1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 12 #include "lldb/Core/ArchSpec.h" 13 #include "lldb/Core/DataBuffer.h" 14 #include "lldb/Core/Debugger.h" 15 #include "lldb/Core/Error.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Log.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/ModuleSpec.h" 20 #include "lldb/Core/PluginManager.h" 21 #include "lldb/Core/RangeMap.h" 22 #include "lldb/Core/Section.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Core/UUID.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/FileSpec.h" 29 #include "lldb/Symbol/ClangNamespaceDecl.h" 30 #include "lldb/Symbol/DWARFCallFrameInfo.h" 31 #include "lldb/Symbol/ObjectFile.h" 32 #include "lldb/Target/MemoryRegionInfo.h" 33 #include "lldb/Target/Platform.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/SectionLoadList.h" 36 #include "lldb/Target/Target.h" 37 #include "lldb/Target/Thread.h" 38 #include "lldb/Target/ThreadList.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 40 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 41 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 42 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 43 44 #include "lldb/Utility/SafeMachO.h" 45 46 #include "ObjectFileMachO.h" 47 48 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 49 // GetLLDBSharedCacheUUID() needs to call dlsym() 50 #include <dlfcn.h> 51 #endif 52 53 #ifndef __APPLE__ 54 #include "Utility/UuidCompatibility.h" 55 #endif 56 57 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 58 using namespace lldb; 59 using namespace lldb_private; 60 using namespace llvm::MachO; 61 62 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 63 { 64 public: 65 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 66 RegisterContextDarwin_x86_64 (thread, 0) 67 { 68 SetRegisterDataFrom_LC_THREAD (data); 69 } 70 71 virtual void 72 InvalidateAllRegisters () 73 { 74 // Do nothing... registers are always valid... 75 } 76 77 void 78 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 79 { 80 lldb::offset_t offset = 0; 81 SetError (GPRRegSet, Read, -1); 82 SetError (FPURegSet, Read, -1); 83 SetError (EXCRegSet, Read, -1); 84 bool done = false; 85 86 while (!done) 87 { 88 int flavor = data.GetU32 (&offset); 89 if (flavor == 0) 90 done = true; 91 else 92 { 93 uint32_t i; 94 uint32_t count = data.GetU32 (&offset); 95 switch (flavor) 96 { 97 case GPRRegSet: 98 for (i=0; i<count; ++i) 99 (&gpr.rax)[i] = data.GetU64(&offset); 100 SetError (GPRRegSet, Read, 0); 101 done = true; 102 103 break; 104 case FPURegSet: 105 // TODO: fill in FPU regs.... 106 //SetError (FPURegSet, Read, -1); 107 done = true; 108 109 break; 110 case EXCRegSet: 111 exc.trapno = data.GetU32(&offset); 112 exc.err = data.GetU32(&offset); 113 exc.faultvaddr = data.GetU64(&offset); 114 SetError (EXCRegSet, Read, 0); 115 done = true; 116 break; 117 case 7: 118 case 8: 119 case 9: 120 // fancy flavors that encapsulate of the above 121 // flavors... 122 break; 123 124 default: 125 done = true; 126 break; 127 } 128 } 129 } 130 } 131 132 133 static size_t 134 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 135 { 136 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 137 if (reg_info == NULL) 138 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 139 if (reg_info) 140 { 141 lldb_private::RegisterValue reg_value; 142 if (reg_ctx->ReadRegister(reg_info, reg_value)) 143 { 144 if (reg_info->byte_size >= reg_byte_size) 145 data.Write(reg_value.GetBytes(), reg_byte_size); 146 else 147 { 148 data.Write(reg_value.GetBytes(), reg_info->byte_size); 149 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 150 data.PutChar(0); 151 } 152 return reg_byte_size; 153 } 154 } 155 // Just write zeros if all else fails 156 for (size_t i=0; i<reg_byte_size; ++ i) 157 data.PutChar(0); 158 return reg_byte_size; 159 } 160 161 static bool 162 Create_LC_THREAD (Thread *thread, Stream &data) 163 { 164 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 165 if (reg_ctx_sp) 166 { 167 RegisterContext *reg_ctx = reg_ctx_sp.get(); 168 169 data.PutHex32 (GPRRegSet); // Flavor 170 data.PutHex32 (GPRWordCount); 171 WriteRegister (reg_ctx, "rax", NULL, 8, data); 172 WriteRegister (reg_ctx, "rbx", NULL, 8, data); 173 WriteRegister (reg_ctx, "rcx", NULL, 8, data); 174 WriteRegister (reg_ctx, "rdx", NULL, 8, data); 175 WriteRegister (reg_ctx, "rdi", NULL, 8, data); 176 WriteRegister (reg_ctx, "rsi", NULL, 8, data); 177 WriteRegister (reg_ctx, "rbp", NULL, 8, data); 178 WriteRegister (reg_ctx, "rsp", NULL, 8, data); 179 WriteRegister (reg_ctx, "r8", NULL, 8, data); 180 WriteRegister (reg_ctx, "r9", NULL, 8, data); 181 WriteRegister (reg_ctx, "r10", NULL, 8, data); 182 WriteRegister (reg_ctx, "r11", NULL, 8, data); 183 WriteRegister (reg_ctx, "r12", NULL, 8, data); 184 WriteRegister (reg_ctx, "r13", NULL, 8, data); 185 WriteRegister (reg_ctx, "r14", NULL, 8, data); 186 WriteRegister (reg_ctx, "r15", NULL, 8, data); 187 WriteRegister (reg_ctx, "rip", NULL, 8, data); 188 WriteRegister (reg_ctx, "rflags", NULL, 8, data); 189 WriteRegister (reg_ctx, "cs", NULL, 8, data); 190 WriteRegister (reg_ctx, "fs", NULL, 8, data); 191 WriteRegister (reg_ctx, "gs", NULL, 8, data); 192 193 // // Write out the FPU registers 194 // const size_t fpu_byte_size = sizeof(FPU); 195 // size_t bytes_written = 0; 196 // data.PutHex32 (FPURegSet); 197 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 198 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 199 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 200 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" 201 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" 202 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" 203 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 204 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" 205 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" 206 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" 207 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 208 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" 209 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" 210 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 211 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; 212 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; 213 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); 214 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); 215 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); 216 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); 217 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); 218 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); 219 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); 220 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); 221 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); 222 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); 223 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); 224 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); 225 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); 226 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); 227 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); 228 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); 229 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); 230 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); 231 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); 232 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); 233 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); 234 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); 235 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); 236 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); 237 // 238 // // Fill rest with zeros 239 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ i) 240 // data.PutChar(0); 241 242 // Write out the EXC registers 243 data.PutHex32 (EXCRegSet); 244 data.PutHex32 (EXCWordCount); 245 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 246 WriteRegister (reg_ctx, "err", NULL, 4, data); 247 WriteRegister (reg_ctx, "faultvaddr", NULL, 8, data); 248 return true; 249 } 250 return false; 251 } 252 253 protected: 254 virtual int 255 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 256 { 257 return 0; 258 } 259 260 virtual int 261 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 262 { 263 return 0; 264 } 265 266 virtual int 267 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 268 { 269 return 0; 270 } 271 272 virtual int 273 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 274 { 275 return 0; 276 } 277 278 virtual int 279 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 280 { 281 return 0; 282 } 283 284 virtual int 285 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 286 { 287 return 0; 288 } 289 }; 290 291 292 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 293 { 294 public: 295 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 296 RegisterContextDarwin_i386 (thread, 0) 297 { 298 SetRegisterDataFrom_LC_THREAD (data); 299 } 300 301 virtual void 302 InvalidateAllRegisters () 303 { 304 // Do nothing... registers are always valid... 305 } 306 307 void 308 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 309 { 310 lldb::offset_t offset = 0; 311 SetError (GPRRegSet, Read, -1); 312 SetError (FPURegSet, Read, -1); 313 SetError (EXCRegSet, Read, -1); 314 bool done = false; 315 316 while (!done) 317 { 318 int flavor = data.GetU32 (&offset); 319 if (flavor == 0) 320 done = true; 321 else 322 { 323 uint32_t i; 324 uint32_t count = data.GetU32 (&offset); 325 switch (flavor) 326 { 327 case GPRRegSet: 328 for (i=0; i<count; ++i) 329 (&gpr.eax)[i] = data.GetU32(&offset); 330 SetError (GPRRegSet, Read, 0); 331 done = true; 332 333 break; 334 case FPURegSet: 335 // TODO: fill in FPU regs.... 336 //SetError (FPURegSet, Read, -1); 337 done = true; 338 339 break; 340 case EXCRegSet: 341 exc.trapno = data.GetU32(&offset); 342 exc.err = data.GetU32(&offset); 343 exc.faultvaddr = data.GetU32(&offset); 344 SetError (EXCRegSet, Read, 0); 345 done = true; 346 break; 347 case 7: 348 case 8: 349 case 9: 350 // fancy flavors that encapsulate of the above 351 // flavors... 352 break; 353 354 default: 355 done = true; 356 break; 357 } 358 } 359 } 360 } 361 362 static size_t 363 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 364 { 365 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 366 if (reg_info == NULL) 367 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 368 if (reg_info) 369 { 370 lldb_private::RegisterValue reg_value; 371 if (reg_ctx->ReadRegister(reg_info, reg_value)) 372 { 373 if (reg_info->byte_size >= reg_byte_size) 374 data.Write(reg_value.GetBytes(), reg_byte_size); 375 else 376 { 377 data.Write(reg_value.GetBytes(), reg_info->byte_size); 378 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 379 data.PutChar(0); 380 } 381 return reg_byte_size; 382 } 383 } 384 // Just write zeros if all else fails 385 for (size_t i=0; i<reg_byte_size; ++ i) 386 data.PutChar(0); 387 return reg_byte_size; 388 } 389 390 static bool 391 Create_LC_THREAD (Thread *thread, Stream &data) 392 { 393 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 394 if (reg_ctx_sp) 395 { 396 RegisterContext *reg_ctx = reg_ctx_sp.get(); 397 398 data.PutHex32 (GPRRegSet); // Flavor 399 data.PutHex32 (GPRWordCount); 400 WriteRegister (reg_ctx, "eax", NULL, 4, data); 401 WriteRegister (reg_ctx, "ebx", NULL, 4, data); 402 WriteRegister (reg_ctx, "ecx", NULL, 4, data); 403 WriteRegister (reg_ctx, "edx", NULL, 4, data); 404 WriteRegister (reg_ctx, "edi", NULL, 4, data); 405 WriteRegister (reg_ctx, "esi", NULL, 4, data); 406 WriteRegister (reg_ctx, "ebp", NULL, 4, data); 407 WriteRegister (reg_ctx, "esp", NULL, 4, data); 408 WriteRegister (reg_ctx, "ss", NULL, 4, data); 409 WriteRegister (reg_ctx, "eflags", NULL, 4, data); 410 WriteRegister (reg_ctx, "eip", NULL, 4, data); 411 WriteRegister (reg_ctx, "cs", NULL, 4, data); 412 WriteRegister (reg_ctx, "ds", NULL, 4, data); 413 WriteRegister (reg_ctx, "es", NULL, 4, data); 414 WriteRegister (reg_ctx, "fs", NULL, 4, data); 415 WriteRegister (reg_ctx, "gs", NULL, 4, data); 416 417 // Write out the EXC registers 418 data.PutHex32 (EXCRegSet); 419 data.PutHex32 (EXCWordCount); 420 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 421 WriteRegister (reg_ctx, "err", NULL, 4, data); 422 WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); 423 return true; 424 } 425 return false; 426 } 427 428 protected: 429 virtual int 430 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 431 { 432 return 0; 433 } 434 435 virtual int 436 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 437 { 438 return 0; 439 } 440 441 virtual int 442 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 443 { 444 return 0; 445 } 446 447 virtual int 448 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 449 { 450 return 0; 451 } 452 453 virtual int 454 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 455 { 456 return 0; 457 } 458 459 virtual int 460 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 461 { 462 return 0; 463 } 464 }; 465 466 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 467 { 468 public: 469 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 470 RegisterContextDarwin_arm (thread, 0) 471 { 472 SetRegisterDataFrom_LC_THREAD (data); 473 } 474 475 virtual void 476 InvalidateAllRegisters () 477 { 478 // Do nothing... registers are always valid... 479 } 480 481 void 482 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 483 { 484 lldb::offset_t offset = 0; 485 SetError (GPRRegSet, Read, -1); 486 SetError (FPURegSet, Read, -1); 487 SetError (EXCRegSet, Read, -1); 488 bool done = false; 489 490 while (!done) 491 { 492 int flavor = data.GetU32 (&offset); 493 uint32_t count = data.GetU32 (&offset); 494 lldb::offset_t next_thread_state = offset + (count * 4); 495 switch (flavor) 496 { 497 case GPRRegSet: 498 for (uint32_t i=0; i<count; ++i) 499 { 500 gpr.r[i] = data.GetU32(&offset); 501 } 502 503 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 504 // one element past the end of the gpr.r[] array. 505 506 SetError (GPRRegSet, Read, 0); 507 offset = next_thread_state; 508 break; 509 510 case FPURegSet: 511 { 512 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 513 const int fpu_reg_buf_size = sizeof (fpu.floats); 514 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 515 { 516 offset += fpu_reg_buf_size; 517 fpu.fpscr = data.GetU32(&offset); 518 SetError (FPURegSet, Read, 0); 519 } 520 else 521 { 522 done = true; 523 } 524 } 525 offset = next_thread_state; 526 break; 527 528 case EXCRegSet: 529 if (count == 3) 530 { 531 exc.exception = data.GetU32(&offset); 532 exc.fsr = data.GetU32(&offset); 533 exc.far = data.GetU32(&offset); 534 SetError (EXCRegSet, Read, 0); 535 } 536 done = true; 537 offset = next_thread_state; 538 break; 539 540 // Unknown register set flavor, stop trying to parse. 541 default: 542 done = true; 543 } 544 } 545 } 546 547 static size_t 548 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 549 { 550 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 551 if (reg_info == NULL) 552 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 553 if (reg_info) 554 { 555 lldb_private::RegisterValue reg_value; 556 if (reg_ctx->ReadRegister(reg_info, reg_value)) 557 { 558 if (reg_info->byte_size >= reg_byte_size) 559 data.Write(reg_value.GetBytes(), reg_byte_size); 560 else 561 { 562 data.Write(reg_value.GetBytes(), reg_info->byte_size); 563 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 564 data.PutChar(0); 565 } 566 return reg_byte_size; 567 } 568 } 569 // Just write zeros if all else fails 570 for (size_t i=0; i<reg_byte_size; ++ i) 571 data.PutChar(0); 572 return reg_byte_size; 573 } 574 575 static bool 576 Create_LC_THREAD (Thread *thread, Stream &data) 577 { 578 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 579 if (reg_ctx_sp) 580 { 581 RegisterContext *reg_ctx = reg_ctx_sp.get(); 582 583 data.PutHex32 (GPRRegSet); // Flavor 584 data.PutHex32 (GPRWordCount); 585 WriteRegister (reg_ctx, "r0", NULL, 4, data); 586 WriteRegister (reg_ctx, "r1", NULL, 4, data); 587 WriteRegister (reg_ctx, "r2", NULL, 4, data); 588 WriteRegister (reg_ctx, "r3", NULL, 4, data); 589 WriteRegister (reg_ctx, "r4", NULL, 4, data); 590 WriteRegister (reg_ctx, "r5", NULL, 4, data); 591 WriteRegister (reg_ctx, "r6", NULL, 4, data); 592 WriteRegister (reg_ctx, "r7", NULL, 4, data); 593 WriteRegister (reg_ctx, "r8", NULL, 4, data); 594 WriteRegister (reg_ctx, "r9", NULL, 4, data); 595 WriteRegister (reg_ctx, "r10", NULL, 4, data); 596 WriteRegister (reg_ctx, "r11", NULL, 4, data); 597 WriteRegister (reg_ctx, "r12", NULL, 4, data); 598 WriteRegister (reg_ctx, "sp", NULL, 4, data); 599 WriteRegister (reg_ctx, "lr", NULL, 4, data); 600 WriteRegister (reg_ctx, "pc", NULL, 4, data); 601 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 602 603 // Write out the EXC registers 604 // data.PutHex32 (EXCRegSet); 605 // data.PutHex32 (EXCWordCount); 606 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 607 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 608 // WriteRegister (reg_ctx, "far", NULL, 4, data); 609 return true; 610 } 611 return false; 612 } 613 614 protected: 615 virtual int 616 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 617 { 618 return -1; 619 } 620 621 virtual int 622 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 623 { 624 return -1; 625 } 626 627 virtual int 628 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 629 { 630 return -1; 631 } 632 633 virtual int 634 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 635 { 636 return -1; 637 } 638 639 virtual int 640 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 641 { 642 return 0; 643 } 644 645 virtual int 646 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 647 { 648 return 0; 649 } 650 651 virtual int 652 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 653 { 654 return 0; 655 } 656 657 virtual int 658 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 659 { 660 return -1; 661 } 662 }; 663 664 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 665 { 666 public: 667 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 668 RegisterContextDarwin_arm64 (thread, 0) 669 { 670 SetRegisterDataFrom_LC_THREAD (data); 671 } 672 673 virtual void 674 InvalidateAllRegisters () 675 { 676 // Do nothing... registers are always valid... 677 } 678 679 void 680 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 681 { 682 lldb::offset_t offset = 0; 683 SetError (GPRRegSet, Read, -1); 684 SetError (FPURegSet, Read, -1); 685 SetError (EXCRegSet, Read, -1); 686 bool done = false; 687 while (!done) 688 { 689 int flavor = data.GetU32 (&offset); 690 uint32_t count = data.GetU32 (&offset); 691 lldb::offset_t next_thread_state = offset + (count * 4); 692 switch (flavor) 693 { 694 case GPRRegSet: 695 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 696 if (count >= (33 * 2) + 1) 697 { 698 for (uint32_t i=0; i<33; ++i) 699 gpr.x[i] = data.GetU64(&offset); 700 gpr.cpsr = data.GetU32(&offset); 701 SetError (GPRRegSet, Read, 0); 702 } 703 offset = next_thread_state; 704 break; 705 case FPURegSet: 706 { 707 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 708 const int fpu_reg_buf_size = sizeof (fpu); 709 if (fpu_reg_buf_size == count 710 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 711 { 712 SetError (FPURegSet, Read, 0); 713 } 714 else 715 { 716 done = true; 717 } 718 } 719 offset = next_thread_state; 720 break; 721 case EXCRegSet: 722 if (count == 4) 723 { 724 exc.far = data.GetU64(&offset); 725 exc.esr = data.GetU32(&offset); 726 exc.exception = data.GetU32(&offset); 727 SetError (EXCRegSet, Read, 0); 728 } 729 offset = next_thread_state; 730 break; 731 default: 732 done = true; 733 break; 734 } 735 } 736 } 737 738 static size_t 739 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 740 { 741 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 742 if (reg_info == NULL) 743 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 744 if (reg_info) 745 { 746 lldb_private::RegisterValue reg_value; 747 if (reg_ctx->ReadRegister(reg_info, reg_value)) 748 { 749 if (reg_info->byte_size >= reg_byte_size) 750 data.Write(reg_value.GetBytes(), reg_byte_size); 751 else 752 { 753 data.Write(reg_value.GetBytes(), reg_info->byte_size); 754 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 755 data.PutChar(0); 756 } 757 return reg_byte_size; 758 } 759 } 760 // Just write zeros if all else fails 761 for (size_t i=0; i<reg_byte_size; ++ i) 762 data.PutChar(0); 763 return reg_byte_size; 764 } 765 766 static bool 767 Create_LC_THREAD (Thread *thread, Stream &data) 768 { 769 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 770 if (reg_ctx_sp) 771 { 772 RegisterContext *reg_ctx = reg_ctx_sp.get(); 773 774 data.PutHex32 (GPRRegSet); // Flavor 775 data.PutHex32 (GPRWordCount); 776 WriteRegister (reg_ctx, "x0", NULL, 8, data); 777 WriteRegister (reg_ctx, "x1", NULL, 8, data); 778 WriteRegister (reg_ctx, "x2", NULL, 8, data); 779 WriteRegister (reg_ctx, "x3", NULL, 8, data); 780 WriteRegister (reg_ctx, "x4", NULL, 8, data); 781 WriteRegister (reg_ctx, "x5", NULL, 8, data); 782 WriteRegister (reg_ctx, "x6", NULL, 8, data); 783 WriteRegister (reg_ctx, "x7", NULL, 8, data); 784 WriteRegister (reg_ctx, "x8", NULL, 8, data); 785 WriteRegister (reg_ctx, "x9", NULL, 8, data); 786 WriteRegister (reg_ctx, "x10", NULL, 8, data); 787 WriteRegister (reg_ctx, "x11", NULL, 8, data); 788 WriteRegister (reg_ctx, "x12", NULL, 8, data); 789 WriteRegister (reg_ctx, "x13", NULL, 8, data); 790 WriteRegister (reg_ctx, "x14", NULL, 8, data); 791 WriteRegister (reg_ctx, "x15", NULL, 8, data); 792 WriteRegister (reg_ctx, "x16", NULL, 8, data); 793 WriteRegister (reg_ctx, "x17", NULL, 8, data); 794 WriteRegister (reg_ctx, "x18", NULL, 8, data); 795 WriteRegister (reg_ctx, "x19", NULL, 8, data); 796 WriteRegister (reg_ctx, "x20", NULL, 8, data); 797 WriteRegister (reg_ctx, "x21", NULL, 8, data); 798 WriteRegister (reg_ctx, "x22", NULL, 8, data); 799 WriteRegister (reg_ctx, "x23", NULL, 8, data); 800 WriteRegister (reg_ctx, "x24", NULL, 8, data); 801 WriteRegister (reg_ctx, "x25", NULL, 8, data); 802 WriteRegister (reg_ctx, "x26", NULL, 8, data); 803 WriteRegister (reg_ctx, "x27", NULL, 8, data); 804 WriteRegister (reg_ctx, "x28", NULL, 8, data); 805 WriteRegister (reg_ctx, "fp", NULL, 8, data); 806 WriteRegister (reg_ctx, "lr", NULL, 8, data); 807 WriteRegister (reg_ctx, "sp", NULL, 8, data); 808 WriteRegister (reg_ctx, "pc", NULL, 8, data); 809 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 810 811 // Write out the EXC registers 812 // data.PutHex32 (EXCRegSet); 813 // data.PutHex32 (EXCWordCount); 814 // WriteRegister (reg_ctx, "far", NULL, 8, data); 815 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 816 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 817 return true; 818 } 819 return false; 820 } 821 822 protected: 823 virtual int 824 