minimizing the symbol table
4050               const char *so_path =
4051                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
4052               if (so_path && so_path[0]) {
4053                 std::string full_so_path(so_path);
4054                 const size_t double_slash_pos = full_so_path.find("//");
4055                 if (double_slash_pos != std::string::npos) {
4056                   // The linker has been generating bad N_SO entries with
4057                   // doubled up paths in the format "%s%s" where the first
4058                   // string in the DW_AT_comp_dir, and the second is the
4059                   // directory for the source file so you end up with a path
4060                   // that looks like "/tmp/src//tmp/src/"
4061                   FileSpec so_dir(so_path);
4062                   if (!FileSystem::Instance().Exists(so_dir)) {
4063                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4064                                    FileSpec::Style::native);
4065                     if (FileSystem::Instance().Exists(so_dir)) {
4066                       // Trim off the incorrect path
4067                       full_so_path.erase(0, double_slash_pos + 1);
4068                     }
4069                   }
4070                 }
4071                 if (*full_so_path.rbegin() != '/')
4072                   full_so_path += '/';
4073                 full_so_path += symbol_name;
4074                 sym[sym_idx - 1].GetMangled().SetValue(
4075                     ConstString(full_so_path.c_str()), false);
4076                 add_nlist = false;
4077                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4078               }
4079             } else {
4080               // This could be a relative path to a N_SO
4081               N_SO_index = sym_idx;
4082             }
4083           }
4084           break;
4085 
4086         case N_OSO:
4087           // object file name: name,,0,0,st_mtime
4088           type = eSymbolTypeObjectFile;
4089           break;
4090 
4091         case N_LSYM:
4092           // local sym: name,,NO_SECT,type,offset
4093           type = eSymbolTypeLocal;
4094           break;
4095 
4096         // INCL scopes
4097         case N_BINCL:
4098           // include file beginning: name,,NO_SECT,0,sum We use the current
4099           // number of symbols in the symbol table in lieu of using nlist_idx
4100           // in case we ever start trimming entries out
4101           N_INCL_indexes.push_back(sym_idx);
4102           type = eSymbolTypeScopeBegin;
4103           break;
4104 
4105         case N_EINCL:
4106           // include file end: name,,NO_SECT,0,0
4107           // Set the size of the N_BINCL to the terminating index of this
4108           // N_EINCL so that we can always skip the entire symbol if we need
4109           // to navigate more quickly at the source level when parsing STABS
4110           if (!N_INCL_indexes.empty()) {
4111             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4112             symbol_ptr->SetByteSize(sym_idx + 1);
4113             symbol_ptr->SetSizeIsSibling(true);
4114             N_INCL_indexes.pop_back();
4115           }
4116           type = eSymbolTypeScopeEnd;
4117           break;
4118 
4119         case N_SOL:
4120           // #included file name: name,,n_sect,0,address
4121           type = eSymbolTypeHeaderFile;
4122 
4123           // We currently don't use the header files on darwin
4124           add_nlist = false;
4125           break;
4126 
4127         case N_PARAMS:
4128           // compiler parameters: name,,NO_SECT,0,0
4129           type = eSymbolTypeCompiler;
4130           break;
4131 
4132         case N_VERSION:
4133           // compiler version: name,,NO_SECT,0,0
4134           type = eSymbolTypeCompiler;
4135           break;
4136 
4137         case N_OLEVEL:
4138           // compiler -O level: name,,NO_SECT,0,0
4139           type = eSymbolTypeCompiler;
4140           break;
4141 
4142         case N_PSYM:
4143           // parameter: name,,NO_SECT,type,offset
4144           type = eSymbolTypeVariable;
4145           break;
4146 
4147         case N_ENTRY:
4148           // alternate entry: name,,n_sect,linenumber,address
4149           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4150           type = eSymbolTypeLineEntry;
4151           break;
4152 
4153         // Left and Right Braces
4154         case N_LBRAC:
4155           // left bracket: 0,,NO_SECT,nesting level,address We use the
4156           // current number of symbols in the symbol table in lieu of using
4157           // nlist_idx in case we ever start trimming entries out
4158           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4159           N_BRAC_indexes.push_back(sym_idx);
4160           type = eSymbolTypeScopeBegin;
4161           break;
4162 
4163         case N_RBRAC:
4164           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4165           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4166           // can always skip the entire symbol if we need to navigate more
4167           // quickly at the source level when parsing STABS
4168           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4169           if (!N_BRAC_indexes.empty()) {
4170             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4171             symbol_ptr->SetByteSize(sym_idx + 1);
4172             symbol_ptr->SetSizeIsSibling(true);
4173             N_BRAC_indexes.pop_back();
4174           }
4175           type = eSymbolTypeScopeEnd;
4176           break;
4177 
4178         case N_EXCL:
4179           // deleted include file: name,,NO_SECT,0,sum
4180           type = eSymbolTypeHeaderFile;
4181           break;
4182 
4183         // COMM scopes
4184         case N_BCOMM:
4185           // begin common: name,,NO_SECT,0,0
4186           // We use the current number of symbols in the symbol table in lieu
4187           // of using nlist_idx in case we ever start trimming entries out
4188           type = eSymbolTypeScopeBegin;
4189           N_COMM_indexes.push_back(sym_idx);
4190           break;
4191 
4192         case N_ECOML:
4193           // end common (local name): 0,,n_sect,0,address
4194           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4195           LLVM_FALLTHROUGH;
4196 
4197         case N_ECOMM:
4198           // end common: name,,n_sect,0,0
4199           // Set the size of the N_BCOMM to the terminating index of this
4200           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4201           // we need to navigate more quickly at the source level when
4202           // parsing STABS
4203           if (!N_COMM_indexes.empty()) {
4204             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4205             symbol_ptr->SetByteSize(sym_idx + 1);
4206             symbol_ptr->SetSizeIsSibling(true);
4207             N_COMM_indexes.pop_back();
4208           }
4209           type = eSymbolTypeScopeEnd;
4210           break;
4211 
4212         case N_LENG:
4213           // second stab entry with length information
4214           type = eSymbolTypeAdditional;
4215           break;
4216 
4217         default:
4218           break;
4219         }
4220       } else {
4221         uint8_t n_type = N_TYPE & nlist.n_type;
4222         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4223 
4224         switch (n_type) {
4225         case N_INDR: {
4226           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4227           if (reexport_name_cstr && reexport_name_cstr[0]) {
4228             type = eSymbolTypeReExported;
4229             ConstString reexport_name(reexport_name_cstr +
4230                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4231             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4232             set_value = false;
4233             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4234             indirect_symbol_names.insert(
4235                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4236           } else
4237             type = eSymbolTypeUndefined;
4238         } break;
4239 
4240         case N_UNDF:
4241           if (symbol_name && symbol_name[0]) {
4242             ConstString undefined_name(symbol_name +
4243                                        ((symbol_name[0] == '_') ? 1 : 0));
4244             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4245           }
4246           LLVM_FALLTHROUGH;
4247 
4248         case N_PBUD:
4249           type = eSymbolTypeUndefined;
4250           break;
4251 
4252         case N_ABS:
4253           type = eSymbolTypeAbsolute;
4254           break;
4255 
4256         case N_SECT: {
4257           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4258 
4259           if (!symbol_section) {
4260             // TODO: warn about this?
4261             add_nlist = false;
4262             break;
4263           }
4264 
4265           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4266             type = eSymbolTypeException;
4267           } else {
4268             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4269 
4270             switch (section_type) {
4271             case S_CSTRING_LITERALS:
4272               type = eSymbolTypeData;
4273               break; // section with only literal C strings
4274             case S_4BYTE_LITERALS:
4275               type = eSymbolTypeData;
4276               break; // section with only 4 byte literals
4277             case S_8BYTE_LITERALS:
4278               type = eSymbolTypeData;
4279               break; // section with only 8 byte literals
4280             case S_LITERAL_POINTERS:
4281               type = eSymbolTypeTrampoline;
4282               break; // section with only pointers to literals
4283             case S_NON_LAZY_SYMBOL_POINTERS:
4284               type = eSymbolTypeTrampoline;
4285               break; // section with only non-lazy symbol pointers
4286             case S_LAZY_SYMBOL_POINTERS:
4287               type = eSymbolTypeTrampoline;
4288               break; // section with only lazy symbol pointers
4289             case S_SYMBOL_STUBS:
4290               type = eSymbolTypeTrampoline;
4291               break; // section with only symbol stubs, byte size of stub in
4292                      // the reserved2 field
4293             case S_MOD_INIT_FUNC_POINTERS:
4294               type = eSymbolTypeCode;
4295               break; // section with only function pointers for initialization
4296             case S_MOD_TERM_FUNC_POINTERS:
4297               type = eSymbolTypeCode;
4298               break; // section with only function pointers for termination
4299             case S_INTERPOSING:
4300               type = eSymbolTypeTrampoline;
4301               break; // section with only pairs of function pointers for
4302                      // interposing
4303             case S_16BYTE_LITERALS:
4304               type = eSymbolTypeData;
4305               break; // section with only 16 byte literals
4306             case S_DTRACE_DOF:
4307               type = eSymbolTypeInstrumentation;
4308               break;
4309             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4310               type = eSymbolTypeTrampoline;
4311               break;
4312             default:
4313               switch (symbol_section->GetType()) {
4314               case lldb::eSectionTypeCode:
4315                 type = eSymbolTypeCode;
4316                 break;
4317               case eSectionTypeData:
4318               case eSectionTypeDataCString:         // Inlined C string data
4319               case eSectionTypeDataCStringPointers: // Pointers to C string
4320                                                     // data
4321               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4322                                                     // the symbol table
4323               case eSectionTypeData4:
4324               case eSectionTypeData8:
4325               case eSectionTypeData16:
4326                 type = eSymbolTypeData;
4327                 break;
4328               default:
4329                 break;
4330               }
4331               break;
4332             }
4333 
4334             if (type == eSymbolTypeInvalid) {
4335               const char *symbol_sect_name =
4336                   symbol_section->GetName().AsCString();
4337               if (symbol_section->IsDescendant(text_section_sp.get())) {
4338                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4339                                             S_ATTR_SELF_MODIFYING_CODE |
4340                                             S_ATTR_SOME_INSTRUCTIONS))
4341                   type = eSymbolTypeData;
4342                 else
4343                   type = eSymbolTypeCode;
4344               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4345                          symbol_section->IsDescendant(
4346                              data_dirty_section_sp.get()) ||
4347                          symbol_section->IsDescendant(
4348                              data_const_section_sp.get())) {
4349                 if (symbol_sect_name &&
4350                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4351                   type = eSymbolTypeRuntime;
4352 
4353                   if (symbol_name) {
4354                     llvm::StringRef symbol_name_ref(symbol_name);
4355                     if (symbol_name_ref.startswith("_OBJC_")) {
4356                       llvm::StringRef g_objc_v2_prefix_class(
4357                           "_OBJC_CLASS_$_");
4358                       llvm::StringRef g_objc_v2_prefix_metaclass(
4359                           "_OBJC_METACLASS_$_");
4360                       llvm::StringRef g_objc_v2_prefix_ivar(
4361                           "_OBJC_IVAR_$_");
4362                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4363                         symbol_name_non_abi_mangled = symbol_name + 1;
4364                         symbol_name =
4365                             symbol_name + g_objc_v2_prefix_class.size();
4366                         type = eSymbolTypeObjCClass;
4367                         demangled_is_synthesized = true;
4368                       } else if (symbol_name_ref.startswith(
4369                                      g_objc_v2_prefix_metaclass)) {
4370                         symbol_name_non_abi_mangled = symbol_name + 1;
4371                         symbol_name =
4372                             symbol_name + g_objc_v2_prefix_metaclass.size();
4373                         type = eSymbolTypeObjCMetaClass;
4374                         demangled_is_synthesized = true;
4375                       } else if (symbol_name_ref.startswith(
4376                                      g_objc_v2_prefix_ivar)) {
4377                         symbol_name_non_abi_mangled = symbol_name + 1;
4378                         symbol_name =
4379                             symbol_name + g_objc_v2_prefix_ivar.size();
4380                         type = eSymbolTypeObjCIVar;
4381                         demangled_is_synthesized = true;
4382                       }
4383                     }
4384                   }
4385                 } else if (symbol_sect_name &&
4386                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4387                                symbol_sect_name) {
4388                   type = eSymbolTypeException;
4389                 } else {
4390                   type = eSymbolTypeData;
4391                 }
4392               } else if (symbol_sect_name &&
4393                          ::strstr(symbol_sect_name, "__IMPORT") ==
4394                              symbol_sect_name) {
4395                 type = eSymbolTypeTrampoline;
4396               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4397                 type = eSymbolTypeRuntime;
4398                 if (symbol_name && symbol_name[0] == '.') {
4399                   llvm::StringRef symbol_name_ref(symbol_name);
4400                   llvm::StringRef g_objc_v1_prefix_class(
4401                       ".objc_class_name_");
4402                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4403                     symbol_name_non_abi_mangled = symbol_name;
4404                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4405                     type = eSymbolTypeObjCClass;
4406                     demangled_is_synthesized = true;
4407                   }
4408                 }
4409               }
4410             }
4411           }
4412         } break;
4413         }
4414       }
4415 
4416       if (!add_nlist) {
4417         sym[sym_idx].Clear();
4418         return true;
4419       }
4420 
4421       uint64_t symbol_value = nlist.n_value;
4422 
4423       if (symbol_name_non_abi_mangled) {
4424         sym[sym_idx].GetMangled().SetMangledName(
4425             ConstString(symbol_name_non_abi_mangled));
4426         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4427       } else {
4428         bool symbol_name_is_mangled = false;
4429 
4430         if (symbol_name && symbol_name[0] == '_') {
4431           symbol_name_is_mangled = symbol_name[1] == '_';
4432           symbol_name++; // Skip the leading underscore
4433         }
4434 
4435         if (symbol_name) {
4436           ConstString const_symbol_name(symbol_name);
4437           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4438                                              symbol_name_is_mangled);
4439         }
4440       }
4441 
4442       if (is_gsym) {
4443         const char *gsym_name = sym[sym_idx]
4444                                     .GetMangled()
4445                                     .GetName(Mangled::ePreferMangled)
4446                                     .GetCString();
4447         if (gsym_name)
4448           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4449       }
4450 
4451       if (symbol_section) {
4452         const addr_t section_file_addr = symbol_section->GetFileAddress();
4453         if (symbol_byte_size == 0 && function_starts_count > 0) {
4454           addr_t symbol_lookup_file_addr = nlist.n_value;
4455           // Do an exact address match for non-ARM addresses, else get the
4456           // closest since the symbol might be a thumb symbol which has an
4457           // address with bit zero set.
