1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 
11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
15 #include "lldb/Core/Debugger.h"
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamFile.h"
22 #include "lldb/Host/Host.h"
23 #include "lldb/Symbol/DWARFCallFrameInfo.h"
24 #include "lldb/Symbol/ObjectFile.h"
25 #include "lldb/Target/DynamicLoader.h"
26 #include "lldb/Target/MemoryRegionInfo.h"
27 #include "lldb/Target/Platform.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 #include "lldb/Target/Thread.h"
32 #include "lldb/Target/ThreadList.h"
33 #include "lldb/Utility/ArchSpec.h"
34 #include "lldb/Utility/DataBuffer.h"
35 #include "lldb/Utility/FileSpec.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RangeMap.h"
38 #include "lldb/Utility/RegisterValue.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StreamString.h"
41 #include "lldb/Utility/Timer.h"
42 #include "lldb/Utility/UUID.h"
43 
44 #include "lldb/Host/SafeMachO.h"
45 
46 #include "llvm/Support/MemoryBuffer.h"
47 
48 #include "ObjectFileMachO.h"
49 
50 #if defined(__APPLE__) &&                                                      \
51     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
52 // GetLLDBSharedCacheUUID() needs to call dlsym()
53 #include <dlfcn.h>
54 #endif
55 
56 #ifndef __APPLE__
57 #include "Utility/UuidCompatibility.h"
58 #else
59 #include <uuid/uuid.h>
60 #endif
61 
62 #include <memory>
63 
64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
65 using namespace lldb;
66 using namespace lldb_private;
67 using namespace llvm::MachO;
68 
69 // Some structure definitions needed for parsing the dyld shared cache files
70 // found on iOS devices.
71 
72 struct lldb_copy_dyld_cache_header_v1 {
73   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
74   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
75   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
76   uint32_t imagesOffset;
77   uint32_t imagesCount;
78   uint64_t dyldBaseAddress;
79   uint64_t codeSignatureOffset;
80   uint64_t codeSignatureSize;
81   uint64_t slideInfoOffset;
82   uint64_t slideInfoSize;
83   uint64_t localSymbolsOffset;
84   uint64_t localSymbolsSize;
85   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
86                     // and later
87 };
88 
89 struct lldb_copy_dyld_cache_mapping_info {
90   uint64_t address;
91   uint64_t size;
92   uint64_t fileOffset;
93   uint32_t maxProt;
94   uint32_t initProt;
95 };
96 
97 struct lldb_copy_dyld_cache_local_symbols_info {
98   uint32_t nlistOffset;
99   uint32_t nlistCount;
100   uint32_t stringsOffset;
101   uint32_t stringsSize;
102   uint32_t entriesOffset;
103   uint32_t entriesCount;
104 };
105 struct lldb_copy_dyld_cache_local_symbols_entry {
106   uint32_t dylibOffset;
107   uint32_t nlistStartIndex;
108   uint32_t nlistCount;
109 };
110 
111 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
112 public:
113   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
114                                     const DataExtractor &data)
115       : RegisterContextDarwin_x86_64(thread, 0) {
116     SetRegisterDataFrom_LC_THREAD(data);
117   }
118 
119   void InvalidateAllRegisters() override {
120     // Do nothing... registers are always valid...
121   }
122 
123   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
124     lldb::offset_t offset = 0;
125     SetError(GPRRegSet, Read, -1);
126     SetError(FPURegSet, Read, -1);
127     SetError(EXCRegSet, Read, -1);
128     bool done = false;
129 
130     while (!done) {
131       int flavor = data.GetU32(&offset);
132       if (flavor == 0)
133         done = true;
134       else {
135         uint32_t i;
136         uint32_t count = data.GetU32(&offset);
137         switch (flavor) {
138         case GPRRegSet:
139           for (i = 0; i < count; ++i)
140             (&gpr.rax)[i] = data.GetU64(&offset);
141           SetError(GPRRegSet, Read, 0);
142           done = true;
143 
144           break;
145         case FPURegSet:
146           // TODO: fill in FPU regs....
147           // SetError (FPURegSet, Read, -1);
148           done = true;
149 
150           break;
151         case EXCRegSet:
152           exc.trapno = data.GetU32(&offset);
153           exc.err = data.GetU32(&offset);
154           exc.faultvaddr = data.GetU64(&offset);
155           SetError(EXCRegSet, Read, 0);
156           done = true;
157           break;
158         case 7:
159         case 8:
160         case 9:
161           // fancy flavors that encapsulate of the above flavors...
162           break;
163 
164         default:
165           done = true;
166           break;
167         }
168       }
169     }
170   }
171 
172   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
173                               const char *alt_name, size_t reg_byte_size,
174                               Stream &data) {
175     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
176     if (reg_info == nullptr)
177       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
178     if (reg_info) {
179       lldb_private::RegisterValue reg_value;
180       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
181         if (reg_info->byte_size >= reg_byte_size)
182           data.Write(reg_value.GetBytes(), reg_byte_size);
183         else {
184           data.Write(reg_value.GetBytes(), reg_info->byte_size);
185           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
186                ++i)
187             data.PutChar(0);
188         }
189         return reg_byte_size;
190       }
191     }
192     // Just write zeros if all else fails
193     for (size_t i = 0; i < reg_byte_size; ++i)
194       data.PutChar(0);
195     return reg_byte_size;
196   }
197 
198   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
199     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
200     if (reg_ctx_sp) {
201       RegisterContext *reg_ctx = reg_ctx_sp.get();
202 
203       data.PutHex32(GPRRegSet); // Flavor
204       data.PutHex32(GPRWordCount);
205       WriteRegister(reg_ctx, "rax", nullptr, 8, data);
206       WriteRegister(reg_ctx, "rbx", nullptr, 8, data);
207       WriteRegister(reg_ctx, "rcx", nullptr, 8, data);
208       WriteRegister(reg_ctx, "rdx", nullptr, 8, data);
209       WriteRegister(reg_ctx, "rdi", nullptr, 8, data);
210       WriteRegister(reg_ctx, "rsi", nullptr, 8, data);
211       WriteRegister(reg_ctx, "rbp", nullptr, 8, data);
212       WriteRegister(reg_ctx, "rsp", nullptr, 8, data);
213       WriteRegister(reg_ctx, "r8", nullptr, 8, data);
214       WriteRegister(reg_ctx, "r9", nullptr, 8, data);
215       WriteRegister(reg_ctx, "r10", nullptr, 8, data);
216       WriteRegister(reg_ctx, "r11", nullptr, 8, data);
217       WriteRegister(reg_ctx, "r12", nullptr, 8, data);
218       WriteRegister(reg_ctx, "r13", nullptr, 8, data);
219       WriteRegister(reg_ctx, "r14", nullptr, 8, data);
220       WriteRegister(reg_ctx, "r15", nullptr, 8, data);
221       WriteRegister(reg_ctx, "rip", nullptr, 8, data);
222       WriteRegister(reg_ctx, "rflags", nullptr, 8, data);
223       WriteRegister(reg_ctx, "cs", nullptr, 8, data);
224       WriteRegister(reg_ctx, "fs", nullptr, 8, data);
225       WriteRegister(reg_ctx, "gs", nullptr, 8, data);
226 
227       //            // Write out the FPU registers
228       //            const size_t fpu_byte_size = sizeof(FPU);
229       //            size_t bytes_written = 0;
230       //            data.PutHex32 (FPURegSet);
231       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
232       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
233       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
234       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
235       //            data);   // uint16_t    fcw;    // "fctrl"
236       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
237       //            data);  // uint16_t    fsw;    // "fstat"
238       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
239       //            data);   // uint8_t     ftw;    // "ftag"
240       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
241       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
242       //            data);     // uint16_t    fop;    // "fop"
243       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
244       //            data);    // uint32_t    ip;     // "fioff"
245       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
246       //            data);    // uint16_t    cs;     // "fiseg"
247       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
248       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
249       //            data);   // uint32_t    dp;     // "fooff"
250       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
251       //            data);    // uint16_t    ds;     // "foseg"
252       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
253       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
254       //            data);    // uint32_t    mxcsr;
255       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
256       //            4, data);// uint32_t    mxcsrmask;
257       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
258       //            sizeof(MMSReg), data);
259       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
260       //            sizeof(MMSReg), data);
261       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
274       //            sizeof(XMMReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
276       //            sizeof(XMMReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
304       //            sizeof(XMMReg), data);
305       //
306       //            // Fill rest with zeros
307       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
308       //            i)
309       //                data.PutChar(0);
310 
311       // Write out the EXC registers
312       data.PutHex32(EXCRegSet);
313       data.PutHex32(EXCWordCount);
314       WriteRegister(reg_ctx, "trapno", nullptr, 4, data);
315       WriteRegister(reg_ctx, "err", nullptr, 4, data);
316       WriteRegister(reg_ctx, "faultvaddr", nullptr, 8, data);
317       return true;
318     }
319     return false;
320   }
321 
322 protected:
323   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
324 
325   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
326 
327   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
328 
329   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
330     return 0;
331   }
332 
333   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
334     return 0;
335   }
336 
337   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
338     return 0;
339   }
340 };
341 
342 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
343 public:
344   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
345                                   const DataExtractor &data)
346       : RegisterContextDarwin_i386(thread, 0) {
347     SetRegisterDataFrom_LC_THREAD(data);
348   }
349 
350   void InvalidateAllRegisters() override {
351     // Do nothing... registers are always valid...
352   }
353 
354   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
355     lldb::offset_t offset = 0;
356     SetError(GPRRegSet, Read, -1);
357     SetError(FPURegSet, Read, -1);
358     SetError(EXCRegSet, Read, -1);
359     bool done = false;
360 
361     while (!done) {
362       int flavor = data.GetU32(&offset);
363       if (flavor == 0)
364         done = true;
365       else {
366         uint32_t i;
367         uint32_t count = data.GetU32(&offset);
368         switch (flavor) {
369         case GPRRegSet:
370           for (i = 0; i < count; ++i)
371             (&gpr.eax)[i] = data.GetU32(&offset);
372           SetError(GPRRegSet, Read, 0);
373           done = true;
374 
375           break;
376         case FPURegSet:
377           // TODO: fill in FPU regs....
378           // SetError (FPURegSet, Read, -1);
379           done = true;
380 
381           break;
382         case EXCRegSet:
383           exc.trapno = data.GetU32(&offset);
384           exc.err = data.GetU32(&offset);
385           exc.faultvaddr = data.GetU32(&offset);
386           SetError(EXCRegSet, Read, 0);
387           done = true;
388           break;
389         case 7:
390         case 8:
391         case 9:
392           // fancy flavors that encapsulate of the above flavors...