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 825 { 826 return -1; 827 } 828 829 virtual int 830 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 831 { 832 return -1; 833 } 834 835 virtual int 836 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 837 { 838 return -1; 839 } 840 841 virtual int 842 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 843 { 844 return -1; 845 } 846 847 virtual int 848 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 849 { 850 return 0; 851 } 852 853 virtual int 854 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 855 { 856 return 0; 857 } 858 859 virtual int 860 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 861 { 862 return 0; 863 } 864 865 virtual int 866 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 867 { 868 return -1; 869 } 870 }; 871 872 static uint32_t 873 MachHeaderSizeFromMagic(uint32_t magic) 874 { 875 switch (magic) 876 { 877 case MH_MAGIC: 878 case MH_CIGAM: 879 return sizeof(struct mach_header); 880 881 case MH_MAGIC_64: 882 case MH_CIGAM_64: 883 return sizeof(struct mach_header_64); 884 break; 885 886 default: 887 break; 888 } 889 return 0; 890 } 891 892 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 893 894 void 895 ObjectFileMachO::Initialize() 896 { 897 PluginManager::RegisterPlugin (GetPluginNameStatic(), 898 GetPluginDescriptionStatic(), 899 CreateInstance, 900 CreateMemoryInstance, 901 GetModuleSpecifications, 902 SaveCore); 903 } 904 905 void 906 ObjectFileMachO::Terminate() 907 { 908 PluginManager::UnregisterPlugin (CreateInstance); 909 } 910 911 912 lldb_private::ConstString 913 ObjectFileMachO::GetPluginNameStatic() 914 { 915 static ConstString g_name("mach-o"); 916 return g_name; 917 } 918 919 const char * 920 ObjectFileMachO::GetPluginDescriptionStatic() 921 { 922 return "Mach-o object file reader (32 and 64 bit)"; 923 } 924 925 ObjectFile * 926 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 927 DataBufferSP& data_sp, 928 lldb::offset_t data_offset, 929 const FileSpec* file, 930 lldb::offset_t file_offset, 931 lldb::offset_t length) 932 { 933 if (!data_sp) 934 { 935 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 936 data_offset = 0; 937 } 938 939 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 940 { 941 // Update the data to contain the entire file if it doesn't already 942 if (data_sp->GetByteSize() < length) 943 { 944 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 945 data_offset = 0; 946 } 947 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 948 if (objfile_ap.get() && objfile_ap->ParseHeader()) 949 return objfile_ap.release(); 950 } 951 return NULL; 952 } 953 954 ObjectFile * 955 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 956 DataBufferSP& data_sp, 957 const ProcessSP &process_sp, 958 lldb::addr_t header_addr) 959 { 960 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 961 { 962 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 963 if (objfile_ap.get() && objfile_ap->ParseHeader()) 964 return objfile_ap.release(); 965 } 966 return NULL; 967 } 968 969 size_t 970 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 971 lldb::DataBufferSP& data_sp, 972 lldb::offset_t data_offset, 973 lldb::offset_t file_offset, 974 lldb::offset_t length, 975 lldb_private::ModuleSpecList &specs) 976 { 977 const size_t initial_count = specs.GetSize(); 978 979 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 980 { 981 DataExtractor data; 982 data.SetData(data_sp); 983 llvm::MachO::mach_header header; 984 if (ParseHeader (data, &data_offset, header)) 985 { 986 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 987 if (header_and_load_cmds >= data_sp->GetByteSize()) 988 { 989 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 990 data.SetData(data_sp); 991 data_offset = MachHeaderSizeFromMagic(header.magic); 992 } 993 if (data_sp) 994 { 995 ModuleSpec spec; 996 spec.GetFileSpec() = file; 997 spec.SetObjectOffset(file_offset); 998 spec.SetObjectSize(length); 999 1000 if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) 1001 { 1002 if (spec.GetArchitecture().IsValid()) 1003 { 1004 GetUUID (header, data, data_offset, spec.GetUUID()); 1005 specs.Append(spec); 1006 } 1007 } 1008 } 1009 } 1010 } 1011 return specs.GetSize() - initial_count; 1012 } 1013 1014 1015 1016 const ConstString & 1017 ObjectFileMachO::GetSegmentNameTEXT() 1018 { 1019 static ConstString g_segment_name_TEXT ("__TEXT"); 1020 return g_segment_name_TEXT; 1021 } 1022 1023 const ConstString & 1024 ObjectFileMachO::GetSegmentNameDATA() 1025 { 1026 static ConstString g_segment_name_DATA ("__DATA"); 1027 return g_segment_name_DATA; 1028 } 1029 1030 const ConstString & 1031 ObjectFileMachO::GetSegmentNameDATA_DIRTY() 1032 { 1033 static ConstString g_segment_name ("__DATA_DIRTY"); 1034 return g_segment_name; 1035 } 1036 1037 const ConstString & 1038 ObjectFileMachO::GetSegmentNameDATA_CONST() 1039 { 1040 static ConstString g_segment_name ("__DATA_CONST"); 1041 return g_segment_name; 1042 } 1043 1044 const ConstString & 1045 ObjectFileMachO::GetSegmentNameOBJC() 1046 { 1047 static ConstString g_segment_name_OBJC ("__OBJC"); 1048 return g_segment_name_OBJC; 1049 } 1050 1051 const ConstString & 1052 ObjectFileMachO::GetSegmentNameLINKEDIT() 1053 { 1054 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 1055 return g_section_name_LINKEDIT; 1056 } 1057 1058 const ConstString & 1059 ObjectFileMachO::GetSectionNameEHFrame() 1060 { 1061 static ConstString g_section_name_eh_frame ("__eh_frame"); 1062 return g_section_name_eh_frame; 1063 } 1064 1065 bool 1066 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 1067 lldb::addr_t data_offset, 1068 lldb::addr_t data_length) 1069 { 1070 DataExtractor data; 1071 data.SetData (data_sp, data_offset, data_length); 1072 lldb::offset_t offset = 0; 1073 uint32_t magic = data.GetU32(&offset); 1074 return MachHeaderSizeFromMagic(magic) != 0; 1075 } 1076 1077 1078 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 1079 DataBufferSP& data_sp, 1080 lldb::offset_t data_offset, 1081 const FileSpec* file, 1082 lldb::offset_t file_offset, 1083 lldb::offset_t length) : 1084 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 1085 m_mach_segments(), 1086 m_mach_sections(), 1087 m_entry_point_address(), 1088 m_thread_context_offsets(), 1089 m_thread_context_offsets_valid(false) 1090 { 1091 ::memset (&m_header, 0, sizeof(m_header)); 1092 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1093 } 1094 1095 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 1096 lldb::DataBufferSP& header_data_sp, 1097 const lldb::ProcessSP &process_sp, 1098 lldb::addr_t header_addr) : 1099 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 1100 m_mach_segments(), 1101 m_mach_sections(), 1102 m_entry_point_address(), 1103 m_thread_context_offsets(), 1104 m_thread_context_offsets_valid(false) 1105 { 1106 ::memset (&m_header, 0, sizeof(m_header)); 1107 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1108 } 1109 1110 ObjectFileMachO::~ObjectFileMachO() 1111 { 1112 } 1113 1114 bool 1115 ObjectFileMachO::ParseHeader (DataExtractor &data, 1116 lldb::offset_t *data_offset_ptr, 1117 llvm::MachO::mach_header &header) 1118 { 1119 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1120 // Leave magic in the original byte order 1121 header.magic = data.GetU32(data_offset_ptr); 1122 bool can_parse = false; 1123 bool is_64_bit = false; 1124 switch (header.magic) 1125 { 1126 case MH_MAGIC: 1127 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1128 data.SetAddressByteSize(4); 1129 can_parse = true; 1130 break; 1131 1132 case MH_MAGIC_64: 1133 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1134 data.SetAddressByteSize(8); 1135 can_parse = true; 1136 is_64_bit = true; 1137 break; 1138 1139 case MH_CIGAM: 1140 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1141 data.SetAddressByteSize(4); 1142 can_parse = true; 1143 break; 1144 1145 case MH_CIGAM_64: 1146 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1147 data.SetAddressByteSize(8); 1148 is_64_bit = true; 1149 can_parse = true; 1150 break; 1151 1152 default: 1153 break; 1154 } 1155 1156 if (can_parse) 1157 { 1158 data.GetU32(data_offset_ptr, &header.cputype, 6); 1159 if (is_64_bit) 1160 *data_offset_ptr += 4; 1161 return true; 1162 } 1163 else 1164 { 1165 memset(&header, 0, sizeof(header)); 1166 } 1167 return false; 1168 } 1169 1170 bool 1171 ObjectFileMachO::ParseHeader () 1172 { 1173 ModuleSP module_sp(GetModule()); 1174 if (module_sp) 1175 { 1176 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1177 bool can_parse = false; 1178 lldb::offset_t offset = 0; 1179 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1180 // Leave magic in the original byte order 1181 m_header.magic = m_data.GetU32(&offset); 1182 switch (m_header.magic) 1183 { 1184 case MH_MAGIC: 1185 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1186 m_data.SetAddressByteSize(4); 1187 can_parse = true; 1188 break; 1189 1190 case MH_MAGIC_64: 1191 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1192 m_data.SetAddressByteSize(8); 1193 can_parse = true; 1194 break; 1195 1196 case MH_CIGAM: 1197 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1198 m_data.SetAddressByteSize(4); 1199 can_parse = true; 1200 break; 1201 1202 case MH_CIGAM_64: 1203 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1204 m_data.SetAddressByteSize(8); 1205 can_parse = true; 1206 break; 1207 1208 default: 1209 break; 1210 } 1211 1212 if (can_parse) 1213 { 1214 m_data.GetU32(&offset, &m_header.cputype, 6); 1215 1216 1217 ArchSpec mach_arch; 1218 1219 if (GetArchitecture (mach_arch)) 1220 { 1221 // Check if the module has a required architecture 1222 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1223 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1224 return false; 1225 1226 if (SetModulesArchitecture (mach_arch)) 1227 { 1228 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1229 if (m_data.GetByteSize() < header_and_lc_size) 1230 { 1231 DataBufferSP data_sp; 1232 ProcessSP process_sp (m_process_wp.lock()); 1233 if (process_sp) 1234 { 1235 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 1236 } 1237 else 1238 { 1239 // Read in all only the load command data from the file on disk 1240 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 1241 if (data_sp->GetByteSize() != header_and_lc_size) 1242 return false; 1243 } 1244 if (data_sp) 1245 m_data.SetData (data_sp); 1246 } 1247 } 1248 return true; 1249 } 1250 } 1251 else 1252 { 1253 memset(&m_header, 0, sizeof(struct mach_header)); 1254 } 1255 } 1256 return false; 1257 } 1258 1259 1260 ByteOrder 1261 ObjectFileMachO::GetByteOrder () const 1262 { 1263 return m_data.GetByteOrder (); 1264 } 1265 1266 bool 1267 ObjectFileMachO::IsExecutable() const 1268 { 1269 return m_header.filetype == MH_EXECUTE; 1270 } 1271 1272 uint32_t 1273 ObjectFileMachO::GetAddressByteSize () const 1274 { 1275 return m_data.GetAddressByteSize (); 1276 } 1277 1278 AddressClass 1279 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 1280 { 1281 Symtab *symtab = GetSymtab(); 1282 if (symtab) 1283 { 1284 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1285 if (symbol) 1286 { 1287 if (symbol->ValueIsAddress()) 1288 { 1289 SectionSP section_sp (symbol->GetAddressRef().GetSection()); 1290 if (section_sp) 1291 { 1292 const lldb::SectionType section_type = section_sp->GetType(); 1293 switch (section_type) 1294 { 1295 case eSectionTypeInvalid: 1296 return eAddressClassUnknown; 1297 1298 case eSectionTypeCode: 1299 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1300 { 1301 // For ARM we have a bit in the n_desc field of the symbol 1302 // that tells us ARM/Thumb which is bit 0x0008. 1303 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1304 return eAddressClassCodeAlternateISA; 1305 } 1306 return eAddressClassCode; 1307 1308 case eSectionTypeContainer: 1309 return eAddressClassUnknown; 1310 1311 case eSectionTypeData: 1312 case eSectionTypeDataCString: 1313 case eSectionTypeDataCStringPointers: 1314 case eSectionTypeDataSymbolAddress: 1315 case eSectionTypeData4: 1316 case eSectionTypeData8: 1317 case eSectionTypeData16: 1318 case eSectionTypeDataPointers: 1319 case eSectionTypeZeroFill: 1320 case eSectionTypeDataObjCMessageRefs: 1321 case eSectionTypeDataObjCCFStrings: 1322 return eAddressClassData; 1323 1324 case eSectionTypeDebug: 1325 case eSectionTypeDWARFDebugAbbrev: 1326 case eSectionTypeDWARFDebugAranges: 1327 case eSectionTypeDWARFDebugFrame: 1328 case eSectionTypeDWARFDebugInfo: 1329 case eSectionTypeDWARFDebugLine: 1330 case eSectionTypeDWARFDebugLoc: 1331 case eSectionTypeDWARFDebugMacInfo: 1332 case eSectionTypeDWARFDebugPubNames: 1333 case eSectionTypeDWARFDebugPubTypes: 1334 case eSectionTypeDWARFDebugRanges: 1335 case eSectionTypeDWARFDebugStr: 1336 case eSectionTypeDWARFAppleNames: 1337 case eSectionTypeDWARFAppleTypes: 1338 case eSectionTypeDWARFAppleNamespaces: 1339 case eSectionTypeDWARFAppleObjC: 1340 return eAddressClassDebug; 1341 1342 case eSectionTypeEHFrame: 1343 case eSectionTypeCompactUnwind: 1344 return eAddressClassRuntime; 1345 1346 case eSectionTypeELFSymbolTable: 1347 case eSectionTypeELFDynamicSymbols: 1348 case eSectionTypeELFRelocationEntries: 1349 case eSectionTypeELFDynamicLinkInfo: 1350 case eSectionTypeOther: 1351 return eAddressClassUnknown; 1352 } 1353 } 1354 } 1355 1356 const SymbolType symbol_type = symbol->GetType(); 1357 switch (symbol_type) 1358 { 1359 case eSymbolTypeAny: return eAddressClassUnknown; 1360 case eSymbolTypeAbsolute: return eAddressClassUnknown; 1361 1362 case eSymbolTypeCode: 1363 case eSymbolTypeTrampoline: 1364 case eSymbolTypeResolver: 1365 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1366 { 1367 // For ARM we have a bit in the n_desc field of the symbol 1368 // that tells us ARM/Thumb which is bit 0x0008. 1369 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1370 return eAddressClassCodeAlternateISA; 1371 } 1372 return eAddressClassCode; 1373 1374 case eSymbolTypeData: return eAddressClassData; 1375 case eSymbolTypeRuntime: return eAddressClassRuntime; 1376 case eSymbolTypeException: return eAddressClassRuntime; 1377 case eSymbolTypeSourceFile: return eAddressClassDebug; 1378 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1379 case eSymbolTypeObjectFile: return eAddressClassDebug; 1380 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1381 case eSymbolTypeBlock: return eAddressClassDebug; 1382 case eSymbolTypeLocal: return eAddressClassData; 1383 case eSymbolTypeParam: return eAddressClassData; 1384 case eSymbolTypeVariable: return eAddressClassData; 1385 case eSymbolTypeVariableType: return eAddressClassDebug; 1386 case eSymbolTypeLineEntry: return eAddressClassDebug; 1387 case eSymbolTypeLineHeader: return eAddressClassDebug; 1388 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1389 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1390 case eSymbolTypeAdditional: return eAddressClassUnknown; 1391 case eSymbolTypeCompiler: return eAddressClassDebug; 1392 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1393 case eSymbolTypeUndefined: return eAddressClassUnknown; 1394 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1395 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1396 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1397 case eSymbolTypeReExported: return eAddressClassRuntime; 1398 } 1399 } 1400 } 1401 return eAddressClassUnknown; 1402 } 1403 1404 Symtab * 1405 ObjectFileMachO::GetSymtab() 1406 { 1407 ModuleSP module_sp(GetModule()); 1408 if (module_sp) 1409 { 1410 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1411 if (m_symtab_ap.get() == NULL) 1412 { 1413 m_symtab_ap.reset(new Symtab(this)); 1414 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1415 ParseSymtab (); 1416 m_symtab_ap->Finalize (); 1417 } 1418 } 1419 return m_symtab_ap.get(); 1420 } 1421 1422 bool 1423 ObjectFileMachO::IsStripped () 1424 { 1425 if (m_dysymtab.cmd == 0) 1426 { 1427 ModuleSP module_sp(GetModule()); 1428 if (module_sp) 1429 { 1430 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1431 for (uint32_t i=0; i<m_header.ncmds; ++i) 1432 { 1433 const lldb::offset_t load_cmd_offset = offset; 1434 1435 load_command lc; 1436 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1437 break; 1438 if (lc.cmd == LC_DYSYMTAB) 1439 { 1440 m_dysymtab.cmd = lc.cmd; 1441 m_dysymtab.cmdsize = lc.cmdsize; 1442 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1443 { 1444 // Clear m_dysymtab if we were unable to read all items from the load command 1445 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1446 } 1447 } 1448 offset = load_cmd_offset + lc.cmdsize; 1449 } 1450 } 1451 } 1452 if (m_dysymtab.cmd) 1453 return m_dysymtab.nlocalsym <= 1; 1454 return false; 1455 } 1456 1457 void 1458 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1459 { 1460 if (!m_sections_ap.get()) 1461 { 1462 m_sections_ap.reset(new SectionList()); 1463 1464 const bool is_dsym = (m_header.filetype == MH_DSYM); 1465 lldb::user_id_t segID = 0; 1466 lldb::user_id_t sectID = 0; 1467 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1468 uint32_t i; 1469 const bool is_core = GetType() == eTypeCoreFile; 1470 //bool dump_sections = false; 1471 ModuleSP module_sp (GetModule()); 1472 // First look up any LC_ENCRYPTION_INFO load commands 1473 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1474 EncryptedFileRanges encrypted_file_ranges; 1475 encryption_info_command encryption_cmd; 1476 for (i=0; i<m_header.ncmds; ++i) 1477 { 1478 const lldb::offset_t load_cmd_offset = offset; 1479 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1480 break; 1481 1482 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for 1483 // the 3 fields we care about, so treat them the same. 1484 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) 1485 { 1486 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1487 { 1488 if (encryption_cmd.cryptid != 0) 1489 { 1490 EncryptedFileRanges::Entry entry; 1491 entry.SetRangeBase(encryption_cmd.cryptoff); 1492 entry.SetByteSize(encryption_cmd.cryptsize); 1493 encrypted_file_ranges.Append(entry); 1494 } 1495 } 1496 } 1497 offset = load_cmd_offset + encryption_cmd.cmdsize; 1498 } 1499 1500 bool section_file_addresses_changed = false; 1501 1502 offset = MachHeaderSizeFromMagic(m_header.magic); 1503 1504 struct segment_command_64 load_cmd; 1505 for (i=0; i<m_header.ncmds; ++i) 1506 { 1507 const lldb::offset_t load_cmd_offset = offset; 1508 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1509 break; 1510 1511 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1512 { 1513 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1514 { 1515 bool add_section = true; 1516 bool add_to_unified = true; 1517 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1518 1519 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1520 if (is_dsym && unified_section_sp) 1521 { 1522 if (const_segname == GetSegmentNameLINKEDIT()) 1523 { 1524 // We need to keep the __LINKEDIT segment private to this object file only 1525 add_to_unified = false; 1526 } 1527 else 1528 { 1529 // This is the dSYM file and this section has already been created by 1530 // the object file, no need to create it. 1531 add_section = false; 1532 } 1533 } 1534 load_cmd.vmaddr = m_data.GetAddress(&offset); 1535 load_cmd.vmsize = m_data.GetAddress(&offset); 1536 load_cmd.fileoff = m_data.GetAddress(&offset); 1537 load_cmd.filesize = m_data.GetAddress(&offset); 1538 if (m_length != 0 && load_cmd.filesize != 0) 1539 { 1540 if (load_cmd.fileoff > m_length) 1541 { 1542 // We have a load command that says it extends past the end of the file. This is likely 1543 // a corrupt file. We don't have any way to return an error condition here (this method 1544 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1545 // is null out the SectionList vector and if a process has been set up, dump a message 1546 // to stdout. The most common case here is core file debugging with a truncated file. 1547 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1548 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1549 i, 1550 lc_segment_name, 1551 load_cmd.fileoff, 1552 m_length); 1553 1554 load_cmd.fileoff = 0; 1555 load_cmd.filesize = 0; 1556 } 1557 1558 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1559 { 1560 // We have a load command that says it extends past the end of the file. This is likely 1561 // a corrupt file. We don't have any way to return an error condition here (this method 1562 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1563 // is null out the SectionList vector and if a process has been set up, dump a message 1564 // to stdout. The most common case here is core file debugging with a truncated file. 1565 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1566 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1567 i, 1568 lc_segment_name, 1569 load_cmd.fileoff + load_cmd.filesize, 1570 m_length); 1571 1572 // Tuncase the length 1573 load_cmd.filesize = m_length - load_cmd.fileoff; 1574 } 1575 } 1576 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1577 { 1578 1579 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1580 1581 // Keep a list of mach segments around in case we need to 1582 // get at data that isn't stored in the abstracted Sections. 1583 m_mach_segments.push_back (load_cmd); 1584 1585 // Use a segment ID of the segment index shifted left by 8 so they 1586 // never conflict with any of the sections. 1587 SectionSP segment_sp; 1588 if (add_section && (const_segname || is_core)) 1589 { 1590 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1591 this, // Object file to which this sections belongs 1592 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1593 const_segname, // Name of this section 1594 eSectionTypeContainer, // This section is a container of other sections. 1595 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1596 load_cmd.vmsize, // VM size in bytes of this section 1597 load_cmd.fileoff, // Offset to the data for this section in the file 1598 load_cmd.filesize, // Size in bytes of this section as found in the file 1599 0, // Segments have no alignment information 1600 load_cmd.flags)); // Flags for this section 1601 1602 segment_sp->SetIsEncrypted (segment_is_encrypted); 1603 m_sections_ap->AddSection(segment_sp); 1604 if (add_to_unified) 1605 unified_section_list.AddSection(segment_sp); 1606 } 1607 else if (unified_section_sp) 1608 { 1609 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1610 { 1611 // Check to see if the module was read from memory? 1612 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1613 { 1614 // We have a module that is in memory and needs to have its 1615 // file address adjusted. We need to do this because when we 1616 // load a file from memory, its addresses will be slid already, 1617 // yet the addresses in the new symbol file will still be unslid. 1618 // Since everything is stored as section offset, this shouldn't 1619 // cause any problems. 