1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 12 #include "lldb/lldb-private-log.h" 13 #include "lldb/Core/ArchSpec.h" 14 #include "lldb/Core/DataBuffer.h" 15 #include "lldb/Core/Debugger.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Log.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/ModuleSpec.h" 20 #include "lldb/Core/PluginManager.h" 21 #include "lldb/Core/RangeMap.h" 22 #include "lldb/Core/Section.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Core/UUID.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/FileSpec.h" 29 #include "lldb/Symbol/ClangNamespaceDecl.h" 30 #include "lldb/Symbol/DWARFCallFrameInfo.h" 31 #include "lldb/Symbol/ObjectFile.h" 32 #include "lldb/Target/Platform.h" 33 #include "lldb/Target/Process.h" 34 #include "lldb/Target/SectionLoadList.h" 35 #include "lldb/Target/Target.h" 36 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 37 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 38 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 40 41 #include "lldb/Utility/SafeMachO.h" 42 43 #include "ObjectFileMachO.h" 44 45 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__)) 46 // GetLLDBSharedCacheUUID() needs to call dlsym() 47 #include <dlfcn.h> 48 #endif 49 50 #ifndef __APPLE__ 51 #include "Utility/UuidCompatibility.h" 52 #endif 53 54 using namespace lldb; 55 using namespace lldb_private; 56 using namespace llvm::MachO; 57 58 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 59 { 60 public: 61 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 62 RegisterContextDarwin_x86_64 (thread, 0) 63 { 64 SetRegisterDataFrom_LC_THREAD (data); 65 } 66 67 virtual void 68 InvalidateAllRegisters () 69 { 70 // Do nothing... registers are always valid... 71 } 72 73 void 74 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 75 { 76 lldb::offset_t offset = 0; 77 SetError (GPRRegSet, Read, -1); 78 SetError (FPURegSet, Read, -1); 79 SetError (EXCRegSet, Read, -1); 80 bool done = false; 81 82 while (!done) 83 { 84 int flavor = data.GetU32 (&offset); 85 if (flavor == 0) 86 done = true; 87 else 88 { 89 uint32_t i; 90 uint32_t count = data.GetU32 (&offset); 91 switch (flavor) 92 { 93 case GPRRegSet: 94 for (i=0; i<count; ++i) 95 (&gpr.rax)[i] = data.GetU64(&offset); 96 SetError (GPRRegSet, Read, 0); 97 done = true; 98 99 break; 100 case FPURegSet: 101 // TODO: fill in FPU regs.... 102 //SetError (FPURegSet, Read, -1); 103 done = true; 104 105 break; 106 case EXCRegSet: 107 exc.trapno = data.GetU32(&offset); 108 exc.err = data.GetU32(&offset); 109 exc.faultvaddr = data.GetU64(&offset); 110 SetError (EXCRegSet, Read, 0); 111 done = true; 112 break; 113 case 7: 114 case 8: 115 case 9: 116 // fancy flavors that encapsulate of the the above 117 // falvors... 118 break; 119 120 default: 121 done = true; 122 break; 123 } 124 } 125 } 126 } 127 protected: 128 virtual int 129 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 130 { 131 return 0; 132 } 133 134 virtual int 135 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 136 { 137 return 0; 138 } 139 140 virtual int 141 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 142 { 143 return 0; 144 } 145 146 virtual int 147 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 148 { 149 return 0; 150 } 151 152 virtual int 153 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 154 { 155 return 0; 156 } 157 158 virtual int 159 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 160 { 161 return 0; 162 } 163 }; 164 165 166 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 167 { 168 public: 169 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 170 RegisterContextDarwin_i386 (thread, 0) 171 { 172 SetRegisterDataFrom_LC_THREAD (data); 173 } 174 175 virtual void 176 InvalidateAllRegisters () 177 { 178 // Do nothing... registers are always valid... 179 } 180 181 void 182 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 183 { 184 lldb::offset_t offset = 0; 185 SetError (GPRRegSet, Read, -1); 186 SetError (FPURegSet, Read, -1); 187 SetError (EXCRegSet, Read, -1); 188 bool done = false; 189 190 while (!done) 191 { 192 int flavor = data.GetU32 (&offset); 193 if (flavor == 0) 194 done = true; 195 else 196 { 197 uint32_t i; 198 uint32_t count = data.GetU32 (&offset); 199 switch (flavor) 200 { 201 case GPRRegSet: 202 for (i=0; i<count; ++i) 203 (&gpr.eax)[i] = data.GetU32(&offset); 204 SetError (GPRRegSet, Read, 0); 205 done = true; 206 207 break; 208 case FPURegSet: 209 // TODO: fill in FPU regs.... 210 //SetError (FPURegSet, Read, -1); 211 done = true; 212 213 break; 214 case EXCRegSet: 215 exc.trapno = data.GetU32(&offset); 216 exc.err = data.GetU32(&offset); 217 exc.faultvaddr = data.GetU32(&offset); 218 SetError (EXCRegSet, Read, 0); 219 done = true; 220 break; 221 case 7: 222 case 8: 223 case 9: 224 // fancy flavors that encapsulate of the the above 225 // falvors... 226 break; 227 228 default: 229 done = true; 230 break; 231 } 232 } 233 } 234 } 235 protected: 236 virtual int 237 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 238 { 239 return 0; 240 } 241 242 virtual int 243 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 244 { 245 return 0; 246 } 247 248 virtual int 249 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 250 { 251 return 0; 252 } 253 254 virtual int 255 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 256 { 257 return 0; 258 } 259 260 virtual int 261 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 262 { 263 return 0; 264 } 265 266 virtual int 267 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 268 { 269 return 0; 270 } 271 }; 272 273 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 274 { 275 public: 276 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 277 RegisterContextDarwin_arm (thread, 0) 278 { 279 SetRegisterDataFrom_LC_THREAD (data); 280 } 281 282 virtual void 283 InvalidateAllRegisters () 284 { 285 // Do nothing... registers are always valid... 286 } 287 288 void 289 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 290 { 291 lldb::offset_t offset = 0; 292 SetError (GPRRegSet, Read, -1); 293 SetError (FPURegSet, Read, -1); 294 SetError (EXCRegSet, Read, -1); 295 bool done = false; 296 297 while (!done) 298 { 299 int flavor = data.GetU32 (&offset); 300 uint32_t count = data.GetU32 (&offset); 301 lldb::offset_t next_thread_state = offset + (count * 4); 302 switch (flavor) 303 { 304 case GPRRegSet: 305 for (uint32_t i=0; i<count; ++i) 306 { 307 gpr.r[i] = data.GetU32(&offset); 308 } 309 310 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 311 // one element past the end of the gpr.r[] array. 312 313 SetError (GPRRegSet, Read, 0); 314 offset = next_thread_state; 315 break; 316 317 case FPURegSet: 318 { 319 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 320 const int fpu_reg_buf_size = sizeof (fpu.floats); 321 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 322 { 323 offset += fpu_reg_buf_size; 324 fpu.fpscr = data.GetU32(&offset); 325 SetError (FPURegSet, Read, 0); 326 } 327 else 328 { 329 done = true; 330 } 331 } 332 offset = next_thread_state; 333 break; 334 335 case EXCRegSet: 336 if (count == 3) 337 { 338 exc.exception = data.GetU32(&offset); 339 exc.fsr = data.GetU32(&offset); 340 exc.far = data.GetU32(&offset); 341 SetError (EXCRegSet, Read, 0); 342 } 343 done = true; 344 offset = next_thread_state; 345 break; 346 347 // Unknown register set flavor, stop trying to parse. 348 default: 349 done = true; 350 } 351 } 352 } 353 protected: 354 virtual int 355 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 356 { 357 return -1; 358 } 359 360 virtual int 361 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 362 { 363 return -1; 364 } 365 366 virtual int 367 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 368 { 369 return -1; 370 } 371 372 virtual int 373 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 374 { 375 return -1; 376 } 377 378 virtual int 379 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 380 { 381 return 0; 382 } 383 384 virtual int 385 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 386 { 387 return 0; 388 } 389 390 virtual int 391 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 392 { 393 return 0; 394 } 395 396 virtual int 397 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 398 { 399 return -1; 400 } 401 }; 402 403 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 404 { 405 public: 406 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 407 RegisterContextDarwin_arm64 (thread, 0) 408 { 409 SetRegisterDataFrom_LC_THREAD (data); 410 } 411 412 virtual void 413 InvalidateAllRegisters () 414 { 415 // Do nothing... registers are always valid... 416 } 417 418 void 419 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 420 { 421 lldb::offset_t offset = 0; 422 SetError (GPRRegSet, Read, -1); 423 SetError (FPURegSet, Read, -1); 424 SetError (EXCRegSet, Read, -1); 425 bool done = false; 426 while (!done) 427 { 428 int flavor = data.GetU32 (&offset); 429 uint32_t count = data.GetU32 (&offset); 430 lldb::offset_t next_thread_state = offset + (count * 4); 431 switch (flavor) 432 { 433 case GPRRegSet: 434 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 435 if (count >= (33 * 2) + 1) 436 { 437 for (uint32_t i=0; i<33; ++i) 438 gpr.x[i] = data.GetU64(&offset); 439 gpr.cpsr = data.GetU32(&offset); 440 SetError (GPRRegSet, Read, 0); 441 } 442 offset = next_thread_state; 443 break; 444 case FPURegSet: 445 { 446 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 447 const int fpu_reg_buf_size = sizeof (fpu); 448 if (fpu_reg_buf_size == count 449 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 450 { 451 SetError (FPURegSet, Read, 0); 452 } 453 else 454 { 455 done = true; 456 } 457 } 458 offset = next_thread_state; 459 break; 460 case EXCRegSet: 461 if (count == 4) 462 { 463 exc.far = data.GetU64(&offset); 464 exc.esr = data.GetU32(&offset); 465 exc.exception = data.GetU32(&offset); 466 SetError (EXCRegSet, Read, 0); 467 } 468 offset = next_thread_state; 469 break; 470 default: 471 done = true; 472 break; 473 } 474 } 475 } 476 protected: 477 virtual int 478 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 479 { 480 return -1; 481 } 482 483 virtual int 484 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 485 { 486 return -1; 487 } 488 489 virtual int 490 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 491 { 492 return -1; 493 } 494 495 virtual int 496 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 497 { 498 return -1; 499 } 500 501 virtual int 502 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 503 { 504 return 0; 505 } 506 507 virtual int 508 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 509 { 510 return 0; 511 } 512 513 virtual int 514 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 515 { 516 return 0; 517 } 518 519 virtual int 520 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 521 { 522 return -1; 523 } 524 }; 525 526 static uint32_t 527 MachHeaderSizeFromMagic(uint32_t magic) 528 { 529 switch (magic) 530 { 531 case MH_MAGIC: 532 case MH_CIGAM: 533 return sizeof(struct mach_header); 534 535 case MH_MAGIC_64: 536 case MH_CIGAM_64: 537 return sizeof(struct mach_header_64); 538 break; 539 540 default: 541 break; 542 } 543 return 0; 544 } 545 546 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 547 548 void 549 ObjectFileMachO::Initialize() 550 { 551 PluginManager::RegisterPlugin (GetPluginNameStatic(), 552 GetPluginDescriptionStatic(), 553 CreateInstance, 554 CreateMemoryInstance, 555 GetModuleSpecifications); 556 } 557 558 void 559 ObjectFileMachO::Terminate() 560 { 561 PluginManager::UnregisterPlugin (CreateInstance); 562 } 563 564 565 lldb_private::ConstString 566 ObjectFileMachO::GetPluginNameStatic() 567 { 568 static ConstString g_name("mach-o"); 569 return g_name; 570 } 571 572 const char * 573 ObjectFileMachO::GetPluginDescriptionStatic() 574 { 575 return "Mach-o object file reader (32 and 64 bit)"; 576 } 577 578 ObjectFile * 579 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 580 DataBufferSP& data_sp, 581 lldb::offset_t data_offset, 582 const FileSpec* file, 583 lldb::offset_t file_offset, 584 lldb::offset_t length) 585 { 586 if (!data_sp) 587 { 588 data_sp = file->MemoryMapFileContents(file_offset, length); 589 data_offset = 0; 590 } 591 592 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 593 { 594 // Update the data to contain the entire file if it doesn't already 595 if (data_sp->GetByteSize() < length) 596 { 597 data_sp = file->MemoryMapFileContents(file_offset, length); 598 data_offset = 0; 599 } 600 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 601 if (objfile_ap.get() && objfile_ap->ParseHeader()) 602 return objfile_ap.release(); 603 } 604 return NULL; 605 } 606 607 ObjectFile * 608 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 609 DataBufferSP& data_sp, 610 const ProcessSP &process_sp, 611 lldb::addr_t header_addr) 612 { 613 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 614 { 615 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 616 if (objfile_ap.get() && objfile_ap->ParseHeader()) 617 return objfile_ap.release(); 618 } 619 return NULL; 620 } 621 622 size_t 623 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 624 lldb::DataBufferSP& data_sp, 625 lldb::offset_t data_offset, 626 lldb::offset_t file_offset, 627 lldb::offset_t length, 628 lldb_private::ModuleSpecList &specs) 629 { 630 const size_t initial_count = specs.GetSize(); 631 632 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 633 { 634 DataExtractor data; 635 data.SetData(data_sp); 636 llvm::MachO::mach_header header; 637 if (ParseHeader (data, &data_offset, header)) 638 { 639 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 640 if (header_and_load_cmds >= data_sp->GetByteSize()) 641 { 642 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 643 data.SetData(data_sp); 644 data_offset = MachHeaderSizeFromMagic(header.magic); 645 } 646 if (data_sp) 647 { 648 ModuleSpec spec; 649 spec.GetFileSpec() = file; 650 spec.GetArchitecture().SetArchitecture(eArchTypeMachO, 651 header.cputype, 652 header.cpusubtype); 653 if (header.filetype == MH_PRELOAD) // 0x5u 654 { 655 // Set OS to "unknown" - this is a standalone binary with no dyld et al 656 spec.GetArchitecture().GetTriple().setOS (llvm::Triple::UnknownOS); 657 } 658 if (spec.GetArchitecture().IsValid()) 659 { 660 GetUUID (header, data, data_offset, spec.GetUUID()); 661 specs.Append(spec); 662 } 663 } 664 } 665 } 666 return specs.GetSize() - initial_count; 667 } 668 669 670 671 const ConstString & 672 ObjectFileMachO::GetSegmentNameTEXT() 673 { 674 static ConstString g_segment_name_TEXT ("__TEXT"); 675 return g_segment_name_TEXT; 676 } 677 678 const ConstString & 679 ObjectFileMachO::GetSegmentNameDATA() 680 { 681 static ConstString g_segment_name_DATA ("__DATA"); 682 return g_segment_name_DATA; 683 } 684 685 const ConstString & 686 ObjectFileMachO::GetSegmentNameOBJC() 687 { 688 static ConstString g_segment_name_OBJC ("__OBJC"); 689 return g_segment_name_OBJC; 690 } 691 692 const ConstString & 693 ObjectFileMachO::GetSegmentNameLINKEDIT() 694 { 695 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 696 return g_section_name_LINKEDIT; 697 } 698 699 const ConstString & 700 ObjectFileMachO::GetSectionNameEHFrame() 701 { 702 static ConstString g_section_name_eh_frame ("__eh_frame"); 703 return g_section_name_eh_frame; 704 } 705 706 bool 707 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 708 lldb::addr_t data_offset, 709 lldb::addr_t data_length) 710 { 711 DataExtractor data; 712 data.SetData (data_sp, data_offset, data_length); 713 lldb::offset_t offset = 0; 714 uint32_t magic = data.GetU32(&offset); 715 return MachHeaderSizeFromMagic(magic) != 0; 716 } 717 718 719 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 720 DataBufferSP& data_sp, 721 lldb::offset_t data_offset, 722 const FileSpec* file, 723 lldb::offset_t file_offset, 724 lldb::offset_t length) : 725 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 726 m_mach_segments(), 727 m_mach_sections(), 728 m_entry_point_address(), 729 m_thread_context_offsets(), 730 m_thread_context_offsets_valid(false) 731 { 732 ::memset (&m_header, 0, sizeof(m_header)); 733 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 734 } 735 736 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 737 lldb::DataBufferSP& header_data_sp, 738 const lldb::ProcessSP &process_sp, 739 lldb::addr_t header_addr) : 740 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 741 m_mach_segments(), 742 m_mach_sections(), 743 m_entry_point_address(), 744 m_thread_context_offsets(), 745 m_thread_context_offsets_valid(false) 746 { 747 ::memset (&m_header, 0, sizeof(m_header)); 748 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 749 } 750 751 ObjectFileMachO::~ObjectFileMachO() 752 { 753 } 754 755 bool 756 ObjectFileMachO::ParseHeader (DataExtractor &data, 757 lldb::offset_t *data_offset_ptr, 758 llvm::MachO::mach_header &header) 759 { 760 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 761 // Leave magic in the original byte order 762 header.magic = data.GetU32(data_offset_ptr); 763 bool can_parse = false; 764 bool is_64_bit = false; 765 switch (header.magic) 766 { 767 case MH_MAGIC: 768 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 769 data.SetAddressByteSize(4); 770 can_parse = true; 771 break; 772 773 case MH_MAGIC_64: 774 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 775 data.SetAddressByteSize(8); 776 can_parse = true; 777 is_64_bit = true; 778 break; 779 780 case MH_CIGAM: 781 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 782 data.SetAddressByteSize(4); 783 can_parse = true; 784 break; 785 786 case MH_CIGAM_64: 787 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 788 data.SetAddressByteSize(8); 789 is_64_bit = true; 790 can_parse = true; 791 break; 792 793 default: 794 break; 795 } 796 797 if (can_parse) 798 { 799 data.GetU32(data_offset_ptr, &header.cputype, 6); 800 if (is_64_bit) 801 *data_offset_ptr += 4; 802 return true; 803 } 804 else 805 { 806 memset(&header, 0, sizeof(header)); 807 } 808 return false; 809 } 810 811 bool 812 ObjectFileMachO::ParseHeader () 813 { 814 ModuleSP module_sp(GetModule()); 815 if (module_sp) 816 { 817 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 818 bool can_parse = false; 819 lldb::offset_t offset = 0; 820 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 821 // Leave magic in the original byte order 822 m_header.magic = m_data.GetU32(&offset); 823 switch (m_header.magic) 824 { 825 case MH_MAGIC: 826 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 827 m_data.SetAddressByteSize(4); 828 can_parse = true; 829 break; 830 831 case MH_MAGIC_64: 832 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 833 m_data.SetAddressByteSize(8); 834 can_parse = true; 835 break; 836 837 case MH_CIGAM: 838 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 839 m_data.SetAddressByteSize(4); 840 can_parse = true; 841 break; 842 843 case MH_CIGAM_64: 844 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 845 m_data.SetAddressByteSize(8); 846 can_parse = true; 847 break; 848 849 default: 850 break; 851 } 852 853 if (can_parse) 854 { 855 m_data.GetU32(&offset, &m_header.cputype, 6); 856 857 ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 858 859 // Check if the module has a required architecture 860 const ArchSpec &module_arch = module_sp->GetArchitecture(); 861 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 862 return false; 863 864 if (SetModulesArchitecture (mach_arch)) 865 { 866 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 867 if (m_data.GetByteSize() < header_and_lc_size) 868 { 869 DataBufferSP data_sp; 870 ProcessSP process_sp (m_process_wp.lock()); 871 if (process_sp) 872 { 873 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 874 } 875 else 876 { 877 // Read in all only the load command data from the file on disk 878 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 879 if (data_sp->GetByteSize() != header_and_lc_size) 880 return false; 881 } 882 if (data_sp) 883 m_data.SetData (data_sp); 884 } 885 } 886 return true; 887 } 888 else 889 { 890 memset(&m_header, 0, sizeof(struct mach_header)); 891 } 892 } 893 return false; 894 } 895 896 897 ByteOrder 898 ObjectFileMachO::GetByteOrder () const 899 { 900 return m_data.GetByteOrder (); 901 } 902 903 bool 904 ObjectFileMachO::IsExecutable() const 905 { 906 return m_header.filetype == MH_EXECUTE; 907 } 908 909 uint32_t 910 ObjectFileMachO::GetAddressByteSize () const 911 { 912 return m_data.GetAddressByteSize (); 913 } 914 915 AddressClass 916 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 917 { 918 Symtab *symtab = GetSymtab(); 919 if (symtab) 920 { 921 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 922 if (symbol) 923 { 924 if (symbol->ValueIsAddress()) 925 { 926 SectionSP section_sp (symbol->GetAddress().GetSection()); 927 if (section_sp) 928 { 929 const lldb::SectionType section_type = section_sp->GetType(); 930 switch (section_type) 931 { 932 case eSectionTypeInvalid: return eAddressClassUnknown; 933 case eSectionTypeCode: 934 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 935 { 936 // For ARM we have a bit in the n_desc field of the symbol 937 // that tells us ARM/Thumb which is bit 0x0008. 