1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/FileSpecList.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/ModuleSpec.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/Progress.h"
22 #include "lldb/Core/Section.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Symbol/DWARFCallFrameInfo.h"
26 #include "lldb/Symbol/LocateSymbolFile.h"
27 #include "lldb/Symbol/ObjectFile.h"
28 #include "lldb/Target/DynamicLoader.h"
29 #include "lldb/Target/MemoryRegionInfo.h"
30 #include "lldb/Target/Platform.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/SectionLoadList.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Target/ThreadList.h"
36 #include "lldb/Utility/ArchSpec.h"
37 #include "lldb/Utility/DataBuffer.h"
38 #include "lldb/Utility/FileSpec.h"
39 #include "lldb/Utility/LLDBLog.h"
40 #include "lldb/Utility/Log.h"
41 #include "lldb/Utility/RangeMap.h"
42 #include "lldb/Utility/RegisterValue.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StreamString.h"
45 #include "lldb/Utility/Timer.h"
46 #include "lldb/Utility/UUID.h"
47 
48 #include "lldb/Host/SafeMachO.h"
49 
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/MemoryBuffer.h"
53 
54 #include "ObjectFileMachO.h"
55 
56 #if defined(__APPLE__)
57 #include <TargetConditionals.h>
58 // GetLLDBSharedCacheUUID() needs to call dlsym()
59 #include <dlfcn.h>
60 #include <mach/mach_init.h>
61 #include <mach/vm_map.h>
62 #include <lldb/Host/SafeMachO.h>
63 #endif
64 
65 #ifndef __APPLE__
66 #include "Utility/UuidCompatibility.h"
67 #else
68 #include <uuid/uuid.h>
69 #endif
70 
71 #include <bitset>
72 #include <memory>
73 
74 // Unfortunately the signpost header pulls in the system MachO header, too.
75 #ifdef CPU_TYPE_ARM
76 #undef CPU_TYPE_ARM
77 #endif
78 #ifdef CPU_TYPE_ARM64
79 #undef CPU_TYPE_ARM64
80 #endif
81 #ifdef CPU_TYPE_ARM64_32
82 #undef CPU_TYPE_ARM64_32
83 #endif
84 #ifdef CPU_TYPE_I386
85 #undef CPU_TYPE_I386
86 #endif
87 #ifdef CPU_TYPE_X86_64
88 #undef CPU_TYPE_X86_64
89 #endif
90 #ifdef MH_DYLINKER
91 #undef MH_DYLINKER
92 #endif
93 #ifdef MH_OBJECT
94 #undef MH_OBJECT
95 #endif
96 #ifdef LC_VERSION_MIN_MACOSX
97 #undef LC_VERSION_MIN_MACOSX
98 #endif
99 #ifdef LC_VERSION_MIN_IPHONEOS
100 #undef LC_VERSION_MIN_IPHONEOS
101 #endif
102 #ifdef LC_VERSION_MIN_TVOS
103 #undef LC_VERSION_MIN_TVOS
104 #endif
105 #ifdef LC_VERSION_MIN_WATCHOS
106 #undef LC_VERSION_MIN_WATCHOS
107 #endif
108 #ifdef LC_BUILD_VERSION
109 #undef LC_BUILD_VERSION
110 #endif
111 #ifdef PLATFORM_MACOS
112 #undef PLATFORM_MACOS
113 #endif
114 #ifdef PLATFORM_MACCATALYST
115 #undef PLATFORM_MACCATALYST
116 #endif
117 #ifdef PLATFORM_IOS
118 #undef PLATFORM_IOS
119 #endif
120 #ifdef PLATFORM_IOSSIMULATOR
121 #undef PLATFORM_IOSSIMULATOR
122 #endif
123 #ifdef PLATFORM_TVOS
124 #undef PLATFORM_TVOS
125 #endif
126 #ifdef PLATFORM_TVOSSIMULATOR
127 #undef PLATFORM_TVOSSIMULATOR
128 #endif
129 #ifdef PLATFORM_WATCHOS
130 #undef PLATFORM_WATCHOS
131 #endif
132 #ifdef PLATFORM_WATCHOSSIMULATOR
133 #undef PLATFORM_WATCHOSSIMULATOR
134 #endif
135 
136 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
137 using namespace lldb;
138 using namespace lldb_private;
139 using namespace llvm::MachO;
140 
141 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
142 
143 // Some structure definitions needed for parsing the dyld shared cache files
144 // found on iOS devices.
145 
146 struct lldb_copy_dyld_cache_header_v1 {
147   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
148   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
149   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
150   uint32_t imagesOffset;
151   uint32_t imagesCount;
152   uint64_t dyldBaseAddress;
153   uint64_t codeSignatureOffset;
154   uint64_t codeSignatureSize;
155   uint64_t slideInfoOffset;
156   uint64_t slideInfoSize;
157   uint64_t localSymbolsOffset;
158   uint64_t localSymbolsSize;
159   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
160                     // and later
161 };
162 
163 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
164                                const char *alt_name, size_t reg_byte_size,
165                                Stream &data) {
166   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
167   if (reg_info == nullptr)
168     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
169   if (reg_info) {
170     lldb_private::RegisterValue reg_value;
171     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
172       if (reg_info->byte_size >= reg_byte_size)
173         data.Write(reg_value.GetBytes(), reg_byte_size);
174       else {
175         data.Write(reg_value.GetBytes(), reg_info->byte_size);
176         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
177           data.PutChar(0);
178       }
179       return;
180     }
181   }
182   // Just write zeros if all else fails
183   for (size_t i = 0; i < reg_byte_size; ++i)
184     data.PutChar(0);
185 }
186 
187 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
188 public:
189   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
190                                     const DataExtractor &data)
191       : RegisterContextDarwin_x86_64(thread, 0) {
192     SetRegisterDataFrom_LC_THREAD(data);
193   }
194 
195   void InvalidateAllRegisters() override {
196     // Do nothing... registers are always valid...
197   }
198 
199   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
200     lldb::offset_t offset = 0;
201     SetError(GPRRegSet, Read, -1);
202     SetError(FPURegSet, Read, -1);
203     SetError(EXCRegSet, Read, -1);
204     bool done = false;
205 
206     while (!done) {
207       int flavor = data.GetU32(&offset);
208       if (flavor == 0)
209         done = true;
210       else {
211         uint32_t i;
212         uint32_t count = data.GetU32(&offset);
213         switch (flavor) {
214         case GPRRegSet:
215           for (i = 0; i < count; ++i)
216             (&gpr.rax)[i] = data.GetU64(&offset);
217           SetError(GPRRegSet, Read, 0);
218           done = true;
219 
220           break;
221         case FPURegSet:
222           // TODO: fill in FPU regs....
223           // SetError (FPURegSet, Read, -1);
224           done = true;
225 
226           break;
227         case EXCRegSet:
228           exc.trapno = data.GetU32(&offset);
229           exc.err = data.GetU32(&offset);
230           exc.faultvaddr = data.GetU64(&offset);
231           SetError(EXCRegSet, Read, 0);
232           done = true;
233           break;
234         case 7:
235         case 8:
236         case 9:
237           // fancy flavors that encapsulate of the above flavors...
238           break;
239 
240         default:
241           done = true;
242           break;
243         }
244       }
245     }
246   }
247 
248   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
249     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
250     if (reg_ctx_sp) {
251       RegisterContext *reg_ctx = reg_ctx_sp.get();
252 
253       data.PutHex32(GPRRegSet); // Flavor
254       data.PutHex32(GPRWordCount);
255       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
258       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
259       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
260       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
261       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
262       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
263       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
264       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
265       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
266       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
267       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
268       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
269       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
270       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
271       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
272       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
275       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
276 
277       //            // Write out the FPU registers
278       //            const size_t fpu_byte_size = sizeof(FPU);
279       //            size_t bytes_written = 0;
280       //            data.PutHex32 (FPURegSet);
281       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
282       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
283       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
284       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
285       //            data);   // uint16_t    fcw;    // "fctrl"
286       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
287       //            data);  // uint16_t    fsw;    // "fstat"
288       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
289       //            data);   // uint8_t     ftw;    // "ftag"
290       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
291       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
292       //            data);     // uint16_t    fop;    // "fop"
293       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
294       //            data);    // uint32_t    ip;     // "fioff"
295       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
296       //            data);    // uint16_t    cs;     // "fiseg"
297       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
298       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
299       //            data);   // uint32_t    dp;     // "fooff"
300       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
301       //            data);    // uint16_t    ds;     // "foseg"
302       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
303       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
304       //            data);    // uint32_t    mxcsr;
305       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
306       //            4, data);// uint32_t    mxcsrmask;
307       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
308       //            sizeof(MMSReg), data);
309       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
310       //            sizeof(MMSReg), data);
311       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
312       //            sizeof(MMSReg), data);
313       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
314       //            sizeof(MMSReg), data);
315       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
316       //            sizeof(MMSReg), data);
317       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
318       //            sizeof(MMSReg), data);
319       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
320       //            sizeof(MMSReg), data);
321       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
322       //            sizeof(MMSReg), data);
323       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
324       //            sizeof(XMMReg), data);
325       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
326       //            sizeof(XMMReg), data);
327       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
328       //            sizeof(XMMReg), data);
329       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
330       //            sizeof(XMMReg), data);
331       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
332       //            sizeof(XMMReg), data);
333       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
334       //            sizeof(XMMReg), data);
335       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
336       //            sizeof(XMMReg), data);
337       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
338       //            sizeof(XMMReg), data);
339       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
340       //            sizeof(XMMReg), data);
341       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
342       //            sizeof(XMMReg), data);
343       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
344       //            sizeof(XMMReg), data);
345       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
346       //            sizeof(XMMReg), data);
347       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
348       //            sizeof(XMMReg), data);
349       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
350       //            sizeof(XMMReg), data);
351       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
352       //            sizeof(XMMReg), data);
353       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
354       //            sizeof(XMMReg), data);
355       //
356       //            // Fill rest with zeros
357       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
358       //            i)
359       //                data.PutChar(0);
360 
361       // Write out the EXC registers
362       data.PutHex32(EXCRegSet);
363       data.PutHex32(EXCWordCount);
364       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
365       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
366       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
367       return true;
368     }
369     return false;
370   }
371 
372 protected:
373   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
374 
375   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
376 
377   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
378 
379   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
380     return 0;
381   }
382 
383   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
384     return 0;
385   }
386 
387   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
388     return 0;
389   }
390 };
391 
392 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
393 public:
394   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
395                                   const DataExtractor &data)
396       : RegisterContextDarwin_i386(thread, 0) {
397     SetRegisterDataFrom_LC_THREAD(data);
398   }
399 
400   void InvalidateAllRegisters() override {
401     // Do nothing... registers are always valid...
402   }
403 
404   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
405     lldb::offset_t offset = 0;
406     SetError(GPRRegSet, Read, -1);
407     SetError(FPURegSet, Read, -1);
408     SetError(EXCRegSet, Read, -1);
409     bool done = false;
410 
411     while (!done) {
412       int flavor = data.GetU32(&offset);
413       if (flavor == 0)
414         done = true;
415       else {
416         uint32_t i;
417         uint32_t count = data.GetU32(&offset);
418         switch (flavor) {
419         case GPRRegSet:
420           for (i = 0; i < count; ++i)
421             (&gpr.eax)[i] = data.GetU32(&offset);
422           SetError(GPRRegSet, Read, 0);
423           done = true;
424 
425           break;
426         case FPURegSet:
427           // TODO: fill in FPU regs....
428           // SetError (FPURegSet, Read, -1);
429           done = true;
430 
431           break;
432         case EXCRegSet:
433           exc.trapno = data.GetU32(&offset);
434           exc.err = data.GetU32(&offset);
435           exc.faultvaddr = data.GetU32(&offset);
436           SetError(EXCRegSet, Read, 0);
437           done = true;
438           break;
439         case 7:
440         case 8:
441         case 9:
442           // fancy flavors that encapsulate of the above flavors...
443           break;
444 
445         default:
446           done = true;
447           break;
448         }
449       }
450     }
451   }
452 
453   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
454     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
455     if (reg_ctx_sp) {
456       RegisterContext *reg_ctx = reg_ctx_sp.get();
457 
458       data.PutHex32(GPRRegSet); // Flavor
459       data.PutHex32(GPRWordCount);
460       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
461       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
462       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
465       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
466       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
467       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
468       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
469       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
470       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
471       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
472       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
473       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
474       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
475       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
476 
477       // Write out the EXC registers
478       data.PutHex32(EXCRegSet);
479       data.PutHex32(EXCWordCount);
480       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
481       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
482       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
483       return true;
484     }
485     return false;
486   }
487 
488 protected:
489   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
490 
491   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
492 
493   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
494 
495   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
496     return 0;
497   }
498 
499   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
500     return 0;
501   }
502 
503   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
504     return 0;
505   }
506 };
507 
508 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
509 public:
510   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
511                                  const DataExtractor &data)
512       : RegisterContextDarwin_arm(thread, 0) {
513     SetRegisterDataFrom_LC_THREAD(data);
514   }
515 
516   void InvalidateAllRegisters() override {
517     // Do nothing... registers are always valid...
518   }
519 
520   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
521     lldb::offset_t offset = 0;
522     SetError(GPRRegSet, Read, -1);
523     SetError(FPURegSet, Read, -1);
524     SetError(EXCRegSet, Read, -1);
525     bool done = false;
526 
527     while (!done) {
528       int flavor = data.GetU32(&offset);
529       uint32_t count = data.GetU32(&offset);
530       lldb::offset_t next_thread_state = offset + (count * 4);
531       switch (flavor) {
532       case GPRAltRegSet:
533       case GPRRegSet:
534         // On ARM, the CPSR register is also included in the count but it is
535         // not included in gpr.r so loop until (count-1).
536         for (uint32_t i = 0; i < (count - 1); ++i) {
537           gpr.r[i] = data.GetU32(&offset);
538         }
539         // Save cpsr explicitly.
540         gpr.cpsr = data.GetU32(&offset);
541 
542         SetError(GPRRegSet, Read, 0);
543         offset = next_thread_state;
544         break;
545 
546       case FPURegSet: {
547         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
548         const int fpu_reg_buf_size = sizeof(fpu.floats);
549         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
550                               fpu_reg_buf) == fpu_reg_buf_size) {
551           offset += fpu_reg_buf_size;
552           fpu.fpscr = data.GetU32(&offset);
553           SetError(FPURegSet, Read, 0);
554         } else {
555           done = true;
556         }
557       }
558         offset = next_thread_state;
559         break;
560 
561       case EXCRegSet:
562         if (count == 3) {
563           exc.exception = data.GetU32(&offset);
564           exc.fsr = data.GetU32(&offset);
565           exc.far = data.GetU32(&offset);
566           SetError(EXCRegSet, Read, 0);
567         }
568         done = true;
569         offset = next_thread_state;
570         break;
571 
572       // Unknown register set flavor, stop trying to parse.
573       default:
574         done = true;
575       }
576     }
577   }
578 
579   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
580     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
581     if (reg_ctx_sp) {
582       RegisterContext *reg_ctx = reg_ctx_sp.get();
583 
584       data.PutHex32(GPRRegSet); // Flavor
585       data.PutHex32(GPRWordCount);
586       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
587       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
588       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
589       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
590       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
591       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
592       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
593       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
594       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
595       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
596       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
597       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
598       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
599       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
600       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
601       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
602       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
603 
604       // Write out the EXC registers
605       //            data.PutHex32 (EXCRegSet);
606       //            data.PutHex32 (EXCWordCount);
607       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
608       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
609       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
610       return true;
611     }
612     return false;
613   }
614 
615 protected:
616   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
617 
618   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
619 
620   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
621 
622   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
623 
624   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
625     return 0;
626   }
627 
628   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
629     return 0;
630   }
631 
632   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
633     return 0;
634   }
635 
636   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
637     return -1;
638   }
639 };
640 
641 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
642 public:
643   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
644                                    const DataExtractor &data)
645       : RegisterContextDarwin_arm64(thread, 0) {
646     SetRegisterDataFrom_LC_THREAD(data);
647   }
648 
649   void InvalidateAllRegisters() override {
650     // Do nothing... registers are always valid...
651   }
652 
653   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
654     lldb::offset_t offset = 0;
655     SetError(GPRRegSet, Read, -1);
656     SetError(FPURegSet, Read, -1);
657     SetError(EXCRegSet, Read, -1);
658     bool done = false;
659     while (!done) {
660       int flavor = data.GetU32(&offset);
661       uint32_t count = data.GetU32(&offset);
662       lldb::offset_t next_thread_state = offset + (count * 4);
663       switch (flavor) {
664       case GPRRegSet:
665         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
666         // 32-bit register)
667         if (count >= (33 * 2) + 1) {
668           for (uint32_t i = 0; i < 29; ++i)
669             gpr.x[i] = data.GetU64(&offset);
670           gpr.fp = data.GetU64(&offset);
671           gpr.lr = data.GetU64(&offset);
672           gpr.sp = data.GetU64(&offset);
673           gpr.pc = data.GetU64(&offset);
674           gpr.cpsr = data.GetU32(&offset);
675           SetError(GPRRegSet, Read, 0);
676         }
677         offset = next_thread_state;
678         break;
679       case FPURegSet: {
680         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
681         const int fpu_reg_buf_size = sizeof(fpu);
682         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
683             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
684                               fpu_reg_buf) == fpu_reg_buf_size) {
685           SetError(FPURegSet, Read, 0);
686         } else {
687           done = true;
688         }
689       }
690         offset = next_thread_state;
691         break;
692       case EXCRegSet:
693         if (count == 4) {
694           exc.far = data.GetU64(&offset);
695           exc.esr = data.GetU32(&offset);
696           exc.exception = data.GetU32(&offset);
697           SetError(EXCRegSet, Read, 0);
698         }
699         offset = next_thread_state;
700         break;
701       default:
702         done = true;
703         break;
704       }
705     }
706   }
707 
708   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
709     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
710     if (reg_ctx_sp) {
711       RegisterContext *reg_ctx = reg_ctx_sp.get();
712 
713       data.PutHex32(GPRRegSet); // Flavor
714       data.PutHex32(GPRWordCount);
715       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
748       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
749       data.PutHex32(0); // uint32_t pad at the end
750 
751       // Write out the EXC registers
752       data.PutHex32(EXCRegSet);
753       data.PutHex32(EXCWordCount);
754       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
755       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
756       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
757       return true;
758     }
759     return false;
760   }
761 
762 protected:
763   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
764 
765   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
766 
767   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
768 
769   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
770 
771   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
772     return 0;
773   }
774 
775   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
776     return 0;
777   }
778 
779   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
780     return 0;
781   }
782 
783   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
784     return -1;
785   }
786 };
787 
788 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
789   switch (magic) {
790   case MH_MAGIC:
791   case MH_CIGAM:
792     return sizeof(struct llvm::MachO::mach_header);
793 
794   case MH_MAGIC_64:
795   case MH_CIGAM_64:
796     return sizeof(struct llvm::MachO::mach_header_64);
797     break;
798 
799   default:
800     break;
801   }
802   return 0;
803 }
804 
805 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
806 
807 char ObjectFileMachO::ID;
808 
809 void ObjectFileMachO::Initialize() {
810   PluginManager::RegisterPlugin(
811       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
812       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
813 }
814 
815 void ObjectFileMachO::Terminate() {
816   PluginManager::UnregisterPlugin(CreateInstance);
817 }
818 
819 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
820                                             DataBufferSP data_sp,
821                                             lldb::offset_t data_offset,
822                                             const FileSpec *file,
823                                             lldb::offset_t file_offset,
824                                             lldb::offset_t length) {
825   if (!data_sp) {
826     data_sp = MapFileData(*file, length, file_offset);
827     if (!data_sp)
828       return nullptr;
829     data_offset = 0;
830   }
831 
832   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
833     return nullptr;
834 
835   // Update the data to contain the entire file if it doesn't already
836   if (data_sp->GetByteSize() < length) {
837     data_sp = MapFileData(*file, length, file_offset);
838     if (!data_sp)
839       return nullptr;
840     data_offset = 0;
841   }
842   auto objfile_up = std::make_unique<ObjectFileMachO>(
843       module_sp, data_sp, data_offset, file, file_offset, length);
844   if (!objfile_up || !objfile_up->ParseHeader())
845     return nullptr;
846 
847   return objfile_up.release();
848 }
849 
850 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
851     const lldb::ModuleSP &module_sp, DataBufferSP data_sp,
852     const ProcessSP &process_sp, lldb::addr_t header_addr) {
853   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
854     std::unique_ptr<ObjectFile> objfile_up(
855         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
856     if (objfile_up.get() && objfile_up->ParseHeader())
857       return objfile_up.release();
858   }
859   return nullptr;
860 }
861 
862 size_t ObjectFileMachO::GetModuleSpecifications(
863     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
864     lldb::offset_t data_offset, lldb::offset_t file_offset,
865     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
866   const size_t initial_count = specs.GetSize();
867 
868   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
869     DataExtractor data;
870     data.SetData(data_sp);
871     llvm::MachO::mach_header header;
872     if (ParseHeader(data, &data_offset, header)) {
873       size_t header_and_load_cmds =
874           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
875       if (header_and_load_cmds >= data_sp->GetByteSize()) {
876         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
877         data.SetData(data_sp);
878         data_offset = MachHeaderSizeFromMagic(header.magic);
879       }
880       if (data_sp) {
881         ModuleSpec base_spec;
882         base_spec.GetFileSpec() = file;
883         base_spec.SetObjectOffset(file_offset);
884         base_spec.SetObjectSize(length);
885         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
886       }
887     }
888   }
889   return specs.GetSize() - initial_count;
890 }
891 
892 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
893   static ConstString g_segment_name_TEXT("__TEXT");
894   return g_segment_name_TEXT;
895 }
896 
897 ConstString ObjectFileMachO::GetSegmentNameDATA() {
898   static ConstString g_segment_name_DATA("__DATA");
899   return g_segment_name_DATA;
900 }
901 
902 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
903   static ConstString g_segment_name("__DATA_DIRTY");
904   return g_segment_name;
905 }
906 
907 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
908   static ConstString g_segment_name("__DATA_CONST");
909   return g_segment_name;
910 }
911 
912 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
913   static ConstString g_segment_name_OBJC("__OBJC");
914   return g_segment_name_OBJC;
915 }
916 
917 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
918   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
919   return g_section_name_LINKEDIT;
920 }
921 
922 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
923   static ConstString g_section_name("__DWARF");
924   return g_section_name;
925 }
926 
927 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
928   static ConstString g_section_name_eh_frame("__eh_frame");
929   return g_section_name_eh_frame;
930 }
931 
932 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
933                                       lldb::addr_t data_offset,
934                                       lldb::addr_t data_length) {
935   DataExtractor data;
936   data.SetData(data_sp, data_offset, data_length);
937   lldb::offset_t offset = 0;
938   uint32_t magic = data.GetU32(&offset);
939   return MachHeaderSizeFromMagic(magic) != 0;
940 }
941 
942 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943                                  DataBufferSP &data_sp,
944                                  lldb::offset_t data_offset,
945                                  const FileSpec *file,
946                                  lldb::offset_t file_offset,
947                                  lldb::offset_t length)
948     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
950       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
951       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
952   ::memset(&m_header, 0, sizeof(m_header));
953   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954 }
955 
956 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957                                  lldb::DataBufferSP &header_data_sp,
958                                  const lldb::ProcessSP &process_sp,
959                                  lldb::addr_t header_addr)
960     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
962       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
963       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
964   ::memset(&m_header, 0, sizeof(m_header));
965   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966 }
967 
968 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969                                   lldb::offset_t *data_offset_ptr,
970                                   llvm::MachO::mach_header &header) {
971   data.SetByteOrder(endian::InlHostByteOrder());
972   // Leave magic in the original byte order
973   header.magic = data.GetU32(data_offset_ptr);
974   bool can_parse = false;
975   bool is_64_bit = false;
976   switch (header.magic) {
977   case MH_MAGIC:
978     data.SetByteOrder(endian::InlHostByteOrder());
979     data.SetAddressByteSize(4);
980     can_parse = true;
981     break;
982 
983   case MH_MAGIC_64:
984     data.SetByteOrder(endian::InlHostByteOrder());
985     data.SetAddressByteSize(8);
986     can_parse = true;
987     is_64_bit = true;
988     break;
989 
990   case MH_CIGAM:
991     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992                           ? eByteOrderLittle
993                           : eByteOrderBig);
994     data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_CIGAM_64:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(8);
1003     is_64_bit = true;
1004     can_parse = true;
1005     break;
1006 
1007   default:
1008     break;
1009   }
1010 
1011   if (can_parse) {
1012     data.GetU32(data_offset_ptr, &header.cputype, 6);
1013     if (is_64_bit)
1014       *data_offset_ptr += 4;
1015     return true;
1016   } else {
1017     memset(&header, 0, sizeof(header));
1018   }
1019   return false;
1020 }
1021 
1022 bool ObjectFileMachO::ParseHeader() {
1023   ModuleSP module_sp(GetModule());
1024   if (!module_sp)
1025     return false;
1026 
1027   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028   bool can_parse = false;
1029   lldb::offset_t offset = 0;
1030   m_data.SetByteOrder(endian::InlHostByteOrder());
1031   // Leave magic in the original byte order
1032   m_header.magic = m_data.GetU32(&offset);
1033   switch (m_header.magic) {
1034   case MH_MAGIC:
1035     m_data.SetByteOrder(endian::InlHostByteOrder());
1036     m_data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_MAGIC_64:
1041     m_data.SetByteOrder(endian::InlHostByteOrder());
1042     m_data.SetAddressByteSize(8);
1043     can_parse = true;
1044     break;
1045 
1046   case MH_CIGAM:
1047     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048                             ? eByteOrderLittle
1049                             : eByteOrderBig);
1050     m_data.SetAddressByteSize(4);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM_64:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(8);
1059     can_parse = true;
1060     break;
1061 
1062   default:
1063     break;
1064   }
1065 
1066   if (can_parse) {
1067     m_data.GetU32(&offset, &m_header.cputype, 6);
1068 
1069     ModuleSpecList all_specs;
1070     ModuleSpec base_spec;
1071     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072                     base_spec, all_specs);
1073 
1074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075       ArchSpec mach_arch =
1076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077 
1078       // Check if the module has a required architecture
1079       const ArchSpec &module_arch = module_sp->GetArchitecture();
1080       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081         continue;
1082 
1083       if (SetModulesArchitecture(mach_arch)) {
1084         const size_t header_and_lc_size =
1085             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086         if (m_data.GetByteSize() < header_and_lc_size) {
1087           DataBufferSP data_sp;
1088           ProcessSP process_sp(m_process_wp.lock());
1089           if (process_sp) {
1090             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091           } else {
1092             // Read in all only the load command data from the file on disk
1093             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094             if (data_sp->GetByteSize() != header_and_lc_size)
1095               continue;
1096           }
1097           if (data_sp)
1098             m_data.SetData(data_sp);
1099         }
1100       }
1101       return true;
1102     }
1103     // None found.
1104     return false;
1105   } else {
1106     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107   }
1108   return false;
1109 }
1110 
1111 ByteOrder ObjectFileMachO::GetByteOrder() const {
1112   return m_data.GetByteOrder();
1113 }
1114 
1115 bool ObjectFileMachO::IsExecutable() const {
1116   return m_header.filetype == MH_EXECUTE;
1117 }
1118 
1119 bool ObjectFileMachO::IsDynamicLoader() const {
1120   return m_header.filetype == MH_DYLINKER;
1121 }
1122 
1123 bool ObjectFileMachO::IsSharedCacheBinary() const {
1124   return m_header.flags & MH_DYLIB_IN_CACHE;
1125 }
1126 
1127 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1128   return m_data.GetAddressByteSize();
1129 }
1130 
1131 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1132   Symtab *symtab = GetSymtab();
1133   if (!symtab)
1134     return AddressClass::eUnknown;
1135 
1136   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1137   if (symbol) {
1138     if (symbol->ValueIsAddress()) {
1139       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1140       if (section_sp) {
1141         const lldb::SectionType section_type = section_sp->GetType();
1142         switch (section_type) {
1143         case eSectionTypeInvalid:
1144           return AddressClass::eUnknown;
1145 
1146         case eSectionTypeCode:
1147           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1148             // For ARM we have a bit in the n_desc field of the symbol that
1149             // tells us ARM/Thumb which is bit 0x0008.