1620 1621 // Make sure we've parsed the symbol table from the 1622 // ObjectFile before we go around changing its Sections. 1623 module_sp->GetObjectFile()->GetSymtab(); 1624 // eh_frame would present the same problems but we parse that on 1625 // a per-function basis as-needed so it's more difficult to 1626 // remove its use of the Sections. Realistically, the environments 1627 // where this code path will be taken will not have eh_frame sections. 1628 1629 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1630 1631 // Notify the module that the section addresses have been changed once 1632 // we're done so any file-address caches can be updated. 1633 section_file_addresses_changed = true; 1634 } 1635 } 1636 m_sections_ap->AddSection(unified_section_sp); 1637 } 1638 1639 struct section_64 sect64; 1640 ::memset (§64, 0, sizeof(sect64)); 1641 // Push a section into our mach sections for the section at 1642 // index zero (NO_SECT) if we don't have any mach sections yet... 1643 if (m_mach_sections.empty()) 1644 m_mach_sections.push_back(sect64); 1645 uint32_t segment_sect_idx; 1646 const lldb::user_id_t first_segment_sectID = sectID + 1; 1647 1648 1649 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1650 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1651 { 1652 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1653 break; 1654 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1655 break; 1656 sect64.addr = m_data.GetAddress(&offset); 1657 sect64.size = m_data.GetAddress(&offset); 1658 1659 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1660 break; 1661 1662 // Keep a list of mach sections around in case we need to 1663 // get at data that isn't stored in the abstracted Sections. 1664 m_mach_sections.push_back (sect64); 1665 1666 if (add_section) 1667 { 1668 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1669 if (!const_segname) 1670 { 1671 // We have a segment with no name so we need to conjure up 1672 // segments that correspond to the section's segname if there 1673 // isn't already such a section. If there is such a section, 1674 // we resize the section so that it spans all sections. 1675 // We also mark these sections as fake so address matches don't 1676 // hit if they land in the gaps between the child sections. 1677 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1678 segment_sp = unified_section_list.FindSectionByName (const_segname); 1679 if (segment_sp.get()) 1680 { 1681 Section *segment = segment_sp.get(); 1682 // Grow the section size as needed. 1683 const lldb::addr_t sect64_min_addr = sect64.addr; 1684 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1685 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1686 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1687 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1688 if (sect64_min_addr >= curr_seg_min_addr) 1689 { 1690 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1691 // Only grow the section size if needed 1692 if (new_seg_byte_size > curr_seg_byte_size) 1693 segment->SetByteSize (new_seg_byte_size); 1694 } 1695 else 1696 { 1697 // We need to change the base address of the segment and 1698 // adjust the child section offsets for all existing children. 1699 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1700 segment->Slide(slide_amount, false); 1701 segment->GetChildren().Slide(-slide_amount, false); 1702 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1703 } 1704 1705 // Grow the section size as needed. 1706 if (sect64.offset) 1707 { 1708 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1709 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1710 1711 const lldb::addr_t section_min_file_offset = sect64.offset; 1712 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1713 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1714 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1715 segment->SetFileOffset (new_file_offset); 1716 segment->SetFileSize (new_file_size); 1717 } 1718 } 1719 else 1720 { 1721 // Create a fake section for the section's named segment 1722 segment_sp.reset(new Section (segment_sp, // Parent section 1723 module_sp, // Module to which this section belongs 1724 this, // Object file to which this section belongs 1725 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1726 const_segname, // Name of this section 1727 eSectionTypeContainer, // This section is a container of other sections. 1728 sect64.addr, // File VM address == addresses as they are found in the object file 1729 sect64.size, // VM size in bytes of this section 1730 sect64.offset, // Offset to the data for this section in the file 1731 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file 1732 sect64.align, 1733 load_cmd.flags)); // Flags for this section 1734 segment_sp->SetIsFake(true); 1735 1736 m_sections_ap->AddSection(segment_sp); 1737 if (add_to_unified) 1738 unified_section_list.AddSection(segment_sp); 1739 segment_sp->SetIsEncrypted (segment_is_encrypted); 1740 } 1741 } 1742 assert (segment_sp.get()); 1743 1744 lldb::SectionType sect_type = eSectionTypeOther; 1745 1746 if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1747 sect_type = eSectionTypeCode; 1748 else 1749 { 1750 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1751 static ConstString g_sect_name_objc_data ("__objc_data"); 1752 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1753 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1754 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1755 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1756 static ConstString g_sect_name_objc_const ("__objc_const"); 1757 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1758 static ConstString g_sect_name_cfstring ("__cfstring"); 1759 1760 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1761 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1762 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1763 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1764 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1765 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1766 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1767 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1768 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1769 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1770 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1771 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1772 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1773 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1774 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1775 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1776 static ConstString g_sect_name_compact_unwind ("__unwind_info"); 1777 static ConstString g_sect_name_text ("__text"); 1778 static ConstString g_sect_name_data ("__data"); 1779 1780 1781 if (section_name == g_sect_name_dwarf_debug_abbrev) 1782 sect_type = eSectionTypeDWARFDebugAbbrev; 1783 else if (section_name == g_sect_name_dwarf_debug_aranges) 1784 sect_type = eSectionTypeDWARFDebugAranges; 1785 else if (section_name == g_sect_name_dwarf_debug_frame) 1786 sect_type = eSectionTypeDWARFDebugFrame; 1787 else if (section_name == g_sect_name_dwarf_debug_info) 1788 sect_type = eSectionTypeDWARFDebugInfo; 1789 else if (section_name == g_sect_name_dwarf_debug_line) 1790 sect_type = eSectionTypeDWARFDebugLine; 1791 else if (section_name == g_sect_name_dwarf_debug_loc) 1792 sect_type = eSectionTypeDWARFDebugLoc; 1793 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1794 sect_type = eSectionTypeDWARFDebugMacInfo; 1795 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1796 sect_type = eSectionTypeDWARFDebugPubNames; 1797 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1798 sect_type = eSectionTypeDWARFDebugPubTypes; 1799 else if (section_name == g_sect_name_dwarf_debug_ranges) 1800 sect_type = eSectionTypeDWARFDebugRanges; 1801 else if (section_name == g_sect_name_dwarf_debug_str) 1802 sect_type = eSectionTypeDWARFDebugStr; 1803 else if (section_name == g_sect_name_dwarf_apple_names) 1804 sect_type = eSectionTypeDWARFAppleNames; 1805 else if (section_name == g_sect_name_dwarf_apple_types) 1806 sect_type = eSectionTypeDWARFAppleTypes; 1807 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1808 sect_type = eSectionTypeDWARFAppleNamespaces; 1809 else if (section_name == g_sect_name_dwarf_apple_objc) 1810 sect_type = eSectionTypeDWARFAppleObjC; 1811 else if (section_name == g_sect_name_objc_selrefs) 1812 sect_type = eSectionTypeDataCStringPointers; 1813 else if (section_name == g_sect_name_objc_msgrefs) 1814 sect_type = eSectionTypeDataObjCMessageRefs; 1815 else if (section_name == g_sect_name_eh_frame) 1816 sect_type = eSectionTypeEHFrame; 1817 else if (section_name == g_sect_name_compact_unwind) 1818 sect_type = eSectionTypeCompactUnwind; 1819 else if (section_name == g_sect_name_cfstring) 1820 sect_type = eSectionTypeDataObjCCFStrings; 1821 else if (section_name == g_sect_name_objc_data || 1822 section_name == g_sect_name_objc_classrefs || 1823 section_name == g_sect_name_objc_superrefs || 1824 section_name == g_sect_name_objc_const || 1825 section_name == g_sect_name_objc_classlist) 1826 { 1827 sect_type = eSectionTypeDataPointers; 1828 } 1829 1830 if (sect_type == eSectionTypeOther) 1831 { 1832 switch (mach_sect_type) 1833 { 1834 // TODO: categorize sections by other flags for regular sections 1835 case S_REGULAR: 1836 if (section_name == g_sect_name_text) 1837 sect_type = eSectionTypeCode; 1838 else if (section_name == g_sect_name_data) 1839 sect_type = eSectionTypeData; 1840 else 1841 sect_type = eSectionTypeOther; 1842 break; 1843 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1844 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1845 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1846 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1847 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1848 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1849 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1850 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1851 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1852 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1853 case S_COALESCED: sect_type = eSectionTypeOther; break; 1854 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1855 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1856 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1857 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1858 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1859 default: break; 1860 } 1861 } 1862 } 1863 1864 SectionSP section_sp(new Section (segment_sp, 1865 module_sp, 1866 this, 1867 ++sectID, 1868 section_name, 1869 sect_type, 1870 sect64.addr - segment_sp->GetFileAddress(), 1871 sect64.size, 1872 sect64.offset, 1873 sect64.offset == 0 ? 0 : sect64.size, 1874 sect64.align, 1875 sect64.flags)); 1876 // Set the section to be encrypted to match the segment 1877 1878 bool section_is_encrypted = false; 1879 if (!segment_is_encrypted && load_cmd.filesize != 0) 1880 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1881 1882 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1883 segment_sp->GetChildren().AddSection(section_sp); 1884 1885 if (segment_sp->IsFake()) 1886 { 1887 segment_sp.reset(); 1888 const_segname.Clear(); 1889 } 1890 } 1891 } 1892 if (segment_sp && is_dsym) 1893 { 1894 if (first_segment_sectID <= sectID) 1895 { 1896 lldb::user_id_t sect_uid; 1897 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1898 { 1899 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1900 SectionSP next_section_sp; 1901 if (sect_uid + 1 <= sectID) 1902 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1903 1904 if (curr_section_sp.get()) 1905 { 1906 if (curr_section_sp->GetByteSize() == 0) 1907 { 1908 if (next_section_sp.get() != NULL) 1909 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1910 else 1911 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1912 } 1913 } 1914 } 1915 } 1916 } 1917 } 1918 } 1919 } 1920 else if (load_cmd.cmd == LC_DYSYMTAB) 1921 { 1922 m_dysymtab.cmd = load_cmd.cmd; 1923 m_dysymtab.cmdsize = load_cmd.cmdsize; 1924 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1925 } 1926 1927 offset = load_cmd_offset + load_cmd.cmdsize; 1928 } 1929 1930 1931 if (section_file_addresses_changed && module_sp.get()) 1932 { 1933 module_sp->SectionFileAddressesChanged(); 1934 } 1935 } 1936 } 1937 1938 class MachSymtabSectionInfo 1939 { 1940 public: 1941 1942 MachSymtabSectionInfo (SectionList *section_list) : 1943 m_section_list (section_list), 1944 m_section_infos() 1945 { 1946 // Get the number of sections down to a depth of 1 to include 1947 // all segments and their sections, but no other sections that 1948 // may be added for debug map or 1949 m_section_infos.resize(section_list->GetNumSections(1)); 1950 } 1951 1952 1953 SectionSP 1954 GetSection (uint8_t n_sect, addr_t file_addr) 1955 { 1956 if (n_sect == 0) 1957 return SectionSP(); 1958 if (n_sect < m_section_infos.size()) 1959 { 1960 if (!m_section_infos[n_sect].section_sp) 1961 { 1962 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1963 m_section_infos[n_sect].section_sp = section_sp; 1964 if (section_sp) 1965 { 1966 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1967 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1968 } 1969 else 1970 { 1971 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1972 } 1973 } 1974 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1975 { 1976 // Symbol is in section. 1977 return m_section_infos[n_sect].section_sp; 1978 } 1979 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1980 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1981 { 1982 // Symbol is in section with zero size, but has the same start 1983 // address as the section. This can happen with linker symbols 1984 // (symbols that start with the letter 'l' or 'L'. 1985 return m_section_infos[n_sect].section_sp; 1986 } 1987 } 1988 return m_section_list->FindSectionContainingFileAddress(file_addr); 1989 } 1990 1991 protected: 1992 struct SectionInfo 1993 { 1994 SectionInfo () : 1995 vm_range(), 1996 section_sp () 1997 { 1998 } 1999 2000 VMRange vm_range; 2001 SectionSP section_sp; 2002 }; 2003 SectionList *m_section_list; 2004 std::vector<SectionInfo> m_section_infos; 2005 }; 2006 2007 struct TrieEntry 2008 { 2009 TrieEntry () : 2010 name(), 2011 address(LLDB_INVALID_ADDRESS), 2012 flags (0), 2013 other(0), 2014 import_name() 2015 { 2016 } 2017 2018 void 2019 Clear () 2020 { 2021 name.Clear(); 2022 address = LLDB_INVALID_ADDRESS; 2023 flags = 0; 2024 other = 0; 2025 import_name.Clear(); 2026 } 2027 2028 void 2029 Dump () const 2030 { 2031 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 2032 static_cast<unsigned long long>(address), 2033 static_cast<unsigned long long>(flags), 2034 static_cast<unsigned long long>(other), name.GetCString()); 2035 if (import_name) 2036 printf (" -> \"%s\"\n", import_name.GetCString()); 2037 else 2038 printf ("\n"); 2039 } 2040 ConstString name; 2041 uint64_t address; 2042 uint64_t flags; 2043 uint64_t other; 2044 ConstString import_name; 2045 }; 2046 2047 struct TrieEntryWithOffset 2048 { 2049 lldb::offset_t nodeOffset; 2050 TrieEntry entry; 2051 2052 TrieEntryWithOffset (lldb::offset_t offset) : 2053 nodeOffset (offset), 2054 entry() 2055 { 2056 } 2057 2058 void 2059 Dump (uint32_t idx) const 2060 { 2061 printf ("[%3u] 0x%16.16llx: ", idx, 2062 static_cast<unsigned long long>(nodeOffset)); 2063 entry.Dump(); 2064 } 2065 2066 bool 2067 operator<(const TrieEntryWithOffset& other) const 2068 { 2069 return ( nodeOffset < other.nodeOffset ); 2070 } 2071 }; 2072 2073 static void 2074 ParseTrieEntries (DataExtractor &data, 2075 lldb::offset_t offset, 2076 const bool is_arm, 2077 std::vector<llvm::StringRef> &nameSlices, 2078 std::set<lldb::addr_t> &resolver_addresses, 2079 std::vector<TrieEntryWithOffset>& output) 2080 { 2081 if (!data.ValidOffset(offset)) 2082 return; 2083 2084 const uint64_t terminalSize = data.GetULEB128(&offset); 2085 lldb::offset_t children_offset = offset + terminalSize; 2086 if ( terminalSize != 0 ) { 2087 TrieEntryWithOffset e (offset); 2088 e.entry.flags = data.GetULEB128(&offset); 2089 const char *import_name = NULL; 2090 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 2091 e.entry.address = 0; 2092 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2093 import_name = data.GetCStr(&offset); 2094 } 2095 else { 2096 e.entry.address = data.GetULEB128(&offset); 2097 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 2098 { 2099 e.entry.other = data.GetULEB128(&offset); 2100 uint64_t resolver_addr = e.entry.other; 2101 if (is_arm) 2102 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2103 resolver_addresses.insert(resolver_addr); 2104 } 2105 else 2106 e.entry.other = 0; 2107 } 2108 // Only add symbols that are reexport symbols with a valid import name 2109 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 2110 { 2111 std::string name; 2112 if (!nameSlices.empty()) 2113 { 2114 for (auto name_slice: nameSlices) 2115 name.append(name_slice.data(), name_slice.size()); 2116 } 2117 if (name.size() > 1) 2118 { 2119 // Skip the leading '_' 2120 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 2121 } 2122 if (import_name) 2123 { 2124 // Skip the leading '_' 2125 e.entry.import_name.SetCString(import_name+1); 2126 } 2127 output.push_back(e); 2128 } 2129 } 2130 2131 const uint8_t childrenCount = data.GetU8(&children_offset); 2132 for (uint8_t i=0; i < childrenCount; ++i) { 2133 nameSlices.push_back(data.GetCStr(&children_offset)); 2134 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2135 if (childNodeOffset) 2136 { 2137 ParseTrieEntries(data, 2138 childNodeOffset, 2139 is_arm, 2140 nameSlices, 2141 resolver_addresses, 2142 output); 2143 } 2144 nameSlices.pop_back(); 2145 } 2146 } 2147 2148 size_t 2149 ObjectFileMachO::ParseSymtab () 2150 { 2151 Timer scoped_timer(__PRETTY_FUNCTION__, 2152 "ObjectFileMachO::ParseSymtab () module = %s", 2153 m_file.GetFilename().AsCString("")); 2154 ModuleSP module_sp (GetModule()); 2155 if (!module_sp) 2156 return 0; 2157 2158 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 2159 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 2160 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2161 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2162 FunctionStarts function_starts; 2163 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2164 uint32_t i; 2165 FileSpecList dylib_files; 2166 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 2167 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2168 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2169 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2170 2171 for (i=0; i<m_header.ncmds; ++i) 2172 { 2173 const lldb::offset_t cmd_offset = offset; 2174 // Read in the load command and load command size 2175 struct load_command lc; 2176 if (m_data.GetU32(&offset, &lc, 2) == NULL) 2177 break; 2178 // Watch for the symbol table load command 2179 switch (lc.cmd) 2180 { 2181 case LC_SYMTAB: 2182 symtab_load_command.cmd = lc.cmd; 2183 symtab_load_command.cmdsize = lc.cmdsize; 2184 // Read in the rest of the symtab load command 2185 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 2186 return 0; 2187 if (symtab_load_command.symoff == 0) 2188 { 2189 if (log) 2190 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2191 return 0; 2192 } 2193 2194 if (symtab_load_command.stroff == 0) 2195 { 2196 if (log) 2197 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2198 return 0; 2199 } 2200 2201 if (symtab_load_command.nsyms == 0) 2202 { 2203 if (log) 2204 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2205 return 0; 2206 } 2207 2208 if (symtab_load_command.strsize == 0) 2209 { 2210 if (log) 2211 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2212 return 0; 2213 } 2214 break; 2215 2216 case LC_DYLD_INFO: 2217 case LC_DYLD_INFO_ONLY: 2218 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 2219 { 2220 dyld_info.cmd = lc.cmd; 2221 dyld_info.cmdsize = lc.cmdsize; 2222 } 2223 else 2224 { 2225 memset (&dyld_info, 0, sizeof(dyld_info)); 2226 } 2227 break; 2228 2229 case LC_LOAD_DYLIB: 2230 case LC_LOAD_WEAK_DYLIB: 2231 case LC_REEXPORT_DYLIB: 2232 case LC_LOADFVMLIB: 2233 case LC_LOAD_UPWARD_DYLIB: 2234 { 2235 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2236 const char *path = m_data.PeekCStr(name_offset); 2237 if (path) 2238 { 2239 FileSpec file_spec(path, false); 2240 // Strip the path if there is @rpath, @executable, etc so we just use the basename 2241 if (path[0] == '@') 2242 file_spec.GetDirectory().Clear(); 2243 2244 if (lc.cmd == LC_REEXPORT_DYLIB) 2245 { 2246 m_reexported_dylibs.AppendIfUnique(file_spec); 2247 } 2248 2249 dylib_files.Append(file_spec); 2250 } 2251 } 2252 break; 2253 2254 case LC_FUNCTION_STARTS: 2255 function_starts_load_command.cmd = lc.cmd; 2256 function_starts_load_command.cmdsize = lc.cmdsize; 2257 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 2258 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 2259 break; 2260 2261 default: 2262 break; 2263 } 2264 offset = cmd_offset + lc.cmdsize; 2265 } 2266 2267 if (symtab_load_command.cmd) 2268 { 2269 Symtab *symtab = m_symtab_ap.get(); 2270 SectionList *section_list = GetSectionList(); 2271 if (section_list == NULL) 2272 return 0; 2273 2274 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2275 const ByteOrder byte_order = m_data.GetByteOrder(); 2276 bool bit_width_32 = addr_byte_size == 4; 2277 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2278 2279 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 2280 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 2281 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 2282 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 2283 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 2284 2285 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 2286 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2287 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2288 2289 ProcessSP process_sp (m_process_wp.lock()); 2290 Process *process = process_sp.get(); 2291 2292 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2293 2294 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) 2295 { 2296 Target &target = process->GetTarget(); 2297 2298 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2299 2300 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2301 // Reading mach file from memory in a process or core file... 2302 2303 if (linkedit_section_sp) 2304 { 2305 addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 2306 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) 2307 { 2308 // We might be trying to access the symbol table before the __LINKEDIT's load 2309 // address has been set in the target. We can't fail to read the symbol table, 2310 // so calculate the right address manually 2311 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2312 } 2313 2314 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2315 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 2316 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 2317 2318 bool data_was_read = false; 2319 2320 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2321 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 2322 { 2323 // This mach-o memory file is in the dyld shared cache. If this 2324 // program is not remote and this is iOS, then this process will 2325 // share the same shared cache as the process we are debugging and 2326 // we can read the entire __LINKEDIT from the address space in this 2327 // process. This is a needed optimization that is used for local iOS 2328 // debugging only since all shared libraries in the shared cache do 2329 // not have corresponding files that exist in the file system of the 2330 // device. They have been combined into a single file. This means we 2331 // always have to load these files from memory. All of the symbol and 2332 // string tables from all of the __LINKEDIT sections from the shared 2333 // libraries in the shared cache have been merged into a single large 2334 // symbol and string table. Reading all of this symbol and string table 2335 // data across can slow down debug launch times, so we optimize this by 2336 // reading the memory for the __LINKEDIT section from this process. 