938 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 939 return eAddressClassCodeAlternateISA; 940 } 941 return eAddressClassCode; 942 943 case eSectionTypeContainer: return eAddressClassUnknown; 944 case eSectionTypeData: 945 case eSectionTypeDataCString: 946 case eSectionTypeDataCStringPointers: 947 case eSectionTypeDataSymbolAddress: 948 case eSectionTypeData4: 949 case eSectionTypeData8: 950 case eSectionTypeData16: 951 case eSectionTypeDataPointers: 952 case eSectionTypeZeroFill: 953 case eSectionTypeDataObjCMessageRefs: 954 case eSectionTypeDataObjCCFStrings: 955 return eAddressClassData; 956 case eSectionTypeDebug: 957 case eSectionTypeDWARFDebugAbbrev: 958 case eSectionTypeDWARFDebugAranges: 959 case eSectionTypeDWARFDebugFrame: 960 case eSectionTypeDWARFDebugInfo: 961 case eSectionTypeDWARFDebugLine: 962 case eSectionTypeDWARFDebugLoc: 963 case eSectionTypeDWARFDebugMacInfo: 964 case eSectionTypeDWARFDebugPubNames: 965 case eSectionTypeDWARFDebugPubTypes: 966 case eSectionTypeDWARFDebugRanges: 967 case eSectionTypeDWARFDebugStr: 968 case eSectionTypeDWARFAppleNames: 969 case eSectionTypeDWARFAppleTypes: 970 case eSectionTypeDWARFAppleNamespaces: 971 case eSectionTypeDWARFAppleObjC: 972 return eAddressClassDebug; 973 case eSectionTypeEHFrame: return eAddressClassRuntime; 974 case eSectionTypeELFSymbolTable: 975 case eSectionTypeELFDynamicSymbols: 976 case eSectionTypeELFRelocationEntries: 977 case eSectionTypeELFDynamicLinkInfo: 978 case eSectionTypeOther: return eAddressClassUnknown; 979 } 980 } 981 } 982 983 const SymbolType symbol_type = symbol->GetType(); 984 switch (symbol_type) 985 { 986 case eSymbolTypeAny: return eAddressClassUnknown; 987 case eSymbolTypeAbsolute: return eAddressClassUnknown; 988 989 case eSymbolTypeCode: 990 case eSymbolTypeTrampoline: 991 case eSymbolTypeResolver: 992 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 993 { 994 // For ARM we have a bit in the n_desc field of the symbol 995 // that tells us ARM/Thumb which is bit 0x0008. 996 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 997 return eAddressClassCodeAlternateISA; 998 } 999 return eAddressClassCode; 1000 1001 case eSymbolTypeData: return eAddressClassData; 1002 case eSymbolTypeRuntime: return eAddressClassRuntime; 1003 case eSymbolTypeException: return eAddressClassRuntime; 1004 case eSymbolTypeSourceFile: return eAddressClassDebug; 1005 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1006 case eSymbolTypeObjectFile: return eAddressClassDebug; 1007 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1008 case eSymbolTypeBlock: return eAddressClassDebug; 1009 case eSymbolTypeLocal: return eAddressClassData; 1010 case eSymbolTypeParam: return eAddressClassData; 1011 case eSymbolTypeVariable: return eAddressClassData; 1012 case eSymbolTypeVariableType: return eAddressClassDebug; 1013 case eSymbolTypeLineEntry: return eAddressClassDebug; 1014 case eSymbolTypeLineHeader: return eAddressClassDebug; 1015 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1016 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1017 case eSymbolTypeAdditional: return eAddressClassUnknown; 1018 case eSymbolTypeCompiler: return eAddressClassDebug; 1019 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1020 case eSymbolTypeUndefined: return eAddressClassUnknown; 1021 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1022 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1023 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1024 case eSymbolTypeReExported: return eAddressClassRuntime; 1025 } 1026 } 1027 } 1028 return eAddressClassUnknown; 1029 } 1030 1031 Symtab * 1032 ObjectFileMachO::GetSymtab() 1033 { 1034 ModuleSP module_sp(GetModule()); 1035 if (module_sp) 1036 { 1037 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1038 if (m_symtab_ap.get() == NULL) 1039 { 1040 m_symtab_ap.reset(new Symtab(this)); 1041 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1042 ParseSymtab (); 1043 m_symtab_ap->Finalize (); 1044 } 1045 } 1046 return m_symtab_ap.get(); 1047 } 1048 1049 bool 1050 ObjectFileMachO::IsStripped () 1051 { 1052 if (m_dysymtab.cmd == 0) 1053 { 1054 ModuleSP module_sp(GetModule()); 1055 if (module_sp) 1056 { 1057 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1058 for (uint32_t i=0; i<m_header.ncmds; ++i) 1059 { 1060 const lldb::offset_t load_cmd_offset = offset; 1061 1062 load_command lc; 1063 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1064 break; 1065 if (lc.cmd == LC_DYSYMTAB) 1066 { 1067 m_dysymtab.cmd = lc.cmd; 1068 m_dysymtab.cmdsize = lc.cmdsize; 1069 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1070 { 1071 // Clear m_dysymtab if we were unable to read all items from the load command 1072 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1073 } 1074 } 1075 offset = load_cmd_offset + lc.cmdsize; 1076 } 1077 } 1078 } 1079 if (m_dysymtab.cmd) 1080 return m_dysymtab.nlocalsym <= 1; 1081 return false; 1082 } 1083 1084 void 1085 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1086 { 1087 if (!m_sections_ap.get()) 1088 { 1089 m_sections_ap.reset(new SectionList()); 1090 1091 const bool is_dsym = (m_header.filetype == MH_DSYM); 1092 lldb::user_id_t segID = 0; 1093 lldb::user_id_t sectID = 0; 1094 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1095 uint32_t i; 1096 const bool is_core = GetType() == eTypeCoreFile; 1097 //bool dump_sections = false; 1098 ModuleSP module_sp (GetModule()); 1099 // First look up any LC_ENCRYPTION_INFO load commands 1100 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1101 EncryptedFileRanges encrypted_file_ranges; 1102 encryption_info_command encryption_cmd; 1103 for (i=0; i<m_header.ncmds; ++i) 1104 { 1105 const lldb::offset_t load_cmd_offset = offset; 1106 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1107 break; 1108 1109 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO) 1110 { 1111 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1112 { 1113 if (encryption_cmd.cryptid != 0) 1114 { 1115 EncryptedFileRanges::Entry entry; 1116 entry.SetRangeBase(encryption_cmd.cryptoff); 1117 entry.SetByteSize(encryption_cmd.cryptsize); 1118 encrypted_file_ranges.Append(entry); 1119 } 1120 } 1121 } 1122 offset = load_cmd_offset + encryption_cmd.cmdsize; 1123 } 1124 1125 offset = MachHeaderSizeFromMagic(m_header.magic); 1126 1127 struct segment_command_64 load_cmd; 1128 for (i=0; i<m_header.ncmds; ++i) 1129 { 1130 const lldb::offset_t load_cmd_offset = offset; 1131 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1132 break; 1133 1134 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1135 { 1136 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1137 { 1138 bool add_section = true; 1139 bool add_to_unified = true; 1140 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1141 1142 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1143 if (is_dsym && unified_section_sp) 1144 { 1145 if (const_segname == GetSegmentNameLINKEDIT()) 1146 { 1147 // We need to keep the __LINKEDIT segment private to this object file only 1148 add_to_unified = false; 1149 } 1150 else 1151 { 1152 // This is the dSYM file and this section has already been created by 1153 // the object file, no need to create it. 1154 add_section = false; 1155 } 1156 } 1157 load_cmd.vmaddr = m_data.GetAddress(&offset); 1158 load_cmd.vmsize = m_data.GetAddress(&offset); 1159 load_cmd.fileoff = m_data.GetAddress(&offset); 1160 load_cmd.filesize = m_data.GetAddress(&offset); 1161 if (m_length != 0 && load_cmd.filesize != 0) 1162 { 1163 if (load_cmd.fileoff > m_length) 1164 { 1165 // We have a load command that says it extends past the end of hte file. This is likely 1166 // a corrupt file. We don't have any way to return an error condition here (this method 1167 // was likely invokved from something like ObjectFile::GetSectionList()) -- all we can do 1168 // is null out the SectionList vector and if a process has been set up, dump a message 1169 // to stdout. The most common case here is core file debugging with a truncated file. 1170 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1171 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1172 i, 1173 lc_segment_name, 1174 load_cmd.fileoff, 1175 m_length); 1176 1177 load_cmd.fileoff = 0; 1178 load_cmd.filesize = 0; 1179 } 1180 1181 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1182 { 1183 // We have a load command that says it extends past the end of hte file. This is likely 1184 // a corrupt file. We don't have any way to return an error condition here (this method 1185 // was likely invokved from something like ObjectFile::GetSectionList()) -- all we can do 1186 // is null out the SectionList vector and if a process has been set up, dump a message 1187 // to stdout. The most common case here is core file debugging with a truncated file. 1188 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1189 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1190 i, 1191 lc_segment_name, 1192 load_cmd.fileoff + load_cmd.filesize, 1193 m_length); 1194 1195 // Tuncase the length 1196 load_cmd.filesize = m_length - load_cmd.fileoff; 1197 } 1198 } 1199 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1200 { 1201 1202 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1203 1204 // Keep a list of mach segments around in case we need to 1205 // get at data that isn't stored in the abstracted Sections. 1206 m_mach_segments.push_back (load_cmd); 1207 1208 // Use a segment ID of the segment index shifted left by 8 so they 1209 // never conflict with any of the sections. 1210 SectionSP segment_sp; 1211 if (add_section && (const_segname || is_core)) 1212 { 1213 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1214 this, // Object file to which this sections belongs 1215 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1216 const_segname, // Name of this section 1217 eSectionTypeContainer, // This section is a container of other sections. 1218 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1219 load_cmd.vmsize, // VM size in bytes of this section 1220 load_cmd.fileoff, // Offset to the data for this section in the file 1221 load_cmd.filesize, // Size in bytes of this section as found in the the file 1222 load_cmd.flags)); // Flags for this section 1223 1224 segment_sp->SetIsEncrypted (segment_is_encrypted); 1225 m_sections_ap->AddSection(segment_sp); 1226 if (add_to_unified) 1227 unified_section_list.AddSection(segment_sp); 1228 } 1229 else if (unified_section_sp) 1230 { 1231 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1232 { 1233 // Check to see if the module was read from memory? 1234 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1235 { 1236 // We have a module that is in memory and needs to have its 1237 // file address adjusted. We need to do this because when we 1238 // load a file from memory, its addresses will be slid already, 1239 // yet the addresses in the new symbol file will still be unslid. 1240 // Since everything is stored as section offset, this shouldn't 1241 // cause any problems. 1242 1243 // Make sure we've parsed the symbol table from the 1244 // ObjectFile before we go around changing its Sections. 1245 module_sp->GetObjectFile()->GetSymtab(); 1246 // eh_frame would present the same problems but we parse that on 1247 // a per-function basis as-needed so it's more difficult to 1248 // remove its use of the Sections. Realistically, the environments 1249 // where this code path will be taken will not have eh_frame sections. 1250 1251 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1252 } 1253 } 1254 m_sections_ap->AddSection(unified_section_sp); 1255 } 1256 1257 struct section_64 sect64; 1258 ::memset (§64, 0, sizeof(sect64)); 1259 // Push a section into our mach sections for the section at 1260 // index zero (NO_SECT) if we don't have any mach sections yet... 1261 if (m_mach_sections.empty()) 1262 m_mach_sections.push_back(sect64); 1263 uint32_t segment_sect_idx; 1264 const lldb::user_id_t first_segment_sectID = sectID + 1; 1265 1266 1267 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1268 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1269 { 1270 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1271 break; 1272 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1273 break; 1274 sect64.addr = m_data.GetAddress(&offset); 1275 sect64.size = m_data.GetAddress(&offset); 1276 1277 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1278 break; 1279 1280 // Keep a list of mach sections around in case we need to 1281 // get at data that isn't stored in the abstracted Sections. 1282 m_mach_sections.push_back (sect64); 1283 1284 if (add_section) 1285 { 1286 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1287 if (!const_segname) 1288 { 1289 // We have a segment with no name so we need to conjure up 1290 // segments that correspond to the section's segname if there 1291 // isn't already such a section. If there is such a section, 1292 // we resize the section so that it spans all sections. 1293 // We also mark these sections as fake so address matches don't 1294 // hit if they land in the gaps between the child sections. 1295 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1296 segment_sp = unified_section_list.FindSectionByName (const_segname); 1297 if (segment_sp.get()) 1298 { 1299 Section *segment = segment_sp.get(); 1300 // Grow the section size as needed. 1301 const lldb::addr_t sect64_min_addr = sect64.addr; 1302 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1303 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1304 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1305 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1306 if (sect64_min_addr >= curr_seg_min_addr) 1307 { 1308 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1309 // Only grow the section size if needed 1310 if (new_seg_byte_size > curr_seg_byte_size) 1311 segment->SetByteSize (new_seg_byte_size); 1312 } 1313 else 1314 { 1315 // We need to change the base address of the segment and 1316 // adjust the child section offsets for all existing children. 1317 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1318 segment->Slide(slide_amount, false); 1319 segment->GetChildren().Slide(-slide_amount, false); 1320 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1321 } 1322 1323 // Grow the section size as needed. 1324 if (sect64.offset) 1325 { 1326 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1327 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1328 1329 const lldb::addr_t section_min_file_offset = sect64.offset; 1330 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1331 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1332 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1333 segment->SetFileOffset (new_file_offset); 1334 segment->SetFileSize (new_file_size); 1335 } 1336 } 1337 else 1338 { 1339 // Create a fake section for the section's named segment 1340 segment_sp.reset(new Section (segment_sp, // Parent section 1341 module_sp, // Module to which this section belongs 1342 this, // Object file to which this section belongs 1343 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1344 const_segname, // Name of this section 1345 eSectionTypeContainer, // This section is a container of other sections. 