1150             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1151               return AddressClass::eCodeAlternateISA;
1152           }
1153           return AddressClass::eCode;
1154 
1155         case eSectionTypeContainer:
1156           return AddressClass::eUnknown;
1157 
1158         case eSectionTypeData:
1159         case eSectionTypeDataCString:
1160         case eSectionTypeDataCStringPointers:
1161         case eSectionTypeDataSymbolAddress:
1162         case eSectionTypeData4:
1163         case eSectionTypeData8:
1164         case eSectionTypeData16:
1165         case eSectionTypeDataPointers:
1166         case eSectionTypeZeroFill:
1167         case eSectionTypeDataObjCMessageRefs:
1168         case eSectionTypeDataObjCCFStrings:
1169         case eSectionTypeGoSymtab:
1170           return AddressClass::eData;
1171 
1172         case eSectionTypeDebug:
1173         case eSectionTypeDWARFDebugAbbrev:
1174         case eSectionTypeDWARFDebugAbbrevDwo:
1175         case eSectionTypeDWARFDebugAddr:
1176         case eSectionTypeDWARFDebugAranges:
1177         case eSectionTypeDWARFDebugCuIndex:
1178         case eSectionTypeDWARFDebugFrame:
1179         case eSectionTypeDWARFDebugInfo:
1180         case eSectionTypeDWARFDebugInfoDwo:
1181         case eSectionTypeDWARFDebugLine:
1182         case eSectionTypeDWARFDebugLineStr:
1183         case eSectionTypeDWARFDebugLoc:
1184         case eSectionTypeDWARFDebugLocDwo:
1185         case eSectionTypeDWARFDebugLocLists:
1186         case eSectionTypeDWARFDebugLocListsDwo:
1187         case eSectionTypeDWARFDebugMacInfo:
1188         case eSectionTypeDWARFDebugMacro:
1189         case eSectionTypeDWARFDebugNames:
1190         case eSectionTypeDWARFDebugPubNames:
1191         case eSectionTypeDWARFDebugPubTypes:
1192         case eSectionTypeDWARFDebugRanges:
1193         case eSectionTypeDWARFDebugRngLists:
1194         case eSectionTypeDWARFDebugRngListsDwo:
1195         case eSectionTypeDWARFDebugStr:
1196         case eSectionTypeDWARFDebugStrDwo:
1197         case eSectionTypeDWARFDebugStrOffsets:
1198         case eSectionTypeDWARFDebugStrOffsetsDwo:
1199         case eSectionTypeDWARFDebugTuIndex:
1200         case eSectionTypeDWARFDebugTypes:
1201         case eSectionTypeDWARFDebugTypesDwo:
1202         case eSectionTypeDWARFAppleNames:
1203         case eSectionTypeDWARFAppleTypes:
1204         case eSectionTypeDWARFAppleNamespaces:
1205         case eSectionTypeDWARFAppleObjC:
1206         case eSectionTypeDWARFGNUDebugAltLink:
1207           return AddressClass::eDebug;
1208 
1209         case eSectionTypeEHFrame:
1210         case eSectionTypeARMexidx:
1211         case eSectionTypeARMextab:
1212         case eSectionTypeCompactUnwind:
1213           return AddressClass::eRuntime;
1214 
1215         case eSectionTypeAbsoluteAddress:
1216         case eSectionTypeELFSymbolTable:
1217         case eSectionTypeELFDynamicSymbols:
1218         case eSectionTypeELFRelocationEntries:
1219         case eSectionTypeELFDynamicLinkInfo:
1220         case eSectionTypeOther:
1221           return AddressClass::eUnknown;
1222         }
1223       }
1224     }
1225 
1226     const SymbolType symbol_type = symbol->GetType();
1227     switch (symbol_type) {
1228     case eSymbolTypeAny:
1229       return AddressClass::eUnknown;
1230     case eSymbolTypeAbsolute:
1231       return AddressClass::eUnknown;
1232 
1233     case eSymbolTypeCode:
1234     case eSymbolTypeTrampoline:
1235     case eSymbolTypeResolver:
1236       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1237         // For ARM we have a bit in the n_desc field of the symbol that tells
1238         // us ARM/Thumb which is bit 0x0008.
1239         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1240           return AddressClass::eCodeAlternateISA;
1241       }
1242       return AddressClass::eCode;
1243 
1244     case eSymbolTypeData:
1245       return AddressClass::eData;
1246     case eSymbolTypeRuntime:
1247       return AddressClass::eRuntime;
1248     case eSymbolTypeException:
1249       return AddressClass::eRuntime;
1250     case eSymbolTypeSourceFile:
1251       return AddressClass::eDebug;
1252     case eSymbolTypeHeaderFile:
1253       return AddressClass::eDebug;
1254     case eSymbolTypeObjectFile:
1255       return AddressClass::eDebug;
1256     case eSymbolTypeCommonBlock:
1257       return AddressClass::eDebug;
1258     case eSymbolTypeBlock:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeLocal:
1261       return AddressClass::eData;
1262     case eSymbolTypeParam:
1263       return AddressClass::eData;
1264     case eSymbolTypeVariable:
1265       return AddressClass::eData;
1266     case eSymbolTypeVariableType:
1267       return AddressClass::eDebug;
1268     case eSymbolTypeLineEntry:
1269       return AddressClass::eDebug;
1270     case eSymbolTypeLineHeader:
1271       return AddressClass::eDebug;
1272     case eSymbolTypeScopeBegin:
1273       return AddressClass::eDebug;
1274     case eSymbolTypeScopeEnd:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeAdditional:
1277       return AddressClass::eUnknown;
1278     case eSymbolTypeCompiler:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeInstrumentation:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeUndefined:
1283       return AddressClass::eUnknown;
1284     case eSymbolTypeObjCClass:
1285       return AddressClass::eRuntime;
1286     case eSymbolTypeObjCMetaClass:
1287       return AddressClass::eRuntime;
1288     case eSymbolTypeObjCIVar:
1289       return AddressClass::eRuntime;
1290     case eSymbolTypeReExported:
1291       return AddressClass::eRuntime;
1292     }
1293   }
1294   return AddressClass::eUnknown;
1295 }
1296 
1297 bool ObjectFileMachO::IsStripped() {
1298   if (m_dysymtab.cmd == 0) {
1299     ModuleSP module_sp(GetModule());
1300     if (module_sp) {
1301       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1302       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303         const lldb::offset_t load_cmd_offset = offset;
1304 
1305         llvm::MachO::load_command lc;
1306         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1307           break;
1308         if (lc.cmd == LC_DYSYMTAB) {
1309           m_dysymtab.cmd = lc.cmd;
1310           m_dysymtab.cmdsize = lc.cmdsize;
1311           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1312                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1313               nullptr) {
1314             // Clear m_dysymtab if we were unable to read all items from the
1315             // load command
1316             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1317           }
1318         }
1319         offset = load_cmd_offset + lc.cmdsize;
1320       }
1321     }
1322   }
1323   if (m_dysymtab.cmd)
1324     return m_dysymtab.nlocalsym <= 1;
1325   return false;
1326 }
1327 
1328 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1329   EncryptedFileRanges result;
1330   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1331 
1332   llvm::MachO::encryption_info_command encryption_cmd;
1333   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1334     const lldb::offset_t load_cmd_offset = offset;
1335     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1336       break;
1337 
1338     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1339     // 3 fields we care about, so treat them the same.
1340     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1341         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1342       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1343         if (encryption_cmd.cryptid != 0) {
1344           EncryptedFileRanges::Entry entry;
1345           entry.SetRangeBase(encryption_cmd.cryptoff);
1346           entry.SetByteSize(encryption_cmd.cryptsize);
1347           result.Append(entry);
1348         }
1349       }
1350     }
1351     offset = load_cmd_offset + encryption_cmd.cmdsize;
1352   }
1353 
1354   return result;
1355 }
1356 
1357 void ObjectFileMachO::SanitizeSegmentCommand(
1358     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1359   if (m_length == 0 || seg_cmd.filesize == 0)
1360     return;
1361 
1362   if (IsSharedCacheBinary() && !IsInMemory()) {
1363     // In shared cache images, the load commands are relative to the
1364     // shared cache file, and not the specific image we are
1365     // examining. Let's fix this up so that it looks like a normal
1366     // image.
1367     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1368       m_text_address = seg_cmd.vmaddr;
1369     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1370       m_linkedit_original_offset = seg_cmd.fileoff;
1371 
1372     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1373   }
1374 
1375   if (seg_cmd.fileoff > m_length) {
1376     // We have a load command that says it extends past the end of the file.
1377     // This is likely a corrupt file.  We don't have any way to return an error
1378     // condition here (this method was likely invoked from something like
1379     // ObjectFile::GetSectionList()), so we just null out the section contents,
1380     // and dump a message to stdout.  The most common case here is core file
1381     // debugging with a truncated file.
1382     const char *lc_segment_name =
1383         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1384     GetModule()->ReportWarning(
1385         "load command %u %s has a fileoff (0x%" PRIx64
1386         ") that extends beyond the end of the file (0x%" PRIx64
1387         "), ignoring this section",
1388         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1389 
1390     seg_cmd.fileoff = 0;
1391     seg_cmd.filesize = 0;
1392   }
1393 
1394   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1395     // We have a load command that says it extends past the end of the file.
1396     // This is likely a corrupt file.  We don't have any way to return an error
1397     // condition here (this method was likely invoked from something like
1398     // ObjectFile::GetSectionList()), so we just null out the section contents,
1399     // and dump a message to stdout.  The most common case here is core file
1400     // debugging with a truncated file.
1401     const char *lc_segment_name =
1402         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1403     GetModule()->ReportWarning(
1404         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1405         ") that extends beyond the end of the file (0x%" PRIx64
1406         "), the segment will be truncated to match",
1407         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1408 
1409     // Truncate the length
1410     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1411   }
1412 }
1413 
1414 static uint32_t
1415 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1416   uint32_t result = 0;
1417   if (seg_cmd.initprot & VM_PROT_READ)
1418     result |= ePermissionsReadable;
1419   if (seg_cmd.initprot & VM_PROT_WRITE)
1420     result |= ePermissionsWritable;
1421   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1422     result |= ePermissionsExecutable;
1423   return result;
1424 }
1425 
1426 static lldb::SectionType GetSectionType(uint32_t flags,
1427                                         ConstString section_name) {
1428 
1429   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1430     return eSectionTypeCode;
1431 
1432   uint32_t mach_sect_type = flags & SECTION_TYPE;
1433   static ConstString g_sect_name_objc_data("__objc_data");
1434   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1435   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1436   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1437   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1438   static ConstString g_sect_name_objc_const("__objc_const");
1439   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1440   static ConstString g_sect_name_cfstring("__cfstring");
1441 
1442   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1443   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1444   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1445   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1446   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1447   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1448   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1449   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1450   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1451   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1452   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1453   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1454   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1455   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1456   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1457   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1458   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1459   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1460   static ConstString g_sect_name_eh_frame("__eh_frame");
1461   static ConstString g_sect_name_compact_unwind("__unwind_info");
1462   static ConstString g_sect_name_text("__text");
1463   static ConstString g_sect_name_data("__data");
1464   static ConstString g_sect_name_go_symtab("__gosymtab");
1465 
1466   if (section_name == g_sect_name_dwarf_debug_abbrev)
1467     return eSectionTypeDWARFDebugAbbrev;
1468   if (section_name == g_sect_name_dwarf_debug_aranges)
1469     return eSectionTypeDWARFDebugAranges;
1470   if (section_name == g_sect_name_dwarf_debug_frame)
1471     return eSectionTypeDWARFDebugFrame;
1472   if (section_name == g_sect_name_dwarf_debug_info)
1473     return eSectionTypeDWARFDebugInfo;
1474   if (section_name == g_sect_name_dwarf_debug_line)
1475     return eSectionTypeDWARFDebugLine;
1476   if (section_name == g_sect_name_dwarf_debug_loc)
1477     return eSectionTypeDWARFDebugLoc;
1478   if (section_name == g_sect_name_dwarf_debug_loclists)
1479     return eSectionTypeDWARFDebugLocLists;
1480   if (section_name == g_sect_name_dwarf_debug_macinfo)
1481     return eSectionTypeDWARFDebugMacInfo;
1482   if (section_name == g_sect_name_dwarf_debug_names)
1483     return eSectionTypeDWARFDebugNames;
1484   if (section_name == g_sect_name_dwarf_debug_pubnames)
1485     return eSectionTypeDWARFDebugPubNames;
1486   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1487     return eSectionTypeDWARFDebugPubTypes;
1488   if (section_name == g_sect_name_dwarf_debug_ranges)
1489     return eSectionTypeDWARFDebugRanges;
1490   if (section_name == g_sect_name_dwarf_debug_str)
1491     return eSectionTypeDWARFDebugStr;
1492   if (section_name == g_sect_name_dwarf_debug_types)
1493     return eSectionTypeDWARFDebugTypes;
1494   if (section_name == g_sect_name_dwarf_apple_names)
1495     return eSectionTypeDWARFAppleNames;
1496   if (section_name == g_sect_name_dwarf_apple_types)
1497     return eSectionTypeDWARFAppleTypes;
1498   if (section_name == g_sect_name_dwarf_apple_namespaces)
1499     return eSectionTypeDWARFAppleNamespaces;
1500   if (section_name == g_sect_name_dwarf_apple_objc)
1501     return eSectionTypeDWARFAppleObjC;
1502   if (section_name == g_sect_name_objc_selrefs)
1503     return eSectionTypeDataCStringPointers;
1504   if (section_name == g_sect_name_objc_msgrefs)
1505     return eSectionTypeDataObjCMessageRefs;
1506   if (section_name == g_sect_name_eh_frame)
1507     return eSectionTypeEHFrame;
1508   if (section_name == g_sect_name_compact_unwind)
1509     return eSectionTypeCompactUnwind;
1510   if (section_name == g_sect_name_cfstring)
1511     return eSectionTypeDataObjCCFStrings;
1512   if (section_name == g_sect_name_go_symtab)
1513     return eSectionTypeGoSymtab;
1514   if (section_name == g_sect_name_objc_data ||
1515       section_name == g_sect_name_objc_classrefs ||
1516       section_name == g_sect_name_objc_superrefs ||
1517       section_name == g_sect_name_objc_const ||
1518       section_name == g_sect_name_objc_classlist) {
1519     return eSectionTypeDataPointers;
1520   }
1521 
1522   switch (mach_sect_type) {
1523   // TODO: categorize sections by other flags for regular sections
1524   case S_REGULAR:
1525     if (section_name == g_sect_name_text)
1526       return eSectionTypeCode;
1527     if (section_name == g_sect_name_data)
1528       return eSectionTypeData;
1529     return eSectionTypeOther;
1530   case S_ZEROFILL:
1531     return eSectionTypeZeroFill;
1532   case S_CSTRING_LITERALS: // section with only literal C strings
1533     return eSectionTypeDataCString;
1534   case S_4BYTE_LITERALS: // section with only 4 byte literals
1535     return eSectionTypeData4;
1536   case S_8BYTE_LITERALS: // section with only 8 byte literals
1537     return eSectionTypeData8;
1538   case S_LITERAL_POINTERS: // section with only pointers to literals
1539     return eSectionTypeDataPointers;
1540   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1541     return eSectionTypeDataPointers;
1542   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1543     return eSectionTypeDataPointers;
1544   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1545                        // the reserved2 field
1546     return eSectionTypeCode;
1547   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1548                                  // initialization
1549     return eSectionTypeDataPointers;
1550   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1551                                  // termination
1552     return eSectionTypeDataPointers;
1553   case S_COALESCED:
1554     return eSectionTypeOther;
1555   case S_GB_ZEROFILL:
1556     return eSectionTypeZeroFill;
1557   case S_INTERPOSING: // section with only pairs of function pointers for
1558                       // interposing
1559     return eSectionTypeCode;
1560   case S_16BYTE_LITERALS: // section with only 16 byte literals
1561     return eSectionTypeData16;
1562   case S_DTRACE_DOF:
1563     return eSectionTypeDebug;
1564   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1565     return eSectionTypeDataPointers;
1566   default:
1567     return eSectionTypeOther;
1568   }
1569 }
1570 
1571 struct ObjectFileMachO::SegmentParsingContext {
1572   const EncryptedFileRanges EncryptedRanges;
1573   lldb_private::SectionList &UnifiedList;
1574   uint32_t NextSegmentIdx = 0;
1575   uint32_t NextSectionIdx = 0;
1576   bool FileAddressesChanged = false;
1577 
1578   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1579                         lldb_private::SectionList &UnifiedList)
1580       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1581 };
1582 
1583 void ObjectFileMachO::ProcessSegmentCommand(
1584     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1585     uint32_t cmd_idx, SegmentParsingContext &context) {
1586   llvm::MachO::segment_command_64 load_cmd;
1587   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1588 
1589   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1590     return;
1591 
1592   ModuleSP module_sp = GetModule();
1593   const bool is_core = GetType() == eTypeCoreFile;
1594   const bool is_dsym = (m_header.filetype == MH_DSYM);
1595   bool add_section = true;
1596   bool add_to_unified = true;
1597   ConstString const_segname(
1598       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1599 
1600   SectionSP unified_section_sp(
1601       context.UnifiedList.FindSectionByName(const_segname));
1602   if (is_dsym && unified_section_sp) {
1603     if (const_segname == GetSegmentNameLINKEDIT()) {
1604       // We need to keep the __LINKEDIT segment private to this object file
1605       // only
1606       add_to_unified = false;
1607     } else {
1608       // This is the dSYM file and this section has already been created by the
1609       // object file, no need to create it.
1610       add_section = false;
1611     }
1612   }
1613   load_cmd.vmaddr = m_data.GetAddress(&offset);
1614   load_cmd.vmsize = m_data.GetAddress(&offset);
1615   load_cmd.fileoff = m_data.GetAddress(&offset);
1616   load_cmd.filesize = m_data.GetAddress(&offset);
1617   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1618     return;
1619 
1620   SanitizeSegmentCommand(load_cmd, cmd_idx);
1621 
1622   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1623   const bool segment_is_encrypted =
1624       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1625 
1626   // Keep a list of mach segments around in case we need to get at data that
1627   // isn't stored in the abstracted Sections.
1628   m_mach_segments.push_back(load_cmd);
1629 
1630   // Use a segment ID of the segment index shifted left by 8 so they never
1631   // conflict with any of the sections.
1632   SectionSP segment_sp;
1633   if (add_section && (const_segname || is_core)) {
1634     segment_sp = std::make_shared<Section>(
1635         module_sp, // Module to which this section belongs
1636         this,      // Object file to which this sections belongs
1637         ++context.NextSegmentIdx
1638             << 8, // Section ID is the 1 based segment index
1639         // shifted right by 8 bits as not to collide with any of the 256
1640         // section IDs that are possible
1641         const_segname,         // Name of this section
1642         eSectionTypeContainer, // This section is a container of other
1643         // sections.
1644         load_cmd.vmaddr, // File VM address == addresses as they are
1645         // found in the object file
1646         load_cmd.vmsize,  // VM size in bytes of this section
1647         load_cmd.fileoff, // Offset to the data for this section in
1648         // the file
1649         load_cmd.filesize, // Size in bytes of this section as found
1650         // in the file
1651         0,               // Segments have no alignment information
1652         load_cmd.flags); // Flags for this section
1653 
1654     segment_sp->SetIsEncrypted(segment_is_encrypted);
1655     m_sections_up->AddSection(segment_sp);
1656     segment_sp->SetPermissions(segment_permissions);
1657     if (add_to_unified)
1658       context.UnifiedList.AddSection(segment_sp);
1659   } else if (unified_section_sp) {
1660     // If this is a dSYM and the file addresses in the dSYM differ from the
1661     // file addresses in the ObjectFile, we must use the file base address for
1662     // the Section from the dSYM for the DWARF to resolve correctly.
1663     // This only happens with binaries in the shared cache in practice;
1664     // normally a mismatch like this would give a binary & dSYM that do not
1665     // match UUIDs. When a binary is included in the shared cache, its
1666     // segments are rearranged to optimize the shared cache, so its file
1667     // addresses will differ from what the ObjectFile had originally,
1668     // and what the dSYM has.
1669     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1670       Log *log = GetLog(LLDBLog::Symbols);
1671       if (log) {
1672         log->Printf(
1673             "Installing dSYM's %s segment file address over ObjectFile's "
1674             "so symbol table/debug info resolves correctly for %s",
1675             const_segname.AsCString(),
1676             module_sp->GetFileSpec().GetFilename().AsCString());
1677       }
1678 
1679       // Make sure we've parsed the symbol table from the ObjectFile before
1680       // we go around changing its Sections.
1681       module_sp->GetObjectFile()->GetSymtab();
1682       // eh_frame would present the same problems but we parse that on a per-
1683       // function basis as-needed so it's more difficult to remove its use of
1684       // the Sections.  Realistically, the environments where this code path
1685       // will be taken will not have eh_frame sections.
1686 
1687       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1688 
1689       // Notify the module that the section addresses have been changed once
1690       // we're done so any file-address caches can be updated.
1691       context.FileAddressesChanged = true;
1692     }
1693     m_sections_up->AddSection(unified_section_sp);
1694   }
1695 
1696   llvm::MachO::section_64 sect64;
1697   ::memset(&sect64, 0, sizeof(sect64));
1698   // Push a section into our mach sections for the section at index zero
1699   // (NO_SECT) if we don't have any mach sections yet...
1700   if (m_mach_sections.empty())
1701     m_mach_sections.push_back(sect64);
1702   uint32_t segment_sect_idx;
1703   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1704 
1705   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1706   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1707        ++segment_sect_idx) {
1708     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1709                      sizeof(sect64.sectname)) == nullptr)
1710       break;
1711     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1712                      sizeof(sect64.segname)) == nullptr)
1713       break;
1714     sect64.addr = m_data.GetAddress(&offset);
1715     sect64.size = m_data.GetAddress(&offset);
1716 
1717     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1718       break;
1719 
1720     if (IsSharedCacheBinary() && !IsInMemory()) {
1721       sect64.offset = sect64.addr - m_text_address;
1722     }
1723 
1724     // Keep a list of mach sections around in case we need to get at data that
1725     // isn't stored in the abstracted Sections.
1726     m_mach_sections.push_back(sect64);
1727 
1728     if (add_section) {
1729       ConstString section_name(
1730           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1731       if (!const_segname) {
1732         // We have a segment with no name so we need to conjure up segments
1733         // that correspond to the section's segname if there isn't already such
1734         // a section. If there is such a section, we resize the section so that
1735         // it spans all sections.  We also mark these sections as fake so
1736         // address matches don't hit if they land in the gaps between the child
1737         // sections.
1738         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1739                                                   sizeof(sect64.segname));
1740         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1741         if (segment_sp.get()) {
1742           Section *segment = segment_sp.get();
1743           // Grow the section size as needed.
1744           const lldb::addr_t sect64_min_addr = sect64.addr;
1745           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1746           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1747           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1748           const lldb::addr_t curr_seg_max_addr =
1749               curr_seg_min_addr + curr_seg_byte_size;
1750           if (sect64_min_addr >= curr_seg_min_addr) {
1751             const lldb::addr_t new_seg_byte_size =
1752                 sect64_max_addr - curr_seg_min_addr;
1753             // Only grow the section size if needed
1754             if (new_seg_byte_size > curr_seg_byte_size)
1755               segment->SetByteSize(new_seg_byte_size);
1756           } else {
1757             // We need to change the base address of the segment and adjust the
1758             // child section offsets for all existing children.
1759             const lldb::addr_t slide_amount =
1760                 sect64_min_addr - curr_seg_min_addr;
1761             segment->Slide(slide_amount, false);
1762             segment->GetChildren().Slide(-slide_amount, false);
1763             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1764           }
1765 
1766           // Grow the section size as needed.
1767           if (sect64.offset) {
1768             const lldb::addr_t segment_min_file_offset =
1769                 segment->GetFileOffset();
1770             const lldb::addr_t segment_max_file_offset =
1771                 segment_min_file_offset + segment->GetFileSize();
1772 
1773             const lldb::addr_t section_min_file_offset = sect64.offset;
1774             const lldb::addr_t section_max_file_offset =
1775                 section_min_file_offset + sect64.size;
1776             const lldb::addr_t new_file_offset =
1777                 std::min(section_min_file_offset, segment_min_file_offset);
1778             const lldb::addr_t new_file_size =
1779                 std::max(section_max_file_offset, segment_max_file_offset) -
1780                 new_file_offset;
1781             segment->SetFileOffset(new_file_offset);
1782             segment->SetFileSize(new_file_size);
1783           }
1784         } else {
1785           // Create a fake section for the section's named segment
1786           segment_sp = std::make_shared<Section>(
1787               segment_sp, // Parent section
1788               module_sp,  // Module to which this section belongs
1789               this,       // Object file to which this section belongs
1790               ++context.NextSegmentIdx
1791                   << 8, // Section ID is the 1 based segment index
1792               // shifted right by 8 bits as not to
1793               // collide with any of the 256 section IDs
1794               // that are possible
1795               const_segname,         // Name of this section
1796               eSectionTypeContainer, // This section is a container of
1797               // other sections.
1798               sect64.addr, // File VM address == addresses as they are
1799               // found in the object file
1800               sect64.size,   // VM size in bytes of this section
1801               sect64.offset, // Offset to the data for this section in
1802               // the file
1803               sect64.offset ? sect64.size : 0, // Size in bytes of
1804               // this section as
1805               // found in the file
1806               sect64.align,
1807               load_cmd.flags); // Flags for this section
1808           segment_sp->SetIsFake(true);
1809           segment_sp->SetPermissions(segment_permissions);
1810           m_sections_up->AddSection(segment_sp);
1811           if (add_to_unified)
1812             context.UnifiedList.AddSection(segment_sp);
1813           segment_sp->SetIsEncrypted(segment_is_encrypted);
1814         }
1815       }
1816       assert(segment_sp.get());
1817 
1818       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1819 
1820       SectionSP section_sp(new Section(
1821           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1822           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1823           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1824           sect64.flags));
1825       // Set the section to be encrypted to match the segment
1826 
1827       bool section_is_encrypted = false;
1828       if (!segment_is_encrypted && load_cmd.filesize != 0)
1829         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1830                                    sect64.offset) != nullptr;
1831 
1832       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1833       section_sp->SetPermissions(segment_permissions);
1834       segment_sp->GetChildren().AddSection(section_sp);
1835 
1836       if (segment_sp->IsFake()) {
1837         segment_sp.reset();
1838         const_segname.Clear();
1839       }
1840     }
1841   }
1842   if (segment_sp && is_dsym) {
1843     if (first_segment_sectID <= context.NextSectionIdx) {
1844       lldb::user_id_t sect_uid;
1845       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1846            ++sect_uid) {
1847         SectionSP curr_section_sp(
1848             segment_sp->GetChildren().FindSectionByID(sect_uid));
1849         SectionSP next_section_sp;
1850         if (sect_uid + 1 <= context.NextSectionIdx)
1851           next_section_sp =
1852               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1853 
1854         if (curr_section_sp.get()) {
1855           if (curr_section_sp->GetByteSize() == 0) {
1856             if (next_section_sp.get() != nullptr)
1857               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1858                                            curr_section_sp->GetFileAddress());
1859             else
1860               curr_section_sp->SetByteSize(load_cmd.vmsize);
1861           }
1862         }
1863       }
1864     }
1865   }
1866 }
1867 
1868 void ObjectFileMachO::ProcessDysymtabCommand(
1869     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1870   m_dysymtab.cmd = load_cmd.cmd;
1871   m_dysymtab.cmdsize = load_cmd.cmdsize;
1872   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1873                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1874 }
1875 
1876 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1877   if (m_sections_up)
1878     return;
1879 
1880   m_sections_up = std::make_unique<SectionList>();
1881 
1882   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1883   // bool dump_sections = false;
1884   ModuleSP module_sp(GetModule());
1885 
1886   offset = MachHeaderSizeFromMagic(m_header.magic);
1887 
1888   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1889   llvm::MachO::load_command load_cmd;
1890   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1891     const lldb::offset_t load_cmd_offset = offset;
1892     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1893       break;
1894 
1895     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1896       ProcessSegmentCommand(load_cmd, offset, i, context);
1897     else if (load_cmd.cmd == LC_DYSYMTAB)
1898       ProcessDysymtabCommand(load_cmd, offset);
1899 
1900     offset = load_cmd_offset + load_cmd.cmdsize;
1901   }
1902 
1903   if (context.FileAddressesChanged && module_sp)
1904     module_sp->SectionFileAddressesChanged();
1905 }
1906 
1907 class MachSymtabSectionInfo {
1908 public:
1909   MachSymtabSectionInfo(SectionList *section_list)
1910       : m_section_list(section_list), m_section_infos() {
1911     // Get the number of sections down to a depth of 1 to include all segments
1912     // and their sections, but no other sections that may be added for debug
1913     // map or
1914     m_section_infos.resize(section_list->GetNumSections(1));
1915   }
1916 
1917   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1918     if (n_sect == 0)
1919       return SectionSP();
1920     if (n_sect < m_section_infos.size()) {
1921       if (!m_section_infos[n_sect].section_sp) {
1922         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1923         m_section_infos[n_sect].section_sp = section_sp;
1924         if (section_sp) {
1925           m_section_infos[n_sect].vm_range.SetBaseAddress(
1926               section_sp->GetFileAddress());
1927           m_section_infos[n_sect].vm_range.SetByteSize(
1928               section_sp->GetByteSize());
1929         } else {
1930           std::string filename = "<unknown>";
1931           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1932           if (first_section_sp)
1933             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1934 
1935           Host::SystemLog(Host::eSystemLogError,
1936                           "error: unable to find section %d for a symbol in "
1937                           "%s, corrupt file?\n",
1938                           n_sect, filename.c_str());
1939         }
1940       }
1941       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1942         // Symbol is in section.