4458           FunctionStarts::Entry *func_start_entry =
4459               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4460           if (is_arm && func_start_entry) {
4461             // Verify that the function start address is the symbol address
4462             // (ARM) or the symbol address + 1 (thumb).
4463             if (func_start_entry->addr != symbol_lookup_file_addr &&
4464                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4465               // Not the right entry, NULL it out...
4466               func_start_entry = nullptr;
4467             }
4468           }
4469           if (func_start_entry) {
4470             func_start_entry->data = true;
4471 
4472             addr_t symbol_file_addr = func_start_entry->addr;
4473             if (is_arm)
4474               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4475 
4476             const FunctionStarts::Entry *next_func_start_entry =
4477                 function_starts.FindNextEntry(func_start_entry);
4478             const addr_t section_end_file_addr =
4479                 section_file_addr + symbol_section->GetByteSize();
4480             if (next_func_start_entry) {
4481               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4482               // Be sure the clear the Thumb address bit when we calculate the
4483               // size from the current and next address
4484               if (is_arm)
4485                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4486               symbol_byte_size = std::min<lldb::addr_t>(
4487                   next_symbol_file_addr - symbol_file_addr,
4488                   section_end_file_addr - symbol_file_addr);
4489             } else {
4490               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4491             }
4492           }
4493         }
4494         symbol_value -= section_file_addr;
4495       }
4496 
4497       if (!is_debug) {
4498         if (type == eSymbolTypeCode) {
4499           // See if we can find a N_FUN entry for any code symbols. If we do
4500           // find a match, and the name matches, then we can merge the two into
4501           // just the function symbol to avoid duplicate entries in the symbol
4502           // table.
4503           std::pair<ValueToSymbolIndexMap::const_iterator,
4504                     ValueToSymbolIndexMap::const_iterator>
4505               range;
4506           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4507           if (range.first != range.second) {
4508             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4509                  pos != range.second; ++pos) {
4510               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4511                   sym[pos->second].GetMangled().GetName(
4512                       Mangled::ePreferMangled)) {
4513                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4514                 // We just need the flags from the linker symbol, so put these
4515                 // flags into the N_FUN flags to avoid duplicate symbols in the
4516                 // symbol table.
4517                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4518                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4519                 if (resolver_addresses.find(nlist.n_value) !=
4520                     resolver_addresses.end())
4521                   sym[pos->second].SetType(eSymbolTypeResolver);
4522                 sym[sym_idx].Clear();
4523                 return true;
4524               }
4525             }
4526           } else {
4527             if (resolver_addresses.find(nlist.n_value) !=
4528                 resolver_addresses.end())
4529               type = eSymbolTypeResolver;
4530           }
4531         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4532                    type == eSymbolTypeObjCMetaClass ||
4533                    type == eSymbolTypeObjCIVar) {
4534           // See if we can find a N_STSYM entry for any data symbols. If we do
4535           // find a match, and the name matches, then we can merge the two into
4536           // just the Static symbol to avoid duplicate entries in the symbol
4537           // table.
4538           std::pair<ValueToSymbolIndexMap::const_iterator,
4539                     ValueToSymbolIndexMap::const_iterator>
4540               range;
4541           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4542           if (range.first != range.second) {
4543             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4544                  pos != range.second; ++pos) {
4545               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4546                   sym[pos->second].GetMangled().GetName(
4547                       Mangled::ePreferMangled)) {
4548                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4549                 // We just need the flags from the linker symbol, so put these
4550                 // flags into the N_STSYM flags to avoid duplicate symbols in
4551                 // the symbol table.
4552                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4553                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4554                 sym[sym_idx].Clear();
4555                 return true;
4556               }
4557             }
4558           } else {
4559             // Combine N_GSYM stab entries with the non stab symbol.
4560             const char *gsym_name = sym[sym_idx]
4561                                         .GetMangled()
4562                                         .GetName(Mangled::ePreferMangled)
4563                                         .GetCString();
4564             if (gsym_name) {
4565               ConstNameToSymbolIndexMap::const_iterator pos =
4566                   N_GSYM_name_to_sym_idx.find(gsym_name);
4567               if (pos != N_GSYM_name_to_sym_idx.end()) {
4568                 const uint32_t GSYM_sym_idx = pos->second;
4569                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4570                 // Copy the address, because often the N_GSYM address has an
4571                 // invalid address of zero when the global is a common symbol.
4572                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4573                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4574                 add_symbol_addr(
4575                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4576                 // We just need the flags from the linker symbol, so put these
4577                 // flags into the N_GSYM flags to avoid duplicate symbols in
4578                 // the symbol table.
4579                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4580                 sym[sym_idx].Clear();
4581                 return true;
4582               }
4583             }
4584           }
4585         }
4586       }
4587 
4588       sym[sym_idx].SetID(nlist_idx);
4589       sym[sym_idx].SetType(type);
4590       if (set_value) {
4591         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4592         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4593         if (symbol_section)
4594           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4595       }
4596       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4597       if (nlist.n_desc & N_WEAK_REF)
4598         sym[sym_idx].SetIsWeak(true);
4599 
4600       if (symbol_byte_size > 0)
4601         sym[sym_idx].SetByteSize(symbol_byte_size);
4602 
4603       if (demangled_is_synthesized)
4604         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4605 
4606       ++sym_idx;
4607       return true;
4608     };
4609 
4610     // First parse all the nlists but don't process them yet. See the next
4611     // comment for an explanation why.
4612     std::vector<struct nlist_64> nlists;
4613     nlists.reserve(symtab_load_command.nsyms);
4614     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4615       if (auto nlist =
4616               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4617         nlists.push_back(*nlist);
4618       else
4619         break;
4620     }
4621 
4622     // Now parse all the debug symbols. This is needed to merge non-debug
4623     // symbols in the next step. Non-debug symbols are always coalesced into
4624     // the debug symbol. Doing this in one step would mean that some symbols
4625     // won't be merged.
4626     nlist_idx = 0;
4627     for (auto &nlist : nlists) {
4628       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4629         break;
4630     }
4631 
4632     // Finally parse all the non debug symbols.
4633     nlist_idx = 0;
4634     for (auto &nlist : nlists) {
4635       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4636         break;
4637     }
4638 
4639     for (const auto &pos : reexport_shlib_needs_fixup) {
4640       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4641       if (undef_pos != undefined_name_to_desc.end()) {
4642         const uint8_t dylib_ordinal =
4643             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4644         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4645           sym[pos.first].SetReExportedSymbolSharedLibrary(
4646               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4647       }
4648     }
4649   }
4650 
4651   // Count how many trie symbols we'll add to the symbol table
4652   int trie_symbol_table_augment_count = 0;
4653   for (auto &e : external_sym_trie_entries) {
4654     if (symbols_added.find(e.entry.address) == symbols_added.end())
4655       trie_symbol_table_augment_count++;
4656   }
4657 
4658   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4659     num_syms = sym_idx + trie_symbol_table_augment_count;
4660     sym = symtab->Resize(num_syms);
4661   }
4662   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4663 
4664   // Add symbols from the trie to the symbol table.
4665   for (auto &e : external_sym_trie_entries) {
4666     if (symbols_added.find(e.entry.address) != symbols_added.end())
4667       continue;
4668 
4669     // Find the section that this trie address is in, use that to annotate
4670     // symbol type as we add the trie address and name to the symbol table.
4671     Address symbol_addr;
4672     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4673       SectionSP symbol_section(symbol_addr.GetSection());
4674       const char *symbol_name = e.entry.name.GetCString();
4675       bool demangled_is_synthesized = false;
4676       SymbolType type =
4677           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4678                         data_section_sp, data_dirty_section_sp,
4679                         data_const_section_sp, symbol_section);
4680 
4681       sym[sym_idx].SetType(type);
4682       if (symbol_section) {
4683         sym[sym_idx].SetID(synthetic_sym_id++);
4684         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4685         if (demangled_is_synthesized)
4686           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4687         sym[sym_idx].SetIsSynthetic(true);
4688         sym[sym_idx].SetExternal(true);
4689         sym[sym_idx].GetAddressRef() = symbol_addr;
4690         add_symbol_addr(symbol_addr.GetFileAddress());
4691         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4692           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4693         ++sym_idx;
4694       }
4695     }
4696   }
4697 
4698   if (function_starts_count > 0) {
4699     uint32_t num_synthetic_function_symbols = 0;
4700     for (i = 0; i < function_starts_count; ++i) {
4701       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4702           symbols_added.end())
4703         ++num_synthetic_function_symbols;
4704     }
4705 
4706     if (num_synthetic_function_symbols > 0) {
4707       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4708         num_syms = sym_idx + num_synthetic_function_symbols;
4709         sym = symtab->Resize(num_syms);
4710       }
4711       for (i = 0; i < function_starts_count; ++i) {
4712         const FunctionStarts::Entry *func_start_entry =
4713             function_starts.GetEntryAtIndex(i);
4714         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4715           addr_t symbol_file_addr = func_start_entry->addr;
4716           uint32_t symbol_flags = 0;
4717           if (func_start_entry->data)
4718             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4719           Address symbol_addr;
4720           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4721             SectionSP symbol_section(symbol_addr.GetSection());
4722             uint32_t symbol_byte_size = 0;
4723             if (symbol_section) {
4724               const addr_t section_file_addr = symbol_section->GetFileAddress();
4725               const FunctionStarts::Entry *next_func_start_entry =
4726                   function_starts.FindNextEntry(func_start_entry);
4727               const addr_t section_end_file_addr =
4728                   section_file_addr + symbol_section->GetByteSize();
4729               if (next_func_start_entry) {
4730                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4731                 if (is_arm)
4732                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4733                 symbol_byte_size = std::min<lldb::addr_t>(
4734                     next_symbol_file_addr - symbol_file_addr,
4735                     section_end_file_addr - symbol_file_addr);
4736               } else {
4737                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4738               }
4739               sym[sym_idx].SetID(synthetic_sym_id++);
4740               // Don't set the name for any synthetic symbols, the Symbol
4741               // object will generate one if needed when the name is accessed
4742               // via accessors.
4743               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4744               sym[sym_idx].SetType(eSymbolTypeCode);
4745               sym[sym_idx].SetIsSynthetic(true);
4746               sym[sym_idx].GetAddressRef() = symbol_addr;
4747               add_symbol_addr(symbol_addr.GetFileAddress());
4748               if (symbol_flags)
4749                 sym[sym_idx].SetFlags(symbol_flags);
4750               if (symbol_byte_size)
4751                 sym[sym_idx].SetByteSize(symbol_byte_size);
4752               ++sym_idx;
4753             }
4754           }
4755         }
4756       }
4757     }
4758   }
4759 
4760   // Trim our symbols down to just what we ended up with after removing any
4761   // symbols.