1346 sect64.addr, // File VM address == addresses as they are found in the object file 1347 sect64.size, // VM size in bytes of this section 1348 sect64.offset, // Offset to the data for this section in the file 1349 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file 1350 load_cmd.flags)); // Flags for this section 1351 segment_sp->SetIsFake(true); 1352 1353 m_sections_ap->AddSection(segment_sp); 1354 if (add_to_unified) 1355 unified_section_list.AddSection(segment_sp); 1356 segment_sp->SetIsEncrypted (segment_is_encrypted); 1357 } 1358 } 1359 assert (segment_sp.get()); 1360 1361 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1362 static ConstString g_sect_name_objc_data ("__objc_data"); 1363 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1364 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1365 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1366 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1367 static ConstString g_sect_name_objc_const ("__objc_const"); 1368 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1369 static ConstString g_sect_name_cfstring ("__cfstring"); 1370 1371 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1372 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1373 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1374 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1375 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1376 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1377 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1378 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1379 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1380 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1381 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1382 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1383 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1384 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1385 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1386 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1387 static ConstString g_sect_name_DATA ("__DATA"); 1388 static ConstString g_sect_name_TEXT ("__TEXT"); 1389 1390 lldb::SectionType sect_type = eSectionTypeOther; 1391 1392 if (section_name == g_sect_name_dwarf_debug_abbrev) 1393 sect_type = eSectionTypeDWARFDebugAbbrev; 1394 else if (section_name == g_sect_name_dwarf_debug_aranges) 1395 sect_type = eSectionTypeDWARFDebugAranges; 1396 else if (section_name == g_sect_name_dwarf_debug_frame) 1397 sect_type = eSectionTypeDWARFDebugFrame; 1398 else if (section_name == g_sect_name_dwarf_debug_info) 1399 sect_type = eSectionTypeDWARFDebugInfo; 1400 else if (section_name == g_sect_name_dwarf_debug_line) 1401 sect_type = eSectionTypeDWARFDebugLine; 1402 else if (section_name == g_sect_name_dwarf_debug_loc) 1403 sect_type = eSectionTypeDWARFDebugLoc; 1404 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1405 sect_type = eSectionTypeDWARFDebugMacInfo; 1406 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1407 sect_type = eSectionTypeDWARFDebugPubNames; 1408 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1409 sect_type = eSectionTypeDWARFDebugPubTypes; 1410 else if (section_name == g_sect_name_dwarf_debug_ranges) 1411 sect_type = eSectionTypeDWARFDebugRanges; 1412 else if (section_name == g_sect_name_dwarf_debug_str) 1413 sect_type = eSectionTypeDWARFDebugStr; 1414 else if (section_name == g_sect_name_dwarf_apple_names) 1415 sect_type = eSectionTypeDWARFAppleNames; 1416 else if (section_name == g_sect_name_dwarf_apple_types) 1417 sect_type = eSectionTypeDWARFAppleTypes; 1418 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1419 sect_type = eSectionTypeDWARFAppleNamespaces; 1420 else if (section_name == g_sect_name_dwarf_apple_objc) 1421 sect_type = eSectionTypeDWARFAppleObjC; 1422 else if (section_name == g_sect_name_objc_selrefs) 1423 sect_type = eSectionTypeDataCStringPointers; 1424 else if (section_name == g_sect_name_objc_msgrefs) 1425 sect_type = eSectionTypeDataObjCMessageRefs; 1426 else if (section_name == g_sect_name_eh_frame) 1427 sect_type = eSectionTypeEHFrame; 1428 else if (section_name == g_sect_name_cfstring) 1429 sect_type = eSectionTypeDataObjCCFStrings; 1430 else if (section_name == g_sect_name_objc_data || 1431 section_name == g_sect_name_objc_classrefs || 1432 section_name == g_sect_name_objc_superrefs || 1433 section_name == g_sect_name_objc_const || 1434 section_name == g_sect_name_objc_classlist) 1435 { 1436 sect_type = eSectionTypeDataPointers; 1437 } 1438 1439 if (sect_type == eSectionTypeOther) 1440 { 1441 switch (mach_sect_type) 1442 { 1443 // TODO: categorize sections by other flags for regular sections 1444 case S_REGULAR: 1445 if (segment_sp->GetName() == g_sect_name_TEXT) 1446 sect_type = eSectionTypeCode; 1447 else if (segment_sp->GetName() == g_sect_name_DATA) 1448 sect_type = eSectionTypeData; 1449 else 1450 sect_type = eSectionTypeOther; 1451 break; 1452 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1453 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1454 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1455 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1456 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1457 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1458 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1459 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1460 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1461 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1462 case S_COALESCED: sect_type = eSectionTypeOther; break; 1463 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1464 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1465 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1466 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1467 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1468 default: break; 1469 } 1470 } 1471 1472 SectionSP section_sp(new Section (segment_sp, 1473 module_sp, 1474 this, 1475 ++sectID, 1476 section_name, 1477 sect_type, 1478 sect64.addr - segment_sp->GetFileAddress(), 1479 sect64.size, 1480 sect64.offset, 1481 sect64.offset == 0 ? 0 : sect64.size, 1482 sect64.flags)); 1483 // Set the section to be encrypted to match the segment 1484 1485 bool section_is_encrypted = false; 1486 if (!segment_is_encrypted && load_cmd.filesize != 0) 1487 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1488 1489 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1490 segment_sp->GetChildren().AddSection(section_sp); 1491 1492 if (segment_sp->IsFake()) 1493 { 1494 segment_sp.reset(); 1495 const_segname.Clear(); 1496 } 1497 } 1498 } 1499 if (segment_sp && is_dsym) 1500 { 1501 if (first_segment_sectID <= sectID) 1502 { 1503 lldb::user_id_t sect_uid; 1504 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1505 { 1506 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1507 SectionSP next_section_sp; 1508 if (sect_uid + 1 <= sectID) 1509 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1510 1511 if (curr_section_sp.get()) 1512 { 1513 if (curr_section_sp->GetByteSize() == 0) 1514 { 1515 if (next_section_sp.get() != NULL) 1516 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1517 else 1518 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1519 } 1520 } 1521 } 1522 } 1523 } 1524 } 1525 } 1526 } 1527 else if (load_cmd.cmd == LC_DYSYMTAB) 1528 { 1529 m_dysymtab.cmd = load_cmd.cmd; 1530 m_dysymtab.cmdsize = load_cmd.cmdsize; 1531 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1532 } 1533 1534 offset = load_cmd_offset + load_cmd.cmdsize; 1535 } 1536 1537 // StreamFile s(stdout, false); // REMOVE THIS LINE 1538 // s.Printf ("Sections for %s:\n", m_file.GetPath().c_str());// REMOVE THIS LINE 1539 // m_sections_ap->Dump(&s, NULL, true, UINT32_MAX);// REMOVE THIS LINE 1540 } 1541 } 1542 1543 class MachSymtabSectionInfo 1544 { 1545 public: 1546 1547 MachSymtabSectionInfo (SectionList *section_list) : 1548 m_section_list (section_list), 1549 m_section_infos() 1550 { 1551 // Get the number of sections down to a depth of 1 to include 1552 // all segments and their sections, but no other sections that 1553 // may be added for debug map or 1554 m_section_infos.resize(section_list->GetNumSections(1)); 1555 } 1556 1557 1558 SectionSP 1559 GetSection (uint8_t n_sect, addr_t file_addr) 1560 { 1561 if (n_sect == 0) 1562 return SectionSP(); 1563 if (n_sect < m_section_infos.size()) 1564 { 1565 if (!m_section_infos[n_sect].section_sp) 1566 { 1567 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1568 m_section_infos[n_sect].section_sp = section_sp; 1569 if (section_sp) 1570 { 1571 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1572 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1573 } 1574 else 1575 { 1576 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1577 } 1578 } 1579 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1580 { 1581 // Symbol is in section. 1582 return m_section_infos[n_sect].section_sp; 1583 } 1584 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1585 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1586 { 1587 // Symbol is in section with zero size, but has the same start 1588 // address as the section. This can happen with linker symbols 1589 // (symbols that start with the letter 'l' or 'L'. 1590 return m_section_infos[n_sect].section_sp; 1591 } 1592 } 1593 return m_section_list->FindSectionContainingFileAddress(file_addr); 1594 } 1595 1596 protected: 1597 struct SectionInfo 1598 { 1599 SectionInfo () : 1600 vm_range(), 1601 section_sp () 1602 { 1603 } 1604 1605 VMRange vm_range; 1606 SectionSP section_sp; 1607 }; 1608 SectionList *m_section_list; 1609 std::vector<SectionInfo> m_section_infos; 1610 }; 1611 1612 struct TrieEntry 1613 { 1614 TrieEntry () : 1615 name(), 1616 address(LLDB_INVALID_ADDRESS), 1617 flags (0), 1618 other(0), 1619 import_name() 1620 { 1621 } 1622 1623 void 1624 Clear () 1625 { 1626 name.Clear(); 1627 address = LLDB_INVALID_ADDRESS; 1628 flags = 0; 1629 other = 0; 1630 import_name.Clear(); 1631 } 1632 1633 void 1634 Dump () const 1635 { 1636 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 1637 static_cast<unsigned long long>(address), 1638 static_cast<unsigned long long>(flags), 1639 static_cast<unsigned long long>(other), name.GetCString()); 1640 if (import_name) 1641 printf (" -> \"%s\"\n", import_name.GetCString()); 1642 else 1643 printf ("\n"); 1644 } 1645 ConstString name; 1646 uint64_t address; 1647 uint64_t flags; 1648 uint64_t other; 1649 ConstString import_name; 1650 }; 1651 1652 struct TrieEntryWithOffset 1653 { 1654 lldb::offset_t nodeOffset; 1655 TrieEntry entry; 1656 1657 TrieEntryWithOffset (lldb::offset_t offset) : 1658 nodeOffset (offset), 1659 entry() 1660 { 1661 } 1662 1663 void 1664 Dump (uint32_t idx) const 1665 { 1666 printf ("[%3u] 0x%16.16llx: ", idx, 1667 static_cast<unsigned long long>(nodeOffset)); 1668 entry.Dump(); 1669 } 1670 1671 bool 1672 operator<(const TrieEntryWithOffset& other) const 1673 { 1674 return ( nodeOffset < other.nodeOffset ); 1675 } 1676 }; 1677 1678 static void 1679 ParseTrieEntries (DataExtractor &data, 1680 lldb::offset_t offset, 1681 std::vector<llvm::StringRef> &nameSlices, 1682 std::set<lldb::addr_t> &resolver_addresses, 1683 std::vector<TrieEntryWithOffset>& output) 1684 { 1685 if (!data.ValidOffset(offset)) 1686 return; 1687 1688 const uint64_t terminalSize = data.GetULEB128(&offset); 1689 lldb::offset_t children_offset = offset + terminalSize; 1690 if ( terminalSize != 0 ) { 1691 TrieEntryWithOffset e (offset); 1692 e.entry.flags = data.GetULEB128(&offset); 1693 const char *import_name = NULL; 1694 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 1695 e.entry.address = 0; 1696 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 1697 import_name = data.GetCStr(&offset); 1698 } 1699 else { 1700 e.entry.address = data.GetULEB128(&offset); 1701 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 1702 { 1703 //resolver_addresses.insert(e.entry.address); 1704 e.entry.other = data.GetULEB128(&offset); 1705 resolver_addresses.insert(e.entry.other); 1706 } 1707 else 1708 e.entry.other = 0; 1709 } 1710 // Only add symbols that are reexport symbols with a valid import name 1711 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 1712 { 1713 std::string name; 1714 if (!nameSlices.empty()) 1715 { 1716 for (auto name_slice: nameSlices) 1717 name.append(name_slice.data(), name_slice.size()); 1718 } 1719 if (name.size() > 1) 1720 { 1721 // Skip the leading '_' 1722 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 1723 } 1724 if (import_name) 1725 { 1726 // Skip the leading '_' 1727 e.entry.import_name.SetCString(import_name+1); 1728 } 1729 output.push_back(e); 1730 } 1731 } 1732 1733 const uint8_t childrenCount = data.GetU8(&children_offset); 1734 for (uint8_t i=0; i < childrenCount; ++i) { 1735 nameSlices.push_back(data.GetCStr(&children_offset)); 1736 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 1737 if (childNodeOffset) 1738 { 1739 ParseTrieEntries(data, 1740 childNodeOffset, 1741 nameSlices, 1742 resolver_addresses, 1743 output); 1744 } 1745 nameSlices.pop_back(); 1746 } 1747 } 1748 1749 size_t 1750 ObjectFileMachO::ParseSymtab () 1751 { 1752 Timer scoped_timer(__PRETTY_FUNCTION__, 1753 "ObjectFileMachO::ParseSymtab () module = %s", 1754 m_file.GetFilename().AsCString("")); 1755 ModuleSP module_sp (GetModule()); 1756 if (!module_sp) 1757 return 0; 1758 1759 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 1760 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 1761 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 1762 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 1763 FunctionStarts function_starts; 1764 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1765 uint32_t i; 1766 FileSpecList dylib_files; 1767 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 1768 1769 for (i=0; i<m_header.ncmds; ++i) 1770 { 1771 const lldb::offset_t cmd_offset = offset; 1772 // Read in the load command and load command size 1773 struct load_command lc; 1774 if (m_data.GetU32(&offset, &lc, 2) == NULL) 1775 break; 1776 // Watch for the symbol table load command 1777 switch (lc.cmd) 1778 { 1779 case LC_SYMTAB: 1780 symtab_load_command.cmd = lc.cmd; 1781 symtab_load_command.cmdsize = lc.cmdsize; 1782 // Read in the rest of the symtab load command 1783 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 1784 return 0; 1785 if (symtab_load_command.symoff == 0) 1786 { 1787 if (log) 1788 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 1789 return 0; 1790 } 1791 1792 if (symtab_load_command.stroff == 0) 1793 { 1794 if (log) 1795 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 1796 return 0; 1797 } 1798 1799 if (symtab_load_command.nsyms == 0) 1800 { 1801 if (log) 1802 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 1803 return 0; 1804 } 1805 1806 if (symtab_load_command.strsize == 0) 1807 { 1808 if (log) 1809 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 1810 return 0; 1811 } 1812 break; 1813 1814 case LC_DYLD_INFO: 1815 case LC_DYLD_INFO_ONLY: 1816 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 1817 { 1818 dyld_info.cmd = lc.cmd; 1819 dyld_info.cmdsize = lc.cmdsize; 1820 } 1821 else 1822 { 1823 memset (&dyld_info, 0, sizeof(dyld_info)); 1824 } 1825 break; 1826 1827 case LC_LOAD_DYLIB: 1828 case LC_LOAD_WEAK_DYLIB: 1829 case LC_REEXPORT_DYLIB: 1830 case LC_LOADFVMLIB: 1831 case LC_LOAD_UPWARD_DYLIB: 1832 { 1833 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 1834 const char *path = m_data.PeekCStr(name_offset); 1835 if (path) 1836 { 1837 FileSpec file_spec(path, false); 1838 // Strip the path if there is @rpath, @executanble, etc so we just use the basename 1839 if (path[0] == '@') 1840 file_spec.GetDirectory().Clear(); 1841 1842 if (lc.cmd == LC_REEXPORT_DYLIB) 1843 { 1844 m_reexported_dylibs.AppendIfUnique(file_spec); 1845 } 1846 1847 dylib_files.Append(file_spec); 1848 } 1849 } 1850 break; 1851 1852 case LC_FUNCTION_STARTS: 1853 function_starts_load_command.cmd = lc.cmd; 1854 function_starts_load_command.cmdsize = lc.cmdsize; 1855 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 1856 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 1857 break; 1858 1859 default: 1860 break; 1861 } 1862 offset = cmd_offset + lc.cmdsize; 1863 } 1864 1865 if (symtab_load_command.cmd) 1866 { 1867 Symtab *symtab = m_symtab_ap.get(); 1868 SectionList *section_list = GetSectionList(); 1869 if (section_list == NULL) 1870 return 0; 1871 1872 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 1873 const ByteOrder byte_order = m_data.GetByteOrder(); 1874 bool bit_width_32 = addr_byte_size == 4; 1875 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 1876 1877 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 1878 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 1879 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 1880 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 1881 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 1882 1883 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 1884 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 1885 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 1886 1887 ProcessSP process_sp (m_process_wp.lock()); 1888 Process *process = process_sp.get(); 1889 1890 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 1891 1892 if (process) 1893 { 1894 Target &target = process->GetTarget(); 1895 1896 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 1897 1898 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 1899 // Reading mach file from memory in a process or core file... 1900 1901 if (linkedit_section_sp) 1902 { 1903 const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 1904 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 1905 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 1906 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 1907 1908 bool data_was_read = false; 1909 1910 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__)) 1911 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 1912 { 1913 // This mach-o memory file is in the dyld shared cache. If this 1914 // program is not remote and this is iOS, then this process will 1915 // share the same shared cache as the process we are debugging and 1916 // we can read the entire __LINKEDIT from the address space in this 1917 // process. This is a needed optimization that is used for local iOS 1918 // debugging only since all shared libraries in the shared cache do 1919 // not have corresponding files that exist in the file system of the 1920 // device. They have been combined into a single file. This means we 1921 // always have to load these files from memory. All of the symbol and 1922 // string tables from all of the __LINKEDIT sections from the shared 1923 // libraries in the shared cache have been merged into a single large 1924 // symbol and string table. Reading all of this symbol and string table 1925 // data across can slow down debug launch times, so we optimize this by 1926 // reading the memory for the __LINKEDIT section from this process. 