1943         return m_section_infos[n_sect].section_sp;
1944       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1945                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1946                      file_addr) {
1947         // Symbol is in section with zero size, but has the same start address
1948         // as the section. This can happen with linker symbols (symbols that
1949         // start with the letter 'l' or 'L'.
1950         return m_section_infos[n_sect].section_sp;
1951       }
1952     }
1953     return m_section_list->FindSectionContainingFileAddress(file_addr);
1954   }
1955 
1956 protected:
1957   struct SectionInfo {
1958     SectionInfo() : vm_range(), section_sp() {}
1959 
1960     VMRange vm_range;
1961     SectionSP section_sp;
1962   };
1963   SectionList *m_section_list;
1964   std::vector<SectionInfo> m_section_infos;
1965 };
1966 
1967 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1968 struct TrieEntry {
1969   void Dump() const {
1970     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1971            static_cast<unsigned long long>(address),
1972            static_cast<unsigned long long>(flags),
1973            static_cast<unsigned long long>(other), name.GetCString());
1974     if (import_name)
1975       printf(" -> \"%s\"\n", import_name.GetCString());
1976     else
1977       printf("\n");
1978   }
1979   ConstString name;
1980   uint64_t address = LLDB_INVALID_ADDRESS;
1981   uint64_t flags =
1982       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1983          // TRIE_SYMBOL_IS_THUMB
1984   uint64_t other = 0;
1985   ConstString import_name;
1986 };
1987 
1988 struct TrieEntryWithOffset {
1989   lldb::offset_t nodeOffset;
1990   TrieEntry entry;
1991 
1992   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1993 
1994   void Dump(uint32_t idx) const {
1995     printf("[%3u] 0x%16.16llx: ", idx,
1996            static_cast<unsigned long long>(nodeOffset));
1997     entry.Dump();
1998   }
1999 
2000   bool operator<(const TrieEntryWithOffset &other) const {
2001     return (nodeOffset < other.nodeOffset);
2002   }
2003 };
2004 
2005 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2006                              const bool is_arm, addr_t text_seg_base_addr,
2007                              std::vector<llvm::StringRef> &nameSlices,
2008                              std::set<lldb::addr_t> &resolver_addresses,
2009                              std::vector<TrieEntryWithOffset> &reexports,
2010                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2011   if (!data.ValidOffset(offset))
2012     return true;
2013 
2014   // Terminal node -- end of a branch, possibly add this to
2015   // the symbol table or resolver table.
2016   const uint64_t terminalSize = data.GetULEB128(&offset);
2017   lldb::offset_t children_offset = offset + terminalSize;
2018   if (terminalSize != 0) {
2019     TrieEntryWithOffset e(offset);
2020     e.entry.flags = data.GetULEB128(&offset);
2021     const char *import_name = nullptr;
2022     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2023       e.entry.address = 0;
2024       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2025       import_name = data.GetCStr(&offset);
2026     } else {
2027       e.entry.address = data.GetULEB128(&offset);
2028       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2029         e.entry.address += text_seg_base_addr;
2030       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2031         e.entry.other = data.GetULEB128(&offset);
2032         uint64_t resolver_addr = e.entry.other;
2033         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2034           resolver_addr += text_seg_base_addr;
2035         if (is_arm)
2036           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2037         resolver_addresses.insert(resolver_addr);
2038       } else
2039         e.entry.other = 0;
2040     }
2041     bool add_this_entry = false;
2042     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2043         import_name && import_name[0]) {
2044       // add symbols that are reexport symbols with a valid import name.
2045       add_this_entry = true;
2046     } else if (e.entry.flags == 0 &&
2047                (import_name == nullptr || import_name[0] == '\0')) {
2048       // add externally visible symbols, in case the nlist record has
2049       // been stripped/omitted.
2050       add_this_entry = true;
2051     }
2052     if (add_this_entry) {
2053       std::string name;
2054       if (!nameSlices.empty()) {
2055         for (auto name_slice : nameSlices)
2056           name.append(name_slice.data(), name_slice.size());
2057       }
2058       if (name.size() > 1) {
2059         // Skip the leading '_'
2060         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2061       }
2062       if (import_name) {
2063         // Skip the leading '_'
2064         e.entry.import_name.SetCString(import_name + 1);
2065       }
2066       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2067         reexports.push_back(e);
2068       } else {
2069         if (is_arm && (e.entry.address & 1)) {
2070           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2071           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2072         }
2073         ext_symbols.push_back(e);
2074       }
2075     }
2076   }
2077 
2078   const uint8_t childrenCount = data.GetU8(&children_offset);
2079   for (uint8_t i = 0; i < childrenCount; ++i) {
2080     const char *cstr = data.GetCStr(&children_offset);
2081     if (cstr)
2082       nameSlices.push_back(llvm::StringRef(cstr));
2083     else
2084       return false; // Corrupt data
2085     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2086     if (childNodeOffset) {
2087       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2088                             nameSlices, resolver_addresses, reexports,
2089                             ext_symbols)) {
2090         return false;
2091       }
2092     }
2093     nameSlices.pop_back();
2094   }
2095   return true;
2096 }
2097 
2098 static SymbolType GetSymbolType(const char *&symbol_name,
2099                                 bool &demangled_is_synthesized,
2100                                 const SectionSP &text_section_sp,
2101                                 const SectionSP &data_section_sp,
2102                                 const SectionSP &data_dirty_section_sp,
2103                                 const SectionSP &data_const_section_sp,
2104                                 const SectionSP &symbol_section) {
2105   SymbolType type = eSymbolTypeInvalid;
2106 
2107   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2108   if (symbol_section->IsDescendant(text_section_sp.get())) {
2109     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2110                                 S_ATTR_SELF_MODIFYING_CODE |
2111                                 S_ATTR_SOME_INSTRUCTIONS))
2112       type = eSymbolTypeData;
2113     else
2114       type = eSymbolTypeCode;
2115   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2116              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2117              symbol_section->IsDescendant(data_const_section_sp.get())) {
2118     if (symbol_sect_name &&
2119         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2120       type = eSymbolTypeRuntime;
2121 
2122       if (symbol_name) {
2123         llvm::StringRef symbol_name_ref(symbol_name);
2124         if (symbol_name_ref.startswith("OBJC_")) {
2125           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2126           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2127               "OBJC_METACLASS_$_");
2128           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2129           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2130             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2131             type = eSymbolTypeObjCClass;
2132             demangled_is_synthesized = true;
2133           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2134             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2135             type = eSymbolTypeObjCMetaClass;
2136             demangled_is_synthesized = true;
2137           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2138             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2139             type = eSymbolTypeObjCIVar;
2140             demangled_is_synthesized = true;
2141           }
2142         }
2143       }
2144     } else if (symbol_sect_name &&
2145                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2146                    symbol_sect_name) {
2147       type = eSymbolTypeException;
2148     } else {
2149       type = eSymbolTypeData;
2150     }
2151   } else if (symbol_sect_name &&
2152              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2153     type = eSymbolTypeTrampoline;
2154   }
2155   return type;
2156 }
2157 
2158 // Read the UUID out of a dyld_shared_cache file on-disk.
2159 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2160                                          const ByteOrder byte_order,
2161                                          const uint32_t addr_byte_size) {
2162   UUID dsc_uuid;
2163   DataBufferSP DscData = MapFileData(
2164       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2165   if (!DscData)
2166     return dsc_uuid;
2167   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2168 
2169   char version_str[7];
2170   lldb::offset_t offset = 0;
2171   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2172   version_str[6] = '\0';
2173   if (strcmp(version_str, "dyld_v") == 0) {
2174     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2175     dsc_uuid = UUID::fromOptionalData(
2176         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2177   }
2178   Log *log = GetLog(LLDBLog::Symbols);
2179   if (log && dsc_uuid.IsValid()) {
2180     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2181               dyld_shared_cache.GetPath().c_str(),
2182               dsc_uuid.GetAsString().c_str());
2183   }
2184   return dsc_uuid;
2185 }
2186 
2187 static llvm::Optional<struct nlist_64>
2188 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2189            size_t nlist_byte_size) {
2190   struct nlist_64 nlist;
2191   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2192     return {};
2193   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2194   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2195   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2196   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2197   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2198   return nlist;
2199 }
2200 
2201 enum { DebugSymbols = true, NonDebugSymbols = false };
2202 
2203 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2204   ModuleSP module_sp(GetModule());
2205   if (!module_sp)
2206     return;
2207 
2208   const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2209   const char *file_name = file.GetFilename().AsCString("<Unknown>");
2210   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
2211   Progress progress(llvm::formatv("Parsing symbol table for {0}", file_name));
2212 
2213   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2214   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2215   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2216   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2217   llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2218   // The data element of type bool indicates that this entry is thumb
2219   // code.
2220   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2221 
2222   // Record the address of every function/data that we add to the symtab.
2223   // We add symbols to the table in the order of most information (nlist
2224   // records) to least (function starts), and avoid duplicating symbols
2225   // via this set.
2226   llvm::DenseSet<addr_t> symbols_added;
2227 
2228   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2229   // do not add the tombstone or empty keys to the set.
2230   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2231     // Don't add the tombstone or empty keys.
2232     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2233       return;
2234     symbols_added.insert(file_addr);
2235   };
2236   FunctionStarts function_starts;
2237   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2238   uint32_t i;
2239   FileSpecList dylib_files;
2240   Log *log = GetLog(LLDBLog::Symbols);
2241   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2242   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2243   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2244   UUID image_uuid;
2245 
2246   for (i = 0; i < m_header.ncmds; ++i) {
2247     const lldb::offset_t cmd_offset = offset;
2248     // Read in the load command and load command size
2249     llvm::MachO::load_command lc;
2250     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2251       break;
2252     // Watch for the symbol table load command
2253     switch (lc.cmd) {
2254     case LC_SYMTAB:
2255       symtab_load_command.cmd = lc.cmd;
2256       symtab_load_command.cmdsize = lc.cmdsize;
2257       // Read in the rest of the symtab load command
2258       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2259           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2260         return;
2261       break;
2262 
2263     case LC_DYLD_INFO:
2264     case LC_DYLD_INFO_ONLY:
2265       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2266         dyld_info.cmd = lc.cmd;
2267         dyld_info.cmdsize = lc.cmdsize;
2268       } else {
2269         memset(&dyld_info, 0, sizeof(dyld_info));
2270       }
2271       break;
2272 
2273     case LC_LOAD_DYLIB:
2274     case LC_LOAD_WEAK_DYLIB:
2275     case LC_REEXPORT_DYLIB:
2276     case LC_LOADFVMLIB:
2277     case LC_LOAD_UPWARD_DYLIB: {
2278       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2279       const char *path = m_data.PeekCStr(name_offset);
2280       if (path) {
2281         FileSpec file_spec(path);
2282         // Strip the path if there is @rpath, @executable, etc so we just use
2283         // the basename
2284         if (path[0] == '@')
2285           file_spec.GetDirectory().Clear();
2286 
2287         if (lc.cmd == LC_REEXPORT_DYLIB) {
2288           m_reexported_dylibs.AppendIfUnique(file_spec);
2289         }
2290 
2291         dylib_files.Append(file_spec);
2292       }
2293     } break;
2294 
2295     case LC_DYLD_EXPORTS_TRIE:
2296       exports_trie_load_command.cmd = lc.cmd;
2297       exports_trie_load_command.cmdsize = lc.cmdsize;
2298       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2299           nullptr) // fill in offset and size fields
2300         memset(&exports_trie_load_command, 0,
2301                sizeof(exports_trie_load_command));
2302       break;
2303     case LC_FUNCTION_STARTS:
2304       function_starts_load_command.cmd = lc.cmd;
2305       function_starts_load_command.cmdsize = lc.cmdsize;
2306       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2307           nullptr) // fill in data offset and size fields
2308         memset(&function_starts_load_command, 0,
2309                sizeof(function_starts_load_command));
2310       break;
2311 
2312     case LC_UUID: {
2313       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2314 
2315       if (uuid_bytes)
2316         image_uuid = UUID::fromOptionalData(uuid_bytes, 16);
2317       break;
2318     }
2319 
2320     default:
2321       break;
2322     }
2323     offset = cmd_offset + lc.cmdsize;
2324   }
2325 
2326   if (!symtab_load_command.cmd)
2327     return;
2328 
2329   SectionList *section_list = GetSectionList();
2330   if (section_list == nullptr)
2331     return;
2332 
2333   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2334   const ByteOrder byte_order = m_data.GetByteOrder();
2335   bool bit_width_32 = addr_byte_size == 4;
2336   const size_t nlist_byte_size =
2337       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2338 
2339   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2340   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2341   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2342   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2343                                            addr_byte_size);
2344   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2345 
2346   const addr_t nlist_data_byte_size =
2347       symtab_load_command.nsyms * nlist_byte_size;
2348   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2349   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2350 
2351   ProcessSP process_sp(m_process_wp.lock());
2352   Process *process = process_sp.get();
2353 
2354   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2355   bool is_shared_cache_image = IsSharedCacheBinary();
2356   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2357   SectionSP linkedit_section_sp(
2358       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2359 
2360   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2361       !is_local_shared_cache_image) {
2362     Target &target = process->GetTarget();
2363 
2364     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2365 
2366     // Reading mach file from memory in a process or core file...
2367 
2368     if (linkedit_section_sp) {
2369       addr_t linkedit_load_addr =
2370           linkedit_section_sp->GetLoadBaseAddress(&target);
2371       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2372         // We might be trying to access the symbol table before the
2373         // __LINKEDIT's load address has been set in the target. We can't
2374         // fail to read the symbol table, so calculate the right address
2375         // manually
2376         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2377             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2378       }
2379 
2380       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2381       const addr_t symoff_addr = linkedit_load_addr +
2382                                  symtab_load_command.symoff -
2383                                  linkedit_file_offset;
2384       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2385                     linkedit_file_offset;
2386 
2387         // Always load dyld - the dynamic linker - from memory if we didn't
2388         // find a binary anywhere else. lldb will not register
2389         // dylib/framework/bundle loads/unloads if we don't have the dyld
2390         // symbols, we force dyld to load from memory despite the user's
2391         // target.memory-module-load-level setting.
2392         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2393             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2394           DataBufferSP nlist_data_sp(
2395               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2396           if (nlist_data_sp)
2397             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2398           if (dysymtab.nindirectsyms != 0) {
2399             const addr_t indirect_syms_addr = linkedit_load_addr +
2400                                               dysymtab.indirectsymoff -
2401                                               linkedit_file_offset;
2402             DataBufferSP indirect_syms_data_sp(ReadMemory(
2403                 process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2404             if (indirect_syms_data_sp)
2405               indirect_symbol_index_data.SetData(
2406                   indirect_syms_data_sp, 0,
2407                   indirect_syms_data_sp->GetByteSize());
2408             // If this binary is outside the shared cache,
2409             // cache the string table.
2410             // Binaries in the shared cache all share a giant string table,
2411             // and we can't share the string tables across multiple
2412             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2413             // for every binary in the shared cache - it would be a big perf
2414             // problem. For binaries outside the shared cache, it's faster to
2415             // read the entire strtab at once instead of piece-by-piece as we
2416             // process the nlist records.
2417             if (!is_shared_cache_image) {
2418               DataBufferSP strtab_data_sp(
2419                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2420               if (strtab_data_sp) {
2421                 strtab_data.SetData(strtab_data_sp, 0,
2422                                     strtab_data_sp->GetByteSize());
2423               }
2424             }
2425           }
2426         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2427           if (function_starts_load_command.cmd) {
2428             const addr_t func_start_addr =
2429                 linkedit_load_addr + function_starts_load_command.dataoff -
2430                 linkedit_file_offset;
2431             DataBufferSP func_start_data_sp(
2432                 ReadMemory(process_sp, func_start_addr,
2433                            function_starts_load_command.datasize));
2434             if (func_start_data_sp)
2435               function_starts_data.SetData(func_start_data_sp, 0,
2436                                            func_start_data_sp->GetByteSize());
2437           }
2438         }
2439       }
2440     }
2441   } else {
2442     if (is_local_shared_cache_image) {
2443       // The load commands in shared cache images are relative to the
2444       // beginning of the shared cache, not the library image. The
2445       // data we get handed when creating the ObjectFileMachO starts
2446       // at the beginning of a specific library and spans to the end
2447       // of the cache to be able to reach the shared LINKEDIT
2448       // segments. We need to convert the load command offsets to be
2449       // relative to the beginning of our specific image.
2450       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2451       lldb::offset_t linkedit_slide =
2452           linkedit_offset - m_linkedit_original_offset;
2453       symtab_load_command.symoff += linkedit_slide;
2454       symtab_load_command.stroff += linkedit_slide;
2455       dyld_info.export_off += linkedit_slide;
2456       dysymtab.indirectsymoff += linkedit_slide;
2457       function_starts_load_command.dataoff += linkedit_slide;
2458       exports_trie_load_command.dataoff += linkedit_slide;
2459     }
2460 
2461     nlist_data.SetData(m_data, symtab_load_command.symoff,
2462                        nlist_data_byte_size);
2463     strtab_data.SetData(m_data, symtab_load_command.stroff,
2464                         strtab_data_byte_size);
2465 
2466     // We shouldn't have exports data from both the LC_DYLD_INFO command
2467     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2468     lldbassert(!((dyld_info.export_size > 0)
2469                  && (exports_trie_load_command.datasize > 0)));
2470     if (dyld_info.export_size > 0) {
2471       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2472                              dyld_info.export_size);
2473     } else if (exports_trie_load_command.datasize > 0) {
2474       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2475                              exports_trie_load_command.datasize);
2476     }
2477 
2478     if (dysymtab.nindirectsyms != 0) {
2479       indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2480                                          dysymtab.nindirectsyms * 4);
2481     }
2482     if (function_starts_load_command.cmd) {
2483       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2484                                    function_starts_load_command.datasize);
2485     }
2486   }
2487 
2488   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2489 
2490   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2491   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2492   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2493   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2494   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2495   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2496   SectionSP text_section_sp(
2497       section_list->FindSectionByName(g_segment_name_TEXT));
2498   SectionSP data_section_sp(
2499       section_list->FindSectionByName(g_segment_name_DATA));
2500   SectionSP data_dirty_section_sp(
2501       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2502   SectionSP data_const_section_sp(
2503       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2504   SectionSP objc_section_sp(
2505       section_list->FindSectionByName(g_segment_name_OBJC));
2506   SectionSP eh_frame_section_sp;
2507   if (text_section_sp.get())
2508     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2509         g_section_name_eh_frame);
2510   else
2511     eh_frame_section_sp =
2512         section_list->FindSectionByName(g_section_name_eh_frame);
2513 
2514   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2515   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2516 
2517   // lldb works best if it knows the start address of all functions in a
2518   // module. Linker symbols or debug info are normally the best source of
2519   // information for start addr / size but they may be stripped in a released
2520   // binary. Two additional sources of information exist in Mach-O binaries:
2521   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2522   //    function's start address in the
2523   //                         binary, relative to the text section.
2524   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2525   //    each function
2526   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2527   //  all modern binaries.
2528   //  Binaries built to run on older releases may need to use eh_frame
2529   //  information.
2530 
2531   if (text_section_sp && function_starts_data.GetByteSize()) {
2532     FunctionStarts::Entry function_start_entry;
2533     function_start_entry.data = false;
2534     lldb::offset_t function_start_offset = 0;
2535     function_start_entry.addr = text_section_sp->GetFileAddress();
2536     uint64_t delta;
2537     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2538            0) {
2539       // Now append the current entry
2540       function_start_entry.addr += delta;
2541       if (is_arm) {
2542         if (function_start_entry.addr & 1) {
2543           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2544           function_start_entry.data = true;
2545         } else if (always_thumb) {
2546           function_start_entry.data = true;
2547         }
2548       }
2549       function_starts.Append(function_start_entry);
2550     }
2551   } else {
2552     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2553     // load command claiming an eh_frame but it doesn't actually have the
2554     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2555     // this fill-in-the-missing-symbols works anyway - the debug info should
2556     // give us all the functions in the module.
2557     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2558         m_type != eTypeDebugInfo) {
2559       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2560                                   DWARFCallFrameInfo::EH);
2561       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2562       eh_frame.GetFunctionAddressAndSizeVector(functions);
2563       addr_t text_base_addr = text_section_sp->GetFileAddress();
2564       size_t count = functions.GetSize();
2565       for (size_t i = 0; i < count; ++i) {
2566         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2567             functions.GetEntryAtIndex(i);
2568         if (func) {
2569           FunctionStarts::Entry function_start_entry;
2570           function_start_entry.addr = func->base - text_base_addr;
2571           if (is_arm) {
2572             if (function_start_entry.addr & 1) {
2573               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2574               function_start_entry.data = true;
2575             } else if (always_thumb) {
2576               function_start_entry.data = true;
2577             }
2578           }
2579           function_starts.Append(function_start_entry);
2580         }
2581       }
2582     }
2583   }
2584 
2585   const size_t function_starts_count = function_starts.GetSize();
2586 
2587   // For user process binaries (executables, dylibs, frameworks, bundles), if
2588   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2589   // going to assume the binary has been stripped.  Don't allow assembly
2590   // language instruction emulation because we don't know proper function
2591   // start boundaries.
2592   //
2593   // For all other types of binaries (kernels, stand-alone bare board
2594   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2595   // sections - we should not make any assumptions about them based on that.
2596   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2597     m_allow_assembly_emulation_unwind_plans = false;
2598     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2599 
2600     if (unwind_or_symbol_log)
2601       module_sp->LogMessage(
2602           unwind_or_symbol_log,
2603           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2604   }
2605 
2606   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2607                                              ? eh_frame_section_sp->GetID()
2608                                              : static_cast<user_id_t>(NO_SECT);
2609 
2610   uint32_t N_SO_index = UINT32_MAX;
2611 
2612   MachSymtabSectionInfo section_info(section_list);
2613   std::vector<uint32_t> N_FUN_indexes;
2614   std::vector<uint32_t> N_NSYM_indexes;
2615   std::vector<uint32_t> N_INCL_indexes;
2616   std::vector<uint32_t> N_BRAC_indexes;
2617   std::vector<uint32_t> N_COMM_indexes;
2618   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2619   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2620   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2621   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2622   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2623   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2624   // Any symbols that get merged into another will get an entry in this map
2625   // so we know
2626   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2627   uint32_t nlist_idx = 0;
2628   Symbol *symbol_ptr = nullptr;
2629 
2630   uint32_t sym_idx = 0;
2631   Symbol *sym = nullptr;
2632   size_t num_syms = 0;
2633   std::string memory_symbol_name;
2634   uint32_t unmapped_local_symbols_found = 0;
2635 
2636   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2637   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2638   std::set<lldb::addr_t> resolver_addresses;
2639 
2640   if (dyld_trie_data.GetByteSize() > 0) {
2641     ConstString text_segment_name("__TEXT");
2642     SectionSP text_segment_sp =
2643         GetSectionList()->FindSectionByName(text_segment_name);
2644     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2645     if (text_segment_sp)
2646       text_segment_file_addr = text_segment_sp->GetFileAddress();
2647     std::vector<llvm::StringRef> nameSlices;
2648     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2649                      nameSlices, resolver_addresses, reexport_trie_entries,
2650                      external_sym_trie_entries);
2651   }
2652 
2653   typedef std::set<ConstString> IndirectSymbols;
2654   IndirectSymbols indirect_symbol_names;
2655 
2656 #if TARGET_OS_IPHONE
2657 
2658   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2659   // optimized by moving LOCAL symbols out of the memory mapped portion of
2660   // the DSC. The symbol information has all been retained, but it isn't
2661   // available in the normal nlist data. However, there *are* duplicate
2662   // entries of *some*
2663   // LOCAL symbols in the normal nlist data. To handle this situation
2664   // correctly, we must first attempt
2665   // to parse any DSC unmapped symbol information. If we find any, we set a
2666   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2667 
2668   if (IsSharedCacheBinary()) {
2669     // Before we can start mapping the DSC, we need to make certain the
2670     // target process is actually using the cache we can find.
2671 
2672     // Next we need to determine the correct path for the dyld shared cache.
2673 
2674     ArchSpec header_arch = GetArchitecture();
2675 
2676     UUID dsc_uuid;
2677     UUID process_shared_cache_uuid;
2678     addr_t process_shared_cache_base_addr;
2679 
2680     if (process) {
2681       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2682                                 process_shared_cache_uuid);
2683     }
2684 
2685     __block bool found_image = false;
2686     __block void *nlist_buffer = nullptr;
2687     __block unsigned nlist_count = 0;
2688     __block char *string_table = nullptr;
2689     __block vm_offset_t vm_nlist_memory = 0;
2690     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2691     __block vm_offset_t vm_string_memory = 0;
2692     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2693 
2694     auto _ = llvm::make_scope_exit(^{
2695       if (vm_nlist_memory)
2696         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2697       if (vm_string_memory)
2698         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2699     });
2700 
2701     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2702     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2703     UndefinedNameToDescMap undefined_name_to_desc;
2704     SymbolIndexToName reexport_shlib_needs_fixup;
2705 
2706     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2707       uuid_t cache_uuid;
2708       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2709       if (found_image)
2710         return;
2711 
2712         if (process_shared_cache_uuid.IsValid() &&
2713           process_shared_cache_uuid != UUID::fromOptionalData(&cache_uuid, 16))
2714         return;
2715       const bool pinned = dyld_shared_cache_pin_mapping(shared_cache);
2716       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2717         uuid_t dsc_image_uuid;
2718         if (found_image)
2719           return;
2720 
2721         dyld_image_copy_uuid(image, &dsc_image_uuid);
2722         if (image_uuid != UUID::fromOptionalData(dsc_image_uuid, 16))
2723           return;
2724 
2725         found_image = true;
2726 
2727         // Compute the size of the string table. We need to ask dyld for a
2728         // new SPI to avoid this step.
2729         dyld_image_local_nlist_content_4Symbolication(
2730             image, ^(const void *nlistStart, uint64_t nlistCount,
2731                      const char *stringTable) {
2732               if (!nlistStart || !nlistCount)
2733                 return;
2734 
2735               // The buffers passed here are valid only inside the block.
2736               // Use vm_read to make a cheap copy of them available for our
2737               // processing later.
2738               kern_return_t ret =
2739                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2740                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2741                           &vm_nlist_bytes_read);
2742               if (ret != KERN_SUCCESS)
2743                 return;
2744               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2745 
2746               // We don't know the size of the string table. It's cheaper
2747               // to map the whol VM region than to determine the size by
2748               // parsing all teh nlist entries.
2749               vm_address_t string_address = (vm_address_t)stringTable;
2750               vm_size_t region_size;
2751               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2752               vm_region_basic_info_data_t info;
2753               memory_object_name_t object;
2754               ret = vm_region_64(mach_task_self(), &string_address,
2755                                  &region_size, VM_REGION_BASIC_INFO_64,
2756                                  (vm_region_info_t)&info, &info_count, &object);
2757               if (ret != KERN_SUCCESS)
2758                 return;
2759 
2760               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2761                             region_size -
2762                                 ((vm_address_t)stringTable - string_address),
2763                             &vm_string_memory, &vm_string_bytes_read);
2764               if (ret != KERN_SUCCESS)
2765                 return;
2766 
2767               nlist_buffer = (void *)vm_nlist_memory;
2768               string_table = (char *)vm_string_memory;
2769               nlist_count = nlistCount;
2770             });
2771       });
2772       if (pinned)
2773         dyld_shared_cache_unpin_mapping(shared_cache);
2774     });
2775     if (nlist_buffer) {
2776       DataExtractor dsc_local_symbols_data(nlist_buffer,
2777                                            nlist_count * nlist_byte_size,
2778                                            byte_order, addr_byte_size);
2779       unmapped_local_symbols_found = nlist_count;
2780 
2781                 // The normal nlist code cannot correctly size the Symbols
2782                 // array, we need to allocate it here.
2783                 sym = symtab.Resize(
2784                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2785                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2786                 num_syms = symtab.GetNumSymbols();
2787 
2788       lldb::offset_t nlist_data_offset = 0;
2789 
2790                 for (uint32_t nlist_index = 0;
2791                      nlist_index < nlist_count;
2792                      nlist_index++) {
2793                   /////////////////////////////
2794                   {
2795                     llvm::Optional<struct nlist_64> nlist_maybe =
2796                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2797                                    nlist_byte_size);
2798                     if (!nlist_maybe)
2799                       break;
2800                     struct nlist_64 nlist = *nlist_maybe;
2801 
2802                     SymbolType type = eSymbolTypeInvalid;
2803           const char *symbol_name = string_table + nlist.n_strx;
2804 
2805                     if (symbol_name == NULL) {
2806                       // No symbol should be NULL, even the symbols with no
2807                       // string values should have an offset zero which
2808                       // points to an empty C-string
2809                       Host::SystemLog(
2810                           Host::eSystemLogError,
2811                           "error: DSC unmapped local symbol[%u] has invalid "
2812                           "string table offset 0x%x in %s, ignoring symbol\n",
2813                           nlist_index, nlist.n_strx,
2814                           module_sp->GetFileSpec().GetPath().c_str());
2815                       continue;
2816                     }
2817                     if (symbol_name[0] == '\0')
2818                       symbol_name = NULL;
2819 
2820                     const char *symbol_name_non_abi_mangled = NULL;
2821 
2822                     SectionSP symbol_section;
2823                     uint32_t symbol_byte_size = 0;
2824                     bool add_nlist = true;
2825                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2826                     bool demangled_is_synthesized = false;
2827                     bool is_gsym = false;
2828                     bool set_value = true;
2829 
2830                     assert(sym_idx < num_syms);
2831 
2832                     sym[sym_idx].SetDebug(is_debug);
2833 
2834                     if (is_debug) {
2835                       switch (nlist.n_type) {
2836                       case N_GSYM:
2837                         // global symbol: name,,NO_SECT,type,0
2838                         // Sometimes the N_GSYM value contains the address.
