1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 12 #include "lldb/Core/ArchSpec.h" 13 #include "lldb/Core/DataBuffer.h" 14 #include "lldb/Core/Debugger.h" 15 #include "lldb/Core/Error.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Log.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/ModuleSpec.h" 20 #include "lldb/Core/PluginManager.h" 21 #include "lldb/Core/RangeMap.h" 22 #include "lldb/Core/Section.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Core/UUID.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/FileSpec.h" 29 #include "lldb/Symbol/ClangNamespaceDecl.h" 30 #include "lldb/Symbol/DWARFCallFrameInfo.h" 31 #include "lldb/Symbol/ObjectFile.h" 32 #include "lldb/Target/MemoryRegionInfo.h" 33 #include "lldb/Target/Platform.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/SectionLoadList.h" 36 #include "lldb/Target/Target.h" 37 #include "lldb/Target/Thread.h" 38 #include "lldb/Target/ThreadList.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 40 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 41 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 42 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 43 44 #include "lldb/Utility/SafeMachO.h" 45 46 #include "ObjectFileMachO.h" 47 48 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 49 // GetLLDBSharedCacheUUID() needs to call dlsym() 50 #include <dlfcn.h> 51 #endif 52 53 #ifndef __APPLE__ 54 #include "Utility/UuidCompatibility.h" 55 #endif 56 57 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 58 using namespace lldb; 59 using namespace lldb_private; 60 using namespace llvm::MachO; 61 62 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 63 { 64 public: 65 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 66 RegisterContextDarwin_x86_64 (thread, 0) 67 { 68 SetRegisterDataFrom_LC_THREAD (data); 69 } 70 71 virtual void 72 InvalidateAllRegisters () 73 { 74 // Do nothing... registers are always valid... 75 } 76 77 void 78 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 79 { 80 lldb::offset_t offset = 0; 81 SetError (GPRRegSet, Read, -1); 82 SetError (FPURegSet, Read, -1); 83 SetError (EXCRegSet, Read, -1); 84 bool done = false; 85 86 while (!done) 87 { 88 int flavor = data.GetU32 (&offset); 89 if (flavor == 0) 90 done = true; 91 else 92 { 93 uint32_t i; 94 uint32_t count = data.GetU32 (&offset); 95 switch (flavor) 96 { 97 case GPRRegSet: 98 for (i=0; i<count; ++i) 99 (&gpr.rax)[i] = data.GetU64(&offset); 100 SetError (GPRRegSet, Read, 0); 101 done = true; 102 103 break; 104 case FPURegSet: 105 // TODO: fill in FPU regs.... 106 //SetError (FPURegSet, Read, -1); 107 done = true; 108 109 break; 110 case EXCRegSet: 111 exc.trapno = data.GetU32(&offset); 112 exc.err = data.GetU32(&offset); 113 exc.faultvaddr = data.GetU64(&offset); 114 SetError (EXCRegSet, Read, 0); 115 done = true; 116 break; 117 case 7: 118 case 8: 119 case 9: 120 // fancy flavors that encapsulate of the above 121 // flavors... 122 break; 123 124 default: 125 done = true; 126 break; 127 } 128 } 129 } 130 } 131 132 133 static size_t 134 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 135 { 136 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 137 if (reg_info == NULL) 138 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 139 if (reg_info) 140 { 141 lldb_private::RegisterValue reg_value; 142 if (reg_ctx->ReadRegister(reg_info, reg_value)) 143 { 144 if (reg_info->byte_size >= reg_byte_size) 145 data.Write(reg_value.GetBytes(), reg_byte_size); 146 else 147 { 148 data.Write(reg_value.GetBytes(), reg_info->byte_size); 149 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 150 data.PutChar(0); 151 } 152 return reg_byte_size; 153 } 154 } 155 // Just write zeros if all else fails 156 for (size_t i=0; i<reg_byte_size; ++ i) 157 data.PutChar(0); 158 return reg_byte_size; 159 } 160 161 static bool 162 Create_LC_THREAD (Thread *thread, Stream &data) 163 { 164 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 165 if (reg_ctx_sp) 166 { 167 RegisterContext *reg_ctx = reg_ctx_sp.get(); 168 169 data.PutHex32 (GPRRegSet); // Flavor 170 data.PutHex32 (GPRWordCount); 171 WriteRegister (reg_ctx, "rax", NULL, 8, data); 172 WriteRegister (reg_ctx, "rbx", NULL, 8, data); 173 WriteRegister (reg_ctx, "rcx", NULL, 8, data); 174 WriteRegister (reg_ctx, "rdx", NULL, 8, data); 175 WriteRegister (reg_ctx, "rdi", NULL, 8, data); 176 WriteRegister (reg_ctx, "rsi", NULL, 8, data); 177 WriteRegister (reg_ctx, "rbp", NULL, 8, data); 178 WriteRegister (reg_ctx, "rsp", NULL, 8, data); 179 WriteRegister (reg_ctx, "r8", NULL, 8, data); 180 WriteRegister (reg_ctx, "r9", NULL, 8, data); 181 WriteRegister (reg_ctx, "r10", NULL, 8, data); 182 WriteRegister (reg_ctx, "r11", NULL, 8, data); 183 WriteRegister (reg_ctx, "r12", NULL, 8, data); 184 WriteRegister (reg_ctx, "r13", NULL, 8, data); 185 WriteRegister (reg_ctx, "r14", NULL, 8, data); 186 WriteRegister (reg_ctx, "r15", NULL, 8, data); 187 WriteRegister (reg_ctx, "rip", NULL, 8, data); 188 WriteRegister (reg_ctx, "rflags", NULL, 8, data); 189 WriteRegister (reg_ctx, "cs", NULL, 8, data); 190 WriteRegister (reg_ctx, "fs", NULL, 8, data); 191 WriteRegister (reg_ctx, "gs", NULL, 8, data); 192 193 // // Write out the FPU registers 194 // const size_t fpu_byte_size = sizeof(FPU); 195 // size_t bytes_written = 0; 196 // data.PutHex32 (FPURegSet); 197 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 198 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 199 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 200 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" 201 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" 202 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" 203 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 204 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" 205 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" 206 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" 207 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 208 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" 209 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" 210 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 211 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; 212 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; 213 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); 214 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); 215 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); 216 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); 217 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); 218 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); 219 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); 220 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); 221 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); 222 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); 223 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); 224 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); 225 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); 226 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); 227 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); 228 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); 229 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); 230 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); 231 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); 232 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); 233 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); 234 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); 235 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); 236 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); 237 // 238 // // Fill rest with zeros 239 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ i) 240 // data.PutChar(0); 241 242 // Write out the EXC registers 243 data.PutHex32 (EXCRegSet); 244 data.PutHex32 (EXCWordCount); 245 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 246 WriteRegister (reg_ctx, "err", NULL, 4, data); 247 WriteRegister (reg_ctx, "faultvaddr", NULL, 8, data); 248 return true; 249 } 250 return false; 251 } 252 253 protected: 254 virtual int 255 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 256 { 257 return 0; 258 } 259 260 virtual int 261 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 262 { 263 return 0; 264 } 265 266 virtual int 267 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 268 { 269 return 0; 270 } 271 272 virtual int 273 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 274 { 275 return 0; 276 } 277 278 virtual int 279 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 280 { 281 return 0; 282 } 283 284 virtual int 285 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 286 { 287 return 0; 288 } 289 }; 290 291 292 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 293 { 294 public: 295 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 296 RegisterContextDarwin_i386 (thread, 0) 297 { 298 SetRegisterDataFrom_LC_THREAD (data); 299 } 300 301 virtual void 302 InvalidateAllRegisters () 303 { 304 // Do nothing... registers are always valid... 305 } 306 307 void 308 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 309 { 310 lldb::offset_t offset = 0; 311 SetError (GPRRegSet, Read, -1); 312 SetError (FPURegSet, Read, -1); 313 SetError (EXCRegSet, Read, -1); 314 bool done = false; 315 316 while (!done) 317 { 318 int flavor = data.GetU32 (&offset); 319 if (flavor == 0) 320 done = true; 321 else 322 { 323 uint32_t i; 324 uint32_t count = data.GetU32 (&offset); 325 switch (flavor) 326 { 327 case GPRRegSet: 328 for (i=0; i<count; ++i) 329 (&gpr.eax)[i] = data.GetU32(&offset); 330 SetError (GPRRegSet, Read, 0); 331 done = true; 332 333 break; 334 case FPURegSet: 335 // TODO: fill in FPU regs.... 336 //SetError (FPURegSet, Read, -1); 337 done = true; 338 339 break; 340 case EXCRegSet: 341 exc.trapno = data.GetU32(&offset); 342 exc.err = data.GetU32(&offset); 343 exc.faultvaddr = data.GetU32(&offset); 344 SetError (EXCRegSet, Read, 0); 345 done = true; 346 break; 347 case 7: 348 case 8: 349 case 9: 350 // fancy flavors that encapsulate of the above 351 // flavors... 352 break; 353 354 default: 355 done = true; 356 break; 357 } 358 } 359 } 360 } 361 362 static size_t 363 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 364 { 365 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 366 if (reg_info == NULL) 367 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 368 if (reg_info) 369 { 370 lldb_private::RegisterValue reg_value; 371 if (reg_ctx->ReadRegister(reg_info, reg_value)) 372 { 373 if (reg_info->byte_size >= reg_byte_size) 374 data.Write(reg_value.GetBytes(), reg_byte_size); 375 else 376 { 377 data.Write(reg_value.GetBytes(), reg_info->byte_size); 378 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 379 data.PutChar(0); 380 } 381 return reg_byte_size; 382 } 383 } 384 // Just write zeros if all else fails 385 for (size_t i=0; i<reg_byte_size; ++ i) 386 data.PutChar(0); 387 return reg_byte_size; 388 } 389 390 static bool 391 Create_LC_THREAD (Thread *thread, Stream &data) 392 { 393 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 394 if (reg_ctx_sp) 395 { 396 RegisterContext *reg_ctx = reg_ctx_sp.get(); 397 398 data.PutHex32 (GPRRegSet); // Flavor 399 data.PutHex32 (GPRWordCount); 400 WriteRegister (reg_ctx, "eax", NULL, 4, data); 401 WriteRegister (reg_ctx, "ebx", NULL, 4, data); 402 WriteRegister (reg_ctx, "ecx", NULL, 4, data); 403 WriteRegister (reg_ctx, "edx", NULL, 4, data); 404 WriteRegister (reg_ctx, "edi", NULL, 4, data); 405 WriteRegister (reg_ctx, "esi", NULL, 4, data); 406 WriteRegister (reg_ctx, "ebp", NULL, 4, data); 407 WriteRegister (reg_ctx, "esp", NULL, 4, data); 408 WriteRegister (reg_ctx, "ss", NULL, 4, data); 409 WriteRegister (reg_ctx, "eflags", NULL, 4, data); 410 WriteRegister (reg_ctx, "eip", NULL, 4, data); 411 WriteRegister (reg_ctx, "cs", NULL, 4, data); 412 WriteRegister (reg_ctx, "ds", NULL, 4, data); 413 WriteRegister (reg_ctx, "es", NULL, 4, data); 414 WriteRegister (reg_ctx, "fs", NULL, 4, data); 415 WriteRegister (reg_ctx, "gs", NULL, 4, data); 416 417 // Write out the EXC registers 418 data.PutHex32 (EXCRegSet); 419 data.PutHex32 (EXCWordCount); 420 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 421 WriteRegister (reg_ctx, "err", NULL, 4, data); 422 WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); 423 return true; 424 } 425 return false; 426 } 427 428 protected: 429 virtual int 430 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 431 { 432 return 0; 433 } 434 435 virtual int 436 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 437 { 438 return 0; 439 } 440 441 virtual int 442 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 443 { 444 return 0; 445 } 446 447 virtual int 448 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 449 { 450 return 0; 451 } 452 453 virtual int 454 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 455 { 456 return 0; 457 } 458 459 virtual int 460 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 461 { 462 return 0; 463 } 464 }; 465 466 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 467 { 468 public: 469 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 470 RegisterContextDarwin_arm (thread, 0) 471 { 472 SetRegisterDataFrom_LC_THREAD (data); 473 } 474 475 virtual void 476 InvalidateAllRegisters () 477 { 478 // Do nothing... registers are always valid... 479 } 480 481 void 482 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 483 { 484 lldb::offset_t offset = 0; 485 SetError (GPRRegSet, Read, -1); 486 SetError (FPURegSet, Read, -1); 487 SetError (EXCRegSet, Read, -1); 488 bool done = false; 489 490 while (!done) 491 { 492 int flavor = data.GetU32 (&offset); 493 uint32_t count = data.GetU32 (&offset); 494 lldb::offset_t next_thread_state = offset + (count * 4); 495 switch (flavor) 496 { 497 case GPRRegSet: 498 for (uint32_t i=0; i<count; ++i) 499 { 500 gpr.r[i] = data.GetU32(&offset); 501 } 502 503 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 504 // one element past the end of the gpr.r[] array. 505 506 SetError (GPRRegSet, Read, 0); 507 offset = next_thread_state; 508 break; 509 510 case FPURegSet: 511 { 512 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 513 const int fpu_reg_buf_size = sizeof (fpu.floats); 514 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 515 { 516 offset += fpu_reg_buf_size; 517 fpu.fpscr = data.GetU32(&offset); 518 SetError (FPURegSet, Read, 0); 519 } 520 else 521 { 522 done = true; 523 } 524 } 525 offset = next_thread_state; 526 break; 527 528 case EXCRegSet: 529 if (count == 3) 530 { 531 exc.exception = data.GetU32(&offset); 532 exc.fsr = data.GetU32(&offset); 533 exc.far = data.GetU32(&offset); 534 SetError (EXCRegSet, Read, 0); 535 } 536 done = true; 537 offset = next_thread_state; 538 break; 539 540 // Unknown register set flavor, stop trying to parse. 541 default: 542 done = true; 543 } 544 } 545 } 546 547 static size_t 548 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 549 { 550 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 551 if (reg_info == NULL) 552 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 553 if (reg_info) 554 { 555 lldb_private::RegisterValue reg_value; 556 if (reg_ctx->ReadRegister(reg_info, reg_value)) 557 { 558 if (reg_info->byte_size >= reg_byte_size) 559 data.Write(reg_value.GetBytes(), reg_byte_size); 560 else 561 { 562 data.Write(reg_value.GetBytes(), reg_info->byte_size); 563 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 564 data.PutChar(0); 565 } 566 return reg_byte_size; 567 } 568 } 569 // Just write zeros if all else fails 570 for (size_t i=0; i<reg_byte_size; ++ i) 571 data.PutChar(0); 572 return reg_byte_size; 573 } 574 575 static bool 576 Create_LC_THREAD (Thread *thread, Stream &data) 577 { 578 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 579 if (reg_ctx_sp) 580 { 581 RegisterContext *reg_ctx = reg_ctx_sp.get(); 582 583 data.PutHex32 (GPRRegSet); // Flavor 584 data.PutHex32 (GPRWordCount); 585 WriteRegister (reg_ctx, "r0", NULL, 4, data); 586 WriteRegister (reg_ctx, "r1", NULL, 4, data); 587 WriteRegister (reg_ctx, "r2", NULL, 4, data); 588 WriteRegister (reg_ctx, "r3", NULL, 4, data); 589 WriteRegister (reg_ctx, "r4", NULL, 4, data); 590 WriteRegister (reg_ctx, "r5", NULL, 4, data); 591 WriteRegister (reg_ctx, "r6", NULL, 4, data); 592 WriteRegister (reg_ctx, "r7", NULL, 4, data); 593 WriteRegister (reg_ctx, "r8", NULL, 4, data); 594 WriteRegister (reg_ctx, "r9", NULL, 4, data); 595 WriteRegister (reg_ctx, "r10", NULL, 4, data); 596 WriteRegister (reg_ctx, "r11", NULL, 4, data); 597 WriteRegister (reg_ctx, "r12", NULL, 4, data); 598 WriteRegister (reg_ctx, "sp", NULL, 4, data); 599 WriteRegister (reg_ctx, "lr", NULL, 4, data); 600 WriteRegister (reg_ctx, "pc", NULL, 4, data); 601 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 602 603 // Write out the EXC registers 604 // data.PutHex32 (EXCRegSet); 605 // data.PutHex32 (EXCWordCount); 606 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 607 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 608 // WriteRegister (reg_ctx, "far", NULL, 4, data); 609 return true; 610 } 611 return false; 612 } 613 614 protected: 615 virtual int 616 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 617 { 618 return -1; 619 } 620 621 virtual int 622 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 623 { 624 return -1; 625 } 626 627 virtual int 628 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 629 { 630 return -1; 631 } 632 633 virtual int 634 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 635 { 636 return -1; 637 } 638 639 virtual int 640 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 641 { 642 return 0; 643 } 644 645 virtual int 646 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 647 { 648 return 0; 649 } 650 651 virtual int 652 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 653 { 654 return 0; 655 } 656 657 virtual int 658 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 659 { 660 return -1; 661 } 662 }; 663 664 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 665 { 666 public: 667 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 668 RegisterContextDarwin_arm64 (thread, 0) 669 { 670 SetRegisterDataFrom_LC_THREAD (data); 671 } 672 673 virtual void 674 InvalidateAllRegisters () 675 { 676 // Do nothing... registers are always valid... 677 } 678 679 void 680 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 681 { 682 lldb::offset_t offset = 0; 683 SetError (GPRRegSet, Read, -1); 684 SetError (FPURegSet, Read, -1); 685 SetError (EXCRegSet, Read, -1); 686 bool done = false; 687 while (!done) 688 { 689 int flavor = data.GetU32 (&offset); 690 uint32_t count = data.GetU32 (&offset); 691 lldb::offset_t next_thread_state = offset + (count * 4); 692 switch (flavor) 693 { 694 case GPRRegSet: 695 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 696 if (count >= (33 * 2) + 1) 697 { 698 for (uint32_t i=0; i<33; ++i) 699 gpr.x[i] = data.GetU64(&offset); 700 gpr.cpsr = data.GetU32(&offset); 701 SetError (GPRRegSet, Read, 0); 702 } 703 offset = next_thread_state; 704 break; 705 case FPURegSet: 706 { 707 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 708 const int fpu_reg_buf_size = sizeof (fpu); 709 if (fpu_reg_buf_size == count 710 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 711 { 712 SetError (FPURegSet, Read, 0); 713 } 714 else 715 { 716 done = true; 717 } 718 } 719 offset = next_thread_state; 720 break; 721 case EXCRegSet: 722 if (count == 4) 723 { 724 exc.far = data.GetU64(&offset); 725 exc.esr = data.GetU32(&offset); 726 exc.exception = data.GetU32(&offset); 727 SetError (EXCRegSet, Read, 0); 728 } 729 offset = next_thread_state; 730 break; 731 default: 732 done = true; 733 break; 734 } 735 } 736 } 737 738 static size_t 739 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 740 { 741 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 742 if (reg_info == NULL) 743 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 744 if (reg_info) 745 { 746 lldb_private::RegisterValue reg_value; 747 if (reg_ctx->ReadRegister(reg_info, reg_value)) 748 { 749 if (reg_info->byte_size >= reg_byte_size) 750 data.Write(reg_value.GetBytes(), reg_byte_size); 751 else 752 { 753 data.Write(reg_value.GetBytes(), reg_info->byte_size); 754 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 755 data.PutChar(0); 756 } 757 return reg_byte_size; 758 } 759 } 760 // Just write zeros if all else fails 761 for (size_t i=0; i<reg_byte_size; ++ i) 762 data.PutChar(0); 763 return reg_byte_size; 764 } 765 766 static bool 767 Create_LC_THREAD (Thread *thread, Stream &data) 768 { 769 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 770 if (reg_ctx_sp) 771 { 772 RegisterContext *reg_ctx = reg_ctx_sp.get(); 773 774 data.PutHex32 (GPRRegSet); // Flavor 775 data.PutHex32 (GPRWordCount); 776 WriteRegister (reg_ctx, "x0", NULL, 8, data); 777 WriteRegister (reg_ctx, "x1", NULL, 8, data); 778 WriteRegister (reg_ctx, "x2", NULL, 8, data); 779 WriteRegister (reg_ctx, "x3", NULL, 8, data); 780 WriteRegister (reg_ctx, "x4", NULL, 8, data); 781 WriteRegister (reg_ctx, "x5", NULL, 8, data); 782 WriteRegister (reg_ctx, "x6", NULL, 8, data); 783 WriteRegister (reg_ctx, "x7", NULL, 8, data); 784 WriteRegister (reg_ctx, "x8", NULL, 8, data); 785 WriteRegister (reg_ctx, "x9", NULL, 8, data); 786 WriteRegister (reg_ctx, "x10", NULL, 8, data); 787 WriteRegister (reg_ctx, "x11", NULL, 8, data); 788 WriteRegister (reg_ctx, "x12", NULL, 8, data); 789 WriteRegister (reg_ctx, "x13", NULL, 8, data); 790 WriteRegister (reg_ctx, "x14", NULL, 8, data); 791 WriteRegister (reg_ctx, "x15", NULL, 8, data); 792 WriteRegister (reg_ctx, "x16", NULL, 8, data); 793 WriteRegister (reg_ctx, "x17", NULL, 8, data); 794 WriteRegister (reg_ctx, "x18", NULL, 8, data); 795 WriteRegister (reg_ctx, "x19", NULL, 8, data); 796 WriteRegister (reg_ctx, "x20", NULL, 8, data); 797 WriteRegister (reg_ctx, "x21", NULL, 8, data); 798 WriteRegister (reg_ctx, "x22", NULL, 8, data); 799 WriteRegister (reg_ctx, "x23", NULL, 8, data); 800 WriteRegister (reg_ctx, "x24", NULL, 8, data); 801 WriteRegister (reg_ctx, "x25", NULL, 8, data); 802 WriteRegister (reg_ctx, "x26", NULL, 8, data); 803 WriteRegister (reg_ctx, "x27", NULL, 8, data); 804 WriteRegister (reg_ctx, "x28", NULL, 8, data); 805 WriteRegister (reg_ctx, "fp", NULL, 8, data); 806 WriteRegister (reg_ctx, "lr", NULL, 8, data); 807 WriteRegister (reg_ctx, "sp", NULL, 8, data); 808 WriteRegister (reg_ctx, "pc", NULL, 8, data); 809 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 810 811 // Write out the EXC registers 812 // data.PutHex32 (EXCRegSet); 813 // data.PutHex32 (EXCWordCount); 814 // WriteRegister (reg_ctx, "far", NULL, 8, data); 815 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 816 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 