393           break;
394 
395         default:
396           done = true;
397           break;
398         }
399       }
400     }
401   }
402 
403   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
404                               const char *alt_name, size_t reg_byte_size,
405                               Stream &data) {
406     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
407     if (reg_info == nullptr)
408       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
409     if (reg_info) {
410       lldb_private::RegisterValue reg_value;
411       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
412         if (reg_info->byte_size >= reg_byte_size)
413           data.Write(reg_value.GetBytes(), reg_byte_size);
414         else {
415           data.Write(reg_value.GetBytes(), reg_info->byte_size);
416           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
417                ++i)
418             data.PutChar(0);
419         }
420         return reg_byte_size;
421       }
422     }
423     // Just write zeros if all else fails
424     for (size_t i = 0; i < reg_byte_size; ++i)
425       data.PutChar(0);
426     return reg_byte_size;
427   }
428 
429   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
430     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
431     if (reg_ctx_sp) {
432       RegisterContext *reg_ctx = reg_ctx_sp.get();
433 
434       data.PutHex32(GPRRegSet); // Flavor
435       data.PutHex32(GPRWordCount);
436       WriteRegister(reg_ctx, "eax", nullptr, 4, data);
437       WriteRegister(reg_ctx, "ebx", nullptr, 4, data);
438       WriteRegister(reg_ctx, "ecx", nullptr, 4, data);
439       WriteRegister(reg_ctx, "edx", nullptr, 4, data);
440       WriteRegister(reg_ctx, "edi", nullptr, 4, data);
441       WriteRegister(reg_ctx, "esi", nullptr, 4, data);
442       WriteRegister(reg_ctx, "ebp", nullptr, 4, data);
443       WriteRegister(reg_ctx, "esp", nullptr, 4, data);
444       WriteRegister(reg_ctx, "ss", nullptr, 4, data);
445       WriteRegister(reg_ctx, "eflags", nullptr, 4, data);
446       WriteRegister(reg_ctx, "eip", nullptr, 4, data);
447       WriteRegister(reg_ctx, "cs", nullptr, 4, data);
448       WriteRegister(reg_ctx, "ds", nullptr, 4, data);
449       WriteRegister(reg_ctx, "es", nullptr, 4, data);
450       WriteRegister(reg_ctx, "fs", nullptr, 4, data);
451       WriteRegister(reg_ctx, "gs", nullptr, 4, data);
452 
453       // Write out the EXC registers
454       data.PutHex32(EXCRegSet);
455       data.PutHex32(EXCWordCount);
456       WriteRegister(reg_ctx, "trapno", nullptr, 4, data);
457       WriteRegister(reg_ctx, "err", nullptr, 4, data);
458       WriteRegister(reg_ctx, "faultvaddr", nullptr, 4, data);
459       return true;
460     }
461     return false;
462   }
463 
464 protected:
465   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
466 
467   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
468 
469   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
470 
471   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
472     return 0;
473   }
474 
475   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
476     return 0;
477   }
478 
479   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
480     return 0;
481   }
482 };
483 
484 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
485 public:
486   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
487                                  const DataExtractor &data)
488       : RegisterContextDarwin_arm(thread, 0) {
489     SetRegisterDataFrom_LC_THREAD(data);
490   }
491 
492   void InvalidateAllRegisters() override {
493     // Do nothing... registers are always valid...
494   }
495 
496   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
497     lldb::offset_t offset = 0;
498     SetError(GPRRegSet, Read, -1);
499     SetError(FPURegSet, Read, -1);
500     SetError(EXCRegSet, Read, -1);
501     bool done = false;
502 
503     while (!done) {
504       int flavor = data.GetU32(&offset);
505       uint32_t count = data.GetU32(&offset);
506       lldb::offset_t next_thread_state = offset + (count * 4);
507       switch (flavor) {
508       case GPRAltRegSet:
509       case GPRRegSet:
510         for (uint32_t i = 0; i < count; ++i) {
511           gpr.r[i] = data.GetU32(&offset);
512         }
513 
514         // Note that gpr.cpsr is also copied by the above loop; this loop
515         // technically extends one element past the end of the gpr.r[] array.
516 
517         SetError(GPRRegSet, Read, 0);
518         offset = next_thread_state;
519         break;
520 
521       case FPURegSet: {
522         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
523         const int fpu_reg_buf_size = sizeof(fpu.floats);
524         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
525                               fpu_reg_buf) == fpu_reg_buf_size) {
526           offset += fpu_reg_buf_size;
527           fpu.fpscr = data.GetU32(&offset);
528           SetError(FPURegSet, Read, 0);
529         } else {
530           done = true;
531         }
532       }
533         offset = next_thread_state;
534         break;
535 
536       case EXCRegSet:
537         if (count == 3) {
538           exc.exception = data.GetU32(&offset);
539           exc.fsr = data.GetU32(&offset);
540           exc.far = data.GetU32(&offset);
541           SetError(EXCRegSet, Read, 0);
542         }
543         done = true;
544         offset = next_thread_state;
545         break;
546 
547       // Unknown register set flavor, stop trying to parse.
548       default:
549         done = true;
550       }
551     }
552   }
553 
554   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
555                               const char *alt_name, size_t reg_byte_size,
556                               Stream &data) {
557     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
558     if (reg_info == nullptr)
559       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
560     if (reg_info) {
561       lldb_private::RegisterValue reg_value;
562       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
563         if (reg_info->byte_size >= reg_byte_size)
564           data.Write(reg_value.GetBytes(), reg_byte_size);
565         else {
566           data.Write(reg_value.GetBytes(), reg_info->byte_size);
567           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
568                ++i)
569             data.PutChar(0);
570         }
571         return reg_byte_size;
572       }
573     }
574     // Just write zeros if all else fails
575     for (size_t i = 0; i < reg_byte_size; ++i)
576       data.PutChar(0);
577     return reg_byte_size;
578   }
579 
580   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
581     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
582     if (reg_ctx_sp) {
583       RegisterContext *reg_ctx = reg_ctx_sp.get();
584 
585       data.PutHex32(GPRRegSet); // Flavor
586       data.PutHex32(GPRWordCount);
587       WriteRegister(reg_ctx, "r0", nullptr, 4, data);
588       WriteRegister(reg_ctx, "r1", nullptr, 4, data);
589       WriteRegister(reg_ctx, "r2", nullptr, 4, data);
590       WriteRegister(reg_ctx, "r3", nullptr, 4, data);
591       WriteRegister(reg_ctx, "r4", nullptr, 4, data);
592       WriteRegister(reg_ctx, "r5", nullptr, 4, data);
593       WriteRegister(reg_ctx, "r6", nullptr, 4, data);
594       WriteRegister(reg_ctx, "r7", nullptr, 4, data);
595       WriteRegister(reg_ctx, "r8", nullptr, 4, data);
596       WriteRegister(reg_ctx, "r9", nullptr, 4, data);
597       WriteRegister(reg_ctx, "r10", nullptr, 4, data);
598       WriteRegister(reg_ctx, "r11", nullptr, 4, data);
599       WriteRegister(reg_ctx, "r12", nullptr, 4, data);
600       WriteRegister(reg_ctx, "sp", nullptr, 4, data);
601       WriteRegister(reg_ctx, "lr", nullptr, 4, data);
602       WriteRegister(reg_ctx, "pc", nullptr, 4, data);
603       WriteRegister(reg_ctx, "cpsr", nullptr, 4, data);
604 
605       // Write out the EXC registers
606       //            data.PutHex32 (EXCRegSet);
607       //            data.PutHex32 (EXCWordCount);
608       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
609       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
610       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
611       return true;
612     }
613     return false;
614   }
615 
616 protected:
617   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
618 
619   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
620 
621   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
622 
623   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
624 
625   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
626     return 0;
627   }
628 
629   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
630     return 0;
631   }
632 
633   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
634     return 0;
635   }
636 
637   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
638     return -1;
639   }
640 };
641 
642 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
643 public:
644   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
645                                    const DataExtractor &data)
646       : RegisterContextDarwin_arm64(thread, 0) {
647     SetRegisterDataFrom_LC_THREAD(data);
648   }
649 
650   void InvalidateAllRegisters() override {
651     // Do nothing... registers are always valid...
652   }
653 
654   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
655     lldb::offset_t offset = 0;
656     SetError(GPRRegSet, Read, -1);
657     SetError(FPURegSet, Read, -1);
658     SetError(EXCRegSet, Read, -1);
659     bool done = false;
660     while (!done) {
661       int flavor = data.GetU32(&offset);
662       uint32_t count = data.GetU32(&offset);
663       lldb::offset_t next_thread_state = offset + (count * 4);
664       switch (flavor) {
665       case GPRRegSet:
666         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
667         // 32-bit register)
668         if (count >= (33 * 2) + 1) {
669           for (uint32_t i = 0; i < 29; ++i)
670             gpr.x[i] = data.GetU64(&offset);
671           gpr.fp = data.GetU64(&offset);
672           gpr.lr = data.GetU64(&offset);
673           gpr.sp = data.GetU64(&offset);
674           gpr.pc = data.GetU64(&offset);
675           gpr.cpsr = data.GetU32(&offset);
676           SetError(GPRRegSet, Read, 0);
677         }
678         offset = next_thread_state;
679         break;
680       case FPURegSet: {
681         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
682         const int fpu_reg_buf_size = sizeof(fpu);
683         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
684             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
685                               fpu_reg_buf) == fpu_reg_buf_size) {
686           SetError(FPURegSet, Read, 0);
687         } else {
688           done = true;
689         }
690       }
691         offset = next_thread_state;
692         break;
693       case EXCRegSet:
694         if (count == 4) {
695           exc.far = data.GetU64(&offset);
696           exc.esr = data.GetU32(&offset);
697           exc.exception = data.GetU32(&offset);
698           SetError(EXCRegSet, Read, 0);
699         }
700         offset = next_thread_state;
701         break;
702       default:
703         done = true;
704         break;
705       }
706     }
707   }
708 
709   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
710                               const char *alt_name, size_t reg_byte_size,
711                               Stream &data) {
712     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
713     if (reg_info == nullptr)
714       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
715     if (reg_info) {
716       lldb_private::RegisterValue reg_value;
717       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
718         if (reg_info->byte_size >= reg_byte_size)
719           data.Write(reg_value.GetBytes(), reg_byte_size);
720         else {
721           data.Write(reg_value.GetBytes(), reg_info->byte_size);
722           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
723                ++i)
724             data.PutChar(0);
725         }
726         return reg_byte_size;
727       }
728     }
729     // Just write zeros if all else fails
730     for (size_t i = 0; i < reg_byte_size; ++i)
731       data.PutChar(0);
732     return reg_byte_size;
733   }
734 
735   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
736     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
737     if (reg_ctx_sp) {
738       RegisterContext *reg_ctx = reg_ctx_sp.get();
739 
740       data.PutHex32(GPRRegSet); // Flavor
741       data.PutHex32(GPRWordCount);
742       WriteRegister(reg_ctx, "x0", nullptr, 8, data);
743       WriteRegister(reg_ctx, "x1", nullptr, 8, data);
744       WriteRegister(reg_ctx, "x2", nullptr, 8, data);
745       WriteRegister(reg_ctx, "x3", nullptr, 8, data);
746       WriteRegister(reg_ctx, "x4", nullptr, 8, data);
747       WriteRegister(reg_ctx, "x5", nullptr, 8, data);
748       WriteRegister(reg_ctx, "x6", nullptr, 8, data);
749       WriteRegister(reg_ctx, "x7", nullptr, 8, data);
750       WriteRegister(reg_ctx, "x8", nullptr, 8, data);
751       WriteRegister(reg_ctx, "x9", nullptr, 8, data);
752       WriteRegister(reg_ctx, "x10", nullptr, 8, data);
753       WriteRegister(reg_ctx, "x11", nullptr, 8, data);
754       WriteRegister(reg_ctx, "x12", nullptr, 8, data);
755       WriteRegister(reg_ctx, "x13", nullptr, 8, data);
756       WriteRegister(reg_ctx, "x14", nullptr, 8, data);
757       WriteRegister(reg_ctx, "x15", nullptr, 8, data);
758       WriteRegister(reg_ctx, "x16", nullptr, 8, data);
759       WriteRegister(reg_ctx, "x17", nullptr, 8, data);
760       WriteRegister(reg_ctx, "x18", nullptr, 8, data);
761       WriteRegister(reg_ctx, "x19", nullptr, 8, data);
762       WriteRegister(reg_ctx, "x20", nullptr, 8, data);
763       WriteRegister(reg_ctx, "x21", nullptr, 8, data);
764       WriteRegister(reg_ctx, "x22", nullptr, 8, data);
765       WriteRegister(reg_ctx, "x23", nullptr, 8, data);
766       WriteRegister(reg_ctx, "x24", nullptr, 8, data);
767       WriteRegister(reg_ctx, "x25", nullptr, 8, data);