1927 1928 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 1929 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 1930 bool use_lldb_cache = true; 1931 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 1932 { 1933 use_lldb_cache = false; 1934 ModuleSP module_sp (GetModule()); 1935 if (module_sp) 1936 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 1937 1938 } 1939 1940 PlatformSP platform_sp (target.GetPlatform()); 1941 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 1942 { 1943 data_was_read = true; 1944 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 1945 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 1946 if (function_starts_load_command.cmd) 1947 { 1948 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1949 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 1950 } 1951 } 1952 } 1953 #endif 1954 1955 if (!data_was_read) 1956 { 1957 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 1958 { 1959 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 1960 if (nlist_data_sp) 1961 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 1962 // Load strings individually from memory when loading from memory since shared cache 1963 // string tables contain strings for all symbols from all shared cached libraries 1964 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 1965 //if (strtab_data_sp) 1966 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 1967 if (m_dysymtab.nindirectsyms != 0) 1968 { 1969 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 1970 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 1971 if (indirect_syms_data_sp) 1972 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 1973 } 1974 } 1975 1976 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 1977 { 1978 if (function_starts_load_command.cmd) 1979 { 1980 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1981 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 1982 if (func_start_data_sp) 1983 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 1984 } 1985 } 1986 } 1987 } 1988 } 1989 else 1990 { 1991 nlist_data.SetData (m_data, 1992 symtab_load_command.symoff, 1993 nlist_data_byte_size); 1994 strtab_data.SetData (m_data, 1995 symtab_load_command.stroff, 1996 strtab_data_byte_size); 1997 1998 if (dyld_info.export_size > 0) 1999 { 2000 dyld_trie_data.SetData (m_data, 2001 dyld_info.export_off, 2002 dyld_info.export_size); 2003 } 2004 2005 if (m_dysymtab.nindirectsyms != 0) 2006 { 2007 indirect_symbol_index_data.SetData (m_data, 2008 m_dysymtab.indirectsymoff, 2009 m_dysymtab.nindirectsyms * 4); 2010 } 2011 if (function_starts_load_command.cmd) 2012 { 2013 function_starts_data.SetData (m_data, 2014 function_starts_load_command.dataoff, 2015 function_starts_load_command.datasize); 2016 } 2017 } 2018 2019 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2020 { 2021 if (log) 2022 module_sp->LogMessage(log, "failed to read nlist data"); 2023 return 0; 2024 } 2025 2026 2027 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2028 if (!have_strtab_data) 2029 { 2030 if (process) 2031 { 2032 if (strtab_addr == LLDB_INVALID_ADDRESS) 2033 { 2034 if (log) 2035 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2036 return 0; 2037 } 2038 } 2039 else 2040 { 2041 if (log) 2042 module_sp->LogMessage(log, "failed to read strtab data"); 2043 return 0; 2044 } 2045 } 2046 2047 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2048 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2049 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2050 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2051 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2052 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2053 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2054 SectionSP eh_frame_section_sp; 2055 if (text_section_sp.get()) 2056 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2057 else 2058 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2059 2060 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2061 2062 // lldb works best if it knows the start addresss of all functions in a module. 2063 // Linker symbols or debug info are normally the best source of information for start addr / size but 2064 // they may be stripped in a released binary. 2065 // Two additional sources of information exist in Mach-O binaries: 2066 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2067 // binary, relative to the text section. 2068 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2069 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2070 // Binaries built to run on older releases may need to use eh_frame information. 2071 2072 if (text_section_sp && function_starts_data.GetByteSize()) 2073 { 2074 FunctionStarts::Entry function_start_entry; 2075 function_start_entry.data = false; 2076 lldb::offset_t function_start_offset = 0; 2077 function_start_entry.addr = text_section_sp->GetFileAddress(); 2078 uint64_t delta; 2079 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2080 { 2081 // Now append the current entry 2082 function_start_entry.addr += delta; 2083 function_starts.Append(function_start_entry); 2084 } 2085 } 2086 else 2087 { 2088 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2089 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2090 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2091 // the module. 2092 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2093 { 2094 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindGCC, true); 2095 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2096 eh_frame.GetFunctionAddressAndSizeVector (functions); 2097 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2098 size_t count = functions.GetSize(); 2099 for (size_t i = 0; i < count; ++i) 2100 { 2101 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2102 if (func) 2103 { 2104 FunctionStarts::Entry function_start_entry; 2105 function_start_entry.addr = func->base - text_base_addr; 2106 function_starts.Append(function_start_entry); 2107 } 2108 } 2109 } 2110 } 2111 2112 const size_t function_starts_count = function_starts.GetSize(); 2113 2114 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NO_SECT; 2115 2116 lldb::offset_t nlist_data_offset = 0; 2117 2118 uint32_t N_SO_index = UINT32_MAX; 2119 2120 MachSymtabSectionInfo section_info (section_list); 2121 std::vector<uint32_t> N_FUN_indexes; 2122 std::vector<uint32_t> N_NSYM_indexes; 2123 std::vector<uint32_t> N_INCL_indexes; 2124 std::vector<uint32_t> N_BRAC_indexes; 2125 std::vector<uint32_t> N_COMM_indexes; 2126 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2127 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2128 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2129 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2130 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2131 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2132 // Any symbols that get merged into another will get an entry 2133 // in this map so we know 2134 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2135 uint32_t nlist_idx = 0; 2136 Symbol *symbol_ptr = NULL; 2137 2138 uint32_t sym_idx = 0; 2139 Symbol *sym = NULL; 2140 size_t num_syms = 0; 2141 std::string memory_symbol_name; 2142 uint32_t unmapped_local_symbols_found = 0; 2143 2144 std::vector<TrieEntryWithOffset> trie_entries; 2145 std::set<lldb::addr_t> resolver_addresses; 2146 2147 if (dyld_trie_data.GetByteSize() > 0) 2148 { 2149 std::vector<llvm::StringRef> nameSlices; 2150 ParseTrieEntries (dyld_trie_data, 2151 0, 2152 nameSlices, 2153 resolver_addresses, 2154 trie_entries); 2155 2156 ConstString text_segment_name ("__TEXT"); 2157 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2158 if (text_segment_sp) 2159 { 2160 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2161 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2162 { 2163 for (auto &e : trie_entries) 2164 e.entry.address += text_segment_file_addr; 2165 } 2166 } 2167 } 2168 2169 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__)) 2170 2171 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2172 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2173 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2174 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2175 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2176 // nlist parser to ignore all LOCAL symbols. 2177 2178 if (m_header.flags & 0x80000000u) 2179 { 2180 // Before we can start mapping the DSC, we need to make certain the target process is actually 2181 // using the cache we can find. 2182 2183 // Next we need to determine the correct path for the dyld shared cache. 2184 2185 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 2186 char dsc_path[PATH_MAX]; 2187 2188 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2189 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2190 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2191 header_arch.GetArchitectureName()); 2192 2193 FileSpec dsc_filespec(dsc_path, false); 2194 2195 // We need definitions of two structures in the on-disk DSC, copy them here manually 2196 struct lldb_copy_dyld_cache_header_v0 2197 { 2198 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2199 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2200 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2201 uint32_t imagesOffset; 2202 uint32_t imagesCount; 2203 uint64_t dyldBaseAddress; 2204 uint64_t codeSignatureOffset; 2205 uint64_t codeSignatureSize; 2206 uint64_t slideInfoOffset; 2207 uint64_t slideInfoSize; 2208 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2209 uint64_t localSymbolsSize; // size of local symbols information 2210 }; 2211 struct lldb_copy_dyld_cache_header_v1 2212 { 2213 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2214 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2215 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2216 uint32_t imagesOffset; 2217 uint32_t imagesCount; 2218 uint64_t dyldBaseAddress; 2219 uint64_t codeSignatureOffset; 2220 uint64_t codeSignatureSize; 2221 uint64_t slideInfoOffset; 2222 uint64_t slideInfoSize; 2223 uint64_t localSymbolsOffset; 2224 uint64_t localSymbolsSize; 2225 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2226 }; 2227 2228 struct lldb_copy_dyld_cache_mapping_info 2229 { 2230 uint64_t address; 2231 uint64_t size; 2232 uint64_t fileOffset; 2233 uint32_t maxProt; 2234 uint32_t initProt; 2235 }; 2236 2237 struct lldb_copy_dyld_cache_local_symbols_info 2238 { 2239 uint32_t nlistOffset; 2240 uint32_t nlistCount; 2241 uint32_t stringsOffset; 2242 uint32_t stringsSize; 2243 uint32_t entriesOffset; 2244 uint32_t entriesCount; 2245 }; 2246 struct lldb_copy_dyld_cache_local_symbols_entry 2247 { 2248 uint32_t dylibOffset; 2249 uint32_t nlistStartIndex; 2250 uint32_t nlistCount; 2251 }; 2252 2253 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2254 The dyld_cache_local_symbols_info structure gives us three things: 2255 1. The start and count of the nlist records in the dyld_shared_cache file 2256 2. The start and size of the strings for these nlist records 2257 3. The start and count of dyld_cache_local_symbols_entry entries 2258 2259 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2260 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2261 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2262 and the count of how many nlist records there are for this dylib/framework. 2263 */ 2264 2265 // Process the dsc header to find the unmapped symbols 2266 // 2267 // Save some VM space, do not map the entire cache in one shot. 2268 2269 DataBufferSP dsc_data_sp; 2270 dsc_data_sp = dsc_filespec.MemoryMapFileContents(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2271 2272 if (dsc_data_sp) 2273 { 2274 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2275 2276 char version_str[17]; 2277 int version = -1; 2278 lldb::offset_t offset = 0; 2279 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2280 version_str[16] = '\0'; 2281 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2282 { 2283 int v; 2284 if (::sscanf (version_str + 6, "%d", &v) == 1) 2285 { 2286 version = v; 2287 } 2288 } 2289 2290 UUID dsc_uuid; 2291 if (version >= 1) 2292 { 2293 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2294 uint8_t uuid_bytes[sizeof (uuid_t)]; 2295 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2296 dsc_uuid.SetBytes (uuid_bytes); 2297 } 2298 2299 bool uuid_match = true; 2300 if (dsc_uuid.IsValid() && process) 2301 { 2302 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2303 2304 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2305 { 2306 // The on-disk dyld_shared_cache file is not the same as the one in this 2307 // process' memory, don't use it. 2308 uuid_match = false; 2309 ModuleSP module_sp (GetModule()); 2310 if (module_sp) 2311 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2312 } 2313 } 2314 2315 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2316 2317 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2318 2319 // If the mappingOffset points to a location inside the header, we've 2320 // opened an old dyld shared cache, and should not proceed further. 2321 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2322 { 2323 2324 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContents(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2325 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2326 offset = 0; 2327 2328 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2329 // in the shared library cache need to be adjusted by an offset to match up with the 2330 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2331 // recorded in mapping_offset_value. 2332 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2333 2334 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2335 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2336 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2337 2338 if (localSymbolsOffset && localSymbolsSize) 2339 { 2340 // Map the local symbols 2341 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContents(localSymbolsOffset, localSymbolsSize)) 2342 { 2343 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2344 2345 offset = 0; 2346 2347 // Read the local_symbols_infos struct in one shot 2348 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2349 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2350 2351 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2352 2353 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2354 2355 offset = local_symbols_info.entriesOffset; 2356 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2357 { 2358 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2359 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2360 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2361 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2362 2363 if (header_file_offset == local_symbols_entry.dylibOffset) 2364 { 2365 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2366 2367 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2368 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2369 num_syms = symtab->GetNumSymbols(); 2370 2371 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2372 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2373 2374 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2375 { 2376 ///////////////////////////// 2377 { 2378 struct nlist_64 nlist; 2379 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2380 break; 2381 2382 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2383 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2384 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2385 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2386 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2387 2388 SymbolType type = eSymbolTypeInvalid; 2389 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2390 2391 if (symbol_name == NULL) 2392 { 2393 // No symbol should be NULL, even the symbols with no 2394 // string values should have an offset zero which points 2395 // to an empty C-string 2396 Host::SystemLog (Host::eSystemLogError, 2397 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2398 entry_index, 2399 nlist.n_strx, 2400 module_sp->GetFileSpec().GetPath().c_str()); 2401 continue; 2402 } 2403 if (symbol_name[0] == '\0') 2404 symbol_name = NULL; 2405 2406 const char *symbol_name_non_abi_mangled = NULL; 2407 2408 SectionSP symbol_section; 2409 uint32_t symbol_byte_size = 0; 2410 bool add_nlist = true; 2411 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2412 bool demangled_is_synthesized = false; 2413 bool is_gsym = false; 2414 2415 assert (sym_idx < num_syms); 2416 2417 sym[sym_idx].SetDebug (is_debug); 2418 2419 if (is_debug) 2420 { 2421 switch (nlist.n_type) 2422 { 2423 case N_GSYM: 2424 // global symbol: name,,NO_SECT,type,0 2425 // Sometimes the N_GSYM value contains the address. 2426 2427 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2428 // have the same address, but we want to ensure that we always find only the real symbol, 2429 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2430 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2431 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2432 // same address. 