817 return true; 818 } 819 return false; 820 } 821 822 protected: 823 virtual int 824 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 825 { 826 return -1; 827 } 828 829 virtual int 830 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 831 { 832 return -1; 833 } 834 835 virtual int 836 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 837 { 838 return -1; 839 } 840 841 virtual int 842 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 843 { 844 return -1; 845 } 846 847 virtual int 848 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 849 { 850 return 0; 851 } 852 853 virtual int 854 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 855 { 856 return 0; 857 } 858 859 virtual int 860 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 861 { 862 return 0; 863 } 864 865 virtual int 866 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 867 { 868 return -1; 869 } 870 }; 871 872 static uint32_t 873 MachHeaderSizeFromMagic(uint32_t magic) 874 { 875 switch (magic) 876 { 877 case MH_MAGIC: 878 case MH_CIGAM: 879 return sizeof(struct mach_header); 880 881 case MH_MAGIC_64: 882 case MH_CIGAM_64: 883 return sizeof(struct mach_header_64); 884 break; 885 886 default: 887 break; 888 } 889 return 0; 890 } 891 892 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 893 894 void 895 ObjectFileMachO::Initialize() 896 { 897 PluginManager::RegisterPlugin (GetPluginNameStatic(), 898 GetPluginDescriptionStatic(), 899 CreateInstance, 900 CreateMemoryInstance, 901 GetModuleSpecifications, 902 SaveCore); 903 } 904 905 void 906 ObjectFileMachO::Terminate() 907 { 908 PluginManager::UnregisterPlugin (CreateInstance); 909 } 910 911 912 lldb_private::ConstString 913 ObjectFileMachO::GetPluginNameStatic() 914 { 915 static ConstString g_name("mach-o"); 916 return g_name; 917 } 918 919 const char * 920 ObjectFileMachO::GetPluginDescriptionStatic() 921 { 922 return "Mach-o object file reader (32 and 64 bit)"; 923 } 924 925 ObjectFile * 926 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 927 DataBufferSP& data_sp, 928 lldb::offset_t data_offset, 929 const FileSpec* file, 930 lldb::offset_t file_offset, 931 lldb::offset_t length) 932 { 933 if (!data_sp) 934 { 935 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 936 data_offset = 0; 937 } 938 939 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 940 { 941 // Update the data to contain the entire file if it doesn't already 942 if (data_sp->GetByteSize() < length) 943 { 944 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 945 data_offset = 0; 946 } 947 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 948 if (objfile_ap.get() && objfile_ap->ParseHeader()) 949 return objfile_ap.release(); 950 } 951 return NULL; 952 } 953 954 ObjectFile * 955 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 956 DataBufferSP& data_sp, 957 const ProcessSP &process_sp, 958 lldb::addr_t header_addr) 959 { 960 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 961 { 962 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 963 if (objfile_ap.get() && objfile_ap->ParseHeader()) 964 return objfile_ap.release(); 965 } 966 return NULL; 967 } 968 969 size_t 970 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 971 lldb::DataBufferSP& data_sp, 972 lldb::offset_t data_offset, 973 lldb::offset_t file_offset, 974 lldb::offset_t length, 975 lldb_private::ModuleSpecList &specs) 976 { 977 const size_t initial_count = specs.GetSize(); 978 979 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 980 { 981 DataExtractor data; 982 data.SetData(data_sp); 983 llvm::MachO::mach_header header; 984 if (ParseHeader (data, &data_offset, header)) 985 { 986 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 987 if (header_and_load_cmds >= data_sp->GetByteSize()) 988 { 989 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 990 data.SetData(data_sp); 991 data_offset = MachHeaderSizeFromMagic(header.magic); 992 } 993 if (data_sp) 994 { 995 ModuleSpec spec; 996 spec.GetFileSpec() = file; 997 spec.SetObjectOffset(file_offset); 998 spec.SetObjectSize(length); 999 1000 if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) 1001 { 1002 if (spec.GetArchitecture().IsValid()) 1003 { 1004 GetUUID (header, data, data_offset, spec.GetUUID()); 1005 specs.Append(spec); 1006 } 1007 } 1008 } 1009 } 1010 } 1011 return specs.GetSize() - initial_count; 1012 } 1013 1014 1015 1016 const ConstString & 1017 ObjectFileMachO::GetSegmentNameTEXT() 1018 { 1019 static ConstString g_segment_name_TEXT ("__TEXT"); 1020 return g_segment_name_TEXT; 1021 } 1022 1023 const ConstString & 1024 ObjectFileMachO::GetSegmentNameDATA() 1025 { 1026 static ConstString g_segment_name_DATA ("__DATA"); 1027 return g_segment_name_DATA; 1028 } 1029 1030 const ConstString & 1031 ObjectFileMachO::GetSegmentNameOBJC() 1032 { 1033 static ConstString g_segment_name_OBJC ("__OBJC"); 1034 return g_segment_name_OBJC; 1035 } 1036 1037 const ConstString & 1038 ObjectFileMachO::GetSegmentNameLINKEDIT() 1039 { 1040 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 1041 return g_section_name_LINKEDIT; 1042 } 1043 1044 const ConstString & 1045 ObjectFileMachO::GetSectionNameEHFrame() 1046 { 1047 static ConstString g_section_name_eh_frame ("__eh_frame"); 1048 return g_section_name_eh_frame; 1049 } 1050 1051 bool 1052 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 1053 lldb::addr_t data_offset, 1054 lldb::addr_t data_length) 1055 { 1056 DataExtractor data; 1057 data.SetData (data_sp, data_offset, data_length); 1058 lldb::offset_t offset = 0; 1059 uint32_t magic = data.GetU32(&offset); 1060 return MachHeaderSizeFromMagic(magic) != 0; 1061 } 1062 1063 1064 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 1065 DataBufferSP& data_sp, 1066 lldb::offset_t data_offset, 1067 const FileSpec* file, 1068 lldb::offset_t file_offset, 1069 lldb::offset_t length) : 1070 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 1071 m_mach_segments(), 1072 m_mach_sections(), 1073 m_entry_point_address(), 1074 m_thread_context_offsets(), 1075 m_thread_context_offsets_valid(false) 1076 { 1077 ::memset (&m_header, 0, sizeof(m_header)); 1078 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1079 } 1080 1081 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 1082 lldb::DataBufferSP& header_data_sp, 1083 const lldb::ProcessSP &process_sp, 1084 lldb::addr_t header_addr) : 1085 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 1086 m_mach_segments(), 1087 m_mach_sections(), 1088 m_entry_point_address(), 1089 m_thread_context_offsets(), 1090 m_thread_context_offsets_valid(false) 1091 { 1092 ::memset (&m_header, 0, sizeof(m_header)); 1093 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1094 } 1095 1096 ObjectFileMachO::~ObjectFileMachO() 1097 { 1098 } 1099 1100 bool 1101 ObjectFileMachO::ParseHeader (DataExtractor &data, 1102 lldb::offset_t *data_offset_ptr, 1103 llvm::MachO::mach_header &header) 1104 { 1105 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1106 // Leave magic in the original byte order 1107 header.magic = data.GetU32(data_offset_ptr); 1108 bool can_parse = false; 1109 bool is_64_bit = false; 1110 switch (header.magic) 1111 { 1112 case MH_MAGIC: 1113 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1114 data.SetAddressByteSize(4); 1115 can_parse = true; 1116 break; 1117 1118 case MH_MAGIC_64: 1119 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1120 data.SetAddressByteSize(8); 1121 can_parse = true; 1122 is_64_bit = true; 1123 break; 1124 1125 case MH_CIGAM: 1126 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1127 data.SetAddressByteSize(4); 1128 can_parse = true; 1129 break; 1130 1131 case MH_CIGAM_64: 1132 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1133 data.SetAddressByteSize(8); 1134 is_64_bit = true; 1135 can_parse = true; 1136 break; 1137 1138 default: 1139 break; 1140 } 1141 1142 if (can_parse) 1143 { 1144 data.GetU32(data_offset_ptr, &header.cputype, 6); 1145 if (is_64_bit) 1146 *data_offset_ptr += 4; 1147 return true; 1148 } 1149 else 1150 { 1151 memset(&header, 0, sizeof(header)); 1152 } 1153 return false; 1154 } 1155 1156 bool 1157 ObjectFileMachO::ParseHeader () 1158 { 1159 ModuleSP module_sp(GetModule()); 1160 if (module_sp) 1161 { 1162 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1163 bool can_parse = false; 1164 lldb::offset_t offset = 0; 1165 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1166 // Leave magic in the original byte order 1167 m_header.magic = m_data.GetU32(&offset); 1168 switch (m_header.magic) 1169 { 1170 case MH_MAGIC: 1171 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1172 m_data.SetAddressByteSize(4); 1173 can_parse = true; 1174 break; 1175 1176 case MH_MAGIC_64: 1177 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1178 m_data.SetAddressByteSize(8); 1179 can_parse = true; 1180 break; 1181 1182 case MH_CIGAM: 1183 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1184 m_data.SetAddressByteSize(4); 1185 can_parse = true; 1186 break; 1187 1188 case MH_CIGAM_64: 1189 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1190 m_data.SetAddressByteSize(8); 1191 can_parse = true; 1192 break; 1193 1194 default: 1195 break; 1196 } 1197 1198 if (can_parse) 1199 { 1200 m_data.GetU32(&offset, &m_header.cputype, 6); 1201 1202 1203 ArchSpec mach_arch; 1204 1205 if (GetArchitecture (mach_arch)) 1206 { 1207 // Check if the module has a required architecture 1208 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1209 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1210 return false; 1211 1212 if (SetModulesArchitecture (mach_arch)) 1213 { 1214 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1215 if (m_data.GetByteSize() < header_and_lc_size) 1216 { 1217 DataBufferSP data_sp; 1218 ProcessSP process_sp (m_process_wp.lock()); 1219 if (process_sp) 1220 { 1221 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 1222 } 1223 else 1224 { 1225 // Read in all only the load command data from the file on disk 1226 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 1227 if (data_sp->GetByteSize() != header_and_lc_size) 1228 return false; 1229 } 1230 if (data_sp) 1231 m_data.SetData (data_sp); 1232 } 1233 } 1234 return true; 1235 } 1236 } 1237 else 1238 { 1239 memset(&m_header, 0, sizeof(struct mach_header)); 1240 } 1241 } 1242 return false; 1243 } 1244 1245 1246 ByteOrder 1247 ObjectFileMachO::GetByteOrder () const 1248 { 1249 return m_data.GetByteOrder (); 1250 } 1251 1252 bool 1253 ObjectFileMachO::IsExecutable() const 1254 { 1255 return m_header.filetype == MH_EXECUTE; 1256 } 1257 1258 uint32_t 1259 ObjectFileMachO::GetAddressByteSize () const 1260 { 1261 return m_data.GetAddressByteSize (); 1262 } 1263 1264 AddressClass 1265 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 1266 { 1267 Symtab *symtab = GetSymtab(); 1268 if (symtab) 1269 { 1270 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1271 if (symbol) 1272 { 1273 if (symbol->ValueIsAddress()) 1274 { 1275 SectionSP section_sp (symbol->GetAddressRef().GetSection()); 1276 if (section_sp) 1277 { 1278 const lldb::SectionType section_type = section_sp->GetType(); 1279 switch (section_type) 1280 { 1281 case eSectionTypeInvalid: 1282 return eAddressClassUnknown; 1283 1284 case eSectionTypeCode: 1285 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1286 { 1287 // For ARM we have a bit in the n_desc field of the symbol 1288 // that tells us ARM/Thumb which is bit 0x0008. 1289 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1290 return eAddressClassCodeAlternateISA; 1291 } 1292 return eAddressClassCode; 1293 1294 case eSectionTypeContainer: 1295 return eAddressClassUnknown; 1296 1297 case eSectionTypeData: 1298 case eSectionTypeDataCString: 1299 case eSectionTypeDataCStringPointers: 1300 case eSectionTypeDataSymbolAddress: 1301 case eSectionTypeData4: 1302 case eSectionTypeData8: 1303 case eSectionTypeData16: 1304 case eSectionTypeDataPointers: 1305 case eSectionTypeZeroFill: 1306 case eSectionTypeDataObjCMessageRefs: 1307 case eSectionTypeDataObjCCFStrings: 1308 return eAddressClassData; 1309 1310 case eSectionTypeDebug: 1311 case eSectionTypeDWARFDebugAbbrev: 1312 case eSectionTypeDWARFDebugAranges: 1313 case eSectionTypeDWARFDebugFrame: 1314 case eSectionTypeDWARFDebugInfo: 1315 case eSectionTypeDWARFDebugLine: 1316 case eSectionTypeDWARFDebugLoc: 1317 case eSectionTypeDWARFDebugMacInfo: 1318 case eSectionTypeDWARFDebugPubNames: 1319 case eSectionTypeDWARFDebugPubTypes: 1320 case eSectionTypeDWARFDebugRanges: 1321 case eSectionTypeDWARFDebugStr: 1322 case eSectionTypeDWARFAppleNames: 1323 case eSectionTypeDWARFAppleTypes: 1324 case eSectionTypeDWARFAppleNamespaces: 1325 case eSectionTypeDWARFAppleObjC: 1326 return eAddressClassDebug; 1327 1328 case eSectionTypeEHFrame: 1329 case eSectionTypeCompactUnwind: 1330 return eAddressClassRuntime; 1331 1332 case eSectionTypeELFSymbolTable: 1333 case eSectionTypeELFDynamicSymbols: 1334 case eSectionTypeELFRelocationEntries: 1335 case eSectionTypeELFDynamicLinkInfo: 1336 case eSectionTypeOther: 1337 return eAddressClassUnknown; 1338 } 1339 } 1340 } 1341 1342 const SymbolType symbol_type = symbol->GetType(); 1343 switch (symbol_type) 1344 { 1345 case eSymbolTypeAny: return eAddressClassUnknown; 1346 case eSymbolTypeAbsolute: return eAddressClassUnknown; 1347 1348 case eSymbolTypeCode: 1349 case eSymbolTypeTrampoline: 1350 case eSymbolTypeResolver: 1351 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1352 { 1353 // For ARM we have a bit in the n_desc field of the symbol 1354 // that tells us ARM/Thumb which is bit 0x0008. 1355 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1356 return eAddressClassCodeAlternateISA; 1357 } 1358 return eAddressClassCode; 1359 1360 case eSymbolTypeData: return eAddressClassData; 1361 case eSymbolTypeRuntime: return eAddressClassRuntime; 1362 case eSymbolTypeException: return eAddressClassRuntime; 1363 case eSymbolTypeSourceFile: return eAddressClassDebug; 1364 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1365 case eSymbolTypeObjectFile: return eAddressClassDebug; 1366 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1367 case eSymbolTypeBlock: return eAddressClassDebug; 1368 case eSymbolTypeLocal: return eAddressClassData; 1369 case eSymbolTypeParam: return eAddressClassData; 1370 case eSymbolTypeVariable: return eAddressClassData; 1371 case eSymbolTypeVariableType: return eAddressClassDebug; 1372 case eSymbolTypeLineEntry: return eAddressClassDebug; 1373 case eSymbolTypeLineHeader: return eAddressClassDebug; 1374 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1375 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1376 case eSymbolTypeAdditional: return eAddressClassUnknown; 1377 case eSymbolTypeCompiler: return eAddressClassDebug; 1378 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1379 case eSymbolTypeUndefined: return eAddressClassUnknown; 1380 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1381 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1382 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1383 case eSymbolTypeReExported: return eAddressClassRuntime; 1384 } 1385 } 1386 } 1387 return eAddressClassUnknown; 1388 } 1389 1390 Symtab * 1391 ObjectFileMachO::GetSymtab() 1392 { 1393 ModuleSP module_sp(GetModule()); 1394 if (module_sp) 1395 { 1396 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1397 if (m_symtab_ap.get() == NULL) 1398 { 1399 m_symtab_ap.reset(new Symtab(this)); 1400 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1401 ParseSymtab (); 1402 m_symtab_ap->Finalize (); 1403 } 1404 } 1405 return m_symtab_ap.get(); 1406 } 1407 1408 bool 1409 ObjectFileMachO::IsStripped () 1410 { 1411 if (m_dysymtab.cmd == 0) 1412 { 1413 ModuleSP module_sp(GetModule()); 1414 if (module_sp) 1415 { 1416 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1417 for (uint32_t i=0; i<m_header.ncmds; ++i) 1418 { 1419 const lldb::offset_t load_cmd_offset = offset; 1420 1421 load_command lc; 1422 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1423 break; 1424 if (lc.cmd == LC_DYSYMTAB) 1425 { 1426 m_dysymtab.cmd = lc.cmd; 1427 m_dysymtab.cmdsize = lc.cmdsize; 1428 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1429 { 1430 // Clear m_dysymtab if we were unable to read all items from the load command 1431 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1432 } 1433 } 1434 offset = load_cmd_offset + lc.cmdsize; 1435 } 1436 } 1437 } 1438 if (m_dysymtab.cmd) 1439 return m_dysymtab.nlocalsym <= 1; 1440 return false; 1441 } 1442 1443 void 1444 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1445 { 1446 if (!m_sections_ap.get()) 1447 { 1448 m_sections_ap.reset(new SectionList()); 1449 1450 const bool is_dsym = (m_header.filetype == MH_DSYM); 1451 lldb::user_id_t segID = 0; 1452 lldb::user_id_t sectID = 0; 1453 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1454 uint32_t i; 1455 const bool is_core = GetType() == eTypeCoreFile; 1456 //bool dump_sections = false; 1457 ModuleSP module_sp (GetModule()); 1458 // First look up any LC_ENCRYPTION_INFO load commands 1459 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1460 EncryptedFileRanges encrypted_file_ranges; 1461 encryption_info_command encryption_cmd; 1462 for (i=0; i<m_header.ncmds; ++i) 1463 { 1464 const lldb::offset_t load_cmd_offset = offset; 1465 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1466 break; 1467 1468 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for 1469 // the 3 fields we care about, so treat them the same. 1470 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) 1471 { 1472 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1473 { 1474 if (encryption_cmd.cryptid != 0) 1475 { 1476 EncryptedFileRanges::Entry entry; 1477 entry.SetRangeBase(encryption_cmd.cryptoff); 1478 entry.SetByteSize(encryption_cmd.cryptsize); 1479 encrypted_file_ranges.Append(entry); 1480 } 1481 } 1482 } 1483 offset = load_cmd_offset + encryption_cmd.cmdsize; 1484 } 1485 1486 bool section_file_addresses_changed = false; 1487 1488 offset = MachHeaderSizeFromMagic(m_header.magic); 1489 1490 struct segment_command_64 load_cmd; 1491 for (i=0; i<m_header.ncmds; ++i) 1492 { 1493 const lldb::offset_t load_cmd_offset = offset; 1494 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1495 break; 1496 1497 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1498 { 1499 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1500 { 1501 bool add_section = true; 1502 bool add_to_unified = true; 1503 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1504 1505 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1506 if (is_dsym && unified_section_sp) 1507 { 1508 if (const_segname == GetSegmentNameLINKEDIT()) 1509 { 1510 // We need to keep the __LINKEDIT segment private to this object file only 1511 add_to_unified = false; 1512 } 1513 else 1514 { 1515 // This is the dSYM file and this section has already been created by 1516 // the object file, no need to create it. 1517 add_section = false; 1518 } 1519 } 1520 load_cmd.vmaddr = m_data.GetAddress(&offset); 1521 load_cmd.vmsize = m_data.GetAddress(&offset); 1522 load_cmd.fileoff = m_data.GetAddress(&offset); 1523 load_cmd.filesize = m_data.GetAddress(&offset); 1524 if (m_length != 0 && load_cmd.filesize != 0) 1525 { 1526 if (load_cmd.fileoff > m_length) 1527 { 1528 // We have a load command that says it extends past the end of the file. This is likely 1529 // a corrupt file. We don't have any way to return an error condition here (this method 1530 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1531 // is null out the SectionList vector and if a process has been set up, dump a message 1532 // to stdout. The most common case here is core file debugging with a truncated file. 1533 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1534 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1535 i, 1536 lc_segment_name, 1537 load_cmd.fileoff, 1538 m_length); 1539 1540 load_cmd.fileoff = 0; 1541 load_cmd.filesize = 0; 1542 } 1543 1544 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1545 { 1546 // We have a load command that says it extends past the end of the file. This is likely 1547 // a corrupt file. We don't have any way to return an error condition here (this method 1548 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1549 // is null out the SectionList vector and if a process has been set up, dump a message 1550 // to stdout. The most common case here is core file debugging with a truncated file. 1551 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1552 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1553 i, 1554 lc_segment_name, 1555 load_cmd.fileoff + load_cmd.filesize, 1556 m_length); 1557 1558 // Tuncase the length 1559 load_cmd.filesize = m_length - load_cmd.fileoff; 1560 } 1561 } 1562 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1563 { 1564 1565 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1566 1567 // Keep a list of mach segments around in case we need to 1568 // get at data that isn't stored in the abstracted Sections. 1569 m_mach_segments.push_back (load_cmd); 1570 1571 // Use a segment ID of the segment index shifted left by 8 so they 1572 // never conflict with any of the sections. 1573 SectionSP segment_sp; 1574 if (add_section && (const_segname || is_core)) 1575 { 1576 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1577 this, // Object file to which this sections belongs 1578 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1579 const_segname, // Name of this section 1580 eSectionTypeContainer, // This section is a container of other sections. 1581 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1582 load_cmd.vmsize, // VM size in bytes of this section 1583 load_cmd.fileoff, // Offset to the data for this section in the file 1584 load_cmd.filesize, // Size in bytes of this section as found in the file 1585 0, // Segments have no alignment information 1586 load_cmd.flags)); // Flags for this section 1587 1588 segment_sp->SetIsEncrypted (segment_is_encrypted); 1589 m_sections_ap->AddSection(segment_sp); 1590 if (add_to_unified) 1591 unified_section_list.AddSection(segment_sp); 1592 } 1593 else if (unified_section_sp) 1594 { 1595 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1596 { 1597 // Check to see if the module was read from memory? 1598 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1599 { 1600 // We have a module that is in memory and needs to have its 1601 // file address adjusted. We need to do this because when we 1602 // load a file from memory, its addresses will be slid already, 1603 // yet the addresses in the new symbol file will still be unslid. 1604 // Since everything is stored as section offset, this shouldn't 1605 // cause any problems. 1606 1607 // Make sure we've parsed the symbol table from the 1608 // ObjectFile before we go around changing its Sections. 