768       WriteRegister(reg_ctx, "x26", nullptr, 8, data);
769       WriteRegister(reg_ctx, "x27", nullptr, 8, data);
770       WriteRegister(reg_ctx, "x28", nullptr, 8, data);
771       WriteRegister(reg_ctx, "fp", nullptr, 8, data);
772       WriteRegister(reg_ctx, "lr", nullptr, 8, data);
773       WriteRegister(reg_ctx, "sp", nullptr, 8, data);
774       WriteRegister(reg_ctx, "pc", nullptr, 8, data);
775       WriteRegister(reg_ctx, "cpsr", nullptr, 4, data);
776 
777       // Write out the EXC registers
778       //            data.PutHex32 (EXCRegSet);
779       //            data.PutHex32 (EXCWordCount);
780       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
781       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
782       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
783       return true;
784     }
785     return false;
786   }
787 
788 protected:
789   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
790 
791   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
792 
793   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
794 
795   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
796 
797   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
798     return 0;
799   }
800 
801   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
802     return 0;
803   }
804 
805   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
806     return 0;
807   }
808 
809   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
810     return -1;
811   }
812 };
813 
814 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
815   switch (magic) {
816   case MH_MAGIC:
817   case MH_CIGAM:
818     return sizeof(struct mach_header);
819 
820   case MH_MAGIC_64:
821   case MH_CIGAM_64:
822     return sizeof(struct mach_header_64);
823     break;
824 
825   default:
826     break;
827   }
828   return 0;
829 }
830 
831 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
832 
833 void ObjectFileMachO::Initialize() {
834   PluginManager::RegisterPlugin(
835       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
836       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
837 }
838 
839 void ObjectFileMachO::Terminate() {
840   PluginManager::UnregisterPlugin(CreateInstance);
841 }
842 
843 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
844   static ConstString g_name("mach-o");
845   return g_name;
846 }
847 
848 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
849   return "Mach-o object file reader (32 and 64 bit)";
850 }
851 
852 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
853                                             DataBufferSP &data_sp,
854                                             lldb::offset_t data_offset,
855                                             const FileSpec *file,
856                                             lldb::offset_t file_offset,
857                                             lldb::offset_t length) {
858   if (!data_sp) {
859     data_sp = MapFileData(*file, length, file_offset);
860     if (!data_sp)
861       return nullptr;
862     data_offset = 0;
863   }
864 
865   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
866     return nullptr;
867 
868   // Update the data to contain the entire file if it doesn't already
869   if (data_sp->GetByteSize() < length) {
870     data_sp = MapFileData(*file, length, file_offset);
871     if (!data_sp)
872       return nullptr;
873     data_offset = 0;
874   }
875   auto objfile_up = llvm::make_unique<ObjectFileMachO>(
876       module_sp, data_sp, data_offset, file, file_offset, length);
877   if (!objfile_up || !objfile_up->ParseHeader())
878     return nullptr;
879 
880   return objfile_up.release();
881 }
882 
883 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
884     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
885     const ProcessSP &process_sp, lldb::addr_t header_addr) {
886   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
887     std::unique_ptr<ObjectFile> objfile_up(
888         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
889     if (objfile_up.get() && objfile_up->ParseHeader())
890       return objfile_up.release();
891   }
892   return nullptr;
893 }
894 
895 size_t ObjectFileMachO::GetModuleSpecifications(
896     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
897     lldb::offset_t data_offset, lldb::offset_t file_offset,
898     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
899   const size_t initial_count = specs.GetSize();
900 
901   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
902     DataExtractor data;
903     data.SetData(data_sp);
904     llvm::MachO::mach_header header;
905     if (ParseHeader(data, &data_offset, header)) {
906       size_t header_and_load_cmds =
907           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
908       if (header_and_load_cmds >= data_sp->GetByteSize()) {
909         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
910         data.SetData(data_sp);
911         data_offset = MachHeaderSizeFromMagic(header.magic);
912       }
913       if (data_sp) {
914         ModuleSpec spec;
915         spec.GetFileSpec() = file;
916         spec.SetObjectOffset(file_offset);
917         spec.SetObjectSize(length);
918 
919         spec.GetArchitecture() = GetArchitecture(header, data, data_offset);
920         if (spec.GetArchitecture().IsValid()) {
921           spec.GetUUID() = GetUUID(header, data, data_offset);
922           specs.Append(spec);
923         }
924       }
925     }
926   }
927   return specs.GetSize() - initial_count;
928 }
929 
930 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
931   static ConstString g_segment_name_TEXT("__TEXT");
932   return g_segment_name_TEXT;
933 }
934 
935 ConstString ObjectFileMachO::GetSegmentNameDATA() {
936   static ConstString g_segment_name_DATA("__DATA");
937   return g_segment_name_DATA;
938 }
939 
940 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
941   static ConstString g_segment_name("__DATA_DIRTY");
942   return g_segment_name;
943 }
944 
945 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
946   static ConstString g_segment_name("__DATA_CONST");
947   return g_segment_name;
948 }
949 
950 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
951   static ConstString g_segment_name_OBJC("__OBJC");
952   return g_segment_name_OBJC;
953 }
954 
955 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
956   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
957   return g_section_name_LINKEDIT;
958 }
959 
960 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
961   static ConstString g_section_name("__DWARF");
962   return g_section_name;
963 }
964 
965 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
966   static ConstString g_section_name_eh_frame("__eh_frame");
967   return g_section_name_eh_frame;
968 }
969 
970 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
971                                       lldb::addr_t data_offset,
972                                       lldb::addr_t data_length) {
973   DataExtractor data;
974   data.SetData(data_sp, data_offset, data_length);
975   lldb::offset_t offset = 0;
976   uint32_t magic = data.GetU32(&offset);
977   return MachHeaderSizeFromMagic(magic) != 0;
978 }
979 
980 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
981                                  DataBufferSP &data_sp,
982                                  lldb::offset_t data_offset,
983                                  const FileSpec *file,
984                                  lldb::offset_t file_offset,
985                                  lldb::offset_t length)
986     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
987       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
988       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
989       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
990   ::memset(&m_header, 0, sizeof(m_header));
991   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
992 }
993 
994 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
995                                  lldb::DataBufferSP &header_data_sp,
996                                  const lldb::ProcessSP &process_sp,
997                                  lldb::addr_t header_addr)
998     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
999       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1000       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1001       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1002   ::memset(&m_header, 0, sizeof(m_header));
1003   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1004 }
1005 
1006 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1007                                   lldb::offset_t *data_offset_ptr,
1008                                   llvm::MachO::mach_header &header) {
1009   data.SetByteOrder(endian::InlHostByteOrder());
1010   // Leave magic in the original byte order
1011   header.magic = data.GetU32(data_offset_ptr);
1012   bool can_parse = false;
1013   bool is_64_bit = false;
1014   switch (header.magic) {
1015   case MH_MAGIC:
1016     data.SetByteOrder(endian::InlHostByteOrder());
1017     data.SetAddressByteSize(4);
1018     can_parse = true;
1019     break;
1020 
1021   case MH_MAGIC_64:
1022     data.SetByteOrder(endian::InlHostByteOrder());
1023     data.SetAddressByteSize(8);
1024     can_parse = true;
1025     is_64_bit = true;
1026     break;
1027 
1028   case MH_CIGAM:
1029     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1030                           ? eByteOrderLittle
1031                           : eByteOrderBig);
1032     data.SetAddressByteSize(4);
1033     can_parse = true;
1034     break;
1035 
1036   case MH_CIGAM_64:
1037     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1038                           ? eByteOrderLittle
1039                           : eByteOrderBig);
1040     data.SetAddressByteSize(8);
1041     is_64_bit = true;
1042     can_parse = true;
1043     break;
1044 
1045   default:
1046     break;
1047   }
1048 
1049   if (can_parse) {
1050     data.GetU32(data_offset_ptr, &header.cputype, 6);
1051     if (is_64_bit)
1052       *data_offset_ptr += 4;
1053     return true;
1054   } else {
1055     memset(&header, 0, sizeof(header));
1056   }
1057   return false;
1058 }
1059 
1060 bool ObjectFileMachO::ParseHeader() {
1061   ModuleSP module_sp(GetModule());
1062   if (module_sp) {
1063     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1064     bool can_parse = false;
1065     lldb::offset_t offset = 0;
1066     m_data.SetByteOrder(endian::InlHostByteOrder());
1067     // Leave magic in the original byte order
1068     m_header.magic = m_data.GetU32(&offset);
1069     switch (m_header.magic) {
1070     case MH_MAGIC:
1071       m_data.SetByteOrder(endian::InlHostByteOrder());
1072       m_data.SetAddressByteSize(4);
1073       can_parse = true;
1074       break;
1075 
1076     case MH_MAGIC_64:
1077       m_data.SetByteOrder(endian::InlHostByteOrder());
1078       m_data.SetAddressByteSize(8);
1079       can_parse = true;
1080       break;
1081 
1082     case MH_CIGAM:
1083       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1084                               ? eByteOrderLittle
1085                               : eByteOrderBig);
1086       m_data.SetAddressByteSize(4);
1087       can_parse = true;
1088       break;
1089 
1090     case MH_CIGAM_64:
1091       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1092                               ? eByteOrderLittle
1093                               : eByteOrderBig);
1094       m_data.SetAddressByteSize(8);
1095       can_parse = true;
1096       break;
1097 
1098     default:
1099       break;
1100     }
1101 
1102     if (can_parse) {
1103       m_data.GetU32(&offset, &m_header.cputype, 6);
1104 
1105       if (ArchSpec mach_arch = GetArchitecture()) {
1106         // Check if the module has a required architecture
1107         const ArchSpec &module_arch = module_sp->GetArchitecture();
1108         if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1109           return false;
1110 
1111         if (SetModulesArchitecture(mach_arch)) {
1112           const size_t header_and_lc_size =
1113               m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1114           if (m_data.GetByteSize() < header_and_lc_size) {
1115             DataBufferSP data_sp;
1116             ProcessSP process_sp(m_process_wp.lock());
1117             if (process_sp) {
1118               data_sp =
1119                   ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1120             } else {
1121               // Read in all only the load command data from the file on disk
1122               data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1123               if (data_sp->GetByteSize() != header_and_lc_size)
1124                 return false;
1125             }
1126             if (data_sp)
1127               m_data.SetData(data_sp);
1128           }
1129         }
1130         return true;
1131       }
1132     } else {
1133       memset(&m_header, 0, sizeof(struct mach_header));
1134     }
1135   }
1136   return false;
1137 }
1138 
1139 ByteOrder ObjectFileMachO::GetByteOrder() const {
1140   return m_data.GetByteOrder();
1141 }
1142 
1143 bool ObjectFileMachO::IsExecutable() const {
1144   return m_header.filetype == MH_EXECUTE;
1145 }
1146 
1147 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1148   return m_data.GetAddressByteSize();
1149 }
1150 
1151 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1152   Symtab *symtab = GetSymtab();
1153   if (symtab) {
1154     Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1155     if (symbol) {
1156       if (symbol->ValueIsAddress()) {
1157         SectionSP section_sp(symbol->GetAddressRef().GetSection());
1158         if (section_sp) {
1159           const lldb::SectionType section_type = section_sp->GetType();
1160           switch (section_type) {
1161           case eSectionTypeInvalid:
1162             return AddressClass::eUnknown;
1163 
1164           case eSectionTypeCode:
1165             if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1166               // For ARM we have a bit in the n_desc field of the symbol that
1167               // tells us ARM/Thumb which is bit 0x0008.