2839 
2840                         // FIXME: In the .o files, we have a GSYM and a debug
2841                         // symbol for all the ObjC data.  They
2842                         // have the same address, but we want to ensure that
2843                         // we always find only the real symbol, 'cause we
2844                         // don't currently correctly attribute the
2845                         // GSYM one to the ObjCClass/Ivar/MetaClass
2846                         // symbol type.  This is a temporary hack to make
2847                         // sure the ObjectiveC symbols get treated correctly.
2848                         // To do this right, we should coalesce all the GSYM
2849                         // & global symbols that have the same address.
2850 
2851                         is_gsym = true;
2852                         sym[sym_idx].SetExternal(true);
2853 
2854                         if (symbol_name && symbol_name[0] == '_' &&
2855                             symbol_name[1] == 'O') {
2856                           llvm::StringRef symbol_name_ref(symbol_name);
2857                           if (symbol_name_ref.startswith(
2858                                   g_objc_v2_prefix_class)) {
2859                             symbol_name_non_abi_mangled = symbol_name + 1;
2860                             symbol_name =
2861                                 symbol_name + g_objc_v2_prefix_class.size();
2862                             type = eSymbolTypeObjCClass;
2863                             demangled_is_synthesized = true;
2864 
2865                           } else if (symbol_name_ref.startswith(
2866                                          g_objc_v2_prefix_metaclass)) {
2867                             symbol_name_non_abi_mangled = symbol_name + 1;
2868                             symbol_name =
2869                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2870                             type = eSymbolTypeObjCMetaClass;
2871                             demangled_is_synthesized = true;
2872                           } else if (symbol_name_ref.startswith(
2873                                          g_objc_v2_prefix_ivar)) {
2874                             symbol_name_non_abi_mangled = symbol_name + 1;
2875                             symbol_name =
2876                                 symbol_name + g_objc_v2_prefix_ivar.size();
2877                             type = eSymbolTypeObjCIVar;
2878                             demangled_is_synthesized = true;
2879                           }
2880                         } else {
2881                           if (nlist.n_value != 0)
2882                             symbol_section = section_info.GetSection(
2883                                 nlist.n_sect, nlist.n_value);
2884                           type = eSymbolTypeData;
2885                         }
2886                         break;
2887 
2888                       case N_FNAME:
2889                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2890                         type = eSymbolTypeCompiler;
2891                         break;
2892 
2893                       case N_FUN:
2894                         // procedure: name,,n_sect,linenumber,address
2895                         if (symbol_name) {
2896                           type = eSymbolTypeCode;
2897                           symbol_section = section_info.GetSection(
2898                               nlist.n_sect, nlist.n_value);
2899 
2900                           N_FUN_addr_to_sym_idx.insert(
2901                               std::make_pair(nlist.n_value, sym_idx));
2902                           // We use the current number of symbols in the
2903                           // symbol table in lieu of using nlist_idx in case
2904                           // we ever start trimming entries out
2905                           N_FUN_indexes.push_back(sym_idx);
2906                         } else {
2907                           type = eSymbolTypeCompiler;
2908 
2909                           if (!N_FUN_indexes.empty()) {
2910                             // Copy the size of the function into the
2911                             // original
2912                             // STAB entry so we don't have
2913                             // to hunt for it later
2914                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2915                                 ->SetByteSize(nlist.n_value);
2916                             N_FUN_indexes.pop_back();
2917                             // We don't really need the end function STAB as
2918                             // it contains the size which we already placed
2919                             // with the original symbol, so don't add it if
2920                             // we want a minimal symbol table
2921                             add_nlist = false;
2922                           }
2923                         }
2924                         break;
2925 
2926                       case N_STSYM:
2927                         // static symbol: name,,n_sect,type,address
2928                         N_STSYM_addr_to_sym_idx.insert(
2929                             std::make_pair(nlist.n_value, sym_idx));
2930                         symbol_section = section_info.GetSection(nlist.n_sect,
2931                                                                  nlist.n_value);
2932                         if (symbol_name && symbol_name[0]) {
2933                           type = ObjectFile::GetSymbolTypeFromName(
2934                               symbol_name + 1, eSymbolTypeData);
2935                         }
2936                         break;
2937 
2938                       case N_LCSYM:
2939                         // .lcomm symbol: name,,n_sect,type,address
2940                         symbol_section = section_info.GetSection(nlist.n_sect,
2941                                                                  nlist.n_value);
2942                         type = eSymbolTypeCommonBlock;
2943                         break;
2944 
2945                       case N_BNSYM:
2946                         // We use the current number of symbols in the symbol
2947                         // table in lieu of using nlist_idx in case we ever
2948                         // start trimming entries out Skip these if we want
2949                         // minimal symbol tables
2950                         add_nlist = false;
2951                         break;
2952 
2953                       case N_ENSYM:
2954                         // Set the size of the N_BNSYM to the terminating
2955                         // index of this N_ENSYM so that we can always skip
2956                         // the entire symbol if we need to navigate more
2957                         // quickly at the source level when parsing STABS
2958                         // Skip these if we want minimal symbol tables
2959                         add_nlist = false;
2960                         break;
2961 
2962                       case N_OPT:
2963                         // emitted with gcc2_compiled and in gcc source
2964                         type = eSymbolTypeCompiler;
2965                         break;
2966 
2967                       case N_RSYM:
2968                         // register sym: name,,NO_SECT,type,register
2969                         type = eSymbolTypeVariable;
2970                         break;
2971 
2972                       case N_SLINE:
2973                         // src line: 0,,n_sect,linenumber,address
2974                         symbol_section = section_info.GetSection(nlist.n_sect,
2975                                                                  nlist.n_value);
2976                         type = eSymbolTypeLineEntry;
2977                         break;
2978 
2979                       case N_SSYM:
2980                         // structure elt: name,,NO_SECT,type,struct_offset
2981                         type = eSymbolTypeVariableType;
2982                         break;
2983 
2984                       case N_SO:
2985                         // source file name
2986                         type = eSymbolTypeSourceFile;
2987                         if (symbol_name == NULL) {
2988                           add_nlist = false;
2989                           if (N_SO_index != UINT32_MAX) {
2990                             // Set the size of the N_SO to the terminating
2991                             // index of this N_SO so that we can always skip
2992                             // the entire N_SO if we need to navigate more
2993                             // quickly at the source level when parsing STABS
2994                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
2995                             symbol_ptr->SetByteSize(sym_idx);
2996                             symbol_ptr->SetSizeIsSibling(true);
2997                           }
2998                           N_NSYM_indexes.clear();
2999                           N_INCL_indexes.clear();
3000                           N_BRAC_indexes.clear();
3001                           N_COMM_indexes.clear();
3002                           N_FUN_indexes.clear();
3003                           N_SO_index = UINT32_MAX;
3004                         } else {
3005                           // We use the current number of symbols in the
3006                           // symbol table in lieu of using nlist_idx in case
3007                           // we ever start trimming entries out
3008                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3009                           if (N_SO_has_full_path) {
3010                             if ((N_SO_index == sym_idx - 1) &&
3011                                 ((sym_idx - 1) < num_syms)) {
3012                               // We have two consecutive N_SO entries where
3013                               // the first contains a directory and the
3014                               // second contains a full path.
3015                               sym[sym_idx - 1].GetMangled().SetValue(
3016                                   ConstString(symbol_name), false);
3017                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3018                               add_nlist = false;
3019                             } else {
3020                               // This is the first entry in a N_SO that
3021                               // contains a directory or
3022                               // a full path to the source file
3023                               N_SO_index = sym_idx;
3024                             }
3025                           } else if ((N_SO_index == sym_idx - 1) &&
3026                                      ((sym_idx - 1) < num_syms)) {
3027                             // This is usually the second N_SO entry that
3028                             // contains just the filename, so here we combine
3029                             // it with the first one if we are minimizing the
3030                             // symbol table
3031                             const char *so_path = sym[sym_idx - 1]
3032                                                       .GetMangled()
3033                                                       .GetDemangledName()
3034                                                       .AsCString();
3035                             if (so_path && so_path[0]) {
3036                               std::string full_so_path(so_path);
3037                               const size_t double_slash_pos =
3038                                   full_so_path.find("//");
3039                               if (double_slash_pos != std::string::npos) {
3040                                 // The linker has been generating bad N_SO
3041                                 // entries with doubled up paths
3042                                 // in the format "%s%s" where the first
3043                                 // string in the DW_AT_comp_dir, and the
3044                                 // second is the directory for the source
3045                                 // file so you end up with a path that looks
3046                                 // like "/tmp/src//tmp/src/"
3047                                 FileSpec so_dir(so_path);
3048                                 if (!FileSystem::Instance().Exists(so_dir)) {
3049                                   so_dir.SetFile(
3050                                       &full_so_path[double_slash_pos + 1],
3051                                       FileSpec::Style::native);
3052                                   if (FileSystem::Instance().Exists(so_dir)) {
3053                                     // Trim off the incorrect path
3054                                     full_so_path.erase(0, double_slash_pos + 1);
3055                                   }
3056                                 }
3057                               }
3058                               if (*full_so_path.rbegin() != '/')
3059                                 full_so_path += '/';
3060                               full_so_path += symbol_name;
3061                               sym[sym_idx - 1].GetMangled().SetValue(
3062                                   ConstString(full_so_path.c_str()), false);
3063                               add_nlist = false;
3064                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3065                             }
3066                           } else {
3067                             // This could be a relative path to a N_SO
3068                             N_SO_index = sym_idx;
3069                           }
3070                         }
3071                         break;
3072 
3073                       case N_OSO:
3074                         // object file name: name,,0,0,st_mtime
3075                         type = eSymbolTypeObjectFile;
3076                         break;
3077 
3078                       case N_LSYM:
3079                         // local sym: name,,NO_SECT,type,offset
3080                         type = eSymbolTypeLocal;
3081                         break;
3082 
3083                       // INCL scopes
3084                       case N_BINCL:
3085                         // include file beginning: name,,NO_SECT,0,sum We use
3086                         // the current number of symbols in the symbol table
3087                         // in lieu of using nlist_idx in case we ever start
3088                         // trimming entries out
3089                         N_INCL_indexes.push_back(sym_idx);
3090                         type = eSymbolTypeScopeBegin;
3091                         break;
3092 
3093                       case N_EINCL:
3094                         // include file end: name,,NO_SECT,0,0
3095                         // Set the size of the N_BINCL to the terminating
3096                         // index of this N_EINCL so that we can always skip
3097                         // the entire symbol if we need to navigate more
3098                         // quickly at the source level when parsing STABS
3099                         if (!N_INCL_indexes.empty()) {
3100                           symbol_ptr =
3101                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3102                           symbol_ptr->SetByteSize(sym_idx + 1);
3103                           symbol_ptr->SetSizeIsSibling(true);
3104                           N_INCL_indexes.pop_back();
3105                         }
3106                         type = eSymbolTypeScopeEnd;
3107                         break;
3108 
3109                       case N_SOL:
3110                         // #included file name: name,,n_sect,0,address
3111                         type = eSymbolTypeHeaderFile;
3112 
3113                         // We currently don't use the header files on darwin
3114                         add_nlist = false;
3115                         break;
3116 
3117                       case N_PARAMS:
3118                         // compiler parameters: name,,NO_SECT,0,0
3119                         type = eSymbolTypeCompiler;
3120                         break;
3121 
3122                       case N_VERSION:
3123                         // compiler version: name,,NO_SECT,0,0
3124                         type = eSymbolTypeCompiler;
3125                         break;
3126 
3127                       case N_OLEVEL:
3128                         // compiler -O level: name,,NO_SECT,0,0
3129                         type = eSymbolTypeCompiler;
3130                         break;
3131 
3132                       case N_PSYM:
3133                         // parameter: name,,NO_SECT,type,offset
3134                         type = eSymbolTypeVariable;
3135                         break;
3136 
3137                       case N_ENTRY:
3138                         // alternate entry: name,,n_sect,linenumber,address
3139                         symbol_section = section_info.GetSection(nlist.n_sect,
3140                                                                  nlist.n_value);
3141                         type = eSymbolTypeLineEntry;
3142                         break;
3143 
3144                       // Left and Right Braces
3145                       case N_LBRAC:
3146                         // left bracket: 0,,NO_SECT,nesting level,address We
3147                         // use the current number of symbols in the symbol
3148                         // table in lieu of using nlist_idx in case we ever
3149                         // start trimming entries out
3150                         symbol_section = section_info.GetSection(nlist.n_sect,
3151                                                                  nlist.n_value);
3152                         N_BRAC_indexes.push_back(sym_idx);
3153                         type = eSymbolTypeScopeBegin;
3154                         break;
3155 
3156                       case N_RBRAC:
3157                         // right bracket: 0,,NO_SECT,nesting level,address
3158                         // Set the size of the N_LBRAC to the terminating
3159                         // index of this N_RBRAC so that we can always skip
3160                         // the entire symbol if we need to navigate more
3161                         // quickly at the source level when parsing STABS
3162                         symbol_section = section_info.GetSection(nlist.n_sect,
3163                                                                  nlist.n_value);
3164                         if (!N_BRAC_indexes.empty()) {
3165                           symbol_ptr =
3166                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3167                           symbol_ptr->SetByteSize(sym_idx + 1);
3168                           symbol_ptr->SetSizeIsSibling(true);
3169                           N_BRAC_indexes.pop_back();
3170                         }
3171                         type = eSymbolTypeScopeEnd;
3172                         break;
3173 
3174                       case N_EXCL:
3175                         // deleted include file: name,,NO_SECT,0,sum
3176                         type = eSymbolTypeHeaderFile;
3177                         break;
3178 
3179                       // COMM scopes
3180                       case N_BCOMM:
3181                         // begin common: name,,NO_SECT,0,0
3182                         // We use the current number of symbols in the symbol
3183                         // table in lieu of using nlist_idx in case we ever
3184                         // start trimming entries out
3185                         type = eSymbolTypeScopeBegin;
3186                         N_COMM_indexes.push_back(sym_idx);
3187                         break;
3188 
3189                       case N_ECOML:
3190                         // end common (local name): 0,,n_sect,0,address
3191                         symbol_section = section_info.GetSection(nlist.n_sect,
3192                                                                  nlist.n_value);
3193                         // Fall through
3194 
3195                       case N_ECOMM:
3196                         // end common: name,,n_sect,0,0
3197                         // Set the size of the N_BCOMM to the terminating
3198                         // index of this N_ECOMM/N_ECOML so that we can
3199                         // always skip the entire symbol if we need to
3200                         // navigate more quickly at the source level when
3201                         // parsing STABS
3202                         if (!N_COMM_indexes.empty()) {
3203                           symbol_ptr =
3204                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3205                           symbol_ptr->SetByteSize(sym_idx + 1);
3206                           symbol_ptr->SetSizeIsSibling(true);
3207                           N_COMM_indexes.pop_back();
3208                         }
3209                         type = eSymbolTypeScopeEnd;
3210                         break;
3211 
3212                       case N_LENG:
3213                         // second stab entry with length information
3214                         type = eSymbolTypeAdditional;
3215                         break;
3216 
3217                       default:
3218                         break;
3219                       }
3220                     } else {
3221                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3222                       uint8_t n_type = N_TYPE & nlist.n_type;
3223                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3224 
3225                       switch (n_type) {
3226                       case N_INDR: {
3227                         const char *reexport_name_cstr =
3228                             strtab_data.PeekCStr(nlist.n_value);
3229                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3230                           type = eSymbolTypeReExported;
3231                           ConstString reexport_name(
3232                               reexport_name_cstr +
3233                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3234                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3235                           set_value = false;
3236                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3237                           indirect_symbol_names.insert(ConstString(
3238                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3239                         } else
3240                           type = eSymbolTypeUndefined;
3241                       } break;
3242 
3243                       case N_UNDF:
3244                         if (symbol_name && symbol_name[0]) {
3245                           ConstString undefined_name(
3246                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3247                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3248                         }
3249                       // Fall through
3250                       case N_PBUD:
3251                         type = eSymbolTypeUndefined;
3252                         break;
3253 
3254                       case N_ABS:
3255                         type = eSymbolTypeAbsolute;
3256                         break;
3257 
3258                       case N_SECT: {
3259                         symbol_section = section_info.GetSection(nlist.n_sect,
3260                                                                  nlist.n_value);
3261 
3262                         if (symbol_section == NULL) {
3263                           // TODO: warn about this?
3264                           add_nlist = false;
3265                           break;
3266                         }
3267 
3268                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3269                           type = eSymbolTypeException;
3270                         } else {
3271                           uint32_t section_type =
3272                               symbol_section->Get() & SECTION_TYPE;
3273 
3274                           switch (section_type) {
3275                           case S_CSTRING_LITERALS:
3276                             type = eSymbolTypeData;
3277                             break; // section with only literal C strings
3278                           case S_4BYTE_LITERALS:
3279                             type = eSymbolTypeData;
3280                             break; // section with only 4 byte literals
3281                           case S_8BYTE_LITERALS:
3282                             type = eSymbolTypeData;
3283                             break; // section with only 8 byte literals
3284                           case S_LITERAL_POINTERS:
3285                             type = eSymbolTypeTrampoline;
3286                             break; // section with only pointers to literals
3287                           case S_NON_LAZY_SYMBOL_POINTERS:
3288                             type = eSymbolTypeTrampoline;
3289                             break; // section with only non-lazy symbol
3290                                    // pointers
3291                           case S_LAZY_SYMBOL_POINTERS:
3292                             type = eSymbolTypeTrampoline;
3293                             break; // section with only lazy symbol pointers
3294                           case S_SYMBOL_STUBS:
3295                             type = eSymbolTypeTrampoline;
3296                             break; // section with only symbol stubs, byte
3297                                    // size of stub in the reserved2 field
3298                           case S_MOD_INIT_FUNC_POINTERS:
3299                             type = eSymbolTypeCode;
3300                             break; // section with only function pointers for
3301                                    // initialization
3302                           case S_MOD_TERM_FUNC_POINTERS:
3303                             type = eSymbolTypeCode;
3304                             break; // section with only function pointers for
3305                                    // termination
3306                           case S_INTERPOSING:
3307                             type = eSymbolTypeTrampoline;
3308                             break; // section with only pairs of function
3309                                    // pointers for interposing
3310                           case S_16BYTE_LITERALS:
3311                             type = eSymbolTypeData;
3312                             break; // section with only 16 byte literals
3313                           case S_DTRACE_DOF:
3314                             type = eSymbolTypeInstrumentation;
3315                             break;
3316                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3317                             type = eSymbolTypeTrampoline;
3318                             break;
3319                           default:
3320                             switch (symbol_section->GetType()) {
3321                             case lldb::eSectionTypeCode:
3322                               type = eSymbolTypeCode;
3323                               break;
3324                             case eSectionTypeData:
3325                             case eSectionTypeDataCString: // Inlined C string
3326                                                           // data
3327                             case eSectionTypeDataCStringPointers: // Pointers
3328                                                                   // to C
3329                                                                   // string
3330                                                                   // data
3331                             case eSectionTypeDataSymbolAddress:   // Address of
3332                                                                   // a symbol in
3333                                                                   // the symbol
3334                                                                   // table
3335                             case eSectionTypeData4:
3336                             case eSectionTypeData8:
3337                             case eSectionTypeData16:
3338                               type = eSymbolTypeData;
3339                               break;
3340                             default:
3341                               break;
3342                             }
3343                             break;
3344                           }
3345 
3346                           if (type == eSymbolTypeInvalid) {
3347                             const char *symbol_sect_name =
3348                                 symbol_section->GetName().AsCString();
3349                             if (symbol_section->IsDescendant(
3350                                     text_section_sp.get())) {
3351                               if (symbol_section->IsClear(
3352                                       S_ATTR_PURE_INSTRUCTIONS |
3353                                       S_ATTR_SELF_MODIFYING_CODE |
3354                                       S_ATTR_SOME_INSTRUCTIONS))
3355                                 type = eSymbolTypeData;
3356                               else
3357                                 type = eSymbolTypeCode;
3358                             } else if (symbol_section->IsDescendant(
3359                                            data_section_sp.get()) ||
3360                                        symbol_section->IsDescendant(
3361                                            data_dirty_section_sp.get()) ||
3362                                        symbol_section->IsDescendant(
3363                                            data_const_section_sp.get())) {
3364                               if (symbol_sect_name &&
3365                                   ::strstr(symbol_sect_name, "__objc") ==
3366                                       symbol_sect_name) {
3367                                 type = eSymbolTypeRuntime;
3368 
3369                                 if (symbol_name) {
3370                                   llvm::StringRef symbol_name_ref(symbol_name);
3371                                   if (symbol_name_ref.startswith("_OBJC_")) {
3372                                     llvm::StringRef
3373                                         g_objc_v2_prefix_class(
3374                                             "_OBJC_CLASS_$_");
3375                                     llvm::StringRef
3376                                         g_objc_v2_prefix_metaclass(
3377                                             "_OBJC_METACLASS_$_");
3378                                     llvm::StringRef
3379                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3380                                     if (symbol_name_ref.startswith(
3381                                             g_objc_v2_prefix_class)) {
3382                                       symbol_name_non_abi_mangled =
3383                                           symbol_name + 1;
3384                                       symbol_name =
3385                                           symbol_name +
3386                                           g_objc_v2_prefix_class.size();
3387                                       type = eSymbolTypeObjCClass;
3388                                       demangled_is_synthesized = true;
3389                                     } else if (
3390                                         symbol_name_ref.startswith(
3391                                             g_objc_v2_prefix_metaclass)) {
3392                                       symbol_name_non_abi_mangled =
3393                                           symbol_name + 1;
3394                                       symbol_name =
3395                                           symbol_name +
3396                                           g_objc_v2_prefix_metaclass.size();
3397                                       type = eSymbolTypeObjCMetaClass;
3398                                       demangled_is_synthesized = true;
3399                                     } else if (symbol_name_ref.startswith(
3400                                                    g_objc_v2_prefix_ivar)) {
3401                                       symbol_name_non_abi_mangled =
3402                                           symbol_name + 1;
3403                                       symbol_name =
3404                                           symbol_name +
3405                                           g_objc_v2_prefix_ivar.size();
3406                                       type = eSymbolTypeObjCIVar;
3407                                       demangled_is_synthesized = true;
3408                                     }
3409                                   }
3410                                 }
3411                               } else if (symbol_sect_name &&
3412                                          ::strstr(symbol_sect_name,
3413                                                   "__gcc_except_tab") ==
3414                                              symbol_sect_name) {
3415                                 type = eSymbolTypeException;
3416                               } else {
3417                                 type = eSymbolTypeData;
3418                               }
3419                             } else if (symbol_sect_name &&
3420                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3421                                            symbol_sect_name) {
3422                               type = eSymbolTypeTrampoline;
3423                             } else if (symbol_section->IsDescendant(
3424                                            objc_section_sp.get())) {
3425                               type = eSymbolTypeRuntime;
3426                               if (symbol_name && symbol_name[0] == '.') {
3427                                 llvm::StringRef symbol_name_ref(symbol_name);
3428                                 llvm::StringRef
3429                                     g_objc_v1_prefix_class(".objc_class_name_");
3430                                 if (symbol_name_ref.startswith(
3431                                         g_objc_v1_prefix_class)) {
3432                                   symbol_name_non_abi_mangled = symbol_name;
3433                                   symbol_name = symbol_name +
3434                                                 g_objc_v1_prefix_class.size();
3435                                   type = eSymbolTypeObjCClass;
3436                                   demangled_is_synthesized = true;
3437                                 }
3438                               }
3439                             }
3440                           }
3441                         }
3442                       } break;
3443                       }
3444                     }
3445 
3446                     if (add_nlist) {
3447                       uint64_t symbol_value = nlist.n_value;
3448                       if (symbol_name_non_abi_mangled) {
3449                         sym[sym_idx].GetMangled().SetMangledName(
3450                             ConstString(symbol_name_non_abi_mangled));
3451                         sym[sym_idx].GetMangled().SetDemangledName(
3452                             ConstString(symbol_name));
3453                       } else {
3454                         bool symbol_name_is_mangled = false;
3455 
3456                         if (symbol_name && symbol_name[0] == '_') {
3457                           symbol_name_is_mangled = symbol_name[1] == '_';
3458                           symbol_name++; // Skip the leading underscore
3459                         }
3460 
3461                         if (symbol_name) {
3462                           ConstString const_symbol_name(symbol_name);
3463                           sym[sym_idx].GetMangled().SetValue(
3464                               const_symbol_name, symbol_name_is_mangled);
3465                           if (is_gsym && is_debug) {
3466                             const char *gsym_name =
3467                                 sym[sym_idx]
3468                                     .GetMangled()
3469                                     .GetName(Mangled::ePreferMangled)
3470                                     .GetCString();
3471                             if (gsym_name)
3472                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3473                           }
3474                         }
3475                       }
3476                       if (symbol_section) {
3477                         const addr_t section_file_addr =
3478                             symbol_section->GetFileAddress();
3479                         if (symbol_byte_size == 0 &&
3480                             function_starts_count > 0) {
3481                           addr_t symbol_lookup_file_addr = nlist.n_value;
3482                           // Do an exact address match for non-ARM addresses,
3483                           // else get the closest since the symbol might be a
3484                           // thumb symbol which has an address with bit zero
3485                           // set
3486                           FunctionStarts::Entry *func_start_entry =
3487                               function_starts.FindEntry(symbol_lookup_file_addr,
3488                                                         !is_arm);
3489                           if (is_arm && func_start_entry) {
3490                             // Verify that the function start address is the
3491                             // symbol address (ARM) or the symbol address + 1
3492                             // (thumb)
3493                             if (func_start_entry->addr !=
3494                                     symbol_lookup_file_addr &&
3495                                 func_start_entry->addr !=
3496                                     (symbol_lookup_file_addr + 1)) {
3497                               // Not the right entry, NULL it out...