2433 2434 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 2435 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 2436 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 2437 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 2438 add_nlist = false; 2439 else 2440 { 2441 is_gsym = true; 2442 sym[sym_idx].SetExternal(true); 2443 if (nlist.n_value != 0) 2444 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2445 type = eSymbolTypeData; 2446 } 2447 break; 2448 2449 case N_FNAME: 2450 // procedure name (f77 kludge): name,,NO_SECT,0,0 2451 type = eSymbolTypeCompiler; 2452 break; 2453 2454 case N_FUN: 2455 // procedure: name,,n_sect,linenumber,address 2456 if (symbol_name) 2457 { 2458 type = eSymbolTypeCode; 2459 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2460 2461 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2462 // We use the current number of symbols in the symbol table in lieu of 2463 // using nlist_idx in case we ever start trimming entries out 2464 N_FUN_indexes.push_back(sym_idx); 2465 } 2466 else 2467 { 2468 type = eSymbolTypeCompiler; 2469 2470 if ( !N_FUN_indexes.empty() ) 2471 { 2472 // Copy the size of the function into the original STAB entry so we don't have 2473 // to hunt for it later 2474 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2475 N_FUN_indexes.pop_back(); 2476 // We don't really need the end function STAB as it contains the size which 2477 // we already placed with the original symbol, so don't add it if we want a 2478 // minimal symbol table 2479 add_nlist = false; 2480 } 2481 } 2482 break; 2483 2484 case N_STSYM: 2485 // static symbol: name,,n_sect,type,address 2486 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2487 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2488 type = eSymbolTypeData; 2489 break; 2490 2491 case N_LCSYM: 2492 // .lcomm symbol: name,,n_sect,type,address 2493 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2494 type = eSymbolTypeCommonBlock; 2495 break; 2496 2497 case N_BNSYM: 2498 // We use the current number of symbols in the symbol table in lieu of 2499 // using nlist_idx in case we ever start trimming entries out 2500 // Skip these if we want minimal symbol tables 2501 add_nlist = false; 2502 break; 2503 2504 case N_ENSYM: 2505 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2506 // so that we can always skip the entire symbol if we need to navigate 2507 // more quickly at the source level when parsing STABS 2508 // Skip these if we want minimal symbol tables 2509 add_nlist = false; 2510 break; 2511 2512 2513 case N_OPT: 2514 // emitted with gcc2_compiled and in gcc source 2515 type = eSymbolTypeCompiler; 2516 break; 2517 2518 case N_RSYM: 2519 // register sym: name,,NO_SECT,type,register 2520 type = eSymbolTypeVariable; 2521 break; 2522 2523 case N_SLINE: 2524 // src line: 0,,n_sect,linenumber,address 2525 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2526 type = eSymbolTypeLineEntry; 2527 break; 2528 2529 case N_SSYM: 2530 // structure elt: name,,NO_SECT,type,struct_offset 2531 type = eSymbolTypeVariableType; 2532 break; 2533 2534 case N_SO: 2535 // source file name 2536 type = eSymbolTypeSourceFile; 2537 if (symbol_name == NULL) 2538 { 2539 add_nlist = false; 2540 if (N_SO_index != UINT32_MAX) 2541 { 2542 // Set the size of the N_SO to the terminating index of this N_SO 2543 // so that we can always skip the entire N_SO if we need to navigate 2544 // more quickly at the source level when parsing STABS 2545 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2546 symbol_ptr->SetByteSize(sym_idx); 2547 symbol_ptr->SetSizeIsSibling(true); 2548 } 2549 N_NSYM_indexes.clear(); 2550 N_INCL_indexes.clear(); 2551 N_BRAC_indexes.clear(); 2552 N_COMM_indexes.clear(); 2553 N_FUN_indexes.clear(); 2554 N_SO_index = UINT32_MAX; 2555 } 2556 else 2557 { 2558 // We use the current number of symbols in the symbol table in lieu of 2559 // using nlist_idx in case we ever start trimming entries out 2560 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2561 if (N_SO_has_full_path) 2562 { 2563 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2564 { 2565 // We have two consecutive N_SO entries where the first contains a directory 2566 // and the second contains a full path. 2567 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2568 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2569 add_nlist = false; 2570 } 2571 else 2572 { 2573 // This is the first entry in a N_SO that contains a directory or 2574 // a full path to the source file 2575 N_SO_index = sym_idx; 2576 } 2577 } 2578 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2579 { 2580 // This is usually the second N_SO entry that contains just the filename, 2581 // so here we combine it with the first one if we are minimizing the symbol table 2582 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 2583 if (so_path && so_path[0]) 2584 { 2585 std::string full_so_path (so_path); 2586 const size_t double_slash_pos = full_so_path.find("//"); 2587 if (double_slash_pos != std::string::npos) 2588 { 2589 // The linker has been generating bad N_SO entries with doubled up paths 2590 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 2591 // and the second is the directory for the source file so you end up with 2592 // a path that looks like "/tmp/src//tmp/src/" 2593 FileSpec so_dir(so_path, false); 2594 if (!so_dir.Exists()) 2595 { 2596 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 2597 if (so_dir.Exists()) 2598 { 2599 // Trim off the incorrect path 2600 full_so_path.erase(0, double_slash_pos + 1); 2601 } 2602 } 2603 } 2604 if (*full_so_path.rbegin() != '/') 2605 full_so_path += '/'; 2606 full_so_path += symbol_name; 2607 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 2608 add_nlist = false; 2609 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2610 } 2611 } 2612 else 2613 { 2614 // This could be a relative path to a N_SO 2615 N_SO_index = sym_idx; 2616 } 2617 } 2618 break; 2619 2620 case N_OSO: 2621 // object file name: name,,0,0,st_mtime 2622 type = eSymbolTypeObjectFile; 2623 break; 2624 2625 case N_LSYM: 2626 // local sym: name,,NO_SECT,type,offset 2627 type = eSymbolTypeLocal; 2628 break; 2629 2630 //---------------------------------------------------------------------- 2631 // INCL scopes 2632 //---------------------------------------------------------------------- 2633 case N_BINCL: 2634 // include file beginning: name,,NO_SECT,0,sum 2635 // We use the current number of symbols in the symbol table in lieu of 2636 // using nlist_idx in case we ever start trimming entries out 2637 N_INCL_indexes.push_back(sym_idx); 2638 type = eSymbolTypeScopeBegin; 2639 break; 2640 2641 case N_EINCL: 2642 // include file end: name,,NO_SECT,0,0 2643 // Set the size of the N_BINCL to the terminating index of this N_EINCL 2644 // so that we can always skip the entire symbol if we need to navigate 2645 // more quickly at the source level when parsing STABS 2646 if ( !N_INCL_indexes.empty() ) 2647 { 2648 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 2649 symbol_ptr->SetByteSize(sym_idx + 1); 2650 symbol_ptr->SetSizeIsSibling(true); 2651 N_INCL_indexes.pop_back(); 2652 } 2653 type = eSymbolTypeScopeEnd; 2654 break; 2655 2656 case N_SOL: 2657 // #included file name: name,,n_sect,0,address 2658 type = eSymbolTypeHeaderFile; 2659 2660 // We currently don't use the header files on darwin 2661 add_nlist = false; 2662 break; 2663 2664 case N_PARAMS: 2665 // compiler parameters: name,,NO_SECT,0,0 2666 type = eSymbolTypeCompiler; 2667 break; 2668 2669 case N_VERSION: 2670 // compiler version: name,,NO_SECT,0,0 2671 type = eSymbolTypeCompiler; 2672 break; 2673 2674 case N_OLEVEL: 2675 // compiler -O level: name,,NO_SECT,0,0 2676 type = eSymbolTypeCompiler; 2677 break; 2678 2679 case N_PSYM: 2680 // parameter: name,,NO_SECT,type,offset 2681 type = eSymbolTypeVariable; 2682 break; 2683 2684 case N_ENTRY: 2685 // alternate entry: name,,n_sect,linenumber,address 2686 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2687 type = eSymbolTypeLineEntry; 2688 break; 2689 2690 //---------------------------------------------------------------------- 2691 // Left and Right Braces 2692 //---------------------------------------------------------------------- 2693 case N_LBRAC: 2694 // left bracket: 0,,NO_SECT,nesting level,address 2695 // We use the current number of symbols in the symbol table in lieu of 2696 // using nlist_idx in case we ever start trimming entries out 2697 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2698 N_BRAC_indexes.push_back(sym_idx); 2699 type = eSymbolTypeScopeBegin; 2700 break; 2701 2702 case N_RBRAC: 2703 // right bracket: 0,,NO_SECT,nesting level,address 2704 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 2705 // so that we can always skip the entire symbol if we need to navigate 2706 // more quickly at the source level when parsing STABS 2707 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2708 if ( !N_BRAC_indexes.empty() ) 2709 { 2710 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 2711 symbol_ptr->SetByteSize(sym_idx + 1); 2712 symbol_ptr->SetSizeIsSibling(true); 2713 N_BRAC_indexes.pop_back(); 2714 } 2715 type = eSymbolTypeScopeEnd; 2716 break; 2717 2718 case N_EXCL: 2719 // deleted include file: name,,NO_SECT,0,sum 2720 type = eSymbolTypeHeaderFile; 2721 break; 2722 2723 //---------------------------------------------------------------------- 2724 // COMM scopes 2725 //---------------------------------------------------------------------- 2726 case N_BCOMM: 2727 // begin common: name,,NO_SECT,0,0 2728 // We use the current number of symbols in the symbol table in lieu of 2729 // using nlist_idx in case we ever start trimming entries out 2730 type = eSymbolTypeScopeBegin; 2731 N_COMM_indexes.push_back(sym_idx); 2732 break; 2733 2734 case N_ECOML: 2735 // end common (local name): 0,,n_sect,0,address 2736 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2737 // Fall through 2738 2739 case N_ECOMM: 2740 // end common: name,,n_sect,0,0 2741 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 2742 // so that we can always skip the entire symbol if we need to navigate 2743 // more quickly at the source level when parsing STABS 2744 if ( !N_COMM_indexes.empty() ) 2745 { 2746 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 2747 symbol_ptr->SetByteSize(sym_idx + 1); 2748 symbol_ptr->SetSizeIsSibling(true); 2749 N_COMM_indexes.pop_back(); 2750 } 2751 type = eSymbolTypeScopeEnd; 2752 break; 2753 2754 case N_LENG: 2755 // second stab entry with length information 2756 type = eSymbolTypeAdditional; 2757 break; 2758 2759 default: break; 2760 } 2761 } 2762 else 2763 { 2764 //uint8_t n_pext = N_PEXT & nlist.n_type; 2765 uint8_t n_type = N_TYPE & nlist.n_type; 2766 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 2767 2768 switch (n_type) 2769 { 2770 case N_INDR: // Fall through 2771 case N_PBUD: // Fall through 2772 case N_UNDF: 2773 type = eSymbolTypeUndefined; 2774 break; 2775 2776 case N_ABS: 2777 type = eSymbolTypeAbsolute; 2778 break; 2779 2780 case N_SECT: 2781 { 2782 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2783 2784 if (symbol_section == NULL) 2785 { 2786 // TODO: warn about this? 2787 add_nlist = false; 2788 break; 2789 } 2790 2791 if (TEXT_eh_frame_sectID == nlist.n_sect) 2792 { 2793 type = eSymbolTypeException; 2794 } 2795 else 2796 { 2797 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 2798 2799 switch (section_type) 2800 { 2801 case S_REGULAR: break; // regular section 2802 //case S_ZEROFILL: type = eSymbolTypeData; break; // zero fill on demand section 2803 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 2804 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 2805 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 2806 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 2807 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 2808 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 2809 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 2810 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 2811 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 2812 //case S_COALESCED: type = eSymbolType; break; // section contains symbols that are to be coalesced 2813 //case S_GB_ZEROFILL: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 2814 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 2815 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 2816 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 2817 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 2818 default: break; 2819 } 2820 2821 if (type == eSymbolTypeInvalid) 2822 { 2823 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2824 if (symbol_section->IsDescendant (text_section_sp.get())) 2825 { 2826 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 2827 S_ATTR_SELF_MODIFYING_CODE | 2828 S_ATTR_SOME_INSTRUCTIONS)) 2829 type = eSymbolTypeData; 2830 else 2831 type = eSymbolTypeCode; 2832 } 2833 else if (symbol_section->IsDescendant(data_section_sp.get())) 2834 { 2835 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 2836 { 2837 type = eSymbolTypeRuntime; 2838 2839 if (symbol_name && 2840 symbol_name[0] == '_' && 2841 symbol_name[1] == 'O' && 2842 symbol_name[2] == 'B') 2843 { 2844 llvm::StringRef symbol_name_ref(symbol_name); 2845 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2846 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2847 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2848 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2849 { 2850 symbol_name_non_abi_mangled = symbol_name + 1; 2851 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2852 type = eSymbolTypeObjCClass; 2853 demangled_is_synthesized = true; 2854 } 2855 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2856 { 2857 symbol_name_non_abi_mangled = symbol_name + 1; 2858 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2859 type = eSymbolTypeObjCMetaClass; 2860 demangled_is_synthesized = true; 2861 } 2862 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2863 { 2864 symbol_name_non_abi_mangled = symbol_name + 1; 2865 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2866 type = eSymbolTypeObjCIVar; 2867 demangled_is_synthesized = true; 2868 } 2869 } 2870 } 2871 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 2872 { 2873 type = eSymbolTypeException; 2874 } 2875 else 2876 { 2877 type = eSymbolTypeData; 2878 } 2879 } 2880 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 2881 { 2882 type = eSymbolTypeTrampoline; 2883 } 2884 else if (symbol_section->IsDescendant(objc_section_sp.get())) 2885 { 2886 type = eSymbolTypeRuntime; 2887 if (symbol_name && symbol_name[0] == '.') 2888 { 2889 llvm::StringRef symbol_name_ref(symbol_name); 2890 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 2891 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 2892 { 2893 symbol_name_non_abi_mangled = symbol_name; 2894 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 2895 type = eSymbolTypeObjCClass; 2896 demangled_is_synthesized = true; 2897 } 2898 } 2899 } 2900 } 2901 } 2902 } 2903 break; 2904 } 2905 } 2906 2907 if (add_nlist) 2908 { 2909 uint64_t symbol_value = nlist.n_value; 2910 if (symbol_name_non_abi_mangled) 2911 { 2912 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 2913 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 2914 } 2915 else 2916 { 2917 bool symbol_name_is_mangled = false; 2918 2919 if (symbol_name && symbol_name[0] == '_') 2920 { 2921 symbol_name_is_mangled = symbol_name[1] == '_'; 2922 symbol_name++; // Skip the leading underscore 2923 } 2924 2925 if (symbol_name) 2926 { 2927 ConstString const_symbol_name(symbol_name); 2928 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 2929 if (is_gsym && is_debug) 2930 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 2931 } 2932 } 2933 if (symbol_section) 2934 { 2935 const addr_t section_file_addr = symbol_section->GetFileAddress(); 2936 if (symbol_byte_size == 0 && function_starts_count > 0) 2937 { 2938 addr_t symbol_lookup_file_addr = nlist.n_value; 2939 // Do an exact address match for non-ARM addresses, else get the closest since 2940 // the symbol might be a thumb symbol which has an address with bit zero set 2941 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 2942 if (is_arm && func_start_entry) 2943 { 2944 // Verify that the function start address is the symbol address (ARM) 2945 // or the symbol address + 1 (thumb) 2946 if (func_start_entry->addr != symbol_lookup_file_addr && 2947 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 2948 { 2949 // Not the right entry, NULL it out... 2950 func_start_entry = NULL; 2951 } 2952 } 2953 if (func_start_entry) 2954 { 2955 func_start_entry->data = true; 2956 2957 addr_t symbol_file_addr = func_start_entry->addr; 2958 uint32_t symbol_flags = 0; 2959 if (is_arm) 2960 { 2961 if (symbol_file_addr & 1) 2962 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 2963 symbol_file_addr &= 0xfffffffffffffffeull; 2964 } 2965 2966 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 2967 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 2968 if (next_func_start_entry) 2969 { 2970 addr_t next_symbol_file_addr = next_func_start_entry->addr; 2971 // Be sure the clear the Thumb address bit when we calculate the size 2972 // from the current and next address 2973 if (is_arm) 2974 next_symbol_file_addr &= 0xfffffffffffffffeull; 2975 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 2976 } 2977 else 2978 { 2979 symbol_byte_size = section_end_file_addr - symbol_file_addr; 2980 } 2981 } 2982 } 2983 symbol_value -= section_file_addr; 2984 } 2985 2986 if (is_debug == false) 2987 { 2988 if (type == eSymbolTypeCode) 2989 { 2990 // See if we can find a N_FUN entry for any code symbols. 2991 // If we do find a match, and the name matches, then we 2992 // can merge the two into just the function symbol to avoid 2993 // duplicate entries in the symbol table 2994 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 2995 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 2996 if (range.first != range.second) 2997 { 2998 bool found_it = false; 2999 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3000 { 3001 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3002 { 3003 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3004 // We just need the flags from the linker symbol, so put these flags 3005 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3006 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3007 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3008 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3009 sym[pos->second].SetType (eSymbolTypeResolver); 3010 sym[sym_idx].Clear(); 3011 found_it = true; 3012 break; 3013 } 3014 } 3015 if (found_it) 3016 continue; 3017 } 3018 else 3019 { 3020 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3021 type = eSymbolTypeResolver; 3022 } 3023 } 3024 else if (type == eSymbolTypeData) 3025 { 3026 // See if we can find a N_STSYM entry for any data symbols. 3027 // If we do find a match, and the name matches, then we 3028 // can merge the two into just the Static symbol to avoid 3029 // duplicate entries in the symbol table 3030 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3031 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3032 if (range.first != range.second) 3033 { 3034 bool found_it = false; 3035 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3036 { 3037 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3038 { 3039 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3040 // We just need the flags from the linker symbol, so put these flags 3041 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3042 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3043 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3044 sym[sym_idx].Clear(); 3045 found_it = true; 3046 break; 3047 } 3048 } 3049 if (found_it) 3050 continue; 3051 } 3052 else 3053 { 3054 // Combine N_GSYM stab entries with the non stab symbol 3055 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 3056 if (pos != N_GSYM_name_to_sym_idx.end()) 3057 { 3058 const uint32_t GSYM_sym_idx = pos->second; 3059 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3060 // Copy the address, because often the N_GSYM address has an invalid address of zero 3061 // when the global is a common symbol 3062 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 3063 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 3064 // We just need the flags from the linker symbol, so put these flags 3065 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3066 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3067 sym[sym_idx].Clear(); 3068 continue; 3069 } 3070 } 3071 } 3072 } 3073 3074 sym[sym_idx].SetID (nlist_idx); 3075 sym[sym_idx].SetType (type); 3076 sym[sym_idx].GetAddress().SetSection (symbol_section); 3077 sym[sym_idx].GetAddress().SetOffset (symbol_value); 3078 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3079 3080 if (symbol_byte_size > 0) 3081 sym[sym_idx].SetByteSize(symbol_byte_size); 3082 3083 if (demangled_is_synthesized) 3084 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3085 ++sym_idx; 3086 } 3087 else 3088 { 3089 sym[sym_idx].Clear(); 3090 } 3091 3092 } 3093 ///////////////////////////// 3094 } 3095 break; // No more entries to consider 3096 } 3097 } 3098 } 3099 } 3100 } 3101 } 3102 } 3103 3104 // Must reset this in case it was mutated above! 