4762   if (sym_idx < num_syms) {
4763     num_syms = sym_idx;
4764     sym = symtab->Resize(num_syms);
4765   }
4766 
4767   // Now synthesize indirect symbols
4768   if (m_dysymtab.nindirectsyms != 0) {
4769     if (indirect_symbol_index_data.GetByteSize()) {
4770       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4771           m_nlist_idx_to_sym_idx.end();
4772 
4773       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4774            ++sect_idx) {
4775         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4776             S_SYMBOL_STUBS) {
4777           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4778           if (symbol_stub_byte_size == 0)
4779             continue;
4780 
4781           const uint32_t num_symbol_stubs =
4782               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4783 
4784           if (num_symbol_stubs == 0)
4785             continue;
4786 
4787           const uint32_t symbol_stub_index_offset =
4788               m_mach_sections[sect_idx].reserved1;
4789           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4790             const uint32_t symbol_stub_index =
4791                 symbol_stub_index_offset + stub_idx;
4792             const lldb::addr_t symbol_stub_addr =
4793                 m_mach_sections[sect_idx].addr +
4794                 (stub_idx * symbol_stub_byte_size);
4795             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4796             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4797                     symbol_stub_offset, 4)) {
4798               const uint32_t stub_sym_id =
4799                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4800               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4801                 continue;
4802 
4803               NListIndexToSymbolIndexMap::const_iterator index_pos =
4804                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4805               Symbol *stub_symbol = nullptr;
4806               if (index_pos != end_index_pos) {
4807                 // We have a remapping from the original nlist index to a
4808                 // current symbol index, so just look this up by index
4809                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4810               } else {
4811                 // We need to lookup a symbol using the original nlist symbol
4812                 // index since this index is coming from the S_SYMBOL_STUBS
4813                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4814               }
4815 
4816               if (stub_symbol) {
4817                 Address so_addr(symbol_stub_addr, section_list);
4818 
4819                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4820                   // Change the external symbol into a trampoline that makes
4821                   // sense These symbols were N_UNDF N_EXT, and are useless
4822                   // to us, so we can re-use them so we don't have to make up
4823                   // a synthetic symbol for no good reason.
4824                   if (resolver_addresses.find(symbol_stub_addr) ==
4825                       resolver_addresses.end())
4826                     stub_symbol->SetType(eSymbolTypeTrampoline);
4827                   else
4828                     stub_symbol->SetType(eSymbolTypeResolver);
4829                   stub_symbol->SetExternal(false);
4830                   stub_symbol->GetAddressRef() = so_addr;
4831                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4832                 } else {
4833                   // Make a synthetic symbol to describe the trampoline stub
4834                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4835                   if (sym_idx >= num_syms) {
4836                     sym = symtab->Resize(++num_syms);
4837                     stub_symbol = nullptr; // this pointer no longer valid
4838                   }
4839                   sym[sym_idx].SetID(synthetic_sym_id++);
4840                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4841                   if (resolver_addresses.find(symbol_stub_addr) ==
4842                       resolver_addresses.end())
4843                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4844                   else
4845                     sym[sym_idx].SetType(eSymbolTypeResolver);
4846                   sym[sym_idx].SetIsSynthetic(true);
4847                   sym[sym_idx].GetAddressRef() = so_addr;
4848                   add_symbol_addr(so_addr.GetFileAddress());
4849                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4850                   ++sym_idx;
4851                 }
4852               } else {
4853                 if (log)
4854                   log->Warning("symbol stub referencing symbol table symbol "
4855                                "%u that isn't in our minimal symbol table, "
4856                                "fix this!!!",
4857                                stub_sym_id);
4858               }
4859             }
4860           }
4861         }
4862       }
4863     }
4864   }
4865 
4866   if (!reexport_trie_entries.empty()) {
4867     for (const auto &e : reexport_trie_entries) {
4868       if (e.entry.import_name) {
4869         // Only add indirect symbols from the Trie entries if we didn't have
4870         // a N_INDR nlist entry for this already
4871         if (indirect_symbol_names.find(e.entry.name) ==
4872             indirect_symbol_names.end()) {
4873           // Make a synthetic symbol to describe re-exported symbol.
4874           if (sym_idx >= num_syms)
4875             sym = symtab->Resize(++num_syms);
4876           sym[sym_idx].SetID(synthetic_sym_id++);
4877           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4878           sym[sym_idx].SetType(eSymbolTypeReExported);
4879           sym[sym_idx].SetIsSynthetic(true);
4880           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4881           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4882             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4883                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4884           }
4885           ++sym_idx;
4886         }
4887       }
4888     }
4889   }
4890 
4891   //        StreamFile s(stdout, false);
4892   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4893   //        symtab->Dump(&s, NULL, eSortOrderNone);
4894   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4895   // sizes
4896   symtab->CalculateSymbolSizes();
4897 
4898   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4899   //        symtab->Dump(&s, NULL, eSortOrderNone);
4900 
4901   return symtab->GetNumSymbols();
4902 }
4903 
4904 void ObjectFileMachO::Dump(Stream *s) {
4905   ModuleSP module_sp(GetModule());
4906   if (module_sp) {
4907     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4908     s->Printf("%p: ", static_cast<void *>(this));
4909     s->Indent();
4910     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4911       s->PutCString("ObjectFileMachO64");
4912     else
4913       s->PutCString("ObjectFileMachO32");
4914 
4915     *s << ", file = '" << m_file;
4916     ModuleSpecList all_specs;
4917     ModuleSpec base_spec;
4918     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4919                     base_spec, all_specs);
4920     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4921       *s << "', triple";
4922       if (e)
4923         s->Printf("[%d]", i);
4924       *s << " = ";
4925       *s << all_specs.GetModuleSpecRefAtIndex(i)
4926                 .GetArchitecture()
4927                 .GetTriple()
4928                 .getTriple();
4929     }
4930     *s << "\n";
4931     SectionList *sections = GetSectionList();
4932     if (sections)
4933       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4934                      UINT32_MAX);
4935 
4936     if (m_symtab_up)
4937       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4938   }
4939 }
4940 
4941 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4942                               const lldb_private::DataExtractor &data,
4943                               lldb::offset_t lc_offset) {
4944   uint32_t i;
4945   llvm::MachO::uuid_command load_cmd;
4946 
4947   lldb::offset_t offset = lc_offset;
4948   for (i = 0; i < header.ncmds; ++i) {
4949     const lldb::offset_t cmd_offset = offset;
4950     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4951       break;
4952 
4953     if (load_cmd.cmd == LC_UUID) {
4954       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4955 
4956       if (uuid_bytes) {
4957         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4958         // We pretend these object files have no UUID to prevent crashing.
4959 
4960         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4961                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4962                                        0xbb, 0x14, 0xf0, 0x0d};
4963 
4964         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4965           return UUID();
4966 
4967         return UUID::fromOptionalData(uuid_bytes, 16);
4968       }
4969       return UUID();
4970     }
4971     offset = cmd_offset + load_cmd.cmdsize;
4972   }
4973   return UUID();
4974 }
4975 
4976 static llvm::StringRef GetOSName(uint32_t cmd) {
4977   switch (cmd) {
4978   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4979     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4980   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4981     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4982   case llvm::MachO::LC_VERSION_MIN_TVOS:
4983     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4984   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4985     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4986   default:
4987     llvm_unreachable("unexpected LC_VERSION load command");
4988   }
4989 }
4990 
4991 namespace {
4992 struct OSEnv {
4993   llvm::StringRef os_type;
4994   llvm::StringRef environment;
4995   OSEnv(uint32_t cmd) {
4996     switch (cmd) {
4997     case llvm::MachO::PLATFORM_MACOS:
4998       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4999       return;
5000     case llvm::MachO::PLATFORM_IOS:
5001       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
5002       return;
5003     case llvm::MachO::PLATFORM_TVOS:
5004       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
5005       return;
5006     case llvm::MachO::PLATFORM_WATCHOS:
5007       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
5008       return;
5009     // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
5010     // NEED_BRIDGEOS_TRIPLE
5011     // case llvm::MachO::PLATFORM_BRIDGEOS:
5012     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
5013     //   return;
5014     // case llvm::MachO::PLATFORM_DRIVERKIT:
5015     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
5016     //   return;
5017     case llvm::MachO::PLATFORM_MACCATALYST:
5018       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
5019       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
5020       return;
5021     case llvm::MachO::PLATFORM_IOSSIMULATOR:
5022       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
5023       environment =
5024           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5025       return;
5026     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
5027       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
5028       environment =
5029           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5030       return;
5031     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
5032       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
5033       environment =
5034           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
5035       return;
5036     default: {
5037       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5038                                                       LIBLLDB_LOG_PROCESS));
5039       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
5040     }
5041     }
5042   }
5043 };
5044 
5045 struct MinOS {
5046   uint32_t major_version, minor_version, patch_version;
5047   MinOS(uint32_t version)
5048       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
5049         patch_version(version & 0xffu) {}
5050 };
5051 } // namespace
5052 
5053 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
5054                                       const lldb_private::DataExtractor &data,
5055                                       lldb::offset_t lc_offset,
5056                                       ModuleSpec &base_spec,
5057                                       lldb_private::ModuleSpecList &all_specs) {
5058   auto &base_arch = base_spec.GetArchitecture();
5059   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
5060   if (!base_arch.IsValid())
5061     return;
5062 
5063   bool found_any = false;
5064   auto add_triple = [&](const llvm::Triple &triple) {
5065     auto spec = base_spec;
5066     spec.GetArchitecture().GetTriple() = triple;
5067     if (spec.GetArchitecture().IsValid()) {
5068       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
5069       all_specs.Append(spec);
5070       found_any = true;
5071     }
5072   };
5073 
5074   // Set OS to an unspecified unknown or a "*" so it can match any OS
5075   llvm::Triple base_triple = base_arch.GetTriple();
5076   base_triple.setOS(llvm::Triple::UnknownOS);
5077   base_triple.setOSName(llvm::StringRef());
5078 
5079   if (header.filetype == MH_PRELOAD) {
5080     if (header.cputype == CPU_TYPE_ARM) {
5081       // If this is a 32-bit arm binary, and it's a standalone binary, force
5082       // the Vendor to Apple so we don't accidentally pick up the generic
5083       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
5084       // frame pointer register; most other armv7 ABIs use a combination of
5085       // r7 and r11.
5086       base_triple.setVendor(llvm::Triple::Apple);
5087     } else {
5088       // Set vendor to an unspecified unknown or a "*" so it can match any
5089       // vendor This is required for correct behavior of EFI debugging on
5090       // x86_64
5091       base_triple.setVendor(llvm::Triple::UnknownVendor);
5092       base_triple.setVendorName(llvm::StringRef());
5093     }
5094     return add_triple(base_triple);
5095   }
5096 
5097   llvm::MachO::load_command load_cmd;
5098 
5099   // See if there is an LC_VERSION_MIN_* load command that can give
5100   // us the OS type.
5101   lldb::offset_t offset = lc_offset;
5102   for (uint32_t i = 0; i < header.ncmds; ++i) {
5103     const lldb::offset_t cmd_offset = offset;
5104     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5105       break;
5106 
5107     llvm::MachO::version_min_command version_min;
5108     switch (load_cmd.cmd) {
5109     case llvm::MachO::LC_VERSION_MIN_MACOSX:
5110     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5111     case llvm::MachO::LC_VERSION_MIN_TVOS:
5112     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5113       if (load_cmd.cmdsize != sizeof(version_min))
5114         break;
5115       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5116                             data.GetByteOrder(), &version_min) == 0)
5117         break;
5118       MinOS min_os(version_min.version);
5119       llvm::SmallString<32> os_name;
5120       llvm::raw_svector_ostream os(os_name);
5121       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5122          << min_os.minor_version << '.' << min_os.patch_version;
5123 
5124       auto triple = base_triple;
5125       triple.setOSName(os.str());
5126 
5127       // Disambiguate legacy simulator platforms.
5128       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5129           (base_triple.getArch() == llvm::Triple::x86_64 ||
5130            base_triple.getArch() == llvm::Triple::x86)) {
5131         // The combination of legacy LC_VERSION_MIN load command and
5132         // x86 architecture always indicates a simulator environment.