1168               if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1169                 return AddressClass::eCodeAlternateISA;
1170             }
1171             return AddressClass::eCode;
1172 
1173           case eSectionTypeContainer:
1174             return AddressClass::eUnknown;
1175 
1176           case eSectionTypeData:
1177           case eSectionTypeDataCString:
1178           case eSectionTypeDataCStringPointers:
1179           case eSectionTypeDataSymbolAddress:
1180           case eSectionTypeData4:
1181           case eSectionTypeData8:
1182           case eSectionTypeData16:
1183           case eSectionTypeDataPointers:
1184           case eSectionTypeZeroFill:
1185           case eSectionTypeDataObjCMessageRefs:
1186           case eSectionTypeDataObjCCFStrings:
1187           case eSectionTypeGoSymtab:
1188             return AddressClass::eData;
1189 
1190           case eSectionTypeDebug:
1191           case eSectionTypeDWARFDebugAbbrev:
1192           case eSectionTypeDWARFDebugAbbrevDwo:
1193           case eSectionTypeDWARFDebugAddr:
1194           case eSectionTypeDWARFDebugAranges:
1195           case eSectionTypeDWARFDebugCuIndex:
1196           case eSectionTypeDWARFDebugFrame:
1197           case eSectionTypeDWARFDebugInfo:
1198           case eSectionTypeDWARFDebugInfoDwo:
1199           case eSectionTypeDWARFDebugLine:
1200           case eSectionTypeDWARFDebugLineStr:
1201           case eSectionTypeDWARFDebugLoc:
1202           case eSectionTypeDWARFDebugLocLists:
1203           case eSectionTypeDWARFDebugMacInfo:
1204           case eSectionTypeDWARFDebugMacro:
1205           case eSectionTypeDWARFDebugNames:
1206           case eSectionTypeDWARFDebugPubNames:
1207           case eSectionTypeDWARFDebugPubTypes:
1208           case eSectionTypeDWARFDebugRanges:
1209           case eSectionTypeDWARFDebugRngLists:
1210           case eSectionTypeDWARFDebugStr:
1211           case eSectionTypeDWARFDebugStrDwo:
1212           case eSectionTypeDWARFDebugStrOffsets:
1213           case eSectionTypeDWARFDebugStrOffsetsDwo:
1214           case eSectionTypeDWARFDebugTypes:
1215           case eSectionTypeDWARFDebugTypesDwo:
1216           case eSectionTypeDWARFAppleNames:
1217           case eSectionTypeDWARFAppleTypes:
1218           case eSectionTypeDWARFAppleNamespaces:
1219           case eSectionTypeDWARFAppleObjC:
1220           case eSectionTypeDWARFGNUDebugAltLink:
1221             return AddressClass::eDebug;
1222 
1223           case eSectionTypeEHFrame:
1224           case eSectionTypeARMexidx:
1225           case eSectionTypeARMextab:
1226           case eSectionTypeCompactUnwind:
1227             return AddressClass::eRuntime;
1228 
1229           case eSectionTypeAbsoluteAddress:
1230           case eSectionTypeELFSymbolTable:
1231           case eSectionTypeELFDynamicSymbols:
1232           case eSectionTypeELFRelocationEntries:
1233           case eSectionTypeELFDynamicLinkInfo:
1234           case eSectionTypeOther:
1235             return AddressClass::eUnknown;
1236           }
1237         }
1238       }
1239 
1240       const SymbolType symbol_type = symbol->GetType();
1241       switch (symbol_type) {
1242       case eSymbolTypeAny:
1243         return AddressClass::eUnknown;
1244       case eSymbolTypeAbsolute:
1245         return AddressClass::eUnknown;
1246 
1247       case eSymbolTypeCode:
1248       case eSymbolTypeTrampoline:
1249       case eSymbolTypeResolver:
1250         if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1251           // For ARM we have a bit in the n_desc field of the symbol that tells
1252           // us ARM/Thumb which is bit 0x0008.
1253           if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1254             return AddressClass::eCodeAlternateISA;
1255         }
1256         return AddressClass::eCode;
1257 
1258       case eSymbolTypeData:
1259         return AddressClass::eData;
1260       case eSymbolTypeRuntime:
1261         return AddressClass::eRuntime;
1262       case eSymbolTypeException:
1263         return AddressClass::eRuntime;
1264       case eSymbolTypeSourceFile:
1265         return AddressClass::eDebug;
1266       case eSymbolTypeHeaderFile:
1267         return AddressClass::eDebug;
1268       case eSymbolTypeObjectFile:
1269         return AddressClass::eDebug;
1270       case eSymbolTypeCommonBlock:
1271         return AddressClass::eDebug;
1272       case eSymbolTypeBlock:
1273         return AddressClass::eDebug;
1274       case eSymbolTypeLocal:
1275         return AddressClass::eData;
1276       case eSymbolTypeParam:
1277         return AddressClass::eData;
1278       case eSymbolTypeVariable:
1279         return AddressClass::eData;
1280       case eSymbolTypeVariableType:
1281         return AddressClass::eDebug;
1282       case eSymbolTypeLineEntry:
1283         return AddressClass::eDebug;
1284       case eSymbolTypeLineHeader:
1285         return AddressClass::eDebug;
1286       case eSymbolTypeScopeBegin:
1287         return AddressClass::eDebug;
1288       case eSymbolTypeScopeEnd:
1289         return AddressClass::eDebug;
1290       case eSymbolTypeAdditional:
1291         return AddressClass::eUnknown;
1292       case eSymbolTypeCompiler:
1293         return AddressClass::eDebug;
1294       case eSymbolTypeInstrumentation:
1295         return AddressClass::eDebug;
1296       case eSymbolTypeUndefined:
1297         return AddressClass::eUnknown;
1298       case eSymbolTypeObjCClass:
1299         return AddressClass::eRuntime;
1300       case eSymbolTypeObjCMetaClass:
1301         return AddressClass::eRuntime;
1302       case eSymbolTypeObjCIVar:
1303         return AddressClass::eRuntime;
1304       case eSymbolTypeReExported:
1305         return AddressClass::eRuntime;
1306       }
1307     }
1308   }
1309   return AddressClass::eUnknown;
1310 }
1311 
1312 Symtab *ObjectFileMachO::GetSymtab() {
1313   ModuleSP module_sp(GetModule());
1314   if (module_sp) {
1315     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1316     if (m_symtab_up == nullptr) {
1317       m_symtab_up.reset(new Symtab(this));
1318       std::lock_guard<std::recursive_mutex> symtab_guard(
1319           m_symtab_up->GetMutex());
1320       ParseSymtab();
1321       m_symtab_up->Finalize();
1322     }
1323   }
1324   return m_symtab_up.get();
1325 }
1326 
1327 bool ObjectFileMachO::IsStripped() {
1328   if (m_dysymtab.cmd == 0) {
1329     ModuleSP module_sp(GetModule());
1330     if (module_sp) {
1331       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1332       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1333         const lldb::offset_t load_cmd_offset = offset;
1334 
1335         load_command lc;
1336         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1337           break;
1338         if (lc.cmd == LC_DYSYMTAB) {
1339           m_dysymtab.cmd = lc.cmd;
1340           m_dysymtab.cmdsize = lc.cmdsize;
1341           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1342                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1343               nullptr) {
1344             // Clear m_dysymtab if we were unable to read all items from the
1345             // load command
1346             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1347           }
1348         }
1349         offset = load_cmd_offset + lc.cmdsize;
1350       }
1351     }
1352   }
1353   if (m_dysymtab.cmd)
1354     return m_dysymtab.nlocalsym <= 1;
1355   return false;
1356 }
1357 
1358 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1359   EncryptedFileRanges result;
1360   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1361 
1362   encryption_info_command encryption_cmd;
1363   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1364     const lldb::offset_t load_cmd_offset = offset;
1365     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1366       break;
1367 
1368     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1369     // 3 fields we care about, so treat them the same.
1370     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1371         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1372       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1373         if (encryption_cmd.cryptid != 0) {
1374           EncryptedFileRanges::Entry entry;
1375           entry.SetRangeBase(encryption_cmd.cryptoff);
1376           entry.SetByteSize(encryption_cmd.cryptsize);
1377           result.Append(entry);
1378         }
1379       }
1380     }
1381     offset = load_cmd_offset + encryption_cmd.cmdsize;
1382   }
1383 
1384   return result;
1385 }
1386 
1387 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd,
1388                                              uint32_t cmd_idx) {
1389   if (m_length == 0 || seg_cmd.filesize == 0)
1390     return;
1391 
1392   if (seg_cmd.fileoff > m_length) {
1393     // We have a load command that says it extends past the end of the file.
1394     // This is likely a corrupt file.  We don't have any way to return an error
1395     // condition here (this method was likely invoked from something like
1396     // ObjectFile::GetSectionList()), so we just null out the section contents,
1397     // and dump a message to stdout.  The most common case here is core file
1398     // debugging with a truncated file.
1399     const char *lc_segment_name =
1400         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1401     GetModule()->ReportWarning(
1402         "load command %u %s has a fileoff (0x%" PRIx64
1403         ") that extends beyond the end of the file (0x%" PRIx64
1404         "), ignoring this section",
1405         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1406 
1407     seg_cmd.fileoff = 0;
1408     seg_cmd.filesize = 0;
1409   }
1410 
1411   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1412     // We have a load command that says it extends past the end of the file.
1413     // This is likely a corrupt file.  We don't have any way to return an error
1414     // condition here (this method was likely invoked from something like
1415     // ObjectFile::GetSectionList()), so we just null out the section contents,
1416     // and dump a message to stdout.  The most common case here is core file
1417     // debugging with a truncated file.