2337 2338 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 2339 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 2340 bool use_lldb_cache = true; 2341 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 2342 { 2343 use_lldb_cache = false; 2344 ModuleSP module_sp (GetModule()); 2345 if (module_sp) 2346 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 2347 2348 } 2349 2350 PlatformSP platform_sp (target.GetPlatform()); 2351 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 2352 { 2353 data_was_read = true; 2354 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 2355 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 2356 if (function_starts_load_command.cmd) 2357 { 2358 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2359 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 2360 } 2361 } 2362 } 2363 #endif 2364 2365 if (!data_was_read) 2366 { 2367 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 2368 { 2369 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 2370 if (nlist_data_sp) 2371 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2372 // Load strings individually from memory when loading from memory since shared cache 2373 // string tables contain strings for all symbols from all shared cached libraries 2374 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 2375 //if (strtab_data_sp) 2376 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2377 if (m_dysymtab.nindirectsyms != 0) 2378 { 2379 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 2380 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2381 if (indirect_syms_data_sp) 2382 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 2383 } 2384 } 2385 2386 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 2387 { 2388 if (function_starts_load_command.cmd) 2389 { 2390 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2391 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 2392 if (func_start_data_sp) 2393 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 2394 } 2395 } 2396 } 2397 } 2398 } 2399 else 2400 { 2401 nlist_data.SetData (m_data, 2402 symtab_load_command.symoff, 2403 nlist_data_byte_size); 2404 strtab_data.SetData (m_data, 2405 symtab_load_command.stroff, 2406 strtab_data_byte_size); 2407 2408 if (dyld_info.export_size > 0) 2409 { 2410 dyld_trie_data.SetData (m_data, 2411 dyld_info.export_off, 2412 dyld_info.export_size); 2413 } 2414 2415 if (m_dysymtab.nindirectsyms != 0) 2416 { 2417 indirect_symbol_index_data.SetData (m_data, 2418 m_dysymtab.indirectsymoff, 2419 m_dysymtab.nindirectsyms * 4); 2420 } 2421 if (function_starts_load_command.cmd) 2422 { 2423 function_starts_data.SetData (m_data, 2424 function_starts_load_command.dataoff, 2425 function_starts_load_command.datasize); 2426 } 2427 } 2428 2429 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2430 { 2431 if (log) 2432 module_sp->LogMessage(log, "failed to read nlist data"); 2433 return 0; 2434 } 2435 2436 2437 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2438 if (!have_strtab_data) 2439 { 2440 if (process) 2441 { 2442 if (strtab_addr == LLDB_INVALID_ADDRESS) 2443 { 2444 if (log) 2445 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2446 return 0; 2447 } 2448 } 2449 else 2450 { 2451 if (log) 2452 module_sp->LogMessage(log, "failed to read strtab data"); 2453 return 0; 2454 } 2455 } 2456 2457 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2458 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2459 const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2460 const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2461 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2462 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2463 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2464 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2465 SectionSP data_dirty_section_sp(section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2466 SectionSP data_const_section_sp(section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2467 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2468 SectionSP eh_frame_section_sp; 2469 if (text_section_sp.get()) 2470 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2471 else 2472 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2473 2474 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2475 2476 // lldb works best if it knows the start address of all functions in a module. 2477 // Linker symbols or debug info are normally the best source of information for start addr / size but 2478 // they may be stripped in a released binary. 2479 // Two additional sources of information exist in Mach-O binaries: 2480 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2481 // binary, relative to the text section. 2482 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2483 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2484 // Binaries built to run on older releases may need to use eh_frame information. 2485 2486 if (text_section_sp && function_starts_data.GetByteSize()) 2487 { 2488 FunctionStarts::Entry function_start_entry; 2489 function_start_entry.data = false; 2490 lldb::offset_t function_start_offset = 0; 2491 function_start_entry.addr = text_section_sp->GetFileAddress(); 2492 uint64_t delta; 2493 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2494 { 2495 // Now append the current entry 2496 function_start_entry.addr += delta; 2497 function_starts.Append(function_start_entry); 2498 } 2499 } 2500 else 2501 { 2502 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2503 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2504 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2505 // the module. 2506 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2507 { 2508 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindGCC, true); 2509 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2510 eh_frame.GetFunctionAddressAndSizeVector (functions); 2511 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2512 size_t count = functions.GetSize(); 2513 for (size_t i = 0; i < count; ++i) 2514 { 2515 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2516 if (func) 2517 { 2518 FunctionStarts::Entry function_start_entry; 2519 function_start_entry.addr = func->base - text_base_addr; 2520 function_starts.Append(function_start_entry); 2521 } 2522 } 2523 } 2524 } 2525 2526 const size_t function_starts_count = function_starts.GetSize(); 2527 2528 const user_id_t TEXT_eh_frame_sectID = 2529 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2530 : static_cast<user_id_t>(NO_SECT); 2531 2532 lldb::offset_t nlist_data_offset = 0; 2533 2534 uint32_t N_SO_index = UINT32_MAX; 2535 2536 MachSymtabSectionInfo section_info (section_list); 2537 std::vector<uint32_t> N_FUN_indexes; 2538 std::vector<uint32_t> N_NSYM_indexes; 2539 std::vector<uint32_t> N_INCL_indexes; 2540 std::vector<uint32_t> N_BRAC_indexes; 2541 std::vector<uint32_t> N_COMM_indexes; 2542 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2543 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2544 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2545 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2546 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2547 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2548 // Any symbols that get merged into another will get an entry 2549 // in this map so we know 2550 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2551 uint32_t nlist_idx = 0; 2552 Symbol *symbol_ptr = NULL; 2553 2554 uint32_t sym_idx = 0; 2555 Symbol *sym = NULL; 2556 size_t num_syms = 0; 2557 std::string memory_symbol_name; 2558 uint32_t unmapped_local_symbols_found = 0; 2559 2560 std::vector<TrieEntryWithOffset> trie_entries; 2561 std::set<lldb::addr_t> resolver_addresses; 2562 2563 if (dyld_trie_data.GetByteSize() > 0) 2564 { 2565 std::vector<llvm::StringRef> nameSlices; 2566 ParseTrieEntries (dyld_trie_data, 2567 0, 2568 is_arm, 2569 nameSlices, 2570 resolver_addresses, 2571 trie_entries); 2572 2573 ConstString text_segment_name ("__TEXT"); 2574 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2575 if (text_segment_sp) 2576 { 2577 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2578 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2579 { 2580 for (auto &e : trie_entries) 2581 e.entry.address += text_segment_file_addr; 2582 } 2583 } 2584 } 2585 2586 typedef std::set<ConstString> IndirectSymbols; 2587 IndirectSymbols indirect_symbol_names; 2588 2589 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2590 2591 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2592 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2593 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2594 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2595 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2596 // nlist parser to ignore all LOCAL symbols. 2597 2598 if (m_header.flags & 0x80000000u) 2599 { 2600 // Before we can start mapping the DSC, we need to make certain the target process is actually 2601 // using the cache we can find. 2602 2603 // Next we need to determine the correct path for the dyld shared cache. 2604 2605 ArchSpec header_arch; 2606 GetArchitecture(header_arch); 2607 char dsc_path[PATH_MAX]; 2608 2609 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2610 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2611 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2612 header_arch.GetArchitectureName()); 2613 2614 FileSpec dsc_filespec(dsc_path, false); 2615 2616 // We need definitions of two structures in the on-disk DSC, copy them here manually 2617 struct lldb_copy_dyld_cache_header_v0 2618 { 2619 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2620 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2621 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2622 uint32_t imagesOffset; 2623 uint32_t imagesCount; 2624 uint64_t dyldBaseAddress; 2625 uint64_t codeSignatureOffset; 2626 uint64_t codeSignatureSize; 2627 uint64_t slideInfoOffset; 2628 uint64_t slideInfoSize; 2629 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2630 uint64_t localSymbolsSize; // size of local symbols information 2631 }; 2632 struct lldb_copy_dyld_cache_header_v1 2633 { 2634 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2635 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2636 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2637 uint32_t imagesOffset; 2638 uint32_t imagesCount; 2639 uint64_t dyldBaseAddress; 2640 uint64_t codeSignatureOffset; 2641 uint64_t codeSignatureSize; 2642 uint64_t slideInfoOffset; 2643 uint64_t slideInfoSize; 2644 uint64_t localSymbolsOffset; 2645 uint64_t localSymbolsSize; 2646 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2647 }; 2648 2649 struct lldb_copy_dyld_cache_mapping_info 2650 { 2651 uint64_t address; 2652 uint64_t size; 2653 uint64_t fileOffset; 2654 uint32_t maxProt; 2655 uint32_t initProt; 2656 }; 2657 2658 struct lldb_copy_dyld_cache_local_symbols_info 2659 { 2660 uint32_t nlistOffset; 2661 uint32_t nlistCount; 2662 uint32_t stringsOffset; 2663 uint32_t stringsSize; 2664 uint32_t entriesOffset; 2665 uint32_t entriesCount; 2666 }; 2667 struct lldb_copy_dyld_cache_local_symbols_entry 2668 { 2669 uint32_t dylibOffset; 2670 uint32_t nlistStartIndex; 2671 uint32_t nlistCount; 2672 }; 2673 2674 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2675 The dyld_cache_local_symbols_info structure gives us three things: 2676 1. The start and count of the nlist records in the dyld_shared_cache file 2677 2. The start and size of the strings for these nlist records 2678 3. The start and count of dyld_cache_local_symbols_entry entries 2679 2680 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2681 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2682 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2683 and the count of how many nlist records there are for this dylib/framework. 2684 */ 2685 2686 // Process the dsc header to find the unmapped symbols 2687 // 2688 // Save some VM space, do not map the entire cache in one shot. 2689 2690 DataBufferSP dsc_data_sp; 2691 dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2692 2693 if (dsc_data_sp) 2694 { 2695 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2696 2697 char version_str[17]; 2698 int version = -1; 2699 lldb::offset_t offset = 0; 2700 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2701 version_str[16] = '\0'; 2702 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2703 { 2704 int v; 2705 if (::sscanf (version_str + 6, "%d", &v) == 1) 2706 { 2707 version = v; 2708 } 2709 } 2710 2711 UUID dsc_uuid; 2712 if (version >= 1) 2713 { 2714 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2715 uint8_t uuid_bytes[sizeof (uuid_t)]; 2716 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2717 dsc_uuid.SetBytes (uuid_bytes); 2718 } 2719 2720 bool uuid_match = true; 2721 if (dsc_uuid.IsValid() && process) 2722 { 2723 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2724 2725 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2726 { 2727 // The on-disk dyld_shared_cache file is not the same as the one in this 2728 // process' memory, don't use it. 2729 uuid_match = false; 2730 ModuleSP module_sp (GetModule()); 2731 if (module_sp) 2732 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2733 } 2734 } 2735 2736 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2737 2738 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2739 2740 // If the mappingOffset points to a location inside the header, we've 2741 // opened an old dyld shared cache, and should not proceed further. 2742 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2743 { 2744 2745 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2746 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2747 offset = 0; 2748 2749 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2750 // in the shared library cache need to be adjusted by an offset to match up with the 2751 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2752 // recorded in mapping_offset_value. 2753 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2754 2755 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2756 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2757 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2758 2759 if (localSymbolsOffset && localSymbolsSize) 2760 { 2761 // Map the local symbols 2762 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) 2763 { 2764 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2765 2766 offset = 0; 2767 2768 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2769 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2770 UndefinedNameToDescMap undefined_name_to_desc; 2771 SymbolIndexToName reexport_shlib_needs_fixup; 2772 2773 2774 // Read the local_symbols_infos struct in one shot 2775 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2776 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2777 2778 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2779 2780 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2781 2782 offset = local_symbols_info.entriesOffset; 2783 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2784 { 2785 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2786 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2787 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2788 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2789 2790 if (header_file_offset == local_symbols_entry.dylibOffset) 2791 { 2792 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2793 2794 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2795 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2796 num_syms = symtab->GetNumSymbols(); 2797 2798 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2799 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2800 2801 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2802 { 2803 ///////////////////////////// 2804 { 2805 struct nlist_64 nlist; 2806 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2807 break; 2808 2809 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2810 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2811 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2812 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2813 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2814 2815 SymbolType type = eSymbolTypeInvalid; 2816 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2817 2818 if (symbol_name == NULL) 2819 { 2820 // No symbol should be NULL, even the symbols with no 2821 // string values should have an offset zero which points 2822 // to an empty C-string 2823 Host::SystemLog (Host::eSystemLogError, 2824 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2825 entry_index, 2826 nlist.n_strx, 2827 module_sp->GetFileSpec().GetPath().c_str()); 2828 continue; 2829 } 2830 if (symbol_name[0] == '\0') 2831 symbol_name = NULL; 2832 2833 const char *symbol_name_non_abi_mangled = NULL; 2834 2835 SectionSP symbol_section; 2836 uint32_t symbol_byte_size = 0; 2837 bool add_nlist = true; 2838 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2839 bool demangled_is_synthesized = false; 2840 bool is_gsym = false; 2841 bool set_value = true; 2842 2843 assert (sym_idx < num_syms); 2844 2845 sym[sym_idx].SetDebug (is_debug); 2846 2847 if (is_debug) 2848 { 2849 switch (nlist.n_type) 2850 { 2851 case N_GSYM: 2852 // global symbol: name,,NO_SECT,type,0 2853 // Sometimes the N_GSYM value contains the address. 2854 2855 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2856 // have the same address, but we want to ensure that we always find only the real symbol, 2857 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2858 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2859 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2860 // same address. 2861 2862 is_gsym = true; 2863 sym[sym_idx].SetExternal(true); 2864 2865 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 2866 { 2867 llvm::StringRef symbol_name_ref(symbol_name); 2868 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2869 { 2870 symbol_name_non_abi_mangled = symbol_name + 1; 2871 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2872 type = eSymbolTypeObjCClass; 2873 demangled_is_synthesized = true; 2874 2875 } 2876 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2877 { 2878 symbol_name_non_abi_mangled = symbol_name + 1; 2879 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2880 type = eSymbolTypeObjCMetaClass; 2881 demangled_is_synthesized = true; 2882 } 2883 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2884 { 2885 symbol_name_non_abi_mangled = symbol_name + 1; 2886 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2887 type = eSymbolTypeObjCIVar; 2888 demangled_is_synthesized = true; 2889 } 2890 } 2891 else 2892 { 2893 if (nlist.n_value != 0) 2894 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2895 type = eSymbolTypeData; 2896 } 2897 break; 2898 2899 case N_FNAME: 2900 // procedure name (f77 kludge): name,,NO_SECT,0,0 2901 type = eSymbolTypeCompiler; 2902 break; 2903 2904 case N_FUN: 2905 // procedure: name,,n_sect,linenumber,address 2906 if (symbol_name) 2907 { 2908 type = eSymbolTypeCode; 2909 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2910 2911 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2912 // We use the current number of symbols in the symbol table in lieu of 2913 // using nlist_idx in case we ever start trimming entries out 2914 N_FUN_indexes.push_back(sym_idx); 2915 } 2916 else 2917 { 2918 type = eSymbolTypeCompiler; 2919 2920 if ( !N_FUN_indexes.empty() ) 2921 { 2922 // Copy the size of the function into the original STAB entry so we don't have 2923 // to hunt for it later 2924 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2925 N_FUN_indexes.pop_back(); 2926 // We don't really need the end function STAB as it contains the size which 2927 // we already placed with the original symbol, so don't add it if we want a 2928 // minimal symbol table 2929 add_nlist = false; 2930 } 2931 } 2932 break; 2933 2934 case N_STSYM: 2935 // static symbol: name,,n_sect,type,address 2936 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2937 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2938 type = eSymbolTypeData; 2939 break; 2940 2941 case N_LCSYM: 2942 // .lcomm symbol: name,,n_sect,type,address 2943 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2944 type = eSymbolTypeCommonBlock; 2945 break; 2946 2947 case N_BNSYM: 2948 // We use the current number of symbols in the symbol table in lieu of 2949 // using nlist_idx in case we ever start trimming entries out 2950 // Skip these if we want minimal symbol tables 2951 add_nlist = false; 2952 break; 2953 2954 case N_ENSYM: 2955 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2956 // so that we can always skip the entire symbol if we need to navigate 2957 // more quickly at the source level when parsing STABS 2958 // Skip these if we want minimal symbol tables 2959 add_nlist = false; 2960 break; 2961 2962 2963 case N_OPT: 2964 // emitted with gcc2_compiled and in gcc source 2965 type = eSymbolTypeCompiler; 2966 break; 2967 2968 case N_RSYM: 2969 // register sym: name,,NO_SECT,type,register 2970 type = eSymbolTypeVariable; 2971 break; 2972 2973 case N_SLINE: 2974 // src line: 0,,n_sect,linenumber,address 2975 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2976 type = eSymbolTypeLineEntry; 2977 break; 2978 2979 case N_SSYM: 2980 // structure elt: name,,NO_SECT,type,struct_offset 2981 type = eSymbolTypeVariableType; 2982 break; 2983 2984 case N_SO: 2985 // source file name 2986 type = eSymbolTypeSourceFile; 2987 if (symbol_name == NULL) 2988 { 2989 