3105 nlist_data_offset = 0; 3106 #endif 3107 3108 if (nlist_data.GetByteSize() > 0) 3109 { 3110 3111 // If the sym array was not created while parsing the DSC unmapped 3112 // symbols, create it now. 3113 if (sym == NULL) 3114 { 3115 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3116 num_syms = symtab->GetNumSymbols(); 3117 } 3118 3119 if (unmapped_local_symbols_found) 3120 { 3121 assert(m_dysymtab.ilocalsym == 0); 3122 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3123 nlist_idx = m_dysymtab.nlocalsym; 3124 } 3125 else 3126 { 3127 nlist_idx = 0; 3128 } 3129 3130 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3131 { 3132 struct nlist_64 nlist; 3133 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3134 break; 3135 3136 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3137 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3138 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3139 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3140 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3141 3142 SymbolType type = eSymbolTypeInvalid; 3143 const char *symbol_name = NULL; 3144 3145 if (have_strtab_data) 3146 { 3147 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3148 3149 if (symbol_name == NULL) 3150 { 3151 // No symbol should be NULL, even the symbols with no 3152 // string values should have an offset zero which points 3153 // to an empty C-string 3154 Host::SystemLog (Host::eSystemLogError, 3155 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3156 nlist_idx, 3157 nlist.n_strx, 3158 module_sp->GetFileSpec().GetPath().c_str()); 3159 continue; 3160 } 3161 if (symbol_name[0] == '\0') 3162 symbol_name = NULL; 3163 } 3164 else 3165 { 3166 const addr_t str_addr = strtab_addr + nlist.n_strx; 3167 Error str_error; 3168 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3169 symbol_name = memory_symbol_name.c_str(); 3170 } 3171 const char *symbol_name_non_abi_mangled = NULL; 3172 3173 SectionSP symbol_section; 3174 lldb::addr_t symbol_byte_size = 0; 3175 bool add_nlist = true; 3176 bool is_gsym = false; 3177 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3178 bool demangled_is_synthesized = false; 3179 3180 assert (sym_idx < num_syms); 3181 3182 sym[sym_idx].SetDebug (is_debug); 3183 3184 if (is_debug) 3185 { 3186 switch (nlist.n_type) 3187 { 3188 case N_GSYM: 3189 // global symbol: name,,NO_SECT,type,0 3190 // Sometimes the N_GSYM value contains the address. 3191 3192 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3193 // have the same address, but we want to ensure that we always find only the real symbol, 3194 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3195 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3196 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3197 // same address. 3198 3199 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 3200 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 3201 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 3202 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 3203 add_nlist = false; 3204 else 3205 { 3206 is_gsym = true; 3207 sym[sym_idx].SetExternal(true); 3208 if (nlist.n_value != 0) 3209 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3210 type = eSymbolTypeData; 3211 } 3212 break; 3213 3214 case N_FNAME: 3215 // procedure name (f77 kludge): name,,NO_SECT,0,0 3216 type = eSymbolTypeCompiler; 3217 break; 3218 3219 case N_FUN: 3220 // procedure: name,,n_sect,linenumber,address 3221 if (symbol_name) 3222 { 3223 type = eSymbolTypeCode; 3224 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3225 3226 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3227 // We use the current number of symbols in the symbol table in lieu of 3228 // using nlist_idx in case we ever start trimming entries out 3229 N_FUN_indexes.push_back(sym_idx); 3230 } 3231 else 3232 { 3233 type = eSymbolTypeCompiler; 3234 3235 if ( !N_FUN_indexes.empty() ) 3236 { 3237 // Copy the size of the function into the original STAB entry so we don't have 3238 // to hunt for it later 3239 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3240 N_FUN_indexes.pop_back(); 3241 // We don't really need the end function STAB as it contains the size which 3242 // we already placed with the original symbol, so don't add it if we want a 3243 // minimal symbol table 3244 add_nlist = false; 3245 } 3246 } 3247 break; 3248 3249 case N_STSYM: 3250 // static symbol: name,,n_sect,type,address 3251 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3252 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3253 type = eSymbolTypeData; 3254 break; 3255 3256 case N_LCSYM: 3257 // .lcomm symbol: name,,n_sect,type,address 3258 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3259 type = eSymbolTypeCommonBlock; 3260 break; 3261 3262 case N_BNSYM: 3263 // We use the current number of symbols in the symbol table in lieu of 3264 // using nlist_idx in case we ever start trimming entries out 3265 // Skip these if we want minimal symbol tables 3266 add_nlist = false; 3267 break; 3268 3269 case N_ENSYM: 3270 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3271 // so that we can always skip the entire symbol if we need to navigate 3272 // more quickly at the source level when parsing STABS 3273 // Skip these if we want minimal symbol tables 3274 add_nlist = false; 3275 break; 3276 3277 3278 case N_OPT: 3279 // emitted with gcc2_compiled and in gcc source 3280 type = eSymbolTypeCompiler; 3281 break; 3282 3283 case N_RSYM: 3284 // register sym: name,,NO_SECT,type,register 3285 type = eSymbolTypeVariable; 3286 break; 3287 3288 case N_SLINE: 3289 // src line: 0,,n_sect,linenumber,address 3290 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3291 type = eSymbolTypeLineEntry; 3292 break; 3293 3294 case N_SSYM: 3295 // structure elt: name,,NO_SECT,type,struct_offset 3296 type = eSymbolTypeVariableType; 3297 break; 3298 3299 case N_SO: 3300 // source file name 3301 type = eSymbolTypeSourceFile; 3302 if (symbol_name == NULL) 3303 { 3304 add_nlist = false; 3305 if (N_SO_index != UINT32_MAX) 3306 { 3307 // Set the size of the N_SO to the terminating index of this N_SO 3308 // so that we can always skip the entire N_SO if we need to navigate 3309 // more quickly at the source level when parsing STABS 3310 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3311 symbol_ptr->SetByteSize(sym_idx); 3312 symbol_ptr->SetSizeIsSibling(true); 3313 } 3314 N_NSYM_indexes.clear(); 3315 N_INCL_indexes.clear(); 3316 N_BRAC_indexes.clear(); 3317 N_COMM_indexes.clear(); 3318 N_FUN_indexes.clear(); 3319 N_SO_index = UINT32_MAX; 3320 } 3321 else 3322 { 3323 // We use the current number of symbols in the symbol table in lieu of 3324 // using nlist_idx in case we ever start trimming entries out 3325 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3326 if (N_SO_has_full_path) 3327 { 3328 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3329 { 3330 // We have two consecutive N_SO entries where the first contains a directory 3331 // and the second contains a full path. 3332 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3333 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3334 add_nlist = false; 3335 } 3336 else 3337 { 3338 // This is the first entry in a N_SO that contains a directory or 3339 // a full path to the source file 3340 N_SO_index = sym_idx; 3341 } 3342 } 3343 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3344 { 3345 // This is usually the second N_SO entry that contains just the filename, 3346 // so here we combine it with the first one if we are minimizing the symbol table 3347 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3348 if (so_path && so_path[0]) 3349 { 3350 std::string full_so_path (so_path); 3351 const size_t double_slash_pos = full_so_path.find("//"); 3352 if (double_slash_pos != std::string::npos) 3353 { 3354 // The linker has been generating bad N_SO entries with doubled up paths 3355 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3356 // and the second is the directory for the source file so you end up with 3357 // a path that looks like "/tmp/src//tmp/src/" 3358 FileSpec so_dir(so_path, false); 3359 if (!so_dir.Exists()) 3360 { 3361 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3362 if (so_dir.Exists()) 3363 { 3364 // Trim off the incorrect path 3365 full_so_path.erase(0, double_slash_pos + 1); 3366 } 3367 } 3368 } 3369 if (*full_so_path.rbegin() != '/') 3370 full_so_path += '/'; 3371 full_so_path += symbol_name; 3372 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3373 add_nlist = false; 3374 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3375 } 3376 } 3377 else 3378 { 3379 // This could be a relative path to a N_SO 3380 N_SO_index = sym_idx; 3381 } 3382 } 3383 3384 break; 3385 3386 case N_OSO: 3387 // object file name: name,,0,0,st_mtime 3388 type = eSymbolTypeObjectFile; 3389 break; 3390 3391 case N_LSYM: 3392 // local sym: name,,NO_SECT,type,offset 3393 type = eSymbolTypeLocal; 3394 break; 3395 3396 //---------------------------------------------------------------------- 3397 // INCL scopes 3398 //---------------------------------------------------------------------- 3399 case N_BINCL: 3400 // include file beginning: name,,NO_SECT,0,sum 3401 // We use the current number of symbols in the symbol table in lieu of 3402 // using nlist_idx in case we ever start trimming entries out 3403 N_INCL_indexes.push_back(sym_idx); 3404 type = eSymbolTypeScopeBegin; 3405 break; 3406 3407 case N_EINCL: 3408 // include file end: name,,NO_SECT,0,0 3409 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3410 // so that we can always skip the entire symbol if we need to navigate 3411 // more quickly at the source level when parsing STABS 3412 if ( !N_INCL_indexes.empty() ) 3413 { 3414 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3415 symbol_ptr->SetByteSize(sym_idx + 1); 3416 symbol_ptr->SetSizeIsSibling(true); 3417 N_INCL_indexes.pop_back(); 3418 } 3419 type = eSymbolTypeScopeEnd; 3420 break; 3421 3422 case N_SOL: 3423 // #included file name: name,,n_sect,0,address 3424 type = eSymbolTypeHeaderFile; 3425 3426 // We currently don't use the header files on darwin 3427 add_nlist = false; 3428 break; 3429 3430 case N_PARAMS: 3431 // compiler parameters: name,,NO_SECT,0,0 3432 type = eSymbolTypeCompiler; 3433 break; 3434 3435 case N_VERSION: 3436 // compiler version: name,,NO_SECT,0,0 3437 type = eSymbolTypeCompiler; 3438 break; 3439 3440 case N_OLEVEL: 3441 // compiler -O level: name,,NO_SECT,0,0 3442 type = eSymbolTypeCompiler; 3443 break; 3444 3445 case N_PSYM: 3446 // parameter: name,,NO_SECT,type,offset 3447 type = eSymbolTypeVariable; 3448 break; 3449 3450 case N_ENTRY: 3451 // alternate entry: name,,n_sect,linenumber,address 3452 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3453 type = eSymbolTypeLineEntry; 3454 break; 3455 3456 //---------------------------------------------------------------------- 3457 // Left and Right Braces 3458 //---------------------------------------------------------------------- 3459 case N_LBRAC: 3460 // left bracket: 0,,NO_SECT,nesting level,address 3461 // We use the current number of symbols in the symbol table in lieu of 3462 // using nlist_idx in case we ever start trimming entries out 3463 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3464 N_BRAC_indexes.push_back(sym_idx); 3465 type = eSymbolTypeScopeBegin; 3466 break; 3467 3468 case N_RBRAC: 3469 // right bracket: 0,,NO_SECT,nesting level,address 3470 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3471 // so that we can always skip the entire symbol if we need to navigate 3472 // more quickly at the source level when parsing STABS 3473 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3474 if ( !N_BRAC_indexes.empty() ) 3475 { 3476 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3477 symbol_ptr->SetByteSize(sym_idx + 1); 3478 symbol_ptr->SetSizeIsSibling(true); 3479 N_BRAC_indexes.pop_back(); 3480 } 3481 type = eSymbolTypeScopeEnd; 3482 break; 3483 3484 case N_EXCL: 3485 // deleted include file: name,,NO_SECT,0,sum 3486 type = eSymbolTypeHeaderFile; 3487 break; 3488 3489 //---------------------------------------------------------------------- 3490 // COMM scopes 3491 //---------------------------------------------------------------------- 3492 case N_BCOMM: 3493 // begin common: name,,NO_SECT,0,0 3494 // We use the current number of symbols in the symbol table in lieu of 3495 // using nlist_idx in case we ever start trimming entries out 3496 type = eSymbolTypeScopeBegin; 3497 N_COMM_indexes.push_back(sym_idx); 3498 break; 3499 3500 case N_ECOML: 3501 // end common (local name): 0,,n_sect,0,address 3502 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3503 // Fall through 3504 3505 case N_ECOMM: 3506 // end common: name,,n_sect,0,0 3507 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3508 // so that we can always skip the entire symbol if we need to navigate 3509 // more quickly at the source level when parsing STABS 3510 if ( !N_COMM_indexes.empty() ) 3511 { 3512 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3513 symbol_ptr->SetByteSize(sym_idx + 1); 3514 symbol_ptr->SetSizeIsSibling(true); 3515 N_COMM_indexes.pop_back(); 3516 } 3517 type = eSymbolTypeScopeEnd; 3518 break; 3519 3520 case N_LENG: 3521 // second stab entry with length information 3522 type = eSymbolTypeAdditional; 3523 break; 3524 3525 default: break; 3526 } 3527 } 3528 else 3529 { 3530 //uint8_t n_pext = N_PEXT & nlist.n_type; 3531 uint8_t n_type = N_TYPE & nlist.n_type; 3532 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3533 3534 switch (n_type) 3535 { 3536 case N_INDR:// Fall through 3537 case N_PBUD:// Fall through 3538 case N_UNDF: 3539 type = eSymbolTypeUndefined; 3540 break; 3541 3542 case N_ABS: 3543 type = eSymbolTypeAbsolute; 3544 break; 3545 3546 case N_SECT: 3547 { 3548 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3549 3550 if (!symbol_section) 3551 { 3552 // TODO: warn about this? 3553 add_nlist = false; 3554 break; 3555 } 3556 3557 if (TEXT_eh_frame_sectID == nlist.n_sect) 3558 { 3559 type = eSymbolTypeException; 3560 } 3561 else 3562 { 3563 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3564 3565 switch (section_type) 3566 { 3567 case S_REGULAR: break; // regular section 3568 //case S_ZEROFILL: type = eSymbolTypeData; break; // zero fill on demand section 3569 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3570 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3571 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3572 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3573 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3574 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3575 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3576 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3577 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3578 //case S_COALESCED: type = eSymbolType; break; // section contains symbols that are to be coalesced 3579 //case S_GB_ZEROFILL: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 3580 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3581 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3582 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3583 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3584 default: break; 3585 } 3586 3587 if (type == eSymbolTypeInvalid) 3588 { 3589 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3590 if (symbol_section->IsDescendant (text_section_sp.get())) 3591 { 3592 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3593 S_ATTR_SELF_MODIFYING_CODE | 3594 S_ATTR_SOME_INSTRUCTIONS)) 3595 type = eSymbolTypeData; 3596 else 3597 type = eSymbolTypeCode; 3598 } 3599 else 3600 if (symbol_section->IsDescendant(data_section_sp.get())) 3601 { 3602 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3603 { 3604 type = eSymbolTypeRuntime; 3605 3606 if (symbol_name && 3607 symbol_name[0] == '_' && 3608 symbol_name[1] == 'O' && 3609 symbol_name[2] == 'B') 3610 { 3611 llvm::StringRef symbol_name_ref(symbol_name); 3612 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 3613 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 3614 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 3615 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3616 { 3617 symbol_name_non_abi_mangled = symbol_name + 1; 3618 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3619 type = eSymbolTypeObjCClass; 3620 demangled_is_synthesized = true; 3621 } 3622 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3623 { 3624 symbol_name_non_abi_mangled = symbol_name + 1; 3625 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3626 type = eSymbolTypeObjCMetaClass; 3627 demangled_is_synthesized = true; 3628 } 3629 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3630 { 3631 symbol_name_non_abi_mangled = symbol_name + 1; 3632 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3633 type = eSymbolTypeObjCIVar; 3634 demangled_is_synthesized = true; 3635 } 3636 } 3637 } 3638 else 3639 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3640 { 3641 type = eSymbolTypeException; 3642 } 3643 else 3644 { 3645 type = eSymbolTypeData; 3646 } 3647 } 3648 else 3649 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3650 { 3651 type = eSymbolTypeTrampoline; 3652 } 3653 else 3654 if (symbol_section->IsDescendant(objc_section_sp.get())) 3655 { 3656 type = eSymbolTypeRuntime; 3657 if (symbol_name && symbol_name[0] == '.') 