1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamFile.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RangeMap.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StreamString.h"
41 #include "lldb/Utility/Timer.h"
42 #include "lldb/Utility/UUID.h"
43 
44 #include "lldb/Host/SafeMachO.h"
45 
46 #include "llvm/Support/MemoryBuffer.h"
47 
48 #include "ObjectFileMachO.h"
49 
50 #if defined(__APPLE__) &&                                                      \
51     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
52 // GetLLDBSharedCacheUUID() needs to call dlsym()
53 #include <dlfcn.h>
54 #endif
55 
56 #ifndef __APPLE__
57 #include "Utility/UuidCompatibility.h"
58 #else
59 #include <uuid/uuid.h>
60 #endif
61 
62 #include <memory>
63 
64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
65 using namespace lldb;
66 using namespace lldb_private;
67 using namespace llvm::MachO;
68 
69 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
70 
71 // Some structure definitions needed for parsing the dyld shared cache files
72 // found on iOS devices.
73 
74 struct lldb_copy_dyld_cache_header_v1 {
75   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
76   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
77   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
78   uint32_t imagesOffset;
79   uint32_t imagesCount;
80   uint64_t dyldBaseAddress;
81   uint64_t codeSignatureOffset;
82   uint64_t codeSignatureSize;
83   uint64_t slideInfoOffset;
84   uint64_t slideInfoSize;
85   uint64_t localSymbolsOffset;
86   uint64_t localSymbolsSize;
87   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
88                     // and later
89 };
90 
91 struct lldb_copy_dyld_cache_mapping_info {
92   uint64_t address;
93   uint64_t size;
94   uint64_t fileOffset;
95   uint32_t maxProt;
96   uint32_t initProt;
97 };
98 
99 struct lldb_copy_dyld_cache_local_symbols_info {
100   uint32_t nlistOffset;
101   uint32_t nlistCount;
102   uint32_t stringsOffset;
103   uint32_t stringsSize;
104   uint32_t entriesOffset;
105   uint32_t entriesCount;
106 };
107 struct lldb_copy_dyld_cache_local_symbols_entry {
108   uint32_t dylibOffset;
109   uint32_t nlistStartIndex;
110   uint32_t nlistCount;
111 };
112 
113 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
114                                const char *alt_name, size_t reg_byte_size,
115                                Stream &data) {
116   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
117   if (reg_info == nullptr)
118     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
119   if (reg_info) {
120     lldb_private::RegisterValue reg_value;
121     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
122       if (reg_info->byte_size >= reg_byte_size)
123         data.Write(reg_value.GetBytes(), reg_byte_size);
124       else {
125         data.Write(reg_value.GetBytes(), reg_info->byte_size);
126         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
127           data.PutChar(0);
128       }
129       return;
130     }
131   }
132   // Just write zeros if all else fails
133   for (size_t i = 0; i < reg_byte_size; ++i)
134     data.PutChar(0);
135 }
136 
137 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
138 public:
139   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
140                                     const DataExtractor &data)
141       : RegisterContextDarwin_x86_64(thread, 0) {
142     SetRegisterDataFrom_LC_THREAD(data);
143   }
144 
145   void InvalidateAllRegisters() override {
146     // Do nothing... registers are always valid...
147   }
148 
149   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
150     lldb::offset_t offset = 0;
151     SetError(GPRRegSet, Read, -1);
152     SetError(FPURegSet, Read, -1);
153     SetError(EXCRegSet, Read, -1);
154     bool done = false;
155 
156     while (!done) {
157       int flavor = data.GetU32(&offset);
158       if (flavor == 0)
159         done = true;
160       else {
161         uint32_t i;
162         uint32_t count = data.GetU32(&offset);
163         switch (flavor) {
164         case GPRRegSet:
165           for (i = 0; i < count; ++i)
166             (&gpr.rax)[i] = data.GetU64(&offset);
167           SetError(GPRRegSet, Read, 0);
168           done = true;
169 
170           break;
171         case FPURegSet:
172           // TODO: fill in FPU regs....
173           // SetError (FPURegSet, Read, -1);
174           done = true;
175 
176           break;
177         case EXCRegSet:
178           exc.trapno = data.GetU32(&offset);
179           exc.err = data.GetU32(&offset);
180           exc.faultvaddr = data.GetU64(&offset);
181           SetError(EXCRegSet, Read, 0);
182           done = true;
183           break;
184         case 7:
185         case 8:
186         case 9:
187           // fancy flavors that encapsulate of the above flavors...
188           break;
189 
190         default:
191           done = true;
192           break;
193         }
194       }
195     }
196   }
197 
198   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
199     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
200     if (reg_ctx_sp) {
201       RegisterContext *reg_ctx = reg_ctx_sp.get();
202 
203       data.PutHex32(GPRRegSet); // Flavor
204       data.PutHex32(GPRWordCount);
205       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
206       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
207       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
208       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
209       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
210       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
211       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
212       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
213       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
214       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
215       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
216       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
217       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
218       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
219       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
220       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
221       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
222       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
223       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
224       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
225       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
226 
227       //            // Write out the FPU registers
228       //            const size_t fpu_byte_size = sizeof(FPU);
229       //            size_t bytes_written = 0;
230       //            data.PutHex32 (FPURegSet);
231       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
232       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
233       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
234       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
235       //            data);   // uint16_t    fcw;    // "fctrl"
236       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
237       //            data);  // uint16_t    fsw;    // "fstat"
238       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
239       //            data);   // uint8_t     ftw;    // "ftag"
240       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
241       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
242       //            data);     // uint16_t    fop;    // "fop"
243       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
244       //            data);    // uint32_t    ip;     // "fioff"
245       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
246       //            data);    // uint16_t    cs;     // "fiseg"
247       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
248       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
249       //            data);   // uint32_t    dp;     // "fooff"
250       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
251       //            data);    // uint16_t    ds;     // "foseg"
252       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
253       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
254       //            data);    // uint32_t    mxcsr;
255       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
256       //            4, data);// uint32_t    mxcsrmask;
257       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
258       //            sizeof(MMSReg), data);
259       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
274       //            sizeof(XMMReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
304       //            sizeof(XMMReg), data);
305       //
306       //            // Fill rest with zeros
307       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
308       //            i)
309       //                data.PutChar(0);
310 
311       // Write out the EXC registers
312       data.PutHex32(EXCRegSet);
313       data.PutHex32(EXCWordCount);
314       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
315       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
316       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
317       return true;
318     }
319     return false;
320   }
321 
322 protected:
323   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
324 
325   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
326 
327   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
328 
329   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
330     return 0;
331   }
332 
333   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
334     return 0;
335   }
336 
337   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
338     return 0;
339   }
340 };
341 
342 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
343 public:
344   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
345                                   const DataExtractor &data)
346       : RegisterContextDarwin_i386(thread, 0) {
347     SetRegisterDataFrom_LC_THREAD(data);
348   }
349 
350   void InvalidateAllRegisters() override {
351     // Do nothing... registers are always valid...
352   }
353 
354   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
355     lldb::offset_t offset = 0;
356     SetError(GPRRegSet, Read, -1);
357     SetError(FPURegSet, Read, -1);
358     SetError(EXCRegSet, Read, -1);
359     bool done = false;
360 
361     while (!done) {
362       int flavor = data.GetU32(&offset);
363       if (flavor == 0)
364         done = true;
365       else {
366         uint32_t i;
367         uint32_t count = data.GetU32(&offset);
368         switch (flavor) {
369         case GPRRegSet:
370           for (i = 0; i < count; ++i)
371             (&gpr.eax)[i] = data.GetU32(&offset);
372           SetError(GPRRegSet, Read, 0);
373           done = true;
374 
375           break;
376         case FPURegSet:
377           // TODO: fill in FPU regs....
378           // SetError (FPURegSet, Read, -1);
379           done = true;
380 
381           break;
382         case EXCRegSet:
383           exc.trapno = data.GetU32(&offset);
384           exc.err = data.GetU32(&offset);
385           exc.faultvaddr = data.GetU32(&offset);
386           SetError(EXCRegSet, Read, 0);
387           done = true;
388           break;
389         case 7:
390         case 8:
391         case 9:
392           // fancy flavors that encapsulate of the above flavors...
393           break;
394 
395         default:
396           done = true;
397           break;
398         }
399       }
400     }
401   }
402 
403   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
404     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
405     if (reg_ctx_sp) {
406       RegisterContext *reg_ctx = reg_ctx_sp.get();
407 
408       data.PutHex32(GPRRegSet); // Flavor
409       data.PutHex32(GPRWordCount);
410       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
411       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
412       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
413       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
414       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
415       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
416       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
417       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
418       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
419       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
420       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
421       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
422       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
423       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
424       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
425       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
426 
427       // Write out the EXC registers
428       data.PutHex32(EXCRegSet);
429       data.PutHex32(EXCWordCount);
430       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
431       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
432       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
433       return true;
434     }
435     return false;
436   }
437 
438 protected:
439   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
440 
441   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
442 
443   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
444 
445   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
446     return 0;
447   }
448 
449   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
450     return 0;
451   }
452 
453   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
454     return 0;
455   }
456 };
457 
458 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
459 public:
460   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
461                                  const DataExtractor &data)
462       : RegisterContextDarwin_arm(thread, 0) {
463     SetRegisterDataFrom_LC_THREAD(data);
464   }
465 
466   void InvalidateAllRegisters() override {
467     // Do nothing... registers are always valid...
468   }
469 
470   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
471     lldb::offset_t offset = 0;
472     SetError(GPRRegSet, Read, -1);
473     SetError(FPURegSet, Read, -1);
474     SetError(EXCRegSet, Read, -1);
475     bool done = false;
476 
477     while (!done) {
478       int flavor = data.GetU32(&offset);
479       uint32_t count = data.GetU32(&offset);
480       lldb::offset_t next_thread_state = offset + (count * 4);
481       switch (flavor) {
482       case GPRAltRegSet:
483       case GPRRegSet:
484         // On ARM, the CPSR register is also included in the count but it is
485         // not included in gpr.r so loop until (count-1).
486         for (uint32_t i = 0; i < (count - 1); ++i) {
487           gpr.r[i] = data.GetU32(&offset);
488         }
489         // Save cpsr explicitly.
490         gpr.cpsr = data.GetU32(&offset);
491 
492         SetError(GPRRegSet, Read, 0);
493         offset = next_thread_state;
494         break;
495 
496       case FPURegSet: {
497         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
498         const int fpu_reg_buf_size = sizeof(fpu.floats);
499         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
500                               fpu_reg_buf) == fpu_reg_buf_size) {
501           offset += fpu_reg_buf_size;
502           fpu.fpscr = data.GetU32(&offset);
503           SetError(FPURegSet, Read, 0);
504         } else {
505           done = true;
506         }
507       }
508         offset = next_thread_state;
509         break;
510 
511       case EXCRegSet:
512         if (count == 3) {
513           exc.exception = data.GetU32(&offset);
514           exc.fsr = data.GetU32(&offset);
515           exc.far = data.GetU32(&offset);
516           SetError(EXCRegSet, Read, 0);
517         }
518         done = true;
519         offset = next_thread_state;
520         break;
521 
522       // Unknown register set flavor, stop trying to parse.
523       default:
524         done = true;
525       }
526     }
527   }
528 
529   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
530     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
531     if (reg_ctx_sp) {
532       RegisterContext *reg_ctx = reg_ctx_sp.get();
533 
534       data.PutHex32(GPRRegSet); // Flavor
535       data.PutHex32(GPRWordCount);
536       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
537       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
538       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
539       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
540       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
541       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
542       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
543       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
544       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
545       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
546       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
547       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
548       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
549       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
550       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
551       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
552       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
553 
554       // Write out the EXC registers
555       //            data.PutHex32 (EXCRegSet);
556       //            data.PutHex32 (EXCWordCount);
557       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
558       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
559       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
560       return true;
561     }
562     return false;
563   }
564 
565 protected:
566   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
567 
568   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
569 
570   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
571 
572   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
573 
574   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
575     return 0;
576   }
577 
578   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
579     return 0;
580   }
581 
582   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
583     return 0;
584   }
585 
586   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
587     return -1;
588   }
589 };
590 
591 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
592 public:
593   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
594                                    const DataExtractor &data)
595       : RegisterContextDarwin_arm64(thread, 0) {
596     SetRegisterDataFrom_LC_THREAD(data);
597   }
598 
599   void InvalidateAllRegisters() override {
600     // Do nothing... registers are always valid...
601   }
602 
603   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
604     lldb::offset_t offset = 0;
605     SetError(GPRRegSet, Read, -1);
606     SetError(FPURegSet, Read, -1);
607     SetError(EXCRegSet, Read, -1);
608     bool done = false;
609     while (!done) {
610       int flavor = data.GetU32(&offset);
611       uint32_t count = data.GetU32(&offset);
612       lldb::offset_t next_thread_state = offset + (count * 4);
613       switch (flavor) {
614       case GPRRegSet:
615         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
616         // 32-bit register)
617         if (count >= (33 * 2) + 1) {
618           for (uint32_t i = 0; i < 29; ++i)
619             gpr.x[i] = data.GetU64(&offset);
620           gpr.fp = data.GetU64(&offset);
621           gpr.lr = data.GetU64(&offset);
622           gpr.sp = data.GetU64(&offset);
623           gpr.pc = data.GetU64(&offset);
624           gpr.cpsr = data.GetU32(&offset);
625           SetError(GPRRegSet, Read, 0);
626         }
627         offset = next_thread_state;
628         break;
629       case FPURegSet: {
630         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
631         const int fpu_reg_buf_size = sizeof(fpu);
632         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
633             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
634                               fpu_reg_buf) == fpu_reg_buf_size) {
635           SetError(FPURegSet, Read, 0);
636         } else {
637           done = true;
638         }
639       }
640         offset = next_thread_state;
641         break;
642       case EXCRegSet:
643         if (count == 4) {
644           exc.far = data.GetU64(&offset);
645           exc.esr = data.GetU32(&offset);
646           exc.exception = data.GetU32(&offset);
647           SetError(EXCRegSet, Read, 0);
648         }
649         offset = next_thread_state;
650         break;
651       default:
652         done = true;
653         break;
654       }
655     }
656   }
657 
658   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
659     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
660     if (reg_ctx_sp) {
661       RegisterContext *reg_ctx = reg_ctx_sp.get();
662 
663       data.PutHex32(GPRRegSet); // Flavor
664       data.PutHex32(GPRWordCount);
665       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
666       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
667       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
668       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
669       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
670       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
671       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
672       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
673       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
674       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
675       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
676       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
677       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
678       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
679       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
680       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
681       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
682       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
683       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
684       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
685       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
686       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
687       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
688       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
689       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
690       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
691       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
692       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
693       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
694       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
695       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
696       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
697       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
698       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
699 
700       // Write out the EXC registers
701       //            data.PutHex32 (EXCRegSet);
702       //            data.PutHex32 (EXCWordCount);
703       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
704       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
705       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
706       return true;
707     }
708     return false;
709   }
710 
711 protected:
712   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
713 
714   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
715 
716   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
717 
718   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
719 
720   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
721     return 0;
722   }
723 
724   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
725     return 0;
726   }
727 
728   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
729     return 0;
730   }
731 
732   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
733     return -1;
734   }
735 };
736 
737 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
738   switch (magic) {
739   case MH_MAGIC:
740   case MH_CIGAM:
741     return sizeof(struct mach_header);
742 
743   case MH_MAGIC_64:
744   case MH_CIGAM_64:
745     return sizeof(struct mach_header_64);
746     break;
747 
748   default:
749     break;
750   }
751   return 0;
752 }
753 
754 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
755 
756 char ObjectFileMachO::ID;
757 
758 void ObjectFileMachO::Initialize() {
759   PluginManager::RegisterPlugin(
760       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
761       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
762 }
763 
764 void ObjectFileMachO::Terminate() {
765   PluginManager::UnregisterPlugin(CreateInstance);
766 }
767 
768 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
769   static ConstString g_name("mach-o");
770   return g_name;
771 }
772 
773 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
774   return "Mach-o object file reader (32 and 64 bit)";
775 }
776 
777 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
778                                             DataBufferSP &data_sp,
779                                             lldb::offset_t data_offset,
780                                             const FileSpec *file,
781                                             lldb::offset_t file_offset,
782                                             lldb::offset_t length) {
783   if (!data_sp) {
784     data_sp = MapFileData(*file, length, file_offset);
785     if (!data_sp)
786       return nullptr;
787     data_offset = 0;
788   }
789 
790   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
791     return nullptr;
792 
793   // Update the data to contain the entire file if it doesn't already
794   if (data_sp->GetByteSize() < length) {
795     data_sp = MapFileData(*file, length, file_offset);
796     if (!data_sp)
797       return nullptr;
798     data_offset = 0;
799   }
800   auto objfile_up = std::make_unique<ObjectFileMachO>(
801       module_sp, data_sp, data_offset, file, file_offset, length);
802   if (!objfile_up || !objfile_up->ParseHeader())
803     return nullptr;
804 
805   return objfile_up.release();
806 }
807 
808 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
809     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
810     const ProcessSP &process_sp, lldb::addr_t header_addr) {
811   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
812     std::unique_ptr<ObjectFile> objfile_up(
813         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
814     if (objfile_up.get() && objfile_up->ParseHeader())
815       return objfile_up.release();
816   }
817   return nullptr;
818 }
819 
820 size_t ObjectFileMachO::GetModuleSpecifications(
821     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
822     lldb::offset_t data_offset, lldb::offset_t file_offset,
823     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
824   const size_t initial_count = specs.GetSize();
825 
826   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
827     DataExtractor data;
828     data.SetData(data_sp);
829     llvm::MachO::mach_header header;
830     if (ParseHeader(data, &data_offset, header)) {
831       size_t header_and_load_cmds =
832           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
833       if (header_and_load_cmds >= data_sp->GetByteSize()) {
834         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
835         data.SetData(data_sp);
836         data_offset = MachHeaderSizeFromMagic(header.magic);
837       }
838       if (data_sp) {
839         ModuleSpec base_spec;
840         base_spec.GetFileSpec() = file;
841         base_spec.SetObjectOffset(file_offset);
842         base_spec.SetObjectSize(length);
843         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
844       }
845     }
846   }
847   return specs.GetSize() - initial_count;
848 }
849 
850 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
851   static ConstString g_segment_name_TEXT("__TEXT");
852   return g_segment_name_TEXT;
853 }
854 
855 ConstString ObjectFileMachO::GetSegmentNameDATA() {
856   static ConstString g_segment_name_DATA("__DATA");
857   return g_segment_name_DATA;
858 }
859 
860 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
861   static ConstString g_segment_name("__DATA_DIRTY");
862   return g_segment_name;
863 }
864 
865 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
866   static ConstString g_segment_name("__DATA_CONST");
867   return g_segment_name;
868 }
869 
870 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
871   static ConstString g_segment_name_OBJC("__OBJC");
872   return g_segment_name_OBJC;
873 }
874 
875 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
876   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
877   return g_section_name_LINKEDIT;
878 }
879 
880 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
881   static ConstString g_section_name("__DWARF");
882   return g_section_name;
883 }
884 
885 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
886   static ConstString g_section_name_eh_frame("__eh_frame");
887   return g_section_name_eh_frame;
888 }
889 
890 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
891                                       lldb::addr_t data_offset,
892                                       lldb::addr_t data_length) {
893   DataExtractor data;
894   data.SetData(data_sp, data_offset, data_length);
895   lldb::offset_t offset = 0;
896   uint32_t magic = data.GetU32(&offset);
897   return MachHeaderSizeFromMagic(magic) != 0;
898 }
899 
900 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
901                                  DataBufferSP &data_sp,
902                                  lldb::offset_t data_offset,
903                                  const FileSpec *file,
904                                  lldb::offset_t file_offset,
905                                  lldb::offset_t length)
906     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
907       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
908       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
909       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
910   ::memset(&m_header, 0, sizeof(m_header));
911   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
912 }
913 
914 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
915                                  lldb::DataBufferSP &header_data_sp,
916                                  const lldb::ProcessSP &process_sp,
917                                  lldb::addr_t header_addr)
918     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
919       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
920       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
921       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
922   ::memset(&m_header, 0, sizeof(m_header));
923   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
924 }
925 
926 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
927                                   lldb::offset_t *data_offset_ptr,
928                                   llvm::MachO::mach_header &header) {
929   data.SetByteOrder(endian::InlHostByteOrder());
930   // Leave magic in the original byte order
931   header.magic = data.GetU32(data_offset_ptr);
932   bool can_parse = false;
933   bool is_64_bit = false;
934   switch (header.magic) {
935   case MH_MAGIC:
936     data.SetByteOrder(endian::InlHostByteOrder());
937     data.SetAddressByteSize(4);
938     can_parse = true;
939     break;
940 
941   case MH_MAGIC_64:
942     data.SetByteOrder(endian::InlHostByteOrder());
943     data.SetAddressByteSize(8);
944     can_parse = true;
945     is_64_bit = true;
946     break;
947 
948   case MH_CIGAM:
949     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
950                           ? eByteOrderLittle
951                           : eByteOrderBig);
952     data.SetAddressByteSize(4);
953     can_parse = true;
954     break;
955 
956   case MH_CIGAM_64:
957     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
958                           ? eByteOrderLittle
959                           : eByteOrderBig);
960     data.SetAddressByteSize(8);
961     is_64_bit = true;
962     can_parse = true;
963     break;
964 
965   default:
966     break;
967   }
968 
969   if (can_parse) {
970     data.GetU32(data_offset_ptr, &header.cputype, 6);
971     if (is_64_bit)
972       *data_offset_ptr += 4;
973     return true;
974   } else {
975     memset(&header, 0, sizeof(header));
976   }
977   return false;
978 }
979 
980 bool ObjectFileMachO::ParseHeader() {
981   ModuleSP module_sp(GetModule());
982   if (!module_sp)
983     return false;
984 
985   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
986   bool can_parse = false;
987   lldb::offset_t offset = 0;
988   m_data.SetByteOrder(endian::InlHostByteOrder());
989   // Leave magic in the original byte order
990   m_header.magic = m_data.GetU32(&offset);
991   switch (m_header.magic) {
992   case MH_MAGIC:
993     m_data.SetByteOrder(endian::InlHostByteOrder());
994     m_data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_MAGIC_64:
999     m_data.SetByteOrder(endian::InlHostByteOrder());
1000     m_data.SetAddressByteSize(8);
1001     can_parse = true;
1002     break;
1003 
1004   case MH_CIGAM:
1005     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1006                             ? eByteOrderLittle
1007                             : eByteOrderBig);
1008     m_data.SetAddressByteSize(4);
1009     can_parse = true;
1010     break;
1011 
1012   case MH_CIGAM_64:
1013     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1014                             ? eByteOrderLittle
1015                             : eByteOrderBig);
1016     m_data.SetAddressByteSize(8);
1017     can_parse = true;
1018     break;
1019 
1020   default:
1021     break;
1022   }
1023 
1024   if (can_parse) {
1025     m_data.GetU32(&offset, &m_header.cputype, 6);
1026 
1027     ModuleSpecList all_specs;
1028     ModuleSpec base_spec;
1029     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1030                     base_spec, all_specs);
1031 
1032     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1033       ArchSpec mach_arch =
1034           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1035 
1036       // Check if the module has a required architecture
1037       const ArchSpec &module_arch = module_sp->GetArchitecture();
1038       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1039         continue;
1040 
1041       if (SetModulesArchitecture(mach_arch)) {
1042         const size_t header_and_lc_size =
1043             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1044         if (m_data.GetByteSize() < header_and_lc_size) {
1045           DataBufferSP data_sp;
1046           ProcessSP process_sp(m_process_wp.lock());
1047           if (process_sp) {
1048             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1049           } else {
1050             // Read in all only the load command data from the file on disk
1051             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1052             if (data_sp->GetByteSize() != header_and_lc_size)
1053               continue;
1054           }
1055           if (data_sp)
1056             m_data.SetData(data_sp);
1057         }
1058       }
1059       return true;
1060     }
1061     // None found.
1062     return false;
1063   } else {
1064     memset(&m_header, 0, sizeof(struct mach_header));
1065   }
1066   return false;
1067 }
1068 
1069 ByteOrder ObjectFileMachO::GetByteOrder() const {
1070   return m_data.GetByteOrder();
1071 }
1072 
1073 bool ObjectFileMachO::IsExecutable() const {
1074   return m_header.filetype == MH_EXECUTE;
1075 }
1076 
1077 bool ObjectFileMachO::IsDynamicLoader() const {
1078   return m_header.filetype == MH_DYLINKER;
1079 }
1080 
1081 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1082   return m_data.GetAddressByteSize();
1083 }
1084 
1085 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1086   Symtab *symtab = GetSymtab();
1087   if (!symtab)
1088     return AddressClass::eUnknown;
1089 
1090   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1091   if (symbol) {
1092     if (symbol->ValueIsAddress()) {
1093       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1094       if (section_sp) {
1095         const lldb::SectionType section_type = section_sp->GetType();
1096         switch (section_type) {
1097         case eSectionTypeInvalid:
1098           return AddressClass::eUnknown;
1099 
1100         case eSectionTypeCode:
1101           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1102             // For ARM we have a bit in the n_desc field of the symbol that
1103             // tells us ARM/Thumb which is bit 0x0008.