add_nlist = false; 2990 if (N_SO_index != UINT32_MAX) 2991 { 2992 // Set the size of the N_SO to the terminating index of this N_SO 2993 // so that we can always skip the entire N_SO if we need to navigate 2994 // more quickly at the source level when parsing STABS 2995 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2996 symbol_ptr->SetByteSize(sym_idx); 2997 symbol_ptr->SetSizeIsSibling(true); 2998 } 2999 N_NSYM_indexes.clear(); 3000 N_INCL_indexes.clear(); 3001 N_BRAC_indexes.clear(); 3002 N_COMM_indexes.clear(); 3003 N_FUN_indexes.clear(); 3004 N_SO_index = UINT32_MAX; 3005 } 3006 else 3007 { 3008 // We use the current number of symbols in the symbol table in lieu of 3009 // using nlist_idx in case we ever start trimming entries out 3010 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3011 if (N_SO_has_full_path) 3012 { 3013 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3014 { 3015 // We have two consecutive N_SO entries where the first contains a directory 3016 // and the second contains a full path. 3017 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3018 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3019 add_nlist = false; 3020 } 3021 else 3022 { 3023 // This is the first entry in a N_SO that contains a directory or 3024 // a full path to the source file 3025 N_SO_index = sym_idx; 3026 } 3027 } 3028 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3029 { 3030 // This is usually the second N_SO entry that contains just the filename, 3031 // so here we combine it with the first one if we are minimizing the symbol table 3032 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3033 if (so_path && so_path[0]) 3034 { 3035 std::string full_so_path (so_path); 3036 const size_t double_slash_pos = full_so_path.find("//"); 3037 if (double_slash_pos != std::string::npos) 3038 { 3039 // The linker has been generating bad N_SO entries with doubled up paths 3040 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3041 // and the second is the directory for the source file so you end up with 3042 // a path that looks like "/tmp/src//tmp/src/" 3043 FileSpec so_dir(so_path, false); 3044 if (!so_dir.Exists()) 3045 { 3046 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3047 if (so_dir.Exists()) 3048 { 3049 // Trim off the incorrect path 3050 full_so_path.erase(0, double_slash_pos + 1); 3051 } 3052 } 3053 } 3054 if (*full_so_path.rbegin() != '/') 3055 full_so_path += '/'; 3056 full_so_path += symbol_name; 3057 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3058 add_nlist = false; 3059 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3060 } 3061 } 3062 else 3063 { 3064 // This could be a relative path to a N_SO 3065 N_SO_index = sym_idx; 3066 } 3067 } 3068 break; 3069 3070 case N_OSO: 3071 // object file name: name,,0,0,st_mtime 3072 type = eSymbolTypeObjectFile; 3073 break; 3074 3075 case N_LSYM: 3076 // local sym: name,,NO_SECT,type,offset 3077 type = eSymbolTypeLocal; 3078 break; 3079 3080 //---------------------------------------------------------------------- 3081 // INCL scopes 3082 //---------------------------------------------------------------------- 3083 case N_BINCL: 3084 // include file beginning: name,,NO_SECT,0,sum 3085 // We use the current number of symbols in the symbol table in lieu of 3086 // using nlist_idx in case we ever start trimming entries out 3087 N_INCL_indexes.push_back(sym_idx); 3088 type = eSymbolTypeScopeBegin; 3089 break; 3090 3091 case N_EINCL: 3092 // include file end: name,,NO_SECT,0,0 3093 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3094 // so that we can always skip the entire symbol if we need to navigate 3095 // more quickly at the source level when parsing STABS 3096 if ( !N_INCL_indexes.empty() ) 3097 { 3098 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3099 symbol_ptr->SetByteSize(sym_idx + 1); 3100 symbol_ptr->SetSizeIsSibling(true); 3101 N_INCL_indexes.pop_back(); 3102 } 3103 type = eSymbolTypeScopeEnd; 3104 break; 3105 3106 case N_SOL: 3107 // #included file name: name,,n_sect,0,address 3108 type = eSymbolTypeHeaderFile; 3109 3110 // We currently don't use the header files on darwin 3111 add_nlist = false; 3112 break; 3113 3114 case N_PARAMS: 3115 // compiler parameters: name,,NO_SECT,0,0 3116 type = eSymbolTypeCompiler; 3117 break; 3118 3119 case N_VERSION: 3120 // compiler version: name,,NO_SECT,0,0 3121 type = eSymbolTypeCompiler; 3122 break; 3123 3124 case N_OLEVEL: 3125 // compiler -O level: name,,NO_SECT,0,0 3126 type = eSymbolTypeCompiler; 3127 break; 3128 3129 case N_PSYM: 3130 // parameter: name,,NO_SECT,type,offset 3131 type = eSymbolTypeVariable; 3132 break; 3133 3134 case N_ENTRY: 3135 // alternate entry: name,,n_sect,linenumber,address 3136 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3137 type = eSymbolTypeLineEntry; 3138 break; 3139 3140 //---------------------------------------------------------------------- 3141 // Left and Right Braces 3142 //---------------------------------------------------------------------- 3143 case N_LBRAC: 3144 // left bracket: 0,,NO_SECT,nesting level,address 3145 // We use the current number of symbols in the symbol table in lieu of 3146 // using nlist_idx in case we ever start trimming entries out 3147 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3148 N_BRAC_indexes.push_back(sym_idx); 3149 type = eSymbolTypeScopeBegin; 3150 break; 3151 3152 case N_RBRAC: 3153 // right bracket: 0,,NO_SECT,nesting level,address 3154 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3155 // so that we can always skip the entire symbol if we need to navigate 3156 // more quickly at the source level when parsing STABS 3157 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3158 if ( !N_BRAC_indexes.empty() ) 3159 { 3160 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3161 symbol_ptr->SetByteSize(sym_idx + 1); 3162 symbol_ptr->SetSizeIsSibling(true); 3163 N_BRAC_indexes.pop_back(); 3164 } 3165 type = eSymbolTypeScopeEnd; 3166 break; 3167 3168 case N_EXCL: 3169 // deleted include file: name,,NO_SECT,0,sum 3170 type = eSymbolTypeHeaderFile; 3171 break; 3172 3173 //---------------------------------------------------------------------- 3174 // COMM scopes 3175 //---------------------------------------------------------------------- 3176 case N_BCOMM: 3177 // begin common: name,,NO_SECT,0,0 3178 // We use the current number of symbols in the symbol table in lieu of 3179 // using nlist_idx in case we ever start trimming entries out 3180 type = eSymbolTypeScopeBegin; 3181 N_COMM_indexes.push_back(sym_idx); 3182 break; 3183 3184 case N_ECOML: 3185 // end common (local name): 0,,n_sect,0,address 3186 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3187 // Fall through 3188 3189 case N_ECOMM: 3190 // end common: name,,n_sect,0,0 3191 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3192 // so that we can always skip the entire symbol if we need to navigate 3193 // more quickly at the source level when parsing STABS 3194 if ( !N_COMM_indexes.empty() ) 3195 { 3196 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3197 symbol_ptr->SetByteSize(sym_idx + 1); 3198 symbol_ptr->SetSizeIsSibling(true); 3199 N_COMM_indexes.pop_back(); 3200 } 3201 type = eSymbolTypeScopeEnd; 3202 break; 3203 3204 case N_LENG: 3205 // second stab entry with length information 3206 type = eSymbolTypeAdditional; 3207 break; 3208 3209 default: break; 3210 } 3211 } 3212 else 3213 { 3214 //uint8_t n_pext = N_PEXT & nlist.n_type; 3215 uint8_t n_type = N_TYPE & nlist.n_type; 3216 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3217 3218 switch (n_type) 3219 { 3220 case N_INDR: 3221 { 3222 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3223 if (reexport_name_cstr && reexport_name_cstr[0]) 3224 { 3225 type = eSymbolTypeReExported; 3226 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3227 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3228 set_value = false; 3229 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3230 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3231 } 3232 else 3233 type = eSymbolTypeUndefined; 3234 } 3235 break; 3236 3237 case N_UNDF: 3238 if (symbol_name && symbol_name[0]) 3239 { 3240 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3241 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3242 } 3243 // Fall through 3244 case N_PBUD: 3245 type = eSymbolTypeUndefined; 3246 break; 3247 3248 case N_ABS: 3249 type = eSymbolTypeAbsolute; 3250 break; 3251 3252 case N_SECT: 3253 { 3254 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3255 3256 if (symbol_section == NULL) 3257 { 3258 // TODO: warn about this? 3259 add_nlist = false; 3260 break; 3261 } 3262 3263 if (TEXT_eh_frame_sectID == nlist.n_sect) 3264 { 3265 type = eSymbolTypeException; 3266 } 3267 else 3268 { 3269 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3270 3271 switch (section_type) 3272 { 3273 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3274 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3275 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3276 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3277 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3278 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3279 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3280 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3281 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3282 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3283 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3284 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3285 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3286 default: 3287 switch (symbol_section->GetType()) 3288 { 3289 case lldb::eSectionTypeCode: 3290 type = eSymbolTypeCode; 3291 break; 3292 case eSectionTypeData: 3293 case eSectionTypeDataCString: // Inlined C string data 3294 case eSectionTypeDataCStringPointers: // Pointers to C string data 3295 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 3296 case eSectionTypeData4: 3297 case eSectionTypeData8: 3298 case eSectionTypeData16: 3299 type = eSymbolTypeData; 3300 break; 3301 default: 3302 break; 3303 } 3304 break; 3305 } 3306 3307 if (type == eSymbolTypeInvalid) 3308 { 3309 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3310 if (symbol_section->IsDescendant (text_section_sp.get())) 3311 { 3312 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3313 S_ATTR_SELF_MODIFYING_CODE | 3314 S_ATTR_SOME_INSTRUCTIONS)) 3315 type = eSymbolTypeData; 3316 else 3317 type = eSymbolTypeCode; 3318 } 3319 else if (symbol_section->IsDescendant(data_section_sp.get()) || 3320 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 3321 symbol_section->IsDescendant(data_const_section_sp.get())) 3322 { 3323 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3324 { 3325 type = eSymbolTypeRuntime; 3326 3327 if (symbol_name && 3328 symbol_name[0] == '_' && 3329 symbol_name[1] == 'O' && 3330 symbol_name[2] == 'B') 3331 { 3332 llvm::StringRef symbol_name_ref(symbol_name); 3333 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3334 { 3335 symbol_name_non_abi_mangled = symbol_name + 1; 3336 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3337 type = eSymbolTypeObjCClass; 3338 demangled_is_synthesized = true; 3339 } 3340 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3341 { 3342 symbol_name_non_abi_mangled = symbol_name + 1; 3343 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3344 type = eSymbolTypeObjCMetaClass; 3345 demangled_is_synthesized = true; 3346 } 3347 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3348 { 3349 symbol_name_non_abi_mangled = symbol_name + 1; 3350 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3351 type = eSymbolTypeObjCIVar; 3352 demangled_is_synthesized = true; 3353 } 3354 } 3355 } 3356 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3357 { 3358 type = eSymbolTypeException; 3359 } 3360 else 3361 { 3362 type = eSymbolTypeData; 3363 } 3364 } 3365 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3366 { 3367 type = eSymbolTypeTrampoline; 3368 } 3369 else if (symbol_section->IsDescendant(objc_section_sp.get())) 3370 { 3371 type = eSymbolTypeRuntime; 3372 if (symbol_name && symbol_name[0] == '.') 3373 { 3374 llvm::StringRef symbol_name_ref(symbol_name); 3375 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3376 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3377 { 3378 symbol_name_non_abi_mangled = symbol_name; 3379 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3380 type = eSymbolTypeObjCClass; 3381 demangled_is_synthesized = true; 3382 } 3383 } 3384 } 3385 } 3386 } 3387 } 3388 break; 3389 } 3390 } 3391 3392 if (add_nlist) 3393 { 3394 uint64_t symbol_value = nlist.n_value; 3395 if (symbol_name_non_abi_mangled) 3396 { 3397 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3398 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3399 } 3400 else 3401 { 3402 bool symbol_name_is_mangled = false; 3403 3404 if (symbol_name && symbol_name[0] == '_') 3405 { 3406 symbol_name_is_mangled = symbol_name[1] == '_'; 3407 symbol_name++; // Skip the leading underscore 3408 } 3409 3410 if (symbol_name) 3411 { 3412 ConstString const_symbol_name(symbol_name); 3413 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3414 if (is_gsym && is_debug) 3415 { 3416 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3417 if (gsym_name) 3418 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3419 } 3420 } 3421 } 3422 if (symbol_section) 3423 { 3424 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3425 if (symbol_byte_size == 0 && function_starts_count > 0) 3426 { 3427 addr_t symbol_lookup_file_addr = nlist.n_value; 3428 // Do an exact address match for non-ARM addresses, else get the closest since 3429 // the symbol might be a thumb symbol which has an address with bit zero set 3430 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3431 if (is_arm && func_start_entry) 3432 { 3433 // Verify that the function start address is the symbol address (ARM) 3434 // or the symbol address + 1 (thumb) 3435 if (func_start_entry->addr != symbol_lookup_file_addr && 3436 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3437 { 3438 // Not the right entry, NULL it out... 3439 func_start_entry = NULL; 3440 } 3441 } 3442 if (func_start_entry) 3443 { 3444 func_start_entry->data = true; 3445 3446 addr_t symbol_file_addr = func_start_entry->addr; 3447 uint32_t symbol_flags = 0; 3448 if (is_arm) 3449 { 3450 if (symbol_file_addr & 1) 3451 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3452 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3453 } 3454 3455 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3456 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3457 if (next_func_start_entry) 3458 { 3459 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3460 // Be sure the clear the Thumb address bit when we calculate the size 3461 // from the current and next address 3462 if (is_arm) 3463 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3464 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3465 } 3466 else 3467 { 3468 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3469 } 3470 } 3471 } 3472 symbol_value -= section_file_addr; 3473 } 3474 3475 if (is_debug == false) 3476 { 3477 if (type == eSymbolTypeCode) 3478 { 3479 // See if we can find a N_FUN entry for any code symbols. 3480 // If we do find a match, and the name matches, then we 3481 // can merge the two into just the function symbol to avoid 3482 // duplicate entries in the symbol table 3483 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3484 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3485 if (range.first != range.second) 3486 { 3487 bool found_it = false; 3488 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3489 { 3490 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3491 { 3492 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3493 // We just need the flags from the linker symbol, so put these flags 3494 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3495 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3496 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3497 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3498 sym[pos->second].SetType (eSymbolTypeResolver); 3499 sym[sym_idx].Clear(); 3500 found_it = true; 3501 break; 3502 } 3503 } 3504 if (found_it) 3505 continue; 3506 } 3507 else 3508 { 3509 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3510 type = eSymbolTypeResolver; 3511 } 3512 } 3513 else if (type == eSymbolTypeData || 3514 type == eSymbolTypeObjCClass || 3515 type == eSymbolTypeObjCMetaClass || 3516 type == eSymbolTypeObjCIVar ) 3517 { 3518 // See if we can find a N_STSYM entry for any data symbols. 3519 // If we do find a match, and the name matches, then we 3520 // can merge the two into just the Static symbol to avoid 3521 // duplicate entries in the symbol table 3522 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3523 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3524 if (range.first != range.second) 3525 { 3526 bool found_it = false; 3527 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3528 { 3529 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3530 { 3531 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3532 // We just need the flags from the linker symbol, so put these flags 3533 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3534 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3535 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3536 sym[sym_idx].Clear(); 3537 found_it = true; 3538 break; 3539 } 3540 } 3541 if (found_it) 3542 continue; 3543 } 3544 else 3545 { 3546 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3547 if (gsym_name) 3548 { 3549 // Combine N_GSYM stab entries with the non stab symbol 3550 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 3551 if (pos != N_GSYM_name_to_sym_idx.end()) 3552 { 3553 const uint32_t GSYM_sym_idx = pos->second; 3554 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3555 // Copy the address, because often the N_GSYM address has an invalid address of zero 3556 // when the global is a common symbol 3557 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 3558 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 3559 // We just need the flags from the linker symbol, so put these flags 3560 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 3561 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3562 sym[sym_idx].Clear(); 3563 continue; 3564 } 3565 } 3566 } 3567 } 3568 } 3569 3570 sym[sym_idx].SetID (nlist_idx); 3571 sym[sym_idx].SetType (type); 3572 if (set_value) 3573 { 3574 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 3575 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 3576 } 3577 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3578 3579 if (symbol_byte_size > 0) 3580 sym[sym_idx].SetByteSize(symbol_byte_size); 3581 3582 if (demangled_is_synthesized) 3583 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3584 ++sym_idx; 3585 } 3586 else 3587 { 3588 sym[sym_idx].Clear(); 3589 } 3590 3591 } 3592 ///////////////////////////// 3593 } 3594 break; // No more entries to consider 3595 } 3596 } 3597 3598 for (const auto &pos :reexport_shlib_needs_fixup) 3599 { 3600 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3601 if (undef_pos != undefined_name_to_desc.end()) 3602 { 3603 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3604 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3605 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 3606 } 3607 } 3608 } 3609 } 3610 } 3611 } 3612 } 3613 3614 // Must reset this in case it was mutated above! 3615 nlist_data_offset = 0; 3616 #endif 3617 3618 if (nlist_data.GetByteSize() > 0) 3619 { 3620 3621 // If the sym array was not created while parsing the DSC unmapped 3622 // symbols, create it now. 3623 if (sym == NULL) 3624 { 3625 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3626 num_syms = symtab->GetNumSymbols(); 3627 } 3628 3629 if (unmapped_local_symbols_found) 3630 { 3631 assert(m_dysymtab.ilocalsym == 0); 3632 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3633 nlist_idx = m_dysymtab.nlocalsym; 3634 } 3635 else 3636 { 3637 nlist_idx = 0; 3638 } 3639 3640 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3641 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3642 UndefinedNameToDescMap undefined_name_to_desc; 3643 SymbolIndexToName reexport_shlib_needs_fixup; 3644 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3645 { 3646 struct nlist_64 nlist; 3647 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3648 break; 3649 3650 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3651 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3652 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3653 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3654 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3655 3656 SymbolType type = eSymbolTypeInvalid; 3657 const char *symbol_name = NULL; 3658 3659 if (have_strtab_data) 3660 { 3661 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3662 3663 if (symbol_name == NULL) 3664 { 3665 // No symbol should be NULL, even the symbols with no 3666 // string values should have an offset zero which points 3667 // to an empty C-string 3668 Host::SystemLog (Host::eSystemLogError, 3669 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3670 nlist_idx, 3671 nlist.n_strx, 3672 module_sp->GetFileSpec().GetPath().c_str()); 3673 continue; 3674 } 3675 if (symbol_name[0] == '\0') 3676 symbol_name = NULL; 3677 } 3678 else 3679 { 3680 const addr_t str_addr = strtab_addr + nlist.n_strx; 3681 Error str_error; 3682 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3683 symbol_name = memory_symbol_name.c_str(); 3684 } 3685 const char *symbol_name_non_abi_mangled = NULL; 3686 3687 SectionSP symbol_section; 3688 lldb::addr_t symbol_byte_size = 0; 3689 bool add_nlist = true; 3690 bool is_gsym = false; 3691 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3692 bool demangled_is_synthesized = false; 3693 bool set_value = true; 3694 assert (sym_idx < num_syms); 3695 3696 sym[sym_idx].SetDebug (is_debug); 3697 3698 if (is_debug) 3699 { 3700 switch (nlist.n_type) 3701 { 3702 case N_GSYM: 3703 // global symbol: name,,NO_SECT,type,0 3704 // Sometimes the N_GSYM value contains the address. 3705 3706 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3707 // have the same address, but we want to ensure that we always find only the real symbol, 3708 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3709 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3710 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3711 // same address. 