5133         // The combination of LC_VERSION_MIN and arm architecture only
5134         // appears for native binaries. Back-deploying simulator
5135         // binaries on Apple Silicon Macs use the modern unambigous
5136         // LC_BUILD_VERSION load commands; no special handling required.
5137         triple.setEnvironment(llvm::Triple::Simulator);
5138       }
5139       add_triple(triple);
5140       break;
5141     }
5142     default:
5143       break;
5144     }
5145 
5146     offset = cmd_offset + load_cmd.cmdsize;
5147   }
5148 
5149   // See if there are LC_BUILD_VERSION load commands that can give
5150   // us the OS type.
5151   offset = lc_offset;
5152   for (uint32_t i = 0; i < header.ncmds; ++i) {
5153     const lldb::offset_t cmd_offset = offset;
5154     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
5155       break;
5156 
5157     do {
5158       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5159         llvm::MachO::build_version_command build_version;
5160         if (load_cmd.cmdsize < sizeof(build_version)) {
5161           // Malformed load command.
5162           break;
5163         }
5164         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5165                               data.GetByteOrder(), &build_version) == 0)
5166           break;
5167         MinOS min_os(build_version.minos);
5168         OSEnv os_env(build_version.platform);
5169         llvm::SmallString<16> os_name;
5170         llvm::raw_svector_ostream os(os_name);
5171         os << os_env.os_type << min_os.major_version << '.'
5172            << min_os.minor_version << '.' << min_os.patch_version;
5173         auto triple = base_triple;
5174         triple.setOSName(os.str());
5175         os_name.clear();
5176         if (!os_env.environment.empty())
5177           triple.setEnvironmentName(os_env.environment);
5178         add_triple(triple);
5179       }
5180     } while (0);
5181     offset = cmd_offset + load_cmd.cmdsize;
5182   }
5183 
5184   if (!found_any) {
5185     if (header.filetype == MH_KEXT_BUNDLE) {
5186       base_triple.setVendor(llvm::Triple::Apple);
5187       add_triple(base_triple);
5188     } else {
5189       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5190       // so lets not say our Vendor is Apple, leave it as an unspecified
5191       // unknown.
5192       base_triple.setVendor(llvm::Triple::UnknownVendor);
5193       base_triple.setVendorName(llvm::StringRef());
5194       add_triple(base_triple);
5195     }
5196   }
5197 }
5198 
5199 ArchSpec ObjectFileMachO::GetArchitecture(
5200     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5201     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5202   ModuleSpecList all_specs;
5203   ModuleSpec base_spec;
5204   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5205                   base_spec, all_specs);
5206 
5207   // If the object file offers multiple alternative load commands,
5208   // pick the one that matches the module.
5209   if (module_sp) {
5210     const ArchSpec &module_arch = module_sp->GetArchitecture();
5211     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5212       ArchSpec mach_arch =
5213           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5214       if (module_arch.IsCompatibleMatch(mach_arch))
5215         return mach_arch;
5216     }
5217   }
5218 
5219   // Return the first arch we found.
5220   if (all_specs.GetSize() == 0)
5221     return {};
5222   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5223 }
5224 
5225 UUID ObjectFileMachO::GetUUID() {
5226   ModuleSP module_sp(GetModule());
5227   if (module_sp) {
5228     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5229     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5230     return GetUUID(m_header, m_data, offset);
5231   }
5232   return UUID();
5233 }
5234 
5235 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5236   uint32_t count = 0;
5237   ModuleSP module_sp(GetModule());
5238   if (module_sp) {
5239     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5240     llvm::MachO::load_command load_cmd;
5241     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5242     std::vector<std::string> rpath_paths;
5243     std::vector<std::string> rpath_relative_paths;
5244     std::vector<std::string> at_exec_relative_paths;
5245     uint32_t i;
5246     for (i = 0; i < m_header.ncmds; ++i) {
5247       const uint32_t cmd_offset = offset;
5248       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5249         break;
5250 
5251       switch (load_cmd.cmd) {
5252       case LC_RPATH:
5253       case LC_LOAD_DYLIB:
5254       case LC_LOAD_WEAK_DYLIB:
5255       case LC_REEXPORT_DYLIB:
5256       case LC_LOAD_DYLINKER:
5257       case LC_LOADFVMLIB:
5258       case LC_LOAD_UPWARD_DYLIB: {
5259         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5260         const char *path = m_data.PeekCStr(name_offset);
5261         if (path) {
5262           if (load_cmd.cmd == LC_RPATH)
5263             rpath_paths.push_back(path);
5264           else {
5265             if (path[0] == '@') {
5266               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5267                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5268               else if (strncmp(path, "@executable_path",
5269                                strlen("@executable_path")) == 0)
5270                 at_exec_relative_paths.push_back(path +
5271                                                  strlen("@executable_path"));
5272             } else {
5273               FileSpec file_spec(path);
5274               if (files.AppendIfUnique(file_spec))
5275                 count++;
5276             }
5277           }
5278         }
5279       } break;
5280 
5281       default:
5282         break;
5283       }
5284       offset = cmd_offset + load_cmd.cmdsize;
5285     }
5286 
5287     FileSpec this_file_spec(m_file);
5288     FileSystem::Instance().Resolve(this_file_spec);
5289 
5290     if (!rpath_paths.empty()) {
5291       // Fixup all LC_RPATH values to be absolute paths
5292       std::string loader_path("@loader_path");
5293       std::string executable_path("@executable_path");
5294       for (auto &rpath : rpath_paths) {
5295         if (llvm::StringRef(rpath).startswith(loader_path)) {
5296           rpath.erase(0, loader_path.size());
5297           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5298         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5299           rpath.erase(0, executable_path.size());
5300           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5301         }
5302       }
5303 
5304       for (const auto &rpath_relative_path : rpath_relative_paths) {
5305         for (const auto &rpath : rpath_paths) {
5306           std::string path = rpath;
5307           path += rpath_relative_path;
5308           // It is OK to resolve this path because we must find a file on disk
5309           // for us to accept it anyway if it is rpath relative.
5310           FileSpec file_spec(path);
5311           FileSystem::Instance().Resolve(file_spec);
5312           if (FileSystem::Instance().Exists(file_spec) &&
5313               files.AppendIfUnique(file_spec)) {
5314             count++;
5315             break;
5316           }
5317         }
5318       }
5319     }
5320 
5321     // We may have @executable_paths but no RPATHS.  Figure those out here.
5322     // Only do this if this object file is the executable.  We have no way to
5323     // get back to the actual executable otherwise, so we won't get the right
5324     // path.
5325     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5326       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5327       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5328         FileSpec file_spec =
5329             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5330         if (FileSystem::Instance().Exists(file_spec) &&
5331             files.AppendIfUnique(file_spec))
5332           count++;
5333       }
5334     }
5335   }
5336   return count;
5337 }
5338 
5339 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5340   // If the object file is not an executable it can't hold the entry point.
5341   // m_entry_point_address is initialized to an invalid address, so we can just
5342   // return that. If m_entry_point_address is valid it means we've found it
5343   // already, so return the cached value.
5344 
5345   if ((!IsExecutable() && !IsDynamicLoader()) ||
5346       m_entry_point_address.IsValid()) {
5347     return m_entry_point_address;
5348   }
5349 
5350   // Otherwise, look for the UnixThread or Thread command.  The data for the
5351   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5352   //
5353   //  uint32_t flavor  - this is the flavor argument you would pass to
5354   //  thread_get_state
5355   //  uint32_t count   - this is the count of longs in the thread state data
5356   //  struct XXX_thread_state state - this is the structure from
5357   //  <machine/thread_status.h> corresponding to the flavor.
5358   //  <repeat this trio>
5359   //
5360   // So we just keep reading the various register flavors till we find the GPR
5361   // one, then read the PC out of there.
5362   // FIXME: We will need to have a "RegisterContext data provider" class at some
5363   // point that can get all the registers
5364   // out of data in this form & attach them to a given thread.  That should
5365   // underlie the MacOS X User process plugin, and we'll also need it for the
5366   // MacOS X Core File process plugin.  When we have that we can also use it
5367   // here.
5368   //
5369   // For now we hard-code the offsets and flavors we need:
5370   //
5371   //
5372 
5373   ModuleSP module_sp(GetModule());
5374   if (module_sp) {
5375     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5376     llvm::MachO::load_command load_cmd;
5377     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5378     uint32_t i;
5379     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5380     bool done = false;
5381 
5382     for (i = 0; i < m_header.ncmds; ++i) {
5383       const lldb::offset_t cmd_offset = offset;
5384       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5385         break;
5386 
5387       switch (load_cmd.cmd) {
5388       case LC_UNIXTHREAD:
5389       case LC_THREAD: {
5390         while (offset < cmd_offset + load_cmd.cmdsize) {
5391           uint32_t flavor = m_data.GetU32(&offset);
5392           uint32_t count = m_data.GetU32(&offset);
5393           if (count == 0) {
5394             // We've gotten off somehow, log and exit;
5395             return m_entry_point_address;
5396           }
5397 
5398           switch (m_header.cputype) {
5399           case llvm::MachO::CPU_TYPE_ARM:
5400             if (flavor == 1 ||
5401                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5402                              // from mach/arm/thread_status.h
5403             {
5404               offset += 60; // This is the offset of pc in the GPR thread state
5405                             // data structure.
5406               start_address = m_data.GetU32(&offset);
5407               done = true;
5408             }
5409             break;
5410           case llvm::MachO::CPU_TYPE_ARM64:
5411           case llvm::MachO::CPU_TYPE_ARM64_32:
5412             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5413             {
5414               offset += 256; // This is the offset of pc in the GPR thread state
5415                              // data structure.
5416               start_address = m_data.GetU64(&offset);
5417               done = true;
5418             }
5419             break;
5420           case llvm::MachO::CPU_TYPE_I386:
5421             if (flavor ==
5422                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5423             {
5424               offset += 40; // This is the offset of eip in the GPR thread state
5425                             // data structure.
5426               start_address = m_data.GetU32(&offset);
5427               done = true;
5428             }
5429             break;
5430           case llvm::MachO::CPU_TYPE_X86_64:
5431             if (flavor ==
5432                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5433             {
5434               offset += 16 * 8; // This is the offset of rip in the GPR thread
5435                                 // state data structure.
5436               start_address = m_data.GetU64(&offset);
5437               done = true;
5438             }
5439             break;
5440           default:
5441             return m_entry_point_address;
5442           }
5443           // Haven't found the GPR flavor yet, skip over the data for this
5444           // flavor:
5445           if (done)
5446             break;
5447           offset += count * 4;
5448         }
5449       } break;
5450       case LC_MAIN: {
5451         ConstString text_segment_name("__TEXT");
5452         uint64_t entryoffset = m_data.GetU64(&offset);
5453         SectionSP text_segment_sp =
5454             GetSectionList()->FindSectionByName(text_segment_name);
5455         if (text_segment_sp) {
5456           done = true;
5457           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5458         }
5459       } break;
5460 
5461       default:
5462         break;
5463       }
5464       if (done)
5465         break;
5466 
5467       // Go to the next load command:
5468       offset = cmd_offset + load_cmd.cmdsize;
5469     }
5470 
5471     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5472       if (GetSymtab()) {
5473         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5474             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5475             Symtab::eDebugAny, Symtab::eVisibilityAny);
5476         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5477           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5478         }
5479       }
5480     }
5481 
5482     if (start_address != LLDB_INVALID_ADDRESS) {
5483       // We got the start address from the load commands, so now resolve that
5484       // address in the sections of this ObjectFile:
5485       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5486               start_address, GetSectionList())) {
5487         m_entry_point_address.Clear();
5488       }
5489     } else {
5490       // We couldn't read the UnixThread load command - maybe it wasn't there.
5491       // As a fallback look for the "start" symbol in the main executable.