1104             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1105               return AddressClass::eCodeAlternateISA;
1106           }
1107           return AddressClass::eCode;
1108 
1109         case eSectionTypeContainer:
1110           return AddressClass::eUnknown;
1111 
1112         case eSectionTypeData:
1113         case eSectionTypeDataCString:
1114         case eSectionTypeDataCStringPointers:
1115         case eSectionTypeDataSymbolAddress:
1116         case eSectionTypeData4:
1117         case eSectionTypeData8:
1118         case eSectionTypeData16:
1119         case eSectionTypeDataPointers:
1120         case eSectionTypeZeroFill:
1121         case eSectionTypeDataObjCMessageRefs:
1122         case eSectionTypeDataObjCCFStrings:
1123         case eSectionTypeGoSymtab:
1124           return AddressClass::eData;
1125 
1126         case eSectionTypeDebug:
1127         case eSectionTypeDWARFDebugAbbrev:
1128         case eSectionTypeDWARFDebugAbbrevDwo:
1129         case eSectionTypeDWARFDebugAddr:
1130         case eSectionTypeDWARFDebugAranges:
1131         case eSectionTypeDWARFDebugCuIndex:
1132         case eSectionTypeDWARFDebugFrame:
1133         case eSectionTypeDWARFDebugInfo:
1134         case eSectionTypeDWARFDebugInfoDwo:
1135         case eSectionTypeDWARFDebugLine:
1136         case eSectionTypeDWARFDebugLineStr:
1137         case eSectionTypeDWARFDebugLoc:
1138         case eSectionTypeDWARFDebugLocDwo:
1139         case eSectionTypeDWARFDebugLocLists:
1140         case eSectionTypeDWARFDebugLocListsDwo:
1141         case eSectionTypeDWARFDebugMacInfo:
1142         case eSectionTypeDWARFDebugMacro:
1143         case eSectionTypeDWARFDebugNames:
1144         case eSectionTypeDWARFDebugPubNames:
1145         case eSectionTypeDWARFDebugPubTypes:
1146         case eSectionTypeDWARFDebugRanges:
1147         case eSectionTypeDWARFDebugRngLists:
1148         case eSectionTypeDWARFDebugRngListsDwo:
1149         case eSectionTypeDWARFDebugStr:
1150         case eSectionTypeDWARFDebugStrDwo:
1151         case eSectionTypeDWARFDebugStrOffsets:
1152         case eSectionTypeDWARFDebugStrOffsetsDwo:
1153         case eSectionTypeDWARFDebugTuIndex:
1154         case eSectionTypeDWARFDebugTypes:
1155         case eSectionTypeDWARFDebugTypesDwo:
1156         case eSectionTypeDWARFAppleNames:
1157         case eSectionTypeDWARFAppleTypes:
1158         case eSectionTypeDWARFAppleNamespaces:
1159         case eSectionTypeDWARFAppleObjC:
1160         case eSectionTypeDWARFGNUDebugAltLink:
1161           return AddressClass::eDebug;
1162 
1163         case eSectionTypeEHFrame:
1164         case eSectionTypeARMexidx:
1165         case eSectionTypeARMextab:
1166         case eSectionTypeCompactUnwind:
1167           return AddressClass::eRuntime;
1168 
1169         case eSectionTypeAbsoluteAddress:
1170         case eSectionTypeELFSymbolTable:
1171         case eSectionTypeELFDynamicSymbols:
1172         case eSectionTypeELFRelocationEntries:
1173         case eSectionTypeELFDynamicLinkInfo:
1174         case eSectionTypeOther:
1175           return AddressClass::eUnknown;
1176         }
1177       }
1178     }
1179 
1180     const SymbolType symbol_type = symbol->GetType();
1181     switch (symbol_type) {
1182     case eSymbolTypeAny:
1183       return AddressClass::eUnknown;
1184     case eSymbolTypeAbsolute:
1185       return AddressClass::eUnknown;
1186 
1187     case eSymbolTypeCode:
1188     case eSymbolTypeTrampoline:
1189     case eSymbolTypeResolver:
1190       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1191         // For ARM we have a bit in the n_desc field of the symbol that tells
1192         // us ARM/Thumb which is bit 0x0008.
1193         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1194           return AddressClass::eCodeAlternateISA;
1195       }
1196       return AddressClass::eCode;
1197 
1198     case eSymbolTypeData:
1199       return AddressClass::eData;
1200     case eSymbolTypeRuntime:
1201       return AddressClass::eRuntime;
1202     case eSymbolTypeException:
1203       return AddressClass::eRuntime;
1204     case eSymbolTypeSourceFile:
1205       return AddressClass::eDebug;
1206     case eSymbolTypeHeaderFile:
1207       return AddressClass::eDebug;
1208     case eSymbolTypeObjectFile:
1209       return AddressClass::eDebug;
1210     case eSymbolTypeCommonBlock:
1211       return AddressClass::eDebug;
1212     case eSymbolTypeBlock:
1213       return AddressClass::eDebug;
1214     case eSymbolTypeLocal:
1215       return AddressClass::eData;
1216     case eSymbolTypeParam:
1217       return AddressClass::eData;
1218     case eSymbolTypeVariable:
1219       return AddressClass::eData;
1220     case eSymbolTypeVariableType:
1221       return AddressClass::eDebug;
1222     case eSymbolTypeLineEntry:
1223       return AddressClass::eDebug;
1224     case eSymbolTypeLineHeader:
1225       return AddressClass::eDebug;
1226     case eSymbolTypeScopeBegin:
1227       return AddressClass::eDebug;
1228     case eSymbolTypeScopeEnd:
1229       return AddressClass::eDebug;
1230     case eSymbolTypeAdditional:
1231       return AddressClass::eUnknown;
1232     case eSymbolTypeCompiler:
1233       return AddressClass::eDebug;
1234     case eSymbolTypeInstrumentation:
1235       return AddressClass::eDebug;
1236     case eSymbolTypeUndefined:
1237       return AddressClass::eUnknown;
1238     case eSymbolTypeObjCClass:
1239       return AddressClass::eRuntime;
1240     case eSymbolTypeObjCMetaClass:
1241       return AddressClass::eRuntime;
1242     case eSymbolTypeObjCIVar:
1243       return AddressClass::eRuntime;
1244     case eSymbolTypeReExported:
1245       return AddressClass::eRuntime;
1246     }
1247   }
1248   return AddressClass::eUnknown;
1249 }
1250 
1251 Symtab *ObjectFileMachO::GetSymtab() {
1252   ModuleSP module_sp(GetModule());
1253   if (module_sp) {
1254     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1255     if (m_symtab_up == nullptr) {
1256       m_symtab_up.reset(new Symtab(this));
1257       std::lock_guard<std::recursive_mutex> symtab_guard(
1258           m_symtab_up->GetMutex());
1259       ParseSymtab();
1260       m_symtab_up->Finalize();
1261     }
1262   }
1263   return m_symtab_up.get();
1264 }
1265 
1266 bool ObjectFileMachO::IsStripped() {
1267   if (m_dysymtab.cmd == 0) {
1268     ModuleSP module_sp(GetModule());
1269     if (module_sp) {
1270       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1271       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1272         const lldb::offset_t load_cmd_offset = offset;
1273 
1274         load_command lc;
1275         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1276           break;
1277         if (lc.cmd == LC_DYSYMTAB) {
1278           m_dysymtab.cmd = lc.cmd;
1279           m_dysymtab.cmdsize = lc.cmdsize;
1280           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1281                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1282               nullptr) {
1283             // Clear m_dysymtab if we were unable to read all items from the
1284             // load command
1285             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1286           }
1287         }
1288         offset = load_cmd_offset + lc.cmdsize;
1289       }
1290     }
1291   }
1292   if (m_dysymtab.cmd)
1293     return m_dysymtab.nlocalsym <= 1;
1294   return false;
1295 }
1296 
1297 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1298   EncryptedFileRanges result;
1299   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1300 
1301   encryption_info_command encryption_cmd;
1302   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303     const lldb::offset_t load_cmd_offset = offset;
1304     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1305       break;
1306 
1307     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1308     // 3 fields we care about, so treat them the same.
1309     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1310         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1311       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1312         if (encryption_cmd.cryptid != 0) {
1313           EncryptedFileRanges::Entry entry;
1314           entry.SetRangeBase(encryption_cmd.cryptoff);
1315           entry.SetByteSize(encryption_cmd.cryptsize);
1316           result.Append(entry);
1317         }
1318       }
1319     }
1320     offset = load_cmd_offset + encryption_cmd.cmdsize;
1321   }
1322 
1323   return result;
1324 }
1325 
1326 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1327                                              uint32_t cmd_idx) {
1328   if (m_length == 0 || seg_cmd.filesize == 0)
1329     return;
1330 
1331   if (seg_cmd.fileoff > m_length) {
1332     // We have a load command that says it extends past the end of the file.
1333     // This is likely a corrupt file.  We don't have any way to return an error
1334     // condition here (this method was likely invoked from something like
1335     // ObjectFile::GetSectionList()), so we just null out the section contents,
1336     // and dump a message to stdout.  The most common case here is core file
1337     // debugging with a truncated file.
1338     const char *lc_segment_name =
1339         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1340     GetModule()->ReportWarning(
1341         "load command %u %s has a fileoff (0x%" PRIx64
1342         ") that extends beyond the end of the file (0x%" PRIx64
1343         "), ignoring this section",
1344         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1345 
1346     seg_cmd.fileoff = 0;
1347     seg_cmd.filesize = 0;
1348   }
1349 
1350   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1351     // We have a load command that says it extends past the end of the file.
1352     // This is likely a corrupt file.  We don't have any way to return an error
1353     // condition here (this method was likely invoked from something like
1354     // ObjectFile::GetSectionList()), so we just null out the section contents,
1355     // and dump a message to stdout.  The most common case here is core file
1356     // debugging with a truncated file.
1357     const char *lc_segment_name =
1358         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1359     GetModule()->ReportWarning(
1360         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1361         ") that extends beyond the end of the file (0x%" PRIx64
1362         "), the segment will be truncated to match",
1363         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1364 
1365     // Truncate the length
1366     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1367   }
1368 }
1369 
1370 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1371   uint32_t result = 0;
1372   if (seg_cmd.initprot & VM_PROT_READ)
1373     result |= ePermissionsReadable;
1374   if (seg_cmd.initprot & VM_PROT_WRITE)
1375     result |= ePermissionsWritable;
1376   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1377     result |= ePermissionsExecutable;
1378   return result;
1379 }
1380 
1381 static lldb::SectionType GetSectionType(uint32_t flags,
1382                                         ConstString section_name) {
1383 
1384   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1385     return eSectionTypeCode;
1386 
1387   uint32_t mach_sect_type = flags & SECTION_TYPE;
1388   static ConstString g_sect_name_objc_data("__objc_data");
1389   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1390   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1391   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1392   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1393   static ConstString g_sect_name_objc_const("__objc_const");
1394   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1395   static ConstString g_sect_name_cfstring("__cfstring");
1396 
1397   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1398   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1399   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1400   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1401   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1402   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1403   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1404   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1405   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1406   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1407   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1408   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1409   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1410   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1411   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1412   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1413   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1414   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1415   static ConstString g_sect_name_eh_frame("__eh_frame");
1416   static ConstString g_sect_name_compact_unwind("__unwind_info");
1417   static ConstString g_sect_name_text("__text");
1418   static ConstString g_sect_name_data("__data");
1419   static ConstString g_sect_name_go_symtab("__gosymtab");
1420 
1421   if (section_name == g_sect_name_dwarf_debug_abbrev)
1422     return eSectionTypeDWARFDebugAbbrev;
1423   if (section_name == g_sect_name_dwarf_debug_aranges)
1424     return eSectionTypeDWARFDebugAranges;
1425   if (section_name == g_sect_name_dwarf_debug_frame)
1426     return eSectionTypeDWARFDebugFrame;
1427   if (section_name == g_sect_name_dwarf_debug_info)
1428     return eSectionTypeDWARFDebugInfo;
1429   if (section_name == g_sect_name_dwarf_debug_line)
1430     return eSectionTypeDWARFDebugLine;
1431   if (section_name == g_sect_name_dwarf_debug_loc)
1432     return eSectionTypeDWARFDebugLoc;
1433   if (section_name == g_sect_name_dwarf_debug_loclists)
1434     return eSectionTypeDWARFDebugLocLists;
1435   if (section_name == g_sect_name_dwarf_debug_macinfo)
1436     return eSectionTypeDWARFDebugMacInfo;
1437   if (section_name == g_sect_name_dwarf_debug_names)
1438     return eSectionTypeDWARFDebugNames;
1439   if (section_name == g_sect_name_dwarf_debug_pubnames)
1440     return eSectionTypeDWARFDebugPubNames;
1441   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1442     return eSectionTypeDWARFDebugPubTypes;
1443   if (section_name == g_sect_name_dwarf_debug_ranges)
1444     return eSectionTypeDWARFDebugRanges;
1445   if (section_name == g_sect_name_dwarf_debug_str)
1446     return eSectionTypeDWARFDebugStr;
1447   if (section_name == g_sect_name_dwarf_debug_types)
1448     return eSectionTypeDWARFDebugTypes;
1449   if (section_name == g_sect_name_dwarf_apple_names)
1450     return eSectionTypeDWARFAppleNames;
1451   if (section_name == g_sect_name_dwarf_apple_types)
1452     return eSectionTypeDWARFAppleTypes;
1453   if (section_name == g_sect_name_dwarf_apple_namespaces)
1454     return eSectionTypeDWARFAppleNamespaces;
1455   if (section_name == g_sect_name_dwarf_apple_objc)
1456     return eSectionTypeDWARFAppleObjC;
1457   if (section_name == g_sect_name_objc_selrefs)
1458     return eSectionTypeDataCStringPointers;
1459   if (section_name == g_sect_name_objc_msgrefs)
1460     return eSectionTypeDataObjCMessageRefs;
1461   if (section_name == g_sect_name_eh_frame)
1462     return eSectionTypeEHFrame;
1463   if (section_name == g_sect_name_compact_unwind)
1464     return eSectionTypeCompactUnwind;
1465   if (section_name == g_sect_name_cfstring)
1466     return eSectionTypeDataObjCCFStrings;
1467   if (section_name == g_sect_name_go_symtab)
1468     return eSectionTypeGoSymtab;
1469   if (section_name == g_sect_name_objc_data ||
1470       section_name == g_sect_name_objc_classrefs ||
1471       section_name == g_sect_name_objc_superrefs ||
1472       section_name == g_sect_name_objc_const ||
1473       section_name == g_sect_name_objc_classlist) {
1474     return eSectionTypeDataPointers;
1475   }
1476 
1477   switch (mach_sect_type) {
1478   // TODO: categorize sections by other flags for regular sections
1479   case S_REGULAR:
1480     if (section_name == g_sect_name_text)
1481       return eSectionTypeCode;
1482     if (section_name == g_sect_name_data)
1483       return eSectionTypeData;
1484     return eSectionTypeOther;
1485   case S_ZEROFILL:
1486     return eSectionTypeZeroFill;
1487   case S_CSTRING_LITERALS: // section with only literal C strings
1488     return eSectionTypeDataCString;
1489   case S_4BYTE_LITERALS: // section with only 4 byte literals
1490     return eSectionTypeData4;
1491   case S_8BYTE_LITERALS: // section with only 8 byte literals
1492     return eSectionTypeData8;
1493   case S_LITERAL_POINTERS: // section with only pointers to literals
1494     return eSectionTypeDataPointers;
1495   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1496     return eSectionTypeDataPointers;
1497   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1498     return eSectionTypeDataPointers;
1499   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1500                        // the reserved2 field
1501     return eSectionTypeCode;
1502   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1503                                  // initialization
1504     return eSectionTypeDataPointers;
1505   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1506                                  // termination
1507     return eSectionTypeDataPointers;
1508   case S_COALESCED:
1509     return eSectionTypeOther;
1510   case S_GB_ZEROFILL:
1511     return eSectionTypeZeroFill;
1512   case S_INTERPOSING: // section with only pairs of function pointers for
1513                       // interposing
1514     return eSectionTypeCode;
1515   case S_16BYTE_LITERALS: // section with only 16 byte literals
1516     return eSectionTypeData16;
1517   case S_DTRACE_DOF:
1518     return eSectionTypeDebug;
1519   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1520     return eSectionTypeDataPointers;
1521   default:
1522     return eSectionTypeOther;
1523   }
1524 }
1525 
1526 struct ObjectFileMachO::SegmentParsingContext {
1527   const EncryptedFileRanges EncryptedRanges;
1528   lldb_private::SectionList &UnifiedList;
1529   uint32_t NextSegmentIdx = 0;
1530   uint32_t NextSectionIdx = 0;
1531   bool FileAddressesChanged = false;
1532 
1533   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1534                         lldb_private::SectionList &UnifiedList)
1535       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1536 };
1537 
1538 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1539                                             lldb::offset_t offset,
1540                                             uint32_t cmd_idx,
1541                                             SegmentParsingContext &context) {
1542   segment_command_64 load_cmd;
1543   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1544 
1545   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1546     return;
1547 
1548   ModuleSP module_sp = GetModule();
1549   const bool is_core = GetType() == eTypeCoreFile;
1550   const bool is_dsym = (m_header.filetype == MH_DSYM);
1551   bool add_section = true;
1552   bool add_to_unified = true;
1553   ConstString const_segname(
1554       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1555 
1556   SectionSP unified_section_sp(
1557       context.UnifiedList.FindSectionByName(const_segname));
1558   if (is_dsym && unified_section_sp) {
1559     if (const_segname == GetSegmentNameLINKEDIT()) {
1560       // We need to keep the __LINKEDIT segment private to this object file
1561       // only
1562       add_to_unified = false;
1563     } else {
1564       // This is the dSYM file and this section has already been created by the
1565       // object file, no need to create it.
1566       add_section = false;
1567     }
1568   }
1569   load_cmd.vmaddr = m_data.GetAddress(&offset);
1570   load_cmd.vmsize = m_data.GetAddress(&offset);
1571   load_cmd.fileoff = m_data.GetAddress(&offset);
1572   load_cmd.filesize = m_data.GetAddress(&offset);
1573   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1574     return;
1575 
1576   SanitizeSegmentCommand(load_cmd, cmd_idx);
1577 
1578   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1579   const bool segment_is_encrypted =
1580       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1581 
1582   // Keep a list of mach segments around in case we need to get at data that
1583   // isn't stored in the abstracted Sections.
1584   m_mach_segments.push_back(load_cmd);
1585 
1586   // Use a segment ID of the segment index shifted left by 8 so they never
1587   // conflict with any of the sections.
1588   SectionSP segment_sp;
1589   if (add_section && (const_segname || is_core)) {
1590     segment_sp = std::make_shared<Section>(
1591         module_sp, // Module to which this section belongs
1592         this,      // Object file to which this sections belongs
1593         ++context.NextSegmentIdx
1594             << 8, // Section ID is the 1 based segment index
1595         // shifted right by 8 bits as not to collide with any of the 256
1596         // section IDs that are possible
1597         const_segname,         // Name of this section
1598         eSectionTypeContainer, // This section is a container of other
1599         // sections.
1600         load_cmd.vmaddr, // File VM address == addresses as they are
1601         // found in the object file
1602         load_cmd.vmsize,  // VM size in bytes of this section
1603         load_cmd.fileoff, // Offset to the data for this section in
1604         // the file
1605         load_cmd.filesize, // Size in bytes of this section as found
1606         // in the file
1607         0,               // Segments have no alignment information
1608         load_cmd.flags); // Flags for this section
1609 
1610     segment_sp->SetIsEncrypted(segment_is_encrypted);
1611     m_sections_up->AddSection(segment_sp);
1612     segment_sp->SetPermissions(segment_permissions);
1613     if (add_to_unified)
1614       context.UnifiedList.AddSection(segment_sp);
1615   } else if (unified_section_sp) {
1616     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1617       // Check to see if the module was read from memory?
1618       if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) {
1619         // We have a module that is in memory and needs to have its file
1620         // address adjusted. We need to do this because when we load a file
1621         // from memory, its addresses will be slid already, yet the addresses
1622         // in the new symbol file will still be unslid.  Since everything is
1623         // stored as section offset, this shouldn't cause any problems.
1624 
1625         // Make sure we've parsed the symbol table from the ObjectFile before
1626         // we go around changing its Sections.
1627         module_sp->GetObjectFile()->GetSymtab();
1628         // eh_frame would present the same problems but we parse that on a per-
1629         // function basis as-needed so it's more difficult to remove its use of
1630         // the Sections.  Realistically, the environments where this code path
1631         // will be taken will not have eh_frame sections.
1632 
1633         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1634 
1635         // Notify the module that the section addresses have been changed once
1636         // we're done so any file-address caches can be updated.
1637         context.FileAddressesChanged = true;
1638       }
1639     }
1640     m_sections_up->AddSection(unified_section_sp);
1641   }
1642 
1643   struct section_64 sect64;
1644   ::memset(&sect64, 0, sizeof(sect64));
1645   // Push a section into our mach sections for the section at index zero
1646   // (NO_SECT) if we don't have any mach sections yet...
1647   if (m_mach_sections.empty())
1648     m_mach_sections.push_back(sect64);
1649   uint32_t segment_sect_idx;
1650   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1651 
1652   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1653   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1654        ++segment_sect_idx) {
1655     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1656                      sizeof(sect64.sectname)) == nullptr)
1657       break;
1658     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1659                      sizeof(sect64.segname)) == nullptr)
1660       break;
1661     sect64.addr = m_data.GetAddress(&offset);
1662     sect64.size = m_data.GetAddress(&offset);
1663 
1664     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1665       break;
1666 
1667     // Keep a list of mach sections around in case we need to get at data that
1668     // isn't stored in the abstracted Sections.
1669     m_mach_sections.push_back(sect64);
1670 
1671     if (add_section) {
1672       ConstString section_name(
1673           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1674       if (!const_segname) {
1675         // We have a segment with no name so we need to conjure up segments
1676         // that correspond to the section's segname if there isn't already such
1677         // a section. If there is such a section, we resize the section so that
1678         // it spans all sections.  We also mark these sections as fake so
1679         // address matches don't hit if they land in the gaps between the child
1680         // sections.
1681         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1682                                                   sizeof(sect64.segname));
1683         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1684         if (segment_sp.get()) {
1685           Section *segment = segment_sp.get();
1686           // Grow the section size as needed.
1687           const lldb::addr_t sect64_min_addr = sect64.addr;
1688           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1689           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1690           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1691           const lldb::addr_t curr_seg_max_addr =
1692               curr_seg_min_addr + curr_seg_byte_size;
1693           if (sect64_min_addr >= curr_seg_min_addr) {
1694             const lldb::addr_t new_seg_byte_size =
1695                 sect64_max_addr - curr_seg_min_addr;
1696             // Only grow the section size if needed
1697             if (new_seg_byte_size > curr_seg_byte_size)
1698               segment->SetByteSize(new_seg_byte_size);
1699           } else {
1700             // We need to change the base address of the segment and adjust the
1701             // child section offsets for all existing children.
1702             const lldb::addr_t slide_amount =
1703                 sect64_min_addr - curr_seg_min_addr;
1704             segment->Slide(slide_amount, false);
1705             segment->GetChildren().Slide(-slide_amount, false);
1706             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1707           }
1708 
1709           // Grow the section size as needed.
1710           if (sect64.offset) {
1711             const lldb::addr_t segment_min_file_offset =
1712                 segment->GetFileOffset();
1713             const lldb::addr_t segment_max_file_offset =
1714                 segment_min_file_offset + segment->GetFileSize();
1715 
1716             const lldb::addr_t section_min_file_offset = sect64.offset;
1717             const lldb::addr_t section_max_file_offset =
1718                 section_min_file_offset + sect64.size;
1719             const lldb::addr_t new_file_offset =
1720                 std::min(section_min_file_offset, segment_min_file_offset);
1721             const lldb::addr_t new_file_size =
1722                 std::max(section_max_file_offset, segment_max_file_offset) -
1723                 new_file_offset;
1724             segment->SetFileOffset(new_file_offset);
1725             segment->SetFileSize(new_file_size);
1726           }
1727         } else {
1728           // Create a fake section for the section's named segment
1729           segment_sp = std::make_shared<Section>(
1730               segment_sp, // Parent section
1731               module_sp,  // Module to which this section belongs
1732               this,       // Object file to which this section belongs
1733               ++context.NextSegmentIdx
1734                   << 8, // Section ID is the 1 based segment index
1735               // shifted right by 8 bits as not to
1736               // collide with any of the 256 section IDs
1737               // that are possible
1738               const_segname,         // Name of this section
1739               eSectionTypeContainer, // This section is a container of
1740               // other sections.