3498                               func_start_entry = NULL;
3499                             }
3500                           }
3501                           if (func_start_entry) {
3502                             func_start_entry->data = true;
3503 
3504                             addr_t symbol_file_addr = func_start_entry->addr;
3505                             uint32_t symbol_flags = 0;
3506                             if (is_arm) {
3507                               if (symbol_file_addr & 1)
3508                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3509                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3510                             }
3511 
3512                             const FunctionStarts::Entry *next_func_start_entry =
3513                                 function_starts.FindNextEntry(func_start_entry);
3514                             const addr_t section_end_file_addr =
3515                                 section_file_addr +
3516                                 symbol_section->GetByteSize();
3517                             if (next_func_start_entry) {
3518                               addr_t next_symbol_file_addr =
3519                                   next_func_start_entry->addr;
3520                               // Be sure the clear the Thumb address bit when
3521                               // we calculate the size from the current and
3522                               // next address
3523                               if (is_arm)
3524                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3525                               symbol_byte_size = std::min<lldb::addr_t>(
3526                                   next_symbol_file_addr - symbol_file_addr,
3527                                   section_end_file_addr - symbol_file_addr);
3528                             } else {
3529                               symbol_byte_size =
3530                                   section_end_file_addr - symbol_file_addr;
3531                             }
3532                           }
3533                         }
3534                         symbol_value -= section_file_addr;
3535                       }
3536 
3537                       if (is_debug == false) {
3538                         if (type == eSymbolTypeCode) {
3539                           // See if we can find a N_FUN entry for any code
3540                           // symbols. If we do find a match, and the name
3541                           // matches, then we can merge the two into just the
3542                           // function symbol to avoid duplicate entries in
3543                           // the symbol table
3544                           auto range =
3545                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3546                           if (range.first != range.second) {
3547                             bool found_it = false;
3548                             for (auto pos = range.first; pos != range.second;
3549                                  ++pos) {
3550                               if (sym[sym_idx].GetMangled().GetName(
3551                                       Mangled::ePreferMangled) ==
3552                                   sym[pos->second].GetMangled().GetName(
3553                                       Mangled::ePreferMangled)) {
3554                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3555                                 // We just need the flags from the linker
3556                                 // symbol, so put these flags
3557                                 // into the N_FUN flags to avoid duplicate
3558                                 // symbols in the symbol table
3559                                 sym[pos->second].SetExternal(
3560                                     sym[sym_idx].IsExternal());
3561                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3562                                                           nlist.n_desc);
3563                                 if (resolver_addresses.find(nlist.n_value) !=
3564                                     resolver_addresses.end())
3565                                   sym[pos->second].SetType(eSymbolTypeResolver);
3566                                 sym[sym_idx].Clear();
3567                                 found_it = true;
3568                                 break;
3569                               }
3570                             }
3571                             if (found_it)
3572                               continue;
3573                           } else {
3574                             if (resolver_addresses.find(nlist.n_value) !=
3575                                 resolver_addresses.end())
3576                               type = eSymbolTypeResolver;
3577                           }
3578                         } else if (type == eSymbolTypeData ||
3579                                    type == eSymbolTypeObjCClass ||
3580                                    type == eSymbolTypeObjCMetaClass ||
3581                                    type == eSymbolTypeObjCIVar) {
3582                           // See if we can find a N_STSYM entry for any data
3583                           // symbols. If we do find a match, and the name
3584                           // matches, then we can merge the two into just the
3585                           // Static symbol to avoid duplicate entries in the
3586                           // symbol table
3587                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3588                               nlist.n_value);
3589                           if (range.first != range.second) {
3590                             bool found_it = false;
3591                             for (auto pos = range.first; pos != range.second;
3592                                  ++pos) {
3593                               if (sym[sym_idx].GetMangled().GetName(
3594                                       Mangled::ePreferMangled) ==
3595                                   sym[pos->second].GetMangled().GetName(
3596                                       Mangled::ePreferMangled)) {
3597                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3598                                 // We just need the flags from the linker
3599                                 // symbol, so put these flags
3600                                 // into the N_STSYM flags to avoid duplicate
3601                                 // symbols in the symbol table
3602                                 sym[pos->second].SetExternal(
3603                                     sym[sym_idx].IsExternal());
3604                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3605                                                           nlist.n_desc);
3606                                 sym[sym_idx].Clear();
3607                                 found_it = true;
3608                                 break;
3609                               }
3610                             }
3611                             if (found_it)
3612                               continue;
3613                           } else {
3614                             const char *gsym_name =
3615                                 sym[sym_idx]
3616                                     .GetMangled()
3617                                     .GetName(Mangled::ePreferMangled)
3618                                     .GetCString();
3619                             if (gsym_name) {
3620                               // Combine N_GSYM stab entries with the non
3621                               // stab symbol
3622                               ConstNameToSymbolIndexMap::const_iterator pos =
3623                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3624                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3625                                 const uint32_t GSYM_sym_idx = pos->second;
3626                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3627                                     GSYM_sym_idx;
3628                                 // Copy the address, because often the N_GSYM
3629                                 // address has an invalid address of zero
3630                                 // when the global is a common symbol
3631                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3632                                     symbol_section);
3633                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3634                                     symbol_value);
3635                                 add_symbol_addr(sym[GSYM_sym_idx]
3636                                                     .GetAddress()
3637                                                     .GetFileAddress());
3638                                 // We just need the flags from the linker
3639                                 // symbol, so put these flags
3640                                 // into the N_GSYM flags to avoid duplicate
3641                                 // symbols in the symbol table
3642                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3643                                                            nlist.n_desc);
3644                                 sym[sym_idx].Clear();
3645                                 continue;
3646                               }
3647                             }
3648                           }
3649                         }
3650                       }
3651 
3652                       sym[sym_idx].SetID(nlist_idx);
3653                       sym[sym_idx].SetType(type);
3654                       if (set_value) {
3655                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3656                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3657                         add_symbol_addr(
3658                             sym[sym_idx].GetAddress().GetFileAddress());
3659                       }
3660                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3661 
3662                       if (symbol_byte_size > 0)
3663                         sym[sym_idx].SetByteSize(symbol_byte_size);
3664 
3665                       if (demangled_is_synthesized)
3666                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3667                       ++sym_idx;
3668                     } else {
3669                       sym[sym_idx].Clear();
3670                     }
3671                   }
3672                   /////////////////////////////
3673                 }
3674             }
3675 
3676             for (const auto &pos : reexport_shlib_needs_fixup) {
3677               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3678               if (undef_pos != undefined_name_to_desc.end()) {
3679                 const uint8_t dylib_ordinal =
3680                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3681                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3682                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3683                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3684               }
3685             }
3686           }
3687 
3688 #endif
3689   lldb::offset_t nlist_data_offset = 0;
3690 
3691   if (nlist_data.GetByteSize() > 0) {
3692 
3693     // If the sym array was not created while parsing the DSC unmapped
3694     // symbols, create it now.
3695     if (sym == nullptr) {
3696       sym =
3697           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3698       num_syms = symtab.GetNumSymbols();
3699     }
3700 
3701     if (unmapped_local_symbols_found) {
3702       assert(m_dysymtab.ilocalsym == 0);
3703       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3704       nlist_idx = m_dysymtab.nlocalsym;
3705     } else {
3706       nlist_idx = 0;
3707     }
3708 
3709     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3710     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3711     UndefinedNameToDescMap undefined_name_to_desc;
3712     SymbolIndexToName reexport_shlib_needs_fixup;
3713 
3714     // Symtab parsing is a huge mess. Everything is entangled and the code
3715     // requires access to a ridiculous amount of variables. LLDB depends
3716     // heavily on the proper merging of symbols and to get that right we need
3717     // to make sure we have parsed all the debug symbols first. Therefore we
3718     // invoke the lambda twice, once to parse only the debug symbols and then
3719     // once more to parse the remaining symbols.
3720     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3721                                  bool debug_only) {
3722       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3723       if (is_debug != debug_only)
3724         return true;
3725 
3726       const char *symbol_name_non_abi_mangled = nullptr;
3727       const char *symbol_name = nullptr;
3728 
3729       if (have_strtab_data) {
3730         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3731 
3732         if (symbol_name == nullptr) {
3733           // No symbol should be NULL, even the symbols with no string values
3734           // should have an offset zero which points to an empty C-string
3735           Host::SystemLog(Host::eSystemLogError,
3736                           "error: symbol[%u] has invalid string table offset "
3737                           "0x%x in %s, ignoring symbol\n",
3738                           nlist_idx, nlist.n_strx,
3739                           module_sp->GetFileSpec().GetPath().c_str());
3740           return true;
3741         }
3742         if (symbol_name[0] == '\0')
3743           symbol_name = nullptr;
3744       } else {
3745         const addr_t str_addr = strtab_addr + nlist.n_strx;
3746         Status str_error;
3747         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3748                                            str_error))
3749           symbol_name = memory_symbol_name.c_str();
3750       }
3751 
3752       SymbolType type = eSymbolTypeInvalid;
3753       SectionSP symbol_section;
3754       lldb::addr_t symbol_byte_size = 0;
3755       bool add_nlist = true;
3756       bool is_gsym = false;
3757       bool demangled_is_synthesized = false;
3758       bool set_value = true;
3759 
3760       assert(sym_idx < num_syms);
3761       sym[sym_idx].SetDebug(is_debug);
3762 
3763       if (is_debug) {
3764         switch (nlist.n_type) {
3765         case N_GSYM:
3766           // global symbol: name,,NO_SECT,type,0
3767           // Sometimes the N_GSYM value contains the address.
3768 
3769           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3770           // the ObjC data.  They
3771           // have the same address, but we want to ensure that we always find
3772           // only the real symbol, 'cause we don't currently correctly
3773           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3774           // type.  This is a temporary hack to make sure the ObjectiveC
3775           // symbols get treated correctly.  To do this right, we should
3776           // coalesce all the GSYM & global symbols that have the same
3777           // address.
3778           is_gsym = true;
3779           sym[sym_idx].SetExternal(true);
3780 
3781           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3782             llvm::StringRef symbol_name_ref(symbol_name);
3783             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3784               symbol_name_non_abi_mangled = symbol_name + 1;
3785               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3786               type = eSymbolTypeObjCClass;
3787               demangled_is_synthesized = true;
3788 
3789             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3790               symbol_name_non_abi_mangled = symbol_name + 1;
3791               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3792               type = eSymbolTypeObjCMetaClass;
3793               demangled_is_synthesized = true;
3794             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3795               symbol_name_non_abi_mangled = symbol_name + 1;
3796               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3797               type = eSymbolTypeObjCIVar;
3798               demangled_is_synthesized = true;
3799             }
3800           } else {
3801             if (nlist.n_value != 0)
3802               symbol_section =
3803                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3804             type = eSymbolTypeData;
3805           }
3806           break;
3807 
3808         case N_FNAME:
3809           // procedure name (f77 kludge): name,,NO_SECT,0,0
3810           type = eSymbolTypeCompiler;
3811           break;
3812 
3813         case N_FUN:
3814           // procedure: name,,n_sect,linenumber,address
3815           if (symbol_name) {
3816             type = eSymbolTypeCode;
3817             symbol_section =
3818                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3819 
3820             N_FUN_addr_to_sym_idx.insert(
3821                 std::make_pair(nlist.n_value, sym_idx));
3822             // We use the current number of symbols in the symbol table in
3823             // lieu of using nlist_idx in case we ever start trimming entries
3824             // out
3825             N_FUN_indexes.push_back(sym_idx);
3826           } else {
3827             type = eSymbolTypeCompiler;
3828 
3829             if (!N_FUN_indexes.empty()) {
3830               // Copy the size of the function into the original STAB entry
3831               // so we don't have to hunt for it later
3832               symtab.SymbolAtIndex(N_FUN_indexes.back())
3833                   ->SetByteSize(nlist.n_value);
3834               N_FUN_indexes.pop_back();
3835               // We don't really need the end function STAB as it contains
3836               // the size which we already placed with the original symbol,
3837               // so don't add it if we want a minimal symbol table
3838               add_nlist = false;
3839             }
3840           }
3841           break;
3842 
3843         case N_STSYM:
3844           // static symbol: name,,n_sect,type,address
3845           N_STSYM_addr_to_sym_idx.insert(
3846               std::make_pair(nlist.n_value, sym_idx));
3847           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3848           if (symbol_name && symbol_name[0]) {
3849             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3850                                                      eSymbolTypeData);
3851           }
3852           break;
3853 
3854         case N_LCSYM:
3855           // .lcomm symbol: name,,n_sect,type,address
3856           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3857           type = eSymbolTypeCommonBlock;
3858           break;
3859 
3860         case N_BNSYM:
3861           // We use the current number of symbols in the symbol table in lieu
3862           // of using nlist_idx in case we ever start trimming entries out
3863           // Skip these if we want minimal symbol tables
3864           add_nlist = false;
3865           break;
3866 
3867         case N_ENSYM:
3868           // Set the size of the N_BNSYM to the terminating index of this
3869           // N_ENSYM so that we can always skip the entire symbol if we need
3870           // to navigate more quickly at the source level when parsing STABS
3871           // Skip these if we want minimal symbol tables
3872           add_nlist = false;
3873           break;
3874 
3875         case N_OPT:
3876           // emitted with gcc2_compiled and in gcc source
3877           type = eSymbolTypeCompiler;
3878           break;
3879 
3880         case N_RSYM:
3881           // register sym: name,,NO_SECT,type,register
3882           type = eSymbolTypeVariable;
3883           break;
3884 
3885         case N_SLINE:
3886           // src line: 0,,n_sect,linenumber,address
3887           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3888           type = eSymbolTypeLineEntry;
3889           break;
3890 
3891         case N_SSYM:
3892           // structure elt: name,,NO_SECT,type,struct_offset
3893           type = eSymbolTypeVariableType;
3894           break;
3895 
3896         case N_SO:
3897           // source file name
3898           type = eSymbolTypeSourceFile;
3899           if (symbol_name == nullptr) {
3900             add_nlist = false;
3901             if (N_SO_index != UINT32_MAX) {
3902               // Set the size of the N_SO to the terminating index of this
3903               // N_SO so that we can always skip the entire N_SO if we need
3904               // to navigate more quickly at the source level when parsing
3905               // STABS
3906               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3907               symbol_ptr->SetByteSize(sym_idx);
3908               symbol_ptr->SetSizeIsSibling(true);
3909             }
3910             N_NSYM_indexes.clear();
3911             N_INCL_indexes.clear();
3912             N_BRAC_indexes.clear();
3913             N_COMM_indexes.clear();
3914             N_FUN_indexes.clear();
3915             N_SO_index = UINT32_MAX;
3916           } else {
3917             // We use the current number of symbols in the symbol table in
3918             // lieu of using nlist_idx in case we ever start trimming entries
3919             // out
3920             const bool N_SO_has_full_path = symbol_name[0] == '/';
3921             if (N_SO_has_full_path) {
3922               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3923                 // We have two consecutive N_SO entries where the first
3924                 // contains a directory and the second contains a full path.
3925                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3926                                                        false);
3927                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3928                 add_nlist = false;
3929               } else {
3930                 // This is the first entry in a N_SO that contains a
3931                 // directory or a full path to the source file
3932                 N_SO_index = sym_idx;
3933               }
3934             } else if ((N_SO_index == sym_idx - 1) &&
3935                        ((sym_idx - 1) < num_syms)) {
3936               // This is usually the second N_SO entry that contains just the
3937               // filename, so here we combine it with the first one if we are
3938               // minimizing the symbol table
3939               const char *so_path =
3940                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3941               if (so_path && so_path[0]) {
3942                 std::string full_so_path(so_path);
3943                 const size_t double_slash_pos = full_so_path.find("//");
3944                 if (double_slash_pos != std::string::npos) {
3945                   // The linker has been generating bad N_SO entries with
3946                   // doubled up paths in the format "%s%s" where the first
3947                   // string in the DW_AT_comp_dir, and the second is the
3948                   // directory for the source file so you end up with a path
3949                   // that looks like "/tmp/src//tmp/src/"
3950                   FileSpec so_dir(so_path);
3951                   if (!FileSystem::Instance().Exists(so_dir)) {
3952                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3953                                    FileSpec::Style::native);
3954                     if (FileSystem::Instance().Exists(so_dir)) {
3955                       // Trim off the incorrect path
3956                       full_so_path.erase(0, double_slash_pos + 1);
3957                     }
3958                   }
3959                 }
3960                 if (*full_so_path.rbegin() != '/')
3961                   full_so_path += '/';
3962                 full_so_path += symbol_name;
3963                 sym[sym_idx - 1].GetMangled().SetValue(
3964                     ConstString(full_so_path.c_str()), false);
3965                 add_nlist = false;
3966                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3967               }
3968             } else {
3969               // This could be a relative path to a N_SO
3970               N_SO_index = sym_idx;
3971             }
3972           }
3973           break;
3974 
3975         case N_OSO:
3976           // object file name: name,,0,0,st_mtime
3977           type = eSymbolTypeObjectFile;
3978           break;
3979 
3980         case N_LSYM:
3981           // local sym: name,,NO_SECT,type,offset
3982           type = eSymbolTypeLocal;
3983           break;
3984 
3985         // INCL scopes
3986         case N_BINCL:
3987           // include file beginning: name,,NO_SECT,0,sum We use the current
3988           // number of symbols in the symbol table in lieu of using nlist_idx
3989           // in case we ever start trimming entries out
3990           N_INCL_indexes.push_back(sym_idx);
3991           type = eSymbolTypeScopeBegin;
3992           break;
3993 
3994         case N_EINCL:
3995           // include file end: name,,NO_SECT,0,0
3996           // Set the size of the N_BINCL to the terminating index of this
3997           // N_EINCL so that we can always skip the entire symbol if we need
3998           // to navigate more quickly at the source level when parsing STABS
3999           if (!N_INCL_indexes.empty()) {
4000             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
4001             symbol_ptr->SetByteSize(sym_idx + 1);
4002             symbol_ptr->SetSizeIsSibling(true);
4003             N_INCL_indexes.pop_back();
4004           }
4005           type = eSymbolTypeScopeEnd;
4006           break;
4007 
4008         case N_SOL:
4009           // #included file name: name,,n_sect,0,address
4010           type = eSymbolTypeHeaderFile;
4011 
4012           // We currently don't use the header files on darwin
4013           add_nlist = false;
4014           break;
4015 
4016         case N_PARAMS:
4017           // compiler parameters: name,,NO_SECT,0,0
4018           type = eSymbolTypeCompiler;
4019           break;
4020 
4021         case N_VERSION:
4022           // compiler version: name,,NO_SECT,0,0
4023           type = eSymbolTypeCompiler;
4024           break;
4025 
4026         case N_OLEVEL:
4027           // compiler -O level: name,,NO_SECT,0,0
4028           type = eSymbolTypeCompiler;
4029           break;
4030 
4031         case N_PSYM:
4032           // parameter: name,,NO_SECT,type,offset
4033           type = eSymbolTypeVariable;
4034           break;
4035 
4036         case N_ENTRY:
4037           // alternate entry: name,,n_sect,linenumber,address
4038           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4039           type = eSymbolTypeLineEntry;
4040           break;
4041 
4042         // Left and Right Braces
4043         case N_LBRAC:
4044           // left bracket: 0,,NO_SECT,nesting level,address We use the
4045           // current number of symbols in the symbol table in lieu of using
4046           // nlist_idx in case we ever start trimming entries out
4047           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4048           N_BRAC_indexes.push_back(sym_idx);
4049           type = eSymbolTypeScopeBegin;
4050           break;
4051 
4052         case N_RBRAC:
4053           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4054           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4055           // can always skip the entire symbol if we need to navigate more
4056           // quickly at the source level when parsing STABS
4057           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4058           if (!N_BRAC_indexes.empty()) {
4059             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4060             symbol_ptr->SetByteSize(sym_idx + 1);
4061             symbol_ptr->SetSizeIsSibling(true);
4062             N_BRAC_indexes.pop_back();
4063           }
4064           type = eSymbolTypeScopeEnd;
4065           break;
4066 
4067         case N_EXCL:
4068           // deleted include file: name,,NO_SECT,0,sum
4069           type = eSymbolTypeHeaderFile;
4070           break;
4071 
4072         // COMM scopes
4073         case N_BCOMM:
4074           // begin common: name,,NO_SECT,0,0
4075           // We use the current number of symbols in the symbol table in lieu
4076           // of using nlist_idx in case we ever start trimming entries out
4077           type = eSymbolTypeScopeBegin;
4078           N_COMM_indexes.push_back(sym_idx);
4079           break;
4080 
4081         case N_ECOML:
4082           // end common (local name): 0,,n_sect,0,address
4083           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4084           LLVM_FALLTHROUGH;
4085 
4086         case N_ECOMM:
4087           // end common: name,,n_sect,0,0
4088           // Set the size of the N_BCOMM to the terminating index of this
4089           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4090           // we need to navigate more quickly at the source level when
4091           // parsing STABS
4092           if (!N_COMM_indexes.empty()) {
4093             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4094             symbol_ptr->SetByteSize(sym_idx + 1);
4095             symbol_ptr->SetSizeIsSibling(true);
4096             N_COMM_indexes.pop_back();
4097           }
4098           type = eSymbolTypeScopeEnd;
4099           break;
4100 
4101         case N_LENG:
4102           // second stab entry with length information
4103           type = eSymbolTypeAdditional;
4104           break;
4105 
4106         default:
4107           break;
4108         }
4109       } else {
4110         uint8_t n_type = N_TYPE & nlist.n_type;
4111         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4112 
4113         switch (n_type) {
4114         case N_INDR: {
4115           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4116           if (reexport_name_cstr && reexport_name_cstr[0]) {
4117             type = eSymbolTypeReExported;
4118             ConstString reexport_name(reexport_name_cstr +
4119                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4120             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4121             set_value = false;
4122             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4123             indirect_symbol_names.insert(
4124                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4125           } else
4126             type = eSymbolTypeUndefined;
4127         } break;
4128 
4129         case N_UNDF:
4130           if (symbol_name && symbol_name[0]) {
4131             ConstString undefined_name(symbol_name +
4132                                        ((symbol_name[0] == '_') ? 1 : 0));
4133             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4134           }
4135           LLVM_FALLTHROUGH;
4136 
4137         case N_PBUD:
4138           type = eSymbolTypeUndefined;
4139           break;
4140 
4141         case N_ABS:
4142           type = eSymbolTypeAbsolute;
4143           break;
4144 
4145         case N_SECT: {
4146           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4147 
4148           if (!symbol_section) {
4149             // TODO: warn about this?
4150             add_nlist = false;
4151             break;
4152           }
4153 
4154           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4155             type = eSymbolTypeException;
4156           } else {
4157             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4158 
4159             switch (section_type) {
4160             case S_CSTRING_LITERALS:
4161               type = eSymbolTypeData;
4162               break; // section with only literal C strings
4163             case S_4BYTE_LITERALS:
4164               type = eSymbolTypeData;
4165               break; // section with only 4 byte literals
4166             case S_8BYTE_LITERALS:
4167               type = eSymbolTypeData;
4168               break; // section with only 8 byte literals
4169             case S_LITERAL_POINTERS:
4170               type = eSymbolTypeTrampoline;
4171               break; // section with only pointers to literals
4172             case S_NON_LAZY_SYMBOL_POINTERS:
4173               type = eSymbolTypeTrampoline;
4174               break; // section with only non-lazy symbol pointers
4175             case S_LAZY_SYMBOL_POINTERS:
4176               type = eSymbolTypeTrampoline;
4177               break; // section with only lazy symbol pointers
4178             case S_SYMBOL_STUBS:
4179               type = eSymbolTypeTrampoline;
4180               break; // section with only symbol stubs, byte size of stub in
4181                      // the reserved2 field
4182             case S_MOD_INIT_FUNC_POINTERS:
4183               type = eSymbolTypeCode;
4184               break; // section with only function pointers for initialization
4185             case S_MOD_TERM_FUNC_POINTERS:
4186               type = eSymbolTypeCode;
4187               break; // section with only function pointers for termination
4188             case S_INTERPOSING:
4189               type = eSymbolTypeTrampoline;
4190               break; // section with only pairs of function pointers for
4191                      // interposing
4192             case S_16BYTE_LITERALS:
4193               type = eSymbolTypeData;
4194               break; // section with only 16 byte literals
4195             case S_DTRACE_DOF:
4196               type = eSymbolTypeInstrumentation;
4197               break;
4198             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4199               type = eSymbolTypeTrampoline;
4200               break;
4201             default:
4202               switch (symbol_section->GetType()) {
4203               case lldb::eSectionTypeCode:
4204                 type = eSymbolTypeCode;
4205                 break;
4206               case eSectionTypeData:
4207               case eSectionTypeDataCString:         // Inlined C string data
4208               case eSectionTypeDataCStringPointers: // Pointers to C string
4209                                                     // data
4210               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4211                                                     // the symbol table
4212               case eSectionTypeData4:
4213               case eSectionTypeData8:
4214               case eSectionTypeData16:
4215                 type = eSymbolTypeData;
4216                 break;
4217               default:
4218                 break;
4219               }
4220               break;
4221             }
4222 
4223             if (type == eSymbolTypeInvalid) {
4224               const char *symbol_sect_name =
4225                   symbol_section->GetName().AsCString();
4226               if (symbol_section->IsDescendant(text_section_sp.get())) {
4227                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4228                                             S_ATTR_SELF_MODIFYING_CODE |
4229                                             S_ATTR_SOME_INSTRUCTIONS))
4230                   type = eSymbolTypeData;
4231                 else
4232                   type = eSymbolTypeCode;
4233               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4234                          symbol_section->IsDescendant(
4235                              data_dirty_section_sp.get()) ||
4236                          symbol_section->IsDescendant(
4237                              data_const_section_sp.get())) {
4238                 if (symbol_sect_name &&
4239                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4240                   type = eSymbolTypeRuntime;
4241 
4242                   if (symbol_name) {
4243                     llvm::StringRef symbol_name_ref(symbol_name);
4244                     if (symbol_name_ref.startswith("_OBJC_")) {
4245                       llvm::StringRef g_objc_v2_prefix_class(
4246                           "_OBJC_CLASS_$_");
4247                       llvm::StringRef g_objc_v2_prefix_metaclass(
4248                           "_OBJC_METACLASS_$_");
4249                       llvm::StringRef g_objc_v2_prefix_ivar(
4250                           "_OBJC_IVAR_$_");
4251                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4252                         symbol_name_non_abi_mangled = symbol_name + 1;
4253                         symbol_name =
4254                             symbol_name + g_objc_v2_prefix_class.size();
4255                         type = eSymbolTypeObjCClass;
4256                         demangled_is_synthesized = true;
4257                       } else if (symbol_name_ref.startswith(
4258                                      g_objc_v2_prefix_metaclass)) {
4259                         symbol_name_non_abi_mangled = symbol_name + 1;
4260                         symbol_name =
4261                             symbol_name + g_objc_v2_prefix_metaclass.size();
4262                         type = eSymbolTypeObjCMetaClass;
4263                         demangled_is_synthesized = true;
4264                       } else if (symbol_name_ref.startswith(
4265                                      g_objc_v2_prefix_ivar)) {
4266                         symbol_name_non_abi_mangled = symbol_name + 1;
4267                         symbol_name =
4268                             symbol_name + g_objc_v2_prefix_ivar.size();
4269                         type = eSymbolTypeObjCIVar;
4270                         demangled_is_synthesized = true;
4271                       }
4272                     }
4273                   }
4274                 } else if (symbol_sect_name &&
4275                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4276                                symbol_sect_name) {
4277                   type = eSymbolTypeException;
4278                 } else {
4279                   type = eSymbolTypeData;
4280                 }
4281               } else if (symbol_sect_name &&
4282                          ::strstr(symbol_sect_name, "__IMPORT") ==
4283                              symbol_sect_name) {
4284                 type = eSymbolTypeTrampoline;
4285               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4286                 type = eSymbolTypeRuntime;
4287                 if (symbol_name && symbol_name[0] == '.') {
4288                   llvm::StringRef symbol_name_ref(symbol_name);
4289                   llvm::StringRef g_objc_v1_prefix_class(
4290                       ".objc_class_name_");
4291                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4292                     symbol_name_non_abi_mangled = symbol_name;
4293                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4294                     type = eSymbolTypeObjCClass;
4295                     demangled_is_synthesized = true;
4296                   }
4297                 }
4298               }
4299             }
4300           }
4301         } break;
4302         }
4303       }
4304 
4305       if (!add_nlist) {
4306         sym[sym_idx].Clear();
4307         return true;
4308       }
4309 
4310       uint64_t symbol_value = nlist.n_value;
4311 
4312       if (symbol_name_non_abi_mangled) {
4313         sym[sym_idx].GetMangled().SetMangledName(
4314             ConstString(symbol_name_non_abi_mangled));
4315         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4316       } else {
4317         bool symbol_name_is_mangled = false;
4318 
4319         if (symbol_name && symbol_name[0] == '_') {
4320           symbol_name_is_mangled = symbol_name[1] == '_';
4321           symbol_name++; // Skip the leading underscore
4322         }
4323 
4324         if (symbol_name) {
4325           ConstString const_symbol_name(symbol_name);
4326           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4327                                              symbol_name_is_mangled);
4328         }
4329       }
4330 
4331       if (is_gsym) {
4332         const char *gsym_name = sym[sym_idx]
4333                                     .GetMangled()
4334                                     .GetName(Mangled::ePreferMangled)
4335                                     .GetCString();
4336         if (gsym_name)
4337           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4338       }
4339 
4340       if (symbol_section) {
4341         const addr_t section_file_addr = symbol_section->GetFileAddress();
4342         if (symbol_byte_size == 0 && function_starts_count > 0) {
4343           addr_t symbol_lookup_file_addr = nlist.n_value;
4344           // Do an exact address match for non-ARM addresses, else get the
4345           // closest since the symbol might be a thumb symbol which has an
4346           // address with bit zero set.
4347           FunctionStarts::Entry *func_start_entry =
4348               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4349           if (is_arm && func_start_entry) {
4350             // Verify that the function start address is the symbol address
4351             // (ARM) or the symbol address + 1 (thumb).
4352             if (func_start_entry->addr != symbol_lookup_file_addr &&
4353                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4354               // Not the right entry, NULL it out...
4355               func_start_entry = nullptr;
4356             }
4357           }
4358           if (func_start_entry) {
4359             func_start_entry->data = true;
4360 
4361             addr_t symbol_file_addr = func_start_entry->addr;
4362             if (is_arm)
4363               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4364 
4365             const FunctionStarts::Entry *next_func_start_entry =
4366                 function_starts.FindNextEntry(func_start_entry);
4367             const addr_t section_end_file_addr =
4368                 section_file_addr + symbol_section->GetByteSize();
4369             if (next_func_start_entry) {
4370               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4371               // Be sure the clear the Thumb address bit when we calculate the
4372               // size from the current and next address
4373               if (is_arm)
4374                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4375               symbol_byte_size = std::min<lldb::addr_t>(
4376                   next_symbol_file_addr - symbol_file_addr,
4377                   section_end_file_addr - symbol_file_addr);
4378             } else {
4379               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4380             }
4381           }
4382         }
4383         symbol_value -= section_file_addr;
4384       }
4385 
4386       if (!is_debug) {
4387         if (type == eSymbolTypeCode) {
4388           // See if we can find a N_FUN entry for any code symbols. If we do
4389           // find a match, and the name matches, then we can merge the two into
4390           // just the function symbol to avoid duplicate entries in the symbol
4391           // table.