3712 is_gsym = true; 3713 sym[sym_idx].SetExternal(true); 3714 3715 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 3716 { 3717 llvm::StringRef symbol_name_ref(symbol_name); 3718 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3719 { 3720 symbol_name_non_abi_mangled = symbol_name + 1; 3721 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3722 type = eSymbolTypeObjCClass; 3723 demangled_is_synthesized = true; 3724 3725 } 3726 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3727 { 3728 symbol_name_non_abi_mangled = symbol_name + 1; 3729 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3730 type = eSymbolTypeObjCMetaClass; 3731 demangled_is_synthesized = true; 3732 } 3733 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3734 { 3735 symbol_name_non_abi_mangled = symbol_name + 1; 3736 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3737 type = eSymbolTypeObjCIVar; 3738 demangled_is_synthesized = true; 3739 } 3740 } 3741 else 3742 { 3743 if (nlist.n_value != 0) 3744 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3745 type = eSymbolTypeData; 3746 } 3747 break; 3748 3749 case N_FNAME: 3750 // procedure name (f77 kludge): name,,NO_SECT,0,0 3751 type = eSymbolTypeCompiler; 3752 break; 3753 3754 case N_FUN: 3755 // procedure: name,,n_sect,linenumber,address 3756 if (symbol_name) 3757 { 3758 type = eSymbolTypeCode; 3759 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3760 3761 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3762 // We use the current number of symbols in the symbol table in lieu of 3763 // using nlist_idx in case we ever start trimming entries out 3764 N_FUN_indexes.push_back(sym_idx); 3765 } 3766 else 3767 { 3768 type = eSymbolTypeCompiler; 3769 3770 if ( !N_FUN_indexes.empty() ) 3771 { 3772 // Copy the size of the function into the original STAB entry so we don't have 3773 // to hunt for it later 3774 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3775 N_FUN_indexes.pop_back(); 3776 // We don't really need the end function STAB as it contains the size which 3777 // we already placed with the original symbol, so don't add it if we want a 3778 // minimal symbol table 3779 add_nlist = false; 3780 } 3781 } 3782 break; 3783 3784 case N_STSYM: 3785 // static symbol: name,,n_sect,type,address 3786 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3787 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3788 type = eSymbolTypeData; 3789 break; 3790 3791 case N_LCSYM: 3792 // .lcomm symbol: name,,n_sect,type,address 3793 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3794 type = eSymbolTypeCommonBlock; 3795 break; 3796 3797 case N_BNSYM: 3798 // We use the current number of symbols in the symbol table in lieu of 3799 // using nlist_idx in case we ever start trimming entries out 3800 // Skip these if we want minimal symbol tables 3801 add_nlist = false; 3802 break; 3803 3804 case N_ENSYM: 3805 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3806 // so that we can always skip the entire symbol if we need to navigate 3807 // more quickly at the source level when parsing STABS 3808 // Skip these if we want minimal symbol tables 3809 add_nlist = false; 3810 break; 3811 3812 3813 case N_OPT: 3814 // emitted with gcc2_compiled and in gcc source 3815 type = eSymbolTypeCompiler; 3816 break; 3817 3818 case N_RSYM: 3819 // register sym: name,,NO_SECT,type,register 3820 type = eSymbolTypeVariable; 3821 break; 3822 3823 case N_SLINE: 3824 // src line: 0,,n_sect,linenumber,address 3825 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3826 type = eSymbolTypeLineEntry; 3827 break; 3828 3829 case N_SSYM: 3830 // structure elt: name,,NO_SECT,type,struct_offset 3831 type = eSymbolTypeVariableType; 3832 break; 3833 3834 case N_SO: 3835 // source file name 3836 type = eSymbolTypeSourceFile; 3837 if (symbol_name == NULL) 3838 { 3839 add_nlist = false; 3840 if (N_SO_index != UINT32_MAX) 3841 { 3842 // Set the size of the N_SO to the terminating index of this N_SO 3843 // so that we can always skip the entire N_SO if we need to navigate 3844 // more quickly at the source level when parsing STABS 3845 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3846 symbol_ptr->SetByteSize(sym_idx); 3847 symbol_ptr->SetSizeIsSibling(true); 3848 } 3849 N_NSYM_indexes.clear(); 3850 N_INCL_indexes.clear(); 3851 N_BRAC_indexes.clear(); 3852 N_COMM_indexes.clear(); 3853 N_FUN_indexes.clear(); 3854 N_SO_index = UINT32_MAX; 3855 } 3856 else 3857 { 3858 // We use the current number of symbols in the symbol table in lieu of 3859 // using nlist_idx in case we ever start trimming entries out 3860 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3861 if (N_SO_has_full_path) 3862 { 3863 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3864 { 3865 // We have two consecutive N_SO entries where the first contains a directory 3866 // and the second contains a full path. 3867 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3868 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3869 add_nlist = false; 3870 } 3871 else 3872 { 3873 // This is the first entry in a N_SO that contains a directory or 3874 // a full path to the source file 3875 N_SO_index = sym_idx; 3876 } 3877 } 3878 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3879 { 3880 // This is usually the second N_SO entry that contains just the filename, 3881 // so here we combine it with the first one if we are minimizing the symbol table 3882 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName(lldb::eLanguageTypeUnknown).AsCString(); 3883 if (so_path && so_path[0]) 3884 { 3885 std::string full_so_path (so_path); 3886 const size_t double_slash_pos = full_so_path.find("//"); 3887 if (double_slash_pos != std::string::npos) 3888 { 3889 // The linker has been generating bad N_SO entries with doubled up paths 3890 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3891 // and the second is the directory for the source file so you end up with 3892 // a path that looks like "/tmp/src//tmp/src/" 3893 FileSpec so_dir(so_path, false); 3894 if (!so_dir.Exists()) 3895 { 3896 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3897 if (so_dir.Exists()) 3898 { 3899 // Trim off the incorrect path 3900 full_so_path.erase(0, double_slash_pos + 1); 3901 } 3902 } 3903 } 3904 if (*full_so_path.rbegin() != '/') 3905 full_so_path += '/'; 3906 full_so_path += symbol_name; 3907 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3908 add_nlist = false; 3909 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3910 } 3911 } 3912 else 3913 { 3914 // This could be a relative path to a N_SO 3915 N_SO_index = sym_idx; 3916 } 3917 } 3918 3919 break; 3920 3921 case N_OSO: 3922 // object file name: name,,0,0,st_mtime 3923 type = eSymbolTypeObjectFile; 3924 break; 3925 3926 case N_LSYM: 3927 // local sym: name,,NO_SECT,type,offset 3928 type = eSymbolTypeLocal; 3929 break; 3930 3931 //---------------------------------------------------------------------- 3932 // INCL scopes 3933 //---------------------------------------------------------------------- 3934 case N_BINCL: 3935 // include file beginning: name,,NO_SECT,0,sum 3936 // We use the current number of symbols in the symbol table in lieu of 3937 // using nlist_idx in case we ever start trimming entries out 3938 N_INCL_indexes.push_back(sym_idx); 3939 type = eSymbolTypeScopeBegin; 3940 break; 3941 3942 case N_EINCL: 3943 // include file end: name,,NO_SECT,0,0 3944 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3945 // so that we can always skip the entire symbol if we need to navigate 3946 // more quickly at the source level when parsing STABS 3947 if ( !N_INCL_indexes.empty() ) 3948 { 3949 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3950 symbol_ptr->SetByteSize(sym_idx + 1); 3951 symbol_ptr->SetSizeIsSibling(true); 3952 N_INCL_indexes.pop_back(); 3953 } 3954 type = eSymbolTypeScopeEnd; 3955 break; 3956 3957 case N_SOL: 3958 // #included file name: name,,n_sect,0,address 3959 type = eSymbolTypeHeaderFile; 3960 3961 // We currently don't use the header files on darwin 3962 add_nlist = false; 3963 break; 3964 3965 case N_PARAMS: 3966 // compiler parameters: name,,NO_SECT,0,0 3967 type = eSymbolTypeCompiler; 3968 break; 3969 3970 case N_VERSION: 3971 // compiler version: name,,NO_SECT,0,0 3972 type = eSymbolTypeCompiler; 3973 break; 3974 3975 case N_OLEVEL: 3976 // compiler -O level: name,,NO_SECT,0,0 3977 type = eSymbolTypeCompiler; 3978 break; 3979 3980 case N_PSYM: 3981 // parameter: name,,NO_SECT,type,offset 3982 type = eSymbolTypeVariable; 3983 break; 3984 3985 case N_ENTRY: 3986 // alternate entry: name,,n_sect,linenumber,address 3987 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3988 type = eSymbolTypeLineEntry; 3989 break; 3990 3991 //---------------------------------------------------------------------- 3992 // Left and Right Braces 3993 //---------------------------------------------------------------------- 3994 case N_LBRAC: 3995 // left bracket: 0,,NO_SECT,nesting level,address 3996 // We use the current number of symbols in the symbol table in lieu of 3997 // using nlist_idx in case we ever start trimming entries out 3998 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3999 N_BRAC_indexes.push_back(sym_idx); 4000 type = eSymbolTypeScopeBegin; 4001 break; 4002 4003 case N_RBRAC: 4004 // right bracket: 0,,NO_SECT,nesting level,address 4005 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 4006 // so that we can always skip the entire symbol if we need to navigate 4007 // more quickly at the source level when parsing STABS 4008 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4009 if ( !N_BRAC_indexes.empty() ) 4010 { 4011 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4012 symbol_ptr->SetByteSize(sym_idx + 1); 4013 symbol_ptr->SetSizeIsSibling(true); 4014 N_BRAC_indexes.pop_back(); 4015 } 4016 type = eSymbolTypeScopeEnd; 4017 break; 4018 4019 case N_EXCL: 4020 // deleted include file: name,,NO_SECT,0,sum 4021 type = eSymbolTypeHeaderFile; 4022 break; 4023 4024 //---------------------------------------------------------------------- 4025 // COMM scopes 4026 //---------------------------------------------------------------------- 4027 case N_BCOMM: 4028 // begin common: name,,NO_SECT,0,0 4029 // We use the current number of symbols in the symbol table in lieu of 4030 // using nlist_idx in case we ever start trimming entries out 4031 type = eSymbolTypeScopeBegin; 4032 N_COMM_indexes.push_back(sym_idx); 4033 break; 4034 4035 case N_ECOML: 4036 // end common (local name): 0,,n_sect,0,address 4037 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4038 // Fall through 4039 4040 case N_ECOMM: 4041 // end common: name,,n_sect,0,0 4042 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 4043 // so that we can always skip the entire symbol if we need to navigate 4044 // more quickly at the source level when parsing STABS 4045 if ( !N_COMM_indexes.empty() ) 4046 { 4047 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4048 symbol_ptr->SetByteSize(sym_idx + 1); 4049 symbol_ptr->SetSizeIsSibling(true); 4050 N_COMM_indexes.pop_back(); 4051 } 4052 type = eSymbolTypeScopeEnd; 4053 break; 4054 4055 case N_LENG: 4056 // second stab entry with length information 4057 type = eSymbolTypeAdditional; 4058 break; 4059 4060 default: break; 4061 } 4062 } 4063 else 4064 { 4065 //uint8_t n_pext = N_PEXT & nlist.n_type; 4066 uint8_t n_type = N_TYPE & nlist.n_type; 4067 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4068 4069 switch (n_type) 4070 { 4071 case N_INDR: 4072 { 4073 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4074 if (reexport_name_cstr && reexport_name_cstr[0]) 4075 { 4076 type = eSymbolTypeReExported; 4077 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4078 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4079 set_value = false; 4080 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4081 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4082 } 4083 else 4084 type = eSymbolTypeUndefined; 4085 } 4086 break; 4087 4088 case N_UNDF: 4089 if (symbol_name && symbol_name[0]) 4090 { 4091 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 4092 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4093 } 4094 // Fall through 4095 case N_PBUD: 4096 type = eSymbolTypeUndefined; 4097 break; 4098 4099 case N_ABS: 4100 type = eSymbolTypeAbsolute; 4101 break; 4102 4103 case N_SECT: 4104 { 4105 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4106 4107 if (!symbol_section) 4108 { 4109 // TODO: warn about this? 4110 add_nlist = false; 4111 break; 4112 } 4113 4114 if (TEXT_eh_frame_sectID == nlist.n_sect) 4115 { 4116 type = eSymbolTypeException; 4117 } 4118 else 4119 { 4120 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4121 4122 switch (section_type) 4123 { 4124 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 4125 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 4126 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 4127 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 4128 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 4129 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 4130 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 4131 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 4132 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 4133 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 4134 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 4135 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 4136 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 4137 default: 4138 switch (symbol_section->GetType()) 4139 { 4140 case lldb::eSectionTypeCode: 4141 type = eSymbolTypeCode; 4142 break; 4143 case eSectionTypeData: 4144 case eSectionTypeDataCString: // Inlined C string data 4145 case eSectionTypeDataCStringPointers: // Pointers to C string data 4146 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 4147 case eSectionTypeData4: 4148 case eSectionTypeData8: 4149 case eSectionTypeData16: 4150 type = eSymbolTypeData; 4151 break; 4152 default: 4153 break; 4154 } 4155 break; 4156 } 4157 4158 if (type == eSymbolTypeInvalid) 4159 { 4160 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 4161 if (symbol_section->IsDescendant (text_section_sp.get())) 4162 { 4163 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4164 S_ATTR_SELF_MODIFYING_CODE | 4165 S_ATTR_SOME_INSTRUCTIONS)) 4166 type = eSymbolTypeData; 4167 else 4168 type = eSymbolTypeCode; 4169 } 4170 else 4171 if (symbol_section->IsDescendant(data_section_sp.get()) || 4172 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 4173 symbol_section->IsDescendant(data_const_section_sp.get())) 4174 { 4175 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 4176 { 4177 type = eSymbolTypeRuntime; 4178 4179 if (symbol_name && 4180 symbol_name[0] == '_' && 4181 symbol_name[1] == 'O' && 4182 symbol_name[2] == 'B') 4183 { 4184 llvm::StringRef symbol_name_ref(symbol_name); 4185 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 4186 { 4187 symbol_name_non_abi_mangled = symbol_name + 1; 4188 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 4189 type = eSymbolTypeObjCClass; 4190 demangled_is_synthesized = true; 4191 } 4192 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 4193 { 4194 symbol_name_non_abi_mangled = symbol_name + 1; 4195 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 4196 type = eSymbolTypeObjCMetaClass; 4197 demangled_is_synthesized = true; 4198 } 4199 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 4200 { 4201 symbol_name_non_abi_mangled = symbol_name + 1; 4202 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 4203 type = eSymbolTypeObjCIVar; 4204 demangled_is_synthesized = true; 4205 } 4206 } 4207 } 4208 else 4209 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 4210 { 4211 type = eSymbolTypeException; 4212 } 4213 else 4214 { 4215 type = eSymbolTypeData; 4216 } 4217 } 4218 else 4219 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 4220 { 4221 type = eSymbolTypeTrampoline; 4222 } 4223 else 4224 if (symbol_section->IsDescendant(objc_section_sp.get())) 4225 { 4226 type = eSymbolTypeRuntime; 4227 if (symbol_name && symbol_name[0] == '.') 4228 { 4229 llvm::StringRef symbol_name_ref(symbol_name); 4230 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 4231 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 4232 { 4233 symbol_name_non_abi_mangled = symbol_name; 4234 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4235 type = eSymbolTypeObjCClass; 4236 demangled_is_synthesized = true; 4237 } 4238 } 4239 } 4240 } 4241 } 4242 } 4243 break; 4244 } 4245 } 4246 4247 if (add_nlist) 4248 { 4249 uint64_t symbol_value = nlist.n_value; 4250 4251 if (symbol_name_non_abi_mangled) 4252 { 4253 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 4254 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 4255 } 4256 else 4257 { 4258 bool symbol_name_is_mangled = false; 4259 4260 if (symbol_name && symbol_name[0] == '_') 4261 { 4262 symbol_name_is_mangled = symbol_name[1] == '_'; 4263 symbol_name++; // Skip the leading underscore 4264 } 4265 4266 if (symbol_name) 4267 { 4268 ConstString const_symbol_name(symbol_name); 4269 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 4270 } 4271 } 4272 4273 if (is_gsym) 4274 { 4275 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4276 if (gsym_name) 4277 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4278 } 4279 4280 if (symbol_section) 4281 { 4282 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4283 if (symbol_byte_size == 0 && function_starts_count > 0) 4284 { 4285 addr_t symbol_lookup_file_addr = nlist.n_value; 4286 // Do an exact address match for non-ARM addresses, else get the closest since 4287 // the symbol might be a thumb symbol which has an address with bit zero set 4288 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 4289 if (is_arm && func_start_entry) 4290 { 4291 // Verify that the function start address is the symbol address (ARM) 4292 // or the symbol address + 1 (thumb) 4293 if (func_start_entry->addr != symbol_lookup_file_addr && 4294 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 4295 { 4296 // Not the right entry, NULL it out... 4297 func_start_entry = NULL; 4298 } 4299 } 4300 if (func_start_entry) 4301 { 4302 func_start_entry->data = true; 4303 4304 addr_t symbol_file_addr = func_start_entry->addr; 4305 if (is_arm) 4306 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4307 4308 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4309 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4310 if (next_func_start_entry) 4311 { 4312 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4313 // Be sure the clear the Thumb address bit when we calculate the size 4314 // from the current and next address 4315 if (is_arm) 4316 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4317 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4318 } 4319 else 4320 { 4321 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4322 } 4323 } 4324 } 4325 symbol_value -= section_file_addr; 4326 } 4327 4328 if (is_debug == false) 4329 { 4330 if (type == eSymbolTypeCode) 4331 { 4332 // See if we can find a N_FUN entry for any code symbols. 4333 // If we do find a match, and the name matches, then we 4334 // can merge the two into just the function symbol to avoid 4335 // duplicate entries in the symbol table 4336 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4337 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4338 if (range.first != range.second) 4339 { 4340 bool found_it = false; 4341 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4342 { 4343 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4344 { 4345 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4346 // We just need the flags from the linker symbol, so put these flags 4347 // into the N_FUN flags to avoid duplicate symbols in the symbol table 4348 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4349 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4350 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4351 sym[pos->second].SetType (eSymbolTypeResolver); 4352 sym[sym_idx].Clear(); 4353 found_it = true; 4354 break; 4355 } 4356 } 4357 if (found_it) 4358 continue; 4359 } 4360 else 4361 { 4362 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4363 type = eSymbolTypeResolver; 4364 } 4365 } 4366 else if (type == eSymbolTypeData || 4367 type == eSymbolTypeObjCClass || 4368 type == eSymbolTypeObjCMetaClass || 4369 type == eSymbolTypeObjCIVar ) 4370 { 4371 // See if we can find a N_STSYM entry for any data symbols. 4372 // If we do find a match, and the name matches, then we 4373 // can merge the two into just the Static symbol to avoid 4374 // duplicate entries in the symbol table 4375 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4376 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4377 if (range.first != range.second) 4378 { 4379 bool found_it = false; 4380 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4381 { 4382 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4383 { 4384 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4385 // We just need the flags from the linker symbol, so put these flags 4386 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4387 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4388 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4389 sym[sym_idx].Clear(); 4390 found_it = true; 4391 break; 4392 } 4393 } 4394 if (found_it) 4395 continue; 4396 } 4397 else 4398 { 4399 // Combine N_GSYM stab entries with the non stab symbol 4400 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4401 if (gsym_name) 4402 { 4403 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 4404 if (pos != N_GSYM_name_to_sym_idx.end()) 4405 { 4406 const uint32_t GSYM_sym_idx = pos->second; 4407 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4408 // Copy the address, because often the N_GSYM address has an invalid address of zero 4409 // when the global is a common symbol 4410 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 4411 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 4412 // We just need the flags from the linker symbol, so put these flags 4413 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 4414 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4415 sym[sym_idx].Clear(); 4416 continue; 4417 } 4418 } 4419 } 4420 } 4421 } 4422 4423 sym[sym_idx].SetID (nlist_idx); 4424 sym[sym_idx].SetType (type); 4425 if (set_value) 4426 { 4427 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 4428 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 4429 } 4430 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4431 4432 if (symbol_byte_size > 0) 4433 sym[sym_idx].SetByteSize(symbol_byte_size); 4434 4435 if (demangled_is_synthesized) 4436 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4437 4438 ++sym_idx; 4439 } 4440 else 4441 { 4442 sym[sym_idx].Clear(); 4443 } 4444 } 4445 4446 for (const auto &pos :reexport_shlib_needs_fixup) 4447 { 4448 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4449 if (undef_pos != undefined_name_to_desc.end()) 4450 { 4451 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4452 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4453 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 4454 } 4455 } 4456 4457 } 4458 4459 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4460 4461 if (function_starts_count > 0) 4462 { 4463 char synthetic_function_symbol[PATH_MAX]; 4464 uint32_t num_synthetic_function_symbols = 0; 4465 for (i=0; i<function_starts_count; ++i) 4466 { 4467 if (function_starts.GetEntryRef (i).data == false) 4468 ++num_synthetic_function_symbols; 4469 } 4470 4471 if (num_synthetic_function_symbols > 0) 4472 { 4473 if (num_syms < sym_idx + num_synthetic_function_symbols) 4474 { 4475 num_syms = sym_idx + num_synthetic_function_symbols; 4476 sym = symtab->Resize (num_syms); 4477 } 4478 uint32_t synthetic_function_symbol_idx = 0; 4479 for (i=0; i<function_starts_count; ++i) 4480 { 4481 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 4482 if (func_start_entry->data == false) 4483 { 4484 addr_t symbol_file_addr = func_start_entry->addr; 4485 uint32_t symbol_flags = 0; 4486 if (is_arm) 4487 { 4488 if (symbol_file_addr & 1) 4489 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4490 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4491 } 4492 Address symbol_addr; 4493 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 4494 { 4495 SectionSP symbol_section (symbol_addr.GetSection()); 4496 uint32_t symbol_byte_size = 0; 4497 if (symbol_section) 4498 { 4499 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4500 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4501 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4502 if (next_func_start_entry) 4503 { 4504 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4505 if (is_arm) 4506 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4507 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4508 } 4509 else 4510 { 4511 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4512 } 4513 snprintf (synthetic_function_symbol, 4514 sizeof(synthetic_function_symbol), 4515 "___lldb_unnamed_function%u$$%s", 4516 ++synthetic_function_symbol_idx, 4517 module_sp->GetFileSpec().GetFilename().GetCString()); 4518 sym[sym_idx].SetID (synthetic_sym_id++); 4519 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 4520 sym[sym_idx].SetType (eSymbolTypeCode); 4521 sym[sym_idx].SetIsSynthetic (true); 4522 sym[sym_idx].GetAddressRef() = symbol_addr; 4523 if (symbol_flags) 4524 sym[sym_idx].SetFlags (symbol_flags); 4525 if (symbol_byte_size) 4526 sym[sym_idx].SetByteSize (symbol_byte_size); 4527 ++sym_idx; 4528 } 4529 } 4530 } 4531 } 4532 } 4533 } 4534 4535 // Trim our symbols down to just what we ended up with after 4536 // removing any symbols. 