5492 
5493       ModuleSP module_sp(GetModule());
5494 
5495       if (module_sp) {
5496         SymbolContextList contexts;
5497         SymbolContext context;
5498         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5499                                               eSymbolTypeCode, contexts);
5500         if (contexts.GetSize()) {
5501           if (contexts.GetContextAtIndex(0, context))
5502             m_entry_point_address = context.symbol->GetAddress();
5503         }
5504       }
5505     }
5506   }
5507 
5508   return m_entry_point_address;
5509 }
5510 
5511 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5512   lldb_private::Address header_addr;
5513   SectionList *section_list = GetSectionList();
5514   if (section_list) {
5515     SectionSP text_segment_sp(
5516         section_list->FindSectionByName(GetSegmentNameTEXT()));
5517     if (text_segment_sp) {
5518       header_addr.SetSection(text_segment_sp);
5519       header_addr.SetOffset(0);
5520     }
5521   }
5522   return header_addr;
5523 }
5524 
5525 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5526   ModuleSP module_sp(GetModule());
5527   if (module_sp) {
5528     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5529     if (!m_thread_context_offsets_valid) {
5530       m_thread_context_offsets_valid = true;
5531       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5532       FileRangeArray::Entry file_range;
5533       llvm::MachO::thread_command thread_cmd;
5534       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5535         const uint32_t cmd_offset = offset;
5536         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5537           break;
5538 
5539         if (thread_cmd.cmd == LC_THREAD) {
5540           file_range.SetRangeBase(offset);
5541           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5542           m_thread_context_offsets.Append(file_range);
5543         }
5544         offset = cmd_offset + thread_cmd.cmdsize;
5545       }
5546     }
5547   }
5548   return m_thread_context_offsets.GetSize();
5549 }
5550 
5551 std::string ObjectFileMachO::GetIdentifierString() {
5552   std::string result;
5553   ModuleSP module_sp(GetModule());
5554   if (module_sp) {
5555     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5556 
5557     // First, look over the load commands for an LC_NOTE load command with
5558     // data_owner string "kern ver str" & use that if found.
5559     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5560     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5561       const uint32_t cmd_offset = offset;
5562       llvm::MachO::load_command lc;
5563       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5564         break;
5565       if (lc.cmd == LC_NOTE) {
5566         char data_owner[17];
5567         m_data.CopyData(offset, 16, data_owner);
5568         data_owner[16] = '\0';
5569         offset += 16;
5570         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5571         uint64_t size = m_data.GetU64_unchecked(&offset);
5572 
5573         // "kern ver str" has a uint32_t version and then a nul terminated
5574         // c-string.
5575         if (strcmp("kern ver str", data_owner) == 0) {
5576           offset = fileoff;
5577           uint32_t version;
5578           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5579             if (version == 1) {
5580               uint32_t strsize = size - sizeof(uint32_t);
5581               char *buf = (char *)malloc(strsize);
5582               if (buf) {
5583                 m_data.CopyData(offset, strsize, buf);
5584                 buf[strsize - 1] = '\0';
5585                 result = buf;
5586                 if (buf)
5587                   free(buf);
5588                 return result;
5589               }
5590             }
5591           }
5592         }
5593       }
5594       offset = cmd_offset + lc.cmdsize;
5595     }
5596 
5597     // Second, make a pass over the load commands looking for an obsolete
5598     // LC_IDENT load command.
5599     offset = MachHeaderSizeFromMagic(m_header.magic);
5600     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5601       const uint32_t cmd_offset = offset;
5602       llvm::MachO::ident_command ident_command;
5603       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5604         break;
5605       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5606         char *buf = (char *)malloc(ident_command.cmdsize);
5607         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5608                                               buf) == ident_command.cmdsize) {
5609           buf[ident_command.cmdsize - 1] = '\0';
5610           result = buf;
5611         }
5612         if (buf)
5613           free(buf);
5614       }
5615       offset = cmd_offset + ident_command.cmdsize;
5616     }
5617   }
5618   return result;
5619 }
5620 
5621 addr_t ObjectFileMachO::GetAddressMask() {
5622   addr_t mask = 0;
5623   ModuleSP module_sp(GetModule());
5624   if (module_sp) {
5625     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5626     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5627     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5628       const uint32_t cmd_offset = offset;
5629       llvm::MachO::load_command lc;
5630       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5631         break;
5632       if (lc.cmd == LC_NOTE) {
5633         char data_owner[17];
5634         m_data.CopyData(offset, 16, data_owner);
5635         data_owner[16] = '\0';
5636         offset += 16;
5637         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5638 
5639         // "addrable bits" has a uint32_t version and a uint32_t
5640         // number of bits used in addressing.
5641         if (strcmp("addrable bits", data_owner) == 0) {
5642           offset = fileoff;
5643           uint32_t version;
5644           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5645             if (version == 3) {
5646               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5647               if (num_addr_bits != 0) {
5648                 mask = ~((1ULL << num_addr_bits) - 1);
5649               }
5650               break;
5651             }
5652           }
5653         }
5654       }
5655       offset = cmd_offset + lc.cmdsize;
5656     }
5657   }
5658   return mask;
5659 }
5660 
5661 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid,
5662                                                 ObjectFile::BinaryType &type) {
5663   address = LLDB_INVALID_ADDRESS;
5664   uuid.Clear();
5665   ModuleSP module_sp(GetModule());
5666   if (module_sp) {
5667     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5668     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5669     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5670       const uint32_t cmd_offset = offset;
5671       llvm::MachO::load_command lc;
5672       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5673         break;
5674       if (lc.cmd == LC_NOTE) {
5675         char data_owner[17];
5676         memset(data_owner, 0, sizeof(data_owner));
5677         m_data.CopyData(offset, 16, data_owner);
5678         offset += 16;
5679         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5680         uint64_t size = m_data.GetU64_unchecked(&offset);
5681 
5682         // "main bin spec" (main binary specification) data payload is
5683         // formatted:
5684         //    uint32_t version       [currently 1]
5685         //    uint32_t type          [0 == unspecified, 1 == kernel,
5686         //                            2 == user process, 3 == firmware ]
5687         //    uint64_t address       [ UINT64_MAX if address not specified ]
5688         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5689         //    uint32_t log2_pagesize [ process page size in log base
5690         //                             2, e.g. 4k pages are 12.
5691         //                             0 for unspecified ]
5692         //    uint32_t unused        [ for alignment ]
5693 
5694         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5695           offset = fileoff;
5696           uint32_t version;
5697           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5698             uint32_t binspec_type = 0;
5699             uuid_t raw_uuid;
5700             memset(raw_uuid, 0, sizeof(uuid_t));
5701 
5702             if (m_data.GetU32(&offset, &binspec_type, 1) &&
5703                 m_data.GetU64(&offset, &address, 1) &&
5704                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5705               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5706               // convert the "main bin spec" type into our
5707               // ObjectFile::BinaryType enum
5708               switch (binspec_type) {
5709               case 0:
5710                 type = eBinaryTypeUnknown;
5711                 break;
5712               case 1:
5713                 type = eBinaryTypeKernel;
5714                 break;
5715               case 2:
5716                 type = eBinaryTypeUser;
5717                 break;
5718               case 3:
5719                 type = eBinaryTypeStandalone;
5720                 break;
5721               }
5722               return true;
5723             }
5724           }
5725         }
5726       }
5727       offset = cmd_offset + lc.cmdsize;
5728     }
5729   }
5730   return false;
5731 }
5732 
5733 lldb::RegisterContextSP
5734 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5735                                          lldb_private::Thread &thread) {
5736   lldb::RegisterContextSP reg_ctx_sp;
5737 
5738   ModuleSP module_sp(GetModule());
5739   if (module_sp) {
5740     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5741     if (!m_thread_context_offsets_valid)
5742       GetNumThreadContexts();
5743 
5744     const FileRangeArray::Entry *thread_context_file_range =
5745         m_thread_context_offsets.GetEntryAtIndex(idx);
5746     if (thread_context_file_range) {
5747 
5748       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5749                          thread_context_file_range->GetByteSize());
5750 
5751       switch (m_header.cputype) {
5752       case llvm::MachO::CPU_TYPE_ARM64:
5753       case llvm::MachO::CPU_TYPE_ARM64_32:
5754         reg_ctx_sp =
5755             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5756         break;
5757 
5758       case llvm::MachO::CPU_TYPE_ARM:
5759         reg_ctx_sp =
5760             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5761         break;
5762 
5763       case llvm::MachO::CPU_TYPE_I386:
5764         reg_ctx_sp =
5765             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5766         break;
5767 
5768       case llvm::MachO::CPU_TYPE_X86_64:
5769         reg_ctx_sp =
5770             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5771         break;
5772       }
5773     }
5774   }
5775   return reg_ctx_sp;
5776 }
5777 
5778 ObjectFile::Type ObjectFileMachO::CalculateType() {
5779   switch (m_header.filetype) {
5780   case MH_OBJECT: // 0x1u
5781     if (GetAddressByteSize() == 4) {
5782       // 32 bit kexts are just object files, but they do have a valid
5783       // UUID load command.
5784       if (GetUUID()) {
5785         // this checking for the UUID load command is not enough we could
5786         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5787         // this is required of kexts
5788         if (m_strata == eStrataInvalid)
5789           m_strata = eStrataKernel;
5790         return eTypeSharedLibrary;
5791       }
5792     }
5793     return eTypeObjectFile;
5794 
5795   case MH_EXECUTE:
5796     return eTypeExecutable; // 0x2u
5797   case MH_FVMLIB:
5798     return eTypeSharedLibrary; // 0x3u
5799   case MH_CORE:
5800     return eTypeCoreFile; // 0x4u
5801   case MH_PRELOAD:
5802     return eTypeSharedLibrary; // 0x5u
5803   case MH_DYLIB:
5804     return eTypeSharedLibrary; // 0x6u
5805   case MH_DYLINKER:
5806     return eTypeDynamicLinker; // 0x7u
5807   case MH_BUNDLE:
5808     return eTypeSharedLibrary; // 0x8u
5809   case MH_DYLIB_STUB:
5810     return eTypeStubLibrary; // 0x9u
5811   case MH_DSYM:
5812     return eTypeDebugInfo; // 0xAu
5813   case MH_KEXT_BUNDLE:
5814     return eTypeSharedLibrary; // 0xBu
5815   default:
5816     break;
5817   }
5818   return eTypeUnknown;
5819 }
5820 
5821 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5822   switch (m_header.filetype) {
5823   case MH_OBJECT: // 0x1u
5824   {
5825     // 32 bit kexts are just object files, but they do have a valid
5826     // UUID load command.
5827     if (GetUUID()) {
5828       // this checking for the UUID load command is not enough we could
5829       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5830       // this is required of kexts
5831       if (m_type == eTypeInvalid)
5832         m_type = eTypeSharedLibrary;
5833 
5834       return eStrataKernel;
5835     }
5836   }
5837     return eStrataUnknown;
5838 
5839   case MH_EXECUTE: // 0x2u
5840     // Check for the MH_DYLDLINK bit in the flags
5841     if (m_header.flags & MH_DYLDLINK) {
5842       return eStrataUser;
5843     } else {
5844       SectionList *section_list = GetSectionList();
5845       if (section_list) {
5846         static ConstString g_kld_section_name("__KLD");
5847         if (section_list->FindSectionByName(g_kld_section_name))
5848           return eStrataKernel;
5849       }
5850     }
5851     return eStrataRawImage;
5852 
5853   case MH_FVMLIB:
5854     return eStrataUser; // 0x3u
5855   case MH_CORE:
5856     return eStrataUnknown; // 0x4u
5857   case MH_PRELOAD:
5858     return eStrataRawImage; // 0x5u
5859   case MH_DYLIB:
5860     return eStrataUser; // 0x6u
5861   case MH_DYLINKER:
5862     return eStrataUser; // 0x7u
5863   case MH_BUNDLE:
5864     return eStrataUser; // 0x8u
5865   case MH_DYLIB_STUB:
5866     return eStrataUser; // 0x9u
5867   case MH_DSYM:
5868     return eStrataUnknown; // 0xAu
5869   case MH_KEXT_BUNDLE:
5870     return eStrataKernel; // 0xBu
5871   default:
5872     break;
5873   }
5874   return eStrataUnknown;
5875 }
5876 
5877 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5878   ModuleSP module_sp(GetModule());
5879   if (module_sp) {
5880     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5881     llvm::MachO::dylib_command load_cmd;
5882     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5883     uint32_t version_cmd = 0;
5884     uint64_t version = 0;
5885     uint32_t i;
5886     for (i = 0; i < m_header.ncmds; ++i) {
5887       const lldb::offset_t cmd_offset = offset;
5888       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5889         break;
5890 
5891       if (load_cmd.cmd == LC_ID_DYLIB) {
5892         if (version_cmd == 0) {
5893           version_cmd = load_cmd.cmd;
5894           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5895             break;
5896           version = load_cmd.dylib.current_version;
5897         }
5898         break; // Break for now unless there is another more complete version
5899                // number load command in the future.