1741               sect64.addr, // File VM address == addresses as they are
1742               // found in the object file
1743               sect64.size,   // VM size in bytes of this section
1744               sect64.offset, // Offset to the data for this section in
1745               // the file
1746               sect64.offset ? sect64.size : 0, // Size in bytes of
1747               // this section as
1748               // found in the file
1749               sect64.align,
1750               load_cmd.flags); // Flags for this section
1751           segment_sp->SetIsFake(true);
1752           segment_sp->SetPermissions(segment_permissions);
1753           m_sections_up->AddSection(segment_sp);
1754           if (add_to_unified)
1755             context.UnifiedList.AddSection(segment_sp);
1756           segment_sp->SetIsEncrypted(segment_is_encrypted);
1757         }
1758       }
1759       assert(segment_sp.get());
1760 
1761       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1762 
1763       SectionSP section_sp(new Section(
1764           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1765           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1766           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1767           sect64.flags));
1768       // Set the section to be encrypted to match the segment
1769 
1770       bool section_is_encrypted = false;
1771       if (!segment_is_encrypted && load_cmd.filesize != 0)
1772         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1773                                    sect64.offset) != nullptr;
1774 
1775       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1776       section_sp->SetPermissions(segment_permissions);
1777       segment_sp->GetChildren().AddSection(section_sp);
1778 
1779       if (segment_sp->IsFake()) {
1780         segment_sp.reset();
1781         const_segname.Clear();
1782       }
1783     }
1784   }
1785   if (segment_sp && is_dsym) {
1786     if (first_segment_sectID <= context.NextSectionIdx) {
1787       lldb::user_id_t sect_uid;
1788       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1789            ++sect_uid) {
1790         SectionSP curr_section_sp(
1791             segment_sp->GetChildren().FindSectionByID(sect_uid));
1792         SectionSP next_section_sp;
1793         if (sect_uid + 1 <= context.NextSectionIdx)
1794           next_section_sp =
1795               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1796 
1797         if (curr_section_sp.get()) {
1798           if (curr_section_sp->GetByteSize() == 0) {
1799             if (next_section_sp.get() != nullptr)
1800               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1801                                            curr_section_sp->GetFileAddress());
1802             else
1803               curr_section_sp->SetByteSize(load_cmd.vmsize);
1804           }
1805         }
1806       }
1807     }
1808   }
1809 }
1810 
1811 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1812                                              lldb::offset_t offset) {
1813   m_dysymtab.cmd = load_cmd.cmd;
1814   m_dysymtab.cmdsize = load_cmd.cmdsize;
1815   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1816                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1817 }
1818 
1819 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1820   if (m_sections_up)
1821     return;
1822 
1823   m_sections_up.reset(new SectionList());
1824 
1825   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1826   // bool dump_sections = false;
1827   ModuleSP module_sp(GetModule());
1828 
1829   offset = MachHeaderSizeFromMagic(m_header.magic);
1830 
1831   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1832   struct load_command load_cmd;
1833   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1834     const lldb::offset_t load_cmd_offset = offset;
1835     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1836       break;
1837 
1838     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1839       ProcessSegmentCommand(load_cmd, offset, i, context);
1840     else if (load_cmd.cmd == LC_DYSYMTAB)
1841       ProcessDysymtabCommand(load_cmd, offset);
1842 
1843     offset = load_cmd_offset + load_cmd.cmdsize;
1844   }
1845 
1846   if (context.FileAddressesChanged && module_sp)
1847     module_sp->SectionFileAddressesChanged();
1848 }
1849 
1850 class MachSymtabSectionInfo {
1851 public:
1852   MachSymtabSectionInfo(SectionList *section_list)
1853       : m_section_list(section_list), m_section_infos() {
1854     // Get the number of sections down to a depth of 1 to include all segments
1855     // and their sections, but no other sections that may be added for debug
1856     // map or
1857     m_section_infos.resize(section_list->GetNumSections(1));
1858   }
1859 
1860   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1861     if (n_sect == 0)
1862       return SectionSP();
1863     if (n_sect < m_section_infos.size()) {
1864       if (!m_section_infos[n_sect].section_sp) {
1865         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1866         m_section_infos[n_sect].section_sp = section_sp;
1867         if (section_sp) {
1868           m_section_infos[n_sect].vm_range.SetBaseAddress(
1869               section_sp->GetFileAddress());
1870           m_section_infos[n_sect].vm_range.SetByteSize(
1871               section_sp->GetByteSize());
1872         } else {
1873           const char *filename = "<unknown>";
1874           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1875           if (first_section_sp)
1876             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath().c_str();
1877 
1878           Host::SystemLog(Host::eSystemLogError,
1879                           "error: unable to find section %d for a symbol in %s, corrupt file?\n",
1880                           n_sect,
1881                           filename);
1882         }
1883       }
1884       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1885         // Symbol is in section.
1886         return m_section_infos[n_sect].section_sp;
1887       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1888                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1889                      file_addr) {
1890         // Symbol is in section with zero size, but has the same start address
1891         // as the section. This can happen with linker symbols (symbols that
1892         // start with the letter 'l' or 'L'.
1893         return m_section_infos[n_sect].section_sp;
1894       }
1895     }
1896     return m_section_list->FindSectionContainingFileAddress(file_addr);
1897   }
1898 
1899 protected:
1900   struct SectionInfo {
1901     SectionInfo() : vm_range(), section_sp() {}
1902 
1903     VMRange vm_range;
1904     SectionSP section_sp;
1905   };
1906   SectionList *m_section_list;
1907   std::vector<SectionInfo> m_section_infos;
1908 };
1909 
1910 struct TrieEntry {
1911   void Dump() const {
1912     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1913            static_cast<unsigned long long>(address),
1914            static_cast<unsigned long long>(flags),
1915            static_cast<unsigned long long>(other), name.GetCString());
1916     if (import_name)
1917       printf(" -> \"%s\"\n", import_name.GetCString());
1918     else
1919       printf("\n");
1920   }
1921   ConstString name;
1922   uint64_t address = LLDB_INVALID_ADDRESS;
1923   uint64_t flags = 0;
1924   uint64_t other = 0;
1925   ConstString import_name;
1926 };
1927 
1928 struct TrieEntryWithOffset {
1929   lldb::offset_t nodeOffset;
1930   TrieEntry entry;
1931 
1932   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1933 
1934   void Dump(uint32_t idx) const {
1935     printf("[%3u] 0x%16.16llx: ", idx,
1936            static_cast<unsigned long long>(nodeOffset));
1937     entry.Dump();
1938   }
1939 
1940   bool operator<(const TrieEntryWithOffset &other) const {
1941     return (nodeOffset < other.nodeOffset);
1942   }
1943 };
1944 
1945 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
1946                              const bool is_arm,
1947                              std::vector<llvm::StringRef> &nameSlices,
1948                              std::set<lldb::addr_t> &resolver_addresses,
1949                              std::vector<TrieEntryWithOffset> &output) {
1950   if (!data.ValidOffset(offset))
1951     return true;
1952 
1953   const uint64_t terminalSize = data.GetULEB128(&offset);
1954   lldb::offset_t children_offset = offset + terminalSize;
1955   if (terminalSize != 0) {
1956     TrieEntryWithOffset e(offset);
1957     e.entry.flags = data.GetULEB128(&offset);
1958     const char *import_name = nullptr;
1959     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
1960       e.entry.address = 0;
1961       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
1962       import_name = data.GetCStr(&offset);
1963     } else {
1964       e.entry.address = data.GetULEB128(&offset);
1965       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
1966         e.entry.other = data.GetULEB128(&offset);
1967         uint64_t resolver_addr = e.entry.other;
1968         if (is_arm)
1969           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
1970         resolver_addresses.insert(resolver_addr);
1971       } else
1972         e.entry.other = 0;
1973     }
1974     // Only add symbols that are reexport symbols with a valid import name
1975     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
1976         import_name[0]) {
1977       std::string name;
1978       if (!nameSlices.empty()) {
1979         for (auto name_slice : nameSlices)
1980           name.append(name_slice.data(), name_slice.size());
1981       }
1982       if (name.size() > 1) {
1983         // Skip the leading '_'
1984         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
1985       }
1986       if (import_name) {
1987         // Skip the leading '_'
1988         e.entry.import_name.SetCString(import_name + 1);
1989       }
1990       output.push_back(e);
1991     }
1992   }
1993 
1994   const uint8_t childrenCount = data.GetU8(&children_offset);
1995   for (uint8_t i = 0; i < childrenCount; ++i) {
1996     const char *cstr = data.GetCStr(&children_offset);
1997     if (cstr)
1998       nameSlices.push_back(llvm::StringRef(cstr));
1999     else
2000       return false; // Corrupt data
2001     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2002     if (childNodeOffset) {
2003       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2004                             resolver_addresses, output)) {
2005         return false;
2006       }
2007     }
2008     nameSlices.pop_back();
2009   }
2010   return true;
2011 }
2012 
2013 // Read the UUID out of a dyld_shared_cache file on-disk.
2014 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2015                                          const ByteOrder byte_order,
2016                                          const uint32_t addr_byte_size) {
2017   UUID dsc_uuid;
2018   DataBufferSP DscData = MapFileData(
2019       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2020   if (!DscData)
2021     return dsc_uuid;
2022   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2023 
2024   char version_str[7];
2025   lldb::offset_t offset = 0;
2026   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2027   version_str[6] = '\0';
2028   if (strcmp(version_str, "dyld_v") == 0) {
2029     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2030     dsc_uuid = UUID::fromOptionalData(
2031         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2032   }
2033   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2034   if (log && dsc_uuid.IsValid()) {
2035     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2036               dyld_shared_cache.GetPath().c_str(),
2037               dsc_uuid.GetAsString().c_str());
2038   }
2039   return dsc_uuid;
2040 }
2041 
2042 static llvm::Optional<struct nlist_64>
2043 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2044            size_t nlist_byte_size) {
2045   struct nlist_64 nlist;
2046   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2047     return {};
2048   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2049   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2050   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2051   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2052   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2053   return nlist;
2054 }
2055 
2056 enum { DebugSymbols = true, NonDebugSymbols = false };
2057 
2058 size_t ObjectFileMachO::ParseSymtab() {
2059   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2060   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2061                      m_file.GetFilename().AsCString(""));
2062   ModuleSP module_sp(GetModule());
2063   if (!module_sp)
2064     return 0;
2065 
2066   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2067   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2068   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2069   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2070   FunctionStarts function_starts;
2071   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2072   uint32_t i;
2073   FileSpecList dylib_files;
2074   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2075   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2076   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2077   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2078 
2079   for (i = 0; i < m_header.ncmds; ++i) {
2080     const lldb::offset_t cmd_offset = offset;
2081     // Read in the load command and load command size
2082     struct load_command lc;
2083     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2084       break;
2085     // Watch for the symbol table load command
2086     switch (lc.cmd) {
2087     case LC_SYMTAB:
2088       symtab_load_command.cmd = lc.cmd;
2089       symtab_load_command.cmdsize = lc.cmdsize;
2090       // Read in the rest of the symtab load command
2091       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2092           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2093         return 0;
2094       if (symtab_load_command.symoff == 0) {
2095         if (log)
2096           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2097         return 0;
2098       }
2099 
2100       if (symtab_load_command.stroff == 0) {
2101         if (log)
2102           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2103         return 0;
2104       }
2105 
2106       if (symtab_load_command.nsyms == 0) {
2107         if (log)
2108           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2109         return 0;
2110       }
2111 
2112       if (symtab_load_command.strsize == 0) {
2113         if (log)
2114           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2115         return 0;
2116       }
2117       break;
2118 
2119     case LC_DYLD_INFO:
2120     case LC_DYLD_INFO_ONLY:
2121       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2122         dyld_info.cmd = lc.cmd;
2123         dyld_info.cmdsize = lc.cmdsize;
2124       } else {
2125         memset(&dyld_info, 0, sizeof(dyld_info));
2126       }
2127       break;
2128 
2129     case LC_LOAD_DYLIB:
2130     case LC_LOAD_WEAK_DYLIB:
2131     case LC_REEXPORT_DYLIB:
2132     case LC_LOADFVMLIB:
2133     case LC_LOAD_UPWARD_DYLIB: {
2134       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2135       const char *path = m_data.PeekCStr(name_offset);
2136       if (path) {
2137         FileSpec file_spec(path);
2138         // Strip the path if there is @rpath, @executable, etc so we just use
2139         // the basename
2140         if (path[0] == '@')
2141           file_spec.GetDirectory().Clear();
2142 
2143         if (lc.cmd == LC_REEXPORT_DYLIB) {
2144           m_reexported_dylibs.AppendIfUnique(file_spec);
2145         }
2146 
2147         dylib_files.Append(file_spec);
2148       }
2149     } break;
2150 
2151     case LC_FUNCTION_STARTS:
2152       function_starts_load_command.cmd = lc.cmd;
2153       function_starts_load_command.cmdsize = lc.cmdsize;
2154       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2155           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2156         memset(&function_starts_load_command, 0,
2157                sizeof(function_starts_load_command));
2158       break;
2159 
2160     default:
2161       break;
2162     }
2163     offset = cmd_offset + lc.cmdsize;
2164   }
2165 
2166   if (!symtab_load_command.cmd)
2167     return 0;
2168 
2169   Symtab *symtab = m_symtab_up.get();
2170   SectionList *section_list = GetSectionList();
2171   if (section_list == nullptr)
2172     return 0;
2173 
2174   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2175   const ByteOrder byte_order = m_data.GetByteOrder();
2176   bool bit_width_32 = addr_byte_size == 4;
2177   const size_t nlist_byte_size =
2178       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2179 
2180   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2181   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2182   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2183   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2184                                            addr_byte_size);
2185   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2186 
2187   const addr_t nlist_data_byte_size =
2188       symtab_load_command.nsyms * nlist_byte_size;
2189   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2190   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2191 
2192   ProcessSP process_sp(m_process_wp.lock());
2193   Process *process = process_sp.get();
2194 
2195   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2196 
2197   if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2198     Target &target = process->GetTarget();
2199 
2200     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2201 
2202     SectionSP linkedit_section_sp(
2203         section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2204     // Reading mach file from memory in a process or core file...
2205 
2206     if (linkedit_section_sp) {
2207       addr_t linkedit_load_addr =
2208           linkedit_section_sp->GetLoadBaseAddress(&target);
2209       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2210         // We might be trying to access the symbol table before the
2211         // __LINKEDIT's load address has been set in the target. We can't
2212         // fail to read the symbol table, so calculate the right address
2213         // manually
2214         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2215             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2216       }
2217 
2218       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2219       const addr_t symoff_addr = linkedit_load_addr +
2220                                  symtab_load_command.symoff -
2221                                  linkedit_file_offset;
2222       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2223                     linkedit_file_offset;
2224 
2225       bool data_was_read = false;
2226 
2227 #if defined(__APPLE__) &&                                                      \
2228     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2229       if (m_header.flags & 0x80000000u &&
2230           process->GetAddressByteSize() == sizeof(void *)) {
2231         // This mach-o memory file is in the dyld shared cache. If this
2232         // program is not remote and this is iOS, then this process will
2233         // share the same shared cache as the process we are debugging and we
2234         // can read the entire __LINKEDIT from the address space in this
2235         // process. This is a needed optimization that is used for local iOS
2236         // debugging only since all shared libraries in the shared cache do
2237         // not have corresponding files that exist in the file system of the
2238         // device. They have been combined into a single file. This means we
2239         // always have to load these files from memory. All of the symbol and
2240         // string tables from all of the __LINKEDIT sections from the shared
2241         // libraries in the shared cache have been merged into a single large
2242         // symbol and string table. Reading all of this symbol and string
2243         // table data across can slow down debug launch times, so we optimize
2244         // this by reading the memory for the __LINKEDIT section from this
2245         // process.
2246 
2247         UUID lldb_shared_cache;
2248         addr_t lldb_shared_cache_addr;
2249         GetLLDBSharedCacheUUID(lldb_shared_cache_addr, lldb_shared_cache);
2250         UUID process_shared_cache;
2251         addr_t process_shared_cache_addr;
2252         GetProcessSharedCacheUUID(process, process_shared_cache_addr,
2253                                   process_shared_cache);
2254         bool use_lldb_cache = true;
2255         if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2256             (lldb_shared_cache != process_shared_cache ||
2257              process_shared_cache_addr != lldb_shared_cache_addr)) {
2258           use_lldb_cache = false;
2259         }
2260 
2261         PlatformSP platform_sp(target.GetPlatform());
2262         if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2263           data_was_read = true;
2264           nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2265                              eByteOrderLittle);
2266           strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2267                               eByteOrderLittle);
2268           if (function_starts_load_command.cmd) {
2269             const addr_t func_start_addr =
2270                 linkedit_load_addr + function_starts_load_command.dataoff -
2271                 linkedit_file_offset;
2272             function_starts_data.SetData((void *)func_start_addr,
2273                                          function_starts_load_command.datasize,
2274                                          eByteOrderLittle);
2275           }
2276         }
2277       }
2278 #endif
2279 
2280       if (!data_was_read) {
2281         // Always load dyld - the dynamic linker - from memory if we didn't
2282         // find a binary anywhere else. lldb will not register
2283         // dylib/framework/bundle loads/unloads if we don't have the dyld
2284         // symbols, we force dyld to load from memory despite the user's
2285         // target.memory-module-load-level setting.
2286         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2287             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2288           DataBufferSP nlist_data_sp(
2289               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2290           if (nlist_data_sp)
2291             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2292           if (m_dysymtab.nindirectsyms != 0) {
2293             const addr_t indirect_syms_addr = linkedit_load_addr +
2294                                               m_dysymtab.indirectsymoff -
2295                                               linkedit_file_offset;
2296             DataBufferSP indirect_syms_data_sp(ReadMemory(
2297                 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4));
2298             if (indirect_syms_data_sp)
2299               indirect_symbol_index_data.SetData(
2300                   indirect_syms_data_sp, 0,
2301                   indirect_syms_data_sp->GetByteSize());
2302             // If this binary is outside the shared cache,
2303             // cache the string table.
2304             // Binaries in the shared cache all share a giant string table,
2305             // and we can't share the string tables across multiple
2306             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2307             // for every binary in the shared cache - it would be a big perf
2308             // problem. For binaries outside the shared cache, it's faster to
2309             // read the entire strtab at once instead of piece-by-piece as we
2310             // process the nlist records.
2311             if ((m_header.flags & 0x80000000u) == 0) {
2312               DataBufferSP strtab_data_sp(
2313                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2314               if (strtab_data_sp) {
2315                 strtab_data.SetData(strtab_data_sp, 0,
2316                                     strtab_data_sp->GetByteSize());
2317               }
2318             }
2319           }
2320         }
2321         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2322           if (function_starts_load_command.cmd) {
2323             const addr_t func_start_addr =
2324                 linkedit_load_addr + function_starts_load_command.dataoff -
2325                 linkedit_file_offset;
2326             DataBufferSP func_start_data_sp(
2327                 ReadMemory(process_sp, func_start_addr,
2328                            function_starts_load_command.datasize));
2329             if (func_start_data_sp)
2330               function_starts_data.SetData(func_start_data_sp, 0,
2331                                            func_start_data_sp->GetByteSize());
2332           }
2333         }
2334       }
2335     }
2336   } else {
2337     nlist_data.SetData(m_data, symtab_load_command.symoff,
2338                        nlist_data_byte_size);
2339     strtab_data.SetData(m_data, symtab_load_command.stroff,
2340                         strtab_data_byte_size);
2341 
2342     if (dyld_info.export_size > 0) {
2343       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2344                              dyld_info.export_size);
2345     }
2346 
2347     if (m_dysymtab.nindirectsyms != 0) {
2348       indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2349                                          m_dysymtab.nindirectsyms * 4);
2350     }
2351     if (function_starts_load_command.cmd) {
2352       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2353                                    function_starts_load_command.datasize);
2354     }
2355   }
2356 
2357   if (nlist_data.GetByteSize() == 0 &&
2358       memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2359     if (log)
2360       module_sp->LogMessage(log, "failed to read nlist data");
2361     return 0;
2362   }
2363 
2364   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2365   if (!have_strtab_data) {
2366     if (process) {
2367       if (strtab_addr == LLDB_INVALID_ADDRESS) {
2368         if (log)
2369           module_sp->LogMessage(log, "failed to locate the strtab in memory");
2370         return 0;
2371       }
2372     } else {
2373       if (log)
2374         module_sp->LogMessage(log, "failed to read strtab data");
2375       return 0;
2376     }
2377   }
2378 
2379   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2380   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2381   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2382   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2383   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2384   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2385   SectionSP text_section_sp(
2386       section_list->FindSectionByName(g_segment_name_TEXT));
2387   SectionSP data_section_sp(
2388       section_list->FindSectionByName(g_segment_name_DATA));
2389   SectionSP data_dirty_section_sp(
2390       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2391   SectionSP data_const_section_sp(
2392       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2393   SectionSP objc_section_sp(
2394       section_list->FindSectionByName(g_segment_name_OBJC));
2395   SectionSP eh_frame_section_sp;
2396   if (text_section_sp.get())
2397     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2398         g_section_name_eh_frame);
2399   else
2400     eh_frame_section_sp =
2401         section_list->FindSectionByName(g_section_name_eh_frame);
2402 
2403   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2404 
2405   // lldb works best if it knows the start address of all functions in a
2406   // module. Linker symbols or debug info are normally the best source of
2407   // information for start addr / size but they may be stripped in a released
2408   // binary. Two additional sources of information exist in Mach-O binaries:
2409   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2410   //    function's start address in the
2411   //                         binary, relative to the text section.
2412   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2413   //    each function
2414   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2415   //  all modern binaries.
2416   //  Binaries built to run on older releases may need to use eh_frame
2417   //  information.
2418 
2419   if (text_section_sp && function_starts_data.GetByteSize()) {
2420     FunctionStarts::Entry function_start_entry;
2421     function_start_entry.data = false;
2422     lldb::offset_t function_start_offset = 0;
2423     function_start_entry.addr = text_section_sp->GetFileAddress();
2424     uint64_t delta;
2425     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2426            0) {
2427       // Now append the current entry
2428       function_start_entry.addr += delta;
2429       function_starts.Append(function_start_entry);
2430     }
2431   } else {
2432     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2433     // load command claiming an eh_frame but it doesn't actually have the
2434     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2435     // this fill-in-the-missing-symbols works anyway - the debug info should
2436     // give us all the functions in the module.
2437     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2438         m_type != eTypeDebugInfo) {
2439       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2440                                   DWARFCallFrameInfo::EH);
2441       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2442       eh_frame.GetFunctionAddressAndSizeVector(functions);
2443       addr_t text_base_addr = text_section_sp->GetFileAddress();
2444       size_t count = functions.GetSize();
2445       for (size_t i = 0; i < count; ++i) {
2446         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2447             functions.GetEntryAtIndex(i);
2448         if (func) {
2449           FunctionStarts::Entry function_start_entry;
2450           function_start_entry.addr = func->base - text_base_addr;
2451           function_starts.Append(function_start_entry);
2452         }
2453       }
2454     }
2455   }
2456 
2457   const size_t function_starts_count = function_starts.GetSize();
2458 
2459   // For user process binaries (executables, dylibs, frameworks, bundles), if
2460   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2461   // going to assume the binary has been stripped.  Don't allow assembly
2462   // language instruction emulation because we don't know proper function
2463   // start boundaries.
2464   //
2465   // For all other types of binaries (kernels, stand-alone bare board
2466   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2467   // sections - we should not make any assumptions about them based on that.
2468   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2469     m_allow_assembly_emulation_unwind_plans = false;
2470     Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2471         LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2472 
2473     if (unwind_or_symbol_log)
2474       module_sp->LogMessage(
2475           unwind_or_symbol_log,
2476           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2477   }
2478 
2479   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2480                                              ? eh_frame_section_sp->GetID()
2481                                              : static_cast<user_id_t>(NO_SECT);
2482 
2483   lldb::offset_t nlist_data_offset = 0;
2484 
2485   uint32_t N_SO_index = UINT32_MAX;
2486 
2487   MachSymtabSectionInfo section_info(section_list);
2488   std::vector<uint32_t> N_FUN_indexes;
2489   std::vector<uint32_t> N_NSYM_indexes;
2490   std::vector<uint32_t> N_INCL_indexes;
2491   std::vector<uint32_t> N_BRAC_indexes;
2492   std::vector<uint32_t> N_COMM_indexes;
2493   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2494   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2495   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2496   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2497   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2498   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2499   // Any symbols that get merged into another will get an entry in this map
2500   // so we know
2501   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2502   uint32_t nlist_idx = 0;
2503   Symbol *symbol_ptr = nullptr;
2504 
2505   uint32_t sym_idx = 0;
2506   Symbol *sym = nullptr;
2507   size_t num_syms = 0;
2508   std::string memory_symbol_name;
2509   uint32_t unmapped_local_symbols_found = 0;
2510 
2511   std::vector<TrieEntryWithOffset> trie_entries;
2512   std::set<lldb::addr_t> resolver_addresses;
2513 
2514   if (dyld_trie_data.GetByteSize() > 0) {
2515     std::vector<llvm::StringRef> nameSlices;
2516     ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices, resolver_addresses,
2517                      trie_entries);
2518 
2519     ConstString text_segment_name("__TEXT");
2520     SectionSP text_segment_sp =
2521         GetSectionList()->FindSectionByName(text_segment_name);
2522     if (text_segment_sp) {
2523       const lldb::addr_t text_segment_file_addr =
2524           text_segment_sp->GetFileAddress();
2525       if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2526         for (auto &e : trie_entries)
2527           e.entry.address += text_segment_file_addr;
2528       }
2529     }
2530   }
2531 
2532   typedef std::set<ConstString> IndirectSymbols;
2533   IndirectSymbols indirect_symbol_names;
2534 
2535 #if defined(__APPLE__) &&                                                      \
2536     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2537 
2538   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2539   // optimized by moving LOCAL symbols out of the memory mapped portion of
2540   // the DSC. The symbol information has all been retained, but it isn't
2541   // available in the normal nlist data. However, there *are* duplicate
2542   // entries of *some*
2543   // LOCAL symbols in the normal nlist data. To handle this situation
2544   // correctly, we must first attempt
2545   // to parse any DSC unmapped symbol information. If we find any, we set a
2546   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2547 
2548   if (m_header.flags & 0x80000000u) {
2549     // Before we can start mapping the DSC, we need to make certain the
2550     // target process is actually using the cache we can find.
2551 
2552     // Next we need to determine the correct path for the dyld shared cache.
2553 
2554     ArchSpec header_arch = GetArchitecture();
2555     char dsc_path[PATH_MAX];
2556     char dsc_path_development[PATH_MAX];
2557 
2558     snprintf(
2559         dsc_path, sizeof(dsc_path), "%s%s%s",
2560         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2561                                                    */
2562         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2563         header_arch.GetArchitectureName());
2564 
2565     snprintf(
2566         dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2567         "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2568                                                    */
2569         "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2570         header_arch.GetArchitectureName(), ".development");
2571 
2572     FileSpec dsc_nondevelopment_filespec(dsc_path);
2573     FileSpec dsc_development_filespec(dsc_path_development);
2574     FileSpec dsc_filespec;
2575 
2576     UUID dsc_uuid;
2577     UUID process_shared_cache_uuid;
2578     addr_t process_shared_cache_base_addr;
2579 
2580     if (process) {
2581       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2582                                 process_shared_cache_uuid);
2583     }
2584 
2585     // First see if we can find an exact match for the inferior process
2586     // shared cache UUID in the development or non-development shared caches
2587     // on disk.