4537 if (sym_idx < num_syms) 4538 { 4539 num_syms = sym_idx; 4540 sym = symtab->Resize (num_syms); 4541 } 4542 4543 // Now synthesize indirect symbols 4544 if (m_dysymtab.nindirectsyms != 0) 4545 { 4546 if (indirect_symbol_index_data.GetByteSize()) 4547 { 4548 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 4549 4550 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 4551 { 4552 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 4553 { 4554 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4555 if (symbol_stub_byte_size == 0) 4556 continue; 4557 4558 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4559 4560 if (num_symbol_stubs == 0) 4561 continue; 4562 4563 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 4564 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 4565 { 4566 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 4567 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 4568 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4569 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 4570 { 4571 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 4572 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4573 continue; 4574 4575 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 4576 Symbol *stub_symbol = NULL; 4577 if (index_pos != end_index_pos) 4578 { 4579 // We have a remapping from the original nlist index to 4580 // a current symbol index, so just look this up by index 4581 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 4582 } 4583 else 4584 { 4585 // We need to lookup a symbol using the original nlist 4586 // symbol index since this index is coming from the 4587 // S_SYMBOL_STUBS 4588 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 4589 } 4590 4591 if (stub_symbol) 4592 { 4593 Address so_addr(symbol_stub_addr, section_list); 4594 4595 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4596 { 4597 // Change the external symbol into a trampoline that makes sense 4598 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4599 // can re-use them so we don't have to make up a synthetic symbol 4600 // for no good reason. 4601 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4602 stub_symbol->SetType (eSymbolTypeTrampoline); 4603 else 4604 stub_symbol->SetType (eSymbolTypeResolver); 4605 stub_symbol->SetExternal (false); 4606 stub_symbol->GetAddressRef() = so_addr; 4607 stub_symbol->SetByteSize (symbol_stub_byte_size); 4608 } 4609 else 4610 { 4611 // Make a synthetic symbol to describe the trampoline stub 4612 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4613 if (sym_idx >= num_syms) 4614 { 4615 sym = symtab->Resize (++num_syms); 4616 stub_symbol = NULL; // this pointer no longer valid 4617 } 4618 sym[sym_idx].SetID (synthetic_sym_id++); 4619 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4620 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4621 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4622 else 4623 sym[sym_idx].SetType (eSymbolTypeResolver); 4624 sym[sym_idx].SetIsSynthetic (true); 4625 sym[sym_idx].GetAddressRef() = so_addr; 4626 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4627 ++sym_idx; 4628 } 4629 } 4630 else 4631 { 4632 if (log) 4633 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4634 } 4635 } 4636 } 4637 } 4638 } 4639 } 4640 } 4641 4642 4643 if (!trie_entries.empty()) 4644 { 4645 for (const auto &e : trie_entries) 4646 { 4647 if (e.entry.import_name) 4648 { 4649 // Only add indirect symbols from the Trie entries if we 4650 // didn't have a N_INDR nlist entry for this already 4651 if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) 4652 { 4653 // Make a synthetic symbol to describe re-exported symbol. 4654 if (sym_idx >= num_syms) 4655 sym = symtab->Resize (++num_syms); 4656 sym[sym_idx].SetID (synthetic_sym_id++); 4657 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4658 sym[sym_idx].SetType (eSymbolTypeReExported); 4659 sym[sym_idx].SetIsSynthetic (true); 4660 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4661 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4662 { 4663 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4664 } 4665 ++sym_idx; 4666 } 4667 } 4668 } 4669 } 4670 4671 4672 4673 // StreamFile s(stdout, false); 4674 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4675 // symtab->Dump(&s, NULL, eSortOrderNone); 4676 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4677 symtab->CalculateSymbolSizes(); 4678 4679 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4680 // symtab->Dump(&s, NULL, eSortOrderNone); 4681 4682 return symtab->GetNumSymbols(); 4683 } 4684 return 0; 4685 } 4686 4687 4688 void 4689 ObjectFileMachO::Dump (Stream *s) 4690 { 4691 ModuleSP module_sp(GetModule()); 4692 if (module_sp) 4693 { 4694 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4695 s->Printf("%p: ", static_cast<void*>(this)); 4696 s->Indent(); 4697 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4698 s->PutCString("ObjectFileMachO64"); 4699 else 4700 s->PutCString("ObjectFileMachO32"); 4701 4702 ArchSpec header_arch; 4703 GetArchitecture(header_arch); 4704 4705 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4706 4707 SectionList *sections = GetSectionList(); 4708 if (sections) 4709 sections->Dump(s, NULL, true, UINT32_MAX); 4710 4711 if (m_symtab_ap.get()) 4712 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4713 } 4714 } 4715 4716 bool 4717 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4718 const lldb_private::DataExtractor &data, 4719 lldb::offset_t lc_offset, 4720 lldb_private::UUID& uuid) 4721 { 4722 uint32_t i; 4723 struct uuid_command load_cmd; 4724 4725 lldb::offset_t offset = lc_offset; 4726 for (i=0; i<header.ncmds; ++i) 4727 { 4728 const lldb::offset_t cmd_offset = offset; 4729 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4730 break; 4731 4732 if (load_cmd.cmd == LC_UUID) 4733 { 4734 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4735 4736 if (uuid_bytes) 4737 { 4738 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4739 // We pretend these object files have no UUID to prevent crashing. 4740 4741 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4742 0x3b, 0xa8, 4743 0x4b, 0x16, 4744 0xb6, 0xa4, 4745 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4746 4747 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4748 return false; 4749 4750 uuid.SetBytes (uuid_bytes); 4751 return true; 4752 } 4753 return false; 4754 } 4755 offset = cmd_offset + load_cmd.cmdsize; 4756 } 4757 return false; 4758 } 4759 4760 4761 bool 4762 ObjectFileMachO::GetArchitecture (const llvm::MachO::mach_header &header, 4763 const lldb_private::DataExtractor &data, 4764 lldb::offset_t lc_offset, 4765 ArchSpec &arch) 4766 { 4767 arch.SetArchitecture (eArchTypeMachO, header.cputype, header.cpusubtype); 4768 4769 if (arch.IsValid()) 4770 { 4771 llvm::Triple &triple = arch.GetTriple(); 4772 if (header.filetype == MH_PRELOAD) 4773 { 4774 // Set OS to "unknown" - this is a standalone binary with no dyld et al 4775 triple.setOS(llvm::Triple::UnknownOS); 4776 return true; 4777 } 4778 else 4779 { 4780 struct load_command load_cmd; 4781 4782 lldb::offset_t offset = lc_offset; 4783 for (uint32_t i=0; i<header.ncmds; ++i) 4784 { 4785 const lldb::offset_t cmd_offset = offset; 4786 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4787 break; 4788 4789 switch (load_cmd.cmd) 4790 { 4791 case LC_VERSION_MIN_IPHONEOS: 4792 triple.setOS (llvm::Triple::IOS); 4793 return true; 4794 4795 case LC_VERSION_MIN_MACOSX: 4796 triple.setOS (llvm::Triple::MacOSX); 4797 return true; 4798 4799 default: 4800 break; 4801 } 4802 4803 offset = cmd_offset + load_cmd.cmdsize; 4804 } 4805 4806 // Only set the OS to iOS for ARM, we don't want to set it for x86 and x86_64. 4807 // We do this because we now have MacOSX or iOS as the OS value for x86 and 4808 // x86_64 for normal desktop (MacOSX) and simulator (iOS) binaries. And if 4809 // we compare a "x86_64-apple-ios" to a "x86_64-apple-" triple, it will say 4810 // it is compatible (because the OS is unspecified in the second one and will 4811 // match anything in the first 4812 if (header.cputype == CPU_TYPE_ARM || header.cputype == CPU_TYPE_ARM64) 4813 triple.setOS (llvm::Triple::IOS); 4814 } 4815 } 4816 return arch.IsValid(); 4817 } 4818 4819 bool 4820 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4821 { 4822 ModuleSP module_sp(GetModule()); 4823 if (module_sp) 4824 { 4825 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4826 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4827 return GetUUID (m_header, m_data, offset, *uuid); 4828 } 4829 return false; 4830 } 4831 4832 4833 uint32_t 4834 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4835 { 4836 uint32_t count = 0; 4837 ModuleSP module_sp(GetModule()); 4838 if (module_sp) 4839 { 4840 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4841 struct load_command load_cmd; 4842 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4843 std::vector<std::string> rpath_paths; 4844 std::vector<std::string> rpath_relative_paths; 4845 const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system 4846 uint32_t i; 4847 for (i=0; i<m_header.ncmds; ++i) 4848 { 4849 const uint32_t cmd_offset = offset; 4850 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4851 break; 4852 4853 switch (load_cmd.cmd) 4854 { 4855 case LC_RPATH: 4856 case LC_LOAD_DYLIB: 4857 case LC_LOAD_WEAK_DYLIB: 4858 case LC_REEXPORT_DYLIB: 4859 case LC_LOAD_DYLINKER: 4860 case LC_LOADFVMLIB: 4861 case LC_LOAD_UPWARD_DYLIB: 4862 { 4863 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4864 const char *path = m_data.PeekCStr(name_offset); 4865 if (path) 4866 { 4867 if (load_cmd.cmd == LC_RPATH) 4868 rpath_paths.push_back(path); 4869 else 4870 { 4871 if (path[0] == '@') 4872 { 4873 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 4874 rpath_relative_paths.push_back(path + strlen("@rpath")); 4875 } 4876 else 4877 { 4878 FileSpec file_spec(path, resolve_path); 4879 if (files.AppendIfUnique(file_spec)) 4880 count++; 4881 } 4882 } 4883 } 4884 } 4885 break; 4886 4887 default: 4888 break; 4889 } 4890 offset = cmd_offset + load_cmd.cmdsize; 4891 } 4892 4893 if (!rpath_paths.empty()) 4894 { 4895 // Fixup all LC_RPATH values to be absolute paths 4896 FileSpec this_file_spec(m_file); 4897 this_file_spec.ResolvePath(); 4898 std::string loader_path("@loader_path"); 4899 std::string executable_path("@executable_path"); 4900 for (auto &rpath : rpath_paths) 4901 { 4902 if (rpath.find(loader_path) == 0) 4903 { 4904 rpath.erase(0, loader_path.size()); 4905 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4906 } 4907 else if (rpath.find(executable_path) == 0) 4908 { 4909 rpath.erase(0, executable_path.size()); 4910 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4911 } 4912 } 4913 4914 for (const auto &rpath_relative_path : rpath_relative_paths) 4915 { 4916 for (const auto &rpath : rpath_paths) 4917 { 4918 std::string path = rpath; 4919 path += rpath_relative_path; 4920 // It is OK to resolve this path because we must find a file on 4921 // disk for us to accept it anyway if it is rpath relative. 4922 FileSpec file_spec(path, true); 4923 // Remove any redundant parts of the path (like "../foo") since 4924 // LC_RPATH values often contain "..". 4925 file_spec.NormalizePath (); 4926 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) 4927 { 4928 count++; 4929 break; 4930 } 4931 } 4932 } 4933 } 4934 } 4935 return count; 4936 } 4937 4938 lldb_private::Address 4939 ObjectFileMachO::GetEntryPointAddress () 4940 { 4941 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4942 // is initialized to an invalid address, so we can just return that. 4943 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4944 4945 if (!IsExecutable() || m_entry_point_address.IsValid()) 4946 return m_entry_point_address; 4947 4948 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4949 // /usr/include/mach-o.h, but it is basically: 4950 // 4951 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4952 // uint32_t count - this is the count of longs in the thread state data 4953 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4954 // <repeat this trio> 4955 // 4956 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4957 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4958 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4959 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4960 // 4961 // For now we hard-code the offsets and flavors we need: 4962 // 4963 // 4964 4965 ModuleSP module_sp(GetModule()); 4966 if (module_sp) 4967 { 4968 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4969 struct load_command load_cmd; 4970 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4971 uint32_t i; 4972 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4973 bool done = false; 4974 4975 for (i=0; i<m_header.ncmds; ++i) 4976 { 4977 const lldb::offset_t cmd_offset = offset; 4978 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4979 break; 4980 4981 switch (load_cmd.cmd) 4982 { 4983 case LC_UNIXTHREAD: 4984 case LC_THREAD: 4985 { 4986 while (offset < cmd_offset + load_cmd.cmdsize) 4987 { 4988 uint32_t flavor = m_data.GetU32(&offset); 4989 uint32_t count = m_data.GetU32(&offset); 4990 if (count == 0) 4991 { 4992 // We've gotten off somehow, log and exit; 4993 return m_entry_point_address; 4994 } 4995 4996 switch (m_header.cputype) 4997 { 4998 case llvm::MachO::CPU_TYPE_ARM: 4999 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 5000 { 5001 offset += 60; // This is the offset of pc in the GPR thread state data structure. 5002 start_address = m_data.GetU32(&offset); 5003 done = true; 5004 } 5005 break; 5006 case llvm::MachO::CPU_TYPE_ARM64: 5007 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 5008 { 5009 offset += 256; // This is the offset of pc in the GPR thread state data structure. 5010 start_address = m_data.GetU64(&offset); 5011 done = true; 5012 } 5013 break; 5014 case llvm::MachO::CPU_TYPE_I386: 5015 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5016 { 5017 offset += 40; // This is the offset of eip in the GPR thread state data structure. 5018 start_address = m_data.GetU32(&offset); 5019 done = true; 5020 } 5021 break; 5022 case llvm::MachO::CPU_TYPE_X86_64: 5023 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5024 { 5025 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 5026 start_address = m_data.GetU64(&offset); 5027 done = true; 5028 } 5029 break; 5030 default: 5031 return m_entry_point_address; 5032 } 5033 // Haven't found the GPR flavor yet, skip over the data for this flavor: 5034 if (done) 5035 break; 5036 offset += count * 4; 5037 } 5038 } 5039 break; 5040 case LC_MAIN: 5041 { 5042 ConstString text_segment_name ("__TEXT"); 5043 uint64_t entryoffset = m_data.GetU64(&offset); 5044 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 5045 if (text_segment_sp) 5046 { 5047 done = true; 5048 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5049 } 5050 } 5051 5052 default: 5053 break; 5054 } 5055 if (done) 5056 break; 5057 5058 // Go to the next load command: 5059 offset = cmd_offset + load_cmd.cmdsize; 5060 } 5061 5062 if (start_address != LLDB_INVALID_ADDRESS) 5063 { 5064 // We got the start address from the load commands, so now resolve that address in the sections 5065 // of this ObjectFile: 5066 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 5067 { 5068 m_entry_point_address.Clear(); 5069 } 5070 } 5071 else 5072 { 5073 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 5074 // "start" symbol in the main executable. 5075 5076 ModuleSP module_sp (GetModule()); 5077 5078 if (module_sp) 5079 { 5080 SymbolContextList contexts; 5081 SymbolContext context; 5082 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 5083 { 5084 if (contexts.GetContextAtIndex(0, context)) 5085 m_entry_point_address = context.symbol->GetAddress(); 5086 } 5087 } 5088 } 5089 } 5090 5091 return m_entry_point_address; 5092 5093 } 5094 5095 lldb_private::Address 5096 ObjectFileMachO::GetHeaderAddress () 5097 { 5098 lldb_private::Address header_addr; 5099 SectionList *section_list = GetSectionList(); 5100 if (section_list) 5101 { 5102 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 5103 if (text_segment_sp) 5104 { 5105 header_addr.SetSection (text_segment_sp); 5106 header_addr.SetOffset (0); 5107 } 5108 } 5109 return header_addr; 5110 } 5111 5112 uint32_t 5113 ObjectFileMachO::GetNumThreadContexts () 5114 { 5115 ModuleSP module_sp(GetModule()); 5116 if (module_sp) 5117 { 5118 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5119 if (!m_thread_context_offsets_valid) 5120 { 5121 m_thread_context_offsets_valid = true; 5122 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5123 FileRangeArray::Entry file_range; 5124 thread_command thread_cmd; 5125 for (uint32_t i=0; i<m_header.ncmds; ++i) 5126 { 5127 const uint32_t cmd_offset = offset; 5128 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 5129 break; 5130 5131 if (thread_cmd.cmd == LC_THREAD) 5132 { 5133 file_range.SetRangeBase (offset); 5134 file_range.SetByteSize (thread_cmd.cmdsize - 8); 5135 m_thread_context_offsets.Append (file_range); 5136 } 5137 offset = cmd_offset + thread_cmd.cmdsize; 5138 } 5139 } 5140 } 5141 return m_thread_context_offsets.GetSize(); 5142 } 5143 5144 lldb::RegisterContextSP 5145 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 5146 { 5147 lldb::RegisterContextSP reg_ctx_sp; 5148 5149 ModuleSP module_sp(GetModule()); 5150 if (module_sp) 5151 { 5152 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5153 if (!m_thread_context_offsets_valid) 5154 GetNumThreadContexts (); 5155 5156 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 5157 if (thread_context_file_range) 5158 { 5159 5160 DataExtractor data (m_data, 5161 thread_context_file_range->GetRangeBase(), 5162 thread_context_file_range->GetByteSize()); 5163 5164 switch (m_header.cputype) 5165 { 5166 case llvm::MachO::CPU_TYPE_ARM64: 5167 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 5168 break; 5169 5170 case llvm::MachO::CPU_TYPE_ARM: 5171 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 5172 break; 5173 5174 case llvm::MachO::CPU_TYPE_I386: 5175 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 5176 break; 5177 5178 case llvm::MachO::CPU_TYPE_X86_64: 5179 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 5180 break; 5181 } 5182 } 5183 } 5184 return reg_ctx_sp; 5185 } 5186 5187 5188 ObjectFile::Type 5189 ObjectFileMachO::CalculateType() 5190 { 5191 switch (m_header.filetype) 5192 { 5193 case MH_OBJECT: // 0x1u 5194 if (GetAddressByteSize () == 4) 5195 { 5196 // 32 bit kexts are just object files, but they do have a valid 5197 // UUID load command. 5198 UUID uuid; 5199 if (GetUUID(&uuid)) 5200 { 5201 // this checking for the UUID load command is not enough 5202 // we could eventually look for the symbol named 5203 // "OSKextGetCurrentIdentifier" as this is required of kexts 5204 if (m_strata == eStrataInvalid) 5205 m_strata = eStrataKernel; 5206 return eTypeSharedLibrary; 5207 } 5208 } 5209 return eTypeObjectFile; 5210 5211 case MH_EXECUTE: return eTypeExecutable; // 0x2u 5212 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 5213 case MH_CORE: return eTypeCoreFile; // 0x4u 5214 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 5215 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 5216 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 5217 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 5218 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 5219 case MH_DSYM: return eTypeDebugInfo; // 0xAu 5220 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 5221 default: 5222 break; 5223 } 5224 return eTypeUnknown; 5225 } 5226 5227 ObjectFile::Strata 5228 ObjectFileMachO::CalculateStrata() 5229 { 5230 switch (m_header.filetype) 5231 { 5232 case MH_OBJECT: // 0x1u 5233 { 5234 // 32 bit kexts are just object files, but they do have a valid 5235 // UUID load command. 