4392           std::pair<ValueToSymbolIndexMap::const_iterator,
4393                     ValueToSymbolIndexMap::const_iterator>
4394               range;
4395           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4396           if (range.first != range.second) {
4397             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4398                  pos != range.second; ++pos) {
4399               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4400                   sym[pos->second].GetMangled().GetName(
4401                       Mangled::ePreferMangled)) {
4402                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4403                 // We just need the flags from the linker symbol, so put these
4404                 // flags into the N_FUN flags to avoid duplicate symbols in the
4405                 // symbol table.
4406                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4407                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4408                 if (resolver_addresses.find(nlist.n_value) !=
4409                     resolver_addresses.end())
4410                   sym[pos->second].SetType(eSymbolTypeResolver);
4411                 sym[sym_idx].Clear();
4412                 return true;
4413               }
4414             }
4415           } else {
4416             if (resolver_addresses.find(nlist.n_value) !=
4417                 resolver_addresses.end())
4418               type = eSymbolTypeResolver;
4419           }
4420         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4421                    type == eSymbolTypeObjCMetaClass ||
4422                    type == eSymbolTypeObjCIVar) {
4423           // See if we can find a N_STSYM entry for any data symbols. If we do
4424           // find a match, and the name matches, then we can merge the two into
4425           // just the Static symbol to avoid duplicate entries in the symbol
4426           // table.
4427           std::pair<ValueToSymbolIndexMap::const_iterator,
4428                     ValueToSymbolIndexMap::const_iterator>
4429               range;
4430           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4431           if (range.first != range.second) {
4432             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4433                  pos != range.second; ++pos) {
4434               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4435                   sym[pos->second].GetMangled().GetName(
4436                       Mangled::ePreferMangled)) {
4437                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4438                 // We just need the flags from the linker symbol, so put these
4439                 // flags into the N_STSYM flags to avoid duplicate symbols in
4440                 // the symbol table.
4441                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4442                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4443                 sym[sym_idx].Clear();
4444                 return true;
4445               }
4446             }
4447           } else {
4448             // Combine N_GSYM stab entries with the non stab symbol.
4449             const char *gsym_name = sym[sym_idx]
4450                                         .GetMangled()
4451                                         .GetName(Mangled::ePreferMangled)
4452                                         .GetCString();
4453             if (gsym_name) {
4454               ConstNameToSymbolIndexMap::const_iterator pos =
4455                   N_GSYM_name_to_sym_idx.find(gsym_name);
4456               if (pos != N_GSYM_name_to_sym_idx.end()) {
4457                 const uint32_t GSYM_sym_idx = pos->second;
4458                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4459                 // Copy the address, because often the N_GSYM address has an
4460                 // invalid address of zero when the global is a common symbol.
4461                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4462                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4463                 add_symbol_addr(
4464                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4465                 // We just need the flags from the linker symbol, so put these
4466                 // flags into the N_GSYM flags to avoid duplicate symbols in
4467                 // the symbol table.
4468                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4469                 sym[sym_idx].Clear();
4470                 return true;
4471               }
4472             }
4473           }
4474         }
4475       }
4476 
4477       sym[sym_idx].SetID(nlist_idx);
4478       sym[sym_idx].SetType(type);
4479       if (set_value) {
4480         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4481         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4482         if (symbol_section)
4483           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4484       }
4485       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4486       if (nlist.n_desc & N_WEAK_REF)
4487         sym[sym_idx].SetIsWeak(true);
4488 
4489       if (symbol_byte_size > 0)
4490         sym[sym_idx].SetByteSize(symbol_byte_size);
4491 
4492       if (demangled_is_synthesized)
4493         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4494 
4495       ++sym_idx;
4496       return true;
4497     };
4498 
4499     // First parse all the nlists but don't process them yet. See the next
4500     // comment for an explanation why.
4501     std::vector<struct nlist_64> nlists;
4502     nlists.reserve(symtab_load_command.nsyms);
4503     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4504       if (auto nlist =
4505               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4506         nlists.push_back(*nlist);
4507       else
4508         break;
4509     }
4510 
4511     // Now parse all the debug symbols. This is needed to merge non-debug
4512     // symbols in the next step. Non-debug symbols are always coalesced into
4513     // the debug symbol. Doing this in one step would mean that some symbols
4514     // won't be merged.
4515     nlist_idx = 0;
4516     for (auto &nlist : nlists) {
4517       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4518         break;
4519     }
4520 
4521     // Finally parse all the non debug symbols.
4522     nlist_idx = 0;
4523     for (auto &nlist : nlists) {
4524       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4525         break;
4526     }
4527 
4528     for (const auto &pos : reexport_shlib_needs_fixup) {
4529       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4530       if (undef_pos != undefined_name_to_desc.end()) {
4531         const uint8_t dylib_ordinal =
4532             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4533         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4534           sym[pos.first].SetReExportedSymbolSharedLibrary(
4535               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4536       }
4537     }
4538   }
4539 
4540   // Count how many trie symbols we'll add to the symbol table
4541   int trie_symbol_table_augment_count = 0;
4542   for (auto &e : external_sym_trie_entries) {
4543     if (symbols_added.find(e.entry.address) == symbols_added.end())
4544       trie_symbol_table_augment_count++;
4545   }
4546 
4547   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4548     num_syms = sym_idx + trie_symbol_table_augment_count;
4549     sym = symtab.Resize(num_syms);
4550   }
4551   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4552 
4553   // Add symbols from the trie to the symbol table.
4554   for (auto &e : external_sym_trie_entries) {
4555     if (symbols_added.contains(e.entry.address))
4556       continue;
4557 
4558     // Find the section that this trie address is in, use that to annotate
4559     // symbol type as we add the trie address and name to the symbol table.
4560     Address symbol_addr;
4561     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4562       SectionSP symbol_section(symbol_addr.GetSection());
4563       const char *symbol_name = e.entry.name.GetCString();
4564       bool demangled_is_synthesized = false;
4565       SymbolType type =
4566           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4567                         data_section_sp, data_dirty_section_sp,
4568                         data_const_section_sp, symbol_section);
4569 
4570       sym[sym_idx].SetType(type);
4571       if (symbol_section) {
4572         sym[sym_idx].SetID(synthetic_sym_id++);
4573         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4574         if (demangled_is_synthesized)
4575           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4576         sym[sym_idx].SetIsSynthetic(true);
4577         sym[sym_idx].SetExternal(true);
4578         sym[sym_idx].GetAddressRef() = symbol_addr;
4579         add_symbol_addr(symbol_addr.GetFileAddress());
4580         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4581           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4582         ++sym_idx;
4583       }
4584     }
4585   }
4586 
4587   if (function_starts_count > 0) {
4588     uint32_t num_synthetic_function_symbols = 0;
4589     for (i = 0; i < function_starts_count; ++i) {
4590       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4591           symbols_added.end())
4592         ++num_synthetic_function_symbols;
4593     }
4594 
4595     if (num_synthetic_function_symbols > 0) {
4596       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4597         num_syms = sym_idx + num_synthetic_function_symbols;
4598         sym = symtab.Resize(num_syms);
4599       }
4600       for (i = 0; i < function_starts_count; ++i) {
4601         const FunctionStarts::Entry *func_start_entry =
4602             function_starts.GetEntryAtIndex(i);
4603         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4604           addr_t symbol_file_addr = func_start_entry->addr;
4605           uint32_t symbol_flags = 0;
4606           if (func_start_entry->data)
4607             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4608           Address symbol_addr;
4609           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4610             SectionSP symbol_section(symbol_addr.GetSection());
4611             uint32_t symbol_byte_size = 0;
4612             if (symbol_section) {
4613               const addr_t section_file_addr = symbol_section->GetFileAddress();
4614               const FunctionStarts::Entry *next_func_start_entry =
4615                   function_starts.FindNextEntry(func_start_entry);
4616               const addr_t section_end_file_addr =
4617                   section_file_addr + symbol_section->GetByteSize();
4618               if (next_func_start_entry) {
4619                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4620                 if (is_arm)
4621                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4622                 symbol_byte_size = std::min<lldb::addr_t>(
4623                     next_symbol_file_addr - symbol_file_addr,
4624                     section_end_file_addr - symbol_file_addr);
4625               } else {
4626                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4627               }
4628               sym[sym_idx].SetID(synthetic_sym_id++);
4629               // Don't set the name for any synthetic symbols, the Symbol
4630               // object will generate one if needed when the name is accessed
4631               // via accessors.
4632               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4633               sym[sym_idx].SetType(eSymbolTypeCode);
4634               sym[sym_idx].SetIsSynthetic(true);
4635               sym[sym_idx].GetAddressRef() = symbol_addr;
4636               add_symbol_addr(symbol_addr.GetFileAddress());
4637               if (symbol_flags)
4638                 sym[sym_idx].SetFlags(symbol_flags);
4639               if (symbol_byte_size)
4640                 sym[sym_idx].SetByteSize(symbol_byte_size);
4641               ++sym_idx;
4642             }
4643           }
4644         }
4645       }
4646     }
4647   }
4648 
4649   // Trim our symbols down to just what we ended up with after removing any
4650   // symbols.
4651   if (sym_idx < num_syms) {
4652     num_syms = sym_idx;
4653     sym = symtab.Resize(num_syms);
4654   }
4655 
4656   // Now synthesize indirect symbols
4657   if (m_dysymtab.nindirectsyms != 0) {
4658     if (indirect_symbol_index_data.GetByteSize()) {
4659       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4660           m_nlist_idx_to_sym_idx.end();
4661 
4662       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4663            ++sect_idx) {
4664         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4665             S_SYMBOL_STUBS) {
4666           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4667           if (symbol_stub_byte_size == 0)
4668             continue;
4669 
4670           const uint32_t num_symbol_stubs =
4671               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4672 
4673           if (num_symbol_stubs == 0)
4674             continue;
4675 
4676           const uint32_t symbol_stub_index_offset =
4677               m_mach_sections[sect_idx].reserved1;
4678           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4679             const uint32_t symbol_stub_index =
4680                 symbol_stub_index_offset + stub_idx;
4681             const lldb::addr_t symbol_stub_addr =
4682                 m_mach_sections[sect_idx].addr +
4683                 (stub_idx * symbol_stub_byte_size);
4684             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4685             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4686                     symbol_stub_offset, 4)) {
4687               const uint32_t stub_sym_id =
4688                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4689               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4690                 continue;
4691 
4692               NListIndexToSymbolIndexMap::const_iterator index_pos =
4693                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4694               Symbol *stub_symbol = nullptr;
4695               if (index_pos != end_index_pos) {
4696                 // We have a remapping from the original nlist index to a
4697                 // current symbol index, so just look this up by index
4698                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4699               } else {
4700                 // We need to lookup a symbol using the original nlist symbol
4701                 // index since this index is coming from the S_SYMBOL_STUBS
4702                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4703               }
4704 
4705               if (stub_symbol) {
4706                 Address so_addr(symbol_stub_addr, section_list);
4707 
4708                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4709                   // Change the external symbol into a trampoline that makes
4710                   // sense These symbols were N_UNDF N_EXT, and are useless
4711                   // to us, so we can re-use them so we don't have to make up
4712                   // a synthetic symbol for no good reason.
4713                   if (resolver_addresses.find(symbol_stub_addr) ==
4714                       resolver_addresses.end())
4715                     stub_symbol->SetType(eSymbolTypeTrampoline);
4716                   else
4717                     stub_symbol->SetType(eSymbolTypeResolver);
4718                   stub_symbol->SetExternal(false);
4719                   stub_symbol->GetAddressRef() = so_addr;
4720                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4721                 } else {
4722                   // Make a synthetic symbol to describe the trampoline stub
4723                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4724                   if (sym_idx >= num_syms) {
4725                     sym = symtab.Resize(++num_syms);
4726                     stub_symbol = nullptr; // this pointer no longer valid
4727                   }
4728                   sym[sym_idx].SetID(synthetic_sym_id++);
4729                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4730                   if (resolver_addresses.find(symbol_stub_addr) ==
4731                       resolver_addresses.end())
4732                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4733                   else
4734                     sym[sym_idx].SetType(eSymbolTypeResolver);
4735                   sym[sym_idx].SetIsSynthetic(true);
4736                   sym[sym_idx].GetAddressRef() = so_addr;
4737                   add_symbol_addr(so_addr.GetFileAddress());
4738                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4739                   ++sym_idx;
4740                 }
4741               } else {
4742                 if (log)
4743                   log->Warning("symbol stub referencing symbol table symbol "
4744                                "%u that isn't in our minimal symbol table, "
4745                                "fix this!!!",
4746                                stub_sym_id);
4747               }
4748             }
4749           }
4750         }
4751       }
4752     }
4753   }
4754 
4755   if (!reexport_trie_entries.empty()) {
4756     for (const auto &e : reexport_trie_entries) {
4757       if (e.entry.import_name) {
4758         // Only add indirect symbols from the Trie entries if we didn't have
4759         // a N_INDR nlist entry for this already
4760         if (indirect_symbol_names.find(e.entry.name) ==
4761             indirect_symbol_names.end()) {
4762           // Make a synthetic symbol to describe re-exported symbol.
4763           if (sym_idx >= num_syms)
4764             sym = symtab.Resize(++num_syms);
4765           sym[sym_idx].SetID(synthetic_sym_id++);
4766           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4767           sym[sym_idx].SetType(eSymbolTypeReExported);
4768           sym[sym_idx].SetIsSynthetic(true);
4769           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4770           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4771             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4772                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4773           }
4774           ++sym_idx;
4775         }
4776       }
4777     }
4778   }
4779 }
4780 
4781 void ObjectFileMachO::Dump(Stream *s) {
4782   ModuleSP module_sp(GetModule());
4783   if (module_sp) {
4784     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4785     s->Printf("%p: ", static_cast<void *>(this));
4786     s->Indent();
4787     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4788       s->PutCString("ObjectFileMachO64");
4789     else
4790       s->PutCString("ObjectFileMachO32");
4791 
4792     *s << ", file = '" << m_file;
4793     ModuleSpecList all_specs;
4794     ModuleSpec base_spec;
4795     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4796                     base_spec, all_specs);
4797     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4798       *s << "', triple";
4799       if (e)
4800         s->Printf("[%d]", i);
4801       *s << " = ";
4802       *s << all_specs.GetModuleSpecRefAtIndex(i)
4803                 .GetArchitecture()
4804                 .GetTriple()
4805                 .getTriple();
4806     }
4807     *s << "\n";
4808     SectionList *sections = GetSectionList();
4809     if (sections)
4810       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4811                      UINT32_MAX);
4812 
4813     if (m_symtab_up)
4814       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4815   }
4816 }
4817 
4818 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4819                               const lldb_private::DataExtractor &data,
4820                               lldb::offset_t lc_offset) {
4821   uint32_t i;
4822   llvm::MachO::uuid_command load_cmd;
4823 
4824   lldb::offset_t offset = lc_offset;
4825   for (i = 0; i < header.ncmds; ++i) {
4826     const lldb::offset_t cmd_offset = offset;
4827     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4828       break;
4829 
4830     if (load_cmd.cmd == LC_UUID) {
4831       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4832 
4833       if (uuid_bytes) {
4834         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4835         // We pretend these object files have no UUID to prevent crashing.
4836 
4837         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4838                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4839                                        0xbb, 0x14, 0xf0, 0x0d};
4840 
4841         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4842           return UUID();
4843 
4844         return UUID::fromOptionalData(uuid_bytes, 16);
4845       }
4846       return UUID();
4847     }
4848     offset = cmd_offset + load_cmd.cmdsize;
4849   }
4850   return UUID();
4851 }
4852 
4853 static llvm::StringRef GetOSName(uint32_t cmd) {
4854   switch (cmd) {
4855   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4856     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4857   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4858     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4859   case llvm::MachO::LC_VERSION_MIN_TVOS:
4860     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4861   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4862     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4863   default:
4864     llvm_unreachable("unexpected LC_VERSION load command");
4865   }
4866 }
4867 
4868 namespace {
4869 struct OSEnv {
4870   llvm::StringRef os_type;
4871   llvm::StringRef environment;
4872   OSEnv(uint32_t cmd) {
4873     switch (cmd) {
4874     case llvm::MachO::PLATFORM_MACOS:
4875       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4876       return;
4877     case llvm::MachO::PLATFORM_IOS:
4878       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4879       return;
4880     case llvm::MachO::PLATFORM_TVOS:
4881       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4882       return;
4883     case llvm::MachO::PLATFORM_WATCHOS:
4884       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4885       return;
4886     // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
4887     // NEED_BRIDGEOS_TRIPLE
4888     // case llvm::MachO::PLATFORM_BRIDGEOS:
4889     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4890     //   return;
4891     // case llvm::MachO::PLATFORM_DRIVERKIT:
4892     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4893     //   return;
4894     case llvm::MachO::PLATFORM_MACCATALYST:
4895       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4896       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4897       return;
4898     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4899       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4900       environment =
4901           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4902       return;
4903     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4904       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4905       environment =
4906           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4907       return;
4908     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4909       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4910       environment =
4911           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4912       return;
4913     default: {
4914       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4915       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4916     }
4917     }
4918   }
4919 };
4920 
4921 struct MinOS {
4922   uint32_t major_version, minor_version, patch_version;
4923   MinOS(uint32_t version)
4924       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4925         patch_version(version & 0xffu) {}
4926 };
4927 } // namespace
4928 
4929 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4930                                       const lldb_private::DataExtractor &data,
4931                                       lldb::offset_t lc_offset,
4932                                       ModuleSpec &base_spec,
4933                                       lldb_private::ModuleSpecList &all_specs) {
4934   auto &base_arch = base_spec.GetArchitecture();
4935   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4936   if (!base_arch.IsValid())
4937     return;
4938 
4939   bool found_any = false;
4940   auto add_triple = [&](const llvm::Triple &triple) {
4941     auto spec = base_spec;
4942     spec.GetArchitecture().GetTriple() = triple;
4943     if (spec.GetArchitecture().IsValid()) {
4944       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4945       all_specs.Append(spec);
4946       found_any = true;
4947     }
4948   };
4949 
4950   // Set OS to an unspecified unknown or a "*" so it can match any OS
4951   llvm::Triple base_triple = base_arch.GetTriple();
4952   base_triple.setOS(llvm::Triple::UnknownOS);
4953   base_triple.setOSName(llvm::StringRef());
4954 
4955   if (header.filetype == MH_PRELOAD) {
4956     if (header.cputype == CPU_TYPE_ARM) {
4957       // If this is a 32-bit arm binary, and it's a standalone binary, force
4958       // the Vendor to Apple so we don't accidentally pick up the generic
4959       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4960       // frame pointer register; most other armv7 ABIs use a combination of
4961       // r7 and r11.
4962       base_triple.setVendor(llvm::Triple::Apple);
4963     } else {
4964       // Set vendor to an unspecified unknown or a "*" so it can match any
4965       // vendor This is required for correct behavior of EFI debugging on
4966       // x86_64
4967       base_triple.setVendor(llvm::Triple::UnknownVendor);
4968       base_triple.setVendorName(llvm::StringRef());
4969     }
4970     return add_triple(base_triple);
4971   }
4972 
4973   llvm::MachO::load_command load_cmd;
4974 
4975   // See if there is an LC_VERSION_MIN_* load command that can give
4976   // us the OS type.
4977   lldb::offset_t offset = lc_offset;
4978   for (uint32_t i = 0; i < header.ncmds; ++i) {
4979     const lldb::offset_t cmd_offset = offset;
4980     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4981       break;
4982 
4983     llvm::MachO::version_min_command version_min;
4984     switch (load_cmd.cmd) {
4985     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4986     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4987     case llvm::MachO::LC_VERSION_MIN_TVOS:
4988     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4989       if (load_cmd.cmdsize != sizeof(version_min))
4990         break;
4991       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4992                             data.GetByteOrder(), &version_min) == 0)
4993         break;
4994       MinOS min_os(version_min.version);
4995       llvm::SmallString<32> os_name;
4996       llvm::raw_svector_ostream os(os_name);
4997       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4998          << min_os.minor_version << '.' << min_os.patch_version;
4999 
5000       auto triple = base_triple;
5001       triple.setOSName(os.str());
5002 
5003       // Disambiguate legacy simulator platforms.
5004       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5005           (base_triple.getArch() == llvm::Triple::x86_64 ||
5006            base_triple.getArch() == llvm::Triple::x86)) {
5007         // The combination of legacy LC_VERSION_MIN load command and
5008         // x86 architecture always indicates a simulator environment.
5009         // The combination of LC_VERSION_MIN and arm architecture only
5010         // appears for native binaries. Back-deploying simulator
5011         // binaries on Apple Silicon Macs use the modern unambigous
5012         // LC_BUILD_VERSION load commands; no special handling required.
5013         triple.setEnvironment(llvm::Triple::Simulator);
5014       }
5015       add_triple(triple);
5016       break;
5017     }
5018     default:
5019       break;
5020     }
5021 
5022     offset = cmd_offset + load_cmd.cmdsize;
5023   }
5024 
5025   // See if there are LC_BUILD_VERSION load commands that can give
5026   // us the OS type.
5027   offset = lc_offset;
5028   for (uint32_t i = 0; i < header.ncmds; ++i) {
5029     const lldb::offset_t cmd_offset = offset;
5030     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5031       break;
5032 
5033     do {
5034       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5035         llvm::MachO::build_version_command build_version;
5036         if (load_cmd.cmdsize < sizeof(build_version)) {
5037           // Malformed load command.
5038           break;
5039         }
5040         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5041                               data.GetByteOrder(), &build_version) == 0)
5042           break;
5043         MinOS min_os(build_version.minos);
5044         OSEnv os_env(build_version.platform);
5045         llvm::SmallString<16> os_name;
5046         llvm::raw_svector_ostream os(os_name);
5047         os << os_env.os_type << min_os.major_version << '.'
5048            << min_os.minor_version << '.' << min_os.patch_version;
5049         auto triple = base_triple;
5050         triple.setOSName(os.str());
5051         os_name.clear();
5052         if (!os_env.environment.empty())
5053           triple.setEnvironmentName(os_env.environment);
5054         add_triple(triple);
5055       }
5056     } while (false);
5057     offset = cmd_offset + load_cmd.cmdsize;
5058   }
5059 
5060   if (!found_any) {
5061     add_triple(base_triple);
5062   }
5063 }
5064 
5065 ArchSpec ObjectFileMachO::GetArchitecture(
5066     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5067     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5068   ModuleSpecList all_specs;
5069   ModuleSpec base_spec;
5070   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5071                   base_spec, all_specs);
5072 
5073   // If the object file offers multiple alternative load commands,
5074   // pick the one that matches the module.
5075   if (module_sp) {
5076     const ArchSpec &module_arch = module_sp->GetArchitecture();
5077     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5078       ArchSpec mach_arch =
5079           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5080       if (module_arch.IsCompatibleMatch(mach_arch))
5081         return mach_arch;
5082     }
5083   }
5084 
5085   // Return the first arch we found.
5086   if (all_specs.GetSize() == 0)
5087     return {};
5088   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5089 }
5090 
5091 UUID ObjectFileMachO::GetUUID() {
5092   ModuleSP module_sp(GetModule());
5093   if (module_sp) {
5094     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5095     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5096     return GetUUID(m_header, m_data, offset);
5097   }
5098   return UUID();
5099 }
5100 
5101 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5102   uint32_t count = 0;
5103   ModuleSP module_sp(GetModule());
5104   if (module_sp) {
5105     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5106     llvm::MachO::load_command load_cmd;
5107     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5108     std::vector<std::string> rpath_paths;
5109     std::vector<std::string> rpath_relative_paths;
5110     std::vector<std::string> at_exec_relative_paths;
5111     uint32_t i;
5112     for (i = 0; i < m_header.ncmds; ++i) {
5113       const uint32_t cmd_offset = offset;
5114       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5115         break;
5116 
5117       switch (load_cmd.cmd) {
5118       case LC_RPATH:
5119       case LC_LOAD_DYLIB:
5120       case LC_LOAD_WEAK_DYLIB:
5121       case LC_REEXPORT_DYLIB:
5122       case LC_LOAD_DYLINKER:
5123       case LC_LOADFVMLIB:
5124       case LC_LOAD_UPWARD_DYLIB: {
5125         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5126         const char *path = m_data.PeekCStr(name_offset);
5127         if (path) {
5128           if (load_cmd.cmd == LC_RPATH)
5129             rpath_paths.push_back(path);
5130           else {
5131             if (path[0] == '@') {
5132               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5133                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5134               else if (strncmp(path, "@executable_path",
5135                                strlen("@executable_path")) == 0)
5136                 at_exec_relative_paths.push_back(path +
5137                                                  strlen("@executable_path"));
5138             } else {
5139               FileSpec file_spec(path);
5140               if (files.AppendIfUnique(file_spec))
5141                 count++;
5142             }
5143           }
5144         }
5145       } break;
5146 
5147       default:
5148         break;
5149       }
5150       offset = cmd_offset + load_cmd.cmdsize;
5151     }
5152 
5153     FileSpec this_file_spec(m_file);
5154     FileSystem::Instance().Resolve(this_file_spec);
5155 
5156     if (!rpath_paths.empty()) {
5157       // Fixup all LC_RPATH values to be absolute paths
5158       std::string loader_path("@loader_path");
5159       std::string executable_path("@executable_path");
5160       for (auto &rpath : rpath_paths) {
5161         if (llvm::StringRef(rpath).startswith(loader_path)) {
5162           rpath.erase(0, loader_path.size());
5163           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5164         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5165           rpath.erase(0, executable_path.size());
5166           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5167         }
5168       }
5169 
5170       for (const auto &rpath_relative_path : rpath_relative_paths) {
5171         for (const auto &rpath : rpath_paths) {
5172           std::string path = rpath;
5173           path += rpath_relative_path;
5174           // It is OK to resolve this path because we must find a file on disk
5175           // for us to accept it anyway if it is rpath relative.
5176           FileSpec file_spec(path);
5177           FileSystem::Instance().Resolve(file_spec);
5178           if (FileSystem::Instance().Exists(file_spec) &&
5179               files.AppendIfUnique(file_spec)) {
5180             count++;
5181             break;
5182           }
5183         }
5184       }
5185     }
5186 
5187     // We may have @executable_paths but no RPATHS.  Figure those out here.
5188     // Only do this if this object file is the executable.  We have no way to
5189     // get back to the actual executable otherwise, so we won't get the right
5190     // path.
5191     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5192       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5193       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5194         FileSpec file_spec =
5195             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5196         if (FileSystem::Instance().Exists(file_spec) &&
5197             files.AppendIfUnique(file_spec))
5198           count++;
5199       }
5200     }
5201   }
5202   return count;
5203 }
5204 
5205 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5206   // If the object file is not an executable it can't hold the entry point.
5207   // m_entry_point_address is initialized to an invalid address, so we can just
5208   // return that. If m_entry_point_address is valid it means we've found it
5209   // already, so return the cached value.
5210 
5211   if ((!IsExecutable() && !IsDynamicLoader()) ||
5212       m_entry_point_address.IsValid()) {
5213     return m_entry_point_address;
5214   }
5215 
5216   // Otherwise, look for the UnixThread or Thread command.  The data for the
5217   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5218   //
5219   //  uint32_t flavor  - this is the flavor argument you would pass to
5220   //  thread_get_state
5221   //  uint32_t count   - this is the count of longs in the thread state data
5222   //  struct XXX_thread_state state - this is the structure from
5223   //  <machine/thread_status.h> corresponding to the flavor.
5224   //  <repeat this trio>
5225   //
5226   // So we just keep reading the various register flavors till we find the GPR
5227   // one, then read the PC out of there.
5228   // FIXME: We will need to have a "RegisterContext data provider" class at some
5229   // point that can get all the registers
5230   // out of data in this form & attach them to a given thread.  That should
5231   // underlie the MacOS X User process plugin, and we'll also need it for the
5232   // MacOS X Core File process plugin.  When we have that we can also use it
5233   // here.
5234   //
5235   // For now we hard-code the offsets and flavors we need:
5236   //
5237   //
5238 
5239   ModuleSP module_sp(GetModule());
5240   if (module_sp) {
5241     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5242     llvm::MachO::load_command load_cmd;
5243     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5244     uint32_t i;
5245     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5246     bool done = false;
5247 
5248     for (i = 0; i < m_header.ncmds; ++i) {
5249       const lldb::offset_t cmd_offset = offset;
5250       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5251         break;
5252 
5253       switch (load_cmd.cmd) {
5254       case LC_UNIXTHREAD:
5255       case LC_THREAD: {
5256         while (offset < cmd_offset + load_cmd.cmdsize) {
5257           uint32_t flavor = m_data.GetU32(&offset);
5258           uint32_t count = m_data.GetU32(&offset);
5259           if (count == 0) {
5260             // We've gotten off somehow, log and exit;
5261             return m_entry_point_address;
5262           }
5263 
5264           switch (m_header.cputype) {
5265           case llvm::MachO::CPU_TYPE_ARM:
5266             if (flavor == 1 ||
5267                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5268                              // from mach/arm/thread_status.h
5269             {
5270               offset += 60; // This is the offset of pc in the GPR thread state
5271                             // data structure.
