1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 // Other libraries and framework includes 13 #include "llvm/ADT/StringRef.h" 14 15 // Project includes 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Error.h" 20 #include "lldb/Core/FileSpecList.h" 21 #include "lldb/Core/Log.h" 22 #include "lldb/Core/Module.h" 23 #include "lldb/Core/ModuleSpec.h" 24 #include "lldb/Core/PluginManager.h" 25 #include "lldb/Core/RangeMap.h" 26 #include "lldb/Core/Section.h" 27 #include "lldb/Core/StreamFile.h" 28 #include "lldb/Core/StreamString.h" 29 #include "lldb/Core/Timer.h" 30 #include "lldb/Core/UUID.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/FileSpec.h" 33 #include "lldb/Symbol/DWARFCallFrameInfo.h" 34 #include "lldb/Symbol/ObjectFile.h" 35 #include "lldb/Target/MemoryRegionInfo.h" 36 #include "lldb/Target/Platform.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/SectionLoadList.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 43 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 44 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 45 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 46 47 #include "lldb/Utility/SafeMachO.h" 48 49 #include "ObjectFileMachO.h" 50 51 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 52 // GetLLDBSharedCacheUUID() needs to call dlsym() 53 #include <dlfcn.h> 54 #endif 55 56 #ifndef __APPLE__ 57 #include "Utility/UuidCompatibility.h" 58 #endif 59 60 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 61 using namespace lldb; 62 using namespace lldb_private; 63 using namespace llvm::MachO; 64 65 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 66 { 67 public: 68 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 69 RegisterContextDarwin_x86_64 (thread, 0) 70 { 71 SetRegisterDataFrom_LC_THREAD (data); 72 } 73 74 void 75 InvalidateAllRegisters() override 76 { 77 // Do nothing... registers are always valid... 78 } 79 80 void 81 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 82 { 83 lldb::offset_t offset = 0; 84 SetError (GPRRegSet, Read, -1); 85 SetError (FPURegSet, Read, -1); 86 SetError (EXCRegSet, Read, -1); 87 bool done = false; 88 89 while (!done) 90 { 91 int flavor = data.GetU32 (&offset); 92 if (flavor == 0) 93 done = true; 94 else 95 { 96 uint32_t i; 97 uint32_t count = data.GetU32 (&offset); 98 switch (flavor) 99 { 100 case GPRRegSet: 101 for (i=0; i<count; ++i) 102 (&gpr.rax)[i] = data.GetU64(&offset); 103 SetError (GPRRegSet, Read, 0); 104 done = true; 105 106 break; 107 case FPURegSet: 108 // TODO: fill in FPU regs.... 109 //SetError (FPURegSet, Read, -1); 110 done = true; 111 112 break; 113 case EXCRegSet: 114 exc.trapno = data.GetU32(&offset); 115 exc.err = data.GetU32(&offset); 116 exc.faultvaddr = data.GetU64(&offset); 117 SetError (EXCRegSet, Read, 0); 118 done = true; 119 break; 120 case 7: 121 case 8: 122 case 9: 123 // fancy flavors that encapsulate of the above 124 // flavors... 125 break; 126 127 default: 128 done = true; 129 break; 130 } 131 } 132 } 133 } 134 135 static size_t 136 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 137 { 138 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 139 if (reg_info == NULL) 140 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 141 if (reg_info) 142 { 143 lldb_private::RegisterValue reg_value; 144 if (reg_ctx->ReadRegister(reg_info, reg_value)) 145 { 146 if (reg_info->byte_size >= reg_byte_size) 147 data.Write(reg_value.GetBytes(), reg_byte_size); 148 else 149 { 150 data.Write(reg_value.GetBytes(), reg_info->byte_size); 151 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 152 data.PutChar(0); 153 } 154 return reg_byte_size; 155 } 156 } 157 // Just write zeros if all else fails 158 for (size_t i=0; i<reg_byte_size; ++ i) 159 data.PutChar(0); 160 return reg_byte_size; 161 } 162 163 static bool 164 Create_LC_THREAD (Thread *thread, Stream &data) 165 { 166 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 167 if (reg_ctx_sp) 168 { 169 RegisterContext *reg_ctx = reg_ctx_sp.get(); 170 171 data.PutHex32 (GPRRegSet); // Flavor 172 data.PutHex32 (GPRWordCount); 173 WriteRegister (reg_ctx, "rax", NULL, 8, data); 174 WriteRegister (reg_ctx, "rbx", NULL, 8, data); 175 WriteRegister (reg_ctx, "rcx", NULL, 8, data); 176 WriteRegister (reg_ctx, "rdx", NULL, 8, data); 177 WriteRegister (reg_ctx, "rdi", NULL, 8, data); 178 WriteRegister (reg_ctx, "rsi", NULL, 8, data); 179 WriteRegister (reg_ctx, "rbp", NULL, 8, data); 180 WriteRegister (reg_ctx, "rsp", NULL, 8, data); 181 WriteRegister (reg_ctx, "r8", NULL, 8, data); 182 WriteRegister (reg_ctx, "r9", NULL, 8, data); 183 WriteRegister (reg_ctx, "r10", NULL, 8, data); 184 WriteRegister (reg_ctx, "r11", NULL, 8, data); 185 WriteRegister (reg_ctx, "r12", NULL, 8, data); 186 WriteRegister (reg_ctx, "r13", NULL, 8, data); 187 WriteRegister (reg_ctx, "r14", NULL, 8, data); 188 WriteRegister (reg_ctx, "r15", NULL, 8, data); 189 WriteRegister (reg_ctx, "rip", NULL, 8, data); 190 WriteRegister (reg_ctx, "rflags", NULL, 8, data); 191 WriteRegister (reg_ctx, "cs", NULL, 8, data); 192 WriteRegister (reg_ctx, "fs", NULL, 8, data); 193 WriteRegister (reg_ctx, "gs", NULL, 8, data); 194 195 // // Write out the FPU registers 196 // const size_t fpu_byte_size = sizeof(FPU); 197 // size_t bytes_written = 0; 198 // data.PutHex32 (FPURegSet); 199 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 200 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 201 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 202 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" 203 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" 204 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" 205 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 206 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" 207 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" 208 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" 209 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 210 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" 211 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" 212 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 213 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; 214 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; 215 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); 216 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); 217 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); 218 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); 219 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); 220 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); 221 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); 222 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); 223 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); 224 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); 225 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); 226 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); 227 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); 228 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); 229 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); 230 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); 231 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); 232 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); 233 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); 234 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); 235 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); 236 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); 237 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); 238 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); 239 // 240 // // Fill rest with zeros 241 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ i) 242 // data.PutChar(0); 243 244 // Write out the EXC registers 245 data.PutHex32 (EXCRegSet); 246 data.PutHex32 (EXCWordCount); 247 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 248 WriteRegister (reg_ctx, "err", NULL, 4, data); 249 WriteRegister (reg_ctx, "faultvaddr", NULL, 8, data); 250 return true; 251 } 252 return false; 253 } 254 255 protected: 256 int 257 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 258 { 259 return 0; 260 } 261 262 int 263 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 264 { 265 return 0; 266 } 267 268 int 269 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 270 { 271 return 0; 272 } 273 274 int 275 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 276 { 277 return 0; 278 } 279 280 int 281 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 282 { 283 return 0; 284 } 285 286 int 287 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 288 { 289 return 0; 290 } 291 }; 292 293 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 294 { 295 public: 296 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 297 RegisterContextDarwin_i386 (thread, 0) 298 { 299 SetRegisterDataFrom_LC_THREAD (data); 300 } 301 302 void 303 InvalidateAllRegisters() override 304 { 305 // Do nothing... registers are always valid... 306 } 307 308 void 309 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 310 { 311 lldb::offset_t offset = 0; 312 SetError (GPRRegSet, Read, -1); 313 SetError (FPURegSet, Read, -1); 314 SetError (EXCRegSet, Read, -1); 315 bool done = false; 316 317 while (!done) 318 { 319 int flavor = data.GetU32 (&offset); 320 if (flavor == 0) 321 done = true; 322 else 323 { 324 uint32_t i; 325 uint32_t count = data.GetU32 (&offset); 326 switch (flavor) 327 { 328 case GPRRegSet: 329 for (i=0; i<count; ++i) 330 (&gpr.eax)[i] = data.GetU32(&offset); 331 SetError (GPRRegSet, Read, 0); 332 done = true; 333 334 break; 335 case FPURegSet: 336 // TODO: fill in FPU regs.... 337 //SetError (FPURegSet, Read, -1); 338 done = true; 339 340 break; 341 case EXCRegSet: 342 exc.trapno = data.GetU32(&offset); 343 exc.err = data.GetU32(&offset); 344 exc.faultvaddr = data.GetU32(&offset); 345 SetError (EXCRegSet, Read, 0); 346 done = true; 347 break; 348 case 7: 349 case 8: 350 case 9: 351 // fancy flavors that encapsulate of the above 352 // flavors... 353 break; 354 355 default: 356 done = true; 357 break; 358 } 359 } 360 } 361 } 362 363 static size_t 364 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 365 { 366 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 367 if (reg_info == NULL) 368 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 369 if (reg_info) 370 { 371 lldb_private::RegisterValue reg_value; 372 if (reg_ctx->ReadRegister(reg_info, reg_value)) 373 { 374 if (reg_info->byte_size >= reg_byte_size) 375 data.Write(reg_value.GetBytes(), reg_byte_size); 376 else 377 { 378 data.Write(reg_value.GetBytes(), reg_info->byte_size); 379 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 380 data.PutChar(0); 381 } 382 return reg_byte_size; 383 } 384 } 385 // Just write zeros if all else fails 386 for (size_t i=0; i<reg_byte_size; ++ i) 387 data.PutChar(0); 388 return reg_byte_size; 389 } 390 391 static bool 392 Create_LC_THREAD (Thread *thread, Stream &data) 393 { 394 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 395 if (reg_ctx_sp) 396 { 397 RegisterContext *reg_ctx = reg_ctx_sp.get(); 398 399 data.PutHex32 (GPRRegSet); // Flavor 400 data.PutHex32 (GPRWordCount); 401 WriteRegister (reg_ctx, "eax", NULL, 4, data); 402 WriteRegister (reg_ctx, "ebx", NULL, 4, data); 403 WriteRegister (reg_ctx, "ecx", NULL, 4, data); 404 WriteRegister (reg_ctx, "edx", NULL, 4, data); 405 WriteRegister (reg_ctx, "edi", NULL, 4, data); 406 WriteRegister (reg_ctx, "esi", NULL, 4, data); 407 WriteRegister (reg_ctx, "ebp", NULL, 4, data); 408 WriteRegister (reg_ctx, "esp", NULL, 4, data); 409 WriteRegister (reg_ctx, "ss", NULL, 4, data); 410 WriteRegister (reg_ctx, "eflags", NULL, 4, data); 411 WriteRegister (reg_ctx, "eip", NULL, 4, data); 412 WriteRegister (reg_ctx, "cs", NULL, 4, data); 413 WriteRegister (reg_ctx, "ds", NULL, 4, data); 414 WriteRegister (reg_ctx, "es", NULL, 4, data); 415 WriteRegister (reg_ctx, "fs", NULL, 4, data); 416 WriteRegister (reg_ctx, "gs", NULL, 4, data); 417 418 // Write out the EXC registers 419 data.PutHex32 (EXCRegSet); 420 data.PutHex32 (EXCWordCount); 421 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 422 WriteRegister (reg_ctx, "err", NULL, 4, data); 423 WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); 424 return true; 425 } 426 return false; 427 } 428 429 protected: 430 int 431 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 432 { 433 return 0; 434 } 435 436 int 437 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 438 { 439 return 0; 440 } 441 442 int 443 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 444 { 445 return 0; 446 } 447 448 int 449 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 450 { 451 return 0; 452 } 453 454 int 455 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 456 { 457 return 0; 458 } 459 460 int 461 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 462 { 463 return 0; 464 } 465 }; 466 467 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 468 { 469 public: 470 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 471 RegisterContextDarwin_arm (thread, 0) 472 { 473 SetRegisterDataFrom_LC_THREAD (data); 474 } 475 476 void 477 InvalidateAllRegisters() override 478 { 479 // Do nothing... registers are always valid... 480 } 481 482 void 483 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 484 { 485 lldb::offset_t offset = 0; 486 SetError (GPRRegSet, Read, -1); 487 SetError (FPURegSet, Read, -1); 488 SetError (EXCRegSet, Read, -1); 489 bool done = false; 490 491 while (!done) 492 { 493 int flavor = data.GetU32 (&offset); 494 uint32_t count = data.GetU32 (&offset); 495 lldb::offset_t next_thread_state = offset + (count * 4); 496 switch (flavor) 497 { 498 case GPRRegSet: 499 for (uint32_t i=0; i<count; ++i) 500 { 501 gpr.r[i] = data.GetU32(&offset); 502 } 503 504 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 505 // one element past the end of the gpr.r[] array. 506 507 SetError (GPRRegSet, Read, 0); 508 offset = next_thread_state; 509 break; 510 511 case FPURegSet: 512 { 513 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 514 const int fpu_reg_buf_size = sizeof (fpu.floats); 515 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 516 { 517 offset += fpu_reg_buf_size; 518 fpu.fpscr = data.GetU32(&offset); 519 SetError (FPURegSet, Read, 0); 520 } 521 else 522 { 523 done = true; 524 } 525 } 526 offset = next_thread_state; 527 break; 528 529 case EXCRegSet: 530 if (count == 3) 531 { 532 exc.exception = data.GetU32(&offset); 533 exc.fsr = data.GetU32(&offset); 534 exc.far = data.GetU32(&offset); 535 SetError (EXCRegSet, Read, 0); 536 } 537 done = true; 538 offset = next_thread_state; 539 break; 540 541 // Unknown register set flavor, stop trying to parse. 542 default: 543 done = true; 544 } 545 } 546 } 547 548 static size_t 549 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 550 { 551 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 552 if (reg_info == NULL) 553 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 554 if (reg_info) 555 { 556 lldb_private::RegisterValue reg_value; 557 if (reg_ctx->ReadRegister(reg_info, reg_value)) 558 { 559 if (reg_info->byte_size >= reg_byte_size) 560 data.Write(reg_value.GetBytes(), reg_byte_size); 561 else 562 { 563 data.Write(reg_value.GetBytes(), reg_info->byte_size); 564 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 565 data.PutChar(0); 566 } 567 return reg_byte_size; 568 } 569 } 570 // Just write zeros if all else fails 571 for (size_t i=0; i<reg_byte_size; ++ i) 572 data.PutChar(0); 573 return reg_byte_size; 574 } 575 576 static bool 577 Create_LC_THREAD (Thread *thread, Stream &data) 578 { 579 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 580 if (reg_ctx_sp) 581 { 582 RegisterContext *reg_ctx = reg_ctx_sp.get(); 583 584 data.PutHex32 (GPRRegSet); // Flavor 585 data.PutHex32 (GPRWordCount); 586 WriteRegister (reg_ctx, "r0", NULL, 4, data); 587 WriteRegister (reg_ctx, "r1", NULL, 4, data); 588 WriteRegister (reg_ctx, "r2", NULL, 4, data); 589 WriteRegister (reg_ctx, "r3", NULL, 4, data); 590 WriteRegister (reg_ctx, "r4", NULL, 4, data); 591 WriteRegister (reg_ctx, "r5", NULL, 4, data); 592 WriteRegister (reg_ctx, "r6", NULL, 4, data); 593 WriteRegister (reg_ctx, "r7", NULL, 4, data); 594 WriteRegister (reg_ctx, "r8", NULL, 4, data); 595 WriteRegister (reg_ctx, "r9", NULL, 4, data); 596 WriteRegister (reg_ctx, "r10", NULL, 4, data); 597 WriteRegister (reg_ctx, "r11", NULL, 4, data); 598 WriteRegister (reg_ctx, "r12", NULL, 4, data); 599 WriteRegister (reg_ctx, "sp", NULL, 4, data); 600 WriteRegister (reg_ctx, "lr", NULL, 4, data); 601 WriteRegister (reg_ctx, "pc", NULL, 4, data); 602 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 603 604 // Write out the EXC registers 605 // data.PutHex32 (EXCRegSet); 606 // data.PutHex32 (EXCWordCount); 607 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 608 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 609 // WriteRegister (reg_ctx, "far", NULL, 4, data); 610 return true; 611 } 612 return false; 613 } 614 615 protected: 616 int 617 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 618 { 619 return -1; 620 } 621 622 int 623 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 624 { 625 return -1; 626 } 627 628 int 629 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 630 { 631 return -1; 632 } 633 634 int 635 DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override 636 { 637 return -1; 638 } 639 640 int 641 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 642 { 643 return 0; 644 } 645 646 int 647 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 648 { 649 return 0; 650 } 651 652 int 653 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 654 { 655 return 0; 656 } 657 658 int 659 DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override 660 { 661 return -1; 662 } 663 }; 664 665 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 666 { 667 public: 668 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 669 RegisterContextDarwin_arm64 (thread, 0) 670 { 671 SetRegisterDataFrom_LC_THREAD (data); 672 } 673 674 void 675 InvalidateAllRegisters() override 676 { 677 // Do nothing... registers are always valid... 678 } 679 680 void 681 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 682 { 683 lldb::offset_t offset = 0; 684 SetError (GPRRegSet, Read, -1); 685 SetError (FPURegSet, Read, -1); 686 SetError (EXCRegSet, Read, -1); 687 bool done = false; 688 while (!done) 689 { 690 int flavor = data.GetU32 (&offset); 691 uint32_t count = data.GetU32 (&offset); 692 lldb::offset_t next_thread_state = offset + (count * 4); 693 switch (flavor) 694 { 695 case GPRRegSet: 696 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 697 if (count >= (33 * 2) + 1) 698 { 699 for (uint32_t i=0; i<33; ++i) 700 gpr.x[i] = data.GetU64(&offset); 701 gpr.cpsr = data.GetU32(&offset); 702 SetError (GPRRegSet, Read, 0); 703 } 704 offset = next_thread_state; 705 break; 706 case FPURegSet: 707 { 708 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 709 const int fpu_reg_buf_size = sizeof (fpu); 710 if (fpu_reg_buf_size == count 711 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 712 { 713 SetError (FPURegSet, Read, 0); 714 } 715 else 716 { 717 done = true; 718 } 719 } 720 offset = next_thread_state; 721 break; 722 case EXCRegSet: 723 if (count == 4) 724 { 725 exc.far = data.GetU64(&offset); 726 exc.esr = data.GetU32(&offset); 727 exc.exception = data.GetU32(&offset); 728 SetError (EXCRegSet, Read, 0); 729 } 730 offset = next_thread_state; 731 break; 732 default: 733 done = true; 734 break; 735 } 736 } 737 } 738 739 static size_t 740 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 741 { 742 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 743 if (reg_info == NULL) 744 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 745 if (reg_info) 746 { 747 lldb_private::RegisterValue reg_value; 748 if (reg_ctx->ReadRegister(reg_info, reg_value)) 749 { 750 if (reg_info->byte_size >= reg_byte_size) 751 data.Write(reg_value.GetBytes(), reg_byte_size); 752 else 753 { 754 data.Write(reg_value.GetBytes(), reg_info->byte_size); 755 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 756 data.PutChar(0); 757 } 758 return reg_byte_size; 759 } 760 } 761 // Just write zeros if all else fails 762 for (size_t i=0; i<reg_byte_size; ++ i) 763 data.PutChar(0); 764 return reg_byte_size; 765 } 766 767 static bool 768 Create_LC_THREAD (Thread *thread, Stream &data) 769 { 770 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 771 if (reg_ctx_sp) 772 { 773 RegisterContext *reg_ctx = reg_ctx_sp.get(); 774 775 data.PutHex32 (GPRRegSet); // Flavor 776 data.PutHex32 (GPRWordCount); 777 WriteRegister (reg_ctx, "x0", NULL, 8, data); 778 WriteRegister (reg_ctx, "x1", NULL, 8, data); 779 WriteRegister (reg_ctx, "x2", NULL, 8, data); 780 WriteRegister (reg_ctx, "x3", NULL, 8, data); 781 WriteRegister (reg_ctx, "x4", NULL, 8, data); 782 WriteRegister (reg_ctx, "x5", NULL, 8, data); 783 WriteRegister (reg_ctx, "x6", NULL, 8, data); 784 WriteRegister (reg_ctx, "x7", NULL, 8, data); 785 WriteRegister (reg_ctx, "x8", NULL, 8, data); 786 WriteRegister (reg_ctx, "x9", NULL, 8, data); 787 WriteRegister (reg_ctx, "x10", NULL, 8, data); 788 WriteRegister (reg_ctx, "x11", NULL, 8, data); 789 WriteRegister (reg_ctx, "x12", NULL, 8, data); 790 WriteRegister (reg_ctx, "x13", NULL, 8, data); 791 WriteRegister (reg_ctx, "x14", NULL, 8, data); 792 WriteRegister (reg_ctx, "x15", NULL, 8, data); 793 WriteRegister (reg_ctx, "x16", NULL, 8, data); 794 WriteRegister (reg_ctx, "x17", NULL, 8, data); 795 WriteRegister (reg_ctx, "x18", NULL, 8, data); 796 WriteRegister (reg_ctx, "x19", NULL, 8, data); 797 WriteRegister (reg_ctx, "x20", NULL, 8, data); 798 WriteRegister (reg_ctx, "x21", NULL, 8, data); 799 WriteRegister (reg_ctx, "x22", NULL, 8, data); 800 WriteRegister (reg_ctx, "x23", NULL, 8, data); 801 WriteRegister (reg_ctx, "x24", NULL, 8, data); 802 WriteRegister (reg_ctx, "x25", NULL, 8, data); 803 WriteRegister (reg_ctx, "x26", NULL, 8, data); 804 WriteRegister (reg_ctx, "x27", NULL, 8, data); 805 WriteRegister (reg_ctx, "x28", NULL, 8, data); 806 WriteRegister (reg_ctx, "fp", NULL, 8, data); 807 WriteRegister (reg_ctx, "lr", NULL, 8, data); 808 WriteRegister (reg_ctx, "sp", NULL, 8, data); 809 WriteRegister (reg_ctx, "pc", NULL, 8, data); 810 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 811 812 // Write out the EXC registers 813 // data.PutHex32 (EXCRegSet); 814 // data.PutHex32 (EXCWordCount); 815 // WriteRegister (reg_ctx, "far", NULL, 8, data); 816 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 817 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 818 return true; 819 } 820 return false; 821 } 822 823 protected: 824 int 825 DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override 826 { 827 return -1; 828 } 829 830 int 831 DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override 832 { 833 return -1; 834 } 835 836 int 837 DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override 838 { 839 return -1; 840 } 841 842 int 843 DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override 844 { 845 return -1; 846 } 847 848 int 849 DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override 850 { 851 return 0; 852 } 853 854 int 855 DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override 856 { 857 return 0; 858 } 859 860 int 861 DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override 862 { 863 return 0; 864 } 865 866 int 867 DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override 868 { 869 return -1; 870 } 871 }; 872 873 static uint32_t 874 MachHeaderSizeFromMagic(uint32_t magic) 875 { 876 switch (magic) 877 { 878 case MH_MAGIC: 879 case MH_CIGAM: 880 return sizeof(struct mach_header); 881 882 case MH_MAGIC_64: 883 case MH_CIGAM_64: 884 return sizeof(struct mach_header_64); 885 break; 886 887 default: 888 break; 889 } 890 return 0; 891 } 892 893 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 894 895 void 896 ObjectFileMachO::Initialize() 897 { 898 PluginManager::RegisterPlugin (GetPluginNameStatic(), 899 GetPluginDescriptionStatic(), 900 CreateInstance, 901 CreateMemoryInstance, 902 GetModuleSpecifications, 903 SaveCore); 904 } 905 906 void 907 ObjectFileMachO::Terminate() 908 { 909 PluginManager::UnregisterPlugin (CreateInstance); 910 } 911 912 lldb_private::ConstString 913 ObjectFileMachO::GetPluginNameStatic() 914 { 915 static ConstString g_name("mach-o"); 916 return g_name; 917 } 918 919 const char * 920 ObjectFileMachO::GetPluginDescriptionStatic() 921 { 922 return "Mach-o object file reader (32 and 64 bit)"; 923 } 924 925 ObjectFile * 926 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 927 DataBufferSP& data_sp, 928 lldb::offset_t data_offset, 929 const FileSpec* file, 930 lldb::offset_t file_offset, 931 lldb::offset_t length) 932 { 933 if (!data_sp) 934 { 935 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 936 data_offset = 0; 937 } 938 939 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 940 { 941 // Update the data to contain the entire file if it doesn't already 942 if (data_sp->GetByteSize() < length) 943 { 944 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 945 data_offset = 0; 946 } 947 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 948 if (objfile_ap.get() && objfile_ap->ParseHeader()) 949 return objfile_ap.release(); 950 } 951 return NULL; 952 } 953 954 ObjectFile * 955 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 956 DataBufferSP& data_sp, 957 const ProcessSP &process_sp, 958 lldb::addr_t header_addr) 959 { 960 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 961 { 962 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 963 if (objfile_ap.get() && objfile_ap->ParseHeader()) 964 return objfile_ap.release(); 965 } 966 return NULL; 967 } 968 969 size_t 970 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 971 lldb::DataBufferSP& data_sp, 972 lldb::offset_t data_offset, 973 lldb::offset_t file_offset, 974 lldb::offset_t length, 975 lldb_private::ModuleSpecList &specs) 976 { 977 const size_t initial_count = specs.GetSize(); 978 979 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 980 { 981 DataExtractor data; 982 data.SetData(data_sp); 983 llvm::MachO::mach_header header; 984 if (ParseHeader (data, &data_offset, header)) 985 { 986 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 987 if (header_and_load_cmds >= data_sp->GetByteSize()) 988 { 989 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 990 data.SetData(data_sp); 991 data_offset = MachHeaderSizeFromMagic(header.magic); 992 } 993 if (data_sp) 994 { 995 ModuleSpec spec; 996 spec.GetFileSpec() = file; 997 spec.SetObjectOffset(file_offset); 998 spec.SetObjectSize(length); 999 1000 if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) 1001 { 1002 if (spec.GetArchitecture().IsValid()) 1003 { 1004 GetUUID (header, data, data_offset, spec.GetUUID()); 1005 specs.Append(spec); 1006 } 1007 } 1008 } 1009 } 1010 } 1011 return specs.GetSize() - initial_count; 1012 } 1013 1014 const ConstString & 1015 ObjectFileMachO::GetSegmentNameTEXT() 1016 { 1017 static ConstString g_segment_name_TEXT ("__TEXT"); 1018 return g_segment_name_TEXT; 1019 } 1020 1021 const ConstString & 1022 ObjectFileMachO::GetSegmentNameDATA() 1023 { 1024 static ConstString g_segment_name_DATA ("__DATA"); 1025 return g_segment_name_DATA; 1026 } 1027 1028 const ConstString & 1029 ObjectFileMachO::GetSegmentNameDATA_DIRTY() 1030 { 1031 static ConstString g_segment_name ("__DATA_DIRTY"); 1032 return g_segment_name; 1033 } 1034 1035 const ConstString & 1036 ObjectFileMachO::GetSegmentNameDATA_CONST() 1037 { 1038 static ConstString g_segment_name ("__DATA_CONST"); 1039 return g_segment_name; 1040 } 1041 1042 const ConstString & 1043 ObjectFileMachO::GetSegmentNameOBJC() 1044 { 1045 static ConstString g_segment_name_OBJC ("__OBJC"); 1046 return g_segment_name_OBJC; 1047 } 1048 1049 const ConstString & 1050 ObjectFileMachO::GetSegmentNameLINKEDIT() 1051 { 1052 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 1053 return g_section_name_LINKEDIT; 1054 } 1055 1056 const ConstString & 1057 ObjectFileMachO::GetSectionNameEHFrame() 1058 { 1059 static ConstString g_section_name_eh_frame ("__eh_frame"); 1060 return g_section_name_eh_frame; 1061 } 1062 1063 bool 1064 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 1065 lldb::addr_t data_offset, 1066 lldb::addr_t data_length) 1067 { 1068 DataExtractor data; 1069 data.SetData (data_sp, data_offset, data_length); 1070 lldb::offset_t offset = 0; 1071 uint32_t magic = data.GetU32(&offset); 1072 return MachHeaderSizeFromMagic(magic) != 0; 1073 } 1074 1075 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 1076 DataBufferSP& data_sp, 1077 lldb::offset_t data_offset, 1078 const FileSpec* file, 1079 lldb::offset_t file_offset, 1080 lldb::offset_t length) : 1081 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 1082 m_mach_segments(), 1083 m_mach_sections(), 1084 m_entry_point_address(), 1085 m_thread_context_offsets(), 1086 m_thread_context_offsets_valid(false) 1087 { 1088 ::memset (&m_header, 0, sizeof(m_header)); 1089 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1090 } 1091 1092 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 1093 lldb::DataBufferSP& header_data_sp, 1094 const lldb::ProcessSP &process_sp, 1095 lldb::addr_t header_addr) : 1096 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 1097 m_mach_segments(), 1098 m_mach_sections(), 1099 m_entry_point_address(), 1100 m_thread_context_offsets(), 1101 m_thread_context_offsets_valid(false) 1102 { 1103 ::memset (&m_header, 0, sizeof(m_header)); 1104 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1105 } 1106 1107 bool 1108 ObjectFileMachO::ParseHeader (DataExtractor &data, 1109 lldb::offset_t *data_offset_ptr, 1110 llvm::MachO::mach_header &header) 1111 { 1112 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1113 // Leave magic in the original byte order 1114 header.magic = data.GetU32(data_offset_ptr); 1115 bool can_parse = false; 1116 bool is_64_bit = false; 1117 switch (header.magic) 1118 { 1119 case MH_MAGIC: 1120 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1121 data.SetAddressByteSize(4); 1122 can_parse = true; 1123 break; 1124 1125 case MH_MAGIC_64: 1126 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1127 data.SetAddressByteSize(8); 1128 can_parse = true; 1129 is_64_bit = true; 1130 break; 1131 1132 case MH_CIGAM: 1133 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1134 data.SetAddressByteSize(4); 1135 can_parse = true; 1136 break; 1137 1138 case MH_CIGAM_64: 1139 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1140 data.SetAddressByteSize(8); 1141 is_64_bit = true; 1142 can_parse = true; 1143 break; 1144 1145 default: 1146 break; 1147 } 1148 1149 if (can_parse) 1150 { 1151 data.GetU32(data_offset_ptr, &header.cputype, 6); 1152 if (is_64_bit) 1153 *data_offset_ptr += 4; 1154 return true; 1155 } 1156 else 1157 { 1158 memset(&header, 0, sizeof(header)); 1159 } 1160 return false; 1161 } 1162 1163 bool 1164 ObjectFileMachO::ParseHeader () 1165 { 1166 ModuleSP module_sp(GetModule()); 1167 if (module_sp) 1168 { 1169 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1170 bool can_parse = false; 1171 lldb::offset_t offset = 0; 1172 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1173 // Leave magic in the original byte order 1174 m_header.magic = m_data.GetU32(&offset); 1175 switch (m_header.magic) 1176 { 1177 case MH_MAGIC: 1178 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1179 m_data.SetAddressByteSize(4); 1180 can_parse = true; 1181 break; 1182 1183 case MH_MAGIC_64: 1184 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1185 m_data.SetAddressByteSize(8); 1186 can_parse = true; 1187 break; 1188 1189 case MH_CIGAM: 1190 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1191 m_data.SetAddressByteSize(4); 1192 can_parse = true; 1193 break; 1194 1195 case MH_CIGAM_64: 1196 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1197 m_data.SetAddressByteSize(8); 1198 can_parse = true; 1199 break; 1200 1201 default: 1202 break; 1203 } 1204 1205 if (can_parse) 1206 { 1207 m_data.GetU32(&offset, &m_header.cputype, 6); 1208 1209 1210 ArchSpec mach_arch; 1211 1212 if (GetArchitecture (mach_arch)) 1213 { 1214 // Check if the module has a required architecture 1215 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1216 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1217 return false; 1218 1219 if (SetModulesArchitecture (mach_arch)) 1220 { 1221 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1222 if (m_data.GetByteSize() < header_and_lc_size) 1223 { 1224 DataBufferSP data_sp; 1225 ProcessSP process_sp (m_process_wp.lock()); 1226 if (process_sp) 1227 { 1228 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 1229 } 1230 else 1231 { 1232 // Read in all only the load command data from the file on disk 1233 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 1234 if (data_sp->GetByteSize() != header_and_lc_size) 1235 return false; 1236 } 1237 if (data_sp) 1238 m_data.SetData (data_sp); 1239 } 1240 } 1241 return true; 1242 } 1243 } 1244 else 1245 { 1246 memset(&m_header, 0, sizeof(struct mach_header)); 1247 } 1248 } 1249 return false; 1250 } 1251 1252 ByteOrder 1253 ObjectFileMachO::GetByteOrder () const 1254 { 1255 return m_data.GetByteOrder (); 1256 } 1257 1258 bool 1259 ObjectFileMachO::IsExecutable() const 1260 { 1261 return m_header.filetype == MH_EXECUTE; 1262 } 1263 1264 uint32_t 1265 ObjectFileMachO::GetAddressByteSize () const 1266 { 1267 return m_data.GetAddressByteSize (); 1268 } 1269 1270 AddressClass 1271 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 1272 { 1273 Symtab *symtab = GetSymtab(); 1274 if (symtab) 1275 { 1276 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1277 if (symbol) 1278 { 1279 if (symbol->ValueIsAddress()) 1280 { 1281 SectionSP section_sp (symbol->GetAddressRef().GetSection()); 1282 if (section_sp) 1283 { 1284 const lldb::SectionType section_type = section_sp->GetType(); 1285 switch (section_type) 1286 { 1287 case eSectionTypeInvalid: 1288 return eAddressClassUnknown; 1289 1290 case eSectionTypeCode: 1291 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1292 { 1293 // For ARM we have a bit in the n_desc field of the symbol 1294 // that tells us ARM/Thumb which is bit 0x0008. 1295 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1296 return eAddressClassCodeAlternateISA; 1297 } 1298 return eAddressClassCode; 1299 1300 case eSectionTypeContainer: 1301 return eAddressClassUnknown; 1302 1303 case eSectionTypeData: 1304 case eSectionTypeDataCString: 1305 case eSectionTypeDataCStringPointers: 1306 case eSectionTypeDataSymbolAddress: 1307 case eSectionTypeData4: 1308 case eSectionTypeData8: 1309 case eSectionTypeData16: 1310 case eSectionTypeDataPointers: 1311 case eSectionTypeZeroFill: 1312 case eSectionTypeDataObjCMessageRefs: 1313 case eSectionTypeDataObjCCFStrings: 1314 case eSectionTypeGoSymtab: 1315 return eAddressClassData; 1316 1317 case eSectionTypeDebug: 1318 case eSectionTypeDWARFDebugAbbrev: 1319 case eSectionTypeDWARFDebugAddr: 1320 case eSectionTypeDWARFDebugAranges: 1321 case eSectionTypeDWARFDebugFrame: 1322 case eSectionTypeDWARFDebugInfo: 1323 case eSectionTypeDWARFDebugLine: 1324 case eSectionTypeDWARFDebugLoc: 1325 case eSectionTypeDWARFDebugMacInfo: 1326 case eSectionTypeDWARFDebugPubNames: 1327 case eSectionTypeDWARFDebugPubTypes: 1328 case eSectionTypeDWARFDebugRanges: 1329 case eSectionTypeDWARFDebugStr: 1330 case eSectionTypeDWARFDebugStrOffsets: 1331 case eSectionTypeDWARFAppleNames: 1332 case eSectionTypeDWARFAppleTypes: 1333 case eSectionTypeDWARFAppleNamespaces: 1334 case eSectionTypeDWARFAppleObjC: 1335 return eAddressClassDebug; 1336 1337 case eSectionTypeEHFrame: 1338 case eSectionTypeARMexidx: 1339 case eSectionTypeARMextab: 1340 case eSectionTypeCompactUnwind: 1341 return eAddressClassRuntime; 1342 1343 case eSectionTypeELFSymbolTable: 1344 case eSectionTypeELFDynamicSymbols: 1345 case eSectionTypeELFRelocationEntries: 1346 case eSectionTypeELFDynamicLinkInfo: 1347 case eSectionTypeOther: 1348 return eAddressClassUnknown; 1349 } 1350 } 1351 } 1352 1353 const SymbolType symbol_type = symbol->GetType(); 1354 switch (symbol_type) 1355 { 1356 case eSymbolTypeAny: return eAddressClassUnknown; 1357 case eSymbolTypeAbsolute: return eAddressClassUnknown; 1358 1359 case eSymbolTypeCode: 1360 case eSymbolTypeTrampoline: 1361 case eSymbolTypeResolver: 1362 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1363 { 1364 // For ARM we have a bit in the n_desc field of the symbol 1365 // that tells us ARM/Thumb which is bit 0x0008. 1366 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1367 return eAddressClassCodeAlternateISA; 1368 } 1369 return eAddressClassCode; 1370 1371 case eSymbolTypeData: return eAddressClassData; 1372 case eSymbolTypeRuntime: return eAddressClassRuntime; 1373 case eSymbolTypeException: return eAddressClassRuntime; 1374 case eSymbolTypeSourceFile: return eAddressClassDebug; 1375 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1376 case eSymbolTypeObjectFile: return eAddressClassDebug; 1377 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1378 case eSymbolTypeBlock: return eAddressClassDebug; 1379 case eSymbolTypeLocal: return eAddressClassData; 1380 case eSymbolTypeParam: return eAddressClassData; 1381 case eSymbolTypeVariable: return eAddressClassData; 1382 case eSymbolTypeVariableType: return eAddressClassDebug; 1383 case eSymbolTypeLineEntry: return eAddressClassDebug; 1384 case eSymbolTypeLineHeader: return eAddressClassDebug; 1385 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1386 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1387 case eSymbolTypeAdditional: return eAddressClassUnknown; 1388 case eSymbolTypeCompiler: return eAddressClassDebug; 1389 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1390 case eSymbolTypeUndefined: return eAddressClassUnknown; 1391 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1392 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1393 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1394 case eSymbolTypeReExported: return eAddressClassRuntime; 1395 } 1396 } 1397 } 1398 return eAddressClassUnknown; 1399 } 1400 1401 Symtab * 1402 ObjectFileMachO::GetSymtab() 1403 { 1404 ModuleSP module_sp(GetModule()); 1405 if (module_sp) 1406 { 1407 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1408 if (m_symtab_ap.get() == NULL) 1409 { 1410 m_symtab_ap.reset(new Symtab(this)); 1411 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1412 ParseSymtab (); 1413 m_symtab_ap->Finalize (); 1414 } 1415 } 1416 return m_symtab_ap.get(); 1417 } 1418 1419 bool 1420 ObjectFileMachO::IsStripped () 1421 { 1422 if (m_dysymtab.cmd == 0) 1423 { 1424 ModuleSP module_sp(GetModule()); 1425 if (module_sp) 1426 { 1427 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1428 for (uint32_t i=0; i<m_header.ncmds; ++i) 1429 { 1430 const lldb::offset_t load_cmd_offset = offset; 1431 1432 load_command lc; 1433 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1434 break; 1435 if (lc.cmd == LC_DYSYMTAB) 1436 { 1437 m_dysymtab.cmd = lc.cmd; 1438 m_dysymtab.cmdsize = lc.cmdsize; 1439 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1440 { 1441 // Clear m_dysymtab if we were unable to read all items from the load command 1442 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1443 } 1444 } 1445 offset = load_cmd_offset + lc.cmdsize; 1446 } 1447 } 1448 } 1449 if (m_dysymtab.cmd) 1450 return m_dysymtab.nlocalsym <= 1; 1451 return false; 1452 } 1453 1454 void 1455 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1456 { 1457 if (!m_sections_ap.get()) 1458 { 1459 m_sections_ap.reset(new SectionList()); 1460 1461 const bool is_dsym = (m_header.filetype == MH_DSYM); 1462 lldb::user_id_t segID = 0; 1463 lldb::user_id_t sectID = 0; 1464 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1465 uint32_t i; 1466 const bool is_core = GetType() == eTypeCoreFile; 1467 //bool dump_sections = false; 1468 ModuleSP module_sp (GetModule()); 1469 // First look up any LC_ENCRYPTION_INFO load commands 1470 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1471 EncryptedFileRanges encrypted_file_ranges; 1472 encryption_info_command encryption_cmd; 1473 for (i=0; i<m_header.ncmds; ++i) 1474 { 1475 const lldb::offset_t load_cmd_offset = offset; 1476 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1477 break; 1478 1479 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for 1480 // the 3 fields we care about, so treat them the same. 1481 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) 1482 { 1483 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1484 { 1485 if (encryption_cmd.cryptid != 0) 1486 { 1487 EncryptedFileRanges::Entry entry; 1488 entry.SetRangeBase(encryption_cmd.cryptoff); 1489 entry.SetByteSize(encryption_cmd.cryptsize); 1490 encrypted_file_ranges.Append(entry); 1491 } 1492 } 1493 } 1494 offset = load_cmd_offset + encryption_cmd.cmdsize; 1495 } 1496 1497 bool section_file_addresses_changed = false; 1498 1499 offset = MachHeaderSizeFromMagic(m_header.magic); 1500 1501 struct segment_command_64 load_cmd; 1502 for (i=0; i<m_header.ncmds; ++i) 1503 { 1504 const lldb::offset_t load_cmd_offset = offset; 1505 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1506 break; 1507 1508 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1509 { 1510 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1511 { 1512 bool add_section = true; 1513 bool add_to_unified = true; 1514 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1515 1516 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1517 if (is_dsym && unified_section_sp) 1518 { 1519 if (const_segname == GetSegmentNameLINKEDIT()) 1520 { 1521 // We need to keep the __LINKEDIT segment private to this object file only 1522 add_to_unified = false; 1523 } 1524 else 1525 { 1526 // This is the dSYM file and this section has already been created by 1527 // the object file, no need to create it. 1528 add_section = false; 1529 } 1530 } 1531 load_cmd.vmaddr = m_data.GetAddress(&offset); 1532 load_cmd.vmsize = m_data.GetAddress(&offset); 1533 load_cmd.fileoff = m_data.GetAddress(&offset); 1534 load_cmd.filesize = m_data.GetAddress(&offset); 1535 if (m_length != 0 && load_cmd.filesize != 0) 1536 { 1537 if (load_cmd.fileoff > m_length) 1538 { 1539 // We have a load command that says it extends past the end of the file. This is likely 1540 // a corrupt file. We don't have any way to return an error condition here (this method 1541 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1542 // is null out the SectionList vector and if a process has been set up, dump a message 1543 // to stdout. The most common case here is core file debugging with a truncated file. 1544 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1545 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1546 i, 1547 lc_segment_name, 1548 load_cmd.fileoff, 1549 m_length); 1550 1551 load_cmd.fileoff = 0; 1552 load_cmd.filesize = 0; 1553 } 1554 1555 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1556 { 1557 // We have a load command that says it extends past the end of the file. This is likely 1558 // a corrupt file. We don't have any way to return an error condition here (this method 1559 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1560 // is null out the SectionList vector and if a process has been set up, dump a message 1561 // to stdout. The most common case here is core file debugging with a truncated file. 1562 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1563 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1564 i, 1565 lc_segment_name, 1566 load_cmd.fileoff + load_cmd.filesize, 1567 m_length); 1568 1569 // Tuncase the length 1570 load_cmd.filesize = m_length - load_cmd.fileoff; 1571 } 1572 } 1573 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1574 { 1575 1576 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1577 1578 // Keep a list of mach segments around in case we need to 1579 // get at data that isn't stored in the abstracted Sections. 1580 m_mach_segments.push_back (load_cmd); 1581 1582 // Use a segment ID of the segment index shifted left by 8 so they 1583 // never conflict with any of the sections. 1584 SectionSP segment_sp; 1585 if (add_section && (const_segname || is_core)) 1586 { 1587 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1588 this, // Object file to which this sections belongs 1589 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1590 const_segname, // Name of this section 1591 eSectionTypeContainer, // This section is a container of other sections. 1592 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1593 load_cmd.vmsize, // VM size in bytes of this section 1594 load_cmd.fileoff, // Offset to the data for this section in the file 1595 load_cmd.filesize, // Size in bytes of this section as found in the file 1596 0, // Segments have no alignment information 1597 load_cmd.flags)); // Flags for this section 1598 1599 segment_sp->SetIsEncrypted (segment_is_encrypted); 1600 m_sections_ap->AddSection(segment_sp); 1601 if (add_to_unified) 1602 unified_section_list.AddSection(segment_sp); 1603 } 1604 else if (unified_section_sp) 1605 { 1606 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1607 { 1608 // Check to see if the module was read from memory? 1609 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1610 { 1611 // We have a module that is in memory and needs to have its 1612 // file address adjusted. We need to do this because when we 1613 // load a file from memory, its addresses will be slid already, 1614 // yet the addresses in the new symbol file will still be unslid. 1615 // Since everything is stored as section offset, this shouldn't 1616 // cause any problems. 1617 1618 // Make sure we've parsed the symbol table from the 1619 // ObjectFile before we go around changing its Sections. 