3658 { 3659 llvm::StringRef symbol_name_ref(symbol_name); 3660 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3661 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3662 { 3663 symbol_name_non_abi_mangled = symbol_name; 3664 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3665 type = eSymbolTypeObjCClass; 3666 demangled_is_synthesized = true; 3667 } 3668 } 3669 } 3670 } 3671 } 3672 } 3673 break; 3674 } 3675 } 3676 3677 if (add_nlist) 3678 { 3679 uint64_t symbol_value = nlist.n_value; 3680 3681 if (symbol_name_non_abi_mangled) 3682 { 3683 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3684 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3685 } 3686 else 3687 { 3688 bool symbol_name_is_mangled = false; 3689 3690 if (symbol_name && symbol_name[0] == '_') 3691 { 3692 symbol_name_is_mangled = symbol_name[1] == '_'; 3693 symbol_name++; // Skip the leading underscore 3694 } 3695 3696 if (symbol_name) 3697 { 3698 ConstString const_symbol_name(symbol_name); 3699 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3700 if (is_gsym && is_debug) 3701 { 3702 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 3703 } 3704 } 3705 } 3706 if (symbol_section) 3707 { 3708 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3709 if (symbol_byte_size == 0 && function_starts_count > 0) 3710 { 3711 addr_t symbol_lookup_file_addr = nlist.n_value; 3712 // Do an exact address match for non-ARM addresses, else get the closest since 3713 // the symbol might be a thumb symbol which has an address with bit zero set 3714 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3715 if (is_arm && func_start_entry) 3716 { 3717 // Verify that the function start address is the symbol address (ARM) 3718 // or the symbol address + 1 (thumb) 3719 if (func_start_entry->addr != symbol_lookup_file_addr && 3720 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3721 { 3722 // Not the right entry, NULL it out... 3723 func_start_entry = NULL; 3724 } 3725 } 3726 if (func_start_entry) 3727 { 3728 func_start_entry->data = true; 3729 3730 addr_t symbol_file_addr = func_start_entry->addr; 3731 if (is_arm) 3732 symbol_file_addr &= 0xfffffffffffffffeull; 3733 3734 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3735 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3736 if (next_func_start_entry) 3737 { 3738 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3739 // Be sure the clear the Thumb address bit when we calculate the size 3740 // from the current and next address 3741 if (is_arm) 3742 next_symbol_file_addr &= 0xfffffffffffffffeull; 3743 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3744 } 3745 else 3746 { 3747 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3748 } 3749 } 3750 } 3751 symbol_value -= section_file_addr; 3752 } 3753 3754 if (is_debug == false) 3755 { 3756 if (type == eSymbolTypeCode) 3757 { 3758 // See if we can find a N_FUN entry for any code symbols. 3759 // If we do find a match, and the name matches, then we 3760 // can merge the two into just the function symbol to avoid 3761 // duplicate entries in the symbol table 3762 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3763 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3764 if (range.first != range.second) 3765 { 3766 bool found_it = false; 3767 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3768 { 3769 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3770 { 3771 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3772 // We just need the flags from the linker symbol, so put these flags 3773 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3774 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3775 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3776 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3777 sym[pos->second].SetType (eSymbolTypeResolver); 3778 sym[sym_idx].Clear(); 3779 found_it = true; 3780 break; 3781 } 3782 } 3783 if (found_it) 3784 continue; 3785 } 3786 else 3787 { 3788 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3789 type = eSymbolTypeResolver; 3790 } 3791 } 3792 else if (type == eSymbolTypeData) 3793 { 3794 // See if we can find a N_STSYM entry for any data symbols. 3795 // If we do find a match, and the name matches, then we 3796 // can merge the two into just the Static symbol to avoid 3797 // duplicate entries in the symbol table 3798 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3799 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3800 if (range.first != range.second) 3801 { 3802 bool found_it = false; 3803 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3804 { 3805 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3806 { 3807 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3808 // We just need the flags from the linker symbol, so put these flags 3809 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3810 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3811 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3812 sym[sym_idx].Clear(); 3813 found_it = true; 3814 break; 3815 } 3816 } 3817 if (found_it) 3818 continue; 3819 } 3820 else 3821 { 3822 // Combine N_GSYM stab entries with the non stab symbol 3823 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 3824 if (pos != N_GSYM_name_to_sym_idx.end()) 3825 { 3826 const uint32_t GSYM_sym_idx = pos->second; 3827 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3828 // Copy the address, because often the N_GSYM address has an invalid address of zero 3829 // when the global is a common symbol 3830 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 3831 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 3832 // We just need the flags from the linker symbol, so put these flags 3833 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3834 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3835 sym[sym_idx].Clear(); 3836 continue; 3837 } 3838 } 3839 } 3840 } 3841 3842 sym[sym_idx].SetID (nlist_idx); 3843 sym[sym_idx].SetType (type); 3844 sym[sym_idx].GetAddress().SetSection (symbol_section); 3845 sym[sym_idx].GetAddress().SetOffset (symbol_value); 3846 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3847 3848 if (symbol_byte_size > 0) 3849 sym[sym_idx].SetByteSize(symbol_byte_size); 3850 3851 if (demangled_is_synthesized) 3852 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3853 3854 ++sym_idx; 3855 } 3856 else 3857 { 3858 sym[sym_idx].Clear(); 3859 } 3860 } 3861 } 3862 3863 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 3864 3865 if (function_starts_count > 0) 3866 { 3867 char synthetic_function_symbol[PATH_MAX]; 3868 uint32_t num_synthetic_function_symbols = 0; 3869 for (i=0; i<function_starts_count; ++i) 3870 { 3871 if (function_starts.GetEntryRef (i).data == false) 3872 ++num_synthetic_function_symbols; 3873 } 3874 3875 if (num_synthetic_function_symbols > 0) 3876 { 3877 if (num_syms < sym_idx + num_synthetic_function_symbols) 3878 { 3879 num_syms = sym_idx + num_synthetic_function_symbols; 3880 sym = symtab->Resize (num_syms); 3881 } 3882 uint32_t synthetic_function_symbol_idx = 0; 3883 for (i=0; i<function_starts_count; ++i) 3884 { 3885 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 3886 if (func_start_entry->data == false) 3887 { 3888 addr_t symbol_file_addr = func_start_entry->addr; 3889 uint32_t symbol_flags = 0; 3890 if (is_arm) 3891 { 3892 if (symbol_file_addr & 1) 3893 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3894 symbol_file_addr &= 0xfffffffffffffffeull; 3895 } 3896 Address symbol_addr; 3897 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 3898 { 3899 SectionSP symbol_section (symbol_addr.GetSection()); 3900 uint32_t symbol_byte_size = 0; 3901 if (symbol_section) 3902 { 3903 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3904 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3905 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3906 if (next_func_start_entry) 3907 { 3908 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3909 if (is_arm) 3910 next_symbol_file_addr &= 0xfffffffffffffffeull; 3911 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3912 } 3913 else 3914 { 3915 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3916 } 3917 snprintf (synthetic_function_symbol, 3918 sizeof(synthetic_function_symbol), 3919 "___lldb_unnamed_function%u$$%s", 3920 ++synthetic_function_symbol_idx, 3921 module_sp->GetFileSpec().GetFilename().GetCString()); 3922 sym[sym_idx].SetID (synthetic_sym_id++); 3923 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 3924 sym[sym_idx].SetType (eSymbolTypeCode); 3925 sym[sym_idx].SetIsSynthetic (true); 3926 sym[sym_idx].GetAddress() = symbol_addr; 3927 if (symbol_flags) 3928 sym[sym_idx].SetFlags (symbol_flags); 3929 if (symbol_byte_size) 3930 sym[sym_idx].SetByteSize (symbol_byte_size); 3931 ++sym_idx; 3932 } 3933 } 3934 } 3935 } 3936 } 3937 } 3938 3939 // Trim our symbols down to just what we ended up with after 3940 // removing any symbols. 3941 if (sym_idx < num_syms) 3942 { 3943 num_syms = sym_idx; 3944 sym = symtab->Resize (num_syms); 3945 } 3946 3947 // Now synthesize indirect symbols 3948 if (m_dysymtab.nindirectsyms != 0) 3949 { 3950 if (indirect_symbol_index_data.GetByteSize()) 3951 { 3952 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 3953 3954 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 3955 { 3956 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 3957 { 3958 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 3959 if (symbol_stub_byte_size == 0) 3960 continue; 3961 3962 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 3963 3964 if (num_symbol_stubs == 0) 3965 continue; 3966 3967 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 3968 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 3969 { 3970 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 3971 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 3972 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 3973 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 3974 { 3975 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 3976 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 3977 continue; 3978 3979 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 3980 Symbol *stub_symbol = NULL; 3981 if (index_pos != end_index_pos) 3982 { 3983 // We have a remapping from the original nlist index to 3984 // a current symbol index, so just look this up by index 3985 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 3986 } 3987 else 3988 { 3989 // We need to lookup a symbol using the original nlist 3990 // symbol index since this index is coming from the 3991 // S_SYMBOL_STUBS 3992 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 3993 } 3994 3995 if (stub_symbol) 3996 { 3997 Address so_addr(symbol_stub_addr, section_list); 3998 3999 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4000 { 4001 // Change the external symbol into a trampoline that makes sense 4002 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4003 // can re-use them so we don't have to make up a synthetic symbol 4004 // for no good reason. 4005 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4006 stub_symbol->SetType (eSymbolTypeTrampoline); 4007 else 4008 stub_symbol->SetType (eSymbolTypeResolver); 4009 stub_symbol->SetExternal (false); 4010 stub_symbol->GetAddress() = so_addr; 4011 stub_symbol->SetByteSize (symbol_stub_byte_size); 4012 } 4013 else 4014 { 4015 // Make a synthetic symbol to describe the trampoline stub 4016 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4017 if (sym_idx >= num_syms) 4018 { 4019 sym = symtab->Resize (++num_syms); 4020 stub_symbol = NULL; // this pointer no longer valid 4021 } 4022 sym[sym_idx].SetID (synthetic_sym_id++); 4023 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4024 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4025 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4026 else 4027 sym[sym_idx].SetType (eSymbolTypeResolver); 4028 sym[sym_idx].SetIsSynthetic (true); 4029 sym[sym_idx].GetAddress() = so_addr; 4030 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4031 ++sym_idx; 4032 } 4033 } 4034 else 4035 { 4036 if (log) 4037 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4038 } 4039 } 4040 } 4041 } 4042 } 4043 } 4044 } 4045 4046 4047 if (!trie_entries.empty()) 4048 { 4049 for (const auto &e : trie_entries) 4050 { 4051 if (e.entry.import_name) 4052 { 4053 // Make a synthetic symbol to describe re-exported symbol. 4054 if (sym_idx >= num_syms) 4055 sym = symtab->Resize (++num_syms); 4056 sym[sym_idx].SetID (synthetic_sym_id++); 4057 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4058 sym[sym_idx].SetType (eSymbolTypeReExported); 4059 sym[sym_idx].SetIsSynthetic (true); 4060 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4061 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4062 { 4063 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4064 } 4065 ++sym_idx; 4066 } 4067 } 4068 } 4069 4070 4071 4072 // StreamFile s(stdout, false); 4073 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4074 // symtab->Dump(&s, NULL, eSortOrderNone); 4075 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4076 symtab->CalculateSymbolSizes(); 4077 4078 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4079 // symtab->Dump(&s, NULL, eSortOrderNone); 4080 4081 return symtab->GetNumSymbols(); 4082 } 4083 return 0; 4084 } 4085 4086 4087 void 4088 ObjectFileMachO::Dump (Stream *s) 4089 { 4090 ModuleSP module_sp(GetModule()); 4091 if (module_sp) 4092 { 4093 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4094 s->Printf("%p: ", static_cast<void*>(this)); 4095 s->Indent(); 4096 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4097 s->PutCString("ObjectFileMachO64"); 4098 else 4099 s->PutCString("ObjectFileMachO32"); 4100 4101 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 4102 4103 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4104 4105 SectionList *sections = GetSectionList(); 4106 if (sections) 4107 sections->Dump(s, NULL, true, UINT32_MAX); 4108 4109 if (m_symtab_ap.get()) 4110 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4111 } 4112 } 4113 4114 bool 4115 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4116 const lldb_private::DataExtractor &data, 4117 lldb::offset_t lc_offset, 4118 lldb_private::UUID& uuid) 4119 { 4120 uint32_t i; 4121 struct uuid_command load_cmd; 4122 4123 lldb::offset_t offset = lc_offset; 4124 for (i=0; i<header.ncmds; ++i) 4125 { 4126 const lldb::offset_t cmd_offset = offset; 4127 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4128 break; 4129 4130 if (load_cmd.cmd == LC_UUID) 4131 { 4132 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4133 4134 if (uuid_bytes) 4135 { 4136 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4137 // We pretend these object files have no UUID to prevent crashing. 4138 4139 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4140 0x3b, 0xa8, 4141 0x4b, 0x16, 4142 0xb6, 0xa4, 4143 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4144 4145 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4146 return false; 4147 4148 uuid.SetBytes (uuid_bytes); 4149 return true; 4150 } 4151 return false; 4152 } 4153 offset = cmd_offset + load_cmd.cmdsize; 4154 } 4155 return false; 4156 } 4157 4158 bool 4159 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4160 { 4161 ModuleSP module_sp(GetModule()); 4162 if (module_sp) 4163 { 4164 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4165 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4166 return GetUUID (m_header, m_data, offset, *uuid); 4167 } 4168 return false; 4169 } 4170 4171 4172 uint32_t 4173 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4174 { 4175 uint32_t count = 0; 4176 ModuleSP module_sp(GetModule()); 4177 if (module_sp) 4178 { 4179 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4180 struct load_command load_cmd; 4181 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4182 const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system 4183 uint32_t i; 4184 for (i=0; i<m_header.ncmds; ++i) 4185 { 4186 const uint32_t cmd_offset = offset; 4187 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4188 break; 4189 4190 switch (load_cmd.cmd) 4191 { 4192 case LC_LOAD_DYLIB: 4193 case LC_LOAD_WEAK_DYLIB: 4194 case LC_REEXPORT_DYLIB: 4195 case LC_LOAD_DYLINKER: 4196 case LC_LOADFVMLIB: 4197 case LC_LOAD_UPWARD_DYLIB: 4198 { 4199 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4200 const char *path = m_data.PeekCStr(name_offset); 4201 // Skip any path that starts with '@' since these are usually: 4202 // @executable_path/.../file 4203 // @rpath/.../file 4204 if (path && path[0] != '@') 4205 { 4206 FileSpec file_spec(path, resolve_path); 4207 if (files.AppendIfUnique(file_spec)) 4208 count++; 4209 } 4210 } 4211 break; 4212 4213 default: 4214 break; 4215 } 4216 offset = cmd_offset + load_cmd.cmdsize; 4217 } 4218 } 4219 return count; 4220 } 4221 4222 lldb_private::Address 4223 ObjectFileMachO::GetEntryPointAddress () 4224 { 4225 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4226 // is initialized to an invalid address, so we can just return that. 4227 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4228 4229 if (!IsExecutable() || m_entry_point_address.IsValid()) 4230 return m_entry_point_address; 4231 4232 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4233 // /usr/include/mach-o.h, but it is basically: 4234 // 4235 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4236 // uint32_t count - this is the count of longs in the thread state data 4237 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4238 // <repeat this trio> 4239 // 4240 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4241 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4242 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4243 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4244 // 4245 // For now we hard-code the offsets and flavors we need: 4246 // 4247 // 4248 4249 ModuleSP module_sp(GetModule()); 4250 if (module_sp) 4251 { 4252 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4253 struct load_command load_cmd; 4254 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4255 uint32_t i; 4256 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4257 bool done = false; 4258 4259 for (i=0; i<m_header.ncmds; ++i) 4260 { 4261 const lldb::offset_t cmd_offset = offset; 4262 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4263 break; 4264 4265 switch (load_cmd.cmd) 4266 { 4267 case LC_UNIXTHREAD: 4268 case LC_THREAD: 4269 { 4270 while (offset < cmd_offset + load_cmd.cmdsize) 4271 { 4272 uint32_t flavor = m_data.GetU32(&offset); 4273 uint32_t count = m_data.GetU32(&offset); 4274 if (count == 0) 4275 { 4276 // We've gotten off somehow, log and exit; 4277 return m_entry_point_address; 4278 } 4279 4280 switch (m_header.cputype) 4281 { 4282 case llvm::MachO::CPU_TYPE_ARM: 4283 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 4284 { 4285 offset += 60; // This is the offset of pc in the GPR thread state data structure. 4286 start_address = m_data.GetU32(&offset); 4287 done = true; 4288 } 4289 break; 4290 case llvm::MachO::CPU_TYPE_ARM64: 4291 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 4292 { 4293 offset += 256; // This is the offset of pc in the GPR thread state data structure. 4294 start_address = m_data.GetU64(&offset); 4295 done = true; 4296 } 4297 break; 4298 case llvm::MachO::CPU_TYPE_I386: 4299 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 4300 { 4301 offset += 40; // This is the offset of eip in the GPR thread state data structure. 