5900       }
5901       offset = cmd_offset + load_cmd.cmdsize;
5902     }
5903 
5904     if (version_cmd == LC_ID_DYLIB) {
5905       unsigned major = (version & 0xFFFF0000ull) >> 16;
5906       unsigned minor = (version & 0x0000FF00ull) >> 8;
5907       unsigned subminor = (version & 0x000000FFull);
5908       return llvm::VersionTuple(major, minor, subminor);
5909     }
5910   }
5911   return llvm::VersionTuple();
5912 }
5913 
5914 ArchSpec ObjectFileMachO::GetArchitecture() {
5915   ModuleSP module_sp(GetModule());
5916   ArchSpec arch;
5917   if (module_sp) {
5918     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5919 
5920     return GetArchitecture(module_sp, m_header, m_data,
5921                            MachHeaderSizeFromMagic(m_header.magic));
5922   }
5923   return arch;
5924 }
5925 
5926 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5927                                                 addr_t &base_addr, UUID &uuid) {
5928   uuid.Clear();
5929   base_addr = LLDB_INVALID_ADDRESS;
5930   if (process && process->GetDynamicLoader()) {
5931     DynamicLoader *dl = process->GetDynamicLoader();
5932     LazyBool using_shared_cache;
5933     LazyBool private_shared_cache;
5934     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5935                                   private_shared_cache);
5936   }
5937   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5938                                                   LIBLLDB_LOG_PROCESS));
5939   LLDB_LOGF(
5940       log,
5941       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5942       uuid.GetAsString().c_str(), base_addr);
5943 }
5944 
5945 // From dyld SPI header dyld_process_info.h
5946 typedef void *dyld_process_info;
5947 struct lldb_copy__dyld_process_cache_info {
5948   uuid_t cacheUUID;          // UUID of cache used by process
5949   uint64_t cacheBaseAddress; // load address of dyld shared cache
5950   bool noCache;              // process is running without a dyld cache
5951   bool privateCache; // process is using a private copy of its dyld cache
5952 };
5953 
5954 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5955 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5956 // errors. So we need to use the actual underlying types of task_t and
5957 // kern_return_t below.
5958 extern "C" unsigned int /*task_t*/ mach_task_self();
5959 
5960 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5961   uuid.Clear();
5962   base_addr = LLDB_INVALID_ADDRESS;
5963 
5964 #if defined(__APPLE__)
5965   uint8_t *(*dyld_get_all_image_infos)(void);
5966   dyld_get_all_image_infos =
5967       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5968   if (dyld_get_all_image_infos) {
5969     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5970     if (dyld_all_image_infos_address) {
5971       uint32_t *version = (uint32_t *)
5972           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5973       if (*version >= 13) {
5974         uuid_t *sharedCacheUUID_address = 0;
5975         int wordsize = sizeof(uint8_t *);
5976         if (wordsize == 8) {
5977           sharedCacheUUID_address =
5978               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5979                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5980           if (*version >= 15)
5981             base_addr =
5982                 *(uint64_t
5983                       *)((uint8_t *)dyld_all_image_infos_address +
5984                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5985         } else {
5986           sharedCacheUUID_address =
5987               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5988                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5989           if (*version >= 15) {
5990             base_addr = 0;
5991             base_addr =
5992                 *(uint32_t
5993                       *)((uint8_t *)dyld_all_image_infos_address +
5994                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5995           }
5996         }
5997         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5998       }
5999     }
6000   } else {
6001     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
6002     dyld_process_info (*dyld_process_info_create)(
6003         unsigned int /* task_t */ task, uint64_t timestamp,
6004         unsigned int /*kern_return_t*/ *kernelError);
6005     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
6006     void (*dyld_process_info_release)(dyld_process_info info);
6007 
6008     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
6009                                           unsigned int /*kern_return_t*/ *))
6010         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
6011     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
6012         RTLD_DEFAULT, "_dyld_process_info_get_cache");
6013     dyld_process_info_release =
6014         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
6015 
6016     if (dyld_process_info_create && dyld_process_info_get_cache) {
6017       unsigned int /*kern_return_t */ kern_ret;
6018       dyld_process_info process_info =
6019           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
6020       if (process_info) {
6021         struct lldb_copy__dyld_process_cache_info sc_info;
6022         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
6023         dyld_process_info_get_cache(process_info, &sc_info);
6024         if (sc_info.cacheBaseAddress != 0) {
6025           base_addr = sc_info.cacheBaseAddress;
6026           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
6027         }
6028         dyld_process_info_release(process_info);
6029       }
6030     }
6031   }
6032   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
6033                                                   LIBLLDB_LOG_PROCESS));
6034   if (log && uuid.IsValid())
6035     LLDB_LOGF(log,
6036               "lldb's in-memory shared cache has a UUID of %s base address of "
6037               "0x%" PRIx64,
6038               uuid.GetAsString().c_str(), base_addr);
6039 #endif
6040 }
6041 
6042 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
6043   if (!m_min_os_version) {
6044     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6045     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6046       const lldb::offset_t load_cmd_offset = offset;
6047 
6048       llvm::MachO::version_min_command lc;
6049       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6050         break;
6051       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6052           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6053           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6054           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6055         if (m_data.GetU32(&offset, &lc.version,
6056                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6057           const uint32_t xxxx = lc.version >> 16;
6058           const uint32_t yy = (lc.version >> 8) & 0xffu;
6059           const uint32_t zz = lc.version & 0xffu;
6060           if (xxxx) {
6061             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6062             break;
6063           }
6064         }
6065       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6066         // struct build_version_command {
6067         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6068         //     uint32_t    cmdsize;        /* sizeof(struct
6069         //     build_version_command) plus */
6070         //                                 /* ntools * sizeof(struct
6071         //                                 build_tool_version) */
6072         //     uint32_t    platform;       /* platform */
6073         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6074         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
6075         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
6076         //     tool entries following this */
6077         // };
6078 
6079         offset += 4; // skip platform
6080         uint32_t minos = m_data.GetU32(&offset);
6081 
6082         const uint32_t xxxx = minos >> 16;
6083         const uint32_t yy = (minos >> 8) & 0xffu;
6084         const uint32_t zz = minos & 0xffu;
6085         if (xxxx) {
6086           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6087           break;
6088         }
6089       }
6090 
6091       offset = load_cmd_offset + lc.cmdsize;
6092     }
6093 
6094     if (!m_min_os_version) {
6095       // Set version to an empty value so we don't keep trying to
6096       m_min_os_version = llvm::VersionTuple();
6097     }
6098   }
6099 
6100   return *m_min_os_version;
6101 }
6102 
6103 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6104   if (!m_sdk_versions.hasValue()) {
6105     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6106     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6107       const lldb::offset_t load_cmd_offset = offset;
6108 
6109       llvm::MachO::version_min_command lc;
6110       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6111         break;
6112       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6113           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6114           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6115           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6116         if (m_data.GetU32(&offset, &lc.version,
6117                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6118           const uint32_t xxxx = lc.sdk >> 16;
6119           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6120           const uint32_t zz = lc.sdk & 0xffu;
6121           if (xxxx) {
6122             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6123             break;
6124           } else {
6125             GetModule()->ReportWarning("minimum OS version load command with "
6126                                        "invalid (0) version found.");
6127           }
6128         }
6129       }
6130       offset = load_cmd_offset + lc.cmdsize;
6131     }
6132 
6133     if (!m_sdk_versions.hasValue()) {
6134       offset = MachHeaderSizeFromMagic(m_header.magic);
6135       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6136         const lldb::offset_t load_cmd_offset = offset;
6137 
6138         llvm::MachO::version_min_command lc;
6139         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6140           break;
6141         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6142           // struct build_version_command {
6143           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6144           //     uint32_t    cmdsize;        /* sizeof(struct
6145           //     build_version_command) plus */
6146           //                                 /* ntools * sizeof(struct
6147           //                                 build_tool_version) */
6148           //     uint32_t    platform;       /* platform */
6149           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6150           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6151           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6152           //     of tool entries following this */
6153           // };
6154 
6155           offset += 4; // skip platform
6156           uint32_t minos = m_data.GetU32(&offset);
6157 
6158           const uint32_t xxxx = minos >> 16;
6159           const uint32_t yy = (minos >> 8) & 0xffu;
6160           const uint32_t zz = minos & 0xffu;
6161           if (xxxx) {
6162             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6163             break;
6164           }
6165         }
6166         offset = load_cmd_offset + lc.cmdsize;
6167       }
6168     }
6169 
6170     if (!m_sdk_versions.hasValue())
6171       m_sdk_versions = llvm::VersionTuple();
6172   }
6173 
6174   return m_sdk_versions.getValue();
6175 }
6176 
6177 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6178   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6179 }
6180 
6181 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6182   return m_allow_assembly_emulation_unwind_plans;
6183 }
6184 
6185 Section *ObjectFileMachO::GetMachHeaderSection() {
6186   // Find the first address of the mach header which is the first non-zero file
6187   // sized section whose file offset is zero. This is the base file address of
6188   // the mach-o file which can be subtracted from the vmaddr of the other
6189   // segments found in memory and added to the load address
6190   ModuleSP module_sp = GetModule();
6191   if (!module_sp)
6192     return nullptr;
6193   SectionList *section_list = GetSectionList();
6194   if (!section_list)
6195     return nullptr;
6196   const size_t num_sections = section_list->GetSize();
6197   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6198     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6199     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6200       return section;
6201   }
6202   return nullptr;
6203 }
6204 
6205 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6206   if (!section)
6207     return false;
6208   const bool is_dsym = (m_header.filetype == MH_DSYM);
6209   if (section->GetFileSize() == 0 && !is_dsym)
6210     return false;
6211   if (section->IsThreadSpecific())
6212     return false;
6213   if (GetModule().get() != section->GetModule().get())
6214     return false;
6215   // Be careful with __LINKEDIT and __DWARF segments
6216   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6217       section->GetName() == GetSegmentNameDWARF()) {
6218     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6219     // this isn't a kernel binary like a kext or mach_kernel.
6220     const bool is_memory_image = (bool)m_process_wp.lock();
6221     const Strata strata = GetStrata();
6222     if (is_memory_image == false || strata == eStrataKernel)
6223       return false;
6224   }
6225   return true;
6226 }
6227 
6228 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6229     lldb::addr_t header_load_address, const Section *header_section,
6230     const Section *section) {
6231   ModuleSP module_sp = GetModule();
6232   if (module_sp && header_section && section &&
6233       header_load_address != LLDB_INVALID_ADDRESS) {
6234     lldb::addr_t file_addr = header_section->GetFileAddress();
6235     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6236       return section->GetFileAddress() - file_addr + header_load_address;
6237   }
6238   return LLDB_INVALID_ADDRESS;
6239 }
6240 
6241 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6242                                      bool value_is_offset) {
6243   ModuleSP module_sp = GetModule();
6244   if (!module_sp)
6245     return false;
6246 
6247   SectionList *section_list = GetSectionList();
6248   if (!section_list)
6249     return false;
6250 
6251   size_t num_loaded_sections = 0;
6252   const size_t num_sections = section_list->GetSize();
6253 
6254   if (value_is_offset) {
6255     // "value" is an offset to apply to each top level segment
6256     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6257       // Iterate through the object file sections to find all of the
6258       // sections that size on disk (to avoid __PAGEZERO) and load them
6259       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6260       if (SectionIsLoadable(section_sp.get()))
6261         if (target.GetSectionLoadList().SetSectionLoadAddress(
6262                 section_sp, section_sp->GetFileAddress() + value))
6263           ++num_loaded_sections;
6264     }
6265   } else {
6266     // "value" is the new base address of the mach_header, adjust each
6267     // section accordingly
6268 
6269     Section *mach_header_section = GetMachHeaderSection();
6270     if (mach_header_section) {
6271       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6272         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6273 
6274         lldb::addr_t section_load_addr =
6275             CalculateSectionLoadAddressForMemoryImage(
6276                 value, mach_header_section, section_sp.get());
6277         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6278           if (target.GetSectionLoadList().SetSectionLoadAddress(
6279                   section_sp, section_load_addr))
6280             ++num_loaded_sections;
6281         }
6282       }
6283     }
6284   }
6285   return num_loaded_sections > 0;
6286 }
6287 
6288 struct all_image_infos_header {
6289   uint32_t version;         // currently 1
6290   uint32_t imgcount;        // number of binary images
6291   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6292                             // struct entry's begin.
6293   uint32_t entries_size;    // size of 'struct entry'.
6294   uint32_t unused;
6295 };
6296 
6297 struct image_entry {
6298   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6299                              // UINT64_MAX if unavailable.
6300   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6301                              // uuid is unknown.
6302   uint64_t load_address;     // UINT64_MAX if unknown.
6303   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6304   uint32_t segment_count;    // The number of segments for this binary.