1609 module_sp->GetObjectFile()->GetSymtab(); 1610 // eh_frame would present the same problems but we parse that on 1611 // a per-function basis as-needed so it's more difficult to 1612 // remove its use of the Sections. Realistically, the environments 1613 // where this code path will be taken will not have eh_frame sections. 1614 1615 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1616 1617 // Notify the module that the section addresses have been changed once 1618 // we're done so any file-address caches can be updated. 1619 section_file_addresses_changed = true; 1620 } 1621 } 1622 m_sections_ap->AddSection(unified_section_sp); 1623 } 1624 1625 struct section_64 sect64; 1626 ::memset (§64, 0, sizeof(sect64)); 1627 // Push a section into our mach sections for the section at 1628 // index zero (NO_SECT) if we don't have any mach sections yet... 1629 if (m_mach_sections.empty()) 1630 m_mach_sections.push_back(sect64); 1631 uint32_t segment_sect_idx; 1632 const lldb::user_id_t first_segment_sectID = sectID + 1; 1633 1634 1635 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1636 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1637 { 1638 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1639 break; 1640 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1641 break; 1642 sect64.addr = m_data.GetAddress(&offset); 1643 sect64.size = m_data.GetAddress(&offset); 1644 1645 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1646 break; 1647 1648 // Keep a list of mach sections around in case we need to 1649 // get at data that isn't stored in the abstracted Sections. 1650 m_mach_sections.push_back (sect64); 1651 1652 if (add_section) 1653 { 1654 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1655 if (!const_segname) 1656 { 1657 // We have a segment with no name so we need to conjure up 1658 // segments that correspond to the section's segname if there 1659 // isn't already such a section. If there is such a section, 1660 // we resize the section so that it spans all sections. 1661 // We also mark these sections as fake so address matches don't 1662 // hit if they land in the gaps between the child sections. 1663 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1664 segment_sp = unified_section_list.FindSectionByName (const_segname); 1665 if (segment_sp.get()) 1666 { 1667 Section *segment = segment_sp.get(); 1668 // Grow the section size as needed. 1669 const lldb::addr_t sect64_min_addr = sect64.addr; 1670 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1671 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1672 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1673 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1674 if (sect64_min_addr >= curr_seg_min_addr) 1675 { 1676 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1677 // Only grow the section size if needed 1678 if (new_seg_byte_size > curr_seg_byte_size) 1679 segment->SetByteSize (new_seg_byte_size); 1680 } 1681 else 1682 { 1683 // We need to change the base address of the segment and 1684 // adjust the child section offsets for all existing children. 1685 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1686 segment->Slide(slide_amount, false); 1687 segment->GetChildren().Slide(-slide_amount, false); 1688 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1689 } 1690 1691 // Grow the section size as needed. 1692 if (sect64.offset) 1693 { 1694 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1695 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1696 1697 const lldb::addr_t section_min_file_offset = sect64.offset; 1698 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1699 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1700 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1701 segment->SetFileOffset (new_file_offset); 1702 segment->SetFileSize (new_file_size); 1703 } 1704 } 1705 else 1706 { 1707 // Create a fake section for the section's named segment 1708 segment_sp.reset(new Section (segment_sp, // Parent section 1709 module_sp, // Module to which this section belongs 1710 this, // Object file to which this section belongs 1711 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1712 const_segname, // Name of this section 1713 eSectionTypeContainer, // This section is a container of other sections. 1714 sect64.addr, // File VM address == addresses as they are found in the object file 1715 sect64.size, // VM size in bytes of this section 1716 sect64.offset, // Offset to the data for this section in the file 1717 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file 1718 sect64.align, 1719 load_cmd.flags)); // Flags for this section 1720 segment_sp->SetIsFake(true); 1721 1722 m_sections_ap->AddSection(segment_sp); 1723 if (add_to_unified) 1724 unified_section_list.AddSection(segment_sp); 1725 segment_sp->SetIsEncrypted (segment_is_encrypted); 1726 } 1727 } 1728 assert (segment_sp.get()); 1729 1730 lldb::SectionType sect_type = eSectionTypeOther; 1731 1732 if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1733 sect_type = eSectionTypeCode; 1734 else 1735 { 1736 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1737 static ConstString g_sect_name_objc_data ("__objc_data"); 1738 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1739 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1740 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1741 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1742 static ConstString g_sect_name_objc_const ("__objc_const"); 1743 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1744 static ConstString g_sect_name_cfstring ("__cfstring"); 1745 1746 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1747 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1748 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1749 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1750 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1751 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1752 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1753 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1754 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1755 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1756 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1757 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1758 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1759 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1760 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1761 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1762 static ConstString g_sect_name_compact_unwind ("__unwind_info"); 1763 static ConstString g_sect_name_text ("__text"); 1764 static ConstString g_sect_name_data ("__data"); 1765 1766 1767 if (section_name == g_sect_name_dwarf_debug_abbrev) 1768 sect_type = eSectionTypeDWARFDebugAbbrev; 1769 else if (section_name == g_sect_name_dwarf_debug_aranges) 1770 sect_type = eSectionTypeDWARFDebugAranges; 1771 else if (section_name == g_sect_name_dwarf_debug_frame) 1772 sect_type = eSectionTypeDWARFDebugFrame; 1773 else if (section_name == g_sect_name_dwarf_debug_info) 1774 sect_type = eSectionTypeDWARFDebugInfo; 1775 else if (section_name == g_sect_name_dwarf_debug_line) 1776 sect_type = eSectionTypeDWARFDebugLine; 1777 else if (section_name == g_sect_name_dwarf_debug_loc) 1778 sect_type = eSectionTypeDWARFDebugLoc; 1779 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1780 sect_type = eSectionTypeDWARFDebugMacInfo; 1781 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1782 sect_type = eSectionTypeDWARFDebugPubNames; 1783 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1784 sect_type = eSectionTypeDWARFDebugPubTypes; 1785 else if (section_name == g_sect_name_dwarf_debug_ranges) 1786 sect_type = eSectionTypeDWARFDebugRanges; 1787 else if (section_name == g_sect_name_dwarf_debug_str) 1788 sect_type = eSectionTypeDWARFDebugStr; 1789 else if (section_name == g_sect_name_dwarf_apple_names) 1790 sect_type = eSectionTypeDWARFAppleNames; 1791 else if (section_name == g_sect_name_dwarf_apple_types) 1792 sect_type = eSectionTypeDWARFAppleTypes; 1793 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1794 sect_type = eSectionTypeDWARFAppleNamespaces; 1795 else if (section_name == g_sect_name_dwarf_apple_objc) 1796 sect_type = eSectionTypeDWARFAppleObjC; 1797 else if (section_name == g_sect_name_objc_selrefs) 1798 sect_type = eSectionTypeDataCStringPointers; 1799 else if (section_name == g_sect_name_objc_msgrefs) 1800 sect_type = eSectionTypeDataObjCMessageRefs; 1801 else if (section_name == g_sect_name_eh_frame) 1802 sect_type = eSectionTypeEHFrame; 1803 else if (section_name == g_sect_name_compact_unwind) 1804 sect_type = eSectionTypeCompactUnwind; 1805 else if (section_name == g_sect_name_cfstring) 1806 sect_type = eSectionTypeDataObjCCFStrings; 1807 else if (section_name == g_sect_name_objc_data || 1808 section_name == g_sect_name_objc_classrefs || 1809 section_name == g_sect_name_objc_superrefs || 1810 section_name == g_sect_name_objc_const || 1811 section_name == g_sect_name_objc_classlist) 1812 { 1813 sect_type = eSectionTypeDataPointers; 1814 } 1815 1816 if (sect_type == eSectionTypeOther) 1817 { 1818 switch (mach_sect_type) 1819 { 1820 // TODO: categorize sections by other flags for regular sections 1821 case S_REGULAR: 1822 if (section_name == g_sect_name_text) 1823 sect_type = eSectionTypeCode; 1824 else if (section_name == g_sect_name_data) 1825 sect_type = eSectionTypeData; 1826 else 1827 sect_type = eSectionTypeOther; 1828 break; 1829 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1830 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1831 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1832 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1833 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1834 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1835 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1836 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1837 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1838 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1839 case S_COALESCED: sect_type = eSectionTypeOther; break; 1840 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1841 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1842 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1843 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1844 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1845 default: break; 1846 } 1847 } 1848 } 1849 1850 SectionSP section_sp(new Section (segment_sp, 1851 module_sp, 1852 this, 1853 ++sectID, 1854 section_name, 1855 sect_type, 1856 sect64.addr - segment_sp->GetFileAddress(), 1857 sect64.size, 1858 sect64.offset, 1859 sect64.offset == 0 ? 0 : sect64.size, 1860 sect64.align, 1861 sect64.flags)); 1862 // Set the section to be encrypted to match the segment 1863 1864 bool section_is_encrypted = false; 1865 if (!segment_is_encrypted && load_cmd.filesize != 0) 1866 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1867 1868 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1869 segment_sp->GetChildren().AddSection(section_sp); 1870 1871 if (segment_sp->IsFake()) 1872 { 1873 segment_sp.reset(); 1874 const_segname.Clear(); 1875 } 1876 } 1877 } 1878 if (segment_sp && is_dsym) 1879 { 1880 if (first_segment_sectID <= sectID) 1881 { 1882 lldb::user_id_t sect_uid; 1883 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1884 { 1885 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1886 SectionSP next_section_sp; 1887 if (sect_uid + 1 <= sectID) 1888 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1889 1890 if (curr_section_sp.get()) 1891 { 1892 if (curr_section_sp->GetByteSize() == 0) 1893 { 1894 if (next_section_sp.get() != NULL) 1895 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1896 else 1897 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1898 } 1899 } 1900 } 1901 } 1902 } 1903 } 1904 } 1905 } 1906 else if (load_cmd.cmd == LC_DYSYMTAB) 1907 { 1908 m_dysymtab.cmd = load_cmd.cmd; 1909 m_dysymtab.cmdsize = load_cmd.cmdsize; 1910 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1911 } 1912 1913 offset = load_cmd_offset + load_cmd.cmdsize; 1914 } 1915 1916 1917 if (section_file_addresses_changed && module_sp.get()) 1918 { 1919 module_sp->SectionFileAddressesChanged(); 1920 } 1921 } 1922 } 1923 1924 class MachSymtabSectionInfo 1925 { 1926 public: 1927 1928 MachSymtabSectionInfo (SectionList *section_list) : 1929 m_section_list (section_list), 1930 m_section_infos() 1931 { 1932 // Get the number of sections down to a depth of 1 to include 1933 // all segments and their sections, but no other sections that 1934 // may be added for debug map or 1935 m_section_infos.resize(section_list->GetNumSections(1)); 1936 } 1937 1938 1939 SectionSP 1940 GetSection (uint8_t n_sect, addr_t file_addr) 1941 { 1942 if (n_sect == 0) 1943 return SectionSP(); 1944 if (n_sect < m_section_infos.size()) 1945 { 1946 if (!m_section_infos[n_sect].section_sp) 1947 { 1948 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1949 m_section_infos[n_sect].section_sp = section_sp; 1950 if (section_sp) 1951 { 1952 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1953 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1954 } 1955 else 1956 { 1957 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1958 } 1959 } 1960 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1961 { 1962 // Symbol is in section. 1963 return m_section_infos[n_sect].section_sp; 1964 } 1965 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1966 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1967 { 1968 // Symbol is in section with zero size, but has the same start 1969 // address as the section. This can happen with linker symbols 1970 // (symbols that start with the letter 'l' or 'L'. 1971 return m_section_infos[n_sect].section_sp; 1972 } 1973 } 1974 return m_section_list->FindSectionContainingFileAddress(file_addr); 1975 } 1976 1977 protected: 1978 struct SectionInfo 1979 { 1980 SectionInfo () : 1981 vm_range(), 1982 section_sp () 1983 { 1984 } 1985 1986 VMRange vm_range; 1987 SectionSP section_sp; 1988 }; 1989 SectionList *m_section_list; 1990 std::vector<SectionInfo> m_section_infos; 1991 }; 1992 1993 struct TrieEntry 1994 { 1995 TrieEntry () : 1996 name(), 1997 address(LLDB_INVALID_ADDRESS), 1998 flags (0), 1999 other(0), 2000 import_name() 2001 { 2002 } 2003 2004 void 2005 Clear () 2006 { 2007 name.Clear(); 2008 address = LLDB_INVALID_ADDRESS; 2009 flags = 0; 2010 other = 0; 2011 import_name.Clear(); 2012 } 2013 2014 void 2015 Dump () const 2016 { 2017 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 2018 static_cast<unsigned long long>(address), 2019 static_cast<unsigned long long>(flags), 2020 static_cast<unsigned long long>(other), name.GetCString()); 2021 if (import_name) 2022 printf (" -> \"%s\"\n", import_name.GetCString()); 2023 else 2024 printf ("\n"); 2025 } 2026 ConstString name; 2027 uint64_t address; 2028 uint64_t flags; 2029 uint64_t other; 2030 ConstString import_name; 2031 }; 2032 2033 struct TrieEntryWithOffset 2034 { 2035 lldb::offset_t nodeOffset; 2036 TrieEntry entry; 2037 2038 TrieEntryWithOffset (lldb::offset_t offset) : 2039 nodeOffset (offset), 2040 entry() 2041 { 2042 } 2043 2044 void 2045 Dump (uint32_t idx) const 2046 { 2047 printf ("[%3u] 0x%16.16llx: ", idx, 2048 static_cast<unsigned long long>(nodeOffset)); 2049 entry.Dump(); 2050 } 2051 2052 bool 2053 operator<(const TrieEntryWithOffset& other) const 2054 { 2055 return ( nodeOffset < other.nodeOffset ); 2056 } 2057 }; 2058 2059 static void 2060 ParseTrieEntries (DataExtractor &data, 2061 lldb::offset_t offset, 2062 const bool is_arm, 2063 std::vector<llvm::StringRef> &nameSlices, 2064 std::set<lldb::addr_t> &resolver_addresses, 2065 std::vector<TrieEntryWithOffset>& output) 2066 { 2067 if (!data.ValidOffset(offset)) 2068 return; 2069 2070 const uint64_t terminalSize = data.GetULEB128(&offset); 2071 lldb::offset_t children_offset = offset + terminalSize; 2072 if ( terminalSize != 0 ) { 2073 TrieEntryWithOffset e (offset); 2074 e.entry.flags = data.GetULEB128(&offset); 2075 const char *import_name = NULL; 2076 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 2077 e.entry.address = 0; 2078 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2079 import_name = data.GetCStr(&offset); 2080 } 2081 else { 2082 e.entry.address = data.GetULEB128(&offset); 2083 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 2084 { 2085 e.entry.other = data.GetULEB128(&offset); 2086 uint64_t resolver_addr = e.entry.other; 2087 if (is_arm) 2088 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2089 resolver_addresses.insert(resolver_addr); 2090 } 2091 else 2092 e.entry.other = 0; 2093 } 2094 // Only add symbols that are reexport symbols with a valid import name 2095 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 2096 { 2097 std::string name; 2098 if (!nameSlices.empty()) 2099 { 2100 for (auto name_slice: nameSlices) 2101 name.append(name_slice.data(), name_slice.size()); 2102 } 2103 if (name.size() > 1) 2104 { 2105 // Skip the leading '_' 2106 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 2107 } 2108 if (import_name) 2109 { 2110 // Skip the leading '_' 2111 e.entry.import_name.SetCString(import_name+1); 2112 } 2113 output.push_back(e); 2114 } 2115 } 2116 2117 const uint8_t childrenCount = data.GetU8(&children_offset); 2118 for (uint8_t i=0; i < childrenCount; ++i) { 2119 nameSlices.push_back(data.GetCStr(&children_offset)); 2120 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2121 if (childNodeOffset) 2122 { 2123 ParseTrieEntries(data, 2124 childNodeOffset, 2125 is_arm, 2126 nameSlices, 2127 resolver_addresses, 2128 output); 2129 } 2130 nameSlices.pop_back(); 2131 } 2132 } 2133 2134 size_t 2135 ObjectFileMachO::ParseSymtab () 2136 { 2137 Timer scoped_timer(__PRETTY_FUNCTION__, 2138 "ObjectFileMachO::ParseSymtab () module = %s", 2139 m_file.GetFilename().AsCString("")); 2140 ModuleSP module_sp (GetModule()); 2141 if (!module_sp) 2142 return 0; 2143 2144 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 2145 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 2146 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2147 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2148 FunctionStarts function_starts; 2149 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2150 uint32_t i; 2151 FileSpecList dylib_files; 2152 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 2153 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2154 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2155 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2156 2157 for (i=0; i<m_header.ncmds; ++i) 2158 { 2159 const lldb::offset_t cmd_offset = offset; 2160 // Read in the load command and load command size 2161 struct load_command lc; 2162 if (m_data.GetU32(&offset, &lc, 2) == NULL) 2163 break; 2164 // Watch for the symbol table load command 2165 switch (lc.cmd) 2166 { 2167 case LC_SYMTAB: 2168 symtab_load_command.cmd = lc.cmd; 2169 symtab_load_command.cmdsize = lc.cmdsize; 2170 // Read in the rest of the symtab load command 2171 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 2172 return 0; 2173 if (symtab_load_command.symoff == 0) 2174 { 2175 if (log) 2176 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2177 return 0; 2178 } 2179 2180 if (symtab_load_command.stroff == 0) 2181 { 2182 if (log) 2183 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2184 return 0; 2185 } 2186 2187 if (symtab_load_command.nsyms == 0) 2188 { 2189 if (log) 2190 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2191 return 0; 2192 } 2193 2194 if (symtab_load_command.strsize == 0) 2195 { 2196 if (log) 2197 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2198 return 0; 2199 } 2200 break; 2201 2202 case LC_DYLD_INFO: 2203 case LC_DYLD_INFO_ONLY: 2204 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 2205 { 2206 dyld_info.cmd = lc.cmd; 2207 dyld_info.cmdsize = lc.cmdsize; 2208 } 2209 else 2210 { 2211 memset (&dyld_info, 0, sizeof(dyld_info)); 2212 } 2213 break; 2214 2215 case LC_LOAD_DYLIB: 2216 case LC_LOAD_WEAK_DYLIB: 2217 case LC_REEXPORT_DYLIB: 2218 case LC_LOADFVMLIB: 2219 case LC_LOAD_UPWARD_DYLIB: 2220 { 2221 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2222 const char *path = m_data.PeekCStr(name_offset); 2223 if (path) 2224 { 2225 FileSpec file_spec(path, false); 2226 // Strip the path if there is @rpath, @executable, etc so we just use the basename 2227 if (path[0] == '@') 2228 file_spec.GetDirectory().Clear(); 2229 2230 if (lc.cmd == LC_REEXPORT_DYLIB) 2231 { 2232 m_reexported_dylibs.AppendIfUnique(file_spec); 2233 } 2234 2235 dylib_files.Append(file_spec); 2236 } 2237 } 2238 break; 2239 2240 case LC_FUNCTION_STARTS: 2241 function_starts_load_command.cmd = lc.cmd; 2242 function_starts_load_command.cmdsize = lc.cmdsize; 2243 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 2244 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 2245 break; 2246 2247 default: 2248 break; 2249 } 2250 offset = cmd_offset + lc.cmdsize; 2251 } 2252 2253 if (symtab_load_command.cmd) 2254 { 2255 Symtab *symtab = m_symtab_ap.get(); 2256 SectionList *section_list = GetSectionList(); 2257 if (section_list == NULL) 2258 return 0; 2259 2260 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2261 const ByteOrder byte_order = m_data.GetByteOrder(); 2262 bool bit_width_32 = addr_byte_size == 4; 2263 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2264 2265 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 2266 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 2267 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 2268 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 2269 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 2270 2271 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 2272 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2273 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2274 2275 ProcessSP process_sp (m_process_wp.lock()); 2276 Process *process = process_sp.get(); 2277 2278 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2279 2280 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) 2281 { 2282 Target &target = process->GetTarget(); 2283 2284 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2285 2286 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2287 // Reading mach file from memory in a process or core file... 2288 2289 if (linkedit_section_sp) 2290 { 2291 addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 2292 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) 2293 { 2294 // We might be trying to access the symbol table before the __LINKEDIT's load 2295 // address has been set in the target. We can't fail to read the symbol table, 2296 // so calculate the right address manually 2297 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2298 } 2299 2300 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2301 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 2302 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 2303 2304 bool data_was_read = false; 2305 2306 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2307 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 2308 { 2309 // This mach-o memory file is in the dyld shared cache. If this 2310 // program is not remote and this is iOS, then this process will 2311 // share the same shared cache as the process we are debugging and 2312 // we can read the entire __LINKEDIT from the address space in this 2313 // process. This is a needed optimization that is used for local iOS 2314 // debugging only since all shared libraries in the shared cache do 2315 // not have corresponding files that exist in the file system of the 2316 // device. They have been combined into a single file. This means we 2317 // always have to load these files from memory. All of the symbol and 2318 // string tables from all of the __LINKEDIT sections from the shared 2319 // libraries in the shared cache have been merged into a single large 2320 // symbol and string table. Reading all of this symbol and string table 2321 // data across can slow down debug launch times, so we optimize this by 2322 // reading the memory for the __LINKEDIT section from this process. 