1620 module_sp->GetObjectFile()->GetSymtab(); 1621 // eh_frame would present the same problems but we parse that on 1622 // a per-function basis as-needed so it's more difficult to 1623 // remove its use of the Sections. Realistically, the environments 1624 // where this code path will be taken will not have eh_frame sections. 1625 1626 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1627 1628 // Notify the module that the section addresses have been changed once 1629 // we're done so any file-address caches can be updated. 1630 section_file_addresses_changed = true; 1631 } 1632 } 1633 m_sections_ap->AddSection(unified_section_sp); 1634 } 1635 1636 struct section_64 sect64; 1637 ::memset (§64, 0, sizeof(sect64)); 1638 // Push a section into our mach sections for the section at 1639 // index zero (NO_SECT) if we don't have any mach sections yet... 1640 if (m_mach_sections.empty()) 1641 m_mach_sections.push_back(sect64); 1642 uint32_t segment_sect_idx; 1643 const lldb::user_id_t first_segment_sectID = sectID + 1; 1644 1645 1646 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1647 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1648 { 1649 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1650 break; 1651 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1652 break; 1653 sect64.addr = m_data.GetAddress(&offset); 1654 sect64.size = m_data.GetAddress(&offset); 1655 1656 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1657 break; 1658 1659 // Keep a list of mach sections around in case we need to 1660 // get at data that isn't stored in the abstracted Sections. 1661 m_mach_sections.push_back (sect64); 1662 1663 if (add_section) 1664 { 1665 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1666 if (!const_segname) 1667 { 1668 // We have a segment with no name so we need to conjure up 1669 // segments that correspond to the section's segname if there 1670 // isn't already such a section. If there is such a section, 1671 // we resize the section so that it spans all sections. 1672 // We also mark these sections as fake so address matches don't 1673 // hit if they land in the gaps between the child sections. 1674 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1675 segment_sp = unified_section_list.FindSectionByName (const_segname); 1676 if (segment_sp.get()) 1677 { 1678 Section *segment = segment_sp.get(); 1679 // Grow the section size as needed. 1680 const lldb::addr_t sect64_min_addr = sect64.addr; 1681 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1682 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1683 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1684 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1685 if (sect64_min_addr >= curr_seg_min_addr) 1686 { 1687 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1688 // Only grow the section size if needed 1689 if (new_seg_byte_size > curr_seg_byte_size) 1690 segment->SetByteSize (new_seg_byte_size); 1691 } 1692 else 1693 { 1694 // We need to change the base address of the segment and 1695 // adjust the child section offsets for all existing children. 1696 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1697 segment->Slide(slide_amount, false); 1698 segment->GetChildren().Slide(-slide_amount, false); 1699 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1700 } 1701 1702 // Grow the section size as needed. 1703 if (sect64.offset) 1704 { 1705 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1706 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1707 1708 const lldb::addr_t section_min_file_offset = sect64.offset; 1709 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1710 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1711 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1712 segment->SetFileOffset (new_file_offset); 1713 segment->SetFileSize (new_file_size); 1714 } 1715 } 1716 else 1717 { 1718 // Create a fake section for the section's named segment 1719 segment_sp.reset(new Section (segment_sp, // Parent section 1720 module_sp, // Module to which this section belongs 1721 this, // Object file to which this section belongs 1722 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1723 const_segname, // Name of this section 1724 eSectionTypeContainer, // This section is a container of other sections. 1725 sect64.addr, // File VM address == addresses as they are found in the object file 1726 sect64.size, // VM size in bytes of this section 1727 sect64.offset, // Offset to the data for this section in the file 1728 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file 1729 sect64.align, 1730 load_cmd.flags)); // Flags for this section 1731 segment_sp->SetIsFake(true); 1732 1733 m_sections_ap->AddSection(segment_sp); 1734 if (add_to_unified) 1735 unified_section_list.AddSection(segment_sp); 1736 segment_sp->SetIsEncrypted (segment_is_encrypted); 1737 } 1738 } 1739 assert (segment_sp.get()); 1740 1741 lldb::SectionType sect_type = eSectionTypeOther; 1742 1743 if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1744 sect_type = eSectionTypeCode; 1745 else 1746 { 1747 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1748 static ConstString g_sect_name_objc_data ("__objc_data"); 1749 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1750 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1751 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1752 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1753 static ConstString g_sect_name_objc_const ("__objc_const"); 1754 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1755 static ConstString g_sect_name_cfstring ("__cfstring"); 1756 1757 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1758 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1759 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1760 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1761 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1762 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1763 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1764 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1765 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1766 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1767 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1768 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1769 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1770 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1771 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1772 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1773 static ConstString g_sect_name_compact_unwind ("__unwind_info"); 1774 static ConstString g_sect_name_text ("__text"); 1775 static ConstString g_sect_name_data ("__data"); 1776 static ConstString g_sect_name_go_symtab ("__gosymtab"); 1777 1778 1779 if (section_name == g_sect_name_dwarf_debug_abbrev) 1780 sect_type = eSectionTypeDWARFDebugAbbrev; 1781 else if (section_name == g_sect_name_dwarf_debug_aranges) 1782 sect_type = eSectionTypeDWARFDebugAranges; 1783 else if (section_name == g_sect_name_dwarf_debug_frame) 1784 sect_type = eSectionTypeDWARFDebugFrame; 1785 else if (section_name == g_sect_name_dwarf_debug_info) 1786 sect_type = eSectionTypeDWARFDebugInfo; 1787 else if (section_name == g_sect_name_dwarf_debug_line) 1788 sect_type = eSectionTypeDWARFDebugLine; 1789 else if (section_name == g_sect_name_dwarf_debug_loc) 1790 sect_type = eSectionTypeDWARFDebugLoc; 1791 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1792 sect_type = eSectionTypeDWARFDebugMacInfo; 1793 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1794 sect_type = eSectionTypeDWARFDebugPubNames; 1795 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1796 sect_type = eSectionTypeDWARFDebugPubTypes; 1797 else if (section_name == g_sect_name_dwarf_debug_ranges) 1798 sect_type = eSectionTypeDWARFDebugRanges; 1799 else if (section_name == g_sect_name_dwarf_debug_str) 1800 sect_type = eSectionTypeDWARFDebugStr; 1801 else if (section_name == g_sect_name_dwarf_apple_names) 1802 sect_type = eSectionTypeDWARFAppleNames; 1803 else if (section_name == g_sect_name_dwarf_apple_types) 1804 sect_type = eSectionTypeDWARFAppleTypes; 1805 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1806 sect_type = eSectionTypeDWARFAppleNamespaces; 1807 else if (section_name == g_sect_name_dwarf_apple_objc) 1808 sect_type = eSectionTypeDWARFAppleObjC; 1809 else if (section_name == g_sect_name_objc_selrefs) 1810 sect_type = eSectionTypeDataCStringPointers; 1811 else if (section_name == g_sect_name_objc_msgrefs) 1812 sect_type = eSectionTypeDataObjCMessageRefs; 1813 else if (section_name == g_sect_name_eh_frame) 1814 sect_type = eSectionTypeEHFrame; 1815 else if (section_name == g_sect_name_compact_unwind) 1816 sect_type = eSectionTypeCompactUnwind; 1817 else if (section_name == g_sect_name_cfstring) 1818 sect_type = eSectionTypeDataObjCCFStrings; 1819 else if (section_name == g_sect_name_go_symtab) 1820 sect_type = eSectionTypeGoSymtab; 1821 else if (section_name == g_sect_name_objc_data || 1822 section_name == g_sect_name_objc_classrefs || 1823 section_name == g_sect_name_objc_superrefs || 1824 section_name == g_sect_name_objc_const || 1825 section_name == g_sect_name_objc_classlist) 1826 { 1827 sect_type = eSectionTypeDataPointers; 1828 } 1829 1830 if (sect_type == eSectionTypeOther) 1831 { 1832 switch (mach_sect_type) 1833 { 1834 // TODO: categorize sections by other flags for regular sections 1835 case S_REGULAR: 1836 if (section_name == g_sect_name_text) 1837 sect_type = eSectionTypeCode; 1838 else if (section_name == g_sect_name_data) 1839 sect_type = eSectionTypeData; 1840 else 1841 sect_type = eSectionTypeOther; 1842 break; 1843 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1844 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1845 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1846 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1847 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1848 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1849 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1850 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1851 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1852 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1853 case S_COALESCED: sect_type = eSectionTypeOther; break; 1854 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1855 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1856 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1857 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1858 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1859 default: break; 1860 } 1861 } 1862 } 1863 1864 SectionSP section_sp(new Section (segment_sp, 1865 module_sp, 1866 this, 1867 ++sectID, 1868 section_name, 1869 sect_type, 1870 sect64.addr - segment_sp->GetFileAddress(), 1871 sect64.size, 1872 sect64.offset, 1873 sect64.offset == 0 ? 0 : sect64.size, 1874 sect64.align, 1875 sect64.flags)); 1876 // Set the section to be encrypted to match the segment 1877 1878 bool section_is_encrypted = false; 1879 if (!segment_is_encrypted && load_cmd.filesize != 0) 1880 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1881 1882 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1883 segment_sp->GetChildren().AddSection(section_sp); 1884 1885 if (segment_sp->IsFake()) 1886 { 1887 segment_sp.reset(); 1888 const_segname.Clear(); 1889 } 1890 } 1891 } 1892 if (segment_sp && is_dsym) 1893 { 1894 if (first_segment_sectID <= sectID) 1895 { 1896 lldb::user_id_t sect_uid; 1897 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1898 { 1899 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1900 SectionSP next_section_sp; 1901 if (sect_uid + 1 <= sectID) 1902 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1903 1904 if (curr_section_sp.get()) 1905 { 1906 if (curr_section_sp->GetByteSize() == 0) 1907 { 1908 if (next_section_sp.get() != NULL) 1909 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1910 else 1911 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1912 } 1913 } 1914 } 1915 } 1916 } 1917 } 1918 } 1919 } 1920 else if (load_cmd.cmd == LC_DYSYMTAB) 1921 { 1922 m_dysymtab.cmd = load_cmd.cmd; 1923 m_dysymtab.cmdsize = load_cmd.cmdsize; 1924 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1925 } 1926 1927 offset = load_cmd_offset + load_cmd.cmdsize; 1928 } 1929 1930 1931 if (section_file_addresses_changed && module_sp.get()) 1932 { 1933 module_sp->SectionFileAddressesChanged(); 1934 } 1935 } 1936 } 1937 1938 class MachSymtabSectionInfo 1939 { 1940 public: 1941 MachSymtabSectionInfo (SectionList *section_list) : 1942 m_section_list (section_list), 1943 m_section_infos() 1944 { 1945 // Get the number of sections down to a depth of 1 to include 1946 // all segments and their sections, but no other sections that 1947 // may be added for debug map or 1948 m_section_infos.resize(section_list->GetNumSections(1)); 1949 } 1950 1951 SectionSP 1952 GetSection (uint8_t n_sect, addr_t file_addr) 1953 { 1954 if (n_sect == 0) 1955 return SectionSP(); 1956 if (n_sect < m_section_infos.size()) 1957 { 1958 if (!m_section_infos[n_sect].section_sp) 1959 { 1960 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1961 m_section_infos[n_sect].section_sp = section_sp; 1962 if (section_sp) 1963 { 1964 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1965 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1966 } 1967 else 1968 { 1969 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1970 } 1971 } 1972 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1973 { 1974 // Symbol is in section. 1975 return m_section_infos[n_sect].section_sp; 1976 } 1977 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1978 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1979 { 1980 // Symbol is in section with zero size, but has the same start 1981 // address as the section. This can happen with linker symbols 1982 // (symbols that start with the letter 'l' or 'L'. 1983 return m_section_infos[n_sect].section_sp; 1984 } 1985 } 1986 return m_section_list->FindSectionContainingFileAddress(file_addr); 1987 } 1988 1989 protected: 1990 struct SectionInfo 1991 { 1992 SectionInfo () : 1993 vm_range(), 1994 section_sp () 1995 { 1996 } 1997 1998 VMRange vm_range; 1999 SectionSP section_sp; 2000 }; 2001 SectionList *m_section_list; 2002 std::vector<SectionInfo> m_section_infos; 2003 }; 2004 2005 struct TrieEntry 2006 { 2007 TrieEntry () : 2008 name(), 2009 address(LLDB_INVALID_ADDRESS), 2010 flags (0), 2011 other(0), 2012 import_name() 2013 { 2014 } 2015 2016 void 2017 Clear () 2018 { 2019 name.Clear(); 2020 address = LLDB_INVALID_ADDRESS; 2021 flags = 0; 2022 other = 0; 2023 import_name.Clear(); 2024 } 2025 2026 void 2027 Dump () const 2028 { 2029 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 2030 static_cast<unsigned long long>(address), 2031 static_cast<unsigned long long>(flags), 2032 static_cast<unsigned long long>(other), name.GetCString()); 2033 if (import_name) 2034 printf (" -> \"%s\"\n", import_name.GetCString()); 2035 else 2036 printf ("\n"); 2037 } 2038 ConstString name; 2039 uint64_t address; 2040 uint64_t flags; 2041 uint64_t other; 2042 ConstString import_name; 2043 }; 2044 2045 struct TrieEntryWithOffset 2046 { 2047 lldb::offset_t nodeOffset; 2048 TrieEntry entry; 2049 2050 TrieEntryWithOffset (lldb::offset_t offset) : 2051 nodeOffset (offset), 2052 entry() 2053 { 2054 } 2055 2056 void 2057 Dump (uint32_t idx) const 2058 { 2059 printf ("[%3u] 0x%16.16llx: ", idx, 2060 static_cast<unsigned long long>(nodeOffset)); 2061 entry.Dump(); 2062 } 2063 2064 bool 2065 operator<(const TrieEntryWithOffset& other) const 2066 { 2067 return ( nodeOffset < other.nodeOffset ); 2068 } 2069 }; 2070 2071 static bool 2072 ParseTrieEntries (DataExtractor &data, 2073 lldb::offset_t offset, 2074 const bool is_arm, 2075 std::vector<llvm::StringRef> &nameSlices, 2076 std::set<lldb::addr_t> &resolver_addresses, 2077 std::vector<TrieEntryWithOffset>& output) 2078 { 2079 if (!data.ValidOffset(offset)) 2080 return true; 2081 2082 const uint64_t terminalSize = data.GetULEB128(&offset); 2083 lldb::offset_t children_offset = offset + terminalSize; 2084 if ( terminalSize != 0 ) { 2085 TrieEntryWithOffset e (offset); 2086 e.entry.flags = data.GetULEB128(&offset); 2087 const char *import_name = NULL; 2088 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 2089 e.entry.address = 0; 2090 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2091 import_name = data.GetCStr(&offset); 2092 } 2093 else { 2094 e.entry.address = data.GetULEB128(&offset); 2095 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 2096 { 2097 e.entry.other = data.GetULEB128(&offset); 2098 uint64_t resolver_addr = e.entry.other; 2099 if (is_arm) 2100 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2101 resolver_addresses.insert(resolver_addr); 2102 } 2103 else 2104 e.entry.other = 0; 2105 } 2106 // Only add symbols that are reexport symbols with a valid import name 2107 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 2108 { 2109 std::string name; 2110 if (!nameSlices.empty()) 2111 { 2112 for (auto name_slice: nameSlices) 2113 name.append(name_slice.data(), name_slice.size()); 2114 } 2115 if (name.size() > 1) 2116 { 2117 // Skip the leading '_' 2118 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 2119 } 2120 if (import_name) 2121 { 2122 // Skip the leading '_' 2123 e.entry.import_name.SetCString(import_name+1); 2124 } 2125 output.push_back(e); 2126 } 2127 } 2128 2129 const uint8_t childrenCount = data.GetU8(&children_offset); 2130 for (uint8_t i=0; i < childrenCount; ++i) { 2131 const char *cstr = data.GetCStr(&children_offset); 2132 if (cstr) 2133 nameSlices.push_back(llvm::StringRef(cstr)); 2134 else 2135 return false; // Corrupt data 2136 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2137 if (childNodeOffset) 2138 { 2139 if (!ParseTrieEntries(data, 2140 childNodeOffset, 2141 is_arm, 2142 nameSlices, 2143 resolver_addresses, 2144 output)) 2145 { 2146 return false; 2147 } 2148 } 2149 nameSlices.pop_back(); 2150 } 2151 return true; 2152 } 2153 2154 size_t 2155 ObjectFileMachO::ParseSymtab () 2156 { 2157 Timer scoped_timer(__PRETTY_FUNCTION__, 2158 "ObjectFileMachO::ParseSymtab () module = %s", 2159 m_file.GetFilename().AsCString("")); 2160 ModuleSP module_sp (GetModule()); 2161 if (!module_sp) 2162 return 0; 2163 2164 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 2165 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 2166 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2167 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2168 FunctionStarts function_starts; 2169 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2170 uint32_t i; 2171 FileSpecList dylib_files; 2172 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 2173 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2174 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2175 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2176 2177 for (i=0; i<m_header.ncmds; ++i) 2178 { 2179 const lldb::offset_t cmd_offset = offset; 2180 // Read in the load command and load command size 2181 struct load_command lc; 2182 if (m_data.GetU32(&offset, &lc, 2) == NULL) 2183 break; 2184 // Watch for the symbol table load command 2185 switch (lc.cmd) 2186 { 2187 case LC_SYMTAB: 2188 symtab_load_command.cmd = lc.cmd; 2189 symtab_load_command.cmdsize = lc.cmdsize; 2190 // Read in the rest of the symtab load command 2191 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 2192 return 0; 2193 if (symtab_load_command.symoff == 0) 2194 { 2195 if (log) 2196 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2197 return 0; 2198 } 2199 2200 if (symtab_load_command.stroff == 0) 2201 { 2202 if (log) 2203 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2204 return 0; 2205 } 2206 2207 if (symtab_load_command.nsyms == 0) 2208 { 2209 if (log) 2210 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2211 return 0; 2212 } 2213 2214 if (symtab_load_command.strsize == 0) 2215 { 2216 if (log) 2217 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2218 return 0; 2219 } 2220 break; 2221 2222 case LC_DYLD_INFO: 2223 case LC_DYLD_INFO_ONLY: 2224 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 2225 { 2226 dyld_info.cmd = lc.cmd; 2227 dyld_info.cmdsize = lc.cmdsize; 2228 } 2229 else 2230 { 2231 memset (&dyld_info, 0, sizeof(dyld_info)); 2232 } 2233 break; 2234 2235 case LC_LOAD_DYLIB: 2236 case LC_LOAD_WEAK_DYLIB: 2237 case LC_REEXPORT_DYLIB: 2238 case LC_LOADFVMLIB: 2239 case LC_LOAD_UPWARD_DYLIB: 2240 { 2241 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2242 const char *path = m_data.PeekCStr(name_offset); 2243 if (path) 2244 { 2245 FileSpec file_spec(path, false); 2246 // Strip the path if there is @rpath, @executable, etc so we just use the basename 2247 if (path[0] == '@') 2248 file_spec.GetDirectory().Clear(); 2249 2250 if (lc.cmd == LC_REEXPORT_DYLIB) 2251 { 2252 m_reexported_dylibs.AppendIfUnique(file_spec); 2253 } 2254 2255 dylib_files.Append(file_spec); 2256 } 2257 } 2258 break; 2259 2260 case LC_FUNCTION_STARTS: 2261 function_starts_load_command.cmd = lc.cmd; 2262 function_starts_load_command.cmdsize = lc.cmdsize; 2263 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 2264 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 2265 break; 2266 2267 default: 2268 break; 2269 } 2270 offset = cmd_offset + lc.cmdsize; 2271 } 2272 2273 if (symtab_load_command.cmd) 2274 { 2275 Symtab *symtab = m_symtab_ap.get(); 2276 SectionList *section_list = GetSectionList(); 2277 if (section_list == NULL) 2278 return 0; 2279 2280 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2281 const ByteOrder byte_order = m_data.GetByteOrder(); 2282 bool bit_width_32 = addr_byte_size == 4; 2283 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2284 2285 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 2286 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 2287 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 2288 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 2289 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 2290 2291 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 2292 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2293 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2294 2295 ProcessSP process_sp (m_process_wp.lock()); 2296 Process *process = process_sp.get(); 2297 2298 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2299 2300 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) 2301 { 2302 Target &target = process->GetTarget(); 2303 2304 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2305 2306 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2307 // Reading mach file from memory in a process or core file... 2308 2309 if (linkedit_section_sp) 2310 { 2311 addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 2312 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) 2313 { 2314 // We might be trying to access the symbol table before the __LINKEDIT's load 2315 // address has been set in the target. We can't fail to read the symbol table, 2316 // so calculate the right address manually 2317 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2318 } 2319 2320 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2321 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 2322 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 2323 2324 bool data_was_read = false; 2325 2326 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2327 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 2328 { 2329 // This mach-o memory file is in the dyld shared cache. If this 2330 // program is not remote and this is iOS, then this process will 2331 // share the same shared cache as the process we are debugging and 2332 // we can read the entire __LINKEDIT from the address space in this 2333 // process. This is a needed optimization that is used for local iOS 2334 // debugging only since all shared libraries in the shared cache do 2335 // not have corresponding files that exist in the file system of the 2336 // device. They have been combined into a single file. This means we 2337 // always have to load these files from memory. All of the symbol and 2338 // string tables from all of the __LINKEDIT sections from the shared 2339 // libraries in the shared cache have been merged into a single large 2340 // symbol and string table. Reading all of this symbol and string table 2341 // data across can slow down debug launch times, so we optimize this by 2342 // reading the memory for the __LINKEDIT section from this process. 