4302 start_address = m_data.GetU32(&offset); 4303 done = true; 4304 } 4305 break; 4306 case llvm::MachO::CPU_TYPE_X86_64: 4307 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 4308 { 4309 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 4310 start_address = m_data.GetU64(&offset); 4311 done = true; 4312 } 4313 break; 4314 default: 4315 return m_entry_point_address; 4316 } 4317 // Haven't found the GPR flavor yet, skip over the data for this flavor: 4318 if (done) 4319 break; 4320 offset += count * 4; 4321 } 4322 } 4323 break; 4324 case LC_MAIN: 4325 { 4326 ConstString text_segment_name ("__TEXT"); 4327 uint64_t entryoffset = m_data.GetU64(&offset); 4328 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 4329 if (text_segment_sp) 4330 { 4331 done = true; 4332 start_address = text_segment_sp->GetFileAddress() + entryoffset; 4333 } 4334 } 4335 4336 default: 4337 break; 4338 } 4339 if (done) 4340 break; 4341 4342 // Go to the next load command: 4343 offset = cmd_offset + load_cmd.cmdsize; 4344 } 4345 4346 if (start_address != LLDB_INVALID_ADDRESS) 4347 { 4348 // We got the start address from the load commands, so now resolve that address in the sections 4349 // of this ObjectFile: 4350 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 4351 { 4352 m_entry_point_address.Clear(); 4353 } 4354 } 4355 else 4356 { 4357 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 4358 // "start" symbol in the main executable. 4359 4360 ModuleSP module_sp (GetModule()); 4361 4362 if (module_sp) 4363 { 4364 SymbolContextList contexts; 4365 SymbolContext context; 4366 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 4367 { 4368 if (contexts.GetContextAtIndex(0, context)) 4369 m_entry_point_address = context.symbol->GetAddress(); 4370 } 4371 } 4372 } 4373 } 4374 4375 return m_entry_point_address; 4376 4377 } 4378 4379 lldb_private::Address 4380 ObjectFileMachO::GetHeaderAddress () 4381 { 4382 lldb_private::Address header_addr; 4383 SectionList *section_list = GetSectionList(); 4384 if (section_list) 4385 { 4386 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 4387 if (text_segment_sp) 4388 { 4389 header_addr.SetSection (text_segment_sp); 4390 header_addr.SetOffset (0); 4391 } 4392 } 4393 return header_addr; 4394 } 4395 4396 uint32_t 4397 ObjectFileMachO::GetNumThreadContexts () 4398 { 4399 ModuleSP module_sp(GetModule()); 4400 if (module_sp) 4401 { 4402 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4403 if (!m_thread_context_offsets_valid) 4404 { 4405 m_thread_context_offsets_valid = true; 4406 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4407 FileRangeArray::Entry file_range; 4408 thread_command thread_cmd; 4409 for (uint32_t i=0; i<m_header.ncmds; ++i) 4410 { 4411 const uint32_t cmd_offset = offset; 4412 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 4413 break; 4414 4415 if (thread_cmd.cmd == LC_THREAD) 4416 { 4417 file_range.SetRangeBase (offset); 4418 file_range.SetByteSize (thread_cmd.cmdsize - 8); 4419 m_thread_context_offsets.Append (file_range); 4420 } 4421 offset = cmd_offset + thread_cmd.cmdsize; 4422 } 4423 } 4424 } 4425 return m_thread_context_offsets.GetSize(); 4426 } 4427 4428 lldb::RegisterContextSP 4429 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 4430 { 4431 lldb::RegisterContextSP reg_ctx_sp; 4432 4433 ModuleSP module_sp(GetModule()); 4434 if (module_sp) 4435 { 4436 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4437 if (!m_thread_context_offsets_valid) 4438 GetNumThreadContexts (); 4439 4440 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 4441 if (thread_context_file_range) 4442 { 4443 4444 DataExtractor data (m_data, 4445 thread_context_file_range->GetRangeBase(), 4446 thread_context_file_range->GetByteSize()); 4447 4448 switch (m_header.cputype) 4449 { 4450 case llvm::MachO::CPU_TYPE_ARM64: 4451 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 4452 break; 4453 4454 case llvm::MachO::CPU_TYPE_ARM: 4455 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 4456 break; 4457 4458 case llvm::MachO::CPU_TYPE_I386: 4459 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 4460 break; 4461 4462 case llvm::MachO::CPU_TYPE_X86_64: 4463 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 4464 break; 4465 } 4466 } 4467 } 4468 return reg_ctx_sp; 4469 } 4470 4471 4472 ObjectFile::Type 4473 ObjectFileMachO::CalculateType() 4474 { 4475 switch (m_header.filetype) 4476 { 4477 case MH_OBJECT: // 0x1u 4478 if (GetAddressByteSize () == 4) 4479 { 4480 // 32 bit kexts are just object files, but they do have a valid 4481 // UUID load command. 4482 UUID uuid; 4483 if (GetUUID(&uuid)) 4484 { 4485 // this checking for the UUID load command is not enough 4486 // we could eventually look for the symbol named 4487 // "OSKextGetCurrentIdentifier" as this is required of kexts 4488 if (m_strata == eStrataInvalid) 4489 m_strata = eStrataKernel; 4490 return eTypeSharedLibrary; 4491 } 4492 } 4493 return eTypeObjectFile; 4494 4495 case MH_EXECUTE: return eTypeExecutable; // 0x2u 4496 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 4497 case MH_CORE: return eTypeCoreFile; // 0x4u 4498 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 4499 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 4500 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 4501 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 4502 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 4503 case MH_DSYM: return eTypeDebugInfo; // 0xAu 4504 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 4505 default: 4506 break; 4507 } 4508 return eTypeUnknown; 4509 } 4510 4511 ObjectFile::Strata 4512 ObjectFileMachO::CalculateStrata() 4513 { 4514 switch (m_header.filetype) 4515 { 4516 case MH_OBJECT: // 0x1u 4517 { 4518 // 32 bit kexts are just object files, but they do have a valid 4519 // UUID load command. 4520 UUID uuid; 4521 if (GetUUID(&uuid)) 4522 { 4523 // this checking for the UUID load command is not enough 4524 // we could eventually look for the symbol named 4525 // "OSKextGetCurrentIdentifier" as this is required of kexts 4526 if (m_type == eTypeInvalid) 4527 m_type = eTypeSharedLibrary; 4528 4529 return eStrataKernel; 4530 } 4531 } 4532 return eStrataUnknown; 4533 4534 case MH_EXECUTE: // 0x2u 4535 // Check for the MH_DYLDLINK bit in the flags 4536 if (m_header.flags & MH_DYLDLINK) 4537 { 4538 return eStrataUser; 4539 } 4540 else 4541 { 4542 SectionList *section_list = GetSectionList(); 4543 if (section_list) 4544 { 4545 static ConstString g_kld_section_name ("__KLD"); 4546 if (section_list->FindSectionByName(g_kld_section_name)) 4547 return eStrataKernel; 4548 } 4549 } 4550 return eStrataRawImage; 4551 4552 case MH_FVMLIB: return eStrataUser; // 0x3u 4553 case MH_CORE: return eStrataUnknown; // 0x4u 4554 case MH_PRELOAD: return eStrataRawImage; // 0x5u 4555 case MH_DYLIB: return eStrataUser; // 0x6u 4556 case MH_DYLINKER: return eStrataUser; // 0x7u 4557 case MH_BUNDLE: return eStrataUser; // 0x8u 4558 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 4559 case MH_DSYM: return eStrataUnknown; // 0xAu 4560 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 4561 default: 4562 break; 4563 } 4564 return eStrataUnknown; 4565 } 4566 4567 4568 uint32_t 4569 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 4570 { 4571 ModuleSP module_sp(GetModule()); 4572 if (module_sp) 4573 { 4574 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4575 struct dylib_command load_cmd; 4576 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4577 uint32_t version_cmd = 0; 4578 uint64_t version = 0; 4579 uint32_t i; 4580 for (i=0; i<m_header.ncmds; ++i) 4581 { 4582 const lldb::offset_t cmd_offset = offset; 4583 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4584 break; 4585 4586 if (load_cmd.cmd == LC_ID_DYLIB) 4587 { 4588 if (version_cmd == 0) 4589 { 4590 version_cmd = load_cmd.cmd; 4591 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 4592 break; 4593 version = load_cmd.dylib.current_version; 4594 } 4595 break; // Break for now unless there is another more complete version 4596 // number load command in the future. 4597 } 4598 offset = cmd_offset + load_cmd.cmdsize; 4599 } 4600 4601 if (version_cmd == LC_ID_DYLIB) 4602 { 4603 if (versions != NULL && num_versions > 0) 4604 { 4605 if (num_versions > 0) 4606 versions[0] = (version & 0xFFFF0000ull) >> 16; 4607 if (num_versions > 1) 4608 versions[1] = (version & 0x0000FF00ull) >> 8; 4609 if (num_versions > 2) 4610 versions[2] = (version & 0x000000FFull); 4611 // Fill in an remaining version numbers with invalid values 4612 for (i=3; i<num_versions; ++i) 4613 versions[i] = UINT32_MAX; 4614 } 4615 // The LC_ID_DYLIB load command has a version with 3 version numbers 4616 // in it, so always return 3 4617 return 3; 4618 } 4619 } 4620 return false; 4621 } 4622 4623 bool 4624 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 4625 { 4626 ModuleSP module_sp(GetModule()); 4627 if (module_sp) 4628 { 4629 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4630 arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 4631 4632 // Files with type MH_PRELOAD are currently used in cases where the image 4633 // debugs at the addresses in the file itself. Below we set the OS to 4634 // unknown to make sure we use the DynamicLoaderStatic()... 4635 if (m_header.filetype == MH_PRELOAD) 4636 { 4637 arch.GetTriple().setOS (llvm::Triple::UnknownOS); 4638 } 4639 return true; 4640 } 4641 return false; 4642 } 4643 4644 4645 UUID 4646 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 4647 { 4648 UUID uuid; 4649 if (process) 4650 { 4651 addr_t all_image_infos = process->GetImageInfoAddress(); 4652 4653 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 4654 // or it may be the address of the dyld_all_image_infos structure (want). The first four 4655 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 4656 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 4657 4658 Error err; 4659 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 4660 if (version_or_magic != static_cast<uint32_t>(-1) 4661 && version_or_magic != MH_MAGIC 4662 && version_or_magic != MH_CIGAM 4663 && version_or_magic != MH_MAGIC_64 4664 && version_or_magic != MH_CIGAM_64 4665 && version_or_magic >= 13) 4666 { 4667 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 4668 int wordsize = process->GetAddressByteSize(); 4669 if (wordsize == 8) 4670 { 4671 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 4672 } 4673 if (wordsize == 4) 4674 { 4675 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 4676 } 4677 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 4678 { 4679 uuid_t shared_cache_uuid; 4680 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 4681 { 4682 uuid.SetBytes (shared_cache_uuid); 4683 } 4684 } 4685 } 4686 } 4687 return uuid; 4688 } 4689 4690 UUID 4691 ObjectFileMachO::GetLLDBSharedCacheUUID () 4692 { 4693 UUID uuid; 4694 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__)) 4695 uint8_t *(*dyld_get_all_image_infos)(void); 4696 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 4697 if (dyld_get_all_image_infos) 4698 { 4699 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 4700 if (dyld_all_image_infos_address) 4701 { 4702 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 4703 if (*version >= 13) 4704 { 4705 uuid_t *sharedCacheUUID_address = 0; 4706 int wordsize = sizeof (uint8_t *); 4707 if (wordsize == 8) 4708 { 4709 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 4710 } 4711 else 4712 { 4713 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 4714 } 4715 uuid.SetBytes (sharedCacheUUID_address); 4716 } 4717 } 4718 } 4719 #endif 4720 return uuid; 4721 } 4722 4723 uint32_t 4724 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 4725 { 4726 if (m_min_os_versions.empty()) 4727 { 4728 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4729 bool success = false; 4730 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 4731 { 4732 const lldb::offset_t load_cmd_offset = offset; 4733 4734 version_min_command lc; 4735 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 4736 break; 4737 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 4738 { 4739 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 4740 { 4741 const uint32_t xxxx = lc.version >> 16; 4742 const uint32_t yy = (lc.version >> 8) & 0xffu; 4743 const uint32_t zz = lc.version & 0xffu; 4744 if (xxxx) 4745 { 4746 m_min_os_versions.push_back(xxxx); 4747 if (yy) 4748 { 4749 m_min_os_versions.push_back(yy); 4750 if (zz) 4751 m_min_os_versions.push_back(zz); 4752 } 4753 } 4754 success = true; 4755 } 4756 } 4757 offset = load_cmd_offset + lc.cmdsize; 4758 } 4759 4760 if (success == false) 4761 { 4762 // Push an invalid value so we don't keep trying to 4763 m_min_os_versions.push_back(UINT32_MAX); 4764 } 4765 } 4766 4767 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 4768 { 4769 if (versions != NULL && num_versions > 0) 4770 { 4771 for (size_t i=0; i<num_versions; ++i) 4772 { 4773 if (i < m_min_os_versions.size()) 4774 versions[i] = m_min_os_versions[i]; 4775 else 4776 versions[i] = 0; 4777 } 4778 } 4779 return m_min_os_versions.size(); 4780 } 4781 // Call the superclasses version that will empty out the data 4782 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 4783 } 4784 4785 uint32_t 4786 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 4787 { 4788 if (m_sdk_versions.empty()) 4789 { 4790 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4791 bool success = false; 4792 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 4793 { 4794 const lldb::offset_t load_cmd_offset = offset; 4795 4796 version_min_command lc; 4797 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 4798 break; 4799 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 4800 { 4801 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 4802 { 4803 const uint32_t xxxx = lc.reserved >> 16; 4804 const uint32_t yy = (lc.reserved >> 8) & 0xffu; 4805 const uint32_t zz = lc.reserved & 0xffu; 4806 if (xxxx) 4807 { 4808 m_sdk_versions.push_back(xxxx); 4809 if (yy) 4810 { 4811 m_sdk_versions.push_back(yy); 4812 if (zz) 4813 m_sdk_versions.push_back(zz); 4814 } 4815 } 4816 success = true; 4817 } 4818 } 4819 offset = load_cmd_offset + lc.cmdsize; 4820 } 4821 4822 if (success == false) 4823 { 4824 // Push an invalid value so we don't keep trying to 4825 m_sdk_versions.push_back(UINT32_MAX); 4826 } 4827 } 4828 4829 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 4830 { 4831 if (versions != NULL && num_versions > 0) 4832 { 4833 for (size_t i=0; i<num_versions; ++i) 4834 { 4835 if (i < m_sdk_versions.size()) 4836 versions[i] = m_sdk_versions[i]; 4837 else 4838 versions[i] = 0; 4839 } 4840 } 4841 return m_sdk_versions.size(); 4842 } 4843 // Call the superclasses version that will empty out the data 4844 return ObjectFile::GetSDKVersion (versions, num_versions); 4845 } 4846 4847 4848 //------------------------------------------------------------------ 4849 // PluginInterface protocol 4850 //------------------------------------------------------------------ 4851 lldb_private::ConstString 4852 ObjectFileMachO::GetPluginName() 4853 { 4854 return GetPluginNameStatic(); 4855 } 4856 4857 uint32_t 4858 ObjectFileMachO::GetPluginVersion() 4859 { 4860 return 1; 4861 } 4862 4863 4864 bool 4865 ObjectFileMachO::SetLoadAddress (Target &target, 4866 lldb::addr_t value, 4867 bool value_is_offset) 4868 { 4869 bool changed = false; 4870 ModuleSP module_sp = GetModule(); 4871 if (module_sp) 4872 { 4873 size_t num_loaded_sections = 0; 4874 SectionList *section_list = GetSectionList (); 4875 if (section_list) 4876 { 4877 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 4878 const size_t num_sections = section_list->GetSize(); 4879 4880 const bool is_memory_image = (bool)m_process_wp.lock(); 4881 const Strata strata = GetStrata(); 4882 static ConstString g_linkedit_segname ("__LINKEDIT"); 4883 if (value_is_offset) 4884 { 4885 // "value" is an offset to apply to each top level segment 4886 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 4887 { 4888 // Iterate through the object file sections to find all 4889 // of the sections that size on disk (to avoid __PAGEZERO) 4890 // and load them 4891 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 4892 if (section_sp && 4893 section_sp->GetFileSize() > 0 && 4894 section_sp->IsThreadSpecific() == false && 4895 module_sp.get() == section_sp->GetModule().get()) 4896 { 4897 // Ignore __LINKEDIT and __DWARF segments 4898 if (section_sp->GetName() == g_linkedit_segname) 4899 { 4900 // Only map __LINKEDIT if we have an in memory image and this isn't 4901 // a kernel binary like a kext or mach_kernel. 4902 if (is_memory_image == false || strata == eStrataKernel) 4903 continue; 4904 } 4905 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 4906 ++num_loaded_sections; 4907 } 4908 } 4909 } 4910 else 4911 { 4912 // "value" is the new base address of the mach_header, adjust each 4913 // section accordingly 4914 4915 // First find the address of the mach header which is the first non-zero 4916 // file sized section whose file offset is zero as this will be subtracted 4917 // from each other valid section's vmaddr and then get "base_addr" added to 4918 // it when loading the module in the target 4919 for (size_t sect_idx = 0; 4920 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 4921 ++sect_idx) 4922 { 4923 // Iterate through the object file sections to find all 4924 // of the sections that size on disk (to avoid __PAGEZERO) 4925 // and load them 4926 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 4927 if (section && 4928 section->GetFileSize() > 0 && 4929 section->GetFileOffset() == 0 && 4930 section->IsThreadSpecific() == false && 4931 module_sp.get() == section->GetModule().get()) 4932 { 4933 // Ignore __LINKEDIT and __DWARF segments 4934 if (section->GetName() == g_linkedit_segname) 4935 { 4936 // Only map __LINKEDIT if we have an in memory image and this isn't 4937 // a kernel binary like a kext or mach_kernel. 4938 if (is_memory_image == false || strata == eStrataKernel) 4939 continue; 4940 } 4941 mach_base_file_addr = section->GetFileAddress(); 4942 } 4943 } 4944 4945 if (mach_base_file_addr != LLDB_INVALID_ADDRESS) 4946 { 4947 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 4948 { 4949 // Iterate through the object file sections to find all 4950 // of the sections that size on disk (to avoid __PAGEZERO) 4951 // and load them 4952 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 4953 if (section_sp && 4954 section_sp->GetFileSize() > 0 && 4955 section_sp->IsThreadSpecific() == false && 4956 module_sp.get() == section_sp->GetModule().get()) 4957 { 4958 // Ignore __LINKEDIT and __DWARF segments 4959 if (section_sp->GetName() == g_linkedit_segname) 4960 { 4961 // Only map __LINKEDIT if we have an in memory image and this isn't 4962 // a kernel binary like a kext or mach_kernel. 4963 if (is_memory_image == false || strata == eStrataKernel) 4964 continue; 4965 } 4966 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() - mach_base_file_addr + value)) 4967 ++num_loaded_sections; 4968 } 4969 } 4970 } 4971 } 4972 } 4973 changed = num_loaded_sections > 0; 4974 return num_loaded_sections > 0; 4975 } 4976 return changed; 4977 } 4978 4979