5236 UUID uuid; 5237 if (GetUUID(&uuid)) 5238 { 5239 // this checking for the UUID load command is not enough 5240 // we could eventually look for the symbol named 5241 // "OSKextGetCurrentIdentifier" as this is required of kexts 5242 if (m_type == eTypeInvalid) 5243 m_type = eTypeSharedLibrary; 5244 5245 return eStrataKernel; 5246 } 5247 } 5248 return eStrataUnknown; 5249 5250 case MH_EXECUTE: // 0x2u 5251 // Check for the MH_DYLDLINK bit in the flags 5252 if (m_header.flags & MH_DYLDLINK) 5253 { 5254 return eStrataUser; 5255 } 5256 else 5257 { 5258 SectionList *section_list = GetSectionList(); 5259 if (section_list) 5260 { 5261 static ConstString g_kld_section_name ("__KLD"); 5262 if (section_list->FindSectionByName(g_kld_section_name)) 5263 return eStrataKernel; 5264 } 5265 } 5266 return eStrataRawImage; 5267 5268 case MH_FVMLIB: return eStrataUser; // 0x3u 5269 case MH_CORE: return eStrataUnknown; // 0x4u 5270 case MH_PRELOAD: return eStrataRawImage; // 0x5u 5271 case MH_DYLIB: return eStrataUser; // 0x6u 5272 case MH_DYLINKER: return eStrataUser; // 0x7u 5273 case MH_BUNDLE: return eStrataUser; // 0x8u 5274 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 5275 case MH_DSYM: return eStrataUnknown; // 0xAu 5276 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 5277 default: 5278 break; 5279 } 5280 return eStrataUnknown; 5281 } 5282 5283 5284 uint32_t 5285 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 5286 { 5287 ModuleSP module_sp(GetModule()); 5288 if (module_sp) 5289 { 5290 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5291 struct dylib_command load_cmd; 5292 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5293 uint32_t version_cmd = 0; 5294 uint64_t version = 0; 5295 uint32_t i; 5296 for (i=0; i<m_header.ncmds; ++i) 5297 { 5298 const lldb::offset_t cmd_offset = offset; 5299 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 5300 break; 5301 5302 if (load_cmd.cmd == LC_ID_DYLIB) 5303 { 5304 if (version_cmd == 0) 5305 { 5306 version_cmd = load_cmd.cmd; 5307 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 5308 break; 5309 version = load_cmd.dylib.current_version; 5310 } 5311 break; // Break for now unless there is another more complete version 5312 // number load command in the future. 5313 } 5314 offset = cmd_offset + load_cmd.cmdsize; 5315 } 5316 5317 if (version_cmd == LC_ID_DYLIB) 5318 { 5319 if (versions != NULL && num_versions > 0) 5320 { 5321 if (num_versions > 0) 5322 versions[0] = (version & 0xFFFF0000ull) >> 16; 5323 if (num_versions > 1) 5324 versions[1] = (version & 0x0000FF00ull) >> 8; 5325 if (num_versions > 2) 5326 versions[2] = (version & 0x000000FFull); 5327 // Fill in an remaining version numbers with invalid values 5328 for (i=3; i<num_versions; ++i) 5329 versions[i] = UINT32_MAX; 5330 } 5331 // The LC_ID_DYLIB load command has a version with 3 version numbers 5332 // in it, so always return 3 5333 return 3; 5334 } 5335 } 5336 return false; 5337 } 5338 5339 bool 5340 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 5341 { 5342 ModuleSP module_sp(GetModule()); 5343 if (module_sp) 5344 { 5345 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5346 return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); 5347 } 5348 return false; 5349 } 5350 5351 5352 UUID 5353 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 5354 { 5355 UUID uuid; 5356 if (process) 5357 { 5358 addr_t all_image_infos = process->GetImageInfoAddress(); 5359 5360 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 5361 // or it may be the address of the dyld_all_image_infos structure (want). The first four 5362 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 5363 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 5364 5365 Error err; 5366 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 5367 if (version_or_magic != static_cast<uint32_t>(-1) 5368 && version_or_magic != MH_MAGIC 5369 && version_or_magic != MH_CIGAM 5370 && version_or_magic != MH_MAGIC_64 5371 && version_or_magic != MH_CIGAM_64 5372 && version_or_magic >= 13) 5373 { 5374 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 5375 int wordsize = process->GetAddressByteSize(); 5376 if (wordsize == 8) 5377 { 5378 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 5379 } 5380 if (wordsize == 4) 5381 { 5382 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 5383 } 5384 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 5385 { 5386 uuid_t shared_cache_uuid; 5387 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 5388 { 5389 uuid.SetBytes (shared_cache_uuid); 5390 } 5391 } 5392 } 5393 } 5394 return uuid; 5395 } 5396 5397 UUID 5398 ObjectFileMachO::GetLLDBSharedCacheUUID () 5399 { 5400 UUID uuid; 5401 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 5402 uint8_t *(*dyld_get_all_image_infos)(void); 5403 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5404 if (dyld_get_all_image_infos) 5405 { 5406 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5407 if (dyld_all_image_infos_address) 5408 { 5409 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5410 if (*version >= 13) 5411 { 5412 uuid_t *sharedCacheUUID_address = 0; 5413 int wordsize = sizeof (uint8_t *); 5414 if (wordsize == 8) 5415 { 5416 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 5417 } 5418 else 5419 { 5420 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 5421 } 5422 uuid.SetBytes (sharedCacheUUID_address); 5423 } 5424 } 5425 } 5426 #endif 5427 return uuid; 5428 } 5429 5430 uint32_t 5431 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 5432 { 5433 if (m_min_os_versions.empty()) 5434 { 5435 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5436 bool success = false; 5437 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5438 { 5439 const lldb::offset_t load_cmd_offset = offset; 5440 5441 version_min_command lc; 5442 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5443 break; 5444 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5445 { 5446 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5447 { 5448 const uint32_t xxxx = lc.version >> 16; 5449 const uint32_t yy = (lc.version >> 8) & 0xffu; 5450 const uint32_t zz = lc.version & 0xffu; 5451 if (xxxx) 5452 { 5453 m_min_os_versions.push_back(xxxx); 5454 m_min_os_versions.push_back(yy); 5455 m_min_os_versions.push_back(zz); 5456 } 5457 success = true; 5458 } 5459 } 5460 offset = load_cmd_offset + lc.cmdsize; 5461 } 5462 5463 if (success == false) 5464 { 5465 // Push an invalid value so we don't keep trying to 5466 m_min_os_versions.push_back(UINT32_MAX); 5467 } 5468 } 5469 5470 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 5471 { 5472 if (versions != NULL && num_versions > 0) 5473 { 5474 for (size_t i=0; i<num_versions; ++i) 5475 { 5476 if (i < m_min_os_versions.size()) 5477 versions[i] = m_min_os_versions[i]; 5478 else 5479 versions[i] = 0; 5480 } 5481 } 5482 return m_min_os_versions.size(); 5483 } 5484 // Call the superclasses version that will empty out the data 5485 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 5486 } 5487 5488 uint32_t 5489 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 5490 { 5491 if (m_sdk_versions.empty()) 5492 { 5493 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5494 bool success = false; 5495 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5496 { 5497 const lldb::offset_t load_cmd_offset = offset; 5498 5499 version_min_command lc; 5500 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5501 break; 5502 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5503 { 5504 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5505 { 5506 const uint32_t xxxx = lc.sdk >> 16; 5507 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5508 const uint32_t zz = lc.sdk & 0xffu; 5509 if (xxxx) 5510 { 5511 m_sdk_versions.push_back(xxxx); 5512 m_sdk_versions.push_back(yy); 5513 m_sdk_versions.push_back(zz); 5514 } 5515 success = true; 5516 } 5517 } 5518 offset = load_cmd_offset + lc.cmdsize; 5519 } 5520 5521 if (success == false) 5522 { 5523 // Push an invalid value so we don't keep trying to 5524 m_sdk_versions.push_back(UINT32_MAX); 5525 } 5526 } 5527 5528 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 5529 { 5530 if (versions != NULL && num_versions > 0) 5531 { 5532 for (size_t i=0; i<num_versions; ++i) 5533 { 5534 if (i < m_sdk_versions.size()) 5535 versions[i] = m_sdk_versions[i]; 5536 else 5537 versions[i] = 0; 5538 } 5539 } 5540 return m_sdk_versions.size(); 5541 } 5542 // Call the superclasses version that will empty out the data 5543 return ObjectFile::GetSDKVersion (versions, num_versions); 5544 } 5545 5546 5547 bool 5548 ObjectFileMachO::GetIsDynamicLinkEditor() 5549 { 5550 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5551 } 5552 5553 //------------------------------------------------------------------ 5554 // PluginInterface protocol 5555 //------------------------------------------------------------------ 5556 lldb_private::ConstString 5557 ObjectFileMachO::GetPluginName() 5558 { 5559 return GetPluginNameStatic(); 5560 } 5561 5562 uint32_t 5563 ObjectFileMachO::GetPluginVersion() 5564 { 5565 return 1; 5566 } 5567 5568 5569 Section * 5570 ObjectFileMachO::GetMachHeaderSection() 5571 { 5572 // Find the first address of the mach header which is the first non-zero 5573 // file sized section whose file offset is zero. This is the base file address 5574 // of the mach-o file which can be subtracted from the vmaddr of the other 5575 // segments found in memory and added to the load address 5576 ModuleSP module_sp = GetModule(); 5577 if (module_sp) 5578 { 5579 SectionList *section_list = GetSectionList (); 5580 if (section_list) 5581 { 5582 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 5583 const size_t num_sections = section_list->GetSize(); 5584 5585 for (size_t sect_idx = 0; 5586 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 5587 ++sect_idx) 5588 { 5589 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 5590 if (section && 5591 section->GetFileSize() > 0 && 5592 section->GetFileOffset() == 0 && 5593 section->IsThreadSpecific() == false && 5594 module_sp.get() == section->GetModule().get()) 5595 { 5596 return section; 5597 } 5598 } 5599 } 5600 } 5601 return nullptr; 5602 } 5603 5604 lldb::addr_t 5605 ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) 5606 { 5607 ModuleSP module_sp = GetModule(); 5608 if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) 5609 { 5610 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); 5611 if (mach_header_file_addr != LLDB_INVALID_ADDRESS) 5612 { 5613 if (section && 5614 section->GetFileSize() > 0 && 5615 section->IsThreadSpecific() == false && 5616 module_sp.get() == section->GetModule().get()) 5617 { 5618 // Ignore __LINKEDIT and __DWARF segments 5619 if (section->GetName() == GetSegmentNameLINKEDIT()) 5620 { 5621 // Only map __LINKEDIT if we have an in memory image and this isn't 5622 // a kernel binary like a kext or mach_kernel. 5623 const bool is_memory_image = (bool)m_process_wp.lock(); 5624 const Strata strata = GetStrata(); 5625 if (is_memory_image == false || strata == eStrataKernel) 5626 return LLDB_INVALID_ADDRESS; 5627 } 5628 return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; 5629 } 5630 } 5631 } 5632 return LLDB_INVALID_ADDRESS; 5633 } 5634 5635 bool 5636 ObjectFileMachO::SetLoadAddress (Target &target, 5637 lldb::addr_t value, 5638 bool value_is_offset) 5639 { 5640 ModuleSP module_sp = GetModule(); 5641 if (module_sp) 5642 { 5643 size_t num_loaded_sections = 0; 5644 SectionList *section_list = GetSectionList (); 5645 if (section_list) 5646 { 5647 const size_t num_sections = section_list->GetSize(); 5648 5649 if (value_is_offset) 5650 { 5651 // "value" is an offset to apply to each top level segment 5652 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5653 { 5654 // Iterate through the object file sections to find all 5655 // of the sections that size on disk (to avoid __PAGEZERO) 5656 // and load them 5657 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5658 if (section_sp && 5659 section_sp->GetFileSize() > 0 && 5660 section_sp->IsThreadSpecific() == false && 5661 module_sp.get() == section_sp->GetModule().get()) 5662 { 5663 // Ignore __LINKEDIT and __DWARF segments 5664 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) 5665 { 5666 // Only map __LINKEDIT if we have an in memory image and this isn't 5667 // a kernel binary like a kext or mach_kernel. 5668 const bool is_memory_image = (bool)m_process_wp.lock(); 5669 const Strata strata = GetStrata(); 5670 if (is_memory_image == false || strata == eStrataKernel) 5671 continue; 5672 } 5673 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 5674 ++num_loaded_sections; 5675 } 5676 } 5677 } 5678 else 5679 { 5680 // "value" is the new base address of the mach_header, adjust each 5681 // section accordingly 5682 5683 Section *mach_header_section = GetMachHeaderSection(); 5684 if (mach_header_section) 5685 { 5686 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5687 { 5688 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5689 5690 lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage(value, mach_header_section, section_sp.get()); 5691 if (section_load_addr != LLDB_INVALID_ADDRESS) 5692 { 5693 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_load_addr)) 5694 ++num_loaded_sections; 5695 } 5696 } 5697 } 5698 } 5699 } 5700 return num_loaded_sections > 0; 5701 } 5702 return false; 5703 } 5704 5705 bool 5706 ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, 5707 const FileSpec &outfile, 5708 Error &error) 5709 { 5710 if (process_sp) 5711 { 5712 Target &target = process_sp->GetTarget(); 5713 const ArchSpec target_arch = target.GetArchitecture(); 5714 const llvm::Triple &target_triple = target_arch.GetTriple(); 5715 if (target_triple.getVendor() == llvm::Triple::Apple && 5716 (target_triple.getOS() == llvm::Triple::MacOSX || 5717 target_triple.getOS() == llvm::Triple::IOS)) 5718 { 5719 bool make_core = false; 5720 switch (target_arch.GetMachine()) 5721 { 5722 case llvm::Triple::aarch64: 5723 case llvm::Triple::arm: 5724 case llvm::Triple::x86: 5725 case llvm::Triple::x86_64: 5726 make_core = true; 5727 break; 5728 default: 5729 error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); 5730 break; 5731 } 5732 5733 if (make_core) 5734 { 5735 std::vector<segment_command_64> segment_load_commands; 5736 // uint32_t range_info_idx = 0; 5737 MemoryRegionInfo range_info; 5738 Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); 5739 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 5740 const ByteOrder byte_order = target_arch.GetByteOrder(); 5741 if (range_error.Success()) 5742 { 5743 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) 5744 { 5745 const addr_t addr = range_info.GetRange().GetRangeBase(); 5746 const addr_t size = range_info.GetRange().GetByteSize(); 5747 5748 if (size == 0) 5749 break; 5750 5751 // Calculate correct protections 5752 uint32_t prot = 0; 5753 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 5754 prot |= VM_PROT_READ; 5755 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 5756 prot |= VM_PROT_WRITE; 5757 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 5758 prot |= VM_PROT_EXECUTE; 5759 5760 // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", 5761 // range_info_idx, 5762 // addr, 5763 // size, 5764 // (prot & VM_PROT_READ ) ? 'r' : '-', 5765 // (prot & VM_PROT_WRITE ) ? 'w' : '-', 5766 // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); 5767 5768 if (prot != 0) 5769 { 5770 uint32_t cmd_type = LC_SEGMENT_64; 5771 uint32_t segment_size = sizeof (segment_command_64); 5772 if (addr_byte_size == 4) 5773 { 5774 cmd_type = LC_SEGMENT; 5775 segment_size = sizeof (segment_command); 5776 } 5777 segment_command_64 segment = { 5778 cmd_type, // uint32_t cmd; 5779 segment_size, // uint32_t cmdsize; 5780 {0}, // char segname[16]; 5781 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 5782 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 5783 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 5784 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 5785 prot, // uint32_t maxprot; 5786 prot, // uint32_t initprot; 5787 0, // uint32_t nsects; 5788 0 }; // uint32_t flags; 5789 segment_load_commands.push_back(segment); 5790 } 5791 else 5792 { 5793 // No protections and a size of 1 used to be returned from old 5794 // debugservers when we asked about a region that was past the 5795 // last memory region and it indicates the end... 5796 if (size == 1) 5797 break; 5798 } 5799 5800 range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); 5801 if (range_error.Fail()) 5802 break; 5803 } 5804 5805 StreamString buffer (Stream::eBinary, 5806 addr_byte_size, 5807 byte_order); 5808 5809 mach_header_64 mach_header; 5810 if (addr_byte_size == 8) 5811 { 5812 mach_header.magic = MH_MAGIC_64; 5813 } 5814 else 5815 { 5816 mach_header.magic = MH_MAGIC; 5817 } 5818 mach_header.cputype = target_arch.GetMachOCPUType(); 5819 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 5820 mach_header.filetype = MH_CORE; 5821 mach_header.ncmds = segment_load_commands.size(); 5822 mach_header.flags = 0; 5823 mach_header.reserved = 0; 5824 ThreadList &thread_list = process_sp->GetThreadList(); 5825 const uint32_t num_threads = thread_list.GetSize(); 5826 5827 // Make an array of LC_THREAD data items. Each one contains 5828 // the contents of the LC_THREAD load command. The data doesn't 5829 // contain the load command + load command size, we will 5830 // add the load command and load command size as we emit the data. 5831 std::vector<StreamString> LC_THREAD_datas(num_threads); 5832 for (auto &LC_THREAD_data : LC_THREAD_datas) 5833 { 5834 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 5835 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 5836 LC_THREAD_data.SetByteOrder(byte_order); 5837 } 5838 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) 5839 { 5840 ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); 5841 if (thread_sp) 5842 { 5843 switch (mach_header.cputype) 5844 { 5845 case llvm::MachO::CPU_TYPE_ARM64: 5846 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5847 break; 5848 5849 case llvm::MachO::CPU_TYPE_ARM: 5850 RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5851 break; 5852 5853 case llvm::MachO::CPU_TYPE_I386: 5854 RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5855 break; 5856 5857 case llvm::MachO::CPU_TYPE_X86_64: 5858 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5859 break; 5860 } 5861 5862 } 5863 } 5864 5865 // The size of the load command is the size of the segments... 5866 if (addr_byte_size == 8) 5867 { 5868 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); 5869 } 5870 else 5871 { 5872 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); 5873 } 5874 5875 // and the size of all LC_THREAD load command 5876 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5877 { 5878 ++mach_header.ncmds; 5879 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 5880 } 5881 5882 printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 5883 mach_header.magic, 5884 mach_header.cputype, 5885 mach_header.cpusubtype, 5886 mach_header.filetype, 5887 mach_header.ncmds, 5888 mach_header.sizeofcmds, 5889 mach_header.flags, 5890 mach_header.reserved); 5891 5892 // Write the mach header 5893 buffer.PutHex32(mach_header.magic); 5894 buffer.PutHex32(mach_header.cputype); 5895 buffer.PutHex32(mach_header.cpusubtype); 5896 buffer.PutHex32(mach_header.filetype); 5897 buffer.PutHex32(mach_header.ncmds); 5898 buffer.PutHex32(mach_header.sizeofcmds); 5899 buffer.PutHex32(mach_header.flags); 5900 if (addr_byte_size == 8) 5901 { 5902 buffer.PutHex32(mach_header.reserved); 5903 } 5904 5905 // Skip the mach header and all load commands and align to the next 5906 // 0x1000 byte boundary 5907 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 5908 if (file_offset & 0x00000fff) 5909 { 5910 file_offset += 0x00001000ull; 5911 file_offset &= (~0x00001000ull + 1); 5912 } 5913 5914 for (auto &segment : segment_load_commands) 5915 { 5916 segment.fileoff = file_offset; 5917 file_offset += segment.filesize; 5918 } 5919 5920 // Write out all of the LC_THREAD load commands 5921 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5922 { 5923 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 5924 buffer.PutHex32(LC_THREAD); 5925 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 5926 buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); 5927 } 5928 5929 // Write out all of the segment load commands 5930 for (const auto &segment : segment_load_commands) 5931 { 5932 printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 5933 segment.cmd, 5934 segment.cmdsize, 5935 segment.vmaddr, 5936 segment.vmaddr + segment.vmsize, 5937 segment.fileoff, 5938 segment.filesize, 5939 segment.maxprot, 5940 segment.initprot, 5941 segment.nsects, 5942 segment.flags); 5943 5944 buffer.PutHex32(segment.cmd); 5945 buffer.PutHex32(segment.cmdsize); 5946 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 5947 if (addr_byte_size == 8) 5948 { 5949 buffer.PutHex64(segment.vmaddr); 5950 buffer.PutHex64(segment.vmsize); 5951 buffer.PutHex64(segment.fileoff); 5952 buffer.PutHex64(segment.filesize); 5953 } 5954 else 5955 { 5956 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 5957 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 5958 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 5959 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 5960 } 5961 buffer.PutHex32(segment.maxprot); 5962 buffer.PutHex32(segment.initprot); 5963 buffer.PutHex32(segment.nsects); 5964 buffer.PutHex32(segment.flags); 5965 } 5966 5967 File core_file; 5968 std::string core_file_path(outfile.GetPath()); 5969 error = core_file.Open(core_file_path.c_str(), 5970 File::eOpenOptionWrite | 5971 File::eOpenOptionTruncate | 5972 File::eOpenOptionCanCreate); 5973 if (error.Success()) 5974 { 5975 // Read 1 page at a time 5976 uint8_t bytes[0x1000]; 5977 // Write the mach header and load commands out to the core file 5978 size_t bytes_written = buffer.GetString().size(); 5979 error = core_file.Write(buffer.GetString().data(), bytes_written); 5980 if (error.Success()) 5981 { 5982 // Now write the file data for all memory segments in the process 5983 for (const auto &segment : segment_load_commands) 5984 { 5985 if (core_file.SeekFromStart(segment.fileoff) == -1) 5986 { 5987 error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); 5988 break; 5989 } 5990 5991 printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); 5992 addr_t bytes_left = segment.vmsize; 5993 addr_t addr = segment.vmaddr; 5994 Error memory_read_error; 5995 while (bytes_left > 0 && error.Success()) 5996 { 5997 const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 5998 const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); 5999 if (bytes_read == bytes_to_read) 6000 { 6001 size_t bytes_written = bytes_read; 6002 error = core_file.Write(bytes, bytes_written); 6003 bytes_left -= bytes_read; 6004 addr += bytes_read; 6005 } 6006 else 6007 { 6008 // Some pages within regions are not readable, those 6009 // should be zero filled 6010 memset (bytes, 0, bytes_to_read); 6011 size_t bytes_written = bytes_to_read; 6012 error = core_file.Write(bytes, bytes_written); 6013 bytes_left -= bytes_to_read; 6014 addr += bytes_to_read; 6015 } 6016 } 6017 } 6018 } 6019 } 6020 } 6021 else 6022 { 6023 error.SetErrorString("process doesn't support getting memory region info"); 6024 } 6025 } 6026 return true; // This is the right plug to handle saving core files for this process 6027 } 6028 } 6029 return false; 6030 } 6031 6032