2588     if (process_shared_cache_uuid.IsValid()) {
2589       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2590         UUID dsc_development_uuid = GetSharedCacheUUID(
2591             dsc_development_filespec, byte_order, addr_byte_size);
2592         if (dsc_development_uuid.IsValid() &&
2593             dsc_development_uuid == process_shared_cache_uuid) {
2594           dsc_filespec = dsc_development_filespec;
2595           dsc_uuid = dsc_development_uuid;
2596         }
2597       }
2598       if (!dsc_uuid.IsValid() &&
2599           FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2600         UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2601             dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2602         if (dsc_nondevelopment_uuid.IsValid() &&
2603             dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2604           dsc_filespec = dsc_nondevelopment_filespec;
2605           dsc_uuid = dsc_nondevelopment_uuid;
2606         }
2607       }
2608     }
2609 
2610     // Failing a UUID match, prefer the development dyld_shared cache if both
2611     // are present.
2612     if (!FileSystem::Instance().Exists(dsc_filespec)) {
2613       if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2614         dsc_filespec = dsc_development_filespec;
2615       } else {
2616         dsc_filespec = dsc_nondevelopment_filespec;
2617       }
2618     }
2619 
2620     /* The dyld_cache_header has a pointer to the
2621        dyld_cache_local_symbols_info structure (localSymbolsOffset).
2622        The dyld_cache_local_symbols_info structure gives us three things:
2623          1. The start and count of the nlist records in the dyld_shared_cache
2624        file
2625          2. The start and size of the strings for these nlist records
2626          3. The start and count of dyld_cache_local_symbols_entry entries
2627 
2628        There is one dyld_cache_local_symbols_entry per dylib/framework in the
2629        dyld shared cache.
2630        The "dylibOffset" field is the Mach-O header of this dylib/framework in
2631        the dyld shared cache.
2632        The dyld_cache_local_symbols_entry also lists the start of this
2633        dylib/framework's nlist records
2634        and the count of how many nlist records there are for this
2635        dylib/framework.
2636     */
2637 
2638     // Process the dyld shared cache header to find the unmapped symbols
2639 
2640     DataBufferSP dsc_data_sp = MapFileData(
2641         dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2642     if (!dsc_uuid.IsValid()) {
2643       dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2644     }
2645     if (dsc_data_sp) {
2646       DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2647 
2648       bool uuid_match = true;
2649       if (dsc_uuid.IsValid() && process) {
2650         if (process_shared_cache_uuid.IsValid() &&
2651             dsc_uuid != process_shared_cache_uuid) {
2652           // The on-disk dyld_shared_cache file is not the same as the one in
2653           // this process' memory, don't use it.
2654           uuid_match = false;
2655           ModuleSP module_sp(GetModule());
2656           if (module_sp)
2657             module_sp->ReportWarning("process shared cache does not match "
2658                                      "on-disk dyld_shared_cache file, some "
2659                                      "symbol names will be missing.");
2660         }
2661       }
2662 
2663       offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2664 
2665       uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2666 
2667       // If the mappingOffset points to a location inside the header, we've
2668       // opened an old dyld shared cache, and should not proceed further.
2669       if (uuid_match &&
2670           mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2671 
2672         DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2673             dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2674             mappingOffset);
2675 
2676         DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2677                                             byte_order, addr_byte_size);
2678         offset = 0;
2679 
2680         // The File addresses (from the in-memory Mach-O load commands) for
2681         // the shared libraries in the shared library cache need to be
2682         // adjusted by an offset to match up with the dylibOffset identifying
2683         // field in the dyld_cache_local_symbol_entry's.  This offset is
2684         // recorded in mapping_offset_value.
2685         const uint64_t mapping_offset_value =
2686             dsc_mapping_info_data.GetU64(&offset);
2687 
2688         offset =
2689             offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset);
2690         uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2691         uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2692 
2693         if (localSymbolsOffset && localSymbolsSize) {
2694           // Map the local symbols
2695           DataBufferSP dsc_local_symbols_data_sp =
2696               MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2697 
2698           if (dsc_local_symbols_data_sp) {
2699             DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2700                                                  byte_order, addr_byte_size);
2701 
2702             offset = 0;
2703 
2704             typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2705             typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2706             UndefinedNameToDescMap undefined_name_to_desc;
2707             SymbolIndexToName reexport_shlib_needs_fixup;
2708 
2709             // Read the local_symbols_infos struct in one shot
2710             struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2711             dsc_local_symbols_data.GetU32(&offset,
2712                                           &local_symbols_info.nlistOffset, 6);
2713 
2714             SectionSP text_section_sp(
2715                 section_list->FindSectionByName(GetSegmentNameTEXT()));
2716 
2717             uint32_t header_file_offset =
2718                 (text_section_sp->GetFileAddress() - mapping_offset_value);
2719 
2720             offset = local_symbols_info.entriesOffset;
2721             for (uint32_t entry_index = 0;
2722                  entry_index < local_symbols_info.entriesCount; entry_index++) {
2723               struct lldb_copy_dyld_cache_local_symbols_entry
2724                   local_symbols_entry;
2725               local_symbols_entry.dylibOffset =
2726                   dsc_local_symbols_data.GetU32(&offset);
2727               local_symbols_entry.nlistStartIndex =
2728                   dsc_local_symbols_data.GetU32(&offset);
2729               local_symbols_entry.nlistCount =
2730                   dsc_local_symbols_data.GetU32(&offset);
2731 
2732               if (header_file_offset == local_symbols_entry.dylibOffset) {
2733                 unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2734 
2735                 // The normal nlist code cannot correctly size the Symbols
2736                 // array, we need to allocate it here.
2737                 sym = symtab->Resize(
2738                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2739                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2740                 num_syms = symtab->GetNumSymbols();
2741 
2742                 nlist_data_offset =
2743                     local_symbols_info.nlistOffset +
2744                     (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2745                 uint32_t string_table_offset = local_symbols_info.stringsOffset;
2746 
2747                 for (uint32_t nlist_index = 0;
2748                      nlist_index < local_symbols_entry.nlistCount;
2749                      nlist_index++) {
2750                   /////////////////////////////
2751                   {
2752                     llvm::Optional<struct nlist_64> nlist_maybe =
2753                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2754                                    nlist_byte_size);
2755                     if (!nlist_maybe)
2756                       break;
2757                     struct nlist_64 nlist = *nlist_maybe;
2758 
2759                     SymbolType type = eSymbolTypeInvalid;
2760                     const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2761                         string_table_offset + nlist.n_strx);
2762 
2763                     if (symbol_name == NULL) {
2764                       // No symbol should be NULL, even the symbols with no
2765                       // string values should have an offset zero which
2766                       // points to an empty C-string
2767                       Host::SystemLog(
2768                           Host::eSystemLogError,
2769                           "error: DSC unmapped local symbol[%u] has invalid "
2770                           "string table offset 0x%x in %s, ignoring symbol\n",
2771                           entry_index, nlist.n_strx,
2772                           module_sp->GetFileSpec().GetPath().c_str());
2773                       continue;
2774                     }
2775                     if (symbol_name[0] == '\0')
2776                       symbol_name = NULL;
2777 
2778                     const char *symbol_name_non_abi_mangled = NULL;
2779 
2780                     SectionSP symbol_section;
2781                     uint32_t symbol_byte_size = 0;
2782                     bool add_nlist = true;
2783                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2784                     bool demangled_is_synthesized = false;
2785                     bool is_gsym = false;
2786                     bool set_value = true;
2787 
2788                     assert(sym_idx < num_syms);
2789 
2790                     sym[sym_idx].SetDebug(is_debug);
2791 
2792                     if (is_debug) {
2793                       switch (nlist.n_type) {
2794                       case N_GSYM:
2795                         // global symbol: name,,NO_SECT,type,0
2796                         // Sometimes the N_GSYM value contains the address.
2797 
2798                         // FIXME: In the .o files, we have a GSYM and a debug
2799                         // symbol for all the ObjC data.  They
2800                         // have the same address, but we want to ensure that
2801                         // we always find only the real symbol, 'cause we
2802                         // don't currently correctly attribute the
2803                         // GSYM one to the ObjCClass/Ivar/MetaClass
2804                         // symbol type.  This is a temporary hack to make
2805                         // sure the ObjectiveC symbols get treated correctly.
2806                         // To do this right, we should coalesce all the GSYM
2807                         // & global symbols that have the same address.
2808 
2809                         is_gsym = true;
2810                         sym[sym_idx].SetExternal(true);
2811 
2812                         if (symbol_name && symbol_name[0] == '_' &&
2813                             symbol_name[1] == 'O') {
2814                           llvm::StringRef symbol_name_ref(symbol_name);
2815                           if (symbol_name_ref.startswith(
2816                                   g_objc_v2_prefix_class)) {
2817                             symbol_name_non_abi_mangled = symbol_name + 1;
2818                             symbol_name =
2819                                 symbol_name + g_objc_v2_prefix_class.size();
2820                             type = eSymbolTypeObjCClass;
2821                             demangled_is_synthesized = true;
2822 
2823                           } else if (symbol_name_ref.startswith(
2824                                          g_objc_v2_prefix_metaclass)) {
2825                             symbol_name_non_abi_mangled = symbol_name + 1;
2826                             symbol_name =
2827                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2828                             type = eSymbolTypeObjCMetaClass;
2829                             demangled_is_synthesized = true;
2830                           } else if (symbol_name_ref.startswith(
2831                                          g_objc_v2_prefix_ivar)) {
2832                             symbol_name_non_abi_mangled = symbol_name + 1;
2833                             symbol_name =
2834                                 symbol_name + g_objc_v2_prefix_ivar.size();
2835                             type = eSymbolTypeObjCIVar;
2836                             demangled_is_synthesized = true;
2837                           }
2838                         } else {
2839                           if (nlist.n_value != 0)
2840                             symbol_section = section_info.GetSection(
2841                                 nlist.n_sect, nlist.n_value);
2842                           type = eSymbolTypeData;
2843                         }
2844                         break;
2845 
2846                       case N_FNAME:
2847                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2848                         type = eSymbolTypeCompiler;
2849                         break;
2850 
2851                       case N_FUN:
2852                         // procedure: name,,n_sect,linenumber,address
2853                         if (symbol_name) {
2854                           type = eSymbolTypeCode;
2855                           symbol_section = section_info.GetSection(
2856                               nlist.n_sect, nlist.n_value);
2857 
2858                           N_FUN_addr_to_sym_idx.insert(
2859                               std::make_pair(nlist.n_value, sym_idx));
2860                           // We use the current number of symbols in the
2861                           // symbol table in lieu of using nlist_idx in case
2862                           // we ever start trimming entries out
2863                           N_FUN_indexes.push_back(sym_idx);
2864                         } else {
2865                           type = eSymbolTypeCompiler;
2866 
2867                           if (!N_FUN_indexes.empty()) {
2868                             // Copy the size of the function into the
2869                             // original
2870                             // STAB entry so we don't have
2871                             // to hunt for it later
2872                             symtab->SymbolAtIndex(N_FUN_indexes.back())
2873                                 ->SetByteSize(nlist.n_value);
2874                             N_FUN_indexes.pop_back();
2875                             // We don't really need the end function STAB as
2876                             // it contains the size which we already placed
2877                             // with the original symbol, so don't add it if
2878                             // we want a minimal symbol table
2879                             add_nlist = false;
2880                           }
2881                         }
2882                         break;
2883 
2884                       case N_STSYM:
2885                         // static symbol: name,,n_sect,type,address
2886                         N_STSYM_addr_to_sym_idx.insert(
2887                             std::make_pair(nlist.n_value, sym_idx));
2888                         symbol_section = section_info.GetSection(nlist.n_sect,
2889                                                                  nlist.n_value);
2890                         if (symbol_name && symbol_name[0]) {
2891                           type = ObjectFile::GetSymbolTypeFromName(
2892                               symbol_name + 1, eSymbolTypeData);
2893                         }
2894                         break;
2895 
2896                       case N_LCSYM:
2897                         // .lcomm symbol: name,,n_sect,type,address
2898                         symbol_section = section_info.GetSection(nlist.n_sect,
2899                                                                  nlist.n_value);
2900                         type = eSymbolTypeCommonBlock;
2901                         break;
2902 
2903                       case N_BNSYM:
2904                         // We use the current number of symbols in the symbol
2905                         // table in lieu of using nlist_idx in case we ever
2906                         // start trimming entries out Skip these if we want
2907                         // minimal symbol tables
2908                         add_nlist = false;
2909                         break;
2910 
2911                       case N_ENSYM:
2912                         // Set the size of the N_BNSYM to the terminating
2913                         // index of this N_ENSYM so that we can always skip
2914                         // the entire symbol if we need to navigate more
2915                         // quickly at the source level when parsing STABS
2916                         // Skip these if we want minimal symbol tables
2917                         add_nlist = false;
2918                         break;
2919 
2920                       case N_OPT:
2921                         // emitted with gcc2_compiled and in gcc source
2922                         type = eSymbolTypeCompiler;
2923                         break;
2924 
2925                       case N_RSYM:
2926                         // register sym: name,,NO_SECT,type,register
2927                         type = eSymbolTypeVariable;
2928                         break;
2929 
2930                       case N_SLINE:
2931                         // src line: 0,,n_sect,linenumber,address
2932                         symbol_section = section_info.GetSection(nlist.n_sect,
2933                                                                  nlist.n_value);
2934                         type = eSymbolTypeLineEntry;
2935                         break;
2936 
2937                       case N_SSYM:
2938                         // structure elt: name,,NO_SECT,type,struct_offset
2939                         type = eSymbolTypeVariableType;
2940                         break;
2941 
2942                       case N_SO:
2943                         // source file name
2944                         type = eSymbolTypeSourceFile;
2945                         if (symbol_name == NULL) {
2946                           add_nlist = false;
2947                           if (N_SO_index != UINT32_MAX) {
2948                             // Set the size of the N_SO to the terminating
2949                             // index of this N_SO so that we can always skip
2950                             // the entire N_SO if we need to navigate more
2951                             // quickly at the source level when parsing STABS
2952                             symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
2953                             symbol_ptr->SetByteSize(sym_idx);
2954                             symbol_ptr->SetSizeIsSibling(true);
2955                           }
2956                           N_NSYM_indexes.clear();
2957                           N_INCL_indexes.clear();
2958                           N_BRAC_indexes.clear();
2959                           N_COMM_indexes.clear();
2960                           N_FUN_indexes.clear();
2961                           N_SO_index = UINT32_MAX;
2962                         } else {
2963                           // We use the current number of symbols in the
2964                           // symbol table in lieu of using nlist_idx in case
2965                           // we ever start trimming entries out
2966                           const bool N_SO_has_full_path = symbol_name[0] == '/';
2967                           if (N_SO_has_full_path) {
2968                             if ((N_SO_index == sym_idx - 1) &&
2969                                 ((sym_idx - 1) < num_syms)) {
2970                               // We have two consecutive N_SO entries where
2971                               // the first contains a directory and the
2972                               // second contains a full path.
2973                               sym[sym_idx - 1].GetMangled().SetValue(
2974                                   ConstString(symbol_name), false);
2975                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
2976                               add_nlist = false;
2977                             } else {
2978                               // This is the first entry in a N_SO that
2979                               // contains a directory or
2980                               // a full path to the source file
2981                               N_SO_index = sym_idx;
2982                             }
2983                           } else if ((N_SO_index == sym_idx - 1) &&
2984                                      ((sym_idx - 1) < num_syms)) {
2985                             // This is usually the second N_SO entry that
2986                             // contains just the filename, so here we combine
2987                             // it with the first one if we are minimizing the
2988                             // symbol table
2989                             const char *so_path =
2990                                 sym[sym_idx - 1]
2991                                     .GetMangled()
2992                                     .GetDemangledName(
2993                                         lldb::eLanguageTypeUnknown)
2994                                     .AsCString();
2995                             if (so_path && so_path[0]) {
2996                               std::string full_so_path(so_path);
2997                               const size_t double_slash_pos =
2998                                   full_so_path.find("//");
2999                               if (double_slash_pos != std::string::npos) {
3000                                 // The linker has been generating bad N_SO
3001                                 // entries with doubled up paths
3002                                 // in the format "%s%s" where the first
3003                                 // string in the DW_AT_comp_dir, and the
3004                                 // second is the directory for the source
3005                                 // file so you end up with a path that looks
3006                                 // like "/tmp/src//tmp/src/"
3007                                 FileSpec so_dir(so_path);
3008                                 if (!FileSystem::Instance().Exists(so_dir)) {
3009                                   so_dir.SetFile(
3010                                       &full_so_path[double_slash_pos + 1],
3011                                       FileSpec::Style::native);
3012                                   if (FileSystem::Instance().Exists(so_dir)) {
3013                                     // Trim off the incorrect path
3014                                     full_so_path.erase(0, double_slash_pos + 1);
3015                                   }
3016                                 }
3017                               }
3018                               if (*full_so_path.rbegin() != '/')
3019                                 full_so_path += '/';
3020                               full_so_path += symbol_name;
3021                               sym[sym_idx - 1].GetMangled().SetValue(
3022                                   ConstString(full_so_path.c_str()), false);
3023                               add_nlist = false;
3024                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3025                             }
3026                           } else {
3027                             // This could be a relative path to a N_SO
3028                             N_SO_index = sym_idx;
3029                           }
3030                         }
3031                         break;
3032 
3033                       case N_OSO:
3034                         // object file name: name,,0,0,st_mtime
3035                         type = eSymbolTypeObjectFile;
3036                         break;
3037 
3038                       case N_LSYM:
3039                         // local sym: name,,NO_SECT,type,offset
3040                         type = eSymbolTypeLocal;
3041                         break;
3042 
3043                       // INCL scopes
3044                       case N_BINCL:
3045                         // include file beginning: name,,NO_SECT,0,sum We use
3046                         // the current number of symbols in the symbol table
3047                         // in lieu of using nlist_idx in case we ever start
3048                         // trimming entries out
3049                         N_INCL_indexes.push_back(sym_idx);
3050                         type = eSymbolTypeScopeBegin;
3051                         break;
3052 
3053                       case N_EINCL:
3054                         // include file end: name,,NO_SECT,0,0
3055                         // Set the size of the N_BINCL to the terminating
3056                         // index of this N_EINCL so that we can always skip
3057                         // the entire symbol if we need to navigate more
3058                         // quickly at the source level when parsing STABS
3059                         if (!N_INCL_indexes.empty()) {
3060                           symbol_ptr =
3061                               symtab->SymbolAtIndex(N_INCL_indexes.back());
3062                           symbol_ptr->SetByteSize(sym_idx + 1);
3063                           symbol_ptr->SetSizeIsSibling(true);
3064                           N_INCL_indexes.pop_back();
3065                         }
3066                         type = eSymbolTypeScopeEnd;
3067                         break;
3068 
3069                       case N_SOL:
3070                         // #included file name: name,,n_sect,0,address
3071                         type = eSymbolTypeHeaderFile;
3072 
3073                         // We currently don't use the header files on darwin
3074                         add_nlist = false;
3075                         break;
3076 
3077                       case N_PARAMS:
3078                         // compiler parameters: name,,NO_SECT,0,0
3079                         type = eSymbolTypeCompiler;
3080                         break;
3081 
3082                       case N_VERSION:
3083                         // compiler version: name,,NO_SECT,0,0
3084                         type = eSymbolTypeCompiler;
3085                         break;
3086 
3087                       case N_OLEVEL:
3088                         // compiler -O level: name,,NO_SECT,0,0
3089                         type = eSymbolTypeCompiler;
3090                         break;
3091 
3092                       case N_PSYM:
3093                         // parameter: name,,NO_SECT,type,offset
3094                         type = eSymbolTypeVariable;
3095                         break;
3096 
3097                       case N_ENTRY:
3098                         // alternate entry: name,,n_sect,linenumber,address
3099                         symbol_section = section_info.GetSection(nlist.n_sect,
3100                                                                  nlist.n_value);
3101                         type = eSymbolTypeLineEntry;
3102                         break;
3103 
3104                       // Left and Right Braces
3105                       case N_LBRAC:
3106                         // left bracket: 0,,NO_SECT,nesting level,address We
3107                         // use the current number of symbols in the symbol
3108                         // table in lieu of using nlist_idx in case we ever
3109                         // start trimming entries out
3110                         symbol_section = section_info.GetSection(nlist.n_sect,
3111                                                                  nlist.n_value);
3112                         N_BRAC_indexes.push_back(sym_idx);
3113                         type = eSymbolTypeScopeBegin;
3114                         break;
3115 
3116                       case N_RBRAC:
3117                         // right bracket: 0,,NO_SECT,nesting level,address
3118                         // Set the size of the N_LBRAC to the terminating
3119                         // index of this N_RBRAC so that we can always skip
3120                         // the entire symbol if we need to navigate more
3121                         // quickly at the source level when parsing STABS
3122                         symbol_section = section_info.GetSection(nlist.n_sect,
3123                                                                  nlist.n_value);
3124                         if (!N_BRAC_indexes.empty()) {
3125                           symbol_ptr =
3126                               symtab->SymbolAtIndex(N_BRAC_indexes.back());
3127                           symbol_ptr->SetByteSize(sym_idx + 1);
3128                           symbol_ptr->SetSizeIsSibling(true);
3129                           N_BRAC_indexes.pop_back();
3130                         }
3131                         type = eSymbolTypeScopeEnd;
3132                         break;
3133 
3134                       case N_EXCL:
3135                         // deleted include file: name,,NO_SECT,0,sum
3136                         type = eSymbolTypeHeaderFile;
3137                         break;
3138 
3139                       // COMM scopes
3140                       case N_BCOMM:
3141                         // begin common: name,,NO_SECT,0,0
3142                         // We use the current number of symbols in the symbol
3143                         // table in lieu of using nlist_idx in case we ever
3144                         // start trimming entries out
3145                         type = eSymbolTypeScopeBegin;
3146                         N_COMM_indexes.push_back(sym_idx);
3147                         break;
3148 
3149                       case N_ECOML:
3150                         // end common (local name): 0,,n_sect,0,address
3151                         symbol_section = section_info.GetSection(nlist.n_sect,
3152                                                                  nlist.n_value);
3153                         // Fall through
3154 
3155                       case N_ECOMM:
3156                         // end common: name,,n_sect,0,0
3157                         // Set the size of the N_BCOMM to the terminating
3158                         // index of this N_ECOMM/N_ECOML so that we can
3159                         // always skip the entire symbol if we need to
3160                         // navigate more quickly at the source level when
3161                         // parsing STABS
3162                         if (!N_COMM_indexes.empty()) {
3163                           symbol_ptr =
3164                               symtab->SymbolAtIndex(N_COMM_indexes.back());
3165                           symbol_ptr->SetByteSize(sym_idx + 1);
3166                           symbol_ptr->SetSizeIsSibling(true);
3167                           N_COMM_indexes.pop_back();
3168                         }
3169                         type = eSymbolTypeScopeEnd;
3170                         break;
3171 
3172                       case N_LENG:
3173                         // second stab entry with length information
3174                         type = eSymbolTypeAdditional;
3175                         break;
3176 
3177                       default:
3178                         break;
3179                       }
3180                     } else {
3181                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3182                       uint8_t n_type = N_TYPE & nlist.n_type;
3183                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3184 
3185                       switch (n_type) {
3186                       case N_INDR: {
3187                         const char *reexport_name_cstr =
3188                             strtab_data.PeekCStr(nlist.n_value);
3189                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3190                           type = eSymbolTypeReExported;
3191                           ConstString reexport_name(
3192                               reexport_name_cstr +
3193                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3194                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3195                           set_value = false;
3196                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3197                           indirect_symbol_names.insert(ConstString(
3198                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3199                         } else
3200                           type = eSymbolTypeUndefined;
3201                       } break;
3202 
3203                       case N_UNDF:
3204                         if (symbol_name && symbol_name[0]) {
3205                           ConstString undefined_name(
3206                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3207                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3208                         }
3209                       // Fall through
3210                       case N_PBUD:
3211                         type = eSymbolTypeUndefined;
3212                         break;
3213 
3214                       case N_ABS:
3215                         type = eSymbolTypeAbsolute;
3216                         break;
3217 
3218                       case N_SECT: {
3219                         symbol_section = section_info.GetSection(nlist.n_sect,
3220                                                                  nlist.n_value);
3221 
3222                         if (symbol_section == NULL) {
3223                           // TODO: warn about this?