1418     const char *lc_segment_name =
1419         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1420     GetModule()->ReportWarning(
1421         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1422         ") that extends beyond the end of the file (0x%" PRIx64
1423         "), the segment will be truncated to match",
1424         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1425 
1426     // Truncate the length
1427     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1428   }
1429 }
1430 
1431 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) {
1432   uint32_t result = 0;
1433   if (seg_cmd.initprot & VM_PROT_READ)
1434     result |= ePermissionsReadable;
1435   if (seg_cmd.initprot & VM_PROT_WRITE)
1436     result |= ePermissionsWritable;
1437   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1438     result |= ePermissionsExecutable;
1439   return result;
1440 }
1441 
1442 static lldb::SectionType GetSectionType(uint32_t flags,
1443                                         ConstString section_name) {
1444 
1445   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1446     return eSectionTypeCode;
1447 
1448   uint32_t mach_sect_type = flags & SECTION_TYPE;
1449   static ConstString g_sect_name_objc_data("__objc_data");
1450   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1451   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1452   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1453   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1454   static ConstString g_sect_name_objc_const("__objc_const");
1455   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1456   static ConstString g_sect_name_cfstring("__cfstring");
1457 
1458   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1459   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1460   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1461   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1462   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1463   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1464   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1465   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1466   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1467   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1468   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1469   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1470   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1471   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1472   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1473   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1474   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1475   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1476   static ConstString g_sect_name_eh_frame("__eh_frame");
1477   static ConstString g_sect_name_compact_unwind("__unwind_info");
1478   static ConstString g_sect_name_text("__text");
1479   static ConstString g_sect_name_data("__data");
1480   static ConstString g_sect_name_go_symtab("__gosymtab");
1481 
1482   if (section_name == g_sect_name_dwarf_debug_abbrev)
1483     return eSectionTypeDWARFDebugAbbrev;
1484   if (section_name == g_sect_name_dwarf_debug_aranges)
1485     return eSectionTypeDWARFDebugAranges;
1486   if (section_name == g_sect_name_dwarf_debug_frame)
1487     return eSectionTypeDWARFDebugFrame;
1488   if (section_name == g_sect_name_dwarf_debug_info)
1489     return eSectionTypeDWARFDebugInfo;
1490   if (section_name == g_sect_name_dwarf_debug_line)
1491     return eSectionTypeDWARFDebugLine;
1492   if (section_name == g_sect_name_dwarf_debug_loc)
1493     return eSectionTypeDWARFDebugLoc;
1494   if (section_name == g_sect_name_dwarf_debug_loclists)
1495     return eSectionTypeDWARFDebugLocLists;
1496   if (section_name == g_sect_name_dwarf_debug_macinfo)
1497     return eSectionTypeDWARFDebugMacInfo;
1498   if (section_name == g_sect_name_dwarf_debug_names)
1499     return eSectionTypeDWARFDebugNames;
1500   if (section_name == g_sect_name_dwarf_debug_pubnames)
1501     return eSectionTypeDWARFDebugPubNames;
1502   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1503     return eSectionTypeDWARFDebugPubTypes;
1504   if (section_name == g_sect_name_dwarf_debug_ranges)
1505     return eSectionTypeDWARFDebugRanges;
1506   if (section_name == g_sect_name_dwarf_debug_str)
1507     return eSectionTypeDWARFDebugStr;
1508   if (section_name == g_sect_name_dwarf_debug_types)
1509     return eSectionTypeDWARFDebugTypes;
1510   if (section_name == g_sect_name_dwarf_apple_names)
1511     return eSectionTypeDWARFAppleNames;
1512   if (section_name == g_sect_name_dwarf_apple_types)
1513     return eSectionTypeDWARFAppleTypes;
1514   if (section_name == g_sect_name_dwarf_apple_namespaces)
1515     return eSectionTypeDWARFAppleNamespaces;
1516   if (section_name == g_sect_name_dwarf_apple_objc)
1517     return eSectionTypeDWARFAppleObjC;
1518   if (section_name == g_sect_name_objc_selrefs)
1519     return eSectionTypeDataCStringPointers;
1520   if (section_name == g_sect_name_objc_msgrefs)
1521     return eSectionTypeDataObjCMessageRefs;
1522   if (section_name == g_sect_name_eh_frame)
1523     return eSectionTypeEHFrame;
1524   if (section_name == g_sect_name_compact_unwind)
1525     return eSectionTypeCompactUnwind;
1526   if (section_name == g_sect_name_cfstring)
1527     return eSectionTypeDataObjCCFStrings;
1528   if (section_name == g_sect_name_go_symtab)
1529     return eSectionTypeGoSymtab;
1530   if (section_name == g_sect_name_objc_data ||
1531       section_name == g_sect_name_objc_classrefs ||
1532       section_name == g_sect_name_objc_superrefs ||
1533       section_name == g_sect_name_objc_const ||
1534       section_name == g_sect_name_objc_classlist) {
1535     return eSectionTypeDataPointers;
1536   }
1537 
1538   switch (mach_sect_type) {
1539   // TODO: categorize sections by other flags for regular sections
1540   case S_REGULAR:
1541     if (section_name == g_sect_name_text)
1542       return eSectionTypeCode;
1543     if (section_name == g_sect_name_data)
1544       return eSectionTypeData;
1545     return eSectionTypeOther;
1546   case S_ZEROFILL:
1547     return eSectionTypeZeroFill;
1548   case S_CSTRING_LITERALS: // section with only literal C strings
1549     return eSectionTypeDataCString;
1550   case S_4BYTE_LITERALS: // section with only 4 byte literals
1551     return eSectionTypeData4;
1552   case S_8BYTE_LITERALS: // section with only 8 byte literals
1553     return eSectionTypeData8;
1554   case S_LITERAL_POINTERS: // section with only pointers to literals
1555     return eSectionTypeDataPointers;
1556   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1557     return eSectionTypeDataPointers;
1558   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1559     return eSectionTypeDataPointers;
1560   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1561                        // the reserved2 field
1562     return eSectionTypeCode;
1563   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1564                                  // initialization
1565     return eSectionTypeDataPointers;
1566   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1567                                  // termination
1568     return eSectionTypeDataPointers;
1569   case S_COALESCED:
1570     return eSectionTypeOther;
1571   case S_GB_ZEROFILL:
1572     return eSectionTypeZeroFill;
1573   case S_INTERPOSING: // section with only pairs of function pointers for
1574                       // interposing
1575     return eSectionTypeCode;
1576   case S_16BYTE_LITERALS: // section with only 16 byte literals
1577     return eSectionTypeData16;
1578   case S_DTRACE_DOF:
1579     return eSectionTypeDebug;
1580   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1581     return eSectionTypeDataPointers;
1582   default:
1583     return eSectionTypeOther;
1584   }
1585 }
1586 
1587 struct ObjectFileMachO::SegmentParsingContext {
1588   const EncryptedFileRanges EncryptedRanges;
1589   lldb_private::SectionList &UnifiedList;
1590   uint32_t NextSegmentIdx = 0;
1591   uint32_t NextSectionIdx = 0;
1592   bool FileAddressesChanged = false;
1593 
1594   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1595                         lldb_private::SectionList &UnifiedList)
1596       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1597 };
1598 
1599 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_,
1600                                             lldb::offset_t offset,
1601                                             uint32_t cmd_idx,
1602                                             SegmentParsingContext &context) {
1603   segment_command_64 load_cmd;
1604   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1605 
1606   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1607     return;
1608 
1609   ModuleSP module_sp = GetModule();
1610   const bool is_core = GetType() == eTypeCoreFile;
1611   const bool is_dsym = (m_header.filetype == MH_DSYM);
1612   bool add_section = true;
1613   bool add_to_unified = true;
1614   ConstString const_segname(
1615       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1616 
1617   SectionSP unified_section_sp(
1618       context.UnifiedList.FindSectionByName(const_segname));
1619   if (is_dsym && unified_section_sp) {
1620     if (const_segname == GetSegmentNameLINKEDIT()) {
1621       // We need to keep the __LINKEDIT segment private to this object file
1622       // only
1623       add_to_unified = false;
1624     } else {
1625       // This is the dSYM file and this section has already been created by the
1626       // object file, no need to create it.
1627       add_section = false;
1628     }
1629   }
1630   load_cmd.vmaddr = m_data.GetAddress(&offset);
1631   load_cmd.vmsize = m_data.GetAddress(&offset);
1632   load_cmd.fileoff = m_data.GetAddress(&offset);
1633   load_cmd.filesize = m_data.GetAddress(&offset);
1634   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1635     return;
1636 
1637   SanitizeSegmentCommand(load_cmd, cmd_idx);
1638 
1639   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1640   const bool segment_is_encrypted =
1641       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1642 
1643   // Keep a list of mach segments around in case we need to get at data that
1644   // isn't stored in the abstracted Sections.
1645   m_mach_segments.push_back(load_cmd);
1646 
1647   // Use a segment ID of the segment index shifted left by 8 so they never
1648   // conflict with any of the sections.
1649   SectionSP segment_sp;
1650   if (add_section && (const_segname || is_core)) {
1651     segment_sp = std::make_shared<Section>(
1652         module_sp, // Module to which this section belongs
1653         this,      // Object file to which this sections belongs
1654         ++context.NextSegmentIdx
1655             << 8, // Section ID is the 1 based segment index
1656         // shifted right by 8 bits as not to collide with any of the 256
1657         // section IDs that are possible
1658         const_segname,         // Name of this section
1659         eSectionTypeContainer, // This section is a container of other
1660         // sections.
1661         load_cmd.vmaddr, // File VM address == addresses as they are
1662         // found in the object file
1663         load_cmd.vmsize,  // VM size in bytes of this section
1664         load_cmd.fileoff, // Offset to the data for this section in
1665         // the file
1666         load_cmd.filesize, // Size in bytes of this section as found
1667         // in the file
1668         0,                // Segments have no alignment information
1669         load_cmd.flags); // Flags for this section
1670 
1671     segment_sp->SetIsEncrypted(segment_is_encrypted);
1672     m_sections_up->AddSection(segment_sp);
1673     segment_sp->SetPermissions(segment_permissions);
1674     if (add_to_unified)
1675       context.UnifiedList.AddSection(segment_sp);
1676   } else if (unified_section_sp) {
1677     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1678       // Check to see if the module was read from memory?
1679       if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) {
1680         // We have a module that is in memory and needs to have its file
1681         // address adjusted. We need to do this because when we load a file
1682         // from memory, its addresses will be slid already, yet the addresses
1683         // in the new symbol file will still be unslid.  Since everything is
1684         // stored as section offset, this shouldn't cause any problems.
1685 
1686         // Make sure we've parsed the symbol table from the ObjectFile before
1687         // we go around changing its Sections.
1688         module_sp->GetObjectFile()->GetSymtab();
1689         // eh_frame would present the same problems but we parse that on a per-
1690         // function basis as-needed so it's more difficult to remove its use of
1691         // the Sections.  Realistically, the environments where this code path
1692         // will be taken will not have eh_frame sections.
1693 
1694         unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1695 
1696         // Notify the module that the section addresses have been changed once
1697         // we're done so any file-address caches can be updated.
1698         context.FileAddressesChanged = true;
1699       }
1700     }
1701     m_sections_up->AddSection(unified_section_sp);
1702   }
1703 
1704   struct section_64 sect64;
1705   ::memset(&sect64, 0, sizeof(sect64));
1706   // Push a section into our mach sections for the section at index zero
1707   // (NO_SECT) if we don't have any mach sections yet...
1708   if (m_mach_sections.empty())
1709     m_mach_sections.push_back(sect64);
1710   uint32_t segment_sect_idx;
1711   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1712 
1713   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1714   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1715        ++segment_sect_idx) {
1716     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1717                      sizeof(sect64.sectname)) == nullptr)
1718       break;
1719     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1720                      sizeof(sect64.segname)) == nullptr)
1721       break;
1722     sect64.addr = m_data.GetAddress(&offset);
1723     sect64.size = m_data.GetAddress(&offset);
1724 
1725     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1726       break;
1727 
1728     // Keep a list of mach sections around in case we need to get at data that
1729     // isn't stored in the abstracted Sections.
1730     m_mach_sections.push_back(sect64);
1731 
1732     if (add_section) {
1733       ConstString section_name(
1734           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1735       if (!const_segname) {
1736         // We have a segment with no name so we need to conjure up segments
1737         // that correspond to the section's segname if there isn't already such
1738         // a section. If there is such a section, we resize the section so that
1739         // it spans all sections.  We also mark these sections as fake so
1740         // address matches don't hit if they land in the gaps between the child
1741         // sections.
1742         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1743                                                   sizeof(sect64.segname));
1744         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1745         if (segment_sp.get()) {
1746           Section *segment = segment_sp.get();
1747           // Grow the section size as needed.
1748           const lldb::addr_t sect64_min_addr = sect64.addr;
1749           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1750           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1751           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1752           const lldb::addr_t curr_seg_max_addr =
1753               curr_seg_min_addr + curr_seg_byte_size;
1754           if (sect64_min_addr >= curr_seg_min_addr) {
1755             const lldb::addr_t new_seg_byte_size =
1756                 sect64_max_addr - curr_seg_min_addr;
1757             // Only grow the section size if needed
1758             if (new_seg_byte_size > curr_seg_byte_size)
1759               segment->SetByteSize(new_seg_byte_size);
1760           } else {
1761             // We need to change the base address of the segment and adjust the
1762             // child section offsets for all existing children.
1763             const lldb::addr_t slide_amount =
1764                 sect64_min_addr - curr_seg_min_addr;
1765             segment->Slide(slide_amount, false);
1766             segment->GetChildren().Slide(-slide_amount, false);
1767             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1768           }
1769 
1770           // Grow the section size as needed.
1771           if (sect64.offset) {
1772             const lldb::addr_t segment_min_file_offset =
1773                 segment->GetFileOffset();
1774             const lldb::addr_t segment_max_file_offset =
1775                 segment_min_file_offset + segment->GetFileSize();
1776 
1777             const lldb::addr_t section_min_file_offset = sect64.offset;
1778             const lldb::addr_t section_max_file_offset =
1779                 section_min_file_offset + sect64.size;
1780             const lldb::addr_t new_file_offset =
1781                 std::min(section_min_file_offset, segment_min_file_offset);
1782             const lldb::addr_t new_file_size =
1783                 std::max(section_max_file_offset, segment_max_file_offset) -
1784                 new_file_offset;
1785             segment->SetFileOffset(new_file_offset);
1786             segment->SetFileSize(new_file_size);
1787           }
1788         } else {
1789           // Create a fake section for the section's named segment
1790           segment_sp = std::make_shared<Section>(
1791               segment_sp, // Parent section
1792               module_sp,  // Module to which this section belongs
1793               this,       // Object file to which this section belongs
1794               ++context.NextSegmentIdx
1795                   << 8, // Section ID is the 1 based segment index
1796               // shifted right by 8 bits as not to
1797               // collide with any of the 256 section IDs
1798               // that are possible
1799               const_segname,         // Name of this section
1800               eSectionTypeContainer, // This section is a container of
1801               // other sections.