2323 2324 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 2325 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 2326 bool use_lldb_cache = true; 2327 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 2328 { 2329 use_lldb_cache = false; 2330 ModuleSP module_sp (GetModule()); 2331 if (module_sp) 2332 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 2333 2334 } 2335 2336 PlatformSP platform_sp (target.GetPlatform()); 2337 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 2338 { 2339 data_was_read = true; 2340 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 2341 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 2342 if (function_starts_load_command.cmd) 2343 { 2344 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2345 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 2346 } 2347 } 2348 } 2349 #endif 2350 2351 if (!data_was_read) 2352 { 2353 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 2354 { 2355 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 2356 if (nlist_data_sp) 2357 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2358 // Load strings individually from memory when loading from memory since shared cache 2359 // string tables contain strings for all symbols from all shared cached libraries 2360 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 2361 //if (strtab_data_sp) 2362 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2363 if (m_dysymtab.nindirectsyms != 0) 2364 { 2365 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 2366 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2367 if (indirect_syms_data_sp) 2368 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 2369 } 2370 } 2371 2372 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 2373 { 2374 if (function_starts_load_command.cmd) 2375 { 2376 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2377 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 2378 if (func_start_data_sp) 2379 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 2380 } 2381 } 2382 } 2383 } 2384 } 2385 else 2386 { 2387 nlist_data.SetData (m_data, 2388 symtab_load_command.symoff, 2389 nlist_data_byte_size); 2390 strtab_data.SetData (m_data, 2391 symtab_load_command.stroff, 2392 strtab_data_byte_size); 2393 2394 if (dyld_info.export_size > 0) 2395 { 2396 dyld_trie_data.SetData (m_data, 2397 dyld_info.export_off, 2398 dyld_info.export_size); 2399 } 2400 2401 if (m_dysymtab.nindirectsyms != 0) 2402 { 2403 indirect_symbol_index_data.SetData (m_data, 2404 m_dysymtab.indirectsymoff, 2405 m_dysymtab.nindirectsyms * 4); 2406 } 2407 if (function_starts_load_command.cmd) 2408 { 2409 function_starts_data.SetData (m_data, 2410 function_starts_load_command.dataoff, 2411 function_starts_load_command.datasize); 2412 } 2413 } 2414 2415 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2416 { 2417 if (log) 2418 module_sp->LogMessage(log, "failed to read nlist data"); 2419 return 0; 2420 } 2421 2422 2423 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2424 if (!have_strtab_data) 2425 { 2426 if (process) 2427 { 2428 if (strtab_addr == LLDB_INVALID_ADDRESS) 2429 { 2430 if (log) 2431 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2432 return 0; 2433 } 2434 } 2435 else 2436 { 2437 if (log) 2438 module_sp->LogMessage(log, "failed to read strtab data"); 2439 return 0; 2440 } 2441 } 2442 2443 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2444 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2445 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2446 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2447 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2448 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2449 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2450 SectionSP eh_frame_section_sp; 2451 if (text_section_sp.get()) 2452 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2453 else 2454 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2455 2456 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2457 2458 // lldb works best if it knows the start address of all functions in a module. 2459 // Linker symbols or debug info are normally the best source of information for start addr / size but 2460 // they may be stripped in a released binary. 2461 // Two additional sources of information exist in Mach-O binaries: 2462 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2463 // binary, relative to the text section. 2464 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2465 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2466 // Binaries built to run on older releases may need to use eh_frame information. 2467 2468 if (text_section_sp && function_starts_data.GetByteSize()) 2469 { 2470 FunctionStarts::Entry function_start_entry; 2471 function_start_entry.data = false; 2472 lldb::offset_t function_start_offset = 0; 2473 function_start_entry.addr = text_section_sp->GetFileAddress(); 2474 uint64_t delta; 2475 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2476 { 2477 // Now append the current entry 2478 function_start_entry.addr += delta; 2479 function_starts.Append(function_start_entry); 2480 } 2481 } 2482 else 2483 { 2484 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2485 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2486 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2487 // the module. 2488 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2489 { 2490 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindGCC, true); 2491 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2492 eh_frame.GetFunctionAddressAndSizeVector (functions); 2493 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2494 size_t count = functions.GetSize(); 2495 for (size_t i = 0; i < count; ++i) 2496 { 2497 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2498 if (func) 2499 { 2500 FunctionStarts::Entry function_start_entry; 2501 function_start_entry.addr = func->base - text_base_addr; 2502 function_starts.Append(function_start_entry); 2503 } 2504 } 2505 } 2506 } 2507 2508 const size_t function_starts_count = function_starts.GetSize(); 2509 2510 const user_id_t TEXT_eh_frame_sectID = 2511 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2512 : static_cast<user_id_t>(NO_SECT); 2513 2514 lldb::offset_t nlist_data_offset = 0; 2515 2516 uint32_t N_SO_index = UINT32_MAX; 2517 2518 MachSymtabSectionInfo section_info (section_list); 2519 std::vector<uint32_t> N_FUN_indexes; 2520 std::vector<uint32_t> N_NSYM_indexes; 2521 std::vector<uint32_t> N_INCL_indexes; 2522 std::vector<uint32_t> N_BRAC_indexes; 2523 std::vector<uint32_t> N_COMM_indexes; 2524 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2525 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2526 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2527 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2528 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2529 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2530 // Any symbols that get merged into another will get an entry 2531 // in this map so we know 2532 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2533 uint32_t nlist_idx = 0; 2534 Symbol *symbol_ptr = NULL; 2535 2536 uint32_t sym_idx = 0; 2537 Symbol *sym = NULL; 2538 size_t num_syms = 0; 2539 std::string memory_symbol_name; 2540 uint32_t unmapped_local_symbols_found = 0; 2541 2542 std::vector<TrieEntryWithOffset> trie_entries; 2543 std::set<lldb::addr_t> resolver_addresses; 2544 2545 if (dyld_trie_data.GetByteSize() > 0) 2546 { 2547 std::vector<llvm::StringRef> nameSlices; 2548 ParseTrieEntries (dyld_trie_data, 2549 0, 2550 is_arm, 2551 nameSlices, 2552 resolver_addresses, 2553 trie_entries); 2554 2555 ConstString text_segment_name ("__TEXT"); 2556 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2557 if (text_segment_sp) 2558 { 2559 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2560 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2561 { 2562 for (auto &e : trie_entries) 2563 e.entry.address += text_segment_file_addr; 2564 } 2565 } 2566 } 2567 2568 typedef std::set<ConstString> IndirectSymbols; 2569 IndirectSymbols indirect_symbol_names; 2570 2571 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2572 2573 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2574 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2575 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2576 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2577 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2578 // nlist parser to ignore all LOCAL symbols. 2579 2580 if (m_header.flags & 0x80000000u) 2581 { 2582 // Before we can start mapping the DSC, we need to make certain the target process is actually 2583 // using the cache we can find. 2584 2585 // Next we need to determine the correct path for the dyld shared cache. 2586 2587 ArchSpec header_arch; 2588 GetArchitecture(header_arch); 2589 char dsc_path[PATH_MAX]; 2590 2591 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2592 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2593 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2594 header_arch.GetArchitectureName()); 2595 2596 FileSpec dsc_filespec(dsc_path, false); 2597 2598 // We need definitions of two structures in the on-disk DSC, copy them here manually 2599 struct lldb_copy_dyld_cache_header_v0 2600 { 2601 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2602 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2603 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2604 uint32_t imagesOffset; 2605 uint32_t imagesCount; 2606 uint64_t dyldBaseAddress; 2607 uint64_t codeSignatureOffset; 2608 uint64_t codeSignatureSize; 2609 uint64_t slideInfoOffset; 2610 uint64_t slideInfoSize; 2611 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2612 uint64_t localSymbolsSize; // size of local symbols information 2613 }; 2614 struct lldb_copy_dyld_cache_header_v1 2615 { 2616 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2617 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2618 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2619 uint32_t imagesOffset; 2620 uint32_t imagesCount; 2621 uint64_t dyldBaseAddress; 2622 uint64_t codeSignatureOffset; 2623 uint64_t codeSignatureSize; 2624 uint64_t slideInfoOffset; 2625 uint64_t slideInfoSize; 2626 uint64_t localSymbolsOffset; 2627 uint64_t localSymbolsSize; 2628 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2629 }; 2630 2631 struct lldb_copy_dyld_cache_mapping_info 2632 { 2633 uint64_t address; 2634 uint64_t size; 2635 uint64_t fileOffset; 2636 uint32_t maxProt; 2637 uint32_t initProt; 2638 }; 2639 2640 struct lldb_copy_dyld_cache_local_symbols_info 2641 { 2642 uint32_t nlistOffset; 2643 uint32_t nlistCount; 2644 uint32_t stringsOffset; 2645 uint32_t stringsSize; 2646 uint32_t entriesOffset; 2647 uint32_t entriesCount; 2648 }; 2649 struct lldb_copy_dyld_cache_local_symbols_entry 2650 { 2651 uint32_t dylibOffset; 2652 uint32_t nlistStartIndex; 2653 uint32_t nlistCount; 2654 }; 2655 2656 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2657 The dyld_cache_local_symbols_info structure gives us three things: 2658 1. The start and count of the nlist records in the dyld_shared_cache file 2659 2. The start and size of the strings for these nlist records 2660 3. The start and count of dyld_cache_local_symbols_entry entries 2661 2662 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2663 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2664 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2665 and the count of how many nlist records there are for this dylib/framework. 2666 */ 2667 2668 // Process the dsc header to find the unmapped symbols 2669 // 2670 // Save some VM space, do not map the entire cache in one shot. 2671 2672 DataBufferSP dsc_data_sp; 2673 dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2674 2675 if (dsc_data_sp) 2676 { 2677 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2678 2679 char version_str[17]; 2680 int version = -1; 2681 lldb::offset_t offset = 0; 2682 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2683 version_str[16] = '\0'; 2684 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2685 { 2686 int v; 2687 if (::sscanf (version_str + 6, "%d", &v) == 1) 2688 { 2689 version = v; 2690 } 2691 } 2692 2693 UUID dsc_uuid; 2694 if (version >= 1) 2695 { 2696 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2697 uint8_t uuid_bytes[sizeof (uuid_t)]; 2698 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2699 dsc_uuid.SetBytes (uuid_bytes); 2700 } 2701 2702 bool uuid_match = true; 2703 if (dsc_uuid.IsValid() && process) 2704 { 2705 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2706 2707 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2708 { 2709 // The on-disk dyld_shared_cache file is not the same as the one in this 2710 // process' memory, don't use it. 2711 uuid_match = false; 2712 ModuleSP module_sp (GetModule()); 2713 if (module_sp) 2714 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2715 } 2716 } 2717 2718 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2719 2720 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2721 2722 // If the mappingOffset points to a location inside the header, we've 2723 // opened an old dyld shared cache, and should not proceed further. 2724 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2725 { 2726 2727 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2728 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2729 offset = 0; 2730 2731 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2732 // in the shared library cache need to be adjusted by an offset to match up with the 2733 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2734 // recorded in mapping_offset_value. 2735 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2736 2737 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2738 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2739 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2740 2741 if (localSymbolsOffset && localSymbolsSize) 2742 { 2743 // Map the local symbols 2744 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) 2745 { 2746 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2747 2748 offset = 0; 2749 2750 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2751 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2752 UndefinedNameToDescMap undefined_name_to_desc; 2753 SymbolIndexToName reexport_shlib_needs_fixup; 2754 2755 2756 // Read the local_symbols_infos struct in one shot 2757 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2758 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2759 2760 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2761 2762 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2763 2764 offset = local_symbols_info.entriesOffset; 2765 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2766 { 2767 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2768 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2769 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2770 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2771 2772 if (header_file_offset == local_symbols_entry.dylibOffset) 2773 { 2774 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2775 2776 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2777 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2778 num_syms = symtab->GetNumSymbols(); 2779 2780 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2781 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2782 2783 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2784 { 2785 ///////////////////////////// 2786 { 2787 struct nlist_64 nlist; 2788 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2789 break; 2790 2791 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2792 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2793 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2794 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2795 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2796 2797 SymbolType type = eSymbolTypeInvalid; 2798 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2799 2800 if (symbol_name == NULL) 2801 { 2802 // No symbol should be NULL, even the symbols with no 2803 // string values should have an offset zero which points 2804 // to an empty C-string 2805 Host::SystemLog (Host::eSystemLogError, 2806 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2807 entry_index, 2808 nlist.n_strx, 2809 module_sp->GetFileSpec().GetPath().c_str()); 2810 continue; 2811 } 2812 if (symbol_name[0] == '\0') 2813 symbol_name = NULL; 2814 2815 const char *symbol_name_non_abi_mangled = NULL; 2816 2817 SectionSP symbol_section; 2818 uint32_t symbol_byte_size = 0; 2819 bool add_nlist = true; 2820 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2821 bool demangled_is_synthesized = false; 2822 bool is_gsym = false; 2823 bool set_value = true; 2824 2825 assert (sym_idx < num_syms); 2826 2827 sym[sym_idx].SetDebug (is_debug); 2828 2829 if (is_debug) 2830 { 2831 switch (nlist.n_type) 2832 { 2833 case N_GSYM: 2834 // global symbol: name,,NO_SECT,type,0 2835 // Sometimes the N_GSYM value contains the address. 2836 2837 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2838 // have the same address, but we want to ensure that we always find only the real symbol, 2839 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2840 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2841 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2842 // same address. 2843 2844 is_gsym = true; 2845 sym[sym_idx].SetExternal(true); 2846 2847 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 2848 { 2849 llvm::StringRef symbol_name_ref(symbol_name); 2850 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2851 { 2852 symbol_name_non_abi_mangled = symbol_name + 1; 2853 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2854 type = eSymbolTypeObjCClass; 2855 demangled_is_synthesized = true; 2856 2857 } 2858 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2859 { 2860 symbol_name_non_abi_mangled = symbol_name + 1; 2861 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2862 type = eSymbolTypeObjCMetaClass; 2863 demangled_is_synthesized = true; 2864 } 2865 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2866 { 2867 symbol_name_non_abi_mangled = symbol_name + 1; 2868 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2869 type = eSymbolTypeObjCIVar; 2870 demangled_is_synthesized = true; 2871 } 2872 } 2873 else 2874 { 2875 if (nlist.n_value != 0) 2876 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2877 type = eSymbolTypeData; 2878 } 2879 break; 2880 2881 case N_FNAME: 2882 // procedure name (f77 kludge): name,,NO_SECT,0,0 2883 type = eSymbolTypeCompiler; 2884 break; 2885 2886 case N_FUN: 2887 // procedure: name,,n_sect,linenumber,address 2888 if (symbol_name) 2889 { 2890 type = eSymbolTypeCode; 2891 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2892 2893 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2894 // We use the current number of symbols in the symbol table in lieu of 2895 // using nlist_idx in case we ever start trimming entries out 2896 N_FUN_indexes.push_back(sym_idx); 2897 } 2898 else 2899 { 2900 type = eSymbolTypeCompiler; 2901 2902 if ( !N_FUN_indexes.empty() ) 2903 { 2904 // Copy the size of the function into the original STAB entry so we don't have 2905 // to hunt for it later 2906 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2907 N_FUN_indexes.pop_back(); 2908 // We don't really need the end function STAB as it contains the size which 2909 // we already placed with the original symbol, so don't add it if we want a 2910 // minimal symbol table 2911 add_nlist = false; 2912 } 2913 } 2914 break; 2915 2916 case N_STSYM: 2917 // static symbol: name,,n_sect,type,address 2918 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2919 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2920 type = eSymbolTypeData; 2921 break; 2922 2923 case N_LCSYM: 2924 // .lcomm symbol: name,,n_sect,type,address 2925 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2926 type = eSymbolTypeCommonBlock; 2927 break; 2928 2929 case N_BNSYM: 2930 // We use the current number of symbols in the symbol table in lieu of 2931 // using nlist_idx in case we ever start trimming entries out 2932 // Skip these if we want minimal symbol tables 2933 add_nlist = false; 2934 break; 2935 2936 case N_ENSYM: 2937 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2938 // so that we can always skip the entire symbol if we need to navigate 2939 // more quickly at the source level when parsing STABS 2940 // Skip these if we want minimal symbol tables 2941 add_nlist = false; 2942 break; 2943 2944 2945 case N_OPT: 2946 // emitted with gcc2_compiled and in gcc source 2947 type = eSymbolTypeCompiler; 2948 break; 2949 2950 case N_RSYM: 2951 // register sym: name,,NO_SECT,type,register 2952 type = eSymbolTypeVariable; 2953 break; 2954 2955 case N_SLINE: 2956 // src line: 0,,n_sect,linenumber,address 2957 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2958 type = eSymbolTypeLineEntry; 2959 break; 2960 2961 case N_SSYM: 2962 // structure elt: name,,NO_SECT,type,struct_offset 2963 type = eSymbolTypeVariableType; 2964 break; 2965 2966 case N_SO: 2967 // source file name 2968 type = eSymbolTypeSourceFile; 2969 if (symbol_name == NULL) 2970 { 2971 add_nlist = false; 2972 if (N_SO_index != UINT32_MAX) 2973 { 2974 // Set the size of the N_SO to the terminating index of this N_SO 2975 // so that we can always skip the entire N_SO if we need to navigate 2976 // more quickly at the source level when parsing STABS 2977 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2978 symbol_ptr->SetByteSize(sym_idx); 2979 symbol_ptr->SetSizeIsSibling(true); 2980 } 2981 N_NSYM_indexes.clear(); 2982 N_INCL_indexes.clear(); 2983 N_BRAC_indexes.clear(); 2984 N_COMM_indexes.clear(); 2985 N_FUN_indexes.clear(); 2986 N_SO_index = UINT32_MAX; 2987 } 2988 else 2989 { 2990 // We use the current number of symbols in the symbol table in lieu of 2991 // using nlist_idx in case we ever start trimming entries out 2992 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2993 if (N_SO_has_full_path) 2994 { 2995 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2996 { 2997 // We have two consecutive N_SO entries where the first contains a directory 2998 // and the second contains a full path. 2999 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3000 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3001 add_nlist = false; 3002 } 3003 else 3004 { 3005 // This is the first entry in a N_SO that contains a directory or 3006 // a full path to the source file 3007 N_SO_index = sym_idx; 3008 } 3009 } 3010 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3011 { 3012 // This is usually the second N_SO entry that contains just the filename, 3013 // so here we combine it with the first one if we are minimizing the symbol table 3014 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3015 if (so_path && so_path[0]) 3016 { 3017 std::string full_so_path (so_path); 3018 const size_t double_slash_pos = full_so_path.find("//"); 3019 if (double_slash_pos != std::string::npos) 3020 { 3021 // The linker has been generating bad N_SO entries with doubled up paths 3022 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3023 // and the second is the directory for the source file so you end up with 3024 // a path that looks like "/tmp/src//tmp/src/" 3025 FileSpec so_dir(so_path, false); 3026 if (!so_dir.Exists()) 3027 { 3028 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3029 if (so_dir.Exists()) 3030 { 3031 // Trim off the incorrect path 3032 full_so_path.erase(0, double_slash_pos + 1); 3033 } 3034 } 3035 } 3036 if (*full_so_path.rbegin() != '/') 3037 full_so_path += '/'; 3038 full_so_path += symbol_name; 3039 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3040 add_nlist = false; 3041 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3042 } 3043 } 3044 else 3045 { 3046 // This could be a relative path to a N_SO 3047 N_SO_index = sym_idx; 3048 } 3049 } 3050 break; 3051 3052 case N_OSO: 3053 // object file name: name,,0,0,st_mtime 3054 type = eSymbolTypeObjectFile; 3055 break; 3056 3057 case N_LSYM: 3058 // local sym: name,,NO_SECT,type,offset 3059 type = eSymbolTypeLocal; 3060 break; 3061 3062 //---------------------------------------------------------------------- 3063 // INCL scopes 3064 //---------------------------------------------------------------------- 3065 case N_BINCL: 3066 // include file beginning: name,,NO_SECT,0,sum 3067 // We use the current number of symbols in the symbol table in lieu of 3068 // using nlist_idx in case we ever start trimming entries out 3069 N_INCL_indexes.push_back(sym_idx); 3070 type = eSymbolTypeScopeBegin; 3071 break; 3072 3073 case N_EINCL: 3074 // include file end: name,,NO_SECT,0,0 3075 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3076 // so that we can always skip the entire symbol if we need to navigate 3077 // more quickly at the source level when parsing STABS 3078 if ( !N_INCL_indexes.empty() ) 3079 { 3080 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3081 symbol_ptr->SetByteSize(sym_idx + 1); 3082 symbol_ptr->SetSizeIsSibling(true); 3083 N_INCL_indexes.pop_back(); 3084 } 3085 type = eSymbolTypeScopeEnd; 3086 break; 3087 3088 case N_SOL: 3089 // #included file name: name,,n_sect,0,address 3090 type = eSymbolTypeHeaderFile; 3091 3092 // We currently don't use the header files on darwin 3093 add_nlist = false; 3094 break; 3095 3096 case N_PARAMS: 3097 // compiler parameters: name,,NO_SECT,0,0 3098 type = eSymbolTypeCompiler; 3099 break; 3100 3101 case N_VERSION: 3102 // compiler version: name,,NO_SECT,0,0 3103 type = eSymbolTypeCompiler; 3104 break; 3105 3106 case N_OLEVEL: 3107 // compiler -O level: name,,NO_SECT,0,0 3108 type = eSymbolTypeCompiler; 3109 break; 3110 3111 case N_PSYM: 3112 // parameter: name,,NO_SECT,type,offset 3113 type = eSymbolTypeVariable; 3114 break; 3115 3116 case N_ENTRY: 3117 // alternate entry: name,,n_sect,linenumber,address 3118 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3119 type = eSymbolTypeLineEntry; 3120 break; 3121 3122 //---------------------------------------------------------------------- 3123 // Left and Right Braces 3124 //---------------------------------------------------------------------- 3125 case N_LBRAC: 3126 // left bracket: 0,,NO_SECT,nesting level,address 3127 // We use the current number of symbols in the symbol table in lieu of 3128 // using nlist_idx in case we ever start trimming entries out 3129 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3130 N_BRAC_indexes.push_back(sym_idx); 3131 type = eSymbolTypeScopeBegin; 3132 break; 3133 3134 case N_RBRAC: 3135 // right bracket: 0,,NO_SECT,nesting level,address 3136 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3137 // so that we can always skip the entire symbol if we need to navigate 3138 // more quickly at the source level when parsing STABS 3139 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3140 if ( !N_BRAC_indexes.empty() ) 3141 { 3142 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3143 symbol_ptr->SetByteSize(sym_idx + 1); 3144 symbol_ptr->SetSizeIsSibling(true); 3145 N_BRAC_indexes.pop_back(); 3146 } 3147 type = eSymbolTypeScopeEnd; 3148 break; 3149 3150 case N_EXCL: 3151 // deleted include file: name,,NO_SECT,0,sum 3152 type = eSymbolTypeHeaderFile; 3153 break; 3154 3155 //---------------------------------------------------------------------- 3156 // COMM scopes 3157 //---------------------------------------------------------------------- 3158 case N_BCOMM: 3159 // begin common: name,,NO_SECT,0,0 3160 // We use the current number of symbols in the symbol table in lieu of 3161 // using nlist_idx in case we ever start trimming entries out 3162 type = eSymbolTypeScopeBegin; 3163 N_COMM_indexes.push_back(sym_idx); 3164 break; 3165 3166 case N_ECOML: 3167 // end common (local name): 0,,n_sect,0,address 3168 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3169 // Fall through 3170 3171 case N_ECOMM: 3172 // end common: name,,n_sect,0,0 3173 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3174 // so that we can always skip the entire symbol if we need to navigate 3175 // more quickly at the source level when parsing STABS 3176 if ( !N_COMM_indexes.empty() ) 3177 { 3178 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3179 symbol_ptr->SetByteSize(sym_idx + 1); 3180 symbol_ptr->SetSizeIsSibling(true); 3181 N_COMM_indexes.pop_back(); 3182 } 3183 type = eSymbolTypeScopeEnd; 3184 break; 3185 3186 case N_LENG: 3187 // second stab entry with length information 3188 type = eSymbolTypeAdditional; 3189 break; 3190 3191 default: break; 3192 } 3193 } 3194 else 3195 { 3196 //uint8_t n_pext = N_PEXT & nlist.n_type; 3197 uint8_t n_type = N_TYPE & nlist.n_type; 3198 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3199 3200 switch (n_type) 3201 { 3202 case N_INDR: 3203 { 3204 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3205 if (reexport_name_cstr && reexport_name_cstr[0]) 3206 { 3207 type = eSymbolTypeReExported; 3208 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3209 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3210 set_value = false; 3211 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3212 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3213 } 3214 else 3215 type = eSymbolTypeUndefined; 3216 } 3217 break; 3218 3219 case N_UNDF: 3220 if (symbol_name && symbol_name[0]) 3221 { 3222 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3223 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3224 } 3225 // Fall through 3226 case N_PBUD: 3227 type = eSymbolTypeUndefined; 3228 break; 3229 3230 case N_ABS: 3231 type = eSymbolTypeAbsolute; 3232 break; 3233 3234 case N_SECT: 3235 { 3236 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3237 3238 if (symbol_section == NULL) 3239 { 3240 // TODO: warn about this? 3241 add_nlist = false; 3242 break; 3243 } 3244 3245 if (TEXT_eh_frame_sectID == nlist.n_sect) 3246 { 3247 type = eSymbolTypeException; 3248 } 3249 else 3250 { 3251 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3252 3253 switch (section_type) 3254 { 3255 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3256 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3257 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3258 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3259 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3260 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3261 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3262 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3263 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3264 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3265 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3266 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3267 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3268 default: 3269 switch (symbol_section->GetType()) 3270 { 3271 case lldb::eSectionTypeCode: 3272 type = eSymbolTypeCode; 3273 break; 3274 case eSectionTypeData: 3275 case eSectionTypeDataCString: // Inlined C string data 3276 case eSectionTypeDataCStringPointers: // Pointers to C string data 3277 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 3278 case eSectionTypeData4: 3279 case eSectionTypeData8: 3280 case eSectionTypeData16: 3281 type = eSymbolTypeData; 3282 break; 3283 default: 3284 break; 3285 } 3286 break; 3287 } 3288 3289 if (type == eSymbolTypeInvalid) 3290 { 3291 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3292 if (symbol_section->IsDescendant (text_section_sp.get())) 3293 { 3294 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3295 S_ATTR_SELF_MODIFYING_CODE | 3296 S_ATTR_SOME_INSTRUCTIONS)) 3297 type = eSymbolTypeData; 3298 else 3299 type = eSymbolTypeCode; 3300 } 3301 else if (symbol_section->IsDescendant(data_section_sp.get())) 3302 { 3303 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3304 { 3305 type = eSymbolTypeRuntime; 3306 3307 if (symbol_name && 3308 symbol_name[0] == '_' && 3309 symbol_name[1] == 'O' && 3310 symbol_name[2] == 'B') 3311 { 3312 llvm::StringRef symbol_name_ref(symbol_name); 3313 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3314 { 3315 symbol_name_non_abi_mangled = symbol_name + 1; 3316 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3317 type = eSymbolTypeObjCClass; 3318 demangled_is_synthesized = true; 3319 } 3320 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3321 { 3322 symbol_name_non_abi_mangled = symbol_name + 1; 3323 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3324 type = eSymbolTypeObjCMetaClass; 3325 demangled_is_synthesized = true; 3326 } 3327 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3328 { 3329 symbol_name_non_abi_mangled = symbol_name + 1; 3330 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3331 type = eSymbolTypeObjCIVar; 3332 demangled_is_synthesized = true; 3333 } 3334 } 3335 } 3336 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3337 { 3338 type = eSymbolTypeException; 3339 } 3340 else 3341 { 3342 type = eSymbolTypeData; 3343 } 3344 } 3345 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3346 { 3347 type = eSymbolTypeTrampoline; 3348 } 3349 else if (symbol_section->IsDescendant(objc_section_sp.get())) 3350 { 3351 type = eSymbolTypeRuntime; 3352 if (symbol_name && symbol_name[0] == '.') 3353 { 3354 llvm::StringRef symbol_name_ref(symbol_name); 3355 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3356 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3357 { 3358 symbol_name_non_abi_mangled = symbol_name; 3359 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3360 type = eSymbolTypeObjCClass; 3361 demangled_is_synthesized = true; 3362 } 3363 } 3364 } 3365 } 3366 } 3367 } 3368 break; 3369 } 3370 } 3371 3372 if (add_nlist) 3373 { 3374 uint64_t symbol_value = nlist.n_value; 3375 if (symbol_name_non_abi_mangled) 3376 { 3377 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3378 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3379 } 3380 else 3381 { 3382 bool symbol_name_is_mangled = false; 3383 3384 if (symbol_name && symbol_name[0] == '_') 3385 { 3386 symbol_name_is_mangled = symbol_name[1] == '_'; 3387 symbol_name++; // Skip the leading underscore 3388 } 3389 3390 if (symbol_name) 3391 { 3392 ConstString const_symbol_name(symbol_name); 3393 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3394 if (is_gsym && is_debug) 3395 { 3396 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3397 if (gsym_name) 3398 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3399 } 3400 } 3401 } 3402 if (symbol_section) 3403 { 3404 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3405 if (symbol_byte_size == 0 && function_starts_count > 0) 3406 { 3407 addr_t symbol_lookup_file_addr = nlist.n_value; 3408 // Do an exact address match for non-ARM addresses, else get the closest since 3409 // the symbol might be a thumb symbol which has an address with bit zero set 3410 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3411 if (is_arm && func_start_entry) 3412 { 3413 // Verify that the function start address is the symbol address (ARM) 3414 // or the symbol address + 1 (thumb) 3415 if (func_start_entry->addr != symbol_lookup_file_addr && 3416 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3417 { 3418 // Not the right entry, NULL it out... 3419 func_start_entry = NULL; 3420 } 3421 } 3422 if (func_start_entry) 3423 { 3424 func_start_entry->data = true; 3425 3426 addr_t symbol_file_addr = func_start_entry->addr; 3427 uint32_t symbol_flags = 0; 3428 if (is_arm) 3429 { 3430 if (symbol_file_addr & 1) 3431 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3432 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3433 } 3434 3435 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3436 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3437 if (next_func_start_entry) 3438 { 3439 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3440 // Be sure the clear the Thumb address bit when we calculate the size 3441 // from the current and next address 3442 if (is_arm) 3443 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3444 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3445 } 3446 else 3447 { 3448 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3449 } 3450 } 3451 } 3452 symbol_value -= section_file_addr; 3453 } 3454 3455 if (is_debug == false) 3456 { 3457 if (type == eSymbolTypeCode) 3458 { 3459 // See if we can find a N_FUN entry for any code symbols. 3460 // If we do find a match, and the name matches, then we 3461 // can merge the two into just the function symbol to avoid 3462 // duplicate entries in the symbol table 3463 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3464 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3465 if (range.first != range.second) 3466 { 3467 bool found_it = false; 3468 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3469 { 3470 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3471 { 3472 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3473 // We just need the flags from the linker symbol, so put these flags 3474 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3475 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3476 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3477 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3478 sym[pos->second].SetType (eSymbolTypeResolver); 3479 sym[sym_idx].Clear(); 3480 found_it = true; 3481 break; 3482 } 3483 } 3484 if (found_it) 3485 continue; 3486 } 3487 else 3488 { 3489 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3490 type = eSymbolTypeResolver; 3491 } 3492 } 3493 else if (type == eSymbolTypeData || 3494 type == eSymbolTypeObjCClass || 3495 type == eSymbolTypeObjCMetaClass || 3496 type == eSymbolTypeObjCIVar ) 3497 { 3498 // See if we can find a N_STSYM entry for any data symbols. 3499 // If we do find a match, and the name matches, then we 3500 // can merge the two into just the Static symbol to avoid 3501 // duplicate entries in the symbol table 3502 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3503 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3504 if (range.first != range.second) 3505 { 3506 bool found_it = false; 3507 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3508 { 3509 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3510 { 3511 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3512 // We just need the flags from the linker symbol, so put these flags 3513 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3514 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3515 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3516 sym[sym_idx].Clear(); 3517 found_it = true; 3518 break; 3519 } 3520 } 3521 if (found_it) 3522 continue; 3523 } 3524 else 3525 { 3526 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3527 if (gsym_name) 3528 { 3529 // Combine N_GSYM stab entries with the non stab symbol 3530 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 3531 if (pos != N_GSYM_name_to_sym_idx.end()) 3532 { 3533 const uint32_t GSYM_sym_idx = pos->second; 3534 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3535 // Copy the address, because often the N_GSYM address has an invalid address of zero 3536 // when the global is a common symbol 3537 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 3538 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 3539 // We just need the flags from the linker symbol, so put these flags 3540 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 3541 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3542 sym[sym_idx].Clear(); 3543 continue; 3544 } 3545 } 3546 } 3547 } 3548 } 3549 3550 sym[sym_idx].SetID (nlist_idx); 3551 sym[sym_idx].SetType (type); 3552 if (set_value) 3553 { 3554 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 3555 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 3556 } 3557 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3558 3559 if (symbol_byte_size > 0) 3560 sym[sym_idx].SetByteSize(symbol_byte_size); 3561 3562 if (demangled_is_synthesized) 3563 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3564 ++sym_idx; 3565 } 3566 else 3567 { 3568 sym[sym_idx].Clear(); 3569 } 3570 3571 } 3572 ///////////////////////////// 3573 } 3574 break; // No more entries to consider 3575 } 3576 } 3577 3578 for (const auto &pos :reexport_shlib_needs_fixup) 3579 { 3580 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3581 if (undef_pos != undefined_name_to_desc.end()) 3582 { 3583 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3584 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3585 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 3586 } 3587 } 3588 } 3589 } 3590 } 3591 } 3592 } 3593 3594 // Must reset this in case it was mutated above! 3595 nlist_data_offset = 0; 3596 #endif 3597 3598 if (nlist_data.GetByteSize() > 0) 3599 { 3600 3601 // If the sym array was not created while parsing the DSC unmapped 3602 // symbols, create it now. 3603 if (sym == NULL) 3604 { 3605 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3606 num_syms = symtab->GetNumSymbols(); 3607 } 3608 3609 if (unmapped_local_symbols_found) 3610 { 3611 assert(m_dysymtab.ilocalsym == 0); 3612 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3613 nlist_idx = m_dysymtab.nlocalsym; 3614 } 3615 else 3616 { 3617 nlist_idx = 0; 3618 } 3619 3620 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3621 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3622 UndefinedNameToDescMap undefined_name_to_desc; 3623 SymbolIndexToName reexport_shlib_needs_fixup; 3624 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3625 { 3626 struct nlist_64 nlist; 3627 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3628 break; 3629 3630 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3631 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3632 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3633 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3634 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3635 3636 SymbolType type = eSymbolTypeInvalid; 3637 const char *symbol_name = NULL; 3638 3639 if (have_strtab_data) 3640 { 3641 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3642 3643 if (symbol_name == NULL) 3644 { 3645 // No symbol should be NULL, even the symbols with no 3646 // string values should have an offset zero which points 3647 // to an empty C-string 3648 Host::SystemLog (Host::eSystemLogError, 3649 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3650 nlist_idx, 3651 nlist.n_strx, 3652 module_sp->GetFileSpec().GetPath().c_str()); 3653 continue; 3654 } 3655 if (symbol_name[0] == '\0') 3656 symbol_name = NULL; 3657 } 3658 else 3659 { 3660 const addr_t str_addr = strtab_addr + nlist.n_strx; 3661 Error str_error; 3662 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3663 symbol_name = memory_symbol_name.c_str(); 3664 } 3665 const char *symbol_name_non_abi_mangled = NULL; 3666 3667 SectionSP symbol_section; 3668 lldb::addr_t symbol_byte_size = 0; 3669 bool add_nlist = true; 3670 bool is_gsym = false; 3671 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3672 bool demangled_is_synthesized = false; 3673 bool set_value = true; 3674 assert (sym_idx < num_syms); 3675 3676 sym[sym_idx].SetDebug (is_debug); 3677 3678 if (is_debug) 3679 { 3680 switch (nlist.n_type) 3681 { 3682 case N_GSYM: 3683 // global symbol: name,,NO_SECT,type,0 3684 // Sometimes the N_GSYM value contains the address. 3685 3686 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3687 // have the same address, but we want to ensure that we always find only the real symbol, 3688 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3689 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3690 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3691 // same address. 