3224                           add_nlist = false;
3225                           break;
3226                         }
3227 
3228                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3229                           type = eSymbolTypeException;
3230                         } else {
3231                           uint32_t section_type =
3232                               symbol_section->Get() & SECTION_TYPE;
3233 
3234                           switch (section_type) {
3235                           case S_CSTRING_LITERALS:
3236                             type = eSymbolTypeData;
3237                             break; // section with only literal C strings
3238                           case S_4BYTE_LITERALS:
3239                             type = eSymbolTypeData;
3240                             break; // section with only 4 byte literals
3241                           case S_8BYTE_LITERALS:
3242                             type = eSymbolTypeData;
3243                             break; // section with only 8 byte literals
3244                           case S_LITERAL_POINTERS:
3245                             type = eSymbolTypeTrampoline;
3246                             break; // section with only pointers to literals
3247                           case S_NON_LAZY_SYMBOL_POINTERS:
3248                             type = eSymbolTypeTrampoline;
3249                             break; // section with only non-lazy symbol
3250                                    // pointers
3251                           case S_LAZY_SYMBOL_POINTERS:
3252                             type = eSymbolTypeTrampoline;
3253                             break; // section with only lazy symbol pointers
3254                           case S_SYMBOL_STUBS:
3255                             type = eSymbolTypeTrampoline;
3256                             break; // section with only symbol stubs, byte
3257                                    // size of stub in the reserved2 field
3258                           case S_MOD_INIT_FUNC_POINTERS:
3259                             type = eSymbolTypeCode;
3260                             break; // section with only function pointers for
3261                                    // initialization
3262                           case S_MOD_TERM_FUNC_POINTERS:
3263                             type = eSymbolTypeCode;
3264                             break; // section with only function pointers for
3265                                    // termination
3266                           case S_INTERPOSING:
3267                             type = eSymbolTypeTrampoline;
3268                             break; // section with only pairs of function
3269                                    // pointers for interposing
3270                           case S_16BYTE_LITERALS:
3271                             type = eSymbolTypeData;
3272                             break; // section with only 16 byte literals
3273                           case S_DTRACE_DOF:
3274                             type = eSymbolTypeInstrumentation;
3275                             break;
3276                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3277                             type = eSymbolTypeTrampoline;
3278                             break;
3279                           default:
3280                             switch (symbol_section->GetType()) {
3281                             case lldb::eSectionTypeCode:
3282                               type = eSymbolTypeCode;
3283                               break;
3284                             case eSectionTypeData:
3285                             case eSectionTypeDataCString: // Inlined C string
3286                                                           // data
3287                             case eSectionTypeDataCStringPointers: // Pointers
3288                                                                   // to C
3289                                                                   // string
3290                                                                   // data
3291                             case eSectionTypeDataSymbolAddress:   // Address of
3292                                                                   // a symbol in
3293                                                                   // the symbol
3294                                                                   // table
3295                             case eSectionTypeData4:
3296                             case eSectionTypeData8:
3297                             case eSectionTypeData16:
3298                               type = eSymbolTypeData;
3299                               break;
3300                             default:
3301                               break;
3302                             }
3303                             break;
3304                           }
3305 
3306                           if (type == eSymbolTypeInvalid) {
3307                             const char *symbol_sect_name =
3308                                 symbol_section->GetName().AsCString();
3309                             if (symbol_section->IsDescendant(
3310                                     text_section_sp.get())) {
3311                               if (symbol_section->IsClear(
3312                                       S_ATTR_PURE_INSTRUCTIONS |
3313                                       S_ATTR_SELF_MODIFYING_CODE |
3314                                       S_ATTR_SOME_INSTRUCTIONS))
3315                                 type = eSymbolTypeData;
3316                               else
3317                                 type = eSymbolTypeCode;
3318                             } else if (symbol_section->IsDescendant(
3319                                            data_section_sp.get()) ||
3320                                        symbol_section->IsDescendant(
3321                                            data_dirty_section_sp.get()) ||
3322                                        symbol_section->IsDescendant(
3323                                            data_const_section_sp.get())) {
3324                               if (symbol_sect_name &&
3325                                   ::strstr(symbol_sect_name, "__objc") ==
3326                                       symbol_sect_name) {
3327                                 type = eSymbolTypeRuntime;
3328 
3329                                 if (symbol_name) {
3330                                   llvm::StringRef symbol_name_ref(symbol_name);
3331                                   if (symbol_name_ref.startswith("_OBJC_")) {
3332                                     llvm::StringRef
3333                                         g_objc_v2_prefix_class(
3334                                             "_OBJC_CLASS_$_");
3335                                     llvm::StringRef
3336                                         g_objc_v2_prefix_metaclass(
3337                                             "_OBJC_METACLASS_$_");
3338                                     llvm::StringRef
3339                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3340                                     if (symbol_name_ref.startswith(
3341                                             g_objc_v2_prefix_class)) {
3342                                       symbol_name_non_abi_mangled =
3343                                           symbol_name + 1;
3344                                       symbol_name =
3345                                           symbol_name +
3346                                           g_objc_v2_prefix_class.size();
3347                                       type = eSymbolTypeObjCClass;
3348                                       demangled_is_synthesized = true;
3349                                     } else if (
3350                                         symbol_name_ref.startswith(
3351                                             g_objc_v2_prefix_metaclass)) {
3352                                       symbol_name_non_abi_mangled =
3353                                           symbol_name + 1;
3354                                       symbol_name =
3355                                           symbol_name +
3356                                           g_objc_v2_prefix_metaclass.size();
3357                                       type = eSymbolTypeObjCMetaClass;
3358                                       demangled_is_synthesized = true;
3359                                     } else if (symbol_name_ref.startswith(
3360                                                    g_objc_v2_prefix_ivar)) {
3361                                       symbol_name_non_abi_mangled =
3362                                           symbol_name + 1;
3363                                       symbol_name =
3364                                           symbol_name +
3365                                           g_objc_v2_prefix_ivar.size();
3366                                       type = eSymbolTypeObjCIVar;
3367                                       demangled_is_synthesized = true;
3368                                     }
3369                                   }
3370                                 }
3371                               } else if (symbol_sect_name &&
3372                                          ::strstr(symbol_sect_name,
3373                                                   "__gcc_except_tab") ==
3374                                              symbol_sect_name) {
3375                                 type = eSymbolTypeException;
3376                               } else {
3377                                 type = eSymbolTypeData;
3378                               }
3379                             } else if (symbol_sect_name &&
3380                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3381                                            symbol_sect_name) {
3382                               type = eSymbolTypeTrampoline;
3383                             } else if (symbol_section->IsDescendant(
3384                                            objc_section_sp.get())) {
3385                               type = eSymbolTypeRuntime;
3386                               if (symbol_name && symbol_name[0] == '.') {
3387                                 llvm::StringRef symbol_name_ref(symbol_name);
3388                                 llvm::StringRef
3389                                     g_objc_v1_prefix_class(".objc_class_name_");
3390                                 if (symbol_name_ref.startswith(
3391                                         g_objc_v1_prefix_class)) {
3392                                   symbol_name_non_abi_mangled = symbol_name;
3393                                   symbol_name = symbol_name +
3394                                                 g_objc_v1_prefix_class.size();
3395                                   type = eSymbolTypeObjCClass;
3396                                   demangled_is_synthesized = true;
3397                                 }
3398                               }
3399                             }
3400                           }
3401                         }
3402                       } break;
3403                       }
3404                     }
3405 
3406                     if (add_nlist) {
3407                       uint64_t symbol_value = nlist.n_value;
3408                       if (symbol_name_non_abi_mangled) {
3409                         sym[sym_idx].GetMangled().SetMangledName(
3410                             ConstString(symbol_name_non_abi_mangled));
3411                         sym[sym_idx].GetMangled().SetDemangledName(
3412                             ConstString(symbol_name));
3413                       } else {
3414                         bool symbol_name_is_mangled = false;
3415 
3416                         if (symbol_name && symbol_name[0] == '_') {
3417                           symbol_name_is_mangled = symbol_name[1] == '_';
3418                           symbol_name++; // Skip the leading underscore
3419                         }
3420 
3421                         if (symbol_name) {
3422                           ConstString const_symbol_name(symbol_name);
3423                           sym[sym_idx].GetMangled().SetValue(
3424                               const_symbol_name, symbol_name_is_mangled);
3425                           if (is_gsym && is_debug) {
3426                             const char *gsym_name =
3427                                 sym[sym_idx]
3428                                     .GetMangled()
3429                                     .GetName(lldb::eLanguageTypeUnknown,
3430                                              Mangled::ePreferMangled)
3431                                     .GetCString();
3432                             if (gsym_name)
3433                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3434                           }
3435                         }
3436                       }
3437                       if (symbol_section) {
3438                         const addr_t section_file_addr =
3439                             symbol_section->GetFileAddress();
3440                         if (symbol_byte_size == 0 &&
3441                             function_starts_count > 0) {
3442                           addr_t symbol_lookup_file_addr = nlist.n_value;
3443                           // Do an exact address match for non-ARM addresses,
3444                           // else get the closest since the symbol might be a
3445                           // thumb symbol which has an address with bit zero
3446                           // set
3447                           FunctionStarts::Entry *func_start_entry =
3448                               function_starts.FindEntry(symbol_lookup_file_addr,
3449                                                         !is_arm);
3450                           if (is_arm && func_start_entry) {
3451                             // Verify that the function start address is the
3452                             // symbol address (ARM) or the symbol address + 1
3453                             // (thumb)
3454                             if (func_start_entry->addr !=
3455                                     symbol_lookup_file_addr &&
3456                                 func_start_entry->addr !=
3457                                     (symbol_lookup_file_addr + 1)) {
3458                               // Not the right entry, NULL it out...
3459                               func_start_entry = NULL;
3460                             }
3461                           }
3462                           if (func_start_entry) {
3463                             func_start_entry->data = true;
3464 
3465                             addr_t symbol_file_addr = func_start_entry->addr;
3466                             uint32_t symbol_flags = 0;
3467                             if (is_arm) {
3468                               if (symbol_file_addr & 1)
3469                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3470                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3471                             }
3472 
3473                             const FunctionStarts::Entry *next_func_start_entry =
3474                                 function_starts.FindNextEntry(func_start_entry);
3475                             const addr_t section_end_file_addr =
3476                                 section_file_addr +
3477                                 symbol_section->GetByteSize();
3478                             if (next_func_start_entry) {
3479                               addr_t next_symbol_file_addr =
3480                                   next_func_start_entry->addr;
3481                               // Be sure the clear the Thumb address bit when
3482                               // we calculate the size from the current and
3483                               // next address
3484                               if (is_arm)
3485                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3486                               symbol_byte_size = std::min<lldb::addr_t>(
3487                                   next_symbol_file_addr - symbol_file_addr,
3488                                   section_end_file_addr - symbol_file_addr);
3489                             } else {
3490                               symbol_byte_size =
3491                                   section_end_file_addr - symbol_file_addr;
3492                             }
3493                           }
3494                         }
3495                         symbol_value -= section_file_addr;
3496                       }
3497 
3498                       if (is_debug == false) {
3499                         if (type == eSymbolTypeCode) {
3500                           // See if we can find a N_FUN entry for any code
3501                           // symbols. If we do find a match, and the name
3502                           // matches, then we can merge the two into just the
3503                           // function symbol to avoid duplicate entries in
3504                           // the symbol table
3505                           auto range =
3506                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3507                           if (range.first != range.second) {
3508                             bool found_it = false;
3509                             for (const auto pos = range.first;
3510                                  pos != range.second; ++pos) {
3511                               if (sym[sym_idx].GetMangled().GetName(
3512                                       lldb::eLanguageTypeUnknown,
3513                                       Mangled::ePreferMangled) ==
3514                                   sym[pos->second].GetMangled().GetName(
3515                                       lldb::eLanguageTypeUnknown,
3516                                       Mangled::ePreferMangled)) {
3517                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3518                                 // We just need the flags from the linker
3519                                 // symbol, so put these flags
3520                                 // into the N_FUN flags to avoid duplicate
3521                                 // symbols in the symbol table
3522                                 sym[pos->second].SetExternal(
3523                                     sym[sym_idx].IsExternal());
3524                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3525                                                           nlist.n_desc);
3526                                 if (resolver_addresses.find(nlist.n_value) !=
3527                                     resolver_addresses.end())
3528                                   sym[pos->second].SetType(eSymbolTypeResolver);
3529                                 sym[sym_idx].Clear();
3530                                 found_it = true;
3531                                 break;
3532                               }
3533                             }
3534                             if (found_it)
3535                               continue;
3536                           } else {
3537                             if (resolver_addresses.find(nlist.n_value) !=
3538                                 resolver_addresses.end())
3539                               type = eSymbolTypeResolver;
3540                           }
3541                         } else if (type == eSymbolTypeData ||
3542                                    type == eSymbolTypeObjCClass ||
3543                                    type == eSymbolTypeObjCMetaClass ||
3544                                    type == eSymbolTypeObjCIVar) {
3545                           // See if we can find a N_STSYM entry for any data
3546                           // symbols. If we do find a match, and the name
3547                           // matches, then we can merge the two into just the
3548                           // Static symbol to avoid duplicate entries in the
3549                           // symbol table
3550                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3551                               nlist.n_value);
3552                           if (range.first != range.second) {
3553                             bool found_it = false;
3554                             for (const auto pos = range.first;
3555                                  pos != range.second; ++pos) {
3556                               if (sym[sym_idx].GetMangled().GetName(
3557                                       lldb::eLanguageTypeUnknown,
3558                                       Mangled::ePreferMangled) ==
3559                                   sym[pos->second].GetMangled().GetName(
3560                                       lldb::eLanguageTypeUnknown,
3561                                       Mangled::ePreferMangled)) {
3562                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3563                                 // We just need the flags from the linker
3564                                 // symbol, so put these flags
3565                                 // into the N_STSYM flags to avoid duplicate
3566                                 // symbols in the symbol table
3567                                 sym[pos->second].SetExternal(
3568                                     sym[sym_idx].IsExternal());
3569                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3570                                                           nlist.n_desc);
3571                                 sym[sym_idx].Clear();
3572                                 found_it = true;
3573                                 break;
3574                               }
3575                             }
3576                             if (found_it)
3577                               continue;
3578                           } else {
3579                             const char *gsym_name =
3580                                 sym[sym_idx]
3581                                     .GetMangled()
3582                                     .GetName(lldb::eLanguageTypeUnknown,
3583                                              Mangled::ePreferMangled)
3584                                     .GetCString();
3585                             if (gsym_name) {
3586                               // Combine N_GSYM stab entries with the non
3587                               // stab symbol
3588                               ConstNameToSymbolIndexMap::const_iterator pos =
3589                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3590                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3591                                 const uint32_t GSYM_sym_idx = pos->second;
3592                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3593                                     GSYM_sym_idx;
3594                                 // Copy the address, because often the N_GSYM
3595                                 // address has an invalid address of zero
3596                                 // when the global is a common symbol
3597                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3598                                     symbol_section);
3599                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3600                                     symbol_value);
3601                                 // We just need the flags from the linker
3602                                 // symbol, so put these flags
3603                                 // into the N_GSYM flags to avoid duplicate
3604                                 // symbols in the symbol table
3605                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3606                                                            nlist.n_desc);
3607                                 sym[sym_idx].Clear();
3608                                 continue;
3609                               }
3610                             }
3611                           }
3612                         }
3613                       }
3614 
3615                       sym[sym_idx].SetID(nlist_idx);
3616                       sym[sym_idx].SetType(type);
3617                       if (set_value) {
3618                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3619                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3620                       }
3621                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3622 
3623                       if (symbol_byte_size > 0)
3624                         sym[sym_idx].SetByteSize(symbol_byte_size);
3625 
3626                       if (demangled_is_synthesized)
3627                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3628                       ++sym_idx;
3629                     } else {
3630                       sym[sym_idx].Clear();
3631                     }
3632                   }
3633                   /////////////////////////////
3634                 }
3635                 break; // No more entries to consider
3636               }
3637             }
3638 
3639             for (const auto &pos : reexport_shlib_needs_fixup) {
3640               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3641               if (undef_pos != undefined_name_to_desc.end()) {
3642                 const uint8_t dylib_ordinal =
3643                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3644                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3645                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3646                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3647               }
3648             }
3649           }
3650         }
3651       }
3652     }
3653   }
3654 
3655   // Must reset this in case it was mutated above!
3656   nlist_data_offset = 0;
3657 #endif
3658 
3659   if (nlist_data.GetByteSize() > 0) {
3660 
3661     // If the sym array was not created while parsing the DSC unmapped
3662     // symbols, create it now.
3663     if (sym == nullptr) {
3664       sym =
3665           symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3666       num_syms = symtab->GetNumSymbols();
3667     }
3668 
3669     if (unmapped_local_symbols_found) {
3670       assert(m_dysymtab.ilocalsym == 0);
3671       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3672       nlist_idx = m_dysymtab.nlocalsym;
3673     } else {
3674       nlist_idx = 0;
3675     }
3676 
3677     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3678     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3679     UndefinedNameToDescMap undefined_name_to_desc;
3680     SymbolIndexToName reexport_shlib_needs_fixup;
3681 
3682     // Symtab parsing is a huge mess. Everything is entangled and the code
3683     // requires access to a ridiculous amount of variables. LLDB depends
3684     // heavily on the proper merging of symbols and to get that right we need
3685     // to make sure we have parsed all the debug symbols first. Therefore we
3686     // invoke the lambda twice, once to parse only the debug symbols and then
3687     // once more to parse the remaining symbols.
3688     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3689                                  bool debug_only) {
3690       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3691       if (is_debug != debug_only)
3692         return true;
3693 
3694       const char *symbol_name_non_abi_mangled = nullptr;
3695       const char *symbol_name = nullptr;
3696 
3697       if (have_strtab_data) {
3698         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3699 
3700         if (symbol_name == nullptr) {
3701           // No symbol should be NULL, even the symbols with no string values
3702           // should have an offset zero which points to an empty C-string
3703           Host::SystemLog(Host::eSystemLogError,
3704                           "error: symbol[%u] has invalid string table offset "
3705                           "0x%x in %s, ignoring symbol\n",
3706                           nlist_idx, nlist.n_strx,
3707                           module_sp->GetFileSpec().GetPath().c_str());
3708           return true;
3709         }
3710         if (symbol_name[0] == '\0')
3711           symbol_name = nullptr;
3712       } else {
3713         const addr_t str_addr = strtab_addr + nlist.n_strx;
3714         Status str_error;
3715         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3716                                            str_error))
3717           symbol_name = memory_symbol_name.c_str();
3718       }
3719 
3720       SymbolType type = eSymbolTypeInvalid;
3721       SectionSP symbol_section;
3722       lldb::addr_t symbol_byte_size = 0;
3723       bool add_nlist = true;
3724       bool is_gsym = false;
3725       bool demangled_is_synthesized = false;
3726       bool set_value = true;
3727 
3728       assert(sym_idx < num_syms);
3729       sym[sym_idx].SetDebug(is_debug);
3730 
3731       if (is_debug) {
3732         switch (nlist.n_type) {
3733         case N_GSYM:
3734           // global symbol: name,,NO_SECT,type,0
3735           // Sometimes the N_GSYM value contains the address.
3736 
3737           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3738           // the ObjC data.  They
3739           // have the same address, but we want to ensure that we always find
3740           // only the real symbol, 'cause we don't currently correctly
3741           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3742           // type.  This is a temporary hack to make sure the ObjectiveC
3743           // symbols get treated correctly.  To do this right, we should
3744           // coalesce all the GSYM & global symbols that have the same
3745           // address.
3746           is_gsym = true;
3747           sym[sym_idx].SetExternal(true);
3748 
3749           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3750             llvm::StringRef symbol_name_ref(symbol_name);
3751             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3752               symbol_name_non_abi_mangled = symbol_name + 1;
3753               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3754               type = eSymbolTypeObjCClass;
3755               demangled_is_synthesized = true;
3756 
3757             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3758               symbol_name_non_abi_mangled = symbol_name + 1;
3759               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3760               type = eSymbolTypeObjCMetaClass;
3761               demangled_is_synthesized = true;
3762             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3763               symbol_name_non_abi_mangled = symbol_name + 1;
3764               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3765               type = eSymbolTypeObjCIVar;
3766               demangled_is_synthesized = true;
3767             }
3768           } else {
3769             if (nlist.n_value != 0)
3770               symbol_section =
3771                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3772             type = eSymbolTypeData;
3773           }
3774           break;
3775 
3776         case N_FNAME:
3777           // procedure name (f77 kludge): name,,NO_SECT,0,0
3778           type = eSymbolTypeCompiler;
3779           break;
3780 
3781         case N_FUN:
3782           // procedure: name,,n_sect,linenumber,address
3783           if (symbol_name) {
3784             type = eSymbolTypeCode;
3785             symbol_section =
3786                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3787 
3788             N_FUN_addr_to_sym_idx.insert(
3789                 std::make_pair(nlist.n_value, sym_idx));
3790             // We use the current number of symbols in the symbol table in
3791             // lieu of using nlist_idx in case we ever start trimming entries
3792             // out
3793             N_FUN_indexes.push_back(sym_idx);
3794           } else {
3795             type = eSymbolTypeCompiler;
3796 
3797             if (!N_FUN_indexes.empty()) {
3798               // Copy the size of the function into the original STAB entry
3799               // so we don't have to hunt for it later
3800               symtab->SymbolAtIndex(N_FUN_indexes.back())
3801                   ->SetByteSize(nlist.n_value);
3802               N_FUN_indexes.pop_back();
3803               // We don't really need the end function STAB as it contains
3804               // the size which we already placed with the original symbol,
3805               // so don't add it if we want a minimal symbol table
3806               add_nlist = false;
3807             }
3808           }
3809           break;
3810 
3811         case N_STSYM:
3812           // static symbol: name,,n_sect,type,address
3813           N_STSYM_addr_to_sym_idx.insert(
3814               std::make_pair(nlist.n_value, sym_idx));
3815           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3816           if (symbol_name && symbol_name[0]) {
3817             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3818                                                      eSymbolTypeData);
3819           }
3820           break;
3821 
3822         case N_LCSYM:
3823           // .lcomm symbol: name,,n_sect,type,address
3824           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3825           type = eSymbolTypeCommonBlock;
3826           break;
3827 
3828         case N_BNSYM:
3829           // We use the current number of symbols in the symbol table in lieu
3830           // of using nlist_idx in case we ever start trimming entries out
3831           // Skip these if we want minimal symbol tables
3832           add_nlist = false;
3833           break;
3834 
3835         case N_ENSYM:
3836           // Set the size of the N_BNSYM to the terminating index of this
3837           // N_ENSYM so that we can always skip the entire symbol if we need
3838           // to navigate more quickly at the source level when parsing STABS
3839           // Skip these if we want minimal symbol tables
3840           add_nlist = false;
3841           break;
3842 
3843         case N_OPT:
3844           // emitted with gcc2_compiled and in gcc source
3845           type = eSymbolTypeCompiler;
3846           break;
3847 
3848         case N_RSYM:
3849           // register sym: name,,NO_SECT,type,register
3850           type = eSymbolTypeVariable;
3851           break;
3852 
3853         case N_SLINE:
3854           // src line: 0,,n_sect,linenumber,address
3855           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3856           type = eSymbolTypeLineEntry;
3857           break;
3858 
3859         case N_SSYM:
3860           // structure elt: name,,NO_SECT,type,struct_offset
3861           type = eSymbolTypeVariableType;
3862           break;
3863 
3864         case N_SO:
3865           // source file name
3866           type = eSymbolTypeSourceFile;
3867           if (symbol_name == nullptr) {
3868             add_nlist = false;
3869             if (N_SO_index != UINT32_MAX) {
3870               // Set the size of the N_SO to the terminating index of this
3871               // N_SO so that we can always skip the entire N_SO if we need
3872               // to navigate more quickly at the source level when parsing
3873               // STABS
3874               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3875               symbol_ptr->SetByteSize(sym_idx);
3876               symbol_ptr->SetSizeIsSibling(true);
3877             }
3878             N_NSYM_indexes.clear();
3879             N_INCL_indexes.clear();
3880             N_BRAC_indexes.clear();
3881             N_COMM_indexes.clear();
3882             N_FUN_indexes.clear();
3883             N_SO_index = UINT32_MAX;
3884           } else {
3885             // We use the current number of symbols in the symbol table in
3886             // lieu of using nlist_idx in case we ever start trimming entries
3887             // out
3888             const bool N_SO_has_full_path = symbol_name[0] == '/';
3889             if (N_SO_has_full_path) {
3890               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3891                 // We have two consecutive N_SO entries where the first
3892                 // contains a directory and the second contains a full path.