1802               sect64.addr, // File VM address == addresses as they are
1803               // found in the object file
1804               sect64.size,   // VM size in bytes of this section
1805               sect64.offset, // Offset to the data for this section in
1806               // the file
1807               sect64.offset ? sect64.size : 0, // Size in bytes of
1808               // this section as
1809               // found in the file
1810               sect64.align,
1811               load_cmd.flags); // Flags for this section
1812           segment_sp->SetIsFake(true);
1813           segment_sp->SetPermissions(segment_permissions);
1814           m_sections_up->AddSection(segment_sp);
1815           if (add_to_unified)
1816             context.UnifiedList.AddSection(segment_sp);
1817           segment_sp->SetIsEncrypted(segment_is_encrypted);
1818         }
1819       }
1820       assert(segment_sp.get());
1821 
1822       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1823 
1824       SectionSP section_sp(new Section(
1825           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1826           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1827           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1828           sect64.flags));
1829       // Set the section to be encrypted to match the segment
1830 
1831       bool section_is_encrypted = false;
1832       if (!segment_is_encrypted && load_cmd.filesize != 0)
1833         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1834                                    sect64.offset) != nullptr;
1835 
1836       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1837       section_sp->SetPermissions(segment_permissions);
1838       segment_sp->GetChildren().AddSection(section_sp);
1839 
1840       if (segment_sp->IsFake()) {
1841         segment_sp.reset();
1842         const_segname.Clear();
1843       }
1844     }
1845   }
1846   if (segment_sp && is_dsym) {
1847     if (first_segment_sectID <= context.NextSectionIdx) {
1848       lldb::user_id_t sect_uid;
1849       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1850            ++sect_uid) {
1851         SectionSP curr_section_sp(
1852             segment_sp->GetChildren().FindSectionByID(sect_uid));
1853         SectionSP next_section_sp;
1854         if (sect_uid + 1 <= context.NextSectionIdx)
1855           next_section_sp =
1856               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1857 
1858         if (curr_section_sp.get()) {
1859           if (curr_section_sp->GetByteSize() == 0) {
1860             if (next_section_sp.get() != nullptr)
1861               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1862                                            curr_section_sp->GetFileAddress());
1863             else
1864               curr_section_sp->SetByteSize(load_cmd.vmsize);
1865           }
1866         }
1867       }
1868     }
1869   }
1870 }
1871 
1872 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd,
1873                                              lldb::offset_t offset) {
1874   m_dysymtab.cmd = load_cmd.cmd;
1875   m_dysymtab.cmdsize = load_cmd.cmdsize;
1876   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1877                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1878 }
1879 
1880 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1881   if (m_sections_up)
1882     return;
1883 
1884   m_sections_up.reset(new SectionList());
1885 
1886   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1887   // bool dump_sections = false;
1888   ModuleSP module_sp(GetModule());
1889 
1890   offset = MachHeaderSizeFromMagic(m_header.magic);
1891 
1892   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1893   struct load_command load_cmd;
1894   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1895     const lldb::offset_t load_cmd_offset = offset;
1896     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1897       break;
1898 
1899     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1900       ProcessSegmentCommand(load_cmd, offset, i, context);
1901     else if (load_cmd.cmd == LC_DYSYMTAB)
1902       ProcessDysymtabCommand(load_cmd, offset);
1903 
1904     offset = load_cmd_offset + load_cmd.cmdsize;
1905   }
1906 
1907   if (context.FileAddressesChanged && module_sp)
1908     module_sp->SectionFileAddressesChanged();
1909 }
1910 
1911 class MachSymtabSectionInfo {
1912 public:
1913   MachSymtabSectionInfo(SectionList *section_list)
1914       : m_section_list(section_list), m_section_infos() {
1915     // Get the number of sections down to a depth of 1 to include all segments
1916     // and their sections, but no other sections that may be added for debug
1917     // map or
1918     m_section_infos.resize(section_list->GetNumSections(1));
1919   }
1920 
1921   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1922     if (n_sect == 0)
1923       return SectionSP();
1924     if (n_sect < m_section_infos.size()) {
1925       if (!m_section_infos[n_sect].section_sp) {
1926         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1927         m_section_infos[n_sect].section_sp = section_sp;
1928         if (section_sp) {
1929           m_section_infos[n_sect].vm_range.SetBaseAddress(
1930               section_sp->GetFileAddress());
1931           m_section_infos[n_sect].vm_range.SetByteSize(
1932               section_sp->GetByteSize());
1933         } else {
1934           Host::SystemLog(Host::eSystemLogError,
1935                           "error: unable to find section for section %u\n",
1936                           n_sect);
1937         }
1938       }
1939       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1940         // Symbol is in section.
1941         return m_section_infos[n_sect].section_sp;
1942       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1943                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1944                      file_addr) {
1945         // Symbol is in section with zero size, but has the same start address
1946         // as the section. This can happen with linker symbols (symbols that
1947         // start with the letter 'l' or 'L'.
1948         return m_section_infos[n_sect].section_sp;
1949       }
1950     }
1951     return m_section_list->FindSectionContainingFileAddress(file_addr);
1952   }
1953 
1954 protected:
1955   struct SectionInfo {
1956     SectionInfo() : vm_range(), section_sp() {}
1957 
1958     VMRange vm_range;
1959     SectionSP section_sp;
1960   };
1961   SectionList *m_section_list;
1962   std::vector<SectionInfo> m_section_infos;
1963 };
1964 
1965 struct TrieEntry {
1966   TrieEntry()
1967       : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
1968         import_name() {}
1969 
1970   void Clear() {
1971     name.Clear();
1972     address = LLDB_INVALID_ADDRESS;
1973     flags = 0;
1974     other = 0;
1975     import_name.Clear();
1976   }
1977 
1978   void Dump() const {
1979     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1980            static_cast<unsigned long long>(address),
1981            static_cast<unsigned long long>(flags),
1982            static_cast<unsigned long long>(other), name.GetCString());
1983     if (import_name)
1984       printf(" -> \"%s\"\n", import_name.GetCString());
1985     else
1986       printf("\n");
1987   }
1988   ConstString name;
1989   uint64_t address;
1990   uint64_t flags;
1991   uint64_t other;
1992   ConstString import_name;
1993 };
1994 
1995 struct TrieEntryWithOffset {
1996   lldb::offset_t nodeOffset;
1997   TrieEntry entry;
1998 
1999   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2000 
2001   void Dump(uint32_t idx) const {
2002     printf("[%3u] 0x%16.16llx: ", idx,
2003            static_cast<unsigned long long>(nodeOffset));
2004     entry.Dump();
2005   }
2006 
2007   bool operator<(const TrieEntryWithOffset &other) const {
2008     return (nodeOffset < other.nodeOffset);
2009   }
2010 };
2011 
2012 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2013                              const bool is_arm,
2014                              std::vector<llvm::StringRef> &nameSlices,
2015                              std::set<lldb::addr_t> &resolver_addresses,
2016                              std::vector<TrieEntryWithOffset> &output) {
2017   if (!data.ValidOffset(offset))
2018     return true;
2019 
2020   const uint64_t terminalSize = data.GetULEB128(&offset);
2021   lldb::offset_t children_offset = offset + terminalSize;
2022   if (terminalSize != 0) {
2023     TrieEntryWithOffset e(offset);
2024     e.entry.flags = data.GetULEB128(&offset);
2025     const char *import_name = nullptr;
2026     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2027       e.entry.address = 0;
2028       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2029       import_name = data.GetCStr(&offset);
2030     } else {
2031       e.entry.address = data.GetULEB128(&offset);
2032       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2033         e.entry.other = data.GetULEB128(&offset);
2034         uint64_t resolver_addr = e.entry.other;
2035         if (is_arm)
2036           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2037         resolver_addresses.insert(resolver_addr);
2038       } else
2039         e.entry.other = 0;
2040     }
2041     // Only add symbols that are reexport symbols with a valid import name
2042     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2043         import_name[0]) {
2044       std::string name;
2045       if (!nameSlices.empty()) {
2046         for (auto name_slice : nameSlices)
2047           name.append(name_slice.data(), name_slice.size());
2048       }
2049       if (name.size() > 1) {
2050         // Skip the leading '_'
2051         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2052       }
2053       if (import_name) {
2054         // Skip the leading '_'
2055         e.entry.import_name.SetCString(import_name + 1);
2056       }
2057       output.push_back(e);
2058     }
2059   }
2060 
2061   const uint8_t childrenCount = data.GetU8(&children_offset);
2062   for (uint8_t i = 0; i < childrenCount; ++i) {
2063     const char *cstr = data.GetCStr(&children_offset);
2064     if (cstr)
2065       nameSlices.push_back(llvm::StringRef(cstr));
2066     else
2067       return false; // Corrupt data
2068     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2069     if (childNodeOffset) {
2070       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2071                             resolver_addresses, output)) {
2072         return false;
2073       }
2074     }
2075     nameSlices.pop_back();
2076   }
2077   return true;
2078 }
2079 
2080 // Read the UUID out of a dyld_shared_cache file on-disk.