6305   uint32_t unused;
6306 
6307   image_entry() {
6308     filepath_offset = UINT64_MAX;
6309     memset(&uuid, 0, sizeof(uuid_t));
6310     segment_count = 0;
6311     load_address = UINT64_MAX;
6312     seg_addrs_offset = UINT64_MAX;
6313     unused = 0;
6314   }
6315   image_entry(const image_entry &rhs) {
6316     filepath_offset = rhs.filepath_offset;
6317     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6318     segment_count = rhs.segment_count;
6319     seg_addrs_offset = rhs.seg_addrs_offset;
6320     load_address = rhs.load_address;
6321     unused = rhs.unused;
6322   }
6323 };
6324 
6325 struct segment_vmaddr {
6326   char segname[16];
6327   uint64_t vmaddr;
6328   uint64_t unused;
6329 
6330   segment_vmaddr() {
6331     memset(&segname, 0, 16);
6332     vmaddr = UINT64_MAX;
6333     unused = 0;
6334   }
6335   segment_vmaddr(const segment_vmaddr &rhs) {
6336     memcpy(&segname, &rhs.segname, 16);
6337     vmaddr = rhs.vmaddr;
6338     unused = rhs.unused;
6339   }
6340 };
6341 
6342 // Write the payload for the "all image infos" LC_NOTE into
6343 // the supplied all_image_infos_payload, assuming that this
6344 // will be written into the corefile starting at
6345 // initial_file_offset.
6346 //
6347 // The placement of this payload is a little tricky.  We're
6348 // laying this out as
6349 //
6350 // 1. header (struct all_image_info_header)
6351 // 2. Array of fixed-size (struct image_entry)'s, one
6352 //    per binary image present in the process.
6353 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6354 //    for each binary image.
6355 // 4. Variable length c-strings of binary image filepaths,
6356 //    one per binary.
6357 //
6358 // To compute where everything will be laid out in the
6359 // payload, we need to iterate over the images and calculate
6360 // how many segment_vmaddr structures each image will need,
6361 // and how long each image's filepath c-string is. There
6362 // are some multiple passes over the image list while calculating
6363 // everything.
6364 
6365 static offset_t CreateAllImageInfosPayload(
6366     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6367     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6368   Target &target = process_sp->GetTarget();
6369   ModuleList modules = target.GetImages();
6370 
6371   // stack-only corefiles have no reason to include binaries that
6372   // are not executing; we're trying to make the smallest corefile
6373   // we can, so leave the rest out.
6374   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6375     modules.Clear();
6376 
6377   std::set<std::string> executing_uuids;
6378   ThreadList &thread_list(process_sp->GetThreadList());
6379   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6380     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6381     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6382     for (uint32_t j = 0; j < stack_frame_count; j++) {
6383       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6384       Address pc = stack_frame_sp->GetFrameCodeAddress();
6385       ModuleSP module_sp = pc.GetModule();
6386       if (module_sp) {
6387         UUID uuid = module_sp->GetUUID();
6388         if (uuid.IsValid()) {
6389           executing_uuids.insert(uuid.GetAsString());
6390           modules.AppendIfNeeded(module_sp);
6391         }
6392       }
6393     }
6394   }
6395   size_t modules_count = modules.GetSize();
6396 
6397   struct all_image_infos_header infos;
6398   infos.version = 1;
6399   infos.imgcount = modules_count;
6400   infos.entries_size = sizeof(image_entry);
6401   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6402   infos.unused = 0;
6403 
6404   all_image_infos_payload.PutHex32(infos.version);
6405   all_image_infos_payload.PutHex32(infos.imgcount);
6406   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6407   all_image_infos_payload.PutHex32(infos.entries_size);
6408   all_image_infos_payload.PutHex32(infos.unused);
6409 
6410   // First create the structures for all of the segment name+vmaddr vectors
6411   // for each module, so we will know the size of them as we add the
6412   // module entries.
6413   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6414   for (size_t i = 0; i < modules_count; i++) {
6415     ModuleSP module = modules.GetModuleAtIndex(i);
6416 
6417     SectionList *sections = module->GetSectionList();
6418     size_t sections_count = sections->GetSize();
6419     std::vector<segment_vmaddr> segment_vmaddrs;
6420     for (size_t j = 0; j < sections_count; j++) {
6421       SectionSP section = sections->GetSectionAtIndex(j);
6422       if (!section->GetParent().get()) {
6423         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6424         if (vmaddr == LLDB_INVALID_ADDRESS)
6425           continue;
6426         ConstString name = section->GetName();
6427         segment_vmaddr seg_vmaddr;
6428         strncpy(seg_vmaddr.segname, name.AsCString(),
6429                 sizeof(seg_vmaddr.segname));
6430         seg_vmaddr.vmaddr = vmaddr;
6431         seg_vmaddr.unused = 0;
6432         segment_vmaddrs.push_back(seg_vmaddr);
6433       }
6434     }
6435     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6436   }
6437 
6438   offset_t size_of_vmaddr_structs = 0;
6439   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6440     size_of_vmaddr_structs +=
6441         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6442   }
6443 
6444   offset_t size_of_filepath_cstrings = 0;
6445   for (size_t i = 0; i < modules_count; i++) {
6446     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6447     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6448   }
6449 
6450   // Calculate the file offsets of our "all image infos" payload in the
6451   // corefile. initial_file_offset the original value passed in to this method.
6452 
6453   offset_t start_of_entries =
6454       initial_file_offset + sizeof(all_image_infos_header);
6455   offset_t start_of_seg_vmaddrs =
6456       start_of_entries + sizeof(image_entry) * modules_count;
6457   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6458 
6459   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6460 
6461   // Now write the one-per-module 'struct image_entry' into the
6462   // StringStream; keep track of where the struct segment_vmaddr
6463   // entries for each module will end up in the corefile.
6464 
6465   offset_t current_string_offset = start_of_filenames;
6466   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6467   std::vector<struct image_entry> image_entries;
6468   for (size_t i = 0; i < modules_count; i++) {
6469     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6470 
6471     struct image_entry ent;
6472     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6473     if (modules_segment_vmaddrs[i].size() > 0) {
6474       ent.segment_count = modules_segment_vmaddrs[i].size();
6475       ent.seg_addrs_offset = current_segaddrs_offset;
6476     }
6477     ent.filepath_offset = current_string_offset;
6478     ObjectFile *objfile = module_sp->GetObjectFile();
6479     if (objfile) {
6480       Address base_addr(objfile->GetBaseAddress());
6481       if (base_addr.IsValid()) {
6482         ent.load_address = base_addr.GetLoadAddress(&target);
6483       }
6484     }
6485 
6486     all_image_infos_payload.PutHex64(ent.filepath_offset);
6487     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6488     all_image_infos_payload.PutHex64(ent.load_address);
6489     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6490     all_image_infos_payload.PutHex32(ent.segment_count);
6491 
6492     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6493         executing_uuids.end())
6494       all_image_infos_payload.PutHex32(1);
6495     else
6496       all_image_infos_payload.PutHex32(0);
6497 
6498     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6499     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6500   }
6501 
6502   // Now write the struct segment_vmaddr entries into the StringStream.
6503 
6504   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6505     if (modules_segment_vmaddrs[i].size() == 0)
6506       continue;
6507     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6508       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6509       all_image_infos_payload.PutHex64(segvm.vmaddr);
6510       all_image_infos_payload.PutHex64(segvm.unused);
6511     }
6512   }
6513 
6514   for (size_t i = 0; i < modules_count; i++) {
6515     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6516     std::string filepath = module_sp->GetFileSpec().GetPath();
6517     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6518   }
6519 
6520   return final_file_offset;
6521 }
6522 
6523 // Temp struct used to combine contiguous memory regions with
6524 // identical permissions.
6525 struct page_object {
6526   addr_t addr;
6527   addr_t size;
6528   uint32_t prot;
6529 };
6530 
6531 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6532                                const FileSpec &outfile,
6533                                lldb::SaveCoreStyle &core_style, Status &error) {
6534   if (!process_sp)
6535     return false;
6536 
6537   // Default on macOS is to create a dirty-memory-only corefile.
6538   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6539     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6540   }
6541 
6542   Target &target = process_sp->GetTarget();
6543   const ArchSpec target_arch = target.GetArchitecture();
6544   const llvm::Triple &target_triple = target_arch.GetTriple();
6545   if (target_triple.getVendor() == llvm::Triple::Apple &&
6546       (target_triple.getOS() == llvm::Triple::MacOSX ||
6547        target_triple.getOS() == llvm::Triple::IOS ||
6548        target_triple.getOS() == llvm::Triple::WatchOS ||
6549        target_triple.getOS() == llvm::Triple::TvOS)) {
6550     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6551     // {
6552     bool make_core = false;
6553     switch (target_arch.GetMachine()) {
6554     case llvm::Triple::aarch64:
6555     case llvm::Triple::aarch64_32:
6556     case llvm::Triple::arm:
6557     case llvm::Triple::thumb:
6558     case llvm::Triple::x86:
6559     case llvm::Triple::x86_64:
6560       make_core = true;
6561       break;
6562     default:
6563       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6564                                      target_triple.str().c_str());
6565       break;
6566     }
6567 
6568     if (make_core) {
6569       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6570       //                uint32_t range_info_idx = 0;
6571       MemoryRegionInfo range_info;
6572       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6573       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6574       const ByteOrder byte_order = target_arch.GetByteOrder();
6575       std::vector<page_object> pages_to_copy;
6576 
6577       if (range_error.Success()) {
6578         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6579           // Calculate correct protections
6580           uint32_t prot = 0;
6581           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6582             prot |= VM_PROT_READ;
6583           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6584             prot |= VM_PROT_WRITE;
6585           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6586             prot |= VM_PROT_EXECUTE;
6587 
6588           const addr_t addr = range_info.GetRange().GetRangeBase();
6589           const addr_t size = range_info.GetRange().GetByteSize();
6590 
6591           if (size == 0)
6592             break;
6593 
6594           bool include_this_region = true;
6595           bool dirty_pages_only = false;
6596           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6597             dirty_pages_only = true;
6598             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6599               include_this_region = false;
6600             }
6601           }
6602           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6603             dirty_pages_only = true;
6604           }
6605 
6606           if (prot != 0 && include_this_region) {
6607             addr_t pagesize = range_info.GetPageSize();
6608             const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6609                 range_info.GetDirtyPageList();
6610             if (dirty_pages_only && dirty_page_list.hasValue()) {
6611               for (addr_t dirtypage : dirty_page_list.getValue()) {
6612                 page_object obj;
6613                 obj.addr = dirtypage;
6614                 obj.size = pagesize;
6615                 obj.prot = prot;
6616                 pages_to_copy.push_back(obj);
6617               }
6618             } else {
6619               page_object obj;
6620               obj.addr = addr;
6621               obj.size = size;
6622               obj.prot = prot;
6623               pages_to_copy.push_back(obj);
6624             }
6625           }
6626 
6627           range_error = process_sp->GetMemoryRegionInfo(
6628               range_info.GetRange().GetRangeEnd(), range_info);
6629           if (range_error.Fail())
6630             break;
6631         }
6632 
6633         // Combine contiguous entries that have the same
6634         // protections so we don't have an excess of
6635         // load commands.
6636         std::vector<page_object> combined_page_objects;
6637         page_object last_obj;
6638         last_obj.addr = LLDB_INVALID_ADDRESS;
6639         last_obj.size = 0;
6640         for (page_object obj : pages_to_copy) {
6641           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6642             last_obj = obj;
6643             continue;
6644           }
6645           if (last_obj.addr + last_obj.size == obj.addr &&
6646               last_obj.prot == obj.prot) {
6647             last_obj.size += obj.size;
6648             continue;
6649           }
6650           combined_page_objects.push_back(last_obj);
6651           last_obj = obj;
6652         }
6653         // Add the last entry we were looking to combine
6654         // on to the array.
6655         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6656           combined_page_objects.push_back(last_obj);
6657 
6658         for (page_object obj : combined_page_objects) {
6659           uint32_t cmd_type = LC_SEGMENT_64;
6660           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6661           if (addr_byte_size == 4) {
6662             cmd_type = LC_SEGMENT;
6663             segment_size = sizeof(llvm::MachO::segment_command);
6664           }
6665           llvm::MachO::segment_command_64 segment = {
6666               cmd_type,     // uint32_t cmd;
6667               segment_size, // uint32_t cmdsize;
6668               {0},          // char segname[16];
6669               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6670                             // Mach-O
6671               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6672                             // Mach-O
6673               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6674               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6675                             // Mach-O
6676               obj.prot,     // uint32_t maxprot;
6677               obj.prot,     // uint32_t initprot;
6678               0,            // uint32_t nsects;
6679               0};           // uint32_t flags;
6680           segment_load_commands.push_back(segment);
6681         }
6682 
6683         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6684 
6685         llvm::MachO::mach_header_64 mach_header;
6686         if (addr_byte_size == 8) {
6687           mach_header.magic = MH_MAGIC_64;
6688         } else {
6689           mach_header.magic = MH_MAGIC;
6690         }
6691         mach_header.cputype = target_arch.GetMachOCPUType();
6692         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6693         mach_header.filetype = MH_CORE;
6694         mach_header.ncmds = segment_load_commands.size();
6695         mach_header.flags = 0;
6696         mach_header.reserved = 0;
6697         ThreadList &thread_list = process_sp->GetThreadList();
6698         const uint32_t num_threads = thread_list.GetSize();
6699 
6700         // Make an array of LC_THREAD data items. Each one contains the
6701         // contents of the LC_THREAD load command. The data doesn't contain
6702         // the load command + load command size, we will add the load command
6703         // and load command size as we emit the data.