5272               start_address = m_data.GetU32(&offset);
5273               done = true;
5274             }
5275             break;
5276           case llvm::MachO::CPU_TYPE_ARM64:
5277           case llvm::MachO::CPU_TYPE_ARM64_32:
5278             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5279             {
5280               offset += 256; // This is the offset of pc in the GPR thread state
5281                              // data structure.
5282               start_address = m_data.GetU64(&offset);
5283               done = true;
5284             }
5285             break;
5286           case llvm::MachO::CPU_TYPE_I386:
5287             if (flavor ==
5288                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5289             {
5290               offset += 40; // This is the offset of eip in the GPR thread state
5291                             // data structure.
5292               start_address = m_data.GetU32(&offset);
5293               done = true;
5294             }
5295             break;
5296           case llvm::MachO::CPU_TYPE_X86_64:
5297             if (flavor ==
5298                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5299             {
5300               offset += 16 * 8; // This is the offset of rip in the GPR thread
5301                                 // state data structure.
5302               start_address = m_data.GetU64(&offset);
5303               done = true;
5304             }
5305             break;
5306           default:
5307             return m_entry_point_address;
5308           }
5309           // Haven't found the GPR flavor yet, skip over the data for this
5310           // flavor:
5311           if (done)
5312             break;
5313           offset += count * 4;
5314         }
5315       } break;
5316       case LC_MAIN: {
5317         ConstString text_segment_name("__TEXT");
5318         uint64_t entryoffset = m_data.GetU64(&offset);
5319         SectionSP text_segment_sp =
5320             GetSectionList()->FindSectionByName(text_segment_name);
5321         if (text_segment_sp) {
5322           done = true;
5323           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5324         }
5325       } break;
5326 
5327       default:
5328         break;
5329       }
5330       if (done)
5331         break;
5332 
5333       // Go to the next load command:
5334       offset = cmd_offset + load_cmd.cmdsize;
5335     }
5336 
5337     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5338       if (GetSymtab()) {
5339         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5340             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5341             Symtab::eDebugAny, Symtab::eVisibilityAny);
5342         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5343           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5344         }
5345       }
5346     }
5347 
5348     if (start_address != LLDB_INVALID_ADDRESS) {
5349       // We got the start address from the load commands, so now resolve that
5350       // address in the sections of this ObjectFile:
5351       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5352               start_address, GetSectionList())) {
5353         m_entry_point_address.Clear();
5354       }
5355     } else {
5356       // We couldn't read the UnixThread load command - maybe it wasn't there.
5357       // As a fallback look for the "start" symbol in the main executable.
5358 
5359       ModuleSP module_sp(GetModule());
5360 
5361       if (module_sp) {
5362         SymbolContextList contexts;
5363         SymbolContext context;
5364         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5365                                               eSymbolTypeCode, contexts);
5366         if (contexts.GetSize()) {
5367           if (contexts.GetContextAtIndex(0, context))
5368             m_entry_point_address = context.symbol->GetAddress();
5369         }
5370       }
5371     }
5372   }
5373 
5374   return m_entry_point_address;
5375 }
5376 
5377 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5378   lldb_private::Address header_addr;
5379   SectionList *section_list = GetSectionList();
5380   if (section_list) {
5381     SectionSP text_segment_sp(
5382         section_list->FindSectionByName(GetSegmentNameTEXT()));
5383     if (text_segment_sp) {
5384       header_addr.SetSection(text_segment_sp);
5385       header_addr.SetOffset(0);
5386     }
5387   }
5388   return header_addr;
5389 }
5390 
5391 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5392   ModuleSP module_sp(GetModule());
5393   if (module_sp) {
5394     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5395     if (!m_thread_context_offsets_valid) {
5396       m_thread_context_offsets_valid = true;
5397       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5398       FileRangeArray::Entry file_range;
5399       llvm::MachO::thread_command thread_cmd;
5400       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5401         const uint32_t cmd_offset = offset;
5402         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5403           break;
5404 
5405         if (thread_cmd.cmd == LC_THREAD) {
5406           file_range.SetRangeBase(offset);
5407           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5408           m_thread_context_offsets.Append(file_range);
5409         }
5410         offset = cmd_offset + thread_cmd.cmdsize;
5411       }
5412     }
5413   }
5414   return m_thread_context_offsets.GetSize();
5415 }
5416 
5417 std::string ObjectFileMachO::GetIdentifierString() {
5418   std::string result;
5419   ModuleSP module_sp(GetModule());
5420   if (module_sp) {
5421     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5422 
5423     // First, look over the load commands for an LC_NOTE load command with
5424     // data_owner string "kern ver str" & use that if found.
5425     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5426     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5427       const uint32_t cmd_offset = offset;
5428       llvm::MachO::load_command lc;
5429       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5430         break;
5431       if (lc.cmd == LC_NOTE) {
5432         char data_owner[17];
5433         m_data.CopyData(offset, 16, data_owner);
5434         data_owner[16] = '\0';
5435         offset += 16;
5436         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5437         uint64_t size = m_data.GetU64_unchecked(&offset);
5438 
5439         // "kern ver str" has a uint32_t version and then a nul terminated
5440         // c-string.
5441         if (strcmp("kern ver str", data_owner) == 0) {
5442           offset = fileoff;
5443           uint32_t version;
5444           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5445             if (version == 1) {
5446               uint32_t strsize = size - sizeof(uint32_t);
5447               char *buf = (char *)malloc(strsize);
5448               if (buf) {
5449                 m_data.CopyData(offset, strsize, buf);
5450                 buf[strsize - 1] = '\0';
5451                 result = buf;
5452                 if (buf)
5453                   free(buf);
5454                 return result;
5455               }
5456             }
5457           }
5458         }
5459       }
5460       offset = cmd_offset + lc.cmdsize;
5461     }
5462 
5463     // Second, make a pass over the load commands looking for an obsolete
5464     // LC_IDENT load command.
5465     offset = MachHeaderSizeFromMagic(m_header.magic);
5466     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5467       const uint32_t cmd_offset = offset;
5468       llvm::MachO::ident_command ident_command;
5469       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5470         break;
5471       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5472         char *buf = (char *)malloc(ident_command.cmdsize);
5473         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5474                                               buf) == ident_command.cmdsize) {
5475           buf[ident_command.cmdsize - 1] = '\0';
5476           result = buf;
5477         }
5478         if (buf)
5479           free(buf);
5480       }
5481       offset = cmd_offset + ident_command.cmdsize;
5482     }
5483   }
5484   return result;
5485 }
5486 
5487 addr_t ObjectFileMachO::GetAddressMask() {
5488   addr_t mask = 0;
5489   ModuleSP module_sp(GetModule());
5490   if (module_sp) {
5491     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5492     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5493     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5494       const uint32_t cmd_offset = offset;
5495       llvm::MachO::load_command lc;
5496       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5497         break;
5498       if (lc.cmd == LC_NOTE) {
5499         char data_owner[17];
5500         m_data.CopyData(offset, 16, data_owner);
5501         data_owner[16] = '\0';
5502         offset += 16;
5503         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5504 
5505         // "addrable bits" has a uint32_t version and a uint32_t
5506         // number of bits used in addressing.
5507         if (strcmp("addrable bits", data_owner) == 0) {
5508           offset = fileoff;
5509           uint32_t version;
5510           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5511             if (version == 3) {
5512               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5513               if (num_addr_bits != 0) {
5514                 mask = ~((1ULL << num_addr_bits) - 1);
5515               }
5516               break;
5517             }
5518           }
5519         }
5520       }
5521       offset = cmd_offset + lc.cmdsize;
5522     }
5523   }
5524   return mask;
5525 }
5526 
5527 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5528                                                 bool &value_is_offset,
5529                                                 UUID &uuid,
5530                                                 ObjectFile::BinaryType &type) {
5531   value = LLDB_INVALID_ADDRESS;
5532   value_is_offset = false;
5533   uuid.Clear();
5534   uint32_t log2_pagesize = 0; // not currently passed up to caller
5535   uint32_t platform = 0;      // not currently passed up to caller
5536   ModuleSP module_sp(GetModule());
5537   if (module_sp) {
5538     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5539     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5540     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5541       const uint32_t cmd_offset = offset;
5542       llvm::MachO::load_command lc;
5543       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5544         break;
5545       if (lc.cmd == LC_NOTE) {
5546         char data_owner[17];
5547         memset(data_owner, 0, sizeof(data_owner));
5548         m_data.CopyData(offset, 16, data_owner);
5549         offset += 16;
5550         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5551         uint64_t size = m_data.GetU64_unchecked(&offset);
5552 
5553         // struct main_bin_spec
5554         // {
5555         //     uint32_t version;       // currently 2
5556         //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5557         //                             // 2 == user process,
5558         //                             // 3 == standalone binary
5559         //     uint64_t address;       // UINT64_MAX if address not specified
5560         //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5561         //                             // 0 if no slide needs to be applied to
5562         //                             // file address
5563         //     uuid_t   uuid;          // all zero's if uuid not specified
5564         //     uint32_t log2_pagesize; // process page size in log base 2,
5565         //                             // e.g. 4k pages are 12.
5566         //                             // 0 for unspecified
5567         //     uint32_t platform;      // The Mach-O platform for this corefile.
5568         //                             // 0 for unspecified.
5569         //                             // The values are defined in
5570         //                             // <mach-o/loader.h>, PLATFORM_*.
5571         // } __attribute((packed));
5572 
5573         // "main bin spec" (main binary specification) data payload is
5574         // formatted:
5575         //    uint32_t version       [currently 1]
5576         //    uint32_t type          [0 == unspecified, 1 == kernel,
5577         //                            2 == user process, 3 == firmware ]
5578         //    uint64_t address       [ UINT64_MAX if address not specified ]
5579         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5580         //    uint32_t log2_pagesize [ process page size in log base
5581         //                             2, e.g. 4k pages are 12.
5582         //                             0 for unspecified ]
5583         //    uint32_t unused        [ for alignment ]
5584 
5585         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5586           offset = fileoff;
5587           uint32_t version;
5588           if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
5589             uint32_t binspec_type = 0;
5590             uuid_t raw_uuid;
5591             memset(raw_uuid, 0, sizeof(uuid_t));
5592 
5593             if (!m_data.GetU32(&offset, &binspec_type, 1))
5594               return false;
5595             if (!m_data.GetU64(&offset, &value, 1))
5596               return false;
5597             uint64_t slide = LLDB_INVALID_ADDRESS;
5598             if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
5599               return false;
5600             if (value == LLDB_INVALID_ADDRESS &&
5601                 slide != LLDB_INVALID_ADDRESS) {
5602               value = slide;
5603               value_is_offset = true;
5604             }
5605 
5606             if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5607               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5608               // convert the "main bin spec" type into our
5609               // ObjectFile::BinaryType enum
5610               switch (binspec_type) {
5611               case 0:
5612                 type = eBinaryTypeUnknown;
5613                 break;
5614               case 1:
5615                 type = eBinaryTypeKernel;
5616                 break;
5617               case 2:
5618                 type = eBinaryTypeUser;
5619                 break;
5620               case 3:
5621                 type = eBinaryTypeStandalone;
5622                 break;
5623               }
5624               if (!m_data.GetU32(&offset, &log2_pagesize, 1))
5625                 return false;
5626               if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
5627                 return false;
5628               return true;
5629             }
5630           }
5631         }
5632       }
5633       offset = cmd_offset + lc.cmdsize;
5634     }
5635   }
5636   return false;
5637 }
5638 
5639 lldb::RegisterContextSP
5640 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5641                                          lldb_private::Thread &thread) {
5642   lldb::RegisterContextSP reg_ctx_sp;
5643 
5644   ModuleSP module_sp(GetModule());
5645   if (module_sp) {
5646     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5647     if (!m_thread_context_offsets_valid)
5648       GetNumThreadContexts();
5649 
5650     const FileRangeArray::Entry *thread_context_file_range =
5651         m_thread_context_offsets.GetEntryAtIndex(idx);
5652     if (thread_context_file_range) {
5653 
5654       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5655                          thread_context_file_range->GetByteSize());
5656 
5657       switch (m_header.cputype) {
5658       case llvm::MachO::CPU_TYPE_ARM64:
5659       case llvm::MachO::CPU_TYPE_ARM64_32:
5660         reg_ctx_sp =
5661             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5662         break;
5663 
5664       case llvm::MachO::CPU_TYPE_ARM:
5665         reg_ctx_sp =
5666             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5667         break;
5668 
5669       case llvm::MachO::CPU_TYPE_I386:
5670         reg_ctx_sp =
5671             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5672         break;
5673 
5674       case llvm::MachO::CPU_TYPE_X86_64:
5675         reg_ctx_sp =
5676             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5677         break;
5678       }
5679     }
5680   }
5681   return reg_ctx_sp;
5682 }
5683 
5684 ObjectFile::Type ObjectFileMachO::CalculateType() {
5685   switch (m_header.filetype) {
5686   case MH_OBJECT: // 0x1u
5687     if (GetAddressByteSize() == 4) {
5688       // 32 bit kexts are just object files, but they do have a valid
5689       // UUID load command.
5690       if (GetUUID()) {
5691         // this checking for the UUID load command is not enough we could
5692         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5693         // this is required of kexts
5694         if (m_strata == eStrataInvalid)
5695           m_strata = eStrataKernel;
5696         return eTypeSharedLibrary;
5697       }
5698     }
5699     return eTypeObjectFile;
5700 
5701   case MH_EXECUTE:
5702     return eTypeExecutable; // 0x2u
5703   case MH_FVMLIB:
5704     return eTypeSharedLibrary; // 0x3u
5705   case MH_CORE:
5706     return eTypeCoreFile; // 0x4u
5707   case MH_PRELOAD:
5708     return eTypeSharedLibrary; // 0x5u
5709   case MH_DYLIB:
5710     return eTypeSharedLibrary; // 0x6u
5711   case MH_DYLINKER:
5712     return eTypeDynamicLinker; // 0x7u
5713   case MH_BUNDLE:
5714     return eTypeSharedLibrary; // 0x8u
5715   case MH_DYLIB_STUB:
5716     return eTypeStubLibrary; // 0x9u
5717   case MH_DSYM:
5718     return eTypeDebugInfo; // 0xAu
5719   case MH_KEXT_BUNDLE:
5720     return eTypeSharedLibrary; // 0xBu
5721   default:
5722     break;
5723   }
5724   return eTypeUnknown;
5725 }
5726 
5727 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5728   switch (m_header.filetype) {
5729   case MH_OBJECT: // 0x1u
5730   {
5731     // 32 bit kexts are just object files, but they do have a valid
5732     // UUID load command.
5733     if (GetUUID()) {
5734       // this checking for the UUID load command is not enough we could
5735       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5736       // this is required of kexts
5737       if (m_type == eTypeInvalid)
5738         m_type = eTypeSharedLibrary;
5739 
5740       return eStrataKernel;
5741     }
5742   }
5743     return eStrataUnknown;
5744 
5745   case MH_EXECUTE: // 0x2u
5746     // Check for the MH_DYLDLINK bit in the flags
5747     if (m_header.flags & MH_DYLDLINK) {
5748       return eStrataUser;
5749     } else {
5750       SectionList *section_list = GetSectionList();
5751       if (section_list) {
5752         static ConstString g_kld_section_name("__KLD");
5753         if (section_list->FindSectionByName(g_kld_section_name))
5754           return eStrataKernel;
5755       }
5756     }
5757     return eStrataRawImage;
5758 
5759   case MH_FVMLIB:
5760     return eStrataUser; // 0x3u
5761   case MH_CORE:
5762     return eStrataUnknown; // 0x4u
5763   case MH_PRELOAD:
5764     return eStrataRawImage; // 0x5u
5765   case MH_DYLIB:
5766     return eStrataUser; // 0x6u
5767   case MH_DYLINKER:
5768     return eStrataUser; // 0x7u
5769   case MH_BUNDLE:
5770     return eStrataUser; // 0x8u
5771   case MH_DYLIB_STUB:
5772     return eStrataUser; // 0x9u
5773   case MH_DSYM:
5774     return eStrataUnknown; // 0xAu
5775   case MH_KEXT_BUNDLE:
5776     return eStrataKernel; // 0xBu
5777   default:
5778     break;
5779   }
5780   return eStrataUnknown;
5781 }
5782 
5783 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5784   ModuleSP module_sp(GetModule());
5785   if (module_sp) {
5786     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5787     llvm::MachO::dylib_command load_cmd;
5788     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5789     uint32_t version_cmd = 0;
5790     uint64_t version = 0;
5791     uint32_t i;
5792     for (i = 0; i < m_header.ncmds; ++i) {
5793       const lldb::offset_t cmd_offset = offset;
5794       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5795         break;
5796 
5797       if (load_cmd.cmd == LC_ID_DYLIB) {
5798         if (version_cmd == 0) {
5799           version_cmd = load_cmd.cmd;
5800           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5801             break;
5802           version = load_cmd.dylib.current_version;
5803         }
5804         break; // Break for now unless there is another more complete version
5805                // number load command in the future.
5806       }
5807       offset = cmd_offset + load_cmd.cmdsize;
5808     }
5809 
5810     if (version_cmd == LC_ID_DYLIB) {
5811       unsigned major = (version & 0xFFFF0000ull) >> 16;
5812       unsigned minor = (version & 0x0000FF00ull) >> 8;
5813       unsigned subminor = (version & 0x000000FFull);
5814       return llvm::VersionTuple(major, minor, subminor);
5815     }
5816   }
5817   return llvm::VersionTuple();
5818 }
5819 
5820 ArchSpec ObjectFileMachO::GetArchitecture() {
5821   ModuleSP module_sp(GetModule());
5822   ArchSpec arch;
5823   if (module_sp) {
5824     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5825 
5826     return GetArchitecture(module_sp, m_header, m_data,
5827                            MachHeaderSizeFromMagic(m_header.magic));
5828   }
5829   return arch;
5830 }
5831 
5832 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5833                                                 addr_t &base_addr, UUID &uuid) {
5834   uuid.Clear();
5835   base_addr = LLDB_INVALID_ADDRESS;
5836   if (process && process->GetDynamicLoader()) {
5837     DynamicLoader *dl = process->GetDynamicLoader();
5838     LazyBool using_shared_cache;
5839     LazyBool private_shared_cache;
5840     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5841                                   private_shared_cache);
5842   }
5843   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5844   LLDB_LOGF(
5845       log,
5846       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5847       uuid.GetAsString().c_str(), base_addr);
5848 }
5849 
5850 // From dyld SPI header dyld_process_info.h
5851 typedef void *dyld_process_info;
5852 struct lldb_copy__dyld_process_cache_info {
5853   uuid_t cacheUUID;          // UUID of cache used by process
5854   uint64_t cacheBaseAddress; // load address of dyld shared cache
5855   bool noCache;              // process is running without a dyld cache
5856   bool privateCache; // process is using a private copy of its dyld cache
5857 };
5858 
5859 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5860 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5861 // errors. So we need to use the actual underlying types of task_t and
5862 // kern_return_t below.
5863 extern "C" unsigned int /*task_t*/ mach_task_self();
5864 
5865 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5866   uuid.Clear();
5867   base_addr = LLDB_INVALID_ADDRESS;
5868 
5869 #if defined(__APPLE__)
5870   uint8_t *(*dyld_get_all_image_infos)(void);
5871   dyld_get_all_image_infos =
5872       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5873   if (dyld_get_all_image_infos) {
5874     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5875     if (dyld_all_image_infos_address) {
5876       uint32_t *version = (uint32_t *)
5877           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5878       if (*version >= 13) {
5879         uuid_t *sharedCacheUUID_address = 0;
5880         int wordsize = sizeof(uint8_t *);
5881         if (wordsize == 8) {
5882           sharedCacheUUID_address =
5883               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5884                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5885           if (*version >= 15)
5886             base_addr =
5887                 *(uint64_t
5888                       *)((uint8_t *)dyld_all_image_infos_address +
5889                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5890         } else {
5891           sharedCacheUUID_address =
5892               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5893                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5894           if (*version >= 15) {
5895             base_addr = 0;
5896             base_addr =
5897                 *(uint32_t
5898                       *)((uint8_t *)dyld_all_image_infos_address +
5899                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5900           }
5901         }
5902         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5903       }
5904     }
5905   } else {
5906     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5907     dyld_process_info (*dyld_process_info_create)(
5908         unsigned int /* task_t */ task, uint64_t timestamp,
5909         unsigned int /*kern_return_t*/ *kernelError);
5910     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5911     void (*dyld_process_info_release)(dyld_process_info info);
5912 
5913     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5914                                           unsigned int /*kern_return_t*/ *))
5915         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5916     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5917         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5918     dyld_process_info_release =
5919         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5920 
5921     if (dyld_process_info_create && dyld_process_info_get_cache) {
5922       unsigned int /*kern_return_t */ kern_ret;
5923       dyld_process_info process_info =
5924           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5925       if (process_info) {
5926         struct lldb_copy__dyld_process_cache_info sc_info;
5927         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5928         dyld_process_info_get_cache(process_info, &sc_info);
5929         if (sc_info.cacheBaseAddress != 0) {
5930           base_addr = sc_info.cacheBaseAddress;
5931           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5932         }
5933         dyld_process_info_release(process_info);
5934       }
5935     }
5936   }
5937   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5938   if (log && uuid.IsValid())
5939     LLDB_LOGF(log,
5940               "lldb's in-memory shared cache has a UUID of %s base address of "
5941               "0x%" PRIx64,
5942               uuid.GetAsString().c_str(), base_addr);
5943 #endif
5944 }
5945 
5946 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5947   if (!m_min_os_version) {
5948     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5949     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5950       const lldb::offset_t load_cmd_offset = offset;
5951 
5952       llvm::MachO::version_min_command lc;
5953       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5954         break;
5955       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5956           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5957           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5958           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5959         if (m_data.GetU32(&offset, &lc.version,
5960                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5961           const uint32_t xxxx = lc.version >> 16;
5962           const uint32_t yy = (lc.version >> 8) & 0xffu;
5963           const uint32_t zz = lc.version & 0xffu;
5964           if (xxxx) {
5965             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5966             break;
5967           }
5968         }
5969       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5970         // struct build_version_command {
5971         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5972         //     uint32_t    cmdsize;        /* sizeof(struct
5973         //     build_version_command) plus */
5974         //                                 /* ntools * sizeof(struct
5975         //                                 build_tool_version) */
5976         //     uint32_t    platform;       /* platform */
5977         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5978         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5979         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5980         //     tool entries following this */
5981         // };
5982 
5983         offset += 4; // skip platform
5984         uint32_t minos = m_data.GetU32(&offset);
5985 
5986         const uint32_t xxxx = minos >> 16;
5987         const uint32_t yy = (minos >> 8) & 0xffu;
5988         const uint32_t zz = minos & 0xffu;
5989         if (xxxx) {
5990           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5991           break;
5992         }
5993       }
5994 
5995       offset = load_cmd_offset + lc.cmdsize;
5996     }
5997 
5998     if (!m_min_os_version) {
5999       // Set version to an empty value so we don't keep trying to
6000       m_min_os_version = llvm::VersionTuple();
6001     }
6002   }
6003 
6004   return *m_min_os_version;
6005 }
6006 
6007 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6008   if (!m_sdk_versions.hasValue()) {
6009     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6010     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6011       const lldb::offset_t load_cmd_offset = offset;
6012 
6013       llvm::MachO::version_min_command lc;
6014       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6015         break;
6016       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6017           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6018           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6019           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6020         if (m_data.GetU32(&offset, &lc.version,
6021                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6022           const uint32_t xxxx = lc.sdk >> 16;
6023           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6024           const uint32_t zz = lc.sdk & 0xffu;
6025           if (xxxx) {
6026             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6027             break;
6028           } else {
6029             GetModule()->ReportWarning("minimum OS version load command with "
6030                                        "invalid (0) version found.");
6031           }
6032         }
6033       }
6034       offset = load_cmd_offset + lc.cmdsize;
6035     }
6036 
6037     if (!m_sdk_versions.hasValue()) {
6038       offset = MachHeaderSizeFromMagic(m_header.magic);
6039       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6040         const lldb::offset_t load_cmd_offset = offset;
6041 
6042         llvm::MachO::version_min_command lc;
6043         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6044           break;
6045         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6046           // struct build_version_command {
6047           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6048           //     uint32_t    cmdsize;        /* sizeof(struct
6049           //     build_version_command) plus */
6050           //                                 /* ntools * sizeof(struct
6051           //                                 build_tool_version) */
6052           //     uint32_t    platform;       /* platform */
6053           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6054           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6055           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6056           //     of tool entries following this */
6057           // };
6058 
6059           offset += 4; // skip platform
6060           uint32_t minos = m_data.GetU32(&offset);
6061 
6062           const uint32_t xxxx = minos >> 16;
6063           const uint32_t yy = (minos >> 8) & 0xffu;
6064           const uint32_t zz = minos & 0xffu;
6065           if (xxxx) {
6066             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6067             break;
6068           }
6069         }
6070         offset = load_cmd_offset + lc.cmdsize;
6071       }
6072     }
6073 
6074     if (!m_sdk_versions.hasValue())
6075       m_sdk_versions = llvm::VersionTuple();
6076   }
6077 
6078   return m_sdk_versions.getValue();
6079 }
6080 
6081 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6082   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6083 }
6084 
6085 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6086   return m_allow_assembly_emulation_unwind_plans;
6087 }
6088 
6089 Section *ObjectFileMachO::GetMachHeaderSection() {
6090   // Find the first address of the mach header which is the first non-zero file
6091   // sized section whose file offset is zero. This is the base file address of
6092   // the mach-o file which can be subtracted from the vmaddr of the other
6093   // segments found in memory and added to the load address
6094   ModuleSP module_sp = GetModule();
6095   if (!module_sp)
6096     return nullptr;
6097   SectionList *section_list = GetSectionList();
6098   if (!section_list)
6099     return nullptr;
6100   const size_t num_sections = section_list->GetSize();
6101   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6102     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6103     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6104       return section;
6105   }
6106 
6107   // We may have a binary in the shared cache that has a non-zero
6108   // file address for its first segment, traditionally the __TEXT segment.
6109   // Search for it by name and return it as our next best guess.
6110   SectionSP text_segment_sp =
6111       GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
6112   if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6113     return text_segment_sp.get();
6114 
6115   return nullptr;
6116 }
6117 
6118 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6119   if (!section)
6120     return false;
6121   const bool is_dsym = (m_header.filetype == MH_DSYM);
6122   if (section->GetFileSize() == 0 && !is_dsym)
6123     return false;
6124   if (section->IsThreadSpecific())
6125     return false;
6126   if (GetModule().get() != section->GetModule().get())
6127     return false;
6128   // Be careful with __LINKEDIT and __DWARF segments
6129   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6130       section->GetName() == GetSegmentNameDWARF()) {
6131     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6132     // this isn't a kernel binary like a kext or mach_kernel.
6133     const bool is_memory_image = (bool)m_process_wp.lock();
6134     const Strata strata = GetStrata();
6135     if (is_memory_image == false || strata == eStrataKernel)
6136       return false;
6137   }
6138   return true;
6139 }
6140 
6141 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6142     lldb::addr_t header_load_address, const Section *header_section,
6143     const Section *section) {
6144   ModuleSP module_sp = GetModule();
6145   if (module_sp && header_section && section &&
6146       header_load_address != LLDB_INVALID_ADDRESS) {
6147     lldb::addr_t file_addr = header_section->GetFileAddress();
6148     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6149       return section->GetFileAddress() - file_addr + header_load_address;
6150   }
6151   return LLDB_INVALID_ADDRESS;
6152 }
6153 
6154 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6155                                      bool value_is_offset) {
6156   ModuleSP module_sp = GetModule();
6157   if (!module_sp)
6158     return false;
6159 
6160   SectionList *section_list = GetSectionList();
6161   if (!section_list)
6162     return false;
6163 
6164   size_t num_loaded_sections = 0;
6165   const size_t num_sections = section_list->GetSize();
6166 
6167   if (value_is_offset) {
6168     // "value" is an offset to apply to each top level segment
6169     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6170       // Iterate through the object file sections to find all of the
6171       // sections that size on disk (to avoid __PAGEZERO) and load them
6172       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6173       if (SectionIsLoadable(section_sp.get()))
6174         if (target.GetSectionLoadList().SetSectionLoadAddress(
6175                 section_sp, section_sp->GetFileAddress() + value))
6176           ++num_loaded_sections;
6177     }
6178   } else {
6179     // "value" is the new base address of the mach_header, adjust each
6180     // section accordingly
6181 
6182     Section *mach_header_section = GetMachHeaderSection();
6183     if (mach_header_section) {
6184       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6185         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6186 
6187         lldb::addr_t section_load_addr =
6188             CalculateSectionLoadAddressForMemoryImage(
6189                 value, mach_header_section, section_sp.get());
6190         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6191           if (target.GetSectionLoadList().SetSectionLoadAddress(
6192                   section_sp, section_load_addr))
6193             ++num_loaded_sections;
6194         }
6195       }
6196     }
6197   }
6198   return num_loaded_sections > 0;
6199 }
6200 
6201 struct all_image_infos_header {
6202   uint32_t version;         // currently 1
6203   uint32_t imgcount;        // number of binary images
6204   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6205                             // struct entry's begin.