3893                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3894                                                        false);
3895                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3896                 add_nlist = false;
3897               } else {
3898                 // This is the first entry in a N_SO that contains a
3899                 // directory or a full path to the source file
3900                 N_SO_index = sym_idx;
3901               }
3902             } else if ((N_SO_index == sym_idx - 1) &&
3903                        ((sym_idx - 1) < num_syms)) {
3904               // This is usually the second N_SO entry that contains just the
3905               // filename, so here we combine it with the first one if we are
3906               // minimizing the symbol table
3907               const char *so_path =
3908                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3909               if (so_path && so_path[0]) {
3910                 std::string full_so_path(so_path);
3911                 const size_t double_slash_pos = full_so_path.find("//");
3912                 if (double_slash_pos != std::string::npos) {
3913                   // The linker has been generating bad N_SO entries with
3914                   // doubled up paths in the format "%s%s" where the first
3915                   // string in the DW_AT_comp_dir, and the second is the
3916                   // directory for the source file so you end up with a path
3917                   // that looks like "/tmp/src//tmp/src/"
3918                   FileSpec so_dir(so_path);
3919                   if (!FileSystem::Instance().Exists(so_dir)) {
3920                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3921                                    FileSpec::Style::native);
3922                     if (FileSystem::Instance().Exists(so_dir)) {
3923                       // Trim off the incorrect path
3924                       full_so_path.erase(0, double_slash_pos + 1);
3925                     }
3926                   }
3927                 }
3928                 if (*full_so_path.rbegin() != '/')
3929                   full_so_path += '/';
3930                 full_so_path += symbol_name;
3931                 sym[sym_idx - 1].GetMangled().SetValue(
3932                     ConstString(full_so_path.c_str()), false);
3933                 add_nlist = false;
3934                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3935               }
3936             } else {
3937               // This could be a relative path to a N_SO
3938               N_SO_index = sym_idx;
3939             }
3940           }
3941           break;
3942 
3943         case N_OSO:
3944           // object file name: name,,0,0,st_mtime
3945           type = eSymbolTypeObjectFile;
3946           break;
3947 
3948         case N_LSYM:
3949           // local sym: name,,NO_SECT,type,offset
3950           type = eSymbolTypeLocal;
3951           break;
3952 
3953         // INCL scopes
3954         case N_BINCL:
3955           // include file beginning: name,,NO_SECT,0,sum We use the current
3956           // number of symbols in the symbol table in lieu of using nlist_idx
3957           // in case we ever start trimming entries out
3958           N_INCL_indexes.push_back(sym_idx);
3959           type = eSymbolTypeScopeBegin;
3960           break;
3961 
3962         case N_EINCL:
3963           // include file end: name,,NO_SECT,0,0
3964           // Set the size of the N_BINCL to the terminating index of this
3965           // N_EINCL so that we can always skip the entire symbol if we need
3966           // to navigate more quickly at the source level when parsing STABS
3967           if (!N_INCL_indexes.empty()) {
3968             symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
3969             symbol_ptr->SetByteSize(sym_idx + 1);
3970             symbol_ptr->SetSizeIsSibling(true);
3971             N_INCL_indexes.pop_back();
3972           }
3973           type = eSymbolTypeScopeEnd;
3974           break;
3975 
3976         case N_SOL:
3977           // #included file name: name,,n_sect,0,address
3978           type = eSymbolTypeHeaderFile;
3979 
3980           // We currently don't use the header files on darwin
3981           add_nlist = false;
3982           break;
3983 
3984         case N_PARAMS:
3985           // compiler parameters: name,,NO_SECT,0,0
3986           type = eSymbolTypeCompiler;
3987           break;
3988 
3989         case N_VERSION:
3990           // compiler version: name,,NO_SECT,0,0
3991           type = eSymbolTypeCompiler;
3992           break;
3993 
3994         case N_OLEVEL:
3995           // compiler -O level: name,,NO_SECT,0,0
3996           type = eSymbolTypeCompiler;
3997           break;
3998 
3999         case N_PSYM:
4000           // parameter: name,,NO_SECT,type,offset
4001           type = eSymbolTypeVariable;
4002           break;
4003 
4004         case N_ENTRY:
4005           // alternate entry: name,,n_sect,linenumber,address
4006           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4007           type = eSymbolTypeLineEntry;
4008           break;
4009 
4010         // Left and Right Braces
4011         case N_LBRAC:
4012           // left bracket: 0,,NO_SECT,nesting level,address We use the
4013           // current number of symbols in the symbol table in lieu of using
4014           // nlist_idx in case we ever start trimming entries out
4015           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4016           N_BRAC_indexes.push_back(sym_idx);
4017           type = eSymbolTypeScopeBegin;
4018           break;
4019 
4020         case N_RBRAC:
4021           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4022           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4023           // can always skip the entire symbol if we need to navigate more
4024           // quickly at the source level when parsing STABS
4025           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4026           if (!N_BRAC_indexes.empty()) {
4027             symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4028             symbol_ptr->SetByteSize(sym_idx + 1);
4029             symbol_ptr->SetSizeIsSibling(true);
4030             N_BRAC_indexes.pop_back();
4031           }
4032           type = eSymbolTypeScopeEnd;
4033           break;
4034 
4035         case N_EXCL:
4036           // deleted include file: name,,NO_SECT,0,sum
4037           type = eSymbolTypeHeaderFile;
4038           break;
4039 
4040         // COMM scopes
4041         case N_BCOMM:
4042           // begin common: name,,NO_SECT,0,0
4043           // We use the current number of symbols in the symbol table in lieu
4044           // of using nlist_idx in case we ever start trimming entries out
4045           type = eSymbolTypeScopeBegin;
4046           N_COMM_indexes.push_back(sym_idx);
4047           break;
4048 
4049         case N_ECOML:
4050           // end common (local name): 0,,n_sect,0,address
4051           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4052           LLVM_FALLTHROUGH;
4053 
4054         case N_ECOMM:
4055           // end common: name,,n_sect,0,0
4056           // Set the size of the N_BCOMM to the terminating index of this
4057           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4058           // we need to navigate more quickly at the source level when
4059           // parsing STABS
4060           if (!N_COMM_indexes.empty()) {
4061             symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4062             symbol_ptr->SetByteSize(sym_idx + 1);
4063             symbol_ptr->SetSizeIsSibling(true);
4064             N_COMM_indexes.pop_back();
4065           }
4066           type = eSymbolTypeScopeEnd;
4067           break;
4068 
4069         case N_LENG:
4070           // second stab entry with length information
4071           type = eSymbolTypeAdditional;
4072           break;
4073 
4074         default:
4075           break;
4076         }
4077       } else {
4078         uint8_t n_type = N_TYPE & nlist.n_type;
4079         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4080 
4081         switch (n_type) {
4082         case N_INDR: {
4083           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4084           if (reexport_name_cstr && reexport_name_cstr[0]) {
4085             type = eSymbolTypeReExported;
4086             ConstString reexport_name(reexport_name_cstr +
4087                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4088             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4089             set_value = false;
4090             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4091             indirect_symbol_names.insert(
4092                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4093           } else
4094             type = eSymbolTypeUndefined;
4095         } break;
4096 
4097         case N_UNDF:
4098           if (symbol_name && symbol_name[0]) {
4099             ConstString undefined_name(symbol_name +
4100                                        ((symbol_name[0] == '_') ? 1 : 0));
4101             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4102           }
4103           LLVM_FALLTHROUGH;
4104 
4105         case N_PBUD:
4106           type = eSymbolTypeUndefined;
4107           break;
4108 
4109         case N_ABS:
4110           type = eSymbolTypeAbsolute;
4111           break;
4112 
4113         case N_SECT: {
4114           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4115 
4116           if (!symbol_section) {
4117             // TODO: warn about this?
4118             add_nlist = false;
4119             break;
4120           }
4121 
4122           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4123             type = eSymbolTypeException;
4124           } else {
4125             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4126 
4127             switch (section_type) {
4128             case S_CSTRING_LITERALS:
4129               type = eSymbolTypeData;
4130               break; // section with only literal C strings
4131             case S_4BYTE_LITERALS:
4132               type = eSymbolTypeData;
4133               break; // section with only 4 byte literals
4134             case S_8BYTE_LITERALS:
4135               type = eSymbolTypeData;
4136               break; // section with only 8 byte literals
4137             case S_LITERAL_POINTERS:
4138               type = eSymbolTypeTrampoline;
4139               break; // section with only pointers to literals
4140             case S_NON_LAZY_SYMBOL_POINTERS:
4141               type = eSymbolTypeTrampoline;
4142               break; // section with only non-lazy symbol pointers
4143             case S_LAZY_SYMBOL_POINTERS:
4144               type = eSymbolTypeTrampoline;
4145               break; // section with only lazy symbol pointers
4146             case S_SYMBOL_STUBS:
4147               type = eSymbolTypeTrampoline;
4148               break; // section with only symbol stubs, byte size of stub in
4149                      // the reserved2 field
4150             case S_MOD_INIT_FUNC_POINTERS:
4151               type = eSymbolTypeCode;
4152               break; // section with only function pointers for initialization
4153             case S_MOD_TERM_FUNC_POINTERS:
4154               type = eSymbolTypeCode;
4155               break; // section with only function pointers for termination
4156             case S_INTERPOSING:
4157               type = eSymbolTypeTrampoline;
4158               break; // section with only pairs of function pointers for
4159                      // interposing
4160             case S_16BYTE_LITERALS:
4161               type = eSymbolTypeData;
4162               break; // section with only 16 byte literals
4163             case S_DTRACE_DOF:
4164               type = eSymbolTypeInstrumentation;
4165               break;
4166             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4167               type = eSymbolTypeTrampoline;
4168               break;
4169             default:
4170               switch (symbol_section->GetType()) {
4171               case lldb::eSectionTypeCode:
4172                 type = eSymbolTypeCode;
4173                 break;
4174               case eSectionTypeData:
4175               case eSectionTypeDataCString:         // Inlined C string data
4176               case eSectionTypeDataCStringPointers: // Pointers to C string
4177                                                     // data
4178               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4179                                                     // the symbol table
4180               case eSectionTypeData4:
4181               case eSectionTypeData8:
4182               case eSectionTypeData16:
4183                 type = eSymbolTypeData;
4184                 break;
4185               default:
4186                 break;
4187               }
4188               break;
4189             }
4190 
4191             if (type == eSymbolTypeInvalid) {
4192               const char *symbol_sect_name =
4193                   symbol_section->GetName().AsCString();
4194               if (symbol_section->IsDescendant(text_section_sp.get())) {
4195                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4196                                             S_ATTR_SELF_MODIFYING_CODE |
4197                                             S_ATTR_SOME_INSTRUCTIONS))
4198                   type = eSymbolTypeData;
4199                 else
4200                   type = eSymbolTypeCode;
4201               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4202                          symbol_section->IsDescendant(
4203                              data_dirty_section_sp.get()) ||
4204                          symbol_section->IsDescendant(
4205                              data_const_section_sp.get())) {
4206                 if (symbol_sect_name &&
4207                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4208                   type = eSymbolTypeRuntime;
4209 
4210                   if (symbol_name) {
4211                     llvm::StringRef symbol_name_ref(symbol_name);
4212                     if (symbol_name_ref.startswith("_OBJC_")) {
4213                       llvm::StringRef g_objc_v2_prefix_class(
4214                           "_OBJC_CLASS_$_");
4215                       llvm::StringRef g_objc_v2_prefix_metaclass(
4216                           "_OBJC_METACLASS_$_");
4217                       llvm::StringRef g_objc_v2_prefix_ivar(
4218                           "_OBJC_IVAR_$_");
4219                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4220                         symbol_name_non_abi_mangled = symbol_name + 1;
4221                         symbol_name =
4222                             symbol_name + g_objc_v2_prefix_class.size();
4223                         type = eSymbolTypeObjCClass;
4224                         demangled_is_synthesized = true;
4225                       } else if (symbol_name_ref.startswith(
4226                                      g_objc_v2_prefix_metaclass)) {
4227                         symbol_name_non_abi_mangled = symbol_name + 1;
4228                         symbol_name =
4229                             symbol_name + g_objc_v2_prefix_metaclass.size();
4230                         type = eSymbolTypeObjCMetaClass;
4231                         demangled_is_synthesized = true;
4232                       } else if (symbol_name_ref.startswith(
4233                                      g_objc_v2_prefix_ivar)) {
4234                         symbol_name_non_abi_mangled = symbol_name + 1;
4235                         symbol_name =
4236                             symbol_name + g_objc_v2_prefix_ivar.size();
4237                         type = eSymbolTypeObjCIVar;
4238                         demangled_is_synthesized = true;
4239                       }
4240                     }
4241                   }
4242                 } else if (symbol_sect_name &&
4243                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4244                                symbol_sect_name) {
4245                   type = eSymbolTypeException;
4246                 } else {
4247                   type = eSymbolTypeData;
4248                 }
4249               } else if (symbol_sect_name &&
4250                          ::strstr(symbol_sect_name, "__IMPORT") ==
4251                              symbol_sect_name) {
4252                 type = eSymbolTypeTrampoline;
4253               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4254                 type = eSymbolTypeRuntime;
4255                 if (symbol_name && symbol_name[0] == '.') {
4256                   llvm::StringRef symbol_name_ref(symbol_name);
4257                   llvm::StringRef g_objc_v1_prefix_class(
4258                       ".objc_class_name_");
4259                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4260                     symbol_name_non_abi_mangled = symbol_name;
4261                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4262                     type = eSymbolTypeObjCClass;
4263                     demangled_is_synthesized = true;
4264                   }
4265                 }
4266               }
4267             }
4268           }
4269         } break;
4270         }
4271       }
4272 
4273       if (!add_nlist) {
4274         sym[sym_idx].Clear();
4275         return true;
4276       }
4277 
4278       uint64_t symbol_value = nlist.n_value;
4279 
4280       if (symbol_name_non_abi_mangled) {
4281         sym[sym_idx].GetMangled().SetMangledName(
4282             ConstString(symbol_name_non_abi_mangled));
4283         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4284       } else {
4285         bool symbol_name_is_mangled = false;
4286 
4287         if (symbol_name && symbol_name[0] == '_') {
4288           symbol_name_is_mangled = symbol_name[1] == '_';
4289           symbol_name++; // Skip the leading underscore
4290         }
4291 
4292         if (symbol_name) {
4293           ConstString const_symbol_name(symbol_name);
4294           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4295                                              symbol_name_is_mangled);
4296         }
4297       }
4298 
4299       if (is_gsym) {
4300         const char *gsym_name = sym[sym_idx]
4301                                     .GetMangled()
4302                                     .GetName(Mangled::ePreferMangled)
4303                                     .GetCString();
4304         if (gsym_name)
4305           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4306       }
4307 
4308       if (symbol_section) {
4309         const addr_t section_file_addr = symbol_section->GetFileAddress();
4310         if (symbol_byte_size == 0 && function_starts_count > 0) {
4311           addr_t symbol_lookup_file_addr = nlist.n_value;
4312           // Do an exact address match for non-ARM addresses, else get the
4313           // closest since the symbol might be a thumb symbol which has an
4314           // address with bit zero set.
4315           FunctionStarts::Entry *func_start_entry =
4316               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4317           if (is_arm && func_start_entry) {
4318             // Verify that the function start address is the symbol address
4319             // (ARM) or the symbol address + 1 (thumb).
4320             if (func_start_entry->addr != symbol_lookup_file_addr &&
4321                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4322               // Not the right entry, NULL it out...
4323               func_start_entry = nullptr;
4324             }
4325           }
4326           if (func_start_entry) {
4327             func_start_entry->data = true;
4328 
4329             addr_t symbol_file_addr = func_start_entry->addr;
4330             if (is_arm)
4331               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4332 
4333             const FunctionStarts::Entry *next_func_start_entry =
4334                 function_starts.FindNextEntry(func_start_entry);
4335             const addr_t section_end_file_addr =
4336                 section_file_addr + symbol_section->GetByteSize();
4337             if (next_func_start_entry) {
4338               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4339               // Be sure the clear the Thumb address bit when we calculate the
4340               // size from the current and next address
4341               if (is_arm)
4342                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4343               symbol_byte_size = std::min<lldb::addr_t>(
4344                   next_symbol_file_addr - symbol_file_addr,
4345                   section_end_file_addr - symbol_file_addr);
4346             } else {
4347               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4348             }
4349           }
4350         }
4351         symbol_value -= section_file_addr;
4352       }
4353 
4354       if (!is_debug) {
4355         if (type == eSymbolTypeCode) {
4356           // See if we can find a N_FUN entry for any code symbols. If we do
4357           // find a match, and the name matches, then we can merge the two into
4358           // just the function symbol to avoid duplicate entries in the symbol
4359           // table.
4360           std::pair<ValueToSymbolIndexMap::const_iterator,
4361                     ValueToSymbolIndexMap::const_iterator>
4362               range;
4363           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4364           if (range.first != range.second) {
4365             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4366                  pos != range.second; ++pos) {
4367               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4368                   sym[pos->second].GetMangled().GetName(
4369                       Mangled::ePreferMangled)) {
4370                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4371                 // We just need the flags from the linker symbol, so put these
4372                 // flags into the N_FUN flags to avoid duplicate symbols in the
4373                 // symbol table.
4374                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4375                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4376                 if (resolver_addresses.find(nlist.n_value) !=
4377                     resolver_addresses.end())
4378                   sym[pos->second].SetType(eSymbolTypeResolver);
4379                 sym[sym_idx].Clear();
4380                 return true;
4381               }
4382             }
4383           } else {
4384             if (resolver_addresses.find(nlist.n_value) !=
4385                 resolver_addresses.end())
4386               type = eSymbolTypeResolver;
4387           }
4388         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4389                    type == eSymbolTypeObjCMetaClass ||
4390                    type == eSymbolTypeObjCIVar) {
4391           // See if we can find a N_STSYM entry for any data symbols. If we do
4392           // find a match, and the name matches, then we can merge the two into
4393           // just the Static symbol to avoid duplicate entries in the symbol
4394           // table.
4395           std::pair<ValueToSymbolIndexMap::const_iterator,
4396                     ValueToSymbolIndexMap::const_iterator>
4397               range;
4398           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4399           if (range.first != range.second) {
4400             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4401                  pos != range.second; ++pos) {
4402               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4403                   sym[pos->second].GetMangled().GetName(
4404                       Mangled::ePreferMangled)) {
4405                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4406                 // We just need the flags from the linker symbol, so put these
4407                 // flags into the N_STSYM flags to avoid duplicate symbols in
4408                 // the symbol table.
4409                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4410                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4411                 sym[sym_idx].Clear();
4412                 return true;
4413               }
4414             }
4415           } else {
4416             // Combine N_GSYM stab entries with the non stab symbol.
4417             const char *gsym_name = sym[sym_idx]
4418                                         .GetMangled()
4419                                         .GetName(Mangled::ePreferMangled)
4420                                         .GetCString();
4421             if (gsym_name) {
4422               ConstNameToSymbolIndexMap::const_iterator pos =
4423                   N_GSYM_name_to_sym_idx.find(gsym_name);
4424               if (pos != N_GSYM_name_to_sym_idx.end()) {
4425                 const uint32_t GSYM_sym_idx = pos->second;
4426                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4427                 // Copy the address, because often the N_GSYM address has an
4428                 // invalid address of zero when the global is a common symbol.
4429                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4430                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4431                 // We just need the flags from the linker symbol, so put these
4432                 // flags into the N_GSYM flags to avoid duplicate symbols in
4433                 // the symbol table.
4434                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4435                 sym[sym_idx].Clear();
4436                 return true;
4437               }
4438             }
4439           }
4440         }
4441       }
4442 
4443       sym[sym_idx].SetID(nlist_idx);
4444       sym[sym_idx].SetType(type);
4445       if (set_value) {
4446         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4447         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4448       }
4449       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4450       if (nlist.n_desc & N_WEAK_REF)
4451         sym[sym_idx].SetIsWeak(true);
4452 
4453       if (symbol_byte_size > 0)
4454         sym[sym_idx].SetByteSize(symbol_byte_size);
4455 
4456       if (demangled_is_synthesized)
4457         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4458 
4459       ++sym_idx;
4460       return true;
4461     };
4462 
4463     // First parse all the nlists but don't process them yet. See the next
4464     // comment for an explanation why.
4465     std::vector<struct nlist_64> nlists;
4466     nlists.reserve(symtab_load_command.nsyms);
4467     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4468       if (auto nlist =
4469               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4470         nlists.push_back(*nlist);
4471       else
4472         break;
4473     }
4474 
4475     // Now parse all the debug symbols. This is needed to merge non-debug
4476     // symbols in the next step. Non-debug symbols are always coalesced into
4477     // the debug symbol. Doing this in one step would mean that some symbols
4478     // won't be merged.
4479     nlist_idx = 0;
4480     for (auto &nlist : nlists) {
4481       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4482         break;
4483     }
4484 
4485     // Finally parse all the non debug symbols.
4486     nlist_idx = 0;
4487     for (auto &nlist : nlists) {
4488       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4489         break;
4490     }
4491 
4492     for (const auto &pos : reexport_shlib_needs_fixup) {
4493       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4494       if (undef_pos != undefined_name_to_desc.end()) {
4495         const uint8_t dylib_ordinal =
4496             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4497         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4498           sym[pos.first].SetReExportedSymbolSharedLibrary(
4499               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4500       }
4501     }
4502   }
4503 
4504   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4505 
4506   if (function_starts_count > 0) {
4507     uint32_t num_synthetic_function_symbols = 0;
4508     for (i = 0; i < function_starts_count; ++i) {
4509       if (!function_starts.GetEntryRef(i).data)
4510         ++num_synthetic_function_symbols;
4511     }
4512 
4513     if (num_synthetic_function_symbols > 0) {
4514       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4515         num_syms = sym_idx + num_synthetic_function_symbols;
4516         sym = symtab->Resize(num_syms);
4517       }
4518       for (i = 0; i < function_starts_count; ++i) {
4519         const FunctionStarts::Entry *func_start_entry =
4520             function_starts.GetEntryAtIndex(i);
4521         if (!func_start_entry->data) {
4522           addr_t symbol_file_addr = func_start_entry->addr;
4523           uint32_t symbol_flags = 0;
4524           if (is_arm) {
4525             if (symbol_file_addr & 1)
4526               symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4527             symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4528           }
4529           Address symbol_addr;
4530           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4531             SectionSP symbol_section(symbol_addr.GetSection());
4532             uint32_t symbol_byte_size = 0;
4533             if (symbol_section) {
4534               const addr_t section_file_addr = symbol_section->GetFileAddress();
4535               const FunctionStarts::Entry *next_func_start_entry =
4536                   function_starts.FindNextEntry(func_start_entry);
4537               const addr_t section_end_file_addr =
4538                   section_file_addr + symbol_section->GetByteSize();
4539               if (next_func_start_entry) {
4540                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4541                 if (is_arm)
4542                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4543                 symbol_byte_size = std::min<lldb::addr_t>(
4544                     next_symbol_file_addr - symbol_file_addr,
4545                     section_end_file_addr - symbol_file_addr);
4546               } else {
4547                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4548               }
4549               sym[sym_idx].SetID(synthetic_sym_id++);
4550               sym[sym_idx].GetMangled().SetDemangledName(
4551                   GetNextSyntheticSymbolName());
4552               sym[sym_idx].SetType(eSymbolTypeCode);
4553               sym[sym_idx].SetIsSynthetic(true);
4554               sym[sym_idx].GetAddressRef() = symbol_addr;
4555               if (symbol_flags)
4556                 sym[sym_idx].SetFlags(symbol_flags);
4557               if (symbol_byte_size)
4558                 sym[sym_idx].SetByteSize(symbol_byte_size);
4559               ++sym_idx;
4560             }
4561           }
4562         }
4563       }
4564     }
4565   }
4566 
4567   // Trim our symbols down to just what we ended up with after removing any
4568   // symbols.
4569   if (sym_idx < num_syms) {
4570     num_syms = sym_idx;
4571     sym = symtab->Resize(num_syms);
4572   }
4573 
4574   // Now synthesize indirect symbols
4575   if (m_dysymtab.nindirectsyms != 0) {
4576     if (indirect_symbol_index_data.GetByteSize()) {
4577       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4578           m_nlist_idx_to_sym_idx.end();
4579 
4580       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4581            ++sect_idx) {
4582         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4583             S_SYMBOL_STUBS) {
4584           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4585           if (symbol_stub_byte_size == 0)
4586             continue;
4587 
4588           const uint32_t num_symbol_stubs =
4589               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4590 
4591           if (num_symbol_stubs == 0)
4592             continue;
4593 
4594           const uint32_t symbol_stub_index_offset =
4595               m_mach_sections[sect_idx].reserved1;
4596           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4597             const uint32_t symbol_stub_index =
4598                 symbol_stub_index_offset + stub_idx;
4599             const lldb::addr_t symbol_stub_addr =
4600                 m_mach_sections[sect_idx].addr +
4601                 (stub_idx * symbol_stub_byte_size);
4602             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4603             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4604                     symbol_stub_offset, 4)) {
4605               const uint32_t stub_sym_id =
4606                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4607               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4608                 continue;
4609 
4610               NListIndexToSymbolIndexMap::const_iterator index_pos =
4611                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4612               Symbol *stub_symbol = nullptr;
4613               if (index_pos != end_index_pos) {
4614                 // We have a remapping from the original nlist index to a
4615                 // current symbol index, so just look this up by index
4616                 stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4617               } else {
4618                 // We need to lookup a symbol using the original nlist symbol
4619                 // index since this index is coming from the S_SYMBOL_STUBS
4620                 stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4621               }
4622 
4623               if (stub_symbol) {
4624                 Address so_addr(symbol_stub_addr, section_list);
4625 
4626                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4627                   // Change the external symbol into a trampoline that makes
4628                   // sense These symbols were N_UNDF N_EXT, and are useless
4629                   // to us, so we can re-use them so we don't have to make up
4630                   // a synthetic symbol for no good reason.
4631                   if (resolver_addresses.find(symbol_stub_addr) ==
4632                       resolver_addresses.end())
4633                     stub_symbol->SetType(eSymbolTypeTrampoline);
4634                   else
4635                     stub_symbol->SetType(eSymbolTypeResolver);
4636                   stub_symbol->SetExternal(false);
4637                   stub_symbol->GetAddressRef() = so_addr;
4638                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4639                 } else {
4640                   // Make a synthetic symbol to describe the trampoline stub
4641                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4642                   if (sym_idx >= num_syms) {
4643                     sym = symtab->Resize(++num_syms);
4644                     stub_symbol = nullptr; // this pointer no longer valid
4645                   }
4646                   sym[sym_idx].SetID(synthetic_sym_id++);
4647                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4648                   if (resolver_addresses.find(symbol_stub_addr) ==
4649                       resolver_addresses.end())
4650                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4651                   else
4652                     sym[sym_idx].SetType(eSymbolTypeResolver);
4653                   sym[sym_idx].SetIsSynthetic(true);
4654                   sym[sym_idx].GetAddressRef() = so_addr;
4655                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4656                   ++sym_idx;
4657                 }
4658               } else {
4659                 if (log)
4660                   log->Warning("symbol stub referencing symbol table symbol "
4661                                "%u that isn't in our minimal symbol table, "
4662                                "fix this!!!",
4663                                stub_sym_id);
4664               }
4665             }
4666           }
4667         }
4668       }
4669     }
4670   }
4671 
4672   if (!trie_entries.empty()) {
4673     for (const auto &e : trie_entries) {
4674       if (e.entry.import_name) {
4675         // Only add indirect symbols from the Trie entries if we didn't have
4676         // a N_INDR nlist entry for this already
4677         if (indirect_symbol_names.find(e.entry.name) ==
4678             indirect_symbol_names.end()) {
4679           // Make a synthetic symbol to describe re-exported symbol.