2081 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2082                                          const ByteOrder byte_order,
2083                                          const uint32_t addr_byte_size) {
2084   UUID dsc_uuid;
2085   DataBufferSP DscData = MapFileData(
2086       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2087   if (!DscData)
2088     return dsc_uuid;
2089   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2090 
2091   char version_str[7];
2092   lldb::offset_t offset = 0;
2093   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2094   version_str[6] = '\0';
2095   if (strcmp(version_str, "dyld_v") == 0) {
2096     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2097     dsc_uuid = UUID::fromOptionalData(
2098         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2099   }
2100   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2101   if (log && dsc_uuid.IsValid()) {
2102     log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
2103                 dsc_uuid.GetAsString().c_str());
2104   }
2105   return dsc_uuid;
2106 }
2107 
2108 size_t ObjectFileMachO::ParseSymtab() {
2109   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2110   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2111                      m_file.GetFilename().AsCString(""));
2112   ModuleSP module_sp(GetModule());
2113   if (!module_sp)
2114     return 0;
2115 
2116   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2117   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2118   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2119   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2120   FunctionStarts function_starts;
2121   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2122   uint32_t i;
2123   FileSpecList dylib_files;
2124   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2125   static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2126   static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2127   static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2128 
2129   for (i = 0; i < m_header.ncmds; ++i) {
2130     const lldb::offset_t cmd_offset = offset;
2131     // Read in the load command and load command size
2132     struct load_command lc;
2133     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2134       break;
2135     // Watch for the symbol table load command
2136     switch (lc.cmd) {
2137     case LC_SYMTAB:
2138       symtab_load_command.cmd = lc.cmd;
2139       symtab_load_command.cmdsize = lc.cmdsize;
2140       // Read in the rest of the symtab load command
2141       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2142           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2143         return 0;
2144       if (symtab_load_command.symoff == 0) {
2145         if (log)
2146           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2147         return 0;
2148       }
2149 
2150       if (symtab_load_command.stroff == 0) {
2151         if (log)
2152           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2153         return 0;
2154       }
2155 
2156       if (symtab_load_command.nsyms == 0) {
2157         if (log)
2158           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2159         return 0;
2160       }
2161 
2162       if (symtab_load_command.strsize == 0) {
2163         if (log)
2164           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2165         return 0;
2166       }
2167       break;
2168 
2169     case LC_DYLD_INFO:
2170     case LC_DYLD_INFO_ONLY:
2171       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2172         dyld_info.cmd = lc.cmd;
2173         dyld_info.cmdsize = lc.cmdsize;
2174       } else {
2175         memset(&dyld_info, 0, sizeof(dyld_info));
2176       }
2177       break;
2178 
2179     case LC_LOAD_DYLIB:
2180     case LC_LOAD_WEAK_DYLIB:
2181     case LC_REEXPORT_DYLIB:
2182     case LC_LOADFVMLIB:
2183     case LC_LOAD_UPWARD_DYLIB: {
2184       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2185       const char *path = m_data.PeekCStr(name_offset);
2186       if (path) {
2187         FileSpec file_spec(path);
2188         // Strip the path if there is @rpath, @executable, etc so we just use
2189         // the basename
2190         if (path[0] == '@')
2191           file_spec.GetDirectory().Clear();
2192 
2193         if (lc.cmd == LC_REEXPORT_DYLIB) {
2194           m_reexported_dylibs.AppendIfUnique(file_spec);
2195         }
2196 
2197         dylib_files.Append(file_spec);
2198       }
2199     } break;
2200 
2201     case LC_FUNCTION_STARTS:
2202       function_starts_load_command.cmd = lc.cmd;
2203       function_starts_load_command.cmdsize = lc.cmdsize;
2204       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2205           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2206         memset(&function_starts_load_command, 0,
2207                sizeof(function_starts_load_command));
2208       break;
2209 
2210     default:
2211       break;
2212     }
2213     offset = cmd_offset + lc.cmdsize;
2214   }
2215 
2216   if (symtab_load_command.cmd) {
2217     Symtab *symtab = m_symtab_up.get();
2218     SectionList *section_list = GetSectionList();
2219     if (section_list == nullptr)
2220       return 0;
2221 
2222     const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2223     const ByteOrder byte_order = m_data.GetByteOrder();
2224     bool bit_width_32 = addr_byte_size == 4;
2225     const size_t nlist_byte_size =
2226         bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2227 
2228     DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2229     DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2230     DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2231     DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2232                                              addr_byte_size);
2233     DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2234 
2235     const addr_t nlist_data_byte_size =
2236         symtab_load_command.nsyms * nlist_byte_size;
2237     const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2238     addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2239 
2240     ProcessSP process_sp(m_process_wp.lock());
2241     Process *process = process_sp.get();
2242 
2243     uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2244 
2245     if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2246       Target &target = process->GetTarget();
2247 
2248       memory_module_load_level = target.GetMemoryModuleLoadLevel();
2249 
2250       SectionSP linkedit_section_sp(
2251           section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2252       // Reading mach file from memory in a process or core file...
2253 
2254       if (linkedit_section_sp) {
2255         addr_t linkedit_load_addr =
2256             linkedit_section_sp->GetLoadBaseAddress(&target);
2257         if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2258           // We might be trying to access the symbol table before the
2259           // __LINKEDIT's load address has been set in the target. We can't
2260           // fail to read the symbol table, so calculate the right address
2261           // manually
2262           linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2263               m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2264         }
2265 
2266         const addr_t linkedit_file_offset =
2267             linkedit_section_sp->GetFileOffset();
2268         const addr_t symoff_addr = linkedit_load_addr +
2269                                    symtab_load_command.symoff -
2270                                    linkedit_file_offset;
2271         strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2272                       linkedit_file_offset;
2273 
2274         bool data_was_read = false;
2275 
2276 #if defined(__APPLE__) &&                                                      \
2277     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2278         if (m_header.flags & 0x80000000u &&
2279             process->GetAddressByteSize() == sizeof(void *)) {
2280           // This mach-o memory file is in the dyld shared cache. If this
2281           // program is not remote and this is iOS, then this process will
2282           // share the same shared cache as the process we are debugging and we
2283           // can read the entire __LINKEDIT from the address space in this
2284           // process. This is a needed optimization that is used for local iOS
2285           // debugging only since all shared libraries in the shared cache do
2286           // not have corresponding files that exist in the file system of the
2287           // device. They have been combined into a single file. This means we
2288           // always have to load these files from memory. All of the symbol and
2289           // string tables from all of the __LINKEDIT sections from the shared
2290           // libraries in the shared cache have been merged into a single large
2291           // symbol and string table. Reading all of this symbol and string
2292           // table data across can slow down debug launch times, so we optimize
2293           // this by reading the memory for the __LINKEDIT section from this
2294           // process.
2295 
2296           UUID lldb_shared_cache;
2297           addr_t lldb_shared_cache_addr;
2298           GetLLDBSharedCacheUUID (lldb_shared_cache_addr, lldb_shared_cache);
2299           UUID process_shared_cache;
2300           addr_t process_shared_cache_addr;
2301           GetProcessSharedCacheUUID(process, process_shared_cache_addr, process_shared_cache);
2302           bool use_lldb_cache = true;
2303           if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2304               (lldb_shared_cache != process_shared_cache
2305                || process_shared_cache_addr != lldb_shared_cache_addr)) {
2306             use_lldb_cache = false;
2307           }
2308 
2309           PlatformSP platform_sp(target.GetPlatform());
2310           if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2311             data_was_read = true;
2312             nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2313                                eByteOrderLittle);
2314             strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2315                                 eByteOrderLittle);
2316             if (function_starts_load_command.cmd) {
2317               const addr_t func_start_addr =
2318                   linkedit_load_addr + function_starts_load_command.dataoff -
2319                   linkedit_file_offset;
2320               function_starts_data.SetData(
2321                   (void *)func_start_addr,
2322                   function_starts_load_command.datasize, eByteOrderLittle);
2323             }
2324           }
2325         }
2326 #endif
2327 
2328         if (!data_was_read) {
2329           // Always load dyld - the dynamic linker - from memory if we didn't
2330           // find a binary anywhere else. lldb will not register
2331           // dylib/framework/bundle loads/unloads if we don't have the dyld
2332           // symbols, we force dyld to load from memory despite the user's
2333           // target.memory-module-load-level setting.
2334           if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2335               m_header.filetype == llvm::MachO::MH_DYLINKER) {
2336             DataBufferSP nlist_data_sp(
2337                 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2338             if (nlist_data_sp)
2339               nlist_data.SetData(nlist_data_sp, 0,
2340                                  nlist_data_sp->GetByteSize());
2341             if (m_dysymtab.nindirectsyms != 0) {
2342               const addr_t indirect_syms_addr = linkedit_load_addr +
2343                                                 m_dysymtab.indirectsymoff -
2344                                                 linkedit_file_offset;
2345               DataBufferSP indirect_syms_data_sp(
2346                   ReadMemory(process_sp, indirect_syms_addr,
2347                              m_dysymtab.nindirectsyms * 4));
2348               if (indirect_syms_data_sp)
2349                 indirect_symbol_index_data.SetData(
2350                     indirect_syms_data_sp, 0,
2351                     indirect_syms_data_sp->GetByteSize());
2352               // If this binary is outside the shared cache,
2353               // cache the string table.
2354               // Binaries in the shared cache all share a giant string table, and
2355               // we can't share the string tables across multiple ObjectFileMachO's,
2356               // so we'd end up re-reading this mega-strtab for every binary
2357               // in the shared cache - it would be a big perf problem.
2358               // For binaries outside the shared cache, it's faster to read the
2359               // entire strtab at once instead of piece-by-piece as we process
2360               // the nlist records.
2361               if ((m_header.flags & 0x80000000u) == 0) {
2362                 DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr,
2363                       strtab_data_byte_size));
2364                 if (strtab_data_sp) {
2365                   strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize());
2366                 }
2367               }
2368             }
2369           }
2370           if (memory_module_load_level >=
2371                      eMemoryModuleLoadLevelPartial) {
2372             if (function_starts_load_command.cmd) {
2373               const addr_t func_start_addr =
2374                   linkedit_load_addr + function_starts_load_command.dataoff -
2375                   linkedit_file_offset;
2376               DataBufferSP func_start_data_sp(
2377                   ReadMemory(process_sp, func_start_addr,
2378                              function_starts_load_command.datasize));
2379               if (func_start_data_sp)
2380                 function_starts_data.SetData(func_start_data_sp, 0,
2381                                              func_start_data_sp->GetByteSize());
2382             }
2383           }
2384         }
2385       }
2386     } else {
2387       nlist_data.SetData(m_data, symtab_load_command.symoff,
2388                          nlist_data_byte_size);
2389       strtab_data.SetData(m_data, symtab_load_command.stroff,
2390                           strtab_data_byte_size);
2391 
2392       if (dyld_info.export_size > 0) {
2393         dyld_trie_data.SetData(m_data, dyld_info.export_off,
2394                                dyld_info.export_size);
2395       }
2396 
2397       if (m_dysymtab.nindirectsyms != 0) {
2398         indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2399                                            m_dysymtab.nindirectsyms * 4);
2400       }
2401       if (function_starts_load_command.cmd) {
2402         function_starts_data.SetData(m_data,
2403                                      function_starts_load_command.dataoff,
2404                                      function_starts_load_command.datasize);
2405       }
2406     }
2407 
2408     if (nlist_data.GetByteSize() == 0 &&
2409         memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2410       if (log)
2411         module_sp->LogMessage(log, "failed to read nlist data");
2412       return 0;
2413     }
2414 
2415     const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2416     if (!have_strtab_data) {
2417       if (process) {
2418         if (strtab_addr == LLDB_INVALID_ADDRESS) {
2419           if (log)
2420             module_sp->LogMessage(log, "failed to locate the strtab in memory");
2421           return 0;
2422         }
2423       } else {
2424         if (log)
2425           module_sp->LogMessage(log, "failed to read strtab data");
2426         return 0;
2427       }
2428     }
2429 
2430     ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2431     ConstString g_segment_name_DATA = GetSegmentNameDATA();
2432     ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2433     ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2434     ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2435     ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2436     SectionSP text_section_sp(
2437         section_list->FindSectionByName(g_segment_name_TEXT));
2438     SectionSP data_section_sp(
2439         section_list->FindSectionByName(g_segment_name_DATA));
2440     SectionSP data_dirty_section_sp(
2441         section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2442     SectionSP data_const_section_sp(
2443         section_list->FindSectionByName(g_segment_name_DATA_CONST));
2444     SectionSP objc_section_sp(
2445         section_list->FindSectionByName(g_segment_name_OBJC));
2446     SectionSP eh_frame_section_sp;
2447     if (text_section_sp.get())
2448       eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2449           g_section_name_eh_frame);
2450     else
2451       eh_frame_section_sp =
2452           section_list->FindSectionByName(g_section_name_eh_frame);
2453 
2454     const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2455 
2456     // lldb works best if it knows the start address of all functions in a
2457     // module. Linker symbols or debug info are normally the best source of
2458     // information for start addr / size but they may be stripped in a released
2459     // binary. Two additional sources of information exist in Mach-O binaries:
2460     //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2461     //    function's start address in the
2462     //                         binary, relative to the text section.
2463     //    eh_frame           - the eh_frame FDEs have the start addr & size of
2464     //    each function
2465     //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2466     //  all modern binaries.
2467     //  Binaries built to run on older releases may need to use eh_frame
2468     //  information.
2469 
2470     if (text_section_sp && function_starts_data.GetByteSize()) {
2471       FunctionStarts::Entry function_start_entry;
2472       function_start_entry.data = false;
2473       lldb::offset_t function_start_offset = 0;
2474       function_start_entry.addr = text_section_sp->GetFileAddress();
2475       uint64_t delta;
2476       while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2477              0) {
2478         // Now append the current entry
2479         function_start_entry.addr += delta;
2480         function_starts.Append(function_start_entry);
2481       }
2482     } else {
2483       // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2484       // load command claiming an eh_frame but it doesn't actually have the
2485       // eh_frame content.  And if we have a dSYM, we don't need to do any of
2486       // this fill-in-the-missing-symbols works anyway - the debug info should
2487       // give us all the functions in the module.