2343 2344 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 2345 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 2346 bool use_lldb_cache = true; 2347 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 2348 { 2349 use_lldb_cache = false; 2350 ModuleSP module_sp (GetModule()); 2351 if (module_sp) 2352 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 2353 2354 } 2355 2356 PlatformSP platform_sp (target.GetPlatform()); 2357 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 2358 { 2359 data_was_read = true; 2360 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 2361 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 2362 if (function_starts_load_command.cmd) 2363 { 2364 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2365 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 2366 } 2367 } 2368 } 2369 #endif 2370 2371 if (!data_was_read) 2372 { 2373 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 2374 { 2375 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 2376 if (nlist_data_sp) 2377 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2378 // Load strings individually from memory when loading from memory since shared cache 2379 // string tables contain strings for all symbols from all shared cached libraries 2380 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 2381 //if (strtab_data_sp) 2382 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2383 if (m_dysymtab.nindirectsyms != 0) 2384 { 2385 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 2386 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2387 if (indirect_syms_data_sp) 2388 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 2389 } 2390 } 2391 2392 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 2393 { 2394 if (function_starts_load_command.cmd) 2395 { 2396 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2397 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 2398 if (func_start_data_sp) 2399 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 2400 } 2401 } 2402 } 2403 } 2404 } 2405 else 2406 { 2407 nlist_data.SetData (m_data, 2408 symtab_load_command.symoff, 2409 nlist_data_byte_size); 2410 strtab_data.SetData (m_data, 2411 symtab_load_command.stroff, 2412 strtab_data_byte_size); 2413 2414 if (dyld_info.export_size > 0) 2415 { 2416 dyld_trie_data.SetData (m_data, 2417 dyld_info.export_off, 2418 dyld_info.export_size); 2419 } 2420 2421 if (m_dysymtab.nindirectsyms != 0) 2422 { 2423 indirect_symbol_index_data.SetData (m_data, 2424 m_dysymtab.indirectsymoff, 2425 m_dysymtab.nindirectsyms * 4); 2426 } 2427 if (function_starts_load_command.cmd) 2428 { 2429 function_starts_data.SetData (m_data, 2430 function_starts_load_command.dataoff, 2431 function_starts_load_command.datasize); 2432 } 2433 } 2434 2435 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2436 { 2437 if (log) 2438 module_sp->LogMessage(log, "failed to read nlist data"); 2439 return 0; 2440 } 2441 2442 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2443 if (!have_strtab_data) 2444 { 2445 if (process) 2446 { 2447 if (strtab_addr == LLDB_INVALID_ADDRESS) 2448 { 2449 if (log) 2450 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2451 return 0; 2452 } 2453 } 2454 else 2455 { 2456 if (log) 2457 module_sp->LogMessage(log, "failed to read strtab data"); 2458 return 0; 2459 } 2460 } 2461 2462 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2463 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2464 const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2465 const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2466 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2467 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2468 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2469 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2470 SectionSP data_dirty_section_sp(section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2471 SectionSP data_const_section_sp(section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2472 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2473 SectionSP eh_frame_section_sp; 2474 if (text_section_sp.get()) 2475 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2476 else 2477 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2478 2479 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2480 2481 // lldb works best if it knows the start address of all functions in a module. 2482 // Linker symbols or debug info are normally the best source of information for start addr / size but 2483 // they may be stripped in a released binary. 2484 // Two additional sources of information exist in Mach-O binaries: 2485 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2486 // binary, relative to the text section. 2487 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2488 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2489 // Binaries built to run on older releases may need to use eh_frame information. 2490 2491 if (text_section_sp && function_starts_data.GetByteSize()) 2492 { 2493 FunctionStarts::Entry function_start_entry; 2494 function_start_entry.data = false; 2495 lldb::offset_t function_start_offset = 0; 2496 function_start_entry.addr = text_section_sp->GetFileAddress(); 2497 uint64_t delta; 2498 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2499 { 2500 // Now append the current entry 2501 function_start_entry.addr += delta; 2502 function_starts.Append(function_start_entry); 2503 } 2504 } 2505 else 2506 { 2507 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2508 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2509 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2510 // the module. 2511 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2512 { 2513 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindEHFrame, true); 2514 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2515 eh_frame.GetFunctionAddressAndSizeVector (functions); 2516 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2517 size_t count = functions.GetSize(); 2518 for (size_t i = 0; i < count; ++i) 2519 { 2520 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2521 if (func) 2522 { 2523 FunctionStarts::Entry function_start_entry; 2524 function_start_entry.addr = func->base - text_base_addr; 2525 function_starts.Append(function_start_entry); 2526 } 2527 } 2528 } 2529 } 2530 2531 const size_t function_starts_count = function_starts.GetSize(); 2532 2533 const user_id_t TEXT_eh_frame_sectID = 2534 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2535 : static_cast<user_id_t>(NO_SECT); 2536 2537 lldb::offset_t nlist_data_offset = 0; 2538 2539 uint32_t N_SO_index = UINT32_MAX; 2540 2541 MachSymtabSectionInfo section_info (section_list); 2542 std::vector<uint32_t> N_FUN_indexes; 2543 std::vector<uint32_t> N_NSYM_indexes; 2544 std::vector<uint32_t> N_INCL_indexes; 2545 std::vector<uint32_t> N_BRAC_indexes; 2546 std::vector<uint32_t> N_COMM_indexes; 2547 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2548 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2549 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2550 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2551 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2552 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2553 // Any symbols that get merged into another will get an entry 2554 // in this map so we know 2555 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2556 uint32_t nlist_idx = 0; 2557 Symbol *symbol_ptr = NULL; 2558 2559 uint32_t sym_idx = 0; 2560 Symbol *sym = NULL; 2561 size_t num_syms = 0; 2562 std::string memory_symbol_name; 2563 uint32_t unmapped_local_symbols_found = 0; 2564 2565 std::vector<TrieEntryWithOffset> trie_entries; 2566 std::set<lldb::addr_t> resolver_addresses; 2567 2568 if (dyld_trie_data.GetByteSize() > 0) 2569 { 2570 std::vector<llvm::StringRef> nameSlices; 2571 ParseTrieEntries (dyld_trie_data, 2572 0, 2573 is_arm, 2574 nameSlices, 2575 resolver_addresses, 2576 trie_entries); 2577 2578 ConstString text_segment_name ("__TEXT"); 2579 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2580 if (text_segment_sp) 2581 { 2582 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2583 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2584 { 2585 for (auto &e : trie_entries) 2586 e.entry.address += text_segment_file_addr; 2587 } 2588 } 2589 } 2590 2591 typedef std::set<ConstString> IndirectSymbols; 2592 IndirectSymbols indirect_symbol_names; 2593 2594 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2595 2596 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2597 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2598 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2599 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2600 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2601 // nlist parser to ignore all LOCAL symbols. 2602 2603 if (m_header.flags & 0x80000000u) 2604 { 2605 // Before we can start mapping the DSC, we need to make certain the target process is actually 2606 // using the cache we can find. 2607 2608 // Next we need to determine the correct path for the dyld shared cache. 2609 2610 ArchSpec header_arch; 2611 GetArchitecture(header_arch); 2612 char dsc_path[PATH_MAX]; 2613 2614 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2615 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2616 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2617 header_arch.GetArchitectureName()); 2618 2619 FileSpec dsc_filespec(dsc_path, false); 2620 2621 // We need definitions of two structures in the on-disk DSC, copy them here manually 2622 struct lldb_copy_dyld_cache_header_v0 2623 { 2624 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2625 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2626 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2627 uint32_t imagesOffset; 2628 uint32_t imagesCount; 2629 uint64_t dyldBaseAddress; 2630 uint64_t codeSignatureOffset; 2631 uint64_t codeSignatureSize; 2632 uint64_t slideInfoOffset; 2633 uint64_t slideInfoSize; 2634 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2635 uint64_t localSymbolsSize; // size of local symbols information 2636 }; 2637 2638 struct lldb_copy_dyld_cache_header_v1 2639 { 2640 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2641 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2642 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2643 uint32_t imagesOffset; 2644 uint32_t imagesCount; 2645 uint64_t dyldBaseAddress; 2646 uint64_t codeSignatureOffset; 2647 uint64_t codeSignatureSize; 2648 uint64_t slideInfoOffset; 2649 uint64_t slideInfoSize; 2650 uint64_t localSymbolsOffset; 2651 uint64_t localSymbolsSize; 2652 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2653 }; 2654 2655 struct lldb_copy_dyld_cache_mapping_info 2656 { 2657 uint64_t address; 2658 uint64_t size; 2659 uint64_t fileOffset; 2660 uint32_t maxProt; 2661 uint32_t initProt; 2662 }; 2663 2664 struct lldb_copy_dyld_cache_local_symbols_info 2665 { 2666 uint32_t nlistOffset; 2667 uint32_t nlistCount; 2668 uint32_t stringsOffset; 2669 uint32_t stringsSize; 2670 uint32_t entriesOffset; 2671 uint32_t entriesCount; 2672 }; 2673 2674 struct lldb_copy_dyld_cache_local_symbols_entry 2675 { 2676 uint32_t dylibOffset; 2677 uint32_t nlistStartIndex; 2678 uint32_t nlistCount; 2679 }; 2680 2681 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2682 The dyld_cache_local_symbols_info structure gives us three things: 2683 1. The start and count of the nlist records in the dyld_shared_cache file 2684 2. The start and size of the strings for these nlist records 2685 3. The start and count of dyld_cache_local_symbols_entry entries 2686 2687 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2688 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2689 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2690 and the count of how many nlist records there are for this dylib/framework. 2691 */ 2692 2693 // Process the dsc header to find the unmapped symbols 2694 // 2695 // Save some VM space, do not map the entire cache in one shot. 2696 2697 DataBufferSP dsc_data_sp; 2698 dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2699 2700 if (dsc_data_sp) 2701 { 2702 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2703 2704 char version_str[17]; 2705 int version = -1; 2706 lldb::offset_t offset = 0; 2707 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2708 version_str[16] = '\0'; 2709 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2710 { 2711 int v; 2712 if (::sscanf (version_str + 6, "%d", &v) == 1) 2713 { 2714 version = v; 2715 } 2716 } 2717 2718 UUID dsc_uuid; 2719 if (version >= 1) 2720 { 2721 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2722 uint8_t uuid_bytes[sizeof (uuid_t)]; 2723 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2724 dsc_uuid.SetBytes (uuid_bytes); 2725 } 2726 2727 bool uuid_match = true; 2728 if (dsc_uuid.IsValid() && process) 2729 { 2730 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2731 2732 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2733 { 2734 // The on-disk dyld_shared_cache file is not the same as the one in this 2735 // process' memory, don't use it. 2736 uuid_match = false; 2737 ModuleSP module_sp (GetModule()); 2738 if (module_sp) 2739 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2740 } 2741 } 2742 2743 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2744 2745 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2746 2747 // If the mappingOffset points to a location inside the header, we've 2748 // opened an old dyld shared cache, and should not proceed further. 2749 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2750 { 2751 2752 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2753 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2754 offset = 0; 2755 2756 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2757 // in the shared library cache need to be adjusted by an offset to match up with the 2758 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2759 // recorded in mapping_offset_value. 2760 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2761 2762 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2763 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2764 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2765 2766 if (localSymbolsOffset && localSymbolsSize) 2767 { 2768 // Map the local symbols 2769 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) 2770 { 2771 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2772 2773 offset = 0; 2774 2775 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2776 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2777 UndefinedNameToDescMap undefined_name_to_desc; 2778 SymbolIndexToName reexport_shlib_needs_fixup; 2779 2780 2781 // Read the local_symbols_infos struct in one shot 2782 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2783 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2784 2785 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2786 2787 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2788 2789 offset = local_symbols_info.entriesOffset; 2790 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2791 { 2792 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2793 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2794 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2795 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2796 2797 if (header_file_offset == local_symbols_entry.dylibOffset) 2798 { 2799 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2800 2801 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2802 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2803 num_syms = symtab->GetNumSymbols(); 2804 2805 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2806 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2807 2808 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2809 { 2810 ///////////////////////////// 2811 { 2812 struct nlist_64 nlist; 2813 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2814 break; 2815 2816 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2817 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2818 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2819 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2820 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2821 2822 SymbolType type = eSymbolTypeInvalid; 2823 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2824 2825 if (symbol_name == NULL) 2826 { 2827 // No symbol should be NULL, even the symbols with no 2828 // string values should have an offset zero which points 2829 // to an empty C-string 2830 Host::SystemLog (Host::eSystemLogError, 2831 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2832 entry_index, 2833 nlist.n_strx, 2834 module_sp->GetFileSpec().GetPath().c_str()); 2835 continue; 2836 } 2837 if (symbol_name[0] == '\0') 2838 symbol_name = NULL; 2839 2840 const char *symbol_name_non_abi_mangled = NULL; 2841 2842 SectionSP symbol_section; 2843 uint32_t symbol_byte_size = 0; 2844 bool add_nlist = true; 2845 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2846 bool demangled_is_synthesized = false; 2847 bool is_gsym = false; 2848 bool set_value = true; 2849 2850 assert (sym_idx < num_syms); 2851 2852 sym[sym_idx].SetDebug (is_debug); 2853 2854 if (is_debug) 2855 { 2856 switch (nlist.n_type) 2857 { 2858 case N_GSYM: 2859 // global symbol: name,,NO_SECT,type,0 2860 // Sometimes the N_GSYM value contains the address. 2861 2862 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2863 // have the same address, but we want to ensure that we always find only the real symbol, 2864 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2865 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2866 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2867 // same address. 2868 2869 is_gsym = true; 2870 sym[sym_idx].SetExternal(true); 2871 2872 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 2873 { 2874 llvm::StringRef symbol_name_ref(symbol_name); 2875 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2876 { 2877 symbol_name_non_abi_mangled = symbol_name + 1; 2878 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2879 type = eSymbolTypeObjCClass; 2880 demangled_is_synthesized = true; 2881 2882 } 2883 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2884 { 2885 symbol_name_non_abi_mangled = symbol_name + 1; 2886 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2887 type = eSymbolTypeObjCMetaClass; 2888 demangled_is_synthesized = true; 2889 } 2890 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2891 { 2892 symbol_name_non_abi_mangled = symbol_name + 1; 2893 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2894 type = eSymbolTypeObjCIVar; 2895 demangled_is_synthesized = true; 2896 } 2897 } 2898 else 2899 { 2900 if (nlist.n_value != 0) 2901 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2902 type = eSymbolTypeData; 2903 } 2904 break; 2905 2906 case N_FNAME: 2907 // procedure name (f77 kludge): name,,NO_SECT,0,0 2908 type = eSymbolTypeCompiler; 2909 break; 2910 2911 case N_FUN: 2912 // procedure: name,,n_sect,linenumber,address 2913 if (symbol_name) 2914 { 2915 type = eSymbolTypeCode; 2916 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2917 2918 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2919 // We use the current number of symbols in the symbol table in lieu of 2920 // using nlist_idx in case we ever start trimming entries out 2921 N_FUN_indexes.push_back(sym_idx); 2922 } 2923 else 2924 { 2925 type = eSymbolTypeCompiler; 2926 2927 if ( !N_FUN_indexes.empty() ) 2928 { 2929 // Copy the size of the function into the original STAB entry so we don't have 2930 // to hunt for it later 2931 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2932 N_FUN_indexes.pop_back(); 2933 // We don't really need the end function STAB as it contains the size which 2934 // we already placed with the original symbol, so don't add it if we want a 2935 // minimal symbol table 2936 add_nlist = false; 2937 } 2938 } 2939 break; 2940 2941 case N_STSYM: 2942 // static symbol: name,,n_sect,type,address 2943 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2944 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2945 type = eSymbolTypeData; 2946 break; 2947 2948 case N_LCSYM: 2949 // .lcomm symbol: name,,n_sect,type,address 2950 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2951 type = eSymbolTypeCommonBlock; 2952 break; 2953 2954 case N_BNSYM: 2955 // We use the current number of symbols in the symbol table in lieu of 2956 // using nlist_idx in case we ever start trimming entries out 2957 // Skip these if we want minimal symbol tables 2958 add_nlist = false; 2959 break; 2960 2961 case N_ENSYM: 2962 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2963 // so that we can always skip the entire symbol if we need to navigate 2964 // more quickly at the source level when parsing STABS 2965 // Skip these if we want minimal symbol tables 2966 add_nlist = false; 2967 break; 2968 2969 case N_OPT: 2970 // emitted with gcc2_compiled and in gcc source 2971 type = eSymbolTypeCompiler; 2972 break; 2973 2974 case N_RSYM: 2975 // register sym: name,,NO_SECT,type,register 2976 type = eSymbolTypeVariable; 2977 break; 2978 2979 case N_SLINE: 2980 // src line: 0,,n_sect,linenumber,address 2981 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2982 type = eSymbolTypeLineEntry; 2983 break; 2984 2985 case N_SSYM: 2986 // structure elt: name,,NO_SECT,type,struct_offset 2987 type = eSymbolTypeVariableType; 2988 break; 2989 2990 case N_SO: 2991 // source file name 2992 type = eSymbolTypeSourceFile; 2993 if (symbol_name == NULL) 2994 { 2995 add_nlist = false; 2996 if (N_SO_index != UINT32_MAX) 2997 { 2998 // Set the size of the N_SO to the terminating index of this N_SO 2999 // so that we can always skip the entire N_SO if we need to navigate 3000 // more quickly at the source level when parsing STABS 3001 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3002 symbol_ptr->SetByteSize(sym_idx); 3003 symbol_ptr->SetSizeIsSibling(true); 3004 } 3005 N_NSYM_indexes.clear(); 3006 N_INCL_indexes.clear(); 3007 N_BRAC_indexes.clear(); 3008 N_COMM_indexes.clear(); 3009 N_FUN_indexes.clear(); 3010 N_SO_index = UINT32_MAX; 3011 } 3012 else 3013 { 3014 // We use the current number of symbols in the symbol table in lieu of 3015 // using nlist_idx in case we ever start trimming entries out 3016 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3017 if (N_SO_has_full_path) 3018 { 3019 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3020 { 3021 // We have two consecutive N_SO entries where the first contains a directory 3022 // and the second contains a full path. 3023 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3024 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3025 add_nlist = false; 3026 } 3027 else 3028 { 3029 // This is the first entry in a N_SO that contains a directory or 3030 // a full path to the source file 3031 N_SO_index = sym_idx; 3032 } 3033 } 3034 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3035 { 3036 // This is usually the second N_SO entry that contains just the filename, 3037 // so here we combine it with the first one if we are minimizing the symbol table 3038 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3039 if (so_path && so_path[0]) 3040 { 3041 std::string full_so_path (so_path); 3042 const size_t double_slash_pos = full_so_path.find("//"); 3043 if (double_slash_pos != std::string::npos) 3044 { 3045 // The linker has been generating bad N_SO entries with doubled up paths 3046 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3047 // and the second is the directory for the source file so you end up with 3048 // a path that looks like "/tmp/src//tmp/src/" 3049 FileSpec so_dir(so_path, false); 3050 if (!so_dir.Exists()) 3051 { 3052 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3053 if (so_dir.Exists()) 3054 { 3055 // Trim off the incorrect path 3056 full_so_path.erase(0, double_slash_pos + 1); 3057 } 3058 } 3059 } 3060 if (*full_so_path.rbegin() != '/') 3061 full_so_path += '/'; 3062 full_so_path += symbol_name; 3063 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3064 add_nlist = false; 3065 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3066 } 3067 } 3068 else 3069 { 3070 // This could be a relative path to a N_SO 3071 N_SO_index = sym_idx; 3072 } 3073 } 3074 break; 3075 3076 case N_OSO: 3077 // object file name: name,,0,0,st_mtime 3078 type = eSymbolTypeObjectFile; 3079 break; 3080 3081 case N_LSYM: 3082 // local sym: name,,NO_SECT,type,offset 3083 type = eSymbolTypeLocal; 3084 break; 3085 3086 //---------------------------------------------------------------------- 3087 // INCL scopes 3088 //---------------------------------------------------------------------- 3089 case N_BINCL: 3090 // include file beginning: name,,NO_SECT,0,sum 3091 // We use the current number of symbols in the symbol table in lieu of 3092 // using nlist_idx in case we ever start trimming entries out 3093 N_INCL_indexes.push_back(sym_idx); 3094 type = eSymbolTypeScopeBegin; 3095 break; 3096 3097 case N_EINCL: 3098 // include file end: name,,NO_SECT,0,0 3099 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3100 // so that we can always skip the entire symbol if we need to navigate 3101 // more quickly at the source level when parsing STABS 3102 if ( !N_INCL_indexes.empty() ) 3103 { 3104 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3105 symbol_ptr->SetByteSize(sym_idx + 1); 3106 symbol_ptr->SetSizeIsSibling(true); 3107 N_INCL_indexes.pop_back(); 3108 } 3109 type = eSymbolTypeScopeEnd; 3110 break; 3111 3112 case N_SOL: 3113 // #included file name: name,,n_sect,0,address 3114 type = eSymbolTypeHeaderFile; 3115 3116 // We currently don't use the header files on darwin 3117 add_nlist = false; 3118 break; 3119 3120 case N_PARAMS: 3121 // compiler parameters: name,,NO_SECT,0,0 3122 type = eSymbolTypeCompiler; 3123 break; 3124 3125 case N_VERSION: 3126 // compiler version: name,,NO_SECT,0,0 3127 type = eSymbolTypeCompiler; 3128 break; 3129 3130 case N_OLEVEL: 3131 // compiler -O level: name,,NO_SECT,0,0 3132 type = eSymbolTypeCompiler; 3133 break; 3134 3135 case N_PSYM: 3136 // parameter: name,,NO_SECT,type,offset 3137 type = eSymbolTypeVariable; 3138 break; 3139 3140 case N_ENTRY: 3141 // alternate entry: name,,n_sect,linenumber,address 3142 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3143 type = eSymbolTypeLineEntry; 3144 break; 3145 3146 //---------------------------------------------------------------------- 3147 // Left and Right Braces 3148 //---------------------------------------------------------------------- 3149 case N_LBRAC: 3150 // left bracket: 0,,NO_SECT,nesting level,address 3151 // We use the current number of symbols in the symbol table in lieu of 3152 // using nlist_idx in case we ever start trimming entries out 3153 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3154 N_BRAC_indexes.push_back(sym_idx); 3155 type = eSymbolTypeScopeBegin; 3156 break; 3157 3158 case N_RBRAC: 3159 // right bracket: 0,,NO_SECT,nesting level,address 3160 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3161 // so that we can always skip the entire symbol if we need to navigate 3162 // more quickly at the source level when parsing STABS 3163 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3164 if ( !N_BRAC_indexes.empty() ) 3165 { 3166 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3167 symbol_ptr->SetByteSize(sym_idx + 1); 3168 symbol_ptr->SetSizeIsSibling(true); 3169 N_BRAC_indexes.pop_back(); 3170 } 3171 type = eSymbolTypeScopeEnd; 3172 break; 3173 3174 case N_EXCL: 3175 // deleted include file: name,,NO_SECT,0,sum 3176 type = eSymbolTypeHeaderFile; 3177 break; 3178 3179 //---------------------------------------------------------------------- 3180 // COMM scopes 3181 //---------------------------------------------------------------------- 3182 case N_BCOMM: 3183 // begin common: name,,NO_SECT,0,0 3184 // We use the current number of symbols in the symbol table in lieu of 3185 // using nlist_idx in case we ever start trimming entries out 3186 type = eSymbolTypeScopeBegin; 3187 N_COMM_indexes.push_back(sym_idx); 3188 break; 3189 3190 case N_ECOML: 3191 // end common (local name): 0,,n_sect,0,address 3192 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3193 // Fall through 3194 3195 case N_ECOMM: 3196 // end common: name,,n_sect,0,0 3197 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3198 // so that we can always skip the entire symbol if we need to navigate 3199 // more quickly at the source level when parsing STABS 3200 if ( !N_COMM_indexes.empty() ) 3201 { 3202 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3203 symbol_ptr->SetByteSize(sym_idx + 1); 3204 symbol_ptr->SetSizeIsSibling(true); 3205 N_COMM_indexes.pop_back(); 3206 } 3207 type = eSymbolTypeScopeEnd; 3208 break; 3209 3210 case N_LENG: 3211 // second stab entry with length information 3212 type = eSymbolTypeAdditional; 3213 break; 3214 3215 default: break; 3216 } 3217 } 3218 else 3219 { 3220 //uint8_t n_pext = N_PEXT & nlist.n_type; 3221 uint8_t n_type = N_TYPE & nlist.n_type; 3222 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3223 3224 switch (n_type) 3225 { 3226 case N_INDR: 3227 { 3228 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3229 if (reexport_name_cstr && reexport_name_cstr[0]) 3230 { 3231 type = eSymbolTypeReExported; 3232 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3233 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3234 set_value = false; 3235 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3236 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3237 } 3238 else 3239 type = eSymbolTypeUndefined; 3240 } 3241 break; 3242 3243 case N_UNDF: 3244 if (symbol_name && symbol_name[0]) 3245 { 3246 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3247 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3248 } 3249 // Fall through 3250 case N_PBUD: 3251 type = eSymbolTypeUndefined; 3252 break; 3253 3254 case N_ABS: 3255 type = eSymbolTypeAbsolute; 3256 break; 3257 3258 case N_SECT: 3259 { 3260 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3261 3262 if (symbol_section == NULL) 3263 { 3264 // TODO: warn about this? 3265 add_nlist = false; 3266 break; 3267 } 3268 3269 if (TEXT_eh_frame_sectID == nlist.n_sect) 3270 { 3271 type = eSymbolTypeException; 3272 } 3273 else 3274 { 3275 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3276 3277 switch (section_type) 3278 { 3279 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3280 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3281 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3282 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3283 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3284 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3285 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3286 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3287 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3288 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3289 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3290 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3291 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3292 default: 3293 switch (symbol_section->GetType()) 3294 { 3295 case lldb::eSectionTypeCode: 3296 type = eSymbolTypeCode; 3297 break; 3298 case eSectionTypeData: 3299 case eSectionTypeDataCString: // Inlined C string data 3300 case eSectionTypeDataCStringPointers: // Pointers to C string data 3301 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 3302 case eSectionTypeData4: 3303 case eSectionTypeData8: 3304 case eSectionTypeData16: 3305 type = eSymbolTypeData; 3306 break; 3307 default: 3308 break; 3309 } 3310 break; 3311 } 3312 3313 if (type == eSymbolTypeInvalid) 3314 { 3315 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3316 if (symbol_section->IsDescendant (text_section_sp.get())) 3317 { 3318 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3319 S_ATTR_SELF_MODIFYING_CODE | 3320 S_ATTR_SOME_INSTRUCTIONS)) 3321 type = eSymbolTypeData; 3322 else 3323 type = eSymbolTypeCode; 3324 } 3325 else if (symbol_section->IsDescendant(data_section_sp.get()) || 3326 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 3327 symbol_section->IsDescendant(data_const_section_sp.get())) 3328 { 3329 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3330 { 3331 type = eSymbolTypeRuntime; 3332 3333 if (symbol_name && 3334 symbol_name[0] == '_' && 3335 symbol_name[1] == 'O' && 3336 symbol_name[2] == 'B') 3337 { 3338 llvm::StringRef symbol_name_ref(symbol_name); 3339 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3340 { 3341 symbol_name_non_abi_mangled = symbol_name + 1; 3342 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3343 type = eSymbolTypeObjCClass; 3344 demangled_is_synthesized = true; 3345 } 3346 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3347 { 3348 symbol_name_non_abi_mangled = symbol_name + 1; 3349 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3350 type = eSymbolTypeObjCMetaClass; 3351 demangled_is_synthesized = true; 3352 } 3353 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3354 { 3355 symbol_name_non_abi_mangled = symbol_name + 1; 3356 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3357 type = eSymbolTypeObjCIVar; 3358 demangled_is_synthesized = true; 3359 } 3360 } 3361 } 3362 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3363 { 3364 type = eSymbolTypeException; 3365 } 3366 else 3367 { 3368 type = eSymbolTypeData; 3369 } 3370 } 3371 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3372 { 3373 type = eSymbolTypeTrampoline; 3374 } 3375 else if (symbol_section->IsDescendant(objc_section_sp.get())) 3376 { 3377 type = eSymbolTypeRuntime; 3378 if (symbol_name && symbol_name[0] == '.') 3379 { 3380 llvm::StringRef symbol_name_ref(symbol_name); 3381 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3382 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3383 { 3384 symbol_name_non_abi_mangled = symbol_name; 3385 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3386 type = eSymbolTypeObjCClass; 3387 demangled_is_synthesized = true; 3388 } 3389 } 3390 } 3391 } 3392 } 3393 } 3394 break; 3395 } 3396 } 3397 3398 if (add_nlist) 3399 { 3400 uint64_t symbol_value = nlist.n_value; 3401 if (symbol_name_non_abi_mangled) 3402 { 3403 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3404 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3405 } 3406 else 3407 { 3408 bool symbol_name_is_mangled = false; 3409 3410 if (symbol_name && symbol_name[0] == '_') 3411 { 3412 symbol_name_is_mangled = symbol_name[1] == '_'; 3413 symbol_name++; // Skip the leading underscore 3414 } 3415 3416 if (symbol_name) 3417 { 3418 ConstString const_symbol_name(symbol_name); 3419 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3420 if (is_gsym && is_debug) 3421 { 3422 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3423 if (gsym_name) 3424 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3425 } 3426 } 3427 } 3428 if (symbol_section) 3429 { 3430 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3431 if (symbol_byte_size == 0 && function_starts_count > 0) 3432 { 3433 addr_t symbol_lookup_file_addr = nlist.n_value; 3434 // Do an exact address match for non-ARM addresses, else get the closest since 3435 // the symbol might be a thumb symbol which has an address with bit zero set 3436 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3437 if (is_arm && func_start_entry) 3438 { 3439 // Verify that the function start address is the symbol address (ARM) 3440 // or the symbol address + 1 (thumb) 3441 if (func_start_entry->addr != symbol_lookup_file_addr && 3442 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3443 { 3444 // Not the right entry, NULL it out... 3445 func_start_entry = NULL; 3446 } 3447 } 3448 if (func_start_entry) 3449 { 3450 func_start_entry->data = true; 3451 3452 addr_t symbol_file_addr = func_start_entry->addr; 3453 uint32_t symbol_flags = 0; 3454 if (is_arm) 3455 { 3456 if (symbol_file_addr & 1) 3457 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3458 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3459 } 3460 3461 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3462 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3463 if (next_func_start_entry) 3464 { 3465 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3466 // Be sure the clear the Thumb address bit when we calculate the size 3467 // from the current and next address 3468 if (is_arm) 3469 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3470 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3471 } 3472 else 3473 { 3474 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3475 } 3476 } 3477 } 3478 symbol_value -= section_file_addr; 3479 } 3480 3481 if (is_debug == false) 3482 { 3483 if (type == eSymbolTypeCode) 3484 { 3485 // See if we can find a N_FUN entry for any code symbols. 3486 // If we do find a match, and the name matches, then we 3487 // can merge the two into just the function symbol to avoid 3488 // duplicate entries in the symbol table 3489 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3490 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3491 if (range.first != range.second) 3492 { 3493 bool found_it = false; 3494 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3495 { 3496 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3497 { 3498 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3499 // We just need the flags from the linker symbol, so put these flags 3500 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3501 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3502 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3503 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3504 sym[pos->second].SetType (eSymbolTypeResolver); 3505 sym[sym_idx].Clear(); 3506 found_it = true; 3507 break; 3508 } 3509 } 3510 if (found_it) 3511 continue; 3512 } 3513 else 3514 { 3515 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3516 type = eSymbolTypeResolver; 3517 } 3518 } 3519 else if (type == eSymbolTypeData || 3520 type == eSymbolTypeObjCClass || 3521 type == eSymbolTypeObjCMetaClass || 3522 type == eSymbolTypeObjCIVar ) 3523 { 3524 // See if we can find a N_STSYM entry for any data symbols. 3525 // If we do find a match, and the name matches, then we 3526 // can merge the two into just the Static symbol to avoid 3527 // duplicate entries in the symbol table 3528 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3529 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3530 if (range.first != range.second) 3531 { 3532 bool found_it = false; 3533 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3534 { 3535 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3536 { 3537 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3538 // We just need the flags from the linker symbol, so put these flags 3539 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3540 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3541 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3542 sym[sym_idx].Clear(); 3543 found_it = true; 3544 break; 3545 } 3546 } 3547 if (found_it) 3548 continue; 3549 } 3550 else 3551 { 3552 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3553 if (gsym_name) 3554 { 3555 // Combine N_GSYM stab entries with the non stab symbol 3556 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 3557 if (pos != N_GSYM_name_to_sym_idx.end()) 3558 { 3559 const uint32_t GSYM_sym_idx = pos->second; 3560 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3561 // Copy the address, because often the N_GSYM address has an invalid address of zero 3562 // when the global is a common symbol 3563 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 3564 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 3565 // We just need the flags from the linker symbol, so put these flags 3566 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 3567 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3568 sym[sym_idx].Clear(); 3569 continue; 3570 } 3571 } 3572 } 3573 } 3574 } 3575 3576 sym[sym_idx].SetID (nlist_idx); 3577 sym[sym_idx].SetType (type); 3578 if (set_value) 3579 { 3580 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 3581 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 3582 } 3583 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3584 3585 if (symbol_byte_size > 0) 3586 sym[sym_idx].SetByteSize(symbol_byte_size); 3587 3588 if (demangled_is_synthesized) 3589 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3590 ++sym_idx; 3591 } 3592 else 3593 { 3594 sym[sym_idx].Clear(); 3595 } 3596 3597 } 3598 ///////////////////////////// 3599 } 3600 break; // No more entries to consider 3601 } 3602 } 3603 3604 for (const auto &pos :reexport_shlib_needs_fixup) 3605 { 3606 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3607 if (undef_pos != undefined_name_to_desc.end()) 3608 { 3609 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3610 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3611 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 3612 } 3613 } 3614 } 3615 } 3616 } 3617 } 3618 } 3619 3620 // Must reset this in case it was mutated above! 3621 nlist_data_offset = 0; 3622 #endif 3623 3624 if (nlist_data.GetByteSize() > 0) 3625 { 3626 3627 // If the sym array was not created while parsing the DSC unmapped 3628 // symbols, create it now. 3629 if (sym == NULL) 3630 { 3631 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3632 num_syms = symtab->GetNumSymbols(); 3633 } 3634 3635 if (unmapped_local_symbols_found) 3636 { 3637 assert(m_dysymtab.ilocalsym == 0); 3638 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3639 nlist_idx = m_dysymtab.nlocalsym; 3640 } 3641 else 3642 { 3643 nlist_idx = 0; 3644 } 3645 3646 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3647 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3648 UndefinedNameToDescMap undefined_name_to_desc; 3649 SymbolIndexToName reexport_shlib_needs_fixup; 3650 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3651 { 3652 struct nlist_64 nlist; 3653 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3654 break; 3655 3656 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3657 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3658 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3659 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3660 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3661 3662 SymbolType type = eSymbolTypeInvalid; 3663 const char *symbol_name = NULL; 3664 3665 if (have_strtab_data) 3666 { 3667 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3668 3669 if (symbol_name == NULL) 3670 { 3671 // No symbol should be NULL, even the symbols with no 3672 // string values should have an offset zero which points 3673 // to an empty C-string 3674 Host::SystemLog (Host::eSystemLogError, 3675 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3676 nlist_idx, 3677 nlist.n_strx, 3678 module_sp->GetFileSpec().GetPath().c_str()); 3679 continue; 3680 } 3681 if (symbol_name[0] == '\0') 3682 symbol_name = NULL; 3683 } 3684 else 3685 { 3686 const addr_t str_addr = strtab_addr + nlist.n_strx; 3687 Error str_error; 3688 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3689 symbol_name = memory_symbol_name.c_str(); 3690 } 3691 const char *symbol_name_non_abi_mangled = NULL; 3692 3693 SectionSP symbol_section; 3694 lldb::addr_t symbol_byte_size = 0; 3695 bool add_nlist = true; 3696 bool is_gsym = false; 3697 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3698 bool demangled_is_synthesized = false; 3699 bool set_value = true; 3700 assert (sym_idx < num_syms); 3701 3702 sym[sym_idx].SetDebug (is_debug); 3703 3704 if (is_debug) 3705 { 3706 switch (nlist.n_type) 3707 { 3708 case N_GSYM: 3709 // global symbol: name,,NO_SECT,type,0 3710 // Sometimes the N_GSYM value contains the address. 3711 3712 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3713 // have the same address, but we want to ensure that we always find only the real symbol, 3714 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3715 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3716 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3717 // same address. 