6206   uint32_t entries_size;    // size of 'struct entry'.
6207   uint32_t unused;
6208 };
6209 
6210 struct image_entry {
6211   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6212                              // UINT64_MAX if unavailable.
6213   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6214                              // uuid is unknown.
6215   uint64_t load_address;     // UINT64_MAX if unknown.
6216   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6217   uint32_t segment_count;    // The number of segments for this binary.
6218   uint32_t unused;
6219 
6220   image_entry() {
6221     filepath_offset = UINT64_MAX;
6222     memset(&uuid, 0, sizeof(uuid_t));
6223     segment_count = 0;
6224     load_address = UINT64_MAX;
6225     seg_addrs_offset = UINT64_MAX;
6226     unused = 0;
6227   }
6228   image_entry(const image_entry &rhs) {
6229     filepath_offset = rhs.filepath_offset;
6230     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6231     segment_count = rhs.segment_count;
6232     seg_addrs_offset = rhs.seg_addrs_offset;
6233     load_address = rhs.load_address;
6234     unused = rhs.unused;
6235   }
6236 };
6237 
6238 struct segment_vmaddr {
6239   char segname[16];
6240   uint64_t vmaddr;
6241   uint64_t unused;
6242 
6243   segment_vmaddr() {
6244     memset(&segname, 0, 16);
6245     vmaddr = UINT64_MAX;
6246     unused = 0;
6247   }
6248   segment_vmaddr(const segment_vmaddr &rhs) {
6249     memcpy(&segname, &rhs.segname, 16);
6250     vmaddr = rhs.vmaddr;
6251     unused = rhs.unused;
6252   }
6253 };
6254 
6255 // Write the payload for the "all image infos" LC_NOTE into
6256 // the supplied all_image_infos_payload, assuming that this
6257 // will be written into the corefile starting at
6258 // initial_file_offset.
6259 //
6260 // The placement of this payload is a little tricky.  We're
6261 // laying this out as
6262 //
6263 // 1. header (struct all_image_info_header)
6264 // 2. Array of fixed-size (struct image_entry)'s, one
6265 //    per binary image present in the process.
6266 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6267 //    for each binary image.
6268 // 4. Variable length c-strings of binary image filepaths,
6269 //    one per binary.
6270 //
6271 // To compute where everything will be laid out in the
6272 // payload, we need to iterate over the images and calculate
6273 // how many segment_vmaddr structures each image will need,
6274 // and how long each image's filepath c-string is. There
6275 // are some multiple passes over the image list while calculating
6276 // everything.
6277 
6278 static offset_t CreateAllImageInfosPayload(
6279     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6280     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6281   Target &target = process_sp->GetTarget();
6282   ModuleList modules = target.GetImages();
6283 
6284   // stack-only corefiles have no reason to include binaries that
6285   // are not executing; we're trying to make the smallest corefile
6286   // we can, so leave the rest out.
6287   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6288     modules.Clear();
6289 
6290   std::set<std::string> executing_uuids;
6291   ThreadList &thread_list(process_sp->GetThreadList());
6292   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6293     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6294     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6295     for (uint32_t j = 0; j < stack_frame_count; j++) {
6296       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6297       Address pc = stack_frame_sp->GetFrameCodeAddress();
6298       ModuleSP module_sp = pc.GetModule();
6299       if (module_sp) {
6300         UUID uuid = module_sp->GetUUID();
6301         if (uuid.IsValid()) {
6302           executing_uuids.insert(uuid.GetAsString());
6303           modules.AppendIfNeeded(module_sp);
6304         }
6305       }
6306     }
6307   }
6308   size_t modules_count = modules.GetSize();
6309 
6310   struct all_image_infos_header infos;
6311   infos.version = 1;
6312   infos.imgcount = modules_count;
6313   infos.entries_size = sizeof(image_entry);
6314   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6315   infos.unused = 0;
6316 
6317   all_image_infos_payload.PutHex32(infos.version);
6318   all_image_infos_payload.PutHex32(infos.imgcount);
6319   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6320   all_image_infos_payload.PutHex32(infos.entries_size);
6321   all_image_infos_payload.PutHex32(infos.unused);
6322 
6323   // First create the structures for all of the segment name+vmaddr vectors
6324   // for each module, so we will know the size of them as we add the
6325   // module entries.
6326   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6327   for (size_t i = 0; i < modules_count; i++) {
6328     ModuleSP module = modules.GetModuleAtIndex(i);
6329 
6330     SectionList *sections = module->GetSectionList();
6331     size_t sections_count = sections->GetSize();
6332     std::vector<segment_vmaddr> segment_vmaddrs;
6333     for (size_t j = 0; j < sections_count; j++) {
6334       SectionSP section = sections->GetSectionAtIndex(j);
6335       if (!section->GetParent().get()) {
6336         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6337         if (vmaddr == LLDB_INVALID_ADDRESS)
6338           continue;
6339         ConstString name = section->GetName();
6340         segment_vmaddr seg_vmaddr;
6341         strncpy(seg_vmaddr.segname, name.AsCString(),
6342                 sizeof(seg_vmaddr.segname));
6343         seg_vmaddr.vmaddr = vmaddr;
6344         seg_vmaddr.unused = 0;
6345         segment_vmaddrs.push_back(seg_vmaddr);
6346       }
6347     }
6348     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6349   }
6350 
6351   offset_t size_of_vmaddr_structs = 0;
6352   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6353     size_of_vmaddr_structs +=
6354         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6355   }
6356 
6357   offset_t size_of_filepath_cstrings = 0;
6358   for (size_t i = 0; i < modules_count; i++) {
6359     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6360     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6361   }
6362 
6363   // Calculate the file offsets of our "all image infos" payload in the
6364   // corefile. initial_file_offset the original value passed in to this method.
6365 
6366   offset_t start_of_entries =
6367       initial_file_offset + sizeof(all_image_infos_header);
6368   offset_t start_of_seg_vmaddrs =
6369       start_of_entries + sizeof(image_entry) * modules_count;
6370   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6371 
6372   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6373 
6374   // Now write the one-per-module 'struct image_entry' into the
6375   // StringStream; keep track of where the struct segment_vmaddr
6376   // entries for each module will end up in the corefile.
6377 
6378   offset_t current_string_offset = start_of_filenames;
6379   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6380   std::vector<struct image_entry> image_entries;
6381   for (size_t i = 0; i < modules_count; i++) {
6382     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6383 
6384     struct image_entry ent;
6385     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6386     if (modules_segment_vmaddrs[i].size() > 0) {
6387       ent.segment_count = modules_segment_vmaddrs[i].size();
6388       ent.seg_addrs_offset = current_segaddrs_offset;
6389     }
6390     ent.filepath_offset = current_string_offset;
6391     ObjectFile *objfile = module_sp->GetObjectFile();
6392     if (objfile) {
6393       Address base_addr(objfile->GetBaseAddress());
6394       if (base_addr.IsValid()) {
6395         ent.load_address = base_addr.GetLoadAddress(&target);
6396       }
6397     }
6398 
6399     all_image_infos_payload.PutHex64(ent.filepath_offset);
6400     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6401     all_image_infos_payload.PutHex64(ent.load_address);
6402     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6403     all_image_infos_payload.PutHex32(ent.segment_count);
6404 
6405     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6406         executing_uuids.end())
6407       all_image_infos_payload.PutHex32(1);
6408     else
6409       all_image_infos_payload.PutHex32(0);
6410 
6411     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6412     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6413   }
6414 
6415   // Now write the struct segment_vmaddr entries into the StringStream.
6416 
6417   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6418     if (modules_segment_vmaddrs[i].size() == 0)
6419       continue;
6420     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6421       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6422       all_image_infos_payload.PutHex64(segvm.vmaddr);
6423       all_image_infos_payload.PutHex64(segvm.unused);
6424     }
6425   }
6426 
6427   for (size_t i = 0; i < modules_count; i++) {
6428     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6429     std::string filepath = module_sp->GetFileSpec().GetPath();
6430     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6431   }
6432 
6433   return final_file_offset;
6434 }
6435 
6436 // Temp struct used to combine contiguous memory regions with
6437 // identical permissions.
6438 struct page_object {
6439   addr_t addr;
6440   addr_t size;
6441   uint32_t prot;
6442 };
6443 
6444 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6445                                const FileSpec &outfile,
6446                                lldb::SaveCoreStyle &core_style, Status &error) {
6447   if (!process_sp)
6448     return false;
6449 
6450   // Default on macOS is to create a dirty-memory-only corefile.
6451   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6452     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6453   }
6454 
6455   Target &target = process_sp->GetTarget();
6456   const ArchSpec target_arch = target.GetArchitecture();
6457   const llvm::Triple &target_triple = target_arch.GetTriple();
6458   if (target_triple.getVendor() == llvm::Triple::Apple &&
6459       (target_triple.getOS() == llvm::Triple::MacOSX ||
6460        target_triple.getOS() == llvm::Triple::IOS ||
6461        target_triple.getOS() == llvm::Triple::WatchOS ||
6462        target_triple.getOS() == llvm::Triple::TvOS)) {
6463     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6464     // {
6465     bool make_core = false;
6466     switch (target_arch.GetMachine()) {
6467     case llvm::Triple::aarch64:
6468     case llvm::Triple::aarch64_32:
6469     case llvm::Triple::arm:
6470     case llvm::Triple::thumb:
6471     case llvm::Triple::x86:
6472     case llvm::Triple::x86_64:
6473       make_core = true;
6474       break;
6475     default:
6476       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6477                                      target_triple.str().c_str());
6478       break;
6479     }
6480 
6481     if (make_core) {
6482       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6483       //                uint32_t range_info_idx = 0;
6484       MemoryRegionInfo range_info;
6485       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6486       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6487       const ByteOrder byte_order = target_arch.GetByteOrder();
6488       std::vector<page_object> pages_to_copy;
6489 
6490       if (range_error.Success()) {
6491         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6492           // Calculate correct protections
6493           uint32_t prot = 0;
6494           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6495             prot |= VM_PROT_READ;
6496           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6497             prot |= VM_PROT_WRITE;
6498           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6499             prot |= VM_PROT_EXECUTE;
6500 
6501           const addr_t addr = range_info.GetRange().GetRangeBase();
6502           const addr_t size = range_info.GetRange().GetByteSize();
6503 
6504           if (size == 0)
6505             break;
6506 
6507           bool include_this_region = true;
6508           bool dirty_pages_only = false;
6509           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6510             dirty_pages_only = true;
6511             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6512               include_this_region = false;
6513             }
6514           }
6515           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6516             dirty_pages_only = true;
6517           }
6518 
6519           if (prot != 0 && include_this_region) {
6520             addr_t pagesize = range_info.GetPageSize();
6521             const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6522                 range_info.GetDirtyPageList();
6523             if (dirty_pages_only && dirty_page_list.hasValue()) {
6524               for (addr_t dirtypage : dirty_page_list.getValue()) {
6525                 page_object obj;
6526                 obj.addr = dirtypage;
6527                 obj.size = pagesize;
6528                 obj.prot = prot;
6529                 pages_to_copy.push_back(obj);
6530               }
6531             } else {
6532               page_object obj;
6533               obj.addr = addr;
6534               obj.size = size;
6535               obj.prot = prot;
6536               pages_to_copy.push_back(obj);
6537             }
6538           }
6539 
6540           range_error = process_sp->GetMemoryRegionInfo(
6541               range_info.GetRange().GetRangeEnd(), range_info);
6542           if (range_error.Fail())
6543             break;
6544         }
6545 
6546         // Combine contiguous entries that have the same
6547         // protections so we don't have an excess of
6548         // load commands.
6549         std::vector<page_object> combined_page_objects;
6550         page_object last_obj;
6551         last_obj.addr = LLDB_INVALID_ADDRESS;
6552         last_obj.size = 0;
6553         for (page_object obj : pages_to_copy) {
6554           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6555             last_obj = obj;
6556             continue;
6557           }
6558           if (last_obj.addr + last_obj.size == obj.addr &&
6559               last_obj.prot == obj.prot) {
6560             last_obj.size += obj.size;
6561             continue;
6562           }
6563           combined_page_objects.push_back(last_obj);
6564           last_obj = obj;
6565         }
6566         // Add the last entry we were looking to combine
6567         // on to the array.
6568         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6569           combined_page_objects.push_back(last_obj);
6570 
6571         for (page_object obj : combined_page_objects) {
6572           uint32_t cmd_type = LC_SEGMENT_64;
6573           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6574           if (addr_byte_size == 4) {
6575             cmd_type = LC_SEGMENT;
6576             segment_size = sizeof(llvm::MachO::segment_command);
6577           }
6578           llvm::MachO::segment_command_64 segment = {
6579               cmd_type,     // uint32_t cmd;
6580               segment_size, // uint32_t cmdsize;
6581               {0},          // char segname[16];
6582               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6583                             // Mach-O
6584               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6585                             // Mach-O
6586               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6587               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6588                             // Mach-O
6589               obj.prot,     // uint32_t maxprot;
6590               obj.prot,     // uint32_t initprot;
6591               0,            // uint32_t nsects;
6592               0};           // uint32_t flags;
6593           segment_load_commands.push_back(segment);
6594         }
6595 
6596         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6597 
6598         llvm::MachO::mach_header_64 mach_header;
6599         if (addr_byte_size == 8) {
6600           mach_header.magic = MH_MAGIC_64;
6601         } else {
6602           mach_header.magic = MH_MAGIC;
6603         }
6604         mach_header.cputype = target_arch.GetMachOCPUType();
6605         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6606         mach_header.filetype = MH_CORE;
6607         mach_header.ncmds = segment_load_commands.size();
6608         mach_header.flags = 0;
6609         mach_header.reserved = 0;
6610         ThreadList &thread_list = process_sp->GetThreadList();
6611         const uint32_t num_threads = thread_list.GetSize();
6612 
6613         // Make an array of LC_THREAD data items. Each one contains the
6614         // contents of the LC_THREAD load command. The data doesn't contain
6615         // the load command + load command size, we will add the load command
6616         // and load command size as we emit the data.
6617         std::vector<StreamString> LC_THREAD_datas(num_threads);
6618         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6619           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6620           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6621           LC_THREAD_data.SetByteOrder(byte_order);
6622         }
6623         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6624           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6625           if (thread_sp) {
6626             switch (mach_header.cputype) {
6627             case llvm::MachO::CPU_TYPE_ARM64:
6628             case llvm::MachO::CPU_TYPE_ARM64_32:
6629               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6630                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6631               break;
6632 
6633             case llvm::MachO::CPU_TYPE_ARM:
6634               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6635                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6636               break;
6637 
6638             case llvm::MachO::CPU_TYPE_I386:
6639               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6640                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6641               break;
6642 
6643             case llvm::MachO::CPU_TYPE_X86_64:
6644               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6645                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6646               break;
6647             }
6648           }
6649         }
6650 
6651         // The size of the load command is the size of the segments...
6652         if (addr_byte_size == 8) {
6653           mach_header.sizeofcmds = segment_load_commands.size() *
6654                                    sizeof(llvm::MachO::segment_command_64);
6655         } else {
6656           mach_header.sizeofcmds = segment_load_commands.size() *
6657                                    sizeof(llvm::MachO::segment_command);
6658         }
6659 
6660         // and the size of all LC_THREAD load command
6661         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6662           ++mach_header.ncmds;
6663           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6664         }
6665 
6666         // Bits will be set to indicate which bits are NOT used in
6667         // addressing in this process or 0 for unknown.
6668         uint64_t address_mask = process_sp->GetCodeAddressMask();
6669         if (address_mask != 0) {
6670           // LC_NOTE "addrable bits"
6671           mach_header.ncmds++;
6672           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6673         }
6674 
6675         // LC_NOTE "all image infos"
6676         mach_header.ncmds++;
6677         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6678 
6679         // Write the mach header
6680         buffer.PutHex32(mach_header.magic);
6681         buffer.PutHex32(mach_header.cputype);
6682         buffer.PutHex32(mach_header.cpusubtype);
6683         buffer.PutHex32(mach_header.filetype);
6684         buffer.PutHex32(mach_header.ncmds);
6685         buffer.PutHex32(mach_header.sizeofcmds);
6686         buffer.PutHex32(mach_header.flags);
6687         if (addr_byte_size == 8) {
6688           buffer.PutHex32(mach_header.reserved);
6689         }
6690 
6691         // Skip the mach header and all load commands and align to the next
6692         // 0x1000 byte boundary
6693         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6694 
6695         file_offset = llvm::alignTo(file_offset, 16);
6696         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6697 
6698         // Add "addrable bits" LC_NOTE when an address mask is available
6699         if (address_mask != 0) {
6700           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6701               new LCNoteEntry(addr_byte_size, byte_order));
6702           addrable_bits_lcnote_up->name = "addrable bits";
6703           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6704           int bits = std::bitset<64>(~address_mask).count();
6705           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6706           addrable_bits_lcnote_up->payload.PutHex32(
6707               bits); // # of bits used for addressing
6708           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6709 
6710           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6711 
6712           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6713         }
6714 
6715         // Add "all image infos" LC_NOTE
6716         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6717             new LCNoteEntry(addr_byte_size, byte_order));
6718         all_image_infos_lcnote_up->name = "all image infos";
6719         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6720         file_offset = CreateAllImageInfosPayload(
6721             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6722             core_style);
6723         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6724 
6725         // Add LC_NOTE load commands
6726         for (auto &lcnote : lc_notes) {
6727           // Add the LC_NOTE load command to the file.
6728           buffer.PutHex32(LC_NOTE);
6729           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6730           char namebuf[16];
6731           memset(namebuf, 0, sizeof(namebuf));
6732           // this is the uncommon case where strncpy is exactly
6733           // the right one, doesn't need to be nul terminated.
6734           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6735           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6736           buffer.PutHex64(lcnote->payload_file_offset);
6737           buffer.PutHex64(lcnote->payload.GetSize());
6738         }
6739 
6740         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6741         file_offset = llvm::alignTo(file_offset, 4096);
6742 
6743         for (auto &segment : segment_load_commands) {
6744           segment.fileoff = file_offset;
6745           file_offset += segment.filesize;
6746         }
6747 
6748         // Write out all of the LC_THREAD load commands
6749         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6750           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6751           buffer.PutHex32(LC_THREAD);
6752           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6753           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6754         }
6755 
6756         // Write out all of the segment load commands
6757         for (const auto &segment : segment_load_commands) {
6758           buffer.PutHex32(segment.cmd);
6759           buffer.PutHex32(segment.cmdsize);
6760           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6761           if (addr_byte_size == 8) {
6762             buffer.PutHex64(segment.vmaddr);
6763             buffer.PutHex64(segment.vmsize);
6764             buffer.PutHex64(segment.fileoff);
6765             buffer.PutHex64(segment.filesize);
6766           } else {
6767             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6768             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6769             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6770             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6771           }
6772           buffer.PutHex32(segment.maxprot);
6773           buffer.PutHex32(segment.initprot);
6774           buffer.PutHex32(segment.nsects);
6775           buffer.PutHex32(segment.flags);
6776         }
6777 
6778         std::string core_file_path(outfile.GetPath());
6779         auto core_file = FileSystem::Instance().Open(
6780             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6781                          File::eOpenOptionCanCreate);
6782         if (!core_file) {
6783           error = core_file.takeError();
6784         } else {
6785           // Read 1 page at a time
6786           uint8_t bytes[0x1000];
6787           // Write the mach header and load commands out to the core file
6788           size_t bytes_written = buffer.GetString().size();
6789           error =
6790               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6791           if (error.Success()) {
6792 
6793             for (auto &lcnote : lc_notes) {
6794               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6795                   -1) {
6796                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6797                                                "to write '%s' LC_NOTE payload",
6798                                                lcnote->name.c_str());
6799                 return false;
6800               }
6801               bytes_written = lcnote->payload.GetSize();
6802               error = core_file.get()->Write(lcnote->payload.GetData(),
6803                                              bytes_written);
6804               if (!error.Success())
6805                 return false;
6806             }
6807 
6808             // Now write the file data for all memory segments in the process
6809             for (const auto &segment : segment_load_commands) {
6810               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6811                 error.SetErrorStringWithFormat(
6812                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6813                     segment.fileoff, core_file_path.c_str());
6814                 break;
6815               }
6816 
6817               target.GetDebugger().GetAsyncOutputStream()->Printf(
6818                   "Saving %" PRId64
6819                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6820                   segment.vmsize, segment.vmaddr);
6821               addr_t bytes_left = segment.vmsize;
6822               addr_t addr = segment.vmaddr;
6823               Status memory_read_error;
6824               while (bytes_left > 0 && error.Success()) {
6825                 const size_t bytes_to_read =
6826                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6827 
6828                 // In a savecore setting, we don't really care about caching,
6829                 // as the data is dumped and very likely never read again,
6830                 // so we call ReadMemoryFromInferior to bypass it.
6831                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6832                     addr, bytes, bytes_to_read, memory_read_error);
6833 
6834                 if (bytes_read == bytes_to_read) {
6835                   size_t bytes_written = bytes_read;
6836                   error = core_file.get()->Write(bytes, bytes_written);
6837                   bytes_left -= bytes_read;
6838                   addr += bytes_read;
6839                 } else {
6840                   // Some pages within regions are not readable, those should
6841                   // be zero filled
6842                   memset(bytes, 0, bytes_to_read);
6843                   size_t bytes_written = bytes_to_read;
6844                   error = core_file.get()->Write(bytes, bytes_written);
6845                   bytes_left -= bytes_to_read;
6846                   addr += bytes_to_read;
6847                 }
6848               }
6849             }
6850           }
6851         }
6852       } else {
6853         error.SetErrorString(
6854             "process doesn't support getting memory region info");
6855       }
6856     }
6857     return true; // This is the right plug to handle saving core files for
6858                  // this process
6859   }
6860   return false;
6861 }
6862 
6863 ObjectFileMachO::MachOCorefileAllImageInfos
6864 ObjectFileMachO::GetCorefileAllImageInfos() {
6865   MachOCorefileAllImageInfos image_infos;
6866 
6867   // Look for an "all image infos" LC_NOTE.
6868   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6869   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6870     const uint32_t cmd_offset = offset;
6871     llvm::MachO::load_command lc;
6872     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6873       break;
6874     if (lc.cmd == LC_NOTE) {
6875       char data_owner[17];
6876       m_data.CopyData(offset, 16, data_owner);
6877       data_owner[16] = '\0';
6878       offset += 16;
6879       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6880       offset += 4; /* size unused */
6881 
6882       if (strcmp("all image infos", data_owner) == 0) {
6883         offset = fileoff;
6884         // Read the struct all_image_infos_header.
6885         uint32_t version = m_data.GetU32(&offset);
6886         if (version != 1) {
6887           return image_infos;
6888         }
6889         uint32_t imgcount = m_data.GetU32(&offset);
6890         uint64_t entries_fileoff = m_data.GetU64(&offset);
6891         offset += 4; // uint32_t entries_size;
6892         offset += 4; // uint32_t unused;
6893 
6894         offset = entries_fileoff;
6895         for (uint32_t i = 0; i < imgcount; i++) {
6896           // Read the struct image_entry.
6897           offset_t filepath_offset = m_data.GetU64(&offset);
6898           uuid_t uuid;
6899           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6900                  sizeof(uuid_t));
6901           uint64_t load_address = m_data.GetU64(&offset);
6902           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6903           uint32_t segment_count = m_data.GetU32(&offset);
6904           uint32_t currently_executing = m_data.GetU32(&offset);
6905 
6906           MachOCorefileImageEntry image_entry;
6907           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6908           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6909           image_entry.load_address = load_address;
6910           image_entry.currently_executing = currently_executing;
6911 
6912           offset_t seg_vmaddrs_offset = seg_addrs_offset;
6913           for (uint32_t j = 0; j < segment_count; j++) {
6914             char segname[17];
6915             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6916             segname[16] = '\0';
6917             seg_vmaddrs_offset += 16;
6918             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6919             seg_vmaddrs_offset += 8; /* unused */
6920 
6921             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
6922                                                     vmaddr};
6923             image_entry.segment_load_addresses.push_back(new_seg);
6924           }
6925           image_infos.all_image_infos.push_back(image_entry);
6926         }
6927       } else if (strcmp("load binary", data_owner) == 0) {
6928         uint32_t version = m_data.GetU32(&fileoff);
6929         if (version == 1) {
6930           uuid_t uuid;
6931           memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
6932                  sizeof(uuid_t));
6933           uint64_t load_address = m_data.GetU64(&fileoff);
6934           uint64_t slide = m_data.GetU64(&fileoff);
6935           std::string filename = m_data.GetCStr(&fileoff);
6936 
6937           MachOCorefileImageEntry image_entry;
6938           image_entry.filename = filename;
6939           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6940           image_entry.load_address = load_address;
6941           image_entry.slide = slide;
6942           image_infos.all_image_infos.push_back(image_entry);
6943         }
6944       }
6945     }
6946     offset = cmd_offset + lc.cmdsize;
6947   }
6948 
6949   return image_infos;
6950 }
6951 
6952 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6953   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6954   Log *log = GetLog(LLDBLog::DynamicLoader);
6955 
6956   ModuleList added_modules;
6957   for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6958     ModuleSpec module_spec;
6959     module_spec.GetUUID() = image.uuid;
6960     if (image.filename.empty()) {
6961       char namebuf[80];
6962       if (image.load_address != LLDB_INVALID_ADDRESS)
6963         snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
6964                  image.load_address);
6965       else
6966         snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64, image.slide);
6967       module_spec.GetFileSpec() = FileSpec(namebuf);
6968     } else {
6969       module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
6970     }
6971     if (image.currently_executing) {
6972       Symbols::DownloadObjectAndSymbolFile(module_spec, true);
6973       if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
6974         process.GetTarget().GetOrCreateModule(module_spec, false);
6975       }
6976     }
6977     Status error;
6978     ModuleSP module_sp =
6979         process.GetTarget().GetOrCreateModule(module_spec, false, &error);
6980     if (!module_sp.get() || !module_sp->GetObjectFile()) {
6981       if (image.load_address != LLDB_INVALID_ADDRESS) {
6982         module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
6983                                                  image.load_address);
6984       }
6985     }
6986     if (module_sp.get()) {
6987       // Will call ModulesDidLoad with all modules once they've all
6988       // been added to the Target with load addresses.  Don't notify
6989       // here, before the load address is set.
6990       const bool notify = false;
6991       process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
6992       added_modules.Append(module_sp, notify);
6993       if (image.segment_load_addresses.size() > 0) {
6994         if (log) {
6995           std::string uuidstr = image.uuid.GetAsString();
6996           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
6997                       "UUID %s with section load addresses",
6998                       image.filename.c_str(), uuidstr.c_str());
6999         }
7000         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7001           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7002           if (sectlist) {
7003             SectionSP sect_sp =
7004                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7005             if (sect_sp) {
7006               process.GetTarget().SetSectionLoadAddress(
7007                   sect_sp, std::get<1>(name_vmaddr_tuple));
7008             }
7009           }
7010         }
7011       } else if (image.load_address != LLDB_INVALID_ADDRESS) {
7012         if (log) {
7013           std::string uuidstr = image.uuid.GetAsString();
7014           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7015                       "UUID %s with load address 0x%" PRIx64,
7016                       image.filename.c_str(), uuidstr.c_str(),
7017                       image.load_address);
7018         }
7019         const bool address_is_slide = false;
7020         bool changed = false;
7021         module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
7022                                   address_is_slide, changed);
7023       } else if (image.slide != 0) {
7024         if (log) {
7025           std::string uuidstr = image.uuid.GetAsString();
7026           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7027                       "UUID %s with slide amount 0x%" PRIx64,
7028                       image.filename.c_str(), uuidstr.c_str(), image.slide);
7029         }
7030         const bool address_is_slide = true;
7031         bool changed = false;
7032         module_sp->SetLoadAddress(process.GetTarget(), image.slide,
7033                                   address_is_slide, changed);
7034       } else {
7035         if (log) {
7036           std::string uuidstr = image.uuid.GetAsString();
7037           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7038                       "UUID %s at its file address, no slide applied",
7039                       image.filename.c_str(), uuidstr.c_str());
7040         }
7041         const bool address_is_slide = true;
7042         bool changed = false;
7043         module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
7044                                   changed);
7045       }
7046     }
7047   }
7048   if (added_modules.GetSize() > 0) {
7049     process.GetTarget().ModulesDidLoad(added_modules);
7050     process.Flush();
7051     return true;
7052   }
7053   return false;
7054 }
7055