3692 is_gsym = true; 3693 sym[sym_idx].SetExternal(true); 3694 3695 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 3696 { 3697 llvm::StringRef symbol_name_ref(symbol_name); 3698 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3699 { 3700 symbol_name_non_abi_mangled = symbol_name + 1; 3701 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3702 type = eSymbolTypeObjCClass; 3703 demangled_is_synthesized = true; 3704 3705 } 3706 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3707 { 3708 symbol_name_non_abi_mangled = symbol_name + 1; 3709 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3710 type = eSymbolTypeObjCMetaClass; 3711 demangled_is_synthesized = true; 3712 } 3713 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3714 { 3715 symbol_name_non_abi_mangled = symbol_name + 1; 3716 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3717 type = eSymbolTypeObjCIVar; 3718 demangled_is_synthesized = true; 3719 } 3720 } 3721 else 3722 { 3723 if (nlist.n_value != 0) 3724 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3725 type = eSymbolTypeData; 3726 } 3727 break; 3728 3729 case N_FNAME: 3730 // procedure name (f77 kludge): name,,NO_SECT,0,0 3731 type = eSymbolTypeCompiler; 3732 break; 3733 3734 case N_FUN: 3735 // procedure: name,,n_sect,linenumber,address 3736 if (symbol_name) 3737 { 3738 type = eSymbolTypeCode; 3739 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3740 3741 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3742 // We use the current number of symbols in the symbol table in lieu of 3743 // using nlist_idx in case we ever start trimming entries out 3744 N_FUN_indexes.push_back(sym_idx); 3745 } 3746 else 3747 { 3748 type = eSymbolTypeCompiler; 3749 3750 if ( !N_FUN_indexes.empty() ) 3751 { 3752 // Copy the size of the function into the original STAB entry so we don't have 3753 // to hunt for it later 3754 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3755 N_FUN_indexes.pop_back(); 3756 // We don't really need the end function STAB as it contains the size which 3757 // we already placed with the original symbol, so don't add it if we want a 3758 // minimal symbol table 3759 add_nlist = false; 3760 } 3761 } 3762 break; 3763 3764 case N_STSYM: 3765 // static symbol: name,,n_sect,type,address 3766 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3767 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3768 type = eSymbolTypeData; 3769 break; 3770 3771 case N_LCSYM: 3772 // .lcomm symbol: name,,n_sect,type,address 3773 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3774 type = eSymbolTypeCommonBlock; 3775 break; 3776 3777 case N_BNSYM: 3778 // We use the current number of symbols in the symbol table in lieu of 3779 // using nlist_idx in case we ever start trimming entries out 3780 // Skip these if we want minimal symbol tables 3781 add_nlist = false; 3782 break; 3783 3784 case N_ENSYM: 3785 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3786 // so that we can always skip the entire symbol if we need to navigate 3787 // more quickly at the source level when parsing STABS 3788 // Skip these if we want minimal symbol tables 3789 add_nlist = false; 3790 break; 3791 3792 3793 case N_OPT: 3794 // emitted with gcc2_compiled and in gcc source 3795 type = eSymbolTypeCompiler; 3796 break; 3797 3798 case N_RSYM: 3799 // register sym: name,,NO_SECT,type,register 3800 type = eSymbolTypeVariable; 3801 break; 3802 3803 case N_SLINE: 3804 // src line: 0,,n_sect,linenumber,address 3805 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3806 type = eSymbolTypeLineEntry; 3807 break; 3808 3809 case N_SSYM: 3810 // structure elt: name,,NO_SECT,type,struct_offset 3811 type = eSymbolTypeVariableType; 3812 break; 3813 3814 case N_SO: 3815 // source file name 3816 type = eSymbolTypeSourceFile; 3817 if (symbol_name == NULL) 3818 { 3819 add_nlist = false; 3820 if (N_SO_index != UINT32_MAX) 3821 { 3822 // Set the size of the N_SO to the terminating index of this N_SO 3823 // so that we can always skip the entire N_SO if we need to navigate 3824 // more quickly at the source level when parsing STABS 3825 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3826 symbol_ptr->SetByteSize(sym_idx); 3827 symbol_ptr->SetSizeIsSibling(true); 3828 } 3829 N_NSYM_indexes.clear(); 3830 N_INCL_indexes.clear(); 3831 N_BRAC_indexes.clear(); 3832 N_COMM_indexes.clear(); 3833 N_FUN_indexes.clear(); 3834 N_SO_index = UINT32_MAX; 3835 } 3836 else 3837 { 3838 // We use the current number of symbols in the symbol table in lieu of 3839 // using nlist_idx in case we ever start trimming entries out 3840 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3841 if (N_SO_has_full_path) 3842 { 3843 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3844 { 3845 // We have two consecutive N_SO entries where the first contains a directory 3846 // and the second contains a full path. 3847 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3848 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3849 add_nlist = false; 3850 } 3851 else 3852 { 3853 // This is the first entry in a N_SO that contains a directory or 3854 // a full path to the source file 3855 N_SO_index = sym_idx; 3856 } 3857 } 3858 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3859 { 3860 // This is usually the second N_SO entry that contains just the filename, 3861 // so here we combine it with the first one if we are minimizing the symbol table 3862 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName(lldb::eLanguageTypeUnknown).AsCString(); 3863 if (so_path && so_path[0]) 3864 { 3865 std::string full_so_path (so_path); 3866 const size_t double_slash_pos = full_so_path.find("//"); 3867 if (double_slash_pos != std::string::npos) 3868 { 3869 // The linker has been generating bad N_SO entries with doubled up paths 3870 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3871 // and the second is the directory for the source file so you end up with 3872 // a path that looks like "/tmp/src//tmp/src/" 3873 FileSpec so_dir(so_path, false); 3874 if (!so_dir.Exists()) 3875 { 3876 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3877 if (so_dir.Exists()) 3878 { 3879 // Trim off the incorrect path 3880 full_so_path.erase(0, double_slash_pos + 1); 3881 } 3882 } 3883 } 3884 if (*full_so_path.rbegin() != '/') 3885 full_so_path += '/'; 3886 full_so_path += symbol_name; 3887 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3888 add_nlist = false; 3889 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3890 } 3891 } 3892 else 3893 { 3894 // This could be a relative path to a N_SO 3895 N_SO_index = sym_idx; 3896 } 3897 } 3898 3899 break; 3900 3901 case N_OSO: 3902 // object file name: name,,0,0,st_mtime 3903 type = eSymbolTypeObjectFile; 3904 break; 3905 3906 case N_LSYM: 3907 // local sym: name,,NO_SECT,type,offset 3908 type = eSymbolTypeLocal; 3909 break; 3910 3911 //---------------------------------------------------------------------- 3912 // INCL scopes 3913 //---------------------------------------------------------------------- 3914 case N_BINCL: 3915 // include file beginning: name,,NO_SECT,0,sum 3916 // We use the current number of symbols in the symbol table in lieu of 3917 // using nlist_idx in case we ever start trimming entries out 3918 N_INCL_indexes.push_back(sym_idx); 3919 type = eSymbolTypeScopeBegin; 3920 break; 3921 3922 case N_EINCL: 3923 // include file end: name,,NO_SECT,0,0 3924 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3925 // so that we can always skip the entire symbol if we need to navigate 3926 // more quickly at the source level when parsing STABS 3927 if ( !N_INCL_indexes.empty() ) 3928 { 3929 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3930 symbol_ptr->SetByteSize(sym_idx + 1); 3931 symbol_ptr->SetSizeIsSibling(true); 3932 N_INCL_indexes.pop_back(); 3933 } 3934 type = eSymbolTypeScopeEnd; 3935 break; 3936 3937 case N_SOL: 3938 // #included file name: name,,n_sect,0,address 3939 type = eSymbolTypeHeaderFile; 3940 3941 // We currently don't use the header files on darwin 3942 add_nlist = false; 3943 break; 3944 3945 case N_PARAMS: 3946 // compiler parameters: name,,NO_SECT,0,0 3947 type = eSymbolTypeCompiler; 3948 break; 3949 3950 case N_VERSION: 3951 // compiler version: name,,NO_SECT,0,0 3952 type = eSymbolTypeCompiler; 3953 break; 3954 3955 case N_OLEVEL: 3956 // compiler -O level: name,,NO_SECT,0,0 3957 type = eSymbolTypeCompiler; 3958 break; 3959 3960 case N_PSYM: 3961 // parameter: name,,NO_SECT,type,offset 3962 type = eSymbolTypeVariable; 3963 break; 3964 3965 case N_ENTRY: 3966 // alternate entry: name,,n_sect,linenumber,address 3967 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3968 type = eSymbolTypeLineEntry; 3969 break; 3970 3971 //---------------------------------------------------------------------- 3972 // Left and Right Braces 3973 //---------------------------------------------------------------------- 3974 case N_LBRAC: 3975 // left bracket: 0,,NO_SECT,nesting level,address 3976 // We use the current number of symbols in the symbol table in lieu of 3977 // using nlist_idx in case we ever start trimming entries out 3978 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3979 N_BRAC_indexes.push_back(sym_idx); 3980 type = eSymbolTypeScopeBegin; 3981 break; 3982 3983 case N_RBRAC: 3984 // right bracket: 0,,NO_SECT,nesting level,address 3985 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3986 // so that we can always skip the entire symbol if we need to navigate 3987 // more quickly at the source level when parsing STABS 3988 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3989 if ( !N_BRAC_indexes.empty() ) 3990 { 3991 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3992 symbol_ptr->SetByteSize(sym_idx + 1); 3993 symbol_ptr->SetSizeIsSibling(true); 3994 N_BRAC_indexes.pop_back(); 3995 } 3996 type = eSymbolTypeScopeEnd; 3997 break; 3998 3999 case N_EXCL: 4000 // deleted include file: name,,NO_SECT,0,sum 4001 type = eSymbolTypeHeaderFile; 4002 break; 4003 4004 //---------------------------------------------------------------------- 4005 // COMM scopes 4006 //---------------------------------------------------------------------- 4007 case N_BCOMM: 4008 // begin common: name,,NO_SECT,0,0 4009 // We use the current number of symbols in the symbol table in lieu of 4010 // using nlist_idx in case we ever start trimming entries out 4011 type = eSymbolTypeScopeBegin; 4012 N_COMM_indexes.push_back(sym_idx); 4013 break; 4014 4015 case N_ECOML: 4016 // end common (local name): 0,,n_sect,0,address 4017 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4018 // Fall through 4019 4020 case N_ECOMM: 4021 // end common: name,,n_sect,0,0 4022 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 4023 // so that we can always skip the entire symbol if we need to navigate 4024 // more quickly at the source level when parsing STABS 4025 if ( !N_COMM_indexes.empty() ) 4026 { 4027 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4028 symbol_ptr->SetByteSize(sym_idx + 1); 4029 symbol_ptr->SetSizeIsSibling(true); 4030 N_COMM_indexes.pop_back(); 4031 } 4032 type = eSymbolTypeScopeEnd; 4033 break; 4034 4035 case N_LENG: 4036 // second stab entry with length information 4037 type = eSymbolTypeAdditional; 4038 break; 4039 4040 default: break; 4041 } 4042 } 4043 else 4044 { 4045 //uint8_t n_pext = N_PEXT & nlist.n_type; 4046 uint8_t n_type = N_TYPE & nlist.n_type; 4047 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4048 4049 switch (n_type) 4050 { 4051 case N_INDR: 4052 { 4053 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4054 if (reexport_name_cstr && reexport_name_cstr[0]) 4055 { 4056 type = eSymbolTypeReExported; 4057 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4058 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4059 set_value = false; 4060 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4061 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4062 } 4063 else 4064 type = eSymbolTypeUndefined; 4065 } 4066 break; 4067 4068 case N_UNDF: 4069 if (symbol_name && symbol_name[0]) 4070 { 4071 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 4072 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4073 } 4074 // Fall through 4075 case N_PBUD: 4076 type = eSymbolTypeUndefined; 4077 break; 4078 4079 case N_ABS: 4080 type = eSymbolTypeAbsolute; 4081 break; 4082 4083 case N_SECT: 4084 { 4085 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4086 4087 if (!symbol_section) 4088 { 4089 // TODO: warn about this? 4090 add_nlist = false; 4091 break; 4092 } 4093 4094 if (TEXT_eh_frame_sectID == nlist.n_sect) 4095 { 4096 type = eSymbolTypeException; 4097 } 4098 else 4099 { 4100 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4101 4102 switch (section_type) 4103 { 4104 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 4105 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 4106 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 4107 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 4108 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 4109 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 4110 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 4111 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 4112 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 4113 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 4114 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 4115 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 4116 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 4117 default: 4118 switch (symbol_section->GetType()) 4119 { 4120 case lldb::eSectionTypeCode: 4121 type = eSymbolTypeCode; 4122 break; 4123 case eSectionTypeData: 4124 case eSectionTypeDataCString: // Inlined C string data 4125 case eSectionTypeDataCStringPointers: // Pointers to C string data 4126 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 4127 case eSectionTypeData4: 4128 case eSectionTypeData8: 4129 case eSectionTypeData16: 4130 type = eSymbolTypeData; 4131 break; 4132 default: 4133 break; 4134 } 4135 break; 4136 } 4137 4138 if (type == eSymbolTypeInvalid) 4139 { 4140 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 4141 if (symbol_section->IsDescendant (text_section_sp.get())) 4142 { 4143 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4144 S_ATTR_SELF_MODIFYING_CODE | 4145 S_ATTR_SOME_INSTRUCTIONS)) 4146 type = eSymbolTypeData; 4147 else 4148 type = eSymbolTypeCode; 4149 } 4150 else 4151 if (symbol_section->IsDescendant(data_section_sp.get())) 4152 { 4153 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 4154 { 4155 type = eSymbolTypeRuntime; 4156 4157 if (symbol_name && 4158 symbol_name[0] == '_' && 4159 symbol_name[1] == 'O' && 4160 symbol_name[2] == 'B') 4161 { 4162 llvm::StringRef symbol_name_ref(symbol_name); 4163 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 4164 { 4165 symbol_name_non_abi_mangled = symbol_name + 1; 4166 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 4167 type = eSymbolTypeObjCClass; 4168 demangled_is_synthesized = true; 4169 } 4170 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 4171 { 4172 symbol_name_non_abi_mangled = symbol_name + 1; 4173 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 4174 type = eSymbolTypeObjCMetaClass; 4175 demangled_is_synthesized = true; 4176 } 4177 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 4178 { 4179 symbol_name_non_abi_mangled = symbol_name + 1; 4180 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 4181 type = eSymbolTypeObjCIVar; 4182 demangled_is_synthesized = true; 4183 } 4184 } 4185 } 4186 else 4187 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 4188 { 4189 type = eSymbolTypeException; 4190 } 4191 else 4192 { 4193 type = eSymbolTypeData; 4194 } 4195 } 4196 else 4197 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 4198 { 4199 type = eSymbolTypeTrampoline; 4200 } 4201 else 4202 if (symbol_section->IsDescendant(objc_section_sp.get())) 4203 { 4204 type = eSymbolTypeRuntime; 4205 if (symbol_name && symbol_name[0] == '.') 4206 { 4207 llvm::StringRef symbol_name_ref(symbol_name); 4208 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 4209 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 4210 { 4211 symbol_name_non_abi_mangled = symbol_name; 4212 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4213 type = eSymbolTypeObjCClass; 4214 demangled_is_synthesized = true; 4215 } 4216 } 4217 } 4218 } 4219 } 4220 } 4221 break; 4222 } 4223 } 4224 4225 if (add_nlist) 4226 { 4227 uint64_t symbol_value = nlist.n_value; 4228 4229 if (symbol_name_non_abi_mangled) 4230 { 4231 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 4232 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 4233 } 4234 else 4235 { 4236 bool symbol_name_is_mangled = false; 4237 4238 if (symbol_name && symbol_name[0] == '_') 4239 { 4240 symbol_name_is_mangled = symbol_name[1] == '_'; 4241 symbol_name++; // Skip the leading underscore 4242 } 4243 4244 if (symbol_name) 4245 { 4246 ConstString const_symbol_name(symbol_name); 4247 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 4248 } 4249 } 4250 4251 if (is_gsym) 4252 { 4253 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4254 if (gsym_name) 4255 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4256 } 4257 4258 if (symbol_section) 4259 { 4260 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4261 if (symbol_byte_size == 0 && function_starts_count > 0) 4262 { 4263 addr_t symbol_lookup_file_addr = nlist.n_value; 4264 // Do an exact address match for non-ARM addresses, else get the closest since 4265 // the symbol might be a thumb symbol which has an address with bit zero set 4266 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 4267 if (is_arm && func_start_entry) 4268 { 4269 // Verify that the function start address is the symbol address (ARM) 4270 // or the symbol address + 1 (thumb) 4271 if (func_start_entry->addr != symbol_lookup_file_addr && 4272 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 4273 { 4274 // Not the right entry, NULL it out... 4275 func_start_entry = NULL; 4276 } 4277 } 4278 if (func_start_entry) 4279 { 4280 func_start_entry->data = true; 4281 4282 addr_t symbol_file_addr = func_start_entry->addr; 4283 if (is_arm) 4284 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4285 4286 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4287 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4288 if (next_func_start_entry) 4289 { 4290 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4291 // Be sure the clear the Thumb address bit when we calculate the size 4292 // from the current and next address 4293 if (is_arm) 4294 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4295 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4296 } 4297 else 4298 { 4299 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4300 } 4301 } 4302 } 4303 symbol_value -= section_file_addr; 4304 } 4305 4306 if (is_debug == false) 4307 { 4308 if (type == eSymbolTypeCode) 4309 { 4310 // See if we can find a N_FUN entry for any code symbols. 4311 // If we do find a match, and the name matches, then we 4312 // can merge the two into just the function symbol to avoid 4313 // duplicate entries in the symbol table 4314 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4315 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4316 if (range.first != range.second) 4317 { 4318 bool found_it = false; 4319 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4320 { 4321 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4322 { 4323 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4324 // We just need the flags from the linker symbol, so put these flags 4325 // into the N_FUN flags to avoid duplicate symbols in the symbol table 4326 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4327 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4328 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4329 sym[pos->second].SetType (eSymbolTypeResolver); 4330 sym[sym_idx].Clear(); 4331 found_it = true; 4332 break; 4333 } 4334 } 4335 if (found_it) 4336 continue; 4337 } 4338 else 4339 { 4340 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4341 type = eSymbolTypeResolver; 4342 } 4343 } 4344 else if (type == eSymbolTypeData || 4345 type == eSymbolTypeObjCClass || 4346 type == eSymbolTypeObjCMetaClass || 4347 type == eSymbolTypeObjCIVar ) 4348 { 4349 // See if we can find a N_STSYM entry for any data symbols. 4350 // If we do find a match, and the name matches, then we 4351 // can merge the two into just the Static symbol to avoid 4352 // duplicate entries in the symbol table 4353 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4354 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4355 if (range.first != range.second) 4356 { 4357 bool found_it = false; 4358 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4359 { 4360 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4361 { 4362 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4363 // We just need the flags from the linker symbol, so put these flags 4364 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4365 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4366 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4367 sym[sym_idx].Clear(); 4368 found_it = true; 4369 break; 4370 } 4371 } 4372 if (found_it) 4373 continue; 4374 } 4375 else 4376 { 4377 // Combine N_GSYM stab entries with the non stab symbol 4378 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4379 if (gsym_name) 4380 { 4381 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 4382 if (pos != N_GSYM_name_to_sym_idx.end()) 4383 { 4384 const uint32_t GSYM_sym_idx = pos->second; 4385 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4386 // Copy the address, because often the N_GSYM address has an invalid address of zero 4387 // when the global is a common symbol 4388 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 4389 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 4390 // We just need the flags from the linker symbol, so put these flags 4391 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 4392 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4393 sym[sym_idx].Clear(); 4394 continue; 4395 } 4396 } 4397 } 4398 } 4399 } 4400 4401 sym[sym_idx].SetID (nlist_idx); 4402 sym[sym_idx].SetType (type); 4403 if (set_value) 4404 { 4405 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 4406 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 4407 } 4408 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4409 4410 if (symbol_byte_size > 0) 4411 sym[sym_idx].SetByteSize(symbol_byte_size); 4412 4413 if (demangled_is_synthesized) 4414 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4415 4416 ++sym_idx; 4417 } 4418 else 4419 { 4420 sym[sym_idx].Clear(); 4421 } 4422 } 4423 4424 for (const auto &pos :reexport_shlib_needs_fixup) 4425 { 4426 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4427 if (undef_pos != undefined_name_to_desc.end()) 4428 { 4429 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4430 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4431 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 4432 } 4433 } 4434 4435 } 4436 4437 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4438 4439 if (function_starts_count > 0) 4440 { 4441 char synthetic_function_symbol[PATH_MAX]; 4442 uint32_t num_synthetic_function_symbols = 0; 4443 for (i=0; i<function_starts_count; ++i) 4444 { 4445 if (function_starts.GetEntryRef (i).data == false) 4446 ++num_synthetic_function_symbols; 4447 } 4448 4449 if (num_synthetic_function_symbols > 0) 4450 { 4451 if (num_syms < sym_idx + num_synthetic_function_symbols) 4452 { 4453 num_syms = sym_idx + num_synthetic_function_symbols; 4454 sym = symtab->Resize (num_syms); 4455 } 4456 uint32_t synthetic_function_symbol_idx = 0; 4457 for (i=0; i<function_starts_count; ++i) 4458 { 4459 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 4460 if (func_start_entry->data == false) 4461 { 4462 addr_t symbol_file_addr = func_start_entry->addr; 4463 uint32_t symbol_flags = 0; 4464 if (is_arm) 4465 { 4466 if (symbol_file_addr & 1) 4467 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4468 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4469 } 4470 Address symbol_addr; 4471 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 4472 { 4473 SectionSP symbol_section (symbol_addr.GetSection()); 4474 uint32_t symbol_byte_size = 0; 4475 if (symbol_section) 4476 { 4477 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4478 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4479 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4480 if (next_func_start_entry) 4481 { 4482 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4483 if (is_arm) 4484 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4485 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4486 } 4487 else 4488 { 4489 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4490 } 4491 snprintf (synthetic_function_symbol, 4492 sizeof(synthetic_function_symbol), 4493 "___lldb_unnamed_function%u$$%s", 4494 ++synthetic_function_symbol_idx, 4495 module_sp->GetFileSpec().GetFilename().GetCString()); 4496 sym[sym_idx].SetID (synthetic_sym_id++); 4497 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 4498 sym[sym_idx].SetType (eSymbolTypeCode); 4499 sym[sym_idx].SetIsSynthetic (true); 4500 sym[sym_idx].GetAddressRef() = symbol_addr; 4501 if (symbol_flags) 4502 sym[sym_idx].SetFlags (symbol_flags); 4503 if (symbol_byte_size) 4504 sym[sym_idx].SetByteSize (symbol_byte_size); 4505 ++sym_idx; 4506 } 4507 } 4508 } 4509 } 4510 } 4511 } 4512 4513 // Trim our symbols down to just what we ended up with after 4514 // removing any symbols. 