3718 is_gsym = true; 3719 sym[sym_idx].SetExternal(true); 3720 3721 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 3722 { 3723 llvm::StringRef symbol_name_ref(symbol_name); 3724 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3725 { 3726 symbol_name_non_abi_mangled = symbol_name + 1; 3727 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3728 type = eSymbolTypeObjCClass; 3729 demangled_is_synthesized = true; 3730 3731 } 3732 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3733 { 3734 symbol_name_non_abi_mangled = symbol_name + 1; 3735 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3736 type = eSymbolTypeObjCMetaClass; 3737 demangled_is_synthesized = true; 3738 } 3739 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3740 { 3741 symbol_name_non_abi_mangled = symbol_name + 1; 3742 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3743 type = eSymbolTypeObjCIVar; 3744 demangled_is_synthesized = true; 3745 } 3746 } 3747 else 3748 { 3749 if (nlist.n_value != 0) 3750 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3751 type = eSymbolTypeData; 3752 } 3753 break; 3754 3755 case N_FNAME: 3756 // procedure name (f77 kludge): name,,NO_SECT,0,0 3757 type = eSymbolTypeCompiler; 3758 break; 3759 3760 case N_FUN: 3761 // procedure: name,,n_sect,linenumber,address 3762 if (symbol_name) 3763 { 3764 type = eSymbolTypeCode; 3765 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3766 3767 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3768 // We use the current number of symbols in the symbol table in lieu of 3769 // using nlist_idx in case we ever start trimming entries out 3770 N_FUN_indexes.push_back(sym_idx); 3771 } 3772 else 3773 { 3774 type = eSymbolTypeCompiler; 3775 3776 if ( !N_FUN_indexes.empty() ) 3777 { 3778 // Copy the size of the function into the original STAB entry so we don't have 3779 // to hunt for it later 3780 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3781 N_FUN_indexes.pop_back(); 3782 // We don't really need the end function STAB as it contains the size which 3783 // we already placed with the original symbol, so don't add it if we want a 3784 // minimal symbol table 3785 add_nlist = false; 3786 } 3787 } 3788 break; 3789 3790 case N_STSYM: 3791 // static symbol: name,,n_sect,type,address 3792 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3793 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3794 type = eSymbolTypeData; 3795 break; 3796 3797 case N_LCSYM: 3798 // .lcomm symbol: name,,n_sect,type,address 3799 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3800 type = eSymbolTypeCommonBlock; 3801 break; 3802 3803 case N_BNSYM: 3804 // We use the current number of symbols in the symbol table in lieu of 3805 // using nlist_idx in case we ever start trimming entries out 3806 // Skip these if we want minimal symbol tables 3807 add_nlist = false; 3808 break; 3809 3810 case N_ENSYM: 3811 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3812 // so that we can always skip the entire symbol if we need to navigate 3813 // more quickly at the source level when parsing STABS 3814 // Skip these if we want minimal symbol tables 3815 add_nlist = false; 3816 break; 3817 3818 3819 case N_OPT: 3820 // emitted with gcc2_compiled and in gcc source 3821 type = eSymbolTypeCompiler; 3822 break; 3823 3824 case N_RSYM: 3825 // register sym: name,,NO_SECT,type,register 3826 type = eSymbolTypeVariable; 3827 break; 3828 3829 case N_SLINE: 3830 // src line: 0,,n_sect,linenumber,address 3831 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3832 type = eSymbolTypeLineEntry; 3833 break; 3834 3835 case N_SSYM: 3836 // structure elt: name,,NO_SECT,type,struct_offset 3837 type = eSymbolTypeVariableType; 3838 break; 3839 3840 case N_SO: 3841 // source file name 3842 type = eSymbolTypeSourceFile; 3843 if (symbol_name == NULL) 3844 { 3845 add_nlist = false; 3846 if (N_SO_index != UINT32_MAX) 3847 { 3848 // Set the size of the N_SO to the terminating index of this N_SO 3849 // so that we can always skip the entire N_SO if we need to navigate 3850 // more quickly at the source level when parsing STABS 3851 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3852 symbol_ptr->SetByteSize(sym_idx); 3853 symbol_ptr->SetSizeIsSibling(true); 3854 } 3855 N_NSYM_indexes.clear(); 3856 N_INCL_indexes.clear(); 3857 N_BRAC_indexes.clear(); 3858 N_COMM_indexes.clear(); 3859 N_FUN_indexes.clear(); 3860 N_SO_index = UINT32_MAX; 3861 } 3862 else 3863 { 3864 // We use the current number of symbols in the symbol table in lieu of 3865 // using nlist_idx in case we ever start trimming entries out 3866 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3867 if (N_SO_has_full_path) 3868 { 3869 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3870 { 3871 // We have two consecutive N_SO entries where the first contains a directory 3872 // and the second contains a full path. 3873 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3874 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3875 add_nlist = false; 3876 } 3877 else 3878 { 3879 // This is the first entry in a N_SO that contains a directory or 3880 // a full path to the source file 3881 N_SO_index = sym_idx; 3882 } 3883 } 3884 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3885 { 3886 // This is usually the second N_SO entry that contains just the filename, 3887 // so here we combine it with the first one if we are minimizing the symbol table 3888 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName(lldb::eLanguageTypeUnknown).AsCString(); 3889 if (so_path && so_path[0]) 3890 { 3891 std::string full_so_path (so_path); 3892 const size_t double_slash_pos = full_so_path.find("//"); 3893 if (double_slash_pos != std::string::npos) 3894 { 3895 // The linker has been generating bad N_SO entries with doubled up paths 3896 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3897 // and the second is the directory for the source file so you end up with 3898 // a path that looks like "/tmp/src//tmp/src/" 3899 FileSpec so_dir(so_path, false); 3900 if (!so_dir.Exists()) 3901 { 3902 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3903 if (so_dir.Exists()) 3904 { 3905 // Trim off the incorrect path 3906 full_so_path.erase(0, double_slash_pos + 1); 3907 } 3908 } 3909 } 3910 if (*full_so_path.rbegin() != '/') 3911 full_so_path += '/'; 3912 full_so_path += symbol_name; 3913 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3914 add_nlist = false; 3915 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3916 } 3917 } 3918 else 3919 { 3920 // This could be a relative path to a N_SO 3921 N_SO_index = sym_idx; 3922 } 3923 } 3924 break; 3925 3926 case N_OSO: 3927 // object file name: name,,0,0,st_mtime 3928 type = eSymbolTypeObjectFile; 3929 break; 3930 3931 case N_LSYM: 3932 // local sym: name,,NO_SECT,type,offset 3933 type = eSymbolTypeLocal; 3934 break; 3935 3936 //---------------------------------------------------------------------- 3937 // INCL scopes 3938 //---------------------------------------------------------------------- 3939 case N_BINCL: 3940 // include file beginning: name,,NO_SECT,0,sum 3941 // We use the current number of symbols in the symbol table in lieu of 3942 // using nlist_idx in case we ever start trimming entries out 3943 N_INCL_indexes.push_back(sym_idx); 3944 type = eSymbolTypeScopeBegin; 3945 break; 3946 3947 case N_EINCL: 3948 // include file end: name,,NO_SECT,0,0 3949 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3950 // so that we can always skip the entire symbol if we need to navigate 3951 // more quickly at the source level when parsing STABS 3952 if ( !N_INCL_indexes.empty() ) 3953 { 3954 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3955 symbol_ptr->SetByteSize(sym_idx + 1); 3956 symbol_ptr->SetSizeIsSibling(true); 3957 N_INCL_indexes.pop_back(); 3958 } 3959 type = eSymbolTypeScopeEnd; 3960 break; 3961 3962 case N_SOL: 3963 // #included file name: name,,n_sect,0,address 3964 type = eSymbolTypeHeaderFile; 3965 3966 // We currently don't use the header files on darwin 3967 add_nlist = false; 3968 break; 3969 3970 case N_PARAMS: 3971 // compiler parameters: name,,NO_SECT,0,0 3972 type = eSymbolTypeCompiler; 3973 break; 3974 3975 case N_VERSION: 3976 // compiler version: name,,NO_SECT,0,0 3977 type = eSymbolTypeCompiler; 3978 break; 3979 3980 case N_OLEVEL: 3981 // compiler -O level: name,,NO_SECT,0,0 3982 type = eSymbolTypeCompiler; 3983 break; 3984 3985 case N_PSYM: 3986 // parameter: name,,NO_SECT,type,offset 3987 type = eSymbolTypeVariable; 3988 break; 3989 3990 case N_ENTRY: 3991 // alternate entry: name,,n_sect,linenumber,address 3992 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3993 type = eSymbolTypeLineEntry; 3994 break; 3995 3996 //---------------------------------------------------------------------- 3997 // Left and Right Braces 3998 //---------------------------------------------------------------------- 3999 case N_LBRAC: 4000 // left bracket: 0,,NO_SECT,nesting level,address 4001 // We use the current number of symbols in the symbol table in lieu of 4002 // using nlist_idx in case we ever start trimming entries out 4003 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4004 N_BRAC_indexes.push_back(sym_idx); 4005 type = eSymbolTypeScopeBegin; 4006 break; 4007 4008 case N_RBRAC: 4009 // right bracket: 0,,NO_SECT,nesting level,address 4010 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 4011 // so that we can always skip the entire symbol if we need to navigate 4012 // more quickly at the source level when parsing STABS 4013 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4014 if ( !N_BRAC_indexes.empty() ) 4015 { 4016 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4017 symbol_ptr->SetByteSize(sym_idx + 1); 4018 symbol_ptr->SetSizeIsSibling(true); 4019 N_BRAC_indexes.pop_back(); 4020 } 4021 type = eSymbolTypeScopeEnd; 4022 break; 4023 4024 case N_EXCL: 4025 // deleted include file: name,,NO_SECT,0,sum 4026 type = eSymbolTypeHeaderFile; 4027 break; 4028 4029 //---------------------------------------------------------------------- 4030 // COMM scopes 4031 //---------------------------------------------------------------------- 4032 case N_BCOMM: 4033 // begin common: name,,NO_SECT,0,0 4034 // We use the current number of symbols in the symbol table in lieu of 4035 // using nlist_idx in case we ever start trimming entries out 4036 type = eSymbolTypeScopeBegin; 4037 N_COMM_indexes.push_back(sym_idx); 4038 break; 4039 4040 case N_ECOML: 4041 // end common (local name): 0,,n_sect,0,address 4042 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4043 // Fall through 4044 4045 case N_ECOMM: 4046 // end common: name,,n_sect,0,0 4047 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 4048 // so that we can always skip the entire symbol if we need to navigate 4049 // more quickly at the source level when parsing STABS 4050 if ( !N_COMM_indexes.empty() ) 4051 { 4052 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4053 symbol_ptr->SetByteSize(sym_idx + 1); 4054 symbol_ptr->SetSizeIsSibling(true); 4055 N_COMM_indexes.pop_back(); 4056 } 4057 type = eSymbolTypeScopeEnd; 4058 break; 4059 4060 case N_LENG: 4061 // second stab entry with length information 4062 type = eSymbolTypeAdditional; 4063 break; 4064 4065 default: break; 4066 } 4067 } 4068 else 4069 { 4070 //uint8_t n_pext = N_PEXT & nlist.n_type; 4071 uint8_t n_type = N_TYPE & nlist.n_type; 4072 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4073 4074 switch (n_type) 4075 { 4076 case N_INDR: 4077 { 4078 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4079 if (reexport_name_cstr && reexport_name_cstr[0]) 4080 { 4081 type = eSymbolTypeReExported; 4082 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4083 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4084 set_value = false; 4085 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4086 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4087 } 4088 else 4089 type = eSymbolTypeUndefined; 4090 } 4091 break; 4092 4093 case N_UNDF: 4094 if (symbol_name && symbol_name[0]) 4095 { 4096 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 4097 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4098 } 4099 // Fall through 4100 case N_PBUD: 4101 type = eSymbolTypeUndefined; 4102 break; 4103 4104 case N_ABS: 4105 type = eSymbolTypeAbsolute; 4106 break; 4107 4108 case N_SECT: 4109 { 4110 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4111 4112 if (!symbol_section) 4113 { 4114 // TODO: warn about this? 4115 add_nlist = false; 4116 break; 4117 } 4118 4119 if (TEXT_eh_frame_sectID == nlist.n_sect) 4120 { 4121 type = eSymbolTypeException; 4122 } 4123 else 4124 { 4125 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4126 4127 switch (section_type) 4128 { 4129 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 4130 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 4131 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 4132 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 4133 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 4134 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 4135 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 4136 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 4137 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 4138 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 4139 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 4140 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 4141 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 4142 default: 4143 switch (symbol_section->GetType()) 4144 { 4145 case lldb::eSectionTypeCode: 4146 type = eSymbolTypeCode; 4147 break; 4148 case eSectionTypeData: 4149 case eSectionTypeDataCString: // Inlined C string data 4150 case eSectionTypeDataCStringPointers: // Pointers to C string data 4151 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 4152 case eSectionTypeData4: 4153 case eSectionTypeData8: 4154 case eSectionTypeData16: 4155 type = eSymbolTypeData; 4156 break; 4157 default: 4158 break; 4159 } 4160 break; 4161 } 4162 4163 if (type == eSymbolTypeInvalid) 4164 { 4165 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 4166 if (symbol_section->IsDescendant (text_section_sp.get())) 4167 { 4168 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4169 S_ATTR_SELF_MODIFYING_CODE | 4170 S_ATTR_SOME_INSTRUCTIONS)) 4171 type = eSymbolTypeData; 4172 else 4173 type = eSymbolTypeCode; 4174 } 4175 else 4176 if (symbol_section->IsDescendant(data_section_sp.get()) || 4177 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 4178 symbol_section->IsDescendant(data_const_section_sp.get())) 4179 { 4180 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 4181 { 4182 type = eSymbolTypeRuntime; 4183 4184 if (symbol_name && 4185 symbol_name[0] == '_' && 4186 symbol_name[1] == 'O' && 4187 symbol_name[2] == 'B') 4188 { 4189 llvm::StringRef symbol_name_ref(symbol_name); 4190 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 4191 { 4192 symbol_name_non_abi_mangled = symbol_name + 1; 4193 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 4194 type = eSymbolTypeObjCClass; 4195 demangled_is_synthesized = true; 4196 } 4197 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 4198 { 4199 symbol_name_non_abi_mangled = symbol_name + 1; 4200 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 4201 type = eSymbolTypeObjCMetaClass; 4202 demangled_is_synthesized = true; 4203 } 4204 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 4205 { 4206 symbol_name_non_abi_mangled = symbol_name + 1; 4207 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 4208 type = eSymbolTypeObjCIVar; 4209 demangled_is_synthesized = true; 4210 } 4211 } 4212 } 4213 else 4214 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 4215 { 4216 type = eSymbolTypeException; 4217 } 4218 else 4219 { 4220 type = eSymbolTypeData; 4221 } 4222 } 4223 else 4224 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 4225 { 4226 type = eSymbolTypeTrampoline; 4227 } 4228 else 4229 if (symbol_section->IsDescendant(objc_section_sp.get())) 4230 { 4231 type = eSymbolTypeRuntime; 4232 if (symbol_name && symbol_name[0] == '.') 4233 { 4234 llvm::StringRef symbol_name_ref(symbol_name); 4235 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 4236 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 4237 { 4238 symbol_name_non_abi_mangled = symbol_name; 4239 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4240 type = eSymbolTypeObjCClass; 4241 demangled_is_synthesized = true; 4242 } 4243 } 4244 } 4245 } 4246 } 4247 } 4248 break; 4249 } 4250 } 4251 4252 if (add_nlist) 4253 { 4254 uint64_t symbol_value = nlist.n_value; 4255 4256 if (symbol_name_non_abi_mangled) 4257 { 4258 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 4259 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 4260 } 4261 else 4262 { 4263 bool symbol_name_is_mangled = false; 4264 4265 if (symbol_name && symbol_name[0] == '_') 4266 { 4267 symbol_name_is_mangled = symbol_name[1] == '_'; 4268 symbol_name++; // Skip the leading underscore 4269 } 4270 4271 if (symbol_name) 4272 { 4273 ConstString const_symbol_name(symbol_name); 4274 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 4275 } 4276 } 4277 4278 if (is_gsym) 4279 { 4280 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4281 if (gsym_name) 4282 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4283 } 4284 4285 if (symbol_section) 4286 { 4287 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4288 if (symbol_byte_size == 0 && function_starts_count > 0) 4289 { 4290 addr_t symbol_lookup_file_addr = nlist.n_value; 4291 // Do an exact address match for non-ARM addresses, else get the closest since 4292 // the symbol might be a thumb symbol which has an address with bit zero set 4293 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 4294 if (is_arm && func_start_entry) 4295 { 4296 // Verify that the function start address is the symbol address (ARM) 4297 // or the symbol address + 1 (thumb) 4298 if (func_start_entry->addr != symbol_lookup_file_addr && 4299 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 4300 { 4301 // Not the right entry, NULL it out... 4302 func_start_entry = NULL; 4303 } 4304 } 4305 if (func_start_entry) 4306 { 4307 func_start_entry->data = true; 4308 4309 addr_t symbol_file_addr = func_start_entry->addr; 4310 if (is_arm) 4311 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4312 4313 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4314 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4315 if (next_func_start_entry) 4316 { 4317 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4318 // Be sure the clear the Thumb address bit when we calculate the size 4319 // from the current and next address 4320 if (is_arm) 4321 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4322 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4323 } 4324 else 4325 { 4326 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4327 } 4328 } 4329 } 4330 symbol_value -= section_file_addr; 4331 } 4332 4333 if (is_debug == false) 4334 { 4335 if (type == eSymbolTypeCode) 4336 { 4337 // See if we can find a N_FUN entry for any code symbols. 4338 // If we do find a match, and the name matches, then we 4339 // can merge the two into just the function symbol to avoid 4340 // duplicate entries in the symbol table 4341 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4342 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4343 if (range.first != range.second) 4344 { 4345 bool found_it = false; 4346 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4347 { 4348 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4349 { 4350 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4351 // We just need the flags from the linker symbol, so put these flags 4352 // into the N_FUN flags to avoid duplicate symbols in the symbol table 4353 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4354 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4355 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4356 sym[pos->second].SetType (eSymbolTypeResolver); 4357 sym[sym_idx].Clear(); 4358 found_it = true; 4359 break; 4360 } 4361 } 4362 if (found_it) 4363 continue; 4364 } 4365 else 4366 { 4367 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4368 type = eSymbolTypeResolver; 4369 } 4370 } 4371 else if (type == eSymbolTypeData || 4372 type == eSymbolTypeObjCClass || 4373 type == eSymbolTypeObjCMetaClass || 4374 type == eSymbolTypeObjCIVar ) 4375 { 4376 // See if we can find a N_STSYM entry for any data symbols. 4377 // If we do find a match, and the name matches, then we 4378 // can merge the two into just the Static symbol to avoid 4379 // duplicate entries in the symbol table 4380 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4381 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4382 if (range.first != range.second) 4383 { 4384 bool found_it = false; 4385 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4386 { 4387 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4388 { 4389 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4390 // We just need the flags from the linker symbol, so put these flags 4391 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4392 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4393 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4394 sym[sym_idx].Clear(); 4395 found_it = true; 4396 break; 4397 } 4398 } 4399 if (found_it) 4400 continue; 4401 } 4402 else 4403 { 4404 // Combine N_GSYM stab entries with the non stab symbol 4405 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4406 if (gsym_name) 4407 { 4408 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 4409 if (pos != N_GSYM_name_to_sym_idx.end()) 4410 { 4411 const uint32_t GSYM_sym_idx = pos->second; 4412 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4413 // Copy the address, because often the N_GSYM address has an invalid address of zero 4414 // when the global is a common symbol 4415 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 4416 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 4417 // We just need the flags from the linker symbol, so put these flags 4418 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 4419 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4420 sym[sym_idx].Clear(); 4421 continue; 4422 } 4423 } 4424 } 4425 } 4426 } 4427 4428 sym[sym_idx].SetID (nlist_idx); 4429 sym[sym_idx].SetType (type); 4430 if (set_value) 4431 { 4432 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 4433 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 4434 } 4435 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4436 4437 if (symbol_byte_size > 0) 4438 sym[sym_idx].SetByteSize(symbol_byte_size); 4439 4440 if (demangled_is_synthesized) 4441 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4442 4443 ++sym_idx; 4444 } 4445 else 4446 { 4447 sym[sym_idx].Clear(); 4448 } 4449 } 4450 4451 for (const auto &pos :reexport_shlib_needs_fixup) 4452 { 4453 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4454 if (undef_pos != undefined_name_to_desc.end()) 4455 { 4456 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4457 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4458 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 4459 } 4460 } 4461 } 4462 4463 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4464 4465 if (function_starts_count > 0) 4466 { 4467 char synthetic_function_symbol[PATH_MAX]; 4468 uint32_t num_synthetic_function_symbols = 0; 4469 for (i=0; i<function_starts_count; ++i) 4470 { 4471 if (function_starts.GetEntryRef (i).data == false) 4472 ++num_synthetic_function_symbols; 4473 } 4474 4475 if (num_synthetic_function_symbols > 0) 4476 { 4477 if (num_syms < sym_idx + num_synthetic_function_symbols) 4478 { 4479 num_syms = sym_idx + num_synthetic_function_symbols; 4480 sym = symtab->Resize (num_syms); 4481 } 4482 uint32_t synthetic_function_symbol_idx = 0; 4483 for (i=0; i<function_starts_count; ++i) 4484 { 4485 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 4486 if (func_start_entry->data == false) 4487 { 4488 addr_t symbol_file_addr = func_start_entry->addr; 4489 uint32_t symbol_flags = 0; 4490 if (is_arm) 4491 { 4492 if (symbol_file_addr & 1) 4493 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4494 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4495 } 4496 Address symbol_addr; 4497 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 4498 { 4499 SectionSP symbol_section (symbol_addr.GetSection()); 4500 uint32_t symbol_byte_size = 0; 4501 if (symbol_section) 4502 { 4503 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4504 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4505 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4506 if (next_func_start_entry) 4507 { 4508 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4509 if (is_arm) 4510 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4511 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4512 } 4513 else 4514 { 4515 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4516 } 4517 snprintf (synthetic_function_symbol, 4518 sizeof(synthetic_function_symbol), 4519 "___lldb_unnamed_function%u$$%s", 4520 ++synthetic_function_symbol_idx, 4521 module_sp->GetFileSpec().GetFilename().GetCString()); 4522 sym[sym_idx].SetID (synthetic_sym_id++); 4523 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 4524 sym[sym_idx].SetType (eSymbolTypeCode); 4525 sym[sym_idx].SetIsSynthetic (true); 4526 sym[sym_idx].GetAddressRef() = symbol_addr; 4527 if (symbol_flags) 4528 sym[sym_idx].SetFlags (symbol_flags); 4529 if (symbol_byte_size) 4530 sym[sym_idx].SetByteSize (symbol_byte_size); 4531 ++sym_idx; 4532 } 4533 } 4534 } 4535 } 4536 } 4537 } 4538 4539 // Trim our symbols down to just what we ended up with after 4540 // removing any symbols. 