4680           if (sym_idx >= num_syms)
4681             sym = symtab->Resize(++num_syms);
4682           sym[sym_idx].SetID(synthetic_sym_id++);
4683           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4684           sym[sym_idx].SetType(eSymbolTypeReExported);
4685           sym[sym_idx].SetIsSynthetic(true);
4686           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4687           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4688             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4689                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4690           }
4691           ++sym_idx;
4692         }
4693       }
4694     }
4695   }
4696 
4697   //        StreamFile s(stdout, false);
4698   //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4699   //        symtab->Dump(&s, NULL, eSortOrderNone);
4700   // Set symbol byte sizes correctly since mach-o nlist entries don't have
4701   // sizes
4702   symtab->CalculateSymbolSizes();
4703 
4704   //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4705   //        symtab->Dump(&s, NULL, eSortOrderNone);
4706 
4707   return symtab->GetNumSymbols();
4708 }
4709 
4710 void ObjectFileMachO::Dump(Stream *s) {
4711   ModuleSP module_sp(GetModule());
4712   if (module_sp) {
4713     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4714     s->Printf("%p: ", static_cast<void *>(this));
4715     s->Indent();
4716     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4717       s->PutCString("ObjectFileMachO64");
4718     else
4719       s->PutCString("ObjectFileMachO32");
4720 
4721     *s << ", file = '" << m_file;
4722     ModuleSpecList all_specs;
4723     ModuleSpec base_spec;
4724     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4725                     base_spec, all_specs);
4726     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4727       *s << "', triple";
4728       if (e)
4729         s->Printf("[%d]", i);
4730       *s << " = ";
4731       *s << all_specs.GetModuleSpecRefAtIndex(i)
4732                 .GetArchitecture()
4733                 .GetTriple()
4734                 .getTriple();
4735     }
4736     *s << "\n";
4737     SectionList *sections = GetSectionList();
4738     if (sections)
4739       sections->Dump(s, nullptr, true, UINT32_MAX);
4740 
4741     if (m_symtab_up)
4742       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4743   }
4744 }
4745 
4746 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4747                               const lldb_private::DataExtractor &data,
4748                               lldb::offset_t lc_offset) {
4749   uint32_t i;
4750   struct uuid_command load_cmd;
4751 
4752   lldb::offset_t offset = lc_offset;
4753   for (i = 0; i < header.ncmds; ++i) {
4754     const lldb::offset_t cmd_offset = offset;
4755     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4756       break;
4757 
4758     if (load_cmd.cmd == LC_UUID) {
4759       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4760 
4761       if (uuid_bytes) {
4762         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4763         // We pretend these object files have no UUID to prevent crashing.
4764 
4765         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4766                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4767                                        0xbb, 0x14, 0xf0, 0x0d};
4768 
4769         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4770           return UUID();
4771 
4772         return UUID::fromOptionalData(uuid_bytes, 16);
4773       }
4774       return UUID();
4775     }
4776     offset = cmd_offset + load_cmd.cmdsize;
4777   }
4778   return UUID();
4779 }
4780 
4781 static llvm::StringRef GetOSName(uint32_t cmd) {
4782   switch (cmd) {
4783   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4784     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4785   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4786     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4787   case llvm::MachO::LC_VERSION_MIN_TVOS:
4788     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4789   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4790     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4791   default:
4792     llvm_unreachable("unexpected LC_VERSION load command");
4793   }
4794 }
4795 
4796 namespace {
4797 struct OSEnv {
4798   llvm::StringRef os_type;
4799   llvm::StringRef environment;
4800   OSEnv(uint32_t cmd) {
4801     switch (cmd) {
4802     case llvm::MachO::PLATFORM_MACOS:
4803       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4804       return;
4805     case llvm::MachO::PLATFORM_IOS:
4806       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4807       return;
4808     case llvm::MachO::PLATFORM_TVOS:
4809       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4810       return;
4811     case llvm::MachO::PLATFORM_WATCHOS:
4812       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4813       return;
4814       // NEED_BRIDGEOS_TRIPLE      case llvm::MachO::PLATFORM_BRIDGEOS:
4815       // NEED_BRIDGEOS_TRIPLE        os_type =
4816       // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4817       // NEED_BRIDGEOS_TRIPLE        return;
4818     case llvm::MachO::PLATFORM_MACCATALYST:
4819       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4820       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4821       return;
4822     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4823       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4824       environment =
4825           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4826       return;
4827     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4828       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4829       environment =
4830           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4831       return;
4832     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4833       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4834       environment =
4835           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4836       return;
4837     default: {
4838       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4839                                                       LIBLLDB_LOG_PROCESS));
4840       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4841     }
4842     }
4843   }
4844 };
4845 
4846 struct MinOS {
4847   uint32_t major_version, minor_version, patch_version;
4848   MinOS(uint32_t version)
4849       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4850         patch_version(version & 0xffu) {}
4851 };
4852 } // namespace
4853 
4854 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4855                                       const lldb_private::DataExtractor &data,
4856                                       lldb::offset_t lc_offset,
4857                                       ModuleSpec &base_spec,
4858                                       lldb_private::ModuleSpecList &all_specs) {
4859   auto &base_arch = base_spec.GetArchitecture();
4860   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4861   if (!base_arch.IsValid())
4862     return;
4863 
4864   bool found_any = false;
4865   auto add_triple = [&](const llvm::Triple &triple) {
4866     auto spec = base_spec;
4867     spec.GetArchitecture().GetTriple() = triple;
4868     if (spec.GetArchitecture().IsValid()) {
4869       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4870       all_specs.Append(spec);
4871       found_any = true;
4872     }
4873   };
4874 
4875   // Set OS to an unspecified unknown or a "*" so it can match any OS
4876   llvm::Triple base_triple = base_arch.GetTriple();
4877   base_triple.setOS(llvm::Triple::UnknownOS);
4878   base_triple.setOSName(llvm::StringRef());
4879 
4880   if (header.filetype == MH_PRELOAD) {
4881     if (header.cputype == CPU_TYPE_ARM) {
4882       // If this is a 32-bit arm binary, and it's a standalone binary, force
4883       // the Vendor to Apple so we don't accidentally pick up the generic
4884       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4885       // frame pointer register; most other armv7 ABIs use a combination of
4886       // r7 and r11.
4887       base_triple.setVendor(llvm::Triple::Apple);
4888     } else {
4889       // Set vendor to an unspecified unknown or a "*" so it can match any
4890       // vendor This is required for correct behavior of EFI debugging on
4891       // x86_64
4892       base_triple.setVendor(llvm::Triple::UnknownVendor);
4893       base_triple.setVendorName(llvm::StringRef());
4894     }
4895     return add_triple(base_triple);
4896   }
4897 
4898   struct load_command load_cmd;
4899 
4900   // See if there is an LC_VERSION_MIN_* load command that can give
4901   // us the OS type.
4902   lldb::offset_t offset = lc_offset;
4903   for (uint32_t i = 0; i < header.ncmds; ++i) {
4904     const lldb::offset_t cmd_offset = offset;
4905     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4906       break;
4907 
4908     struct version_min_command version_min;
4909     switch (load_cmd.cmd) {
4910     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4911     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4912     case llvm::MachO::LC_VERSION_MIN_TVOS:
4913     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4914       if (load_cmd.cmdsize != sizeof(version_min))
4915         break;
4916       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4917                             data.GetByteOrder(), &version_min) == 0)
4918         break;
4919       MinOS min_os(version_min.version);
4920       llvm::SmallString<32> os_name;
4921       llvm::raw_svector_ostream os(os_name);
4922       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4923          << min_os.minor_version << '.' << min_os.patch_version;
4924 
4925       auto triple = base_triple;
4926       triple.setOSName(os.str());
4927       os_name.clear();
4928       add_triple(triple);
4929       break;
4930     }
4931     default:
4932       break;
4933     }
4934 
4935     offset = cmd_offset + load_cmd.cmdsize;
4936   }
4937 
4938   // See if there are LC_BUILD_VERSION load commands that can give
4939   // us the OS type.
4940   offset = lc_offset;
4941   for (uint32_t i = 0; i < header.ncmds; ++i) {
4942     const lldb::offset_t cmd_offset = offset;
4943     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4944       break;
4945 
4946     do {
4947       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
4948         struct build_version_command build_version;
4949         if (load_cmd.cmdsize < sizeof(build_version)) {
4950           // Malformed load command.
4951           break;
4952         }
4953         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
4954                               data.GetByteOrder(), &build_version) == 0)
4955           break;
4956         MinOS min_os(build_version.minos);
4957         OSEnv os_env(build_version.platform);
4958         llvm::SmallString<16> os_name;
4959         llvm::raw_svector_ostream os(os_name);
4960         os << os_env.os_type << min_os.major_version << '.'
4961            << min_os.minor_version << '.' << min_os.patch_version;
4962         auto triple = base_triple;
4963         triple.setOSName(os.str());
4964         os_name.clear();
4965         if (!os_env.environment.empty())
4966           triple.setEnvironmentName(os_env.environment);
4967         add_triple(triple);
4968       }
4969     } while (0);
4970     offset = cmd_offset + load_cmd.cmdsize;
4971   }
4972 
4973   if (!found_any) {
4974     if (header.filetype == MH_KEXT_BUNDLE) {
4975       base_triple.setVendor(llvm::Triple::Apple);
4976       add_triple(base_triple);
4977     } else {
4978       // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
4979       // so lets not say our Vendor is Apple, leave it as an unspecified
4980       // unknown.
4981       base_triple.setVendor(llvm::Triple::UnknownVendor);
4982       base_triple.setVendorName(llvm::StringRef());
4983       add_triple(base_triple);
4984     }
4985   }
4986 }
4987 
4988 ArchSpec ObjectFileMachO::GetArchitecture(
4989     ModuleSP module_sp, const llvm::MachO::mach_header &header,
4990     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
4991   ModuleSpecList all_specs;
4992   ModuleSpec base_spec;
4993   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
4994                   base_spec, all_specs);
4995 
4996   // If the object file offers multiple alternative load commands,
4997   // pick the one that matches the module.
4998   if (module_sp) {
4999     const ArchSpec &module_arch = module_sp->GetArchitecture();
5000     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5001       ArchSpec mach_arch =
5002           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5003       if (module_arch.IsCompatibleMatch(mach_arch))
5004         return mach_arch;
5005     }
5006   }
5007 
5008   // Return the first arch we found.
5009   if (all_specs.GetSize() == 0)
5010     return {};
5011   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5012 }
5013 
5014 UUID ObjectFileMachO::GetUUID() {
5015   ModuleSP module_sp(GetModule());
5016   if (module_sp) {
5017     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5018     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5019     return GetUUID(m_header, m_data, offset);
5020   }
5021   return UUID();
5022 }
5023 
5024 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5025   uint32_t count = 0;
5026   ModuleSP module_sp(GetModule());
5027   if (module_sp) {
5028     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5029     struct load_command load_cmd;
5030     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5031     std::vector<std::string> rpath_paths;
5032     std::vector<std::string> rpath_relative_paths;
5033     std::vector<std::string> at_exec_relative_paths;
5034     uint32_t i;
5035     for (i = 0; i < m_header.ncmds; ++i) {
5036       const uint32_t cmd_offset = offset;
5037       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5038         break;
5039 
5040       switch (load_cmd.cmd) {
5041       case LC_RPATH:
5042       case LC_LOAD_DYLIB:
5043       case LC_LOAD_WEAK_DYLIB:
5044       case LC_REEXPORT_DYLIB:
5045       case LC_LOAD_DYLINKER:
5046       case LC_LOADFVMLIB:
5047       case LC_LOAD_UPWARD_DYLIB: {
5048         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5049         const char *path = m_data.PeekCStr(name_offset);
5050         if (path) {
5051           if (load_cmd.cmd == LC_RPATH)
5052             rpath_paths.push_back(path);
5053           else {
5054             if (path[0] == '@') {
5055               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5056                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5057               else if (strncmp(path, "@executable_path",
5058                                strlen("@executable_path")) == 0)
5059                 at_exec_relative_paths.push_back(path +
5060                                                  strlen("@executable_path"));
5061             } else {
5062               FileSpec file_spec(path);
5063               if (files.AppendIfUnique(file_spec))
5064                 count++;
5065             }
5066           }
5067         }
5068       } break;
5069 
5070       default:
5071         break;
5072       }
5073       offset = cmd_offset + load_cmd.cmdsize;
5074     }
5075 
5076     FileSpec this_file_spec(m_file);
5077     FileSystem::Instance().Resolve(this_file_spec);
5078 
5079     if (!rpath_paths.empty()) {
5080       // Fixup all LC_RPATH values to be absolute paths
5081       std::string loader_path("@loader_path");
5082       std::string executable_path("@executable_path");
5083       for (auto &rpath : rpath_paths) {
5084         if (rpath.find(loader_path) == 0) {
5085           rpath.erase(0, loader_path.size());
5086           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5087         } else if (rpath.find(executable_path) == 0) {
5088           rpath.erase(0, executable_path.size());
5089           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5090         }
5091       }
5092 
5093       for (const auto &rpath_relative_path : rpath_relative_paths) {
5094         for (const auto &rpath : rpath_paths) {
5095           std::string path = rpath;
5096           path += rpath_relative_path;
5097           // It is OK to resolve this path because we must find a file on disk
5098           // for us to accept it anyway if it is rpath relative.
5099           FileSpec file_spec(path);
5100           FileSystem::Instance().Resolve(file_spec);
5101           if (FileSystem::Instance().Exists(file_spec) &&
5102               files.AppendIfUnique(file_spec)) {
5103             count++;
5104             break;
5105           }
5106         }
5107       }
5108     }
5109 
5110     // We may have @executable_paths but no RPATHS.  Figure those out here.
5111     // Only do this if this object file is the executable.  We have no way to
5112     // get back to the actual executable otherwise, so we won't get the right
5113     // path.
5114     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5115       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5116       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5117         FileSpec file_spec =
5118             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5119         if (FileSystem::Instance().Exists(file_spec) &&
5120             files.AppendIfUnique(file_spec))
5121           count++;
5122       }
5123     }
5124   }
5125   return count;
5126 }
5127 
5128 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5129   // If the object file is not an executable it can't hold the entry point.
5130   // m_entry_point_address is initialized to an invalid address, so we can just
5131   // return that. If m_entry_point_address is valid it means we've found it
5132   // already, so return the cached value.
5133 
5134   if ((!IsExecutable() && !IsDynamicLoader()) ||
5135       m_entry_point_address.IsValid()) {
5136     return m_entry_point_address;
5137   }
5138 
5139   // Otherwise, look for the UnixThread or Thread command.  The data for the
5140   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5141   //
5142   //  uint32_t flavor  - this is the flavor argument you would pass to
5143   //  thread_get_state
5144   //  uint32_t count   - this is the count of longs in the thread state data
5145   //  struct XXX_thread_state state - this is the structure from
5146   //  <machine/thread_status.h> corresponding to the flavor.
5147   //  <repeat this trio>
5148   //
5149   // So we just keep reading the various register flavors till we find the GPR
5150   // one, then read the PC out of there.
5151   // FIXME: We will need to have a "RegisterContext data provider" class at some
5152   // point that can get all the registers
5153   // out of data in this form & attach them to a given thread.  That should
5154   // underlie the MacOS X User process plugin, and we'll also need it for the
5155   // MacOS X Core File process plugin.  When we have that we can also use it
5156   // here.
5157   //
5158   // For now we hard-code the offsets and flavors we need:
5159   //
5160   //
5161 
5162   ModuleSP module_sp(GetModule());
5163   if (module_sp) {
5164     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5165     struct load_command load_cmd;
5166     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5167     uint32_t i;
5168     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5169     bool done = false;
5170 
5171     for (i = 0; i < m_header.ncmds; ++i) {
5172       const lldb::offset_t cmd_offset = offset;
5173       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5174         break;
5175 
5176       switch (load_cmd.cmd) {
5177       case LC_UNIXTHREAD:
5178       case LC_THREAD: {
5179         while (offset < cmd_offset + load_cmd.cmdsize) {
5180           uint32_t flavor = m_data.GetU32(&offset);
5181           uint32_t count = m_data.GetU32(&offset);
5182           if (count == 0) {
5183             // We've gotten off somehow, log and exit;
5184             return m_entry_point_address;
5185           }
5186 
5187           switch (m_header.cputype) {
5188           case llvm::MachO::CPU_TYPE_ARM:
5189             if (flavor == 1 ||
5190                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5191                              // from mach/arm/thread_status.h
5192             {
5193               offset += 60; // This is the offset of pc in the GPR thread state
5194                             // data structure.
5195               start_address = m_data.GetU32(&offset);
5196               done = true;
5197             }
5198             break;
5199           case llvm::MachO::CPU_TYPE_ARM64:
5200           case llvm::MachO::CPU_TYPE_ARM64_32:
5201             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5202             {
5203               offset += 256; // This is the offset of pc in the GPR thread state
5204                              // data structure.
5205               start_address = m_data.GetU64(&offset);
5206               done = true;
5207             }
5208             break;
5209           case llvm::MachO::CPU_TYPE_I386:
5210             if (flavor ==
5211                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5212             {
5213               offset += 40; // This is the offset of eip in the GPR thread state
5214                             // data structure.
5215               start_address = m_data.GetU32(&offset);
5216               done = true;
5217             }
5218             break;
5219           case llvm::MachO::CPU_TYPE_X86_64:
5220             if (flavor ==
5221                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5222             {
5223               offset += 16 * 8; // This is the offset of rip in the GPR thread
5224                                 // state data structure.
5225               start_address = m_data.GetU64(&offset);
5226               done = true;
5227             }
5228             break;
5229           default:
5230             return m_entry_point_address;
5231           }
5232           // Haven't found the GPR flavor yet, skip over the data for this
5233           // flavor:
5234           if (done)
5235             break;
5236           offset += count * 4;
5237         }
5238       } break;
5239       case LC_MAIN: {
5240         ConstString text_segment_name("__TEXT");
5241         uint64_t entryoffset = m_data.GetU64(&offset);
5242         SectionSP text_segment_sp =
5243             GetSectionList()->FindSectionByName(text_segment_name);
5244         if (text_segment_sp) {
5245           done = true;
5246           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5247         }
5248       } break;
5249 
5250       default:
5251         break;
5252       }
5253       if (done)
5254         break;
5255 
5256       // Go to the next load command:
5257       offset = cmd_offset + load_cmd.cmdsize;
5258     }
5259 
5260     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5261       if (GetSymtab()) {
5262         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5263             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5264             Symtab::eDebugAny, Symtab::eVisibilityAny);
5265         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5266           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5267         }
5268       }
5269     }
5270 
5271     if (start_address != LLDB_INVALID_ADDRESS) {
5272       // We got the start address from the load commands, so now resolve that
5273       // address in the sections of this ObjectFile:
5274       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5275               start_address, GetSectionList())) {
5276         m_entry_point_address.Clear();
5277       }
5278     } else {
5279       // We couldn't read the UnixThread load command - maybe it wasn't there.
5280       // As a fallback look for the "start" symbol in the main executable.
5281 
5282       ModuleSP module_sp(GetModule());
5283 
5284       if (module_sp) {
5285         SymbolContextList contexts;
5286         SymbolContext context;
5287         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5288                                               eSymbolTypeCode, contexts);
5289         if (contexts.GetSize()) {
5290           if (contexts.GetContextAtIndex(0, context))
5291             m_entry_point_address = context.symbol->GetAddress();
5292         }
5293       }
5294     }
5295   }
5296 
5297   return m_entry_point_address;
5298 }
5299 
5300 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5301   lldb_private::Address header_addr;
5302   SectionList *section_list = GetSectionList();
5303   if (section_list) {
5304     SectionSP text_segment_sp(
5305         section_list->FindSectionByName(GetSegmentNameTEXT()));
5306     if (text_segment_sp) {
5307       header_addr.SetSection(text_segment_sp);
5308       header_addr.SetOffset(0);
5309     }
5310   }
5311   return header_addr;
5312 }
5313 
5314 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5315   ModuleSP module_sp(GetModule());
5316   if (module_sp) {
5317     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5318     if (!m_thread_context_offsets_valid) {
5319       m_thread_context_offsets_valid = true;
5320       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5321       FileRangeArray::Entry file_range;
5322       thread_command thread_cmd;
5323       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5324         const uint32_t cmd_offset = offset;
5325         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5326           break;
5327 
5328         if (thread_cmd.cmd == LC_THREAD) {
5329           file_range.SetRangeBase(offset);
5330           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5331           m_thread_context_offsets.Append(file_range);
5332         }
5333         offset = cmd_offset + thread_cmd.cmdsize;
5334       }
5335     }
5336   }
5337   return m_thread_context_offsets.GetSize();
5338 }
5339 
5340 std::string ObjectFileMachO::GetIdentifierString() {
5341   std::string result;
5342   ModuleSP module_sp(GetModule());
5343   if (module_sp) {
5344     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5345 
5346     // First, look over the load commands for an LC_NOTE load command with
5347     // data_owner string "kern ver str" & use that if found.
5348     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5349     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5350       const uint32_t cmd_offset = offset;
5351       load_command lc;
5352       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5353         break;
5354       if (lc.cmd == LC_NOTE) {
5355         char data_owner[17];
5356         m_data.CopyData(offset, 16, data_owner);
5357         data_owner[16] = '\0';
5358         offset += 16;
5359         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5360         uint64_t size = m_data.GetU64_unchecked(&offset);
5361 
5362         // "kern ver str" has a uint32_t version and then a nul terminated
5363         // c-string.
5364         if (strcmp("kern ver str", data_owner) == 0) {
5365           offset = fileoff;
5366           uint32_t version;
5367           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5368             if (version == 1) {
5369               uint32_t strsize = size - sizeof(uint32_t);
5370               char *buf = (char *)malloc(strsize);
5371               if (buf) {
5372                 m_data.CopyData(offset, strsize, buf);
5373                 buf[strsize - 1] = '\0';
5374                 result = buf;
5375                 if (buf)
5376                   free(buf);
5377                 return result;
5378               }
5379             }
5380           }
5381         }
5382       }
5383       offset = cmd_offset + lc.cmdsize;
5384     }
5385 
5386     // Second, make a pass over the load commands looking for an obsolete
5387     // LC_IDENT load command.
5388     offset = MachHeaderSizeFromMagic(m_header.magic);
5389     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5390       const uint32_t cmd_offset = offset;
5391       struct ident_command ident_command;
5392       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5393         break;
5394       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5395         char *buf = (char *)malloc(ident_command.cmdsize);
5396         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5397                                               buf) == ident_command.cmdsize) {
5398           buf[ident_command.cmdsize - 1] = '\0';
5399           result = buf;
5400         }
5401         if (buf)
5402           free(buf);
5403       }
5404       offset = cmd_offset + ident_command.cmdsize;
5405     }
5406   }
5407   return result;
5408 }
5409 
5410 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid) {
5411   address = LLDB_INVALID_ADDRESS;
5412   uuid.Clear();
5413   ModuleSP module_sp(GetModule());
5414   if (module_sp) {
5415     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5416     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5417     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5418       const uint32_t cmd_offset = offset;
5419       load_command lc;
5420       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5421         break;
5422       if (lc.cmd == LC_NOTE) {
5423         char data_owner[17];
5424         memset(data_owner, 0, sizeof(data_owner));
5425         m_data.CopyData(offset, 16, data_owner);
5426         offset += 16;
5427         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5428         uint64_t size = m_data.GetU64_unchecked(&offset);
5429 
5430         // "main bin spec" (main binary specification) data payload is
5431         // formatted:
5432         //    uint32_t version       [currently 1]
5433         //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user
5434         //    process] uint64_t address       [ UINT64_MAX if address not
5435         //    specified ] uuid_t   uuid          [ all zero's if uuid not
5436         //    specified ] uint32_t log2_pagesize [ process page size in log base
5437         //    2, e.g. 4k pages are 12.  0 for unspecified ]
5438 
5439         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5440           offset = fileoff;
5441           uint32_t version;
5442           if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) {
5443             uint32_t type = 0;
5444             uuid_t raw_uuid;
5445             memset(raw_uuid, 0, sizeof(uuid_t));
5446 
5447             if (m_data.GetU32(&offset, &type, 1) &&
5448                 m_data.GetU64(&offset, &address, 1) &&
5449                 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5450               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5451               return true;
5452             }
5453           }
5454         }
5455       }
5456       offset = cmd_offset + lc.cmdsize;
5457     }
5458   }
5459   return false;
5460 }
5461 
5462 lldb::RegisterContextSP
5463 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5464                                          lldb_private::Thread &thread) {
5465   lldb::RegisterContextSP reg_ctx_sp;
5466 
5467   ModuleSP module_sp(GetModule());
5468   if (module_sp) {
5469     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5470     if (!m_thread_context_offsets_valid)
5471       GetNumThreadContexts();
5472 
5473     const FileRangeArray::Entry *thread_context_file_range =
5474         m_thread_context_offsets.GetEntryAtIndex(idx);
5475     if (thread_context_file_range) {
5476 
5477       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5478                          thread_context_file_range->GetByteSize());
5479 
5480       switch (m_header.cputype) {
5481       case llvm::MachO::CPU_TYPE_ARM64:
5482       case llvm::MachO::CPU_TYPE_ARM64_32:
5483         reg_ctx_sp =
5484             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5485         break;
5486 
5487       case llvm::MachO::CPU_TYPE_ARM:
5488         reg_ctx_sp =
5489             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5490         break;
5491 
5492       case llvm::MachO::CPU_TYPE_I386:
5493         reg_ctx_sp =
5494             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5495         break;
5496 
5497       case llvm::MachO::CPU_TYPE_X86_64:
5498         reg_ctx_sp =
5499             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5500         break;
5501       }
5502     }
5503   }
5504   return reg_ctx_sp;
5505 }
5506 
5507 ObjectFile::Type ObjectFileMachO::CalculateType() {
5508   switch (m_header.filetype) {
5509   case MH_OBJECT: // 0x1u
5510     if (GetAddressByteSize() == 4) {
5511       // 32 bit kexts are just object files, but they do have a valid
5512       // UUID load command.