4515 if (sym_idx < num_syms) 4516 { 4517 num_syms = sym_idx; 4518 sym = symtab->Resize (num_syms); 4519 } 4520 4521 // Now synthesize indirect symbols 4522 if (m_dysymtab.nindirectsyms != 0) 4523 { 4524 if (indirect_symbol_index_data.GetByteSize()) 4525 { 4526 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 4527 4528 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 4529 { 4530 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 4531 { 4532 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4533 if (symbol_stub_byte_size == 0) 4534 continue; 4535 4536 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4537 4538 if (num_symbol_stubs == 0) 4539 continue; 4540 4541 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 4542 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 4543 { 4544 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 4545 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 4546 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4547 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 4548 { 4549 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 4550 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4551 continue; 4552 4553 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 4554 Symbol *stub_symbol = NULL; 4555 if (index_pos != end_index_pos) 4556 { 4557 // We have a remapping from the original nlist index to 4558 // a current symbol index, so just look this up by index 4559 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 4560 } 4561 else 4562 { 4563 // We need to lookup a symbol using the original nlist 4564 // symbol index since this index is coming from the 4565 // S_SYMBOL_STUBS 4566 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 4567 } 4568 4569 if (stub_symbol) 4570 { 4571 Address so_addr(symbol_stub_addr, section_list); 4572 4573 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4574 { 4575 // Change the external symbol into a trampoline that makes sense 4576 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4577 // can re-use them so we don't have to make up a synthetic symbol 4578 // for no good reason. 4579 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4580 stub_symbol->SetType (eSymbolTypeTrampoline); 4581 else 4582 stub_symbol->SetType (eSymbolTypeResolver); 4583 stub_symbol->SetExternal (false); 4584 stub_symbol->GetAddressRef() = so_addr; 4585 stub_symbol->SetByteSize (symbol_stub_byte_size); 4586 } 4587 else 4588 { 4589 // Make a synthetic symbol to describe the trampoline stub 4590 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4591 if (sym_idx >= num_syms) 4592 { 4593 sym = symtab->Resize (++num_syms); 4594 stub_symbol = NULL; // this pointer no longer valid 4595 } 4596 sym[sym_idx].SetID (synthetic_sym_id++); 4597 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4598 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4599 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4600 else 4601 sym[sym_idx].SetType (eSymbolTypeResolver); 4602 sym[sym_idx].SetIsSynthetic (true); 4603 sym[sym_idx].GetAddressRef() = so_addr; 4604 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4605 ++sym_idx; 4606 } 4607 } 4608 else 4609 { 4610 if (log) 4611 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4612 } 4613 } 4614 } 4615 } 4616 } 4617 } 4618 } 4619 4620 4621 if (!trie_entries.empty()) 4622 { 4623 for (const auto &e : trie_entries) 4624 { 4625 if (e.entry.import_name) 4626 { 4627 // Only add indirect symbols from the Trie entries if we 4628 // didn't have a N_INDR nlist entry for this already 4629 if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) 4630 { 4631 // Make a synthetic symbol to describe re-exported symbol. 4632 if (sym_idx >= num_syms) 4633 sym = symtab->Resize (++num_syms); 4634 sym[sym_idx].SetID (synthetic_sym_id++); 4635 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4636 sym[sym_idx].SetType (eSymbolTypeReExported); 4637 sym[sym_idx].SetIsSynthetic (true); 4638 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4639 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4640 { 4641 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4642 } 4643 ++sym_idx; 4644 } 4645 } 4646 } 4647 } 4648 4649 4650 4651 // StreamFile s(stdout, false); 4652 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4653 // symtab->Dump(&s, NULL, eSortOrderNone); 4654 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4655 symtab->CalculateSymbolSizes(); 4656 4657 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4658 // symtab->Dump(&s, NULL, eSortOrderNone); 4659 4660 return symtab->GetNumSymbols(); 4661 } 4662 return 0; 4663 } 4664 4665 4666 void 4667 ObjectFileMachO::Dump (Stream *s) 4668 { 4669 ModuleSP module_sp(GetModule()); 4670 if (module_sp) 4671 { 4672 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4673 s->Printf("%p: ", static_cast<void*>(this)); 4674 s->Indent(); 4675 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4676 s->PutCString("ObjectFileMachO64"); 4677 else 4678 s->PutCString("ObjectFileMachO32"); 4679 4680 ArchSpec header_arch; 4681 GetArchitecture(header_arch); 4682 4683 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4684 4685 SectionList *sections = GetSectionList(); 4686 if (sections) 4687 sections->Dump(s, NULL, true, UINT32_MAX); 4688 4689 if (m_symtab_ap.get()) 4690 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4691 } 4692 } 4693 4694 bool 4695 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4696 const lldb_private::DataExtractor &data, 4697 lldb::offset_t lc_offset, 4698 lldb_private::UUID& uuid) 4699 { 4700 uint32_t i; 4701 struct uuid_command load_cmd; 4702 4703 lldb::offset_t offset = lc_offset; 4704 for (i=0; i<header.ncmds; ++i) 4705 { 4706 const lldb::offset_t cmd_offset = offset; 4707 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4708 break; 4709 4710 if (load_cmd.cmd == LC_UUID) 4711 { 4712 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4713 4714 if (uuid_bytes) 4715 { 4716 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4717 // We pretend these object files have no UUID to prevent crashing. 4718 4719 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4720 0x3b, 0xa8, 4721 0x4b, 0x16, 4722 0xb6, 0xa4, 4723 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4724 4725 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4726 return false; 4727 4728 uuid.SetBytes (uuid_bytes); 4729 return true; 4730 } 4731 return false; 4732 } 4733 offset = cmd_offset + load_cmd.cmdsize; 4734 } 4735 return false; 4736 } 4737 4738 4739 bool 4740 ObjectFileMachO::GetArchitecture (const llvm::MachO::mach_header &header, 4741 const lldb_private::DataExtractor &data, 4742 lldb::offset_t lc_offset, 4743 ArchSpec &arch) 4744 { 4745 arch.SetArchitecture (eArchTypeMachO, header.cputype, header.cpusubtype); 4746 4747 if (arch.IsValid()) 4748 { 4749 llvm::Triple &triple = arch.GetTriple(); 4750 if (header.filetype == MH_PRELOAD) 4751 { 4752 // Set OS to "unknown" - this is a standalone binary with no dyld et al 4753 triple.setOS(llvm::Triple::UnknownOS); 4754 return true; 4755 } 4756 else 4757 { 4758 struct load_command load_cmd; 4759 4760 lldb::offset_t offset = lc_offset; 4761 for (uint32_t i=0; i<header.ncmds; ++i) 4762 { 4763 const lldb::offset_t cmd_offset = offset; 4764 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4765 break; 4766 4767 switch (load_cmd.cmd) 4768 { 4769 case LC_VERSION_MIN_IPHONEOS: 4770 triple.setOS (llvm::Triple::IOS); 4771 return true; 4772 4773 case LC_VERSION_MIN_MACOSX: 4774 triple.setOS (llvm::Triple::MacOSX); 4775 return true; 4776 4777 default: 4778 break; 4779 } 4780 4781 offset = cmd_offset + load_cmd.cmdsize; 4782 } 4783 4784 // Only set the OS to iOS for ARM, we don't want to set it for x86 and x86_64. 4785 // We do this because we now have MacOSX or iOS as the OS value for x86 and 4786 // x86_64 for normal desktop (MacOSX) and simulator (iOS) binaries. And if 4787 // we compare a "x86_64-apple-ios" to a "x86_64-apple-" triple, it will say 4788 // it is compatible (because the OS is unspecified in the second one and will 4789 // match anything in the first 4790 if (header.cputype == CPU_TYPE_ARM || header.cputype == CPU_TYPE_ARM64) 4791 triple.setOS (llvm::Triple::IOS); 4792 } 4793 } 4794 return arch.IsValid(); 4795 } 4796 4797 bool 4798 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4799 { 4800 ModuleSP module_sp(GetModule()); 4801 if (module_sp) 4802 { 4803 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4804 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4805 return GetUUID (m_header, m_data, offset, *uuid); 4806 } 4807 return false; 4808 } 4809 4810 4811 uint32_t 4812 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4813 { 4814 uint32_t count = 0; 4815 ModuleSP module_sp(GetModule()); 4816 if (module_sp) 4817 { 4818 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4819 struct load_command load_cmd; 4820 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4821 std::vector<std::string> rpath_paths; 4822 std::vector<std::string> rpath_relative_paths; 4823 const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system 4824 uint32_t i; 4825 for (i=0; i<m_header.ncmds; ++i) 4826 { 4827 const uint32_t cmd_offset = offset; 4828 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4829 break; 4830 4831 switch (load_cmd.cmd) 4832 { 4833 case LC_RPATH: 4834 case LC_LOAD_DYLIB: 4835 case LC_LOAD_WEAK_DYLIB: 4836 case LC_REEXPORT_DYLIB: 4837 case LC_LOAD_DYLINKER: 4838 case LC_LOADFVMLIB: 4839 case LC_LOAD_UPWARD_DYLIB: 4840 { 4841 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4842 const char *path = m_data.PeekCStr(name_offset); 4843 if (path) 4844 { 4845 if (load_cmd.cmd == LC_RPATH) 4846 rpath_paths.push_back(path); 4847 else 4848 { 4849 if (path[0] == '@') 4850 { 4851 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 4852 rpath_relative_paths.push_back(path + strlen("@rpath")); 4853 } 4854 else 4855 { 4856 FileSpec file_spec(path, resolve_path); 4857 if (files.AppendIfUnique(file_spec)) 4858 count++; 4859 } 4860 } 4861 } 4862 } 4863 break; 4864 4865 default: 4866 break; 4867 } 4868 offset = cmd_offset + load_cmd.cmdsize; 4869 } 4870 4871 if (!rpath_paths.empty()) 4872 { 4873 // Fixup all LC_RPATH values to be absolute paths 4874 FileSpec this_file_spec(m_file); 4875 this_file_spec.ResolvePath(); 4876 std::string loader_path("@loader_path"); 4877 std::string executable_path("@executable_path"); 4878 for (auto &rpath : rpath_paths) 4879 { 4880 if (rpath.find(loader_path) == 0) 4881 { 4882 rpath.erase(0, loader_path.size()); 4883 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4884 } 4885 else if (rpath.find(executable_path) == 0) 4886 { 4887 rpath.erase(0, executable_path.size()); 4888 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4889 } 4890 } 4891 4892 for (const auto &rpath_relative_path : rpath_relative_paths) 4893 { 4894 for (const auto &rpath : rpath_paths) 4895 { 4896 std::string path = rpath; 4897 path += rpath_relative_path; 4898 // It is OK to resolve this path because we must find a file on 4899 // disk for us to accept it anyway if it is rpath relative. 4900 FileSpec file_spec(path, true); 4901 // Remove any redundant parts of the path (like "../foo") since 4902 // LC_RPATH values often contain "..". 4903 file_spec.NormalizePath (); 4904 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) 4905 { 4906 count++; 4907 break; 4908 } 4909 } 4910 } 4911 } 4912 } 4913 return count; 4914 } 4915 4916 lldb_private::Address 4917 ObjectFileMachO::GetEntryPointAddress () 4918 { 4919 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4920 // is initialized to an invalid address, so we can just return that. 4921 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4922 4923 if (!IsExecutable() || m_entry_point_address.IsValid()) 4924 return m_entry_point_address; 4925 4926 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4927 // /usr/include/mach-o.h, but it is basically: 4928 // 4929 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4930 // uint32_t count - this is the count of longs in the thread state data 4931 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4932 // <repeat this trio> 4933 // 4934 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4935 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4936 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4937 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4938 // 4939 // For now we hard-code the offsets and flavors we need: 4940 // 4941 // 4942 4943 ModuleSP module_sp(GetModule()); 4944 if (module_sp) 4945 { 4946 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4947 struct load_command load_cmd; 4948 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4949 uint32_t i; 4950 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4951 bool done = false; 4952 4953 for (i=0; i<m_header.ncmds; ++i) 4954 { 4955 const lldb::offset_t cmd_offset = offset; 4956 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4957 break; 4958 4959 switch (load_cmd.cmd) 4960 { 4961 case LC_UNIXTHREAD: 4962 case LC_THREAD: 4963 { 4964 while (offset < cmd_offset + load_cmd.cmdsize) 4965 { 4966 uint32_t flavor = m_data.GetU32(&offset); 4967 uint32_t count = m_data.GetU32(&offset); 4968 if (count == 0) 4969 { 4970 // We've gotten off somehow, log and exit; 4971 return m_entry_point_address; 4972 } 4973 4974 switch (m_header.cputype) 4975 { 4976 case llvm::MachO::CPU_TYPE_ARM: 4977 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 4978 { 4979 offset += 60; // This is the offset of pc in the GPR thread state data structure. 4980 start_address = m_data.GetU32(&offset); 4981 done = true; 4982 } 4983 break; 4984 case llvm::MachO::CPU_TYPE_ARM64: 4985 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 4986 { 4987 offset += 256; // This is the offset of pc in the GPR thread state data structure. 4988 start_address = m_data.GetU64(&offset); 4989 done = true; 4990 } 4991 break; 4992 case llvm::MachO::CPU_TYPE_I386: 4993 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 4994 { 4995 offset += 40; // This is the offset of eip in the GPR thread state data structure. 4996 start_address = m_data.GetU32(&offset); 4997 done = true; 4998 } 4999 break; 5000 case llvm::MachO::CPU_TYPE_X86_64: 5001 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5002 { 5003 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 5004 start_address = m_data.GetU64(&offset); 5005 done = true; 5006 } 5007 break; 5008 default: 5009 return m_entry_point_address; 5010 } 5011 // Haven't found the GPR flavor yet, skip over the data for this flavor: 5012 if (done) 5013 break; 5014 offset += count * 4; 5015 } 5016 } 5017 break; 5018 case LC_MAIN: 5019 { 5020 ConstString text_segment_name ("__TEXT"); 5021 uint64_t entryoffset = m_data.GetU64(&offset); 5022 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 5023 if (text_segment_sp) 5024 { 5025 done = true; 5026 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5027 } 5028 } 5029 5030 default: 5031 break; 5032 } 5033 if (done) 5034 break; 5035 5036 // Go to the next load command: 5037 offset = cmd_offset + load_cmd.cmdsize; 5038 } 5039 5040 if (start_address != LLDB_INVALID_ADDRESS) 5041 { 5042 // We got the start address from the load commands, so now resolve that address in the sections 5043 // of this ObjectFile: 5044 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 5045 { 5046 m_entry_point_address.Clear(); 5047 } 5048 } 5049 else 5050 { 5051 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 5052 // "start" symbol in the main executable. 5053 5054 ModuleSP module_sp (GetModule()); 5055 5056 if (module_sp) 5057 { 5058 SymbolContextList contexts; 5059 SymbolContext context; 5060 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 5061 { 5062 if (contexts.GetContextAtIndex(0, context)) 5063 m_entry_point_address = context.symbol->GetAddress(); 5064 } 5065 } 5066 } 5067 } 5068 5069 return m_entry_point_address; 5070 5071 } 5072 5073 lldb_private::Address 5074 ObjectFileMachO::GetHeaderAddress () 5075 { 5076 lldb_private::Address header_addr; 5077 SectionList *section_list = GetSectionList(); 5078 if (section_list) 5079 { 5080 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 5081 if (text_segment_sp) 5082 { 5083 header_addr.SetSection (text_segment_sp); 5084 header_addr.SetOffset (0); 5085 } 5086 } 5087 return header_addr; 5088 } 5089 5090 uint32_t 5091 ObjectFileMachO::GetNumThreadContexts () 5092 { 5093 ModuleSP module_sp(GetModule()); 5094 if (module_sp) 5095 { 5096 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5097 if (!m_thread_context_offsets_valid) 5098 { 5099 m_thread_context_offsets_valid = true; 5100 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5101 FileRangeArray::Entry file_range; 5102 thread_command thread_cmd; 5103 for (uint32_t i=0; i<m_header.ncmds; ++i) 5104 { 5105 const uint32_t cmd_offset = offset; 5106 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 5107 break; 5108 5109 if (thread_cmd.cmd == LC_THREAD) 5110 { 5111 file_range.SetRangeBase (offset); 5112 file_range.SetByteSize (thread_cmd.cmdsize - 8); 5113 m_thread_context_offsets.Append (file_range); 5114 } 5115 offset = cmd_offset + thread_cmd.cmdsize; 5116 } 5117 } 5118 } 5119 return m_thread_context_offsets.GetSize(); 5120 } 5121 5122 lldb::RegisterContextSP 5123 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 5124 { 5125 lldb::RegisterContextSP reg_ctx_sp; 5126 5127 ModuleSP module_sp(GetModule()); 5128 if (module_sp) 5129 { 5130 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5131 if (!m_thread_context_offsets_valid) 5132 GetNumThreadContexts (); 5133 5134 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 5135 if (thread_context_file_range) 5136 { 5137 5138 DataExtractor data (m_data, 5139 thread_context_file_range->GetRangeBase(), 5140 thread_context_file_range->GetByteSize()); 5141 5142 switch (m_header.cputype) 5143 { 5144 case llvm::MachO::CPU_TYPE_ARM64: 5145 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 5146 break; 5147 5148 case llvm::MachO::CPU_TYPE_ARM: 5149 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 5150 break; 5151 5152 case llvm::MachO::CPU_TYPE_I386: 5153 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 5154 break; 5155 5156 case llvm::MachO::CPU_TYPE_X86_64: 5157 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 5158 break; 5159 } 5160 } 5161 } 5162 return reg_ctx_sp; 5163 } 5164 5165 5166 ObjectFile::Type 5167 ObjectFileMachO::CalculateType() 5168 { 5169 switch (m_header.filetype) 5170 { 5171 case MH_OBJECT: // 0x1u 5172 if (GetAddressByteSize () == 4) 5173 { 5174 // 32 bit kexts are just object files, but they do have a valid 5175 // UUID load command. 5176 UUID uuid; 5177 if (GetUUID(&uuid)) 5178 { 5179 // this checking for the UUID load command is not enough 5180 // we could eventually look for the symbol named 5181 // "OSKextGetCurrentIdentifier" as this is required of kexts 5182 if (m_strata == eStrataInvalid) 5183 m_strata = eStrataKernel; 5184 return eTypeSharedLibrary; 5185 } 5186 } 5187 return eTypeObjectFile; 5188 5189 case MH_EXECUTE: return eTypeExecutable; // 0x2u 5190 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 5191 case MH_CORE: return eTypeCoreFile; // 0x4u 5192 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 5193 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 5194 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 5195 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 5196 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 5197 case MH_DSYM: return eTypeDebugInfo; // 0xAu 5198 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 5199 default: 5200 break; 5201 } 5202 return eTypeUnknown; 5203 } 5204 5205 ObjectFile::Strata 5206 ObjectFileMachO::CalculateStrata() 5207 { 5208 switch (m_header.filetype) 5209 { 5210 case MH_OBJECT: // 0x1u 5211 { 5212 // 32 bit kexts are just object files, but they do have a valid 5213 // UUID load command. 