4541 if (sym_idx < num_syms) 4542 { 4543 num_syms = sym_idx; 4544 sym = symtab->Resize (num_syms); 4545 } 4546 4547 // Now synthesize indirect symbols 4548 if (m_dysymtab.nindirectsyms != 0) 4549 { 4550 if (indirect_symbol_index_data.GetByteSize()) 4551 { 4552 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 4553 4554 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 4555 { 4556 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 4557 { 4558 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4559 if (symbol_stub_byte_size == 0) 4560 continue; 4561 4562 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4563 4564 if (num_symbol_stubs == 0) 4565 continue; 4566 4567 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 4568 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 4569 { 4570 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 4571 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 4572 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4573 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 4574 { 4575 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 4576 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4577 continue; 4578 4579 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 4580 Symbol *stub_symbol = NULL; 4581 if (index_pos != end_index_pos) 4582 { 4583 // We have a remapping from the original nlist index to 4584 // a current symbol index, so just look this up by index 4585 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 4586 } 4587 else 4588 { 4589 // We need to lookup a symbol using the original nlist 4590 // symbol index since this index is coming from the 4591 // S_SYMBOL_STUBS 4592 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 4593 } 4594 4595 if (stub_symbol) 4596 { 4597 Address so_addr(symbol_stub_addr, section_list); 4598 4599 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4600 { 4601 // Change the external symbol into a trampoline that makes sense 4602 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4603 // can re-use them so we don't have to make up a synthetic symbol 4604 // for no good reason. 4605 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4606 stub_symbol->SetType (eSymbolTypeTrampoline); 4607 else 4608 stub_symbol->SetType (eSymbolTypeResolver); 4609 stub_symbol->SetExternal (false); 4610 stub_symbol->GetAddressRef() = so_addr; 4611 stub_symbol->SetByteSize (symbol_stub_byte_size); 4612 } 4613 else 4614 { 4615 // Make a synthetic symbol to describe the trampoline stub 4616 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4617 if (sym_idx >= num_syms) 4618 { 4619 sym = symtab->Resize (++num_syms); 4620 stub_symbol = NULL; // this pointer no longer valid 4621 } 4622 sym[sym_idx].SetID (synthetic_sym_id++); 4623 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4624 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4625 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4626 else 4627 sym[sym_idx].SetType (eSymbolTypeResolver); 4628 sym[sym_idx].SetIsSynthetic (true); 4629 sym[sym_idx].GetAddressRef() = so_addr; 4630 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4631 ++sym_idx; 4632 } 4633 } 4634 else 4635 { 4636 if (log) 4637 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4638 } 4639 } 4640 } 4641 } 4642 } 4643 } 4644 } 4645 4646 if (!trie_entries.empty()) 4647 { 4648 for (const auto &e : trie_entries) 4649 { 4650 if (e.entry.import_name) 4651 { 4652 // Only add indirect symbols from the Trie entries if we 4653 // didn't have a N_INDR nlist entry for this already 4654 if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) 4655 { 4656 // Make a synthetic symbol to describe re-exported symbol. 4657 if (sym_idx >= num_syms) 4658 sym = symtab->Resize (++num_syms); 4659 sym[sym_idx].SetID (synthetic_sym_id++); 4660 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4661 sym[sym_idx].SetType (eSymbolTypeReExported); 4662 sym[sym_idx].SetIsSynthetic (true); 4663 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4664 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4665 { 4666 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4667 } 4668 ++sym_idx; 4669 } 4670 } 4671 } 4672 } 4673 4674 // StreamFile s(stdout, false); 4675 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4676 // symtab->Dump(&s, NULL, eSortOrderNone); 4677 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4678 symtab->CalculateSymbolSizes(); 4679 4680 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4681 // symtab->Dump(&s, NULL, eSortOrderNone); 4682 4683 return symtab->GetNumSymbols(); 4684 } 4685 return 0; 4686 } 4687 4688 void 4689 ObjectFileMachO::Dump (Stream *s) 4690 { 4691 ModuleSP module_sp(GetModule()); 4692 if (module_sp) 4693 { 4694 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4695 s->Printf("%p: ", static_cast<void*>(this)); 4696 s->Indent(); 4697 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4698 s->PutCString("ObjectFileMachO64"); 4699 else 4700 s->PutCString("ObjectFileMachO32"); 4701 4702 ArchSpec header_arch; 4703 GetArchitecture(header_arch); 4704 4705 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4706 4707 SectionList *sections = GetSectionList(); 4708 if (sections) 4709 sections->Dump(s, NULL, true, UINT32_MAX); 4710 4711 if (m_symtab_ap.get()) 4712 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4713 } 4714 } 4715 4716 bool 4717 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4718 const lldb_private::DataExtractor &data, 4719 lldb::offset_t lc_offset, 4720 lldb_private::UUID& uuid) 4721 { 4722 uint32_t i; 4723 struct uuid_command load_cmd; 4724 4725 lldb::offset_t offset = lc_offset; 4726 for (i=0; i<header.ncmds; ++i) 4727 { 4728 const lldb::offset_t cmd_offset = offset; 4729 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4730 break; 4731 4732 if (load_cmd.cmd == LC_UUID) 4733 { 4734 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4735 4736 if (uuid_bytes) 4737 { 4738 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4739 // We pretend these object files have no UUID to prevent crashing. 4740 4741 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4742 0x3b, 0xa8, 4743 0x4b, 0x16, 4744 0xb6, 0xa4, 4745 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4746 4747 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4748 return false; 4749 4750 uuid.SetBytes (uuid_bytes); 4751 return true; 4752 } 4753 return false; 4754 } 4755 offset = cmd_offset + load_cmd.cmdsize; 4756 } 4757 return false; 4758 } 4759 4760 bool 4761 ObjectFileMachO::GetArchitecture (const llvm::MachO::mach_header &header, 4762 const lldb_private::DataExtractor &data, 4763 lldb::offset_t lc_offset, 4764 ArchSpec &arch) 4765 { 4766 arch.SetArchitecture (eArchTypeMachO, header.cputype, header.cpusubtype); 4767 4768 if (arch.IsValid()) 4769 { 4770 llvm::Triple &triple = arch.GetTriple(); 4771 4772 // Set OS to an unspecified unknown or a "*" so it can match any OS 4773 triple.setOS(llvm::Triple::UnknownOS); 4774 triple.setOSName(llvm::StringRef()); 4775 4776 if (header.filetype == MH_PRELOAD) 4777 { 4778 // Set vendor to an unspecified unknown or a "*" so it can match any vendor 4779 triple.setVendor(llvm::Triple::UnknownVendor); 4780 triple.setVendorName(llvm::StringRef()); 4781 return true; 4782 } 4783 else 4784 { 4785 struct load_command load_cmd; 4786 4787 lldb::offset_t offset = lc_offset; 4788 for (uint32_t i=0; i<header.ncmds; ++i) 4789 { 4790 const lldb::offset_t cmd_offset = offset; 4791 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4792 break; 4793 4794 switch (load_cmd.cmd) 4795 { 4796 case LC_VERSION_MIN_IPHONEOS: 4797 triple.setOS (llvm::Triple::IOS); 4798 return true; 4799 4800 case LC_VERSION_MIN_MACOSX: 4801 triple.setOS (llvm::Triple::MacOSX); 4802 return true; 4803 4804 default: 4805 break; 4806 } 4807 4808 offset = cmd_offset + load_cmd.cmdsize; 4809 } 4810 4811 if (header.filetype != MH_KEXT_BUNDLE) 4812 { 4813 // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT 4814 // so lets not say our Vendor is Apple, leave it as an unspecified unknown 4815 triple.setVendor(llvm::Triple::UnknownVendor); 4816 triple.setVendorName(llvm::StringRef()); 4817 } 4818 } 4819 } 4820 return arch.IsValid(); 4821 } 4822 4823 bool 4824 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4825 { 4826 ModuleSP module_sp(GetModule()); 4827 if (module_sp) 4828 { 4829 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4830 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4831 return GetUUID (m_header, m_data, offset, *uuid); 4832 } 4833 return false; 4834 } 4835 4836 uint32_t 4837 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4838 { 4839 uint32_t count = 0; 4840 ModuleSP module_sp(GetModule()); 4841 if (module_sp) 4842 { 4843 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4844 struct load_command load_cmd; 4845 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4846 std::vector<std::string> rpath_paths; 4847 std::vector<std::string> rpath_relative_paths; 4848 const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system 4849 uint32_t i; 4850 for (i=0; i<m_header.ncmds; ++i) 4851 { 4852 const uint32_t cmd_offset = offset; 4853 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4854 break; 4855 4856 switch (load_cmd.cmd) 4857 { 4858 case LC_RPATH: 4859 case LC_LOAD_DYLIB: 4860 case LC_LOAD_WEAK_DYLIB: 4861 case LC_REEXPORT_DYLIB: 4862 case LC_LOAD_DYLINKER: 4863 case LC_LOADFVMLIB: 4864 case LC_LOAD_UPWARD_DYLIB: 4865 { 4866 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4867 const char *path = m_data.PeekCStr(name_offset); 4868 if (path) 4869 { 4870 if (load_cmd.cmd == LC_RPATH) 4871 rpath_paths.push_back(path); 4872 else 4873 { 4874 if (path[0] == '@') 4875 { 4876 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 4877 rpath_relative_paths.push_back(path + strlen("@rpath")); 4878 } 4879 else 4880 { 4881 FileSpec file_spec(path, resolve_path); 4882 if (files.AppendIfUnique(file_spec)) 4883 count++; 4884 } 4885 } 4886 } 4887 } 4888 break; 4889 4890 default: 4891 break; 4892 } 4893 offset = cmd_offset + load_cmd.cmdsize; 4894 } 4895 4896 if (!rpath_paths.empty()) 4897 { 4898 // Fixup all LC_RPATH values to be absolute paths 4899 FileSpec this_file_spec(m_file); 4900 this_file_spec.ResolvePath(); 4901 std::string loader_path("@loader_path"); 4902 std::string executable_path("@executable_path"); 4903 for (auto &rpath : rpath_paths) 4904 { 4905 if (rpath.find(loader_path) == 0) 4906 { 4907 rpath.erase(0, loader_path.size()); 4908 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4909 } 4910 else if (rpath.find(executable_path) == 0) 4911 { 4912 rpath.erase(0, executable_path.size()); 4913 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4914 } 4915 } 4916 4917 for (const auto &rpath_relative_path : rpath_relative_paths) 4918 { 4919 for (const auto &rpath : rpath_paths) 4920 { 4921 std::string path = rpath; 4922 path += rpath_relative_path; 4923 // It is OK to resolve this path because we must find a file on 4924 // disk for us to accept it anyway if it is rpath relative. 4925 FileSpec file_spec(path, true); 4926 // Remove any redundant parts of the path (like "../foo") since 4927 // LC_RPATH values often contain "..". 4928 file_spec.NormalizePath (); 4929 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) 4930 { 4931 count++; 4932 break; 4933 } 4934 } 4935 } 4936 } 4937 } 4938 return count; 4939 } 4940 4941 lldb_private::Address 4942 ObjectFileMachO::GetEntryPointAddress () 4943 { 4944 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4945 // is initialized to an invalid address, so we can just return that. 4946 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4947 4948 if (!IsExecutable() || m_entry_point_address.IsValid()) 4949 return m_entry_point_address; 4950 4951 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4952 // /usr/include/mach-o.h, but it is basically: 4953 // 4954 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4955 // uint32_t count - this is the count of longs in the thread state data 4956 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4957 // <repeat this trio> 4958 // 4959 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4960 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4961 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4962 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4963 // 4964 // For now we hard-code the offsets and flavors we need: 4965 // 4966 // 4967 4968 ModuleSP module_sp(GetModule()); 4969 if (module_sp) 4970 { 4971 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4972 struct load_command load_cmd; 4973 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4974 uint32_t i; 4975 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4976 bool done = false; 4977 4978 for (i=0; i<m_header.ncmds; ++i) 4979 { 4980 const lldb::offset_t cmd_offset = offset; 4981 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4982 break; 4983 4984 switch (load_cmd.cmd) 4985 { 4986 case LC_UNIXTHREAD: 4987 case LC_THREAD: 4988 { 4989 while (offset < cmd_offset + load_cmd.cmdsize) 4990 { 4991 uint32_t flavor = m_data.GetU32(&offset); 4992 uint32_t count = m_data.GetU32(&offset); 4993 if (count == 0) 4994 { 4995 // We've gotten off somehow, log and exit; 4996 return m_entry_point_address; 4997 } 4998 4999 switch (m_header.cputype) 5000 { 5001 case llvm::MachO::CPU_TYPE_ARM: 5002 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 5003 { 5004 offset += 60; // This is the offset of pc in the GPR thread state data structure. 5005 start_address = m_data.GetU32(&offset); 5006 done = true; 5007 } 5008 break; 5009 case llvm::MachO::CPU_TYPE_ARM64: 5010 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 5011 { 5012 offset += 256; // This is the offset of pc in the GPR thread state data structure. 5013 start_address = m_data.GetU64(&offset); 5014 done = true; 5015 } 5016 break; 5017 case llvm::MachO::CPU_TYPE_I386: 5018 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5019 { 5020 offset += 40; // This is the offset of eip in the GPR thread state data structure. 5021 start_address = m_data.GetU32(&offset); 5022 done = true; 5023 } 5024 break; 5025 case llvm::MachO::CPU_TYPE_X86_64: 5026 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5027 { 5028 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 5029 start_address = m_data.GetU64(&offset); 5030 done = true; 5031 } 5032 break; 5033 default: 5034 return m_entry_point_address; 5035 } 5036 // Haven't found the GPR flavor yet, skip over the data for this flavor: 5037 if (done) 5038 break; 5039 offset += count * 4; 5040 } 5041 } 5042 break; 5043 case LC_MAIN: 5044 { 5045 ConstString text_segment_name ("__TEXT"); 5046 uint64_t entryoffset = m_data.GetU64(&offset); 5047 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 5048 if (text_segment_sp) 5049 { 5050 done = true; 5051 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5052 } 5053 } 5054 5055 default: 5056 break; 5057 } 5058 if (done) 5059 break; 5060 5061 // Go to the next load command: 5062 offset = cmd_offset + load_cmd.cmdsize; 5063 } 5064 5065 if (start_address != LLDB_INVALID_ADDRESS) 5066 { 5067 // We got the start address from the load commands, so now resolve that address in the sections 5068 // of this ObjectFile: 5069 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 5070 { 5071 m_entry_point_address.Clear(); 5072 } 5073 } 5074 else 5075 { 5076 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 5077 // "start" symbol in the main executable. 5078 5079 ModuleSP module_sp (GetModule()); 5080 5081 if (module_sp) 5082 { 5083 SymbolContextList contexts; 5084 SymbolContext context; 5085 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 5086 { 5087 if (contexts.GetContextAtIndex(0, context)) 5088 m_entry_point_address = context.symbol->GetAddress(); 5089 } 5090 } 5091 } 5092 } 5093 5094 return m_entry_point_address; 5095 } 5096 5097 lldb_private::Address 5098 ObjectFileMachO::GetHeaderAddress () 5099 { 5100 lldb_private::Address header_addr; 5101 SectionList *section_list = GetSectionList(); 5102 if (section_list) 5103 { 5104 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 5105 if (text_segment_sp) 5106 { 5107 header_addr.SetSection (text_segment_sp); 5108 header_addr.SetOffset (0); 5109 } 5110 } 5111 return header_addr; 5112 } 5113 5114 uint32_t 5115 ObjectFileMachO::GetNumThreadContexts () 5116 { 5117 ModuleSP module_sp(GetModule()); 5118 if (module_sp) 5119 { 5120 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5121 if (!m_thread_context_offsets_valid) 5122 { 5123 m_thread_context_offsets_valid = true; 5124 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5125 FileRangeArray::Entry file_range; 5126 thread_command thread_cmd; 5127 for (uint32_t i=0; i<m_header.ncmds; ++i) 5128 { 5129 const uint32_t cmd_offset = offset; 5130 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 5131 break; 5132 5133 if (thread_cmd.cmd == LC_THREAD) 5134 { 5135 file_range.SetRangeBase (offset); 5136 file_range.SetByteSize (thread_cmd.cmdsize - 8); 5137 m_thread_context_offsets.Append (file_range); 5138 } 5139 offset = cmd_offset + thread_cmd.cmdsize; 5140 } 5141 } 5142 } 5143 return m_thread_context_offsets.GetSize(); 5144 } 5145 5146 lldb::RegisterContextSP 5147 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 5148 { 5149 lldb::RegisterContextSP reg_ctx_sp; 5150 5151 ModuleSP module_sp(GetModule()); 5152 if (module_sp) 5153 { 5154 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5155 if (!m_thread_context_offsets_valid) 5156 GetNumThreadContexts (); 5157 5158 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 5159 if (thread_context_file_range) 5160 { 5161 5162 DataExtractor data (m_data, 5163 thread_context_file_range->GetRangeBase(), 5164 thread_context_file_range->GetByteSize()); 5165 5166 switch (m_header.cputype) 5167 { 5168 case llvm::MachO::CPU_TYPE_ARM64: 5169 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 5170 break; 5171 5172 case llvm::MachO::CPU_TYPE_ARM: 5173 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 5174 break; 5175 5176 case llvm::MachO::CPU_TYPE_I386: 5177 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 5178 break; 5179 5180 case llvm::MachO::CPU_TYPE_X86_64: 5181 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 5182 break; 5183 } 5184 } 5185 } 5186 return reg_ctx_sp; 5187 } 5188 5189 ObjectFile::Type 5190 ObjectFileMachO::CalculateType() 5191 { 5192 switch (m_header.filetype) 5193 { 5194 case MH_OBJECT: // 0x1u 5195 if (GetAddressByteSize () == 4) 5196 { 5197 // 32 bit kexts are just object files, but they do have a valid 5198 // UUID load command. 5199 UUID uuid; 5200 if (GetUUID(&uuid)) 5201 { 5202 // this checking for the UUID load command is not enough 5203 // we could eventually look for the symbol named 5204 // "OSKextGetCurrentIdentifier" as this is required of kexts 5205 if (m_strata == eStrataInvalid) 5206 m_strata = eStrataKernel; 5207 return eTypeSharedLibrary; 5208 } 5209 } 5210 return eTypeObjectFile; 5211 5212 case MH_EXECUTE: return eTypeExecutable; // 0x2u 5213 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 5214 case MH_CORE: return eTypeCoreFile; // 0x4u 5215 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 5216 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 5217 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 5218 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 5219 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 5220 case MH_DSYM: return eTypeDebugInfo; // 0xAu 5221 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 5222 default: 5223 break; 5224 } 5225 return eTypeUnknown; 5226 } 5227 5228 ObjectFile::Strata 5229 ObjectFileMachO::CalculateStrata() 5230 { 5231 switch (m_header.filetype) 5232 { 5233 case MH_OBJECT: // 0x1u 5234 { 5235 // 32 bit kexts are just object files, but they do have a valid 5236 // UUID load command. 