5513       if (GetUUID()) {
5514         // this checking for the UUID load command is not enough we could
5515         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5516         // this is required of kexts
5517         if (m_strata == eStrataInvalid)
5518           m_strata = eStrataKernel;
5519         return eTypeSharedLibrary;
5520       }
5521     }
5522     return eTypeObjectFile;
5523 
5524   case MH_EXECUTE:
5525     return eTypeExecutable; // 0x2u
5526   case MH_FVMLIB:
5527     return eTypeSharedLibrary; // 0x3u
5528   case MH_CORE:
5529     return eTypeCoreFile; // 0x4u
5530   case MH_PRELOAD:
5531     return eTypeSharedLibrary; // 0x5u
5532   case MH_DYLIB:
5533     return eTypeSharedLibrary; // 0x6u
5534   case MH_DYLINKER:
5535     return eTypeDynamicLinker; // 0x7u
5536   case MH_BUNDLE:
5537     return eTypeSharedLibrary; // 0x8u
5538   case MH_DYLIB_STUB:
5539     return eTypeStubLibrary; // 0x9u
5540   case MH_DSYM:
5541     return eTypeDebugInfo; // 0xAu
5542   case MH_KEXT_BUNDLE:
5543     return eTypeSharedLibrary; // 0xBu
5544   default:
5545     break;
5546   }
5547   return eTypeUnknown;
5548 }
5549 
5550 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5551   switch (m_header.filetype) {
5552   case MH_OBJECT: // 0x1u
5553   {
5554     // 32 bit kexts are just object files, but they do have a valid
5555     // UUID load command.
5556     if (GetUUID()) {
5557       // this checking for the UUID load command is not enough we could
5558       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5559       // this is required of kexts
5560       if (m_type == eTypeInvalid)
5561         m_type = eTypeSharedLibrary;
5562 
5563       return eStrataKernel;
5564     }
5565   }
5566     return eStrataUnknown;
5567 
5568   case MH_EXECUTE: // 0x2u
5569     // Check for the MH_DYLDLINK bit in the flags
5570     if (m_header.flags & MH_DYLDLINK) {
5571       return eStrataUser;
5572     } else {
5573       SectionList *section_list = GetSectionList();
5574       if (section_list) {
5575         static ConstString g_kld_section_name("__KLD");
5576         if (section_list->FindSectionByName(g_kld_section_name))
5577           return eStrataKernel;
5578       }
5579     }
5580     return eStrataRawImage;
5581 
5582   case MH_FVMLIB:
5583     return eStrataUser; // 0x3u
5584   case MH_CORE:
5585     return eStrataUnknown; // 0x4u
5586   case MH_PRELOAD:
5587     return eStrataRawImage; // 0x5u
5588   case MH_DYLIB:
5589     return eStrataUser; // 0x6u
5590   case MH_DYLINKER:
5591     return eStrataUser; // 0x7u
5592   case MH_BUNDLE:
5593     return eStrataUser; // 0x8u
5594   case MH_DYLIB_STUB:
5595     return eStrataUser; // 0x9u
5596   case MH_DSYM:
5597     return eStrataUnknown; // 0xAu
5598   case MH_KEXT_BUNDLE:
5599     return eStrataKernel; // 0xBu
5600   default:
5601     break;
5602   }
5603   return eStrataUnknown;
5604 }
5605 
5606 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5607   ModuleSP module_sp(GetModule());
5608   if (module_sp) {
5609     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5610     struct dylib_command load_cmd;
5611     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5612     uint32_t version_cmd = 0;
5613     uint64_t version = 0;
5614     uint32_t i;
5615     for (i = 0; i < m_header.ncmds; ++i) {
5616       const lldb::offset_t cmd_offset = offset;
5617       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5618         break;
5619 
5620       if (load_cmd.cmd == LC_ID_DYLIB) {
5621         if (version_cmd == 0) {
5622           version_cmd = load_cmd.cmd;
5623           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5624             break;
5625           version = load_cmd.dylib.current_version;
5626         }
5627         break; // Break for now unless there is another more complete version
5628                // number load command in the future.
5629       }
5630       offset = cmd_offset + load_cmd.cmdsize;
5631     }
5632 
5633     if (version_cmd == LC_ID_DYLIB) {
5634       unsigned major = (version & 0xFFFF0000ull) >> 16;
5635       unsigned minor = (version & 0x0000FF00ull) >> 8;
5636       unsigned subminor = (version & 0x000000FFull);
5637       return llvm::VersionTuple(major, minor, subminor);
5638     }
5639   }
5640   return llvm::VersionTuple();
5641 }
5642 
5643 ArchSpec ObjectFileMachO::GetArchitecture() {
5644   ModuleSP module_sp(GetModule());
5645   ArchSpec arch;
5646   if (module_sp) {
5647     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5648 
5649     return GetArchitecture(module_sp, m_header, m_data,
5650                            MachHeaderSizeFromMagic(m_header.magic));
5651   }
5652   return arch;
5653 }
5654 
5655 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5656                                                 addr_t &base_addr, UUID &uuid) {
5657   uuid.Clear();
5658   base_addr = LLDB_INVALID_ADDRESS;
5659   if (process && process->GetDynamicLoader()) {
5660     DynamicLoader *dl = process->GetDynamicLoader();
5661     LazyBool using_shared_cache;
5662     LazyBool private_shared_cache;
5663     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5664                                   private_shared_cache);
5665   }
5666   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5667                                                   LIBLLDB_LOG_PROCESS));
5668   LLDB_LOGF(
5669       log,
5670       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5671       uuid.GetAsString().c_str(), base_addr);
5672 }
5673 
5674 // From dyld SPI header dyld_process_info.h
5675 typedef void *dyld_process_info;
5676 struct lldb_copy__dyld_process_cache_info {
5677   uuid_t cacheUUID;          // UUID of cache used by process
5678   uint64_t cacheBaseAddress; // load address of dyld shared cache
5679   bool noCache;              // process is running without a dyld cache
5680   bool privateCache; // process is using a private copy of its dyld cache
5681 };
5682 
5683 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5684 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5685 // errors. So we need to use the actual underlying types of task_t and
5686 // kern_return_t below.
5687 extern "C" unsigned int /*task_t*/ mach_task_self();
5688 
5689 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5690   uuid.Clear();
5691   base_addr = LLDB_INVALID_ADDRESS;
5692 
5693 #if defined(__APPLE__) &&                                                      \
5694     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5695   uint8_t *(*dyld_get_all_image_infos)(void);
5696   dyld_get_all_image_infos =
5697       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5698   if (dyld_get_all_image_infos) {
5699     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5700     if (dyld_all_image_infos_address) {
5701       uint32_t *version = (uint32_t *)
5702           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5703       if (*version >= 13) {
5704         uuid_t *sharedCacheUUID_address = 0;
5705         int wordsize = sizeof(uint8_t *);
5706         if (wordsize == 8) {
5707           sharedCacheUUID_address =
5708               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5709                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5710           if (*version >= 15)
5711             base_addr =
5712                 *(uint64_t
5713                       *)((uint8_t *)dyld_all_image_infos_address +
5714                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5715         } else {
5716           sharedCacheUUID_address =
5717               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5718                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5719           if (*version >= 15) {
5720             base_addr = 0;
5721             base_addr =
5722                 *(uint32_t
5723                       *)((uint8_t *)dyld_all_image_infos_address +
5724                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5725           }
5726         }
5727         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5728       }
5729     }
5730   } else {
5731     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5732     dyld_process_info (*dyld_process_info_create)(
5733         unsigned int /* task_t */ task, uint64_t timestamp,
5734         unsigned int /*kern_return_t*/ *kernelError);
5735     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5736     void (*dyld_process_info_release)(dyld_process_info info);
5737 
5738     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5739                                           unsigned int /*kern_return_t*/ *))
5740         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5741     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5742         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5743     dyld_process_info_release =
5744         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5745 
5746     if (dyld_process_info_create && dyld_process_info_get_cache) {
5747       unsigned int /*kern_return_t */ kern_ret;
5748       dyld_process_info process_info =
5749           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5750       if (process_info) {
5751         struct lldb_copy__dyld_process_cache_info sc_info;
5752         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5753         dyld_process_info_get_cache(process_info, &sc_info);
5754         if (sc_info.cacheBaseAddress != 0) {
5755           base_addr = sc_info.cacheBaseAddress;
5756           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5757         }
5758         dyld_process_info_release(process_info);
5759       }
5760     }
5761   }
5762   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
5763                                                   LIBLLDB_LOG_PROCESS));
5764   if (log && uuid.IsValid())
5765     LLDB_LOGF(log,
5766               "lldb's in-memory shared cache has a UUID of %s base address of "
5767               "0x%" PRIx64,
5768               uuid.GetAsString().c_str(), base_addr);
5769 #endif
5770 }
5771 
5772 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5773   if (!m_min_os_version) {
5774     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5775     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5776       const lldb::offset_t load_cmd_offset = offset;
5777 
5778       version_min_command lc;
5779       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5780         break;
5781       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5782           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5783           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5784           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5785         if (m_data.GetU32(&offset, &lc.version,
5786                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5787           const uint32_t xxxx = lc.version >> 16;
5788           const uint32_t yy = (lc.version >> 8) & 0xffu;
5789           const uint32_t zz = lc.version & 0xffu;
5790           if (xxxx) {
5791             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5792             break;
5793           }
5794         }
5795       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5796         // struct build_version_command {
5797         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5798         //     uint32_t    cmdsize;        /* sizeof(struct
5799         //     build_version_command) plus */
5800         //                                 /* ntools * sizeof(struct
5801         //                                 build_tool_version) */
5802         //     uint32_t    platform;       /* platform */
5803         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5804         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5805         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5806         //     tool entries following this */
5807         // };
5808 
5809         offset += 4; // skip platform
5810         uint32_t minos = m_data.GetU32(&offset);
5811 
5812         const uint32_t xxxx = minos >> 16;
5813         const uint32_t yy = (minos >> 8) & 0xffu;
5814         const uint32_t zz = minos & 0xffu;
5815         if (xxxx) {
5816           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5817           break;
5818         }
5819       }
5820 
5821       offset = load_cmd_offset + lc.cmdsize;
5822     }
5823 
5824     if (!m_min_os_version) {
5825       // Set version to an empty value so we don't keep trying to
5826       m_min_os_version = llvm::VersionTuple();
5827     }
5828   }
5829 
5830   return *m_min_os_version;
5831 }
5832 
5833 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
5834   if (!m_sdk_versions.hasValue()) {
5835     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5836     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5837       const lldb::offset_t load_cmd_offset = offset;
5838 
5839       version_min_command lc;
5840       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5841         break;
5842       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5843           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5844           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5845           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5846         if (m_data.GetU32(&offset, &lc.version,
5847                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5848           const uint32_t xxxx = lc.sdk >> 16;
5849           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5850           const uint32_t zz = lc.sdk & 0xffu;
5851           if (xxxx) {
5852             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5853             break;
5854           } else {
5855             GetModule()->ReportWarning("minimum OS version load command with "
5856                                        "invalid (0) version found.");
5857           }
5858         }
5859       }
5860       offset = load_cmd_offset + lc.cmdsize;
5861     }
5862 
5863     if (!m_sdk_versions.hasValue()) {
5864       offset = MachHeaderSizeFromMagic(m_header.magic);
5865       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5866         const lldb::offset_t load_cmd_offset = offset;
5867 
5868         version_min_command lc;
5869         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5870           break;
5871         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5872           // struct build_version_command {
5873           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5874           //     uint32_t    cmdsize;        /* sizeof(struct
5875           //     build_version_command) plus */
5876           //                                 /* ntools * sizeof(struct
5877           //                                 build_tool_version) */
5878           //     uint32_t    platform;       /* platform */
5879           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5880           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
5881           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
5882           //     of tool entries following this */
5883           // };
5884 
5885           offset += 4; // skip platform
5886           uint32_t minos = m_data.GetU32(&offset);
5887 
5888           const uint32_t xxxx = minos >> 16;
5889           const uint32_t yy = (minos >> 8) & 0xffu;
5890           const uint32_t zz = minos & 0xffu;
5891           if (xxxx) {
5892             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
5893             break;
5894           }
5895         }
5896         offset = load_cmd_offset + lc.cmdsize;
5897       }
5898     }
5899 
5900     if (!m_sdk_versions.hasValue())
5901       m_sdk_versions = llvm::VersionTuple();
5902   }
5903 
5904   return m_sdk_versions.getValue();
5905 }
5906 
5907 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5908   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5909 }
5910 
5911 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5912   return m_allow_assembly_emulation_unwind_plans;
5913 }
5914 
5915 // PluginInterface protocol
5916 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5917   return GetPluginNameStatic();
5918 }
5919 
5920 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5921 
5922 Section *ObjectFileMachO::GetMachHeaderSection() {
5923   // Find the first address of the mach header which is the first non-zero file
5924   // sized section whose file offset is zero. This is the base file address of
5925   // the mach-o file which can be subtracted from the vmaddr of the other
5926   // segments found in memory and added to the load address
5927   ModuleSP module_sp = GetModule();
5928   if (!module_sp)
5929     return nullptr;
5930   SectionList *section_list = GetSectionList();
5931   if (!section_list)
5932     return nullptr;
5933   const size_t num_sections = section_list->GetSize();
5934   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5935     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5936     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
5937       return section;
5938   }
5939   return nullptr;
5940 }
5941 
5942 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
5943   if (!section)
5944     return false;
5945   const bool is_dsym = (m_header.filetype == MH_DSYM);
5946   if (section->GetFileSize() == 0 && !is_dsym)
5947     return false;
5948   if (section->IsThreadSpecific())
5949     return false;
5950   if (GetModule().get() != section->GetModule().get())
5951     return false;
5952   // Be careful with __LINKEDIT and __DWARF segments
5953   if (section->GetName() == GetSegmentNameLINKEDIT() ||
5954       section->GetName() == GetSegmentNameDWARF()) {
5955     // Only map __LINKEDIT and __DWARF if we have an in memory image and
5956     // this isn't a kernel binary like a kext or mach_kernel.
5957     const bool is_memory_image = (bool)m_process_wp.lock();
5958     const Strata strata = GetStrata();
5959     if (is_memory_image == false || strata == eStrataKernel)
5960       return false;
5961   }
5962   return true;
5963 }
5964 
5965 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5966     lldb::addr_t header_load_address, const Section *header_section,
5967     const Section *section) {
5968   ModuleSP module_sp = GetModule();
5969   if (module_sp && header_section && section &&
5970       header_load_address != LLDB_INVALID_ADDRESS) {
5971     lldb::addr_t file_addr = header_section->GetFileAddress();
5972     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
5973       return section->GetFileAddress() - file_addr + header_load_address;
5974   }
5975   return LLDB_INVALID_ADDRESS;
5976 }
5977 
5978 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5979                                      bool value_is_offset) {
5980   ModuleSP module_sp = GetModule();
5981   if (!module_sp)
5982     return false;
5983 
5984   SectionList *section_list = GetSectionList();
5985   if (!section_list)
5986     return false;
5987 
5988   size_t num_loaded_sections = 0;
5989   const size_t num_sections = section_list->GetSize();
5990 
5991   if (value_is_offset) {
5992     // "value" is an offset to apply to each top level segment
5993     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5994       // Iterate through the object file sections to find all of the
5995       // sections that size on disk (to avoid __PAGEZERO) and load them
5996       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5997       if (SectionIsLoadable(section_sp.get()))
5998         if (target.GetSectionLoadList().SetSectionLoadAddress(
5999                 section_sp, section_sp->GetFileAddress() + value))
6000           ++num_loaded_sections;
6001     }
6002   } else {
6003     // "value" is the new base address of the mach_header, adjust each
6004     // section accordingly
6005 
6006     Section *mach_header_section = GetMachHeaderSection();
6007     if (mach_header_section) {
6008       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6009         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6010 
6011         lldb::addr_t section_load_addr =
6012             CalculateSectionLoadAddressForMemoryImage(
6013                 value, mach_header_section, section_sp.get());
6014         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6015           if (target.GetSectionLoadList().SetSectionLoadAddress(
6016                   section_sp, section_load_addr))
6017             ++num_loaded_sections;
6018         }
6019       }
6020     }
6021   }
6022   return num_loaded_sections > 0;
6023 }
6024 
6025 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6026                                const FileSpec &outfile, Status &error) {
6027   if (!process_sp)
6028     return false;
6029 
6030   Target &target = process_sp->GetTarget();
6031   const ArchSpec target_arch = target.GetArchitecture();
6032   const llvm::Triple &target_triple = target_arch.GetTriple();
6033   if (target_triple.getVendor() == llvm::Triple::Apple &&
6034       (target_triple.getOS() == llvm::Triple::MacOSX ||
6035        target_triple.getOS() == llvm::Triple::IOS ||
6036        target_triple.getOS() == llvm::Triple::WatchOS ||
6037        target_triple.getOS() == llvm::Triple::TvOS)) {
6038     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6039     // {
6040     bool make_core = false;
6041     switch (target_arch.GetMachine()) {
6042     case llvm::Triple::aarch64:
6043     case llvm::Triple::aarch64_32:
6044     case llvm::Triple::arm:
6045     case llvm::Triple::thumb:
6046     case llvm::Triple::x86:
6047     case llvm::Triple::x86_64:
6048       make_core = true;
6049       break;
6050     default:
6051       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6052                                      target_triple.str().c_str());
6053       break;
6054     }
6055 
6056     if (make_core) {
6057       std::vector<segment_command_64> segment_load_commands;
6058       //                uint32_t range_info_idx = 0;
6059       MemoryRegionInfo range_info;
6060       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6061       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6062       const ByteOrder byte_order = target_arch.GetByteOrder();
6063       if (range_error.Success()) {
6064         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6065           const addr_t addr = range_info.GetRange().GetRangeBase();
6066           const addr_t size = range_info.GetRange().GetByteSize();
6067 
6068           if (size == 0)
6069             break;
6070 
6071           // Calculate correct protections
6072           uint32_t prot = 0;
6073           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6074             prot |= VM_PROT_READ;
6075           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6076             prot |= VM_PROT_WRITE;
6077           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6078             prot |= VM_PROT_EXECUTE;
6079 
6080           if (prot != 0) {
6081             uint32_t cmd_type = LC_SEGMENT_64;
6082             uint32_t segment_size = sizeof(segment_command_64);
6083             if (addr_byte_size == 4) {
6084               cmd_type = LC_SEGMENT;
6085               segment_size = sizeof(segment_command);
6086             }
6087             segment_command_64 segment = {
6088                 cmd_type,     // uint32_t cmd;
6089                 segment_size, // uint32_t cmdsize;
6090                 {0},          // char segname[16];
6091                 addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6092                 size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6093                 0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6094                 size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6095                 prot, // uint32_t maxprot;
6096                 prot, // uint32_t initprot;
6097                 0,    // uint32_t nsects;
6098                 0};   // uint32_t flags;
6099             segment_load_commands.push_back(segment);
6100           } else {
6101             // No protections and a size of 1 used to be returned from old
6102             // debugservers when we asked about a region that was past the
6103             // last memory region and it indicates the end...
6104             if (size == 1)
6105               break;
6106           }
6107 
6108           range_error = process_sp->GetMemoryRegionInfo(
6109               range_info.GetRange().GetRangeEnd(), range_info);
6110           if (range_error.Fail())
6111             break;
6112         }
6113 
6114         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6115 
6116         mach_header_64 mach_header;
6117         if (addr_byte_size == 8) {
6118           mach_header.magic = MH_MAGIC_64;
6119         } else {
6120           mach_header.magic = MH_MAGIC;
6121         }
6122         mach_header.cputype = target_arch.GetMachOCPUType();
6123         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6124         mach_header.filetype = MH_CORE;
6125         mach_header.ncmds = segment_load_commands.size();
6126         mach_header.flags = 0;
6127         mach_header.reserved = 0;
6128         ThreadList &thread_list = process_sp->GetThreadList();
6129         const uint32_t num_threads = thread_list.GetSize();
6130 
6131         // Make an array of LC_THREAD data items. Each one contains the
6132         // contents of the LC_THREAD load command. The data doesn't contain
6133         // the load command + load command size, we will add the load command
6134         // and load command size as we emit the data.
6135         std::vector<StreamString> LC_THREAD_datas(num_threads);
6136         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6137           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6138           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6139           LC_THREAD_data.SetByteOrder(byte_order);
6140         }
6141         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6142           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6143           if (thread_sp) {
6144             switch (mach_header.cputype) {
6145             case llvm::MachO::CPU_TYPE_ARM64:
6146             case llvm::MachO::CPU_TYPE_ARM64_32:
6147               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6148                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6149               break;
6150 
6151             case llvm::MachO::CPU_TYPE_ARM:
6152               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6153                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6154               break;
6155 
6156             case llvm::MachO::CPU_TYPE_I386:
6157               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6158                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6159               break;
6160 
6161             case llvm::MachO::CPU_TYPE_X86_64:
6162               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6163                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6164               break;
6165             }
6166           }
6167         }
6168 
6169         // The size of the load command is the size of the segments...
6170         if (addr_byte_size == 8) {
6171           mach_header.sizeofcmds =
6172               segment_load_commands.size() * sizeof(struct segment_command_64);
6173         } else {
6174           mach_header.sizeofcmds =
6175               segment_load_commands.size() * sizeof(struct segment_command);
6176         }
6177 
6178         // and the size of all LC_THREAD load command
6179         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6180           ++mach_header.ncmds;
6181           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6182         }
6183 
6184         // Write the mach header
6185         buffer.PutHex32(mach_header.magic);
6186         buffer.PutHex32(mach_header.cputype);
6187         buffer.PutHex32(mach_header.cpusubtype);
6188         buffer.PutHex32(mach_header.filetype);
6189         buffer.PutHex32(mach_header.ncmds);
6190         buffer.PutHex32(mach_header.sizeofcmds);
6191         buffer.PutHex32(mach_header.flags);
6192         if (addr_byte_size == 8) {
6193           buffer.PutHex32(mach_header.reserved);
6194         }
6195 
6196         // Skip the mach header and all load commands and align to the next
6197         // 0x1000 byte boundary
6198         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6199         if (file_offset & 0x00000fff) {
6200           file_offset += 0x00001000ull;
6201           file_offset &= (~0x00001000ull + 1);
6202         }
6203 
6204         for (auto &segment : segment_load_commands) {
6205           segment.fileoff = file_offset;
6206           file_offset += segment.filesize;
6207         }
6208 
6209         // Write out all of the LC_THREAD load commands
6210         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6211           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6212           buffer.PutHex32(LC_THREAD);
6213           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6214           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6215         }
6216 
6217         // Write out all of the segment load commands
6218         for (const auto &segment : segment_load_commands) {
6219           printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6220                  ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6221                  ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6222                  segment.cmd, segment.cmdsize, segment.vmaddr,
6223                  segment.vmaddr + segment.vmsize, segment.fileoff,
6224                  segment.filesize, segment.maxprot, segment.initprot,
6225                  segment.nsects, segment.flags);
6226 
6227           buffer.PutHex32(segment.cmd);
6228           buffer.PutHex32(segment.cmdsize);
6229           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6230           if (addr_byte_size == 8) {
6231             buffer.PutHex64(segment.vmaddr);
6232             buffer.PutHex64(segment.vmsize);
6233             buffer.PutHex64(segment.fileoff);
6234             buffer.PutHex64(segment.filesize);
6235           } else {
6236             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6237             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6238             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6239             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6240           }
6241           buffer.PutHex32(segment.maxprot);
6242           buffer.PutHex32(segment.initprot);
6243           buffer.PutHex32(segment.nsects);
6244           buffer.PutHex32(segment.flags);
6245         }
6246 
6247         std::string core_file_path(outfile.GetPath());
6248         auto core_file = FileSystem::Instance().Open(
6249             outfile, File::eOpenOptionWrite | File::eOpenOptionTruncate |
6250                          File::eOpenOptionCanCreate);
6251         if (!core_file) {
6252           error = core_file.takeError();
6253         } else {
6254           // Read 1 page at a time
6255           uint8_t bytes[0x1000];
6256           // Write the mach header and load commands out to the core file
6257           size_t bytes_written = buffer.GetString().size();
6258           error =
6259               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6260           if (error.Success()) {
6261             // Now write the file data for all memory segments in the process
6262             for (const auto &segment : segment_load_commands) {
6263               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6264                 error.SetErrorStringWithFormat(
6265                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6266                     segment.fileoff, core_file_path.c_str());
6267                 break;
6268               }
6269 
6270               printf("Saving %" PRId64
6271                      " bytes of data for memory region at 0x%" PRIx64 "\n",
6272                      segment.vmsize, segment.vmaddr);
6273               addr_t bytes_left = segment.vmsize;
6274               addr_t addr = segment.vmaddr;
6275               Status memory_read_error;
6276               while (bytes_left > 0 && error.Success()) {
6277                 const size_t bytes_to_read =
6278                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6279 
6280                 // In a savecore setting, we don't really care about caching,
6281                 // as the data is dumped and very likely never read again,
6282                 // so we call ReadMemoryFromInferior to bypass it.
6283                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6284                     addr, bytes, bytes_to_read, memory_read_error);
6285 
6286                 if (bytes_read == bytes_to_read) {
6287                   size_t bytes_written = bytes_read;
6288                   error = core_file.get()->Write(bytes, bytes_written);
6289                   bytes_left -= bytes_read;
6290                   addr += bytes_read;
6291                 } else {
6292                   // Some pages within regions are not readable, those should
6293                   // be zero filled
6294                   memset(bytes, 0, bytes_to_read);
6295                   size_t bytes_written = bytes_to_read;
6296                   error = core_file.get()->Write(bytes, bytes_written);
6297                   bytes_left -= bytes_to_read;
6298                   addr += bytes_to_read;
6299                 }
6300               }
6301             }
6302           }
6303         }
6304       } else {
6305         error.SetErrorString(
6306             "process doesn't support getting memory region info");
6307       }
6308     }
6309     return true; // This is the right plug to handle saving core files for
6310                  // this process
6311   }
6312   return false;
6313 }
6314