6704         std::vector<StreamString> LC_THREAD_datas(num_threads);
6705         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6706           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6707           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6708           LC_THREAD_data.SetByteOrder(byte_order);
6709         }
6710         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6711           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6712           if (thread_sp) {
6713             switch (mach_header.cputype) {
6714             case llvm::MachO::CPU_TYPE_ARM64:
6715             case llvm::MachO::CPU_TYPE_ARM64_32:
6716               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6717                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6718               break;
6719 
6720             case llvm::MachO::CPU_TYPE_ARM:
6721               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6722                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6723               break;
6724 
6725             case llvm::MachO::CPU_TYPE_I386:
6726               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6727                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6728               break;
6729 
6730             case llvm::MachO::CPU_TYPE_X86_64:
6731               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6732                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6733               break;
6734             }
6735           }
6736         }
6737 
6738         // The size of the load command is the size of the segments...
6739         if (addr_byte_size == 8) {
6740           mach_header.sizeofcmds = segment_load_commands.size() *
6741                                    sizeof(llvm::MachO::segment_command_64);
6742         } else {
6743           mach_header.sizeofcmds = segment_load_commands.size() *
6744                                    sizeof(llvm::MachO::segment_command);
6745         }
6746 
6747         // and the size of all LC_THREAD load command
6748         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6749           ++mach_header.ncmds;
6750           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6751         }
6752 
6753         // Bits will be set to indicate which bits are NOT used in
6754         // addressing in this process or 0 for unknown.
6755         uint64_t address_mask = process_sp->GetCodeAddressMask();
6756         if (address_mask != 0) {
6757           // LC_NOTE "addrable bits"
6758           mach_header.ncmds++;
6759           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6760         }
6761 
6762         // LC_NOTE "all image infos"
6763         mach_header.ncmds++;
6764         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6765 
6766         // Write the mach header
6767         buffer.PutHex32(mach_header.magic);
6768         buffer.PutHex32(mach_header.cputype);
6769         buffer.PutHex32(mach_header.cpusubtype);
6770         buffer.PutHex32(mach_header.filetype);
6771         buffer.PutHex32(mach_header.ncmds);
6772         buffer.PutHex32(mach_header.sizeofcmds);
6773         buffer.PutHex32(mach_header.flags);
6774         if (addr_byte_size == 8) {
6775           buffer.PutHex32(mach_header.reserved);
6776         }
6777 
6778         // Skip the mach header and all load commands and align to the next
6779         // 0x1000 byte boundary
6780         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6781 
6782         file_offset = llvm::alignTo(file_offset, 16);
6783         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6784 
6785         // Add "addrable bits" LC_NOTE when an address mask is available
6786         if (address_mask != 0) {
6787           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6788               new LCNoteEntry(addr_byte_size, byte_order));
6789           addrable_bits_lcnote_up->name = "addrable bits";
6790           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6791           int bits = std::bitset<64>(~address_mask).count();
6792           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6793           addrable_bits_lcnote_up->payload.PutHex32(
6794               bits); // # of bits used for addressing
6795           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6796 
6797           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6798 
6799           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6800         }
6801 
6802         // Add "all image infos" LC_NOTE
6803         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6804             new LCNoteEntry(addr_byte_size, byte_order));
6805         all_image_infos_lcnote_up->name = "all image infos";
6806         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6807         file_offset = CreateAllImageInfosPayload(
6808             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6809             core_style);
6810         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6811 
6812         // Add LC_NOTE load commands
6813         for (auto &lcnote : lc_notes) {
6814           // Add the LC_NOTE load command to the file.
6815           buffer.PutHex32(LC_NOTE);
6816           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6817           char namebuf[16];
6818           memset(namebuf, 0, sizeof(namebuf));
6819           // this is the uncommon case where strncpy is exactly
6820           // the right one, doesn't need to be nul terminated.
6821           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6822           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6823           buffer.PutHex64(lcnote->payload_file_offset);
6824           buffer.PutHex64(lcnote->payload.GetSize());
6825         }
6826 
6827         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6828         file_offset = llvm::alignTo(file_offset, 4096);
6829 
6830         for (auto &segment : segment_load_commands) {
6831           segment.fileoff = file_offset;
6832           file_offset += segment.filesize;
6833         }
6834 
6835         // Write out all of the LC_THREAD load commands
6836         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6837           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6838           buffer.PutHex32(LC_THREAD);
6839           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6840           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6841         }
6842 
6843         // Write out all of the segment load commands
6844         for (const auto &segment : segment_load_commands) {
6845           buffer.PutHex32(segment.cmd);
6846           buffer.PutHex32(segment.cmdsize);
6847           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6848           if (addr_byte_size == 8) {
6849             buffer.PutHex64(segment.vmaddr);
6850             buffer.PutHex64(segment.vmsize);
6851             buffer.PutHex64(segment.fileoff);
6852             buffer.PutHex64(segment.filesize);
6853           } else {
6854             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6855             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6856             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6857             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6858           }
6859           buffer.PutHex32(segment.maxprot);
6860           buffer.PutHex32(segment.initprot);
6861           buffer.PutHex32(segment.nsects);
6862           buffer.PutHex32(segment.flags);
6863         }
6864 
6865         std::string core_file_path(outfile.GetPath());
6866         auto core_file = FileSystem::Instance().Open(
6867             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6868                          File::eOpenOptionCanCreate);
6869         if (!core_file) {
6870           error = core_file.takeError();
6871         } else {
6872           // Read 1 page at a time
6873           uint8_t bytes[0x1000];
6874           // Write the mach header and load commands out to the core file
6875           size_t bytes_written = buffer.GetString().size();
6876           error =
6877               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6878           if (error.Success()) {
6879 
6880             for (auto &lcnote : lc_notes) {
6881               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6882                   -1) {
6883                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6884                                                "to write '%s' LC_NOTE payload",
6885                                                lcnote->name.c_str());
6886                 return false;
6887               }
6888               bytes_written = lcnote->payload.GetSize();
6889               error = core_file.get()->Write(lcnote->payload.GetData(),
6890                                              bytes_written);
6891               if (!error.Success())
6892                 return false;
6893             }
6894 
6895             // Now write the file data for all memory segments in the process
6896             for (const auto &segment : segment_load_commands) {
6897               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6898                 error.SetErrorStringWithFormat(
6899                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6900                     segment.fileoff, core_file_path.c_str());
6901                 break;
6902               }
6903 
6904               target.GetDebugger().GetAsyncOutputStream()->Printf(
6905                   "Saving %" PRId64
6906                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6907                   segment.vmsize, segment.vmaddr);
6908               addr_t bytes_left = segment.vmsize;
6909               addr_t addr = segment.vmaddr;
6910               Status memory_read_error;
6911               while (bytes_left > 0 && error.Success()) {
6912                 const size_t bytes_to_read =
6913                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6914 
6915                 // In a savecore setting, we don't really care about caching,
6916                 // as the data is dumped and very likely never read again,
6917                 // so we call ReadMemoryFromInferior to bypass it.
6918                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6919                     addr, bytes, bytes_to_read, memory_read_error);
6920 
6921                 if (bytes_read == bytes_to_read) {
6922                   size_t bytes_written = bytes_read;
6923                   error = core_file.get()->Write(bytes, bytes_written);
6924                   bytes_left -= bytes_read;
6925                   addr += bytes_read;
6926                 } else {
6927                   // Some pages within regions are not readable, those should
6928                   // be zero filled
6929                   memset(bytes, 0, bytes_to_read);
6930                   size_t bytes_written = bytes_to_read;
6931                   error = core_file.get()->Write(bytes, bytes_written);
6932                   bytes_left -= bytes_to_read;
6933                   addr += bytes_to_read;
6934                 }
6935               }
6936             }
6937           }
6938         }
6939       } else {
6940         error.SetErrorString(
6941             "process doesn't support getting memory region info");
6942       }
6943     }
6944     return true; // This is the right plug to handle saving core files for
6945                  // this process
6946   }
6947   return false;
6948 }
6949 
6950 ObjectFileMachO::MachOCorefileAllImageInfos
6951 ObjectFileMachO::GetCorefileAllImageInfos() {
6952   MachOCorefileAllImageInfos image_infos;
6953 
6954   // Look for an "all image infos" LC_NOTE.
6955   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6956   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6957     const uint32_t cmd_offset = offset;
6958     llvm::MachO::load_command lc;
6959     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6960       break;
6961     if (lc.cmd == LC_NOTE) {
6962       char data_owner[17];
6963       m_data.CopyData(offset, 16, data_owner);
6964       data_owner[16] = '\0';
6965       offset += 16;
6966       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6967       offset += 4; /* size unused */
6968 
6969       if (strcmp("all image infos", data_owner) == 0) {
6970         offset = fileoff;
6971         // Read the struct all_image_infos_header.
6972         uint32_t version = m_data.GetU32(&offset);
6973         if (version != 1) {
6974           return image_infos;
6975         }
6976         uint32_t imgcount = m_data.GetU32(&offset);
6977         uint64_t entries_fileoff = m_data.GetU64(&offset);
6978         offset += 4; // uint32_t entries_size;
6979         offset += 4; // uint32_t unused;
6980 
6981         offset = entries_fileoff;
6982         for (uint32_t i = 0; i < imgcount; i++) {
6983           // Read the struct image_entry.
6984           offset_t filepath_offset = m_data.GetU64(&offset);
6985           uuid_t uuid;
6986           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6987                  sizeof(uuid_t));
6988           uint64_t load_address = m_data.GetU64(&offset);
6989           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6990           uint32_t segment_count = m_data.GetU32(&offset);
6991           uint32_t currently_executing = m_data.GetU32(&offset);
6992 
6993           MachOCorefileImageEntry image_entry;
6994           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6995           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6996           image_entry.load_address = load_address;
6997           image_entry.currently_executing = currently_executing;
6998 
6999           offset_t seg_vmaddrs_offset = seg_addrs_offset;
7000           for (uint32_t j = 0; j < segment_count; j++) {
7001             char segname[17];
7002             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
7003             segname[16] = '\0';
7004             seg_vmaddrs_offset += 16;
7005             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
7006             seg_vmaddrs_offset += 8; /* unused */
7007 
7008             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
7009                                                     vmaddr};
7010             image_entry.segment_load_addresses.push_back(new_seg);
7011           }
7012           image_infos.all_image_infos.push_back(image_entry);
7013         }
7014       }
7015     }
7016     offset = cmd_offset + lc.cmdsize;
7017   }
7018 
7019   return image_infos;
7020 }
7021 
7022 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
7023   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
7024   bool added_images = false;
7025   if (image_infos.IsValid()) {
7026     for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
7027       ModuleSpec module_spec;
7028       module_spec.GetUUID() = image.uuid;
7029       module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
7030       if (image.currently_executing) {
7031         Symbols::DownloadObjectAndSymbolFile(module_spec, true);
7032         if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
7033           process.GetTarget().GetOrCreateModule(module_spec, false);
7034         }
7035       }
7036       Status error;
7037       ModuleSP module_sp =
7038           process.GetTarget().GetOrCreateModule(module_spec, false, &error);
7039       if (!module_sp.get() || !module_sp->GetObjectFile()) {
7040         if (image.load_address != LLDB_INVALID_ADDRESS) {
7041           module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
7042                                                    image.load_address);
7043         }
7044       }
7045       if (module_sp.get()) {
7046         added_images = true;
7047         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7048           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7049           if (sectlist) {
7050             SectionSP sect_sp =
7051                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7052             if (sect_sp) {
7053               process.GetTarget().SetSectionLoadAddress(
7054                   sect_sp, std::get<1>(name_vmaddr_tuple));
7055             }
7056           }
7057         }
7058       }
7059     }
7060   }
7061   return added_images;
7062 }
7063