5237 UUID uuid; 5238 if (GetUUID(&uuid)) 5239 { 5240 // this checking for the UUID load command is not enough 5241 // we could eventually look for the symbol named 5242 // "OSKextGetCurrentIdentifier" as this is required of kexts 5243 if (m_type == eTypeInvalid) 5244 m_type = eTypeSharedLibrary; 5245 5246 return eStrataKernel; 5247 } 5248 } 5249 return eStrataUnknown; 5250 5251 case MH_EXECUTE: // 0x2u 5252 // Check for the MH_DYLDLINK bit in the flags 5253 if (m_header.flags & MH_DYLDLINK) 5254 { 5255 return eStrataUser; 5256 } 5257 else 5258 { 5259 SectionList *section_list = GetSectionList(); 5260 if (section_list) 5261 { 5262 static ConstString g_kld_section_name ("__KLD"); 5263 if (section_list->FindSectionByName(g_kld_section_name)) 5264 return eStrataKernel; 5265 } 5266 } 5267 return eStrataRawImage; 5268 5269 case MH_FVMLIB: return eStrataUser; // 0x3u 5270 case MH_CORE: return eStrataUnknown; // 0x4u 5271 case MH_PRELOAD: return eStrataRawImage; // 0x5u 5272 case MH_DYLIB: return eStrataUser; // 0x6u 5273 case MH_DYLINKER: return eStrataUser; // 0x7u 5274 case MH_BUNDLE: return eStrataUser; // 0x8u 5275 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 5276 case MH_DSYM: return eStrataUnknown; // 0xAu 5277 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 5278 default: 5279 break; 5280 } 5281 return eStrataUnknown; 5282 } 5283 5284 uint32_t 5285 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 5286 { 5287 ModuleSP module_sp(GetModule()); 5288 if (module_sp) 5289 { 5290 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5291 struct dylib_command load_cmd; 5292 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5293 uint32_t version_cmd = 0; 5294 uint64_t version = 0; 5295 uint32_t i; 5296 for (i=0; i<m_header.ncmds; ++i) 5297 { 5298 const lldb::offset_t cmd_offset = offset; 5299 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 5300 break; 5301 5302 if (load_cmd.cmd == LC_ID_DYLIB) 5303 { 5304 if (version_cmd == 0) 5305 { 5306 version_cmd = load_cmd.cmd; 5307 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 5308 break; 5309 version = load_cmd.dylib.current_version; 5310 } 5311 break; // Break for now unless there is another more complete version 5312 // number load command in the future. 5313 } 5314 offset = cmd_offset + load_cmd.cmdsize; 5315 } 5316 5317 if (version_cmd == LC_ID_DYLIB) 5318 { 5319 if (versions != NULL && num_versions > 0) 5320 { 5321 if (num_versions > 0) 5322 versions[0] = (version & 0xFFFF0000ull) >> 16; 5323 if (num_versions > 1) 5324 versions[1] = (version & 0x0000FF00ull) >> 8; 5325 if (num_versions > 2) 5326 versions[2] = (version & 0x000000FFull); 5327 // Fill in an remaining version numbers with invalid values 5328 for (i=3; i<num_versions; ++i) 5329 versions[i] = UINT32_MAX; 5330 } 5331 // The LC_ID_DYLIB load command has a version with 3 version numbers 5332 // in it, so always return 3 5333 return 3; 5334 } 5335 } 5336 return false; 5337 } 5338 5339 bool 5340 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 5341 { 5342 ModuleSP module_sp(GetModule()); 5343 if (module_sp) 5344 { 5345 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5346 return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); 5347 } 5348 return false; 5349 } 5350 5351 UUID 5352 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 5353 { 5354 UUID uuid; 5355 if (process) 5356 { 5357 addr_t all_image_infos = process->GetImageInfoAddress(); 5358 5359 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 5360 // or it may be the address of the dyld_all_image_infos structure (want). The first four 5361 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 5362 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 5363 5364 Error err; 5365 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 5366 if (version_or_magic != static_cast<uint32_t>(-1) 5367 && version_or_magic != MH_MAGIC 5368 && version_or_magic != MH_CIGAM 5369 && version_or_magic != MH_MAGIC_64 5370 && version_or_magic != MH_CIGAM_64 5371 && version_or_magic >= 13) 5372 { 5373 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 5374 int wordsize = process->GetAddressByteSize(); 5375 if (wordsize == 8) 5376 { 5377 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 5378 } 5379 if (wordsize == 4) 5380 { 5381 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 5382 } 5383 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 5384 { 5385 uuid_t shared_cache_uuid; 5386 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 5387 { 5388 uuid.SetBytes (shared_cache_uuid); 5389 } 5390 } 5391 } 5392 } 5393 return uuid; 5394 } 5395 5396 UUID 5397 ObjectFileMachO::GetLLDBSharedCacheUUID () 5398 { 5399 UUID uuid; 5400 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 5401 uint8_t *(*dyld_get_all_image_infos)(void); 5402 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5403 if (dyld_get_all_image_infos) 5404 { 5405 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5406 if (dyld_all_image_infos_address) 5407 { 5408 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5409 if (*version >= 13) 5410 { 5411 uuid_t *sharedCacheUUID_address = 0; 5412 int wordsize = sizeof (uint8_t *); 5413 if (wordsize == 8) 5414 { 5415 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 5416 } 5417 else 5418 { 5419 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 5420 } 5421 uuid.SetBytes (sharedCacheUUID_address); 5422 } 5423 } 5424 } 5425 #endif 5426 return uuid; 5427 } 5428 5429 uint32_t 5430 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 5431 { 5432 if (m_min_os_versions.empty()) 5433 { 5434 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5435 bool success = false; 5436 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5437 { 5438 const lldb::offset_t load_cmd_offset = offset; 5439 5440 version_min_command lc; 5441 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5442 break; 5443 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5444 { 5445 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5446 { 5447 const uint32_t xxxx = lc.version >> 16; 5448 const uint32_t yy = (lc.version >> 8) & 0xffu; 5449 const uint32_t zz = lc.version & 0xffu; 5450 if (xxxx) 5451 { 5452 m_min_os_versions.push_back(xxxx); 5453 m_min_os_versions.push_back(yy); 5454 m_min_os_versions.push_back(zz); 5455 } 5456 success = true; 5457 } 5458 } 5459 offset = load_cmd_offset + lc.cmdsize; 5460 } 5461 5462 if (success == false) 5463 { 5464 // Push an invalid value so we don't keep trying to 5465 m_min_os_versions.push_back(UINT32_MAX); 5466 } 5467 } 5468 5469 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 5470 { 5471 if (versions != NULL && num_versions > 0) 5472 { 5473 for (size_t i=0; i<num_versions; ++i) 5474 { 5475 if (i < m_min_os_versions.size()) 5476 versions[i] = m_min_os_versions[i]; 5477 else 5478 versions[i] = 0; 5479 } 5480 } 5481 return m_min_os_versions.size(); 5482 } 5483 // Call the superclasses version that will empty out the data 5484 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 5485 } 5486 5487 uint32_t 5488 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 5489 { 5490 if (m_sdk_versions.empty()) 5491 { 5492 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5493 bool success = false; 5494 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5495 { 5496 const lldb::offset_t load_cmd_offset = offset; 5497 5498 version_min_command lc; 5499 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5500 break; 5501 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5502 { 5503 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5504 { 5505 const uint32_t xxxx = lc.sdk >> 16; 5506 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5507 const uint32_t zz = lc.sdk & 0xffu; 5508 if (xxxx) 5509 { 5510 m_sdk_versions.push_back(xxxx); 5511 m_sdk_versions.push_back(yy); 5512 m_sdk_versions.push_back(zz); 5513 } 5514 success = true; 5515 } 5516 } 5517 offset = load_cmd_offset + lc.cmdsize; 5518 } 5519 5520 if (success == false) 5521 { 5522 // Push an invalid value so we don't keep trying to 5523 m_sdk_versions.push_back(UINT32_MAX); 5524 } 5525 } 5526 5527 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 5528 { 5529 if (versions != NULL && num_versions > 0) 5530 { 5531 for (size_t i=0; i<num_versions; ++i) 5532 { 5533 if (i < m_sdk_versions.size()) 5534 versions[i] = m_sdk_versions[i]; 5535 else 5536 versions[i] = 0; 5537 } 5538 } 5539 return m_sdk_versions.size(); 5540 } 5541 // Call the superclasses version that will empty out the data 5542 return ObjectFile::GetSDKVersion (versions, num_versions); 5543 } 5544 5545 bool 5546 ObjectFileMachO::GetIsDynamicLinkEditor() 5547 { 5548 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5549 } 5550 5551 //------------------------------------------------------------------ 5552 // PluginInterface protocol 5553 //------------------------------------------------------------------ 5554 lldb_private::ConstString 5555 ObjectFileMachO::GetPluginName() 5556 { 5557 return GetPluginNameStatic(); 5558 } 5559 5560 uint32_t 5561 ObjectFileMachO::GetPluginVersion() 5562 { 5563 return 1; 5564 } 5565 5566 Section * 5567 ObjectFileMachO::GetMachHeaderSection() 5568 { 5569 // Find the first address of the mach header which is the first non-zero 5570 // file sized section whose file offset is zero. This is the base file address 5571 // of the mach-o file which can be subtracted from the vmaddr of the other 5572 // segments found in memory and added to the load address 5573 ModuleSP module_sp = GetModule(); 5574 if (module_sp) 5575 { 5576 SectionList *section_list = GetSectionList (); 5577 if (section_list) 5578 { 5579 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 5580 const size_t num_sections = section_list->GetSize(); 5581 5582 for (size_t sect_idx = 0; 5583 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 5584 ++sect_idx) 5585 { 5586 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 5587 if (section && 5588 section->GetFileSize() > 0 && 5589 section->GetFileOffset() == 0 && 5590 section->IsThreadSpecific() == false && 5591 module_sp.get() == section->GetModule().get()) 5592 { 5593 return section; 5594 } 5595 } 5596 } 5597 } 5598 return nullptr; 5599 } 5600 5601 lldb::addr_t 5602 ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) 5603 { 5604 ModuleSP module_sp = GetModule(); 5605 if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) 5606 { 5607 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); 5608 if (mach_header_file_addr != LLDB_INVALID_ADDRESS) 5609 { 5610 if (section && 5611 section->GetFileSize() > 0 && 5612 section->IsThreadSpecific() == false && 5613 module_sp.get() == section->GetModule().get()) 5614 { 5615 // Ignore __LINKEDIT and __DWARF segments 5616 if (section->GetName() == GetSegmentNameLINKEDIT()) 5617 { 5618 // Only map __LINKEDIT if we have an in memory image and this isn't 5619 // a kernel binary like a kext or mach_kernel. 5620 const bool is_memory_image = (bool)m_process_wp.lock(); 5621 const Strata strata = GetStrata(); 5622 if (is_memory_image == false || strata == eStrataKernel) 5623 return LLDB_INVALID_ADDRESS; 5624 } 5625 return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; 5626 } 5627 } 5628 } 5629 return LLDB_INVALID_ADDRESS; 5630 } 5631 5632 bool 5633 ObjectFileMachO::SetLoadAddress (Target &target, 5634 lldb::addr_t value, 5635 bool value_is_offset) 5636 { 5637 ModuleSP module_sp = GetModule(); 5638 if (module_sp) 5639 { 5640 size_t num_loaded_sections = 0; 5641 SectionList *section_list = GetSectionList (); 5642 if (section_list) 5643 { 5644 const size_t num_sections = section_list->GetSize(); 5645 5646 if (value_is_offset) 5647 { 5648 // "value" is an offset to apply to each top level segment 5649 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5650 { 5651 // Iterate through the object file sections to find all 5652 // of the sections that size on disk (to avoid __PAGEZERO) 5653 // and load them 5654 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5655 if (section_sp && 5656 section_sp->GetFileSize() > 0 && 5657 section_sp->IsThreadSpecific() == false && 5658 module_sp.get() == section_sp->GetModule().get()) 5659 { 5660 // Ignore __LINKEDIT and __DWARF segments 5661 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) 5662 { 5663 // Only map __LINKEDIT if we have an in memory image and this isn't 5664 // a kernel binary like a kext or mach_kernel. 5665 const bool is_memory_image = (bool)m_process_wp.lock(); 5666 const Strata strata = GetStrata(); 5667 if (is_memory_image == false || strata == eStrataKernel) 5668 continue; 5669 } 5670 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 5671 ++num_loaded_sections; 5672 } 5673 } 5674 } 5675 else 5676 { 5677 // "value" is the new base address of the mach_header, adjust each 5678 // section accordingly 5679 5680 Section *mach_header_section = GetMachHeaderSection(); 5681 if (mach_header_section) 5682 { 5683 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5684 { 5685 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5686 5687 lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage(value, mach_header_section, section_sp.get()); 5688 if (section_load_addr != LLDB_INVALID_ADDRESS) 5689 { 5690 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_load_addr)) 5691 ++num_loaded_sections; 5692 } 5693 } 5694 } 5695 } 5696 } 5697 return num_loaded_sections > 0; 5698 } 5699 return false; 5700 } 5701 5702 bool 5703 ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, 5704 const FileSpec &outfile, 5705 Error &error) 5706 { 5707 if (process_sp) 5708 { 5709 Target &target = process_sp->GetTarget(); 5710 const ArchSpec target_arch = target.GetArchitecture(); 5711 const llvm::Triple &target_triple = target_arch.GetTriple(); 5712 if (target_triple.getVendor() == llvm::Triple::Apple && 5713 (target_triple.getOS() == llvm::Triple::MacOSX || 5714 target_triple.getOS() == llvm::Triple::IOS)) 5715 { 5716 bool make_core = false; 5717 switch (target_arch.GetMachine()) 5718 { 5719 case llvm::Triple::aarch64: 5720 case llvm::Triple::arm: 5721 case llvm::Triple::thumb: 5722 case llvm::Triple::x86: 5723 case llvm::Triple::x86_64: 5724 make_core = true; 5725 break; 5726 default: 5727 error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); 5728 break; 5729 } 5730 5731 if (make_core) 5732 { 5733 std::vector<segment_command_64> segment_load_commands; 5734 // uint32_t range_info_idx = 0; 5735 MemoryRegionInfo range_info; 5736 Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); 5737 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 5738 const ByteOrder byte_order = target_arch.GetByteOrder(); 5739 if (range_error.Success()) 5740 { 5741 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) 5742 { 5743 const addr_t addr = range_info.GetRange().GetRangeBase(); 5744 const addr_t size = range_info.GetRange().GetByteSize(); 5745 5746 if (size == 0) 5747 break; 5748 5749 // Calculate correct protections 5750 uint32_t prot = 0; 5751 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 5752 prot |= VM_PROT_READ; 5753 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 5754 prot |= VM_PROT_WRITE; 5755 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 5756 prot |= VM_PROT_EXECUTE; 5757 5758 // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", 5759 // range_info_idx, 5760 // addr, 5761 // size, 5762 // (prot & VM_PROT_READ ) ? 'r' : '-', 5763 // (prot & VM_PROT_WRITE ) ? 'w' : '-', 5764 // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); 5765 5766 if (prot != 0) 5767 { 5768 uint32_t cmd_type = LC_SEGMENT_64; 5769 uint32_t segment_size = sizeof (segment_command_64); 5770 if (addr_byte_size == 4) 5771 { 5772 cmd_type = LC_SEGMENT; 5773 segment_size = sizeof (segment_command); 5774 } 5775 segment_command_64 segment = { 5776 cmd_type, // uint32_t cmd; 5777 segment_size, // uint32_t cmdsize; 5778 {0}, // char segname[16]; 5779 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 5780 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 5781 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 5782 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 5783 prot, // uint32_t maxprot; 5784 prot, // uint32_t initprot; 5785 0, // uint32_t nsects; 5786 0 }; // uint32_t flags; 5787 segment_load_commands.push_back(segment); 5788 } 5789 else 5790 { 5791 // No protections and a size of 1 used to be returned from old 5792 // debugservers when we asked about a region that was past the 5793 // last memory region and it indicates the end... 5794 if (size == 1) 5795 break; 5796 } 5797 5798 range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); 5799 if (range_error.Fail()) 5800 break; 5801 } 5802 5803 StreamString buffer (Stream::eBinary, 5804 addr_byte_size, 5805 byte_order); 5806 5807 mach_header_64 mach_header; 5808 if (addr_byte_size == 8) 5809 { 5810 mach_header.magic = MH_MAGIC_64; 5811 } 5812 else 5813 { 5814 mach_header.magic = MH_MAGIC; 5815 } 5816 mach_header.cputype = target_arch.GetMachOCPUType(); 5817 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 5818 mach_header.filetype = MH_CORE; 5819 mach_header.ncmds = segment_load_commands.size(); 5820 mach_header.flags = 0; 5821 mach_header.reserved = 0; 5822 ThreadList &thread_list = process_sp->GetThreadList(); 5823 const uint32_t num_threads = thread_list.GetSize(); 5824 5825 // Make an array of LC_THREAD data items. Each one contains 5826 // the contents of the LC_THREAD load command. The data doesn't 5827 // contain the load command + load command size, we will 5828 // add the load command and load command size as we emit the data. 5829 std::vector<StreamString> LC_THREAD_datas(num_threads); 5830 for (auto &LC_THREAD_data : LC_THREAD_datas) 5831 { 5832 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 5833 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 5834 LC_THREAD_data.SetByteOrder(byte_order); 5835 } 5836 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) 5837 { 5838 ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); 5839 if (thread_sp) 5840 { 5841 switch (mach_header.cputype) 5842 { 5843 case llvm::MachO::CPU_TYPE_ARM64: 5844 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5845 break; 5846 5847 case llvm::MachO::CPU_TYPE_ARM: 5848 RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5849 break; 5850 5851 case llvm::MachO::CPU_TYPE_I386: 5852 RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5853 break; 5854 5855 case llvm::MachO::CPU_TYPE_X86_64: 5856 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5857 break; 5858 } 5859 5860 } 5861 } 5862 5863 // The size of the load command is the size of the segments... 5864 if (addr_byte_size == 8) 5865 { 5866 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); 5867 } 5868 else 5869 { 5870 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); 5871 } 5872 5873 // and the size of all LC_THREAD load command 5874 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5875 { 5876 ++mach_header.ncmds; 5877 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 5878 } 5879 5880 printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 5881 mach_header.magic, 5882 mach_header.cputype, 5883 mach_header.cpusubtype, 5884 mach_header.filetype, 5885 mach_header.ncmds, 5886 mach_header.sizeofcmds, 5887 mach_header.flags, 5888 mach_header.reserved); 5889 5890 // Write the mach header 5891 buffer.PutHex32(mach_header.magic); 5892 buffer.PutHex32(mach_header.cputype); 5893 buffer.PutHex32(mach_header.cpusubtype); 5894 buffer.PutHex32(mach_header.filetype); 5895 buffer.PutHex32(mach_header.ncmds); 5896 buffer.PutHex32(mach_header.sizeofcmds); 5897 buffer.PutHex32(mach_header.flags); 5898 if (addr_byte_size == 8) 5899 { 5900 buffer.PutHex32(mach_header.reserved); 5901 } 5902 5903 // Skip the mach header and all load commands and align to the next 5904 // 0x1000 byte boundary 5905 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 5906 if (file_offset & 0x00000fff) 5907 { 5908 file_offset += 0x00001000ull; 5909 file_offset &= (~0x00001000ull + 1); 5910 } 5911 5912 for (auto &segment : segment_load_commands) 5913 { 5914 segment.fileoff = file_offset; 5915 file_offset += segment.filesize; 5916 } 5917 5918 // Write out all of the LC_THREAD load commands 5919 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5920 { 5921 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 5922 buffer.PutHex32(LC_THREAD); 5923 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 5924 buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); 5925 } 5926 5927 // Write out all of the segment load commands 5928 for (const auto &segment : segment_load_commands) 5929 { 5930 printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 5931 segment.cmd, 5932 segment.cmdsize, 5933 segment.vmaddr, 5934 segment.vmaddr + segment.vmsize, 5935 segment.fileoff, 5936 segment.filesize, 5937 segment.maxprot, 5938 segment.initprot, 5939 segment.nsects, 5940 segment.flags); 5941 5942 buffer.PutHex32(segment.cmd); 5943 buffer.PutHex32(segment.cmdsize); 5944 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 5945 if (addr_byte_size == 8) 5946 { 5947 buffer.PutHex64(segment.vmaddr); 5948 buffer.PutHex64(segment.vmsize); 5949 buffer.PutHex64(segment.fileoff); 5950 buffer.PutHex64(segment.filesize); 5951 } 5952 else 5953 { 5954 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 5955 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 5956 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 5957 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 5958 } 5959 buffer.PutHex32(segment.maxprot); 5960 buffer.PutHex32(segment.initprot); 5961 buffer.PutHex32(segment.nsects); 5962 buffer.PutHex32(segment.flags); 5963 } 5964 5965 File core_file; 5966 std::string core_file_path(outfile.GetPath()); 5967 error = core_file.Open(core_file_path.c_str(), 5968 File::eOpenOptionWrite | 5969 File::eOpenOptionTruncate | 5970 File::eOpenOptionCanCreate); 5971 if (error.Success()) 5972 { 5973 // Read 1 page at a time 5974 uint8_t bytes[0x1000]; 5975 // Write the mach header and load commands out to the core file 5976 size_t bytes_written = buffer.GetString().size(); 5977 error = core_file.Write(buffer.GetString().data(), bytes_written); 5978 if (error.Success()) 5979 { 5980 // Now write the file data for all memory segments in the process 5981 for (const auto &segment : segment_load_commands) 5982 { 5983 if (core_file.SeekFromStart(segment.fileoff) == -1) 5984 { 5985 error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); 5986 break; 5987 } 5988 5989 printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); 5990 addr_t bytes_left = segment.vmsize; 5991 addr_t addr = segment.vmaddr; 5992 Error memory_read_error; 5993 while (bytes_left > 0 && error.Success()) 5994 { 5995 const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 5996 const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); 5997 if (bytes_read == bytes_to_read) 5998 { 5999 size_t bytes_written = bytes_read; 6000 error = core_file.Write(bytes, bytes_written); 6001 bytes_left -= bytes_read; 6002 addr += bytes_read; 6003 } 6004 else 6005 { 6006 // Some pages within regions are not readable, those 6007 // should be zero filled 6008 memset (bytes, 0, bytes_to_read); 6009 size_t bytes_written = bytes_to_read; 6010 error = core_file.Write(bytes, bytes_written); 6011 bytes_left -= bytes_to_read; 6012 addr += bytes_to_read; 6013 } 6014 } 6015 } 6016 } 6017 } 6018 } 6019 else 6020 { 6021 error.SetErrorString("process doesn't support getting memory region info"); 6022 } 6023 } 6024 return true; // This is the right plug to handle saving core files for this process 6025 } 6026 } 6027 return false; 6028 } 6029