5214 UUID uuid; 5215 if (GetUUID(&uuid)) 5216 { 5217 // this checking for the UUID load command is not enough 5218 // we could eventually look for the symbol named 5219 // "OSKextGetCurrentIdentifier" as this is required of kexts 5220 if (m_type == eTypeInvalid) 5221 m_type = eTypeSharedLibrary; 5222 5223 return eStrataKernel; 5224 } 5225 } 5226 return eStrataUnknown; 5227 5228 case MH_EXECUTE: // 0x2u 5229 // Check for the MH_DYLDLINK bit in the flags 5230 if (m_header.flags & MH_DYLDLINK) 5231 { 5232 return eStrataUser; 5233 } 5234 else 5235 { 5236 SectionList *section_list = GetSectionList(); 5237 if (section_list) 5238 { 5239 static ConstString g_kld_section_name ("__KLD"); 5240 if (section_list->FindSectionByName(g_kld_section_name)) 5241 return eStrataKernel; 5242 } 5243 } 5244 return eStrataRawImage; 5245 5246 case MH_FVMLIB: return eStrataUser; // 0x3u 5247 case MH_CORE: return eStrataUnknown; // 0x4u 5248 case MH_PRELOAD: return eStrataRawImage; // 0x5u 5249 case MH_DYLIB: return eStrataUser; // 0x6u 5250 case MH_DYLINKER: return eStrataUser; // 0x7u 5251 case MH_BUNDLE: return eStrataUser; // 0x8u 5252 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 5253 case MH_DSYM: return eStrataUnknown; // 0xAu 5254 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 5255 default: 5256 break; 5257 } 5258 return eStrataUnknown; 5259 } 5260 5261 5262 uint32_t 5263 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 5264 { 5265 ModuleSP module_sp(GetModule()); 5266 if (module_sp) 5267 { 5268 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5269 struct dylib_command load_cmd; 5270 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5271 uint32_t version_cmd = 0; 5272 uint64_t version = 0; 5273 uint32_t i; 5274 for (i=0; i<m_header.ncmds; ++i) 5275 { 5276 const lldb::offset_t cmd_offset = offset; 5277 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 5278 break; 5279 5280 if (load_cmd.cmd == LC_ID_DYLIB) 5281 { 5282 if (version_cmd == 0) 5283 { 5284 version_cmd = load_cmd.cmd; 5285 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 5286 break; 5287 version = load_cmd.dylib.current_version; 5288 } 5289 break; // Break for now unless there is another more complete version 5290 // number load command in the future. 5291 } 5292 offset = cmd_offset + load_cmd.cmdsize; 5293 } 5294 5295 if (version_cmd == LC_ID_DYLIB) 5296 { 5297 if (versions != NULL && num_versions > 0) 5298 { 5299 if (num_versions > 0) 5300 versions[0] = (version & 0xFFFF0000ull) >> 16; 5301 if (num_versions > 1) 5302 versions[1] = (version & 0x0000FF00ull) >> 8; 5303 if (num_versions > 2) 5304 versions[2] = (version & 0x000000FFull); 5305 // Fill in an remaining version numbers with invalid values 5306 for (i=3; i<num_versions; ++i) 5307 versions[i] = UINT32_MAX; 5308 } 5309 // The LC_ID_DYLIB load command has a version with 3 version numbers 5310 // in it, so always return 3 5311 return 3; 5312 } 5313 } 5314 return false; 5315 } 5316 5317 bool 5318 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 5319 { 5320 ModuleSP module_sp(GetModule()); 5321 if (module_sp) 5322 { 5323 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5324 return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); 5325 } 5326 return false; 5327 } 5328 5329 5330 UUID 5331 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 5332 { 5333 UUID uuid; 5334 if (process) 5335 { 5336 addr_t all_image_infos = process->GetImageInfoAddress(); 5337 5338 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 5339 // or it may be the address of the dyld_all_image_infos structure (want). The first four 5340 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 5341 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 5342 5343 Error err; 5344 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 5345 if (version_or_magic != static_cast<uint32_t>(-1) 5346 && version_or_magic != MH_MAGIC 5347 && version_or_magic != MH_CIGAM 5348 && version_or_magic != MH_MAGIC_64 5349 && version_or_magic != MH_CIGAM_64 5350 && version_or_magic >= 13) 5351 { 5352 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 5353 int wordsize = process->GetAddressByteSize(); 5354 if (wordsize == 8) 5355 { 5356 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 5357 } 5358 if (wordsize == 4) 5359 { 5360 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 5361 } 5362 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 5363 { 5364 uuid_t shared_cache_uuid; 5365 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 5366 { 5367 uuid.SetBytes (shared_cache_uuid); 5368 } 5369 } 5370 } 5371 } 5372 return uuid; 5373 } 5374 5375 UUID 5376 ObjectFileMachO::GetLLDBSharedCacheUUID () 5377 { 5378 UUID uuid; 5379 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 5380 uint8_t *(*dyld_get_all_image_infos)(void); 5381 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5382 if (dyld_get_all_image_infos) 5383 { 5384 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5385 if (dyld_all_image_infos_address) 5386 { 5387 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5388 if (*version >= 13) 5389 { 5390 uuid_t *sharedCacheUUID_address = 0; 5391 int wordsize = sizeof (uint8_t *); 5392 if (wordsize == 8) 5393 { 5394 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 5395 } 5396 else 5397 { 5398 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 5399 } 5400 uuid.SetBytes (sharedCacheUUID_address); 5401 } 5402 } 5403 } 5404 #endif 5405 return uuid; 5406 } 5407 5408 uint32_t 5409 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 5410 { 5411 if (m_min_os_versions.empty()) 5412 { 5413 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5414 bool success = false; 5415 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5416 { 5417 const lldb::offset_t load_cmd_offset = offset; 5418 5419 version_min_command lc; 5420 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5421 break; 5422 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5423 { 5424 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5425 { 5426 const uint32_t xxxx = lc.version >> 16; 5427 const uint32_t yy = (lc.version >> 8) & 0xffu; 5428 const uint32_t zz = lc.version & 0xffu; 5429 if (xxxx) 5430 { 5431 m_min_os_versions.push_back(xxxx); 5432 m_min_os_versions.push_back(yy); 5433 m_min_os_versions.push_back(zz); 5434 } 5435 success = true; 5436 } 5437 } 5438 offset = load_cmd_offset + lc.cmdsize; 5439 } 5440 5441 if (success == false) 5442 { 5443 // Push an invalid value so we don't keep trying to 5444 m_min_os_versions.push_back(UINT32_MAX); 5445 } 5446 } 5447 5448 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 5449 { 5450 if (versions != NULL && num_versions > 0) 5451 { 5452 for (size_t i=0; i<num_versions; ++i) 5453 { 5454 if (i < m_min_os_versions.size()) 5455 versions[i] = m_min_os_versions[i]; 5456 else 5457 versions[i] = 0; 5458 } 5459 } 5460 return m_min_os_versions.size(); 5461 } 5462 // Call the superclasses version that will empty out the data 5463 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 5464 } 5465 5466 uint32_t 5467 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 5468 { 5469 if (m_sdk_versions.empty()) 5470 { 5471 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5472 bool success = false; 5473 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5474 { 5475 const lldb::offset_t load_cmd_offset = offset; 5476 5477 version_min_command lc; 5478 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5479 break; 5480 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5481 { 5482 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5483 { 5484 const uint32_t xxxx = lc.sdk >> 16; 5485 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5486 const uint32_t zz = lc.sdk & 0xffu; 5487 if (xxxx) 5488 { 5489 m_sdk_versions.push_back(xxxx); 5490 m_sdk_versions.push_back(yy); 5491 m_sdk_versions.push_back(zz); 5492 } 5493 success = true; 5494 } 5495 } 5496 offset = load_cmd_offset + lc.cmdsize; 5497 } 5498 5499 if (success == false) 5500 { 5501 // Push an invalid value so we don't keep trying to 5502 m_sdk_versions.push_back(UINT32_MAX); 5503 } 5504 } 5505 5506 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 5507 { 5508 if (versions != NULL && num_versions > 0) 5509 { 5510 for (size_t i=0; i<num_versions; ++i) 5511 { 5512 if (i < m_sdk_versions.size()) 5513 versions[i] = m_sdk_versions[i]; 5514 else 5515 versions[i] = 0; 5516 } 5517 } 5518 return m_sdk_versions.size(); 5519 } 5520 // Call the superclasses version that will empty out the data 5521 return ObjectFile::GetSDKVersion (versions, num_versions); 5522 } 5523 5524 5525 bool 5526 ObjectFileMachO::GetIsDynamicLinkEditor() 5527 { 5528 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5529 } 5530 5531 //------------------------------------------------------------------ 5532 // PluginInterface protocol 5533 //------------------------------------------------------------------ 5534 lldb_private::ConstString 5535 ObjectFileMachO::GetPluginName() 5536 { 5537 return GetPluginNameStatic(); 5538 } 5539 5540 uint32_t 5541 ObjectFileMachO::GetPluginVersion() 5542 { 5543 return 1; 5544 } 5545 5546 5547 Section * 5548 ObjectFileMachO::GetMachHeaderSection() 5549 { 5550 // Find the first address of the mach header which is the first non-zero 5551 // file sized section whose file offset is zero. This is the base file address 5552 // of the mach-o file which can be subtracted from the vmaddr of the other 5553 // segments found in memory and added to the load address 5554 ModuleSP module_sp = GetModule(); 5555 if (module_sp) 5556 { 5557 SectionList *section_list = GetSectionList (); 5558 if (section_list) 5559 { 5560 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 5561 const size_t num_sections = section_list->GetSize(); 5562 5563 for (size_t sect_idx = 0; 5564 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 5565 ++sect_idx) 5566 { 5567 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 5568 if (section && 5569 section->GetFileSize() > 0 && 5570 section->GetFileOffset() == 0 && 5571 section->IsThreadSpecific() == false && 5572 module_sp.get() == section->GetModule().get()) 5573 { 5574 return section; 5575 } 5576 } 5577 } 5578 } 5579 return nullptr; 5580 } 5581 5582 lldb::addr_t 5583 ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) 5584 { 5585 ModuleSP module_sp = GetModule(); 5586 if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) 5587 { 5588 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); 5589 if (mach_header_file_addr != LLDB_INVALID_ADDRESS) 5590 { 5591 if (section && 5592 section->GetFileSize() > 0 && 5593 section->IsThreadSpecific() == false && 5594 module_sp.get() == section->GetModule().get()) 5595 { 5596 // Ignore __LINKEDIT and __DWARF segments 5597 if (section->GetName() == GetSegmentNameLINKEDIT()) 5598 { 5599 // Only map __LINKEDIT if we have an in memory image and this isn't 5600 // a kernel binary like a kext or mach_kernel. 5601 const bool is_memory_image = (bool)m_process_wp.lock(); 5602 const Strata strata = GetStrata(); 5603 if (is_memory_image == false || strata == eStrataKernel) 5604 return LLDB_INVALID_ADDRESS; 5605 } 5606 return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; 5607 } 5608 } 5609 } 5610 return LLDB_INVALID_ADDRESS; 5611 } 5612 5613 bool 5614 ObjectFileMachO::SetLoadAddress (Target &target, 5615 lldb::addr_t value, 5616 bool value_is_offset) 5617 { 5618 ModuleSP module_sp = GetModule(); 5619 if (module_sp) 5620 { 5621 size_t num_loaded_sections = 0; 5622 SectionList *section_list = GetSectionList (); 5623 if (section_list) 5624 { 5625 const size_t num_sections = section_list->GetSize(); 5626 5627 if (value_is_offset) 5628 { 5629 // "value" is an offset to apply to each top level segment 5630 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5631 { 5632 // Iterate through the object file sections to find all 5633 // of the sections that size on disk (to avoid __PAGEZERO) 5634 // and load them 5635 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5636 if (section_sp && 5637 section_sp->GetFileSize() > 0 && 5638 section_sp->IsThreadSpecific() == false && 5639 module_sp.get() == section_sp->GetModule().get()) 5640 { 5641 // Ignore __LINKEDIT and __DWARF segments 5642 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) 5643 { 5644 // Only map __LINKEDIT if we have an in memory image and this isn't 5645 // a kernel binary like a kext or mach_kernel. 5646 const bool is_memory_image = (bool)m_process_wp.lock(); 5647 const Strata strata = GetStrata(); 5648 if (is_memory_image == false || strata == eStrataKernel) 5649 continue; 5650 } 5651 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 5652 ++num_loaded_sections; 5653 } 5654 } 5655 } 5656 else 5657 { 5658 // "value" is the new base address of the mach_header, adjust each 5659 // section accordingly 5660 5661 Section *mach_header_section = GetMachHeaderSection(); 5662 if (mach_header_section) 5663 { 5664 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5665 { 5666 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5667 5668 lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage(value, mach_header_section, section_sp.get()); 5669 if (section_load_addr != LLDB_INVALID_ADDRESS) 5670 { 5671 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_load_addr)) 5672 ++num_loaded_sections; 5673 } 5674 } 5675 } 5676 } 5677 } 5678 return num_loaded_sections > 0; 5679 } 5680 return false; 5681 } 5682 5683 bool 5684 ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, 5685 const FileSpec &outfile, 5686 Error &error) 5687 { 5688 if (process_sp) 5689 { 5690 Target &target = process_sp->GetTarget(); 5691 const ArchSpec target_arch = target.GetArchitecture(); 5692 const llvm::Triple &target_triple = target_arch.GetTriple(); 5693 if (target_triple.getVendor() == llvm::Triple::Apple && 5694 (target_triple.getOS() == llvm::Triple::MacOSX || 5695 target_triple.getOS() == llvm::Triple::IOS)) 5696 { 5697 bool make_core = false; 5698 switch (target_arch.GetMachine()) 5699 { 5700 case llvm::Triple::aarch64: 5701 case llvm::Triple::arm: 5702 case llvm::Triple::x86: 5703 case llvm::Triple::x86_64: 5704 make_core = true; 5705 break; 5706 default: 5707 error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); 5708 break; 5709 } 5710 5711 if (make_core) 5712 { 5713 std::vector<segment_command_64> segment_load_commands; 5714 // uint32_t range_info_idx = 0; 5715 MemoryRegionInfo range_info; 5716 Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); 5717 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 5718 const ByteOrder byte_order = target_arch.GetByteOrder(); 5719 if (range_error.Success()) 5720 { 5721 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) 5722 { 5723 const addr_t addr = range_info.GetRange().GetRangeBase(); 5724 const addr_t size = range_info.GetRange().GetByteSize(); 5725 5726 if (size == 0) 5727 break; 5728 5729 // Calculate correct protections 5730 uint32_t prot = 0; 5731 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 5732 prot |= VM_PROT_READ; 5733 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 5734 prot |= VM_PROT_WRITE; 5735 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 5736 prot |= VM_PROT_EXECUTE; 5737 5738 // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", 5739 // range_info_idx, 5740 // addr, 5741 // size, 5742 // (prot & VM_PROT_READ ) ? 'r' : '-', 5743 // (prot & VM_PROT_WRITE ) ? 'w' : '-', 5744 // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); 5745 5746 if (prot != 0) 5747 { 5748 uint32_t cmd_type = LC_SEGMENT_64; 5749 uint32_t segment_size = sizeof (segment_command_64); 5750 if (addr_byte_size == 4) 5751 { 5752 cmd_type = LC_SEGMENT; 5753 segment_size = sizeof (segment_command); 5754 } 5755 segment_command_64 segment = { 5756 cmd_type, // uint32_t cmd; 5757 segment_size, // uint32_t cmdsize; 5758 {0}, // char segname[16]; 5759 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 5760 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 5761 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 5762 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 5763 prot, // uint32_t maxprot; 5764 prot, // uint32_t initprot; 5765 0, // uint32_t nsects; 5766 0 }; // uint32_t flags; 5767 segment_load_commands.push_back(segment); 5768 } 5769 else 5770 { 5771 // No protections and a size of 1 used to be returned from old 5772 // debugservers when we asked about a region that was past the 5773 // last memory region and it indicates the end... 5774 if (size == 1) 5775 break; 5776 } 5777 5778 range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); 5779 if (range_error.Fail()) 5780 break; 5781 } 5782 5783 StreamString buffer (Stream::eBinary, 5784 addr_byte_size, 5785 byte_order); 5786 5787 mach_header_64 mach_header; 5788 if (addr_byte_size == 8) 5789 { 5790 mach_header.magic = MH_MAGIC_64; 5791 } 5792 else 5793 { 5794 mach_header.magic = MH_MAGIC; 5795 } 5796 mach_header.cputype = target_arch.GetMachOCPUType(); 5797 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 5798 mach_header.filetype = MH_CORE; 5799 mach_header.ncmds = segment_load_commands.size(); 5800 mach_header.flags = 0; 5801 mach_header.reserved = 0; 5802 ThreadList &thread_list = process_sp->GetThreadList(); 5803 const uint32_t num_threads = thread_list.GetSize(); 5804 5805 // Make an array of LC_THREAD data items. Each one contains 5806 // the contents of the LC_THREAD load command. The data doesn't 5807 // contain the load command + load command size, we will 5808 // add the load command and load command size as we emit the data. 5809 std::vector<StreamString> LC_THREAD_datas(num_threads); 5810 for (auto &LC_THREAD_data : LC_THREAD_datas) 5811 { 5812 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 5813 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 5814 LC_THREAD_data.SetByteOrder(byte_order); 5815 } 5816 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) 5817 { 5818 ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); 5819 if (thread_sp) 5820 { 5821 switch (mach_header.cputype) 5822 { 5823 case llvm::MachO::CPU_TYPE_ARM64: 5824 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5825 break; 5826 5827 case llvm::MachO::CPU_TYPE_ARM: 5828 RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5829 break; 5830 5831 case llvm::MachO::CPU_TYPE_I386: 5832 RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5833 break; 5834 5835 case llvm::MachO::CPU_TYPE_X86_64: 5836 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5837 break; 5838 } 5839 5840 } 5841 } 5842 5843 // The size of the load command is the size of the segments... 5844 if (addr_byte_size == 8) 5845 { 5846 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); 5847 } 5848 else 5849 { 5850 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); 5851 } 5852 5853 // and the size of all LC_THREAD load command 5854 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5855 { 5856 ++mach_header.ncmds; 5857 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 5858 } 5859 5860 printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 5861 mach_header.magic, 5862 mach_header.cputype, 5863 mach_header.cpusubtype, 5864 mach_header.filetype, 5865 mach_header.ncmds, 5866 mach_header.sizeofcmds, 5867 mach_header.flags, 5868 mach_header.reserved); 5869 5870 // Write the mach header 5871 buffer.PutHex32(mach_header.magic); 5872 buffer.PutHex32(mach_header.cputype); 5873 buffer.PutHex32(mach_header.cpusubtype); 5874 buffer.PutHex32(mach_header.filetype); 5875 buffer.PutHex32(mach_header.ncmds); 5876 buffer.PutHex32(mach_header.sizeofcmds); 5877 buffer.PutHex32(mach_header.flags); 5878 if (addr_byte_size == 8) 5879 { 5880 buffer.PutHex32(mach_header.reserved); 5881 } 5882 5883 // Skip the mach header and all load commands and align to the next 5884 // 0x1000 byte boundary 5885 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 5886 if (file_offset & 0x00000fff) 5887 { 5888 file_offset += 0x00001000ull; 5889 file_offset &= (~0x00001000ull + 1); 5890 } 5891 5892 for (auto &segment : segment_load_commands) 5893 { 5894 segment.fileoff = file_offset; 5895 file_offset += segment.filesize; 5896 } 5897 5898 // Write out all of the LC_THREAD load commands 5899 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5900 { 5901 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 5902 buffer.PutHex32(LC_THREAD); 5903 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 5904 buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); 5905 } 5906 5907 // Write out all of the segment load commands 5908 for (const auto &segment : segment_load_commands) 5909 { 5910 printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 5911 segment.cmd, 5912 segment.cmdsize, 5913 segment.vmaddr, 5914 segment.vmaddr + segment.vmsize, 5915 segment.fileoff, 5916 segment.filesize, 5917 segment.maxprot, 5918 segment.initprot, 5919 segment.nsects, 5920 segment.flags); 5921 5922 buffer.PutHex32(segment.cmd); 5923 buffer.PutHex32(segment.cmdsize); 5924 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 5925 if (addr_byte_size == 8) 5926 { 5927 buffer.PutHex64(segment.vmaddr); 5928 buffer.PutHex64(segment.vmsize); 5929 buffer.PutHex64(segment.fileoff); 5930 buffer.PutHex64(segment.filesize); 5931 } 5932 else 5933 { 5934 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 5935 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 5936 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 5937 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 5938 } 5939 buffer.PutHex32(segment.maxprot); 5940 buffer.PutHex32(segment.initprot); 5941 buffer.PutHex32(segment.nsects); 5942 buffer.PutHex32(segment.flags); 5943 } 5944 5945 File core_file; 5946 std::string core_file_path(outfile.GetPath()); 5947 error = core_file.Open(core_file_path.c_str(), 5948 File::eOpenOptionWrite | 5949 File::eOpenOptionTruncate | 5950 File::eOpenOptionCanCreate); 5951 if (error.Success()) 5952 { 5953 // Read 1 page at a time 5954 uint8_t bytes[0x1000]; 5955 // Write the mach header and load commands out to the core file 5956 size_t bytes_written = buffer.GetString().size(); 5957 error = core_file.Write(buffer.GetString().data(), bytes_written); 5958 if (error.Success()) 5959 { 5960 // Now write the file data for all memory segments in the process 5961 for (const auto &segment : segment_load_commands) 5962 { 5963 if (core_file.SeekFromStart(segment.fileoff) == -1) 5964 { 5965 error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); 5966 break; 5967 } 5968 5969 printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); 5970 addr_t bytes_left = segment.vmsize; 5971 addr_t addr = segment.vmaddr; 5972 Error memory_read_error; 5973 while (bytes_left > 0 && error.Success()) 5974 { 5975 const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 5976 const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); 5977 if (bytes_read == bytes_to_read) 5978 { 5979 size_t bytes_written = bytes_read; 5980 error = core_file.Write(bytes, bytes_written); 5981 bytes_left -= bytes_read; 5982 addr += bytes_read; 5983 } 5984 else 5985 { 5986 // Some pages within regions are not readable, those 5987 // should be zero filled 5988 memset (bytes, 0, bytes_to_read); 5989 size_t bytes_written = bytes_to_read; 5990 error = core_file.Write(bytes, bytes_written); 5991 bytes_left -= bytes_to_read; 5992 addr += bytes_to_read; 5993 } 5994 } 5995 } 5996 } 5997 } 5998 } 5999 else 6000 { 6001 error.SetErrorString("process doesn't support getting memory region info"); 6002 } 6003 } 6004 return true; // This is the right plug to handle saving core files for this process 6005 } 6006 } 6007 return false; 6008 } 6009 6010