2488       if (text_section_sp.get() && eh_frame_section_sp.get() &&
2489           m_type != eTypeDebugInfo) {
2490         DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2491                                     DWARFCallFrameInfo::EH);
2492         DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2493         eh_frame.GetFunctionAddressAndSizeVector(functions);
2494         addr_t text_base_addr = text_section_sp->GetFileAddress();
2495         size_t count = functions.GetSize();
2496         for (size_t i = 0; i < count; ++i) {
2497           const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2498               functions.GetEntryAtIndex(i);
2499           if (func) {
2500             FunctionStarts::Entry function_start_entry;
2501             function_start_entry.addr = func->base - text_base_addr;
2502             function_starts.Append(function_start_entry);
2503           }
2504         }
2505       }
2506     }
2507 
2508     const size_t function_starts_count = function_starts.GetSize();
2509 
2510     // For user process binaries (executables, dylibs, frameworks, bundles), if
2511     // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2512     // going to assume the binary has been stripped.  Don't allow assembly
2513     // language instruction emulation because we don't know proper function
2514     // start boundaries.
2515     //
2516     // For all other types of binaries (kernels, stand-alone bare board
2517     // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2518     // sections - we should not make any assumptions about them based on that.
2519     if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2520       m_allow_assembly_emulation_unwind_plans = false;
2521       Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2522           LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2523 
2524       if (unwind_or_symbol_log)
2525         module_sp->LogMessage(
2526             unwind_or_symbol_log,
2527             "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2528     }
2529 
2530     const user_id_t TEXT_eh_frame_sectID =
2531         eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2532                                   : static_cast<user_id_t>(NO_SECT);
2533 
2534     lldb::offset_t nlist_data_offset = 0;
2535 
2536     uint32_t N_SO_index = UINT32_MAX;
2537 
2538     MachSymtabSectionInfo section_info(section_list);
2539     std::vector<uint32_t> N_FUN_indexes;
2540     std::vector<uint32_t> N_NSYM_indexes;
2541     std::vector<uint32_t> N_INCL_indexes;
2542     std::vector<uint32_t> N_BRAC_indexes;
2543     std::vector<uint32_t> N_COMM_indexes;
2544     typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2545     typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2546     typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2547     ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2548     ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2549     ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2550     // Any symbols that get merged into another will get an entry in this map
2551     // so we know
2552     NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2553     uint32_t nlist_idx = 0;
2554     Symbol *symbol_ptr = nullptr;
2555 
2556     uint32_t sym_idx = 0;
2557     Symbol *sym = nullptr;
2558     size_t num_syms = 0;
2559     std::string memory_symbol_name;
2560     uint32_t unmapped_local_symbols_found = 0;
2561 
2562     std::vector<TrieEntryWithOffset> trie_entries;
2563     std::set<lldb::addr_t> resolver_addresses;
2564 
2565     if (dyld_trie_data.GetByteSize() > 0) {
2566       std::vector<llvm::StringRef> nameSlices;
2567       ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2568                        resolver_addresses, trie_entries);
2569 
2570       ConstString text_segment_name("__TEXT");
2571       SectionSP text_segment_sp =
2572           GetSectionList()->FindSectionByName(text_segment_name);
2573       if (text_segment_sp) {
2574         const lldb::addr_t text_segment_file_addr =
2575             text_segment_sp->GetFileAddress();
2576         if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2577           for (auto &e : trie_entries)
2578             e.entry.address += text_segment_file_addr;
2579         }
2580       }
2581     }
2582 
2583     typedef std::set<ConstString> IndirectSymbols;
2584     IndirectSymbols indirect_symbol_names;
2585 
2586 #if defined(__APPLE__) &&                                                      \
2587     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2588 
2589     // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2590     // optimized by moving LOCAL symbols out of the memory mapped portion of
2591     // the DSC. The symbol information has all been retained, but it isn't
2592     // available in the normal nlist data. However, there *are* duplicate
2593     // entries of *some*
2594     // LOCAL symbols in the normal nlist data. To handle this situation
2595     // correctly, we must first attempt
2596     // to parse any DSC unmapped symbol information. If we find any, we set a
2597     // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2598 
2599     if (m_header.flags & 0x80000000u) {
2600       // Before we can start mapping the DSC, we need to make certain the
2601       // target process is actually using the cache we can find.
2602 
2603       // Next we need to determine the correct path for the dyld shared cache.
2604 
2605       ArchSpec header_arch;
2606       GetArchitecture(header_arch);
2607       char dsc_path[PATH_MAX];
2608       char dsc_path_development[PATH_MAX];
2609 
2610       snprintf(
2611           dsc_path, sizeof(dsc_path), "%s%s%s",
2612           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2613                                                        */
2614           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2615           header_arch.GetArchitectureName());
2616 
2617       snprintf(
2618           dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2619           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2620                                                        */
2621           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2622           header_arch.GetArchitectureName(), ".development");
2623 
2624       FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2625       FileSpec dsc_development_filespec(dsc_path_development, false);
2626       FileSpec dsc_filespec;
2627 
2628       UUID dsc_uuid;
2629       UUID process_shared_cache_uuid;
2630       addr_t process_shared_cache_base_addr;
2631 
2632       if (process) {
2633         GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid);
2634       }
2635 
2636       // First see if we can find an exact match for the inferior process
2637       // shared cache UUID in the development or non-development shared caches
2638       // on disk.
2639       if (process_shared_cache_uuid.IsValid()) {
2640         if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2641           UUID dsc_development_uuid = GetSharedCacheUUID(
2642               dsc_development_filespec, byte_order, addr_byte_size);
2643           if (dsc_development_uuid.IsValid() &&
2644               dsc_development_uuid == process_shared_cache_uuid) {
2645             dsc_filespec = dsc_development_filespec;
2646             dsc_uuid = dsc_development_uuid;
2647           }
2648         }
2649         if (!dsc_uuid.IsValid() &&
2650             FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) {
2651           UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2652               dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2653           if (dsc_nondevelopment_uuid.IsValid() &&
2654               dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2655             dsc_filespec = dsc_nondevelopment_filespec;
2656             dsc_uuid = dsc_nondevelopment_uuid;
2657           }
2658         }
2659       }
2660 
2661       // Failing a UUID match, prefer the development dyld_shared cache if both
2662       // are present.
2663       if (!FileSystem::Instance().Exists(dsc_filespec)) {
2664         if (FileSystem::Instance().Exists(dsc_development_filespec)) {
2665           dsc_filespec = dsc_development_filespec;
2666         } else {
2667           dsc_filespec = dsc_nondevelopment_filespec;
2668         }
2669       }
2670 
2671       /* The dyld_cache_header has a pointer to the
2672          dyld_cache_local_symbols_info structure (localSymbolsOffset).
2673          The dyld_cache_local_symbols_info structure gives us three things:
2674            1. The start and count of the nlist records in the dyld_shared_cache
2675          file
2676            2. The start and size of the strings for these nlist records
2677            3. The start and count of dyld_cache_local_symbols_entry entries
2678 
2679          There is one dyld_cache_local_symbols_entry per dylib/framework in the
2680          dyld shared cache.
2681          The "dylibOffset" field is the Mach-O header of this dylib/framework in
2682          the dyld shared cache.
2683          The dyld_cache_local_symbols_entry also lists the start of this
2684          dylib/framework's nlist records
2685          and the count of how many nlist records there are for this
2686          dylib/framework.
2687       */
2688 
2689       // Process the dyld shared cache header to find the unmapped symbols
2690 
2691       DataBufferSP dsc_data_sp = MapFileData(
2692           dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2693       if (!dsc_uuid.IsValid()) {
2694         dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2695       }
2696       if (dsc_data_sp) {
2697         DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2698 
2699         bool uuid_match = true;
2700         if (dsc_uuid.IsValid() && process) {
2701           if (process_shared_cache_uuid.IsValid() &&
2702               dsc_uuid != process_shared_cache_uuid) {
2703             // The on-disk dyld_shared_cache file is not the same as the one in
2704             // this process' memory, don't use it.
2705             uuid_match = false;
2706             ModuleSP module_sp(GetModule());
2707             if (module_sp)
2708               module_sp->ReportWarning("process shared cache does not match "
2709                                        "on-disk dyld_shared_cache file, some "
2710                                        "symbol names will be missing.");
2711           }
2712         }
2713 
2714         offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2715 
2716         uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2717 
2718         // If the mappingOffset points to a location inside the header, we've
2719         // opened an old dyld shared cache, and should not proceed further.
2720         if (uuid_match &&
2721             mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2722 
2723           DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2724               dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2725               mappingOffset);
2726 
2727           DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2728                                               byte_order, addr_byte_size);
2729           offset = 0;
2730 
2731           // The File addresses (from the in-memory Mach-O load commands) for
2732           // the shared libraries in the shared library cache need to be
2733           // adjusted by an offset to match up with the dylibOffset identifying
2734           // field in the dyld_cache_local_symbol_entry's.  This offset is
2735           // recorded in mapping_offset_value.
2736           const uint64_t mapping_offset_value =
2737               dsc_mapping_info_data.GetU64(&offset);
2738 
2739           offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
2740                             localSymbolsOffset);
2741           uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2742           uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2743 
2744           if (localSymbolsOffset && localSymbolsSize) {
2745             // Map the local symbols
2746             DataBufferSP dsc_local_symbols_data_sp =
2747                 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2748 
2749             if (dsc_local_symbols_data_sp) {
2750               DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2751                                                    byte_order, addr_byte_size);
2752 
2753               offset = 0;
2754 
2755               typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2756               typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2757               UndefinedNameToDescMap undefined_name_to_desc;
2758               SymbolIndexToName reexport_shlib_needs_fixup;
2759 
2760               // Read the local_symbols_infos struct in one shot
2761               struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2762               dsc_local_symbols_data.GetU32(&offset,
2763                                             &local_symbols_info.nlistOffset, 6);
2764 
2765               SectionSP text_section_sp(
2766                   section_list->FindSectionByName(GetSegmentNameTEXT()));
2767 
2768               uint32_t header_file_offset =
2769                   (text_section_sp->GetFileAddress() - mapping_offset_value);
2770 
2771               offset = local_symbols_info.entriesOffset;
2772               for (uint32_t entry_index = 0;
2773                    entry_index < local_symbols_info.entriesCount;
2774                    entry_index++) {
2775                 struct lldb_copy_dyld_cache_local_symbols_entry
2776                     local_symbols_entry;
2777                 local_symbols_entry.dylibOffset =
2778                     dsc_local_symbols_data.GetU32(&offset);
2779                 local_symbols_entry.nlistStartIndex =
2780                     dsc_local_symbols_data.GetU32(&offset);
2781                 local_symbols_entry.nlistCount =
2782                     dsc_local_symbols_data.GetU32(&offset);
2783 
2784                 if (header_file_offset == local_symbols_entry.dylibOffset) {
2785                   unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2786 
2787                   // The normal nlist code cannot correctly size the Symbols
2788                   // array, we need to allocate it here.
2789                   sym = symtab->Resize(
2790                       symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2791                       unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2792                   num_syms = symtab->GetNumSymbols();
2793 
2794                   nlist_data_offset =
2795                       local_symbols_info.nlistOffset +
2796                       (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2797                   uint32_t string_table_offset =
2798                       local_symbols_info.stringsOffset;
2799 
2800                   for (uint32_t nlist_index = 0;
2801                        nlist_index < local_symbols_entry.nlistCount;
2802                        nlist_index++) {
2803                     /////////////////////////////
2804                     {
2805                       struct nlist_64 nlist;
2806                       if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2807                               nlist_data_offset, nlist_byte_size))
2808                         break;
2809 
2810                       nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2811                           &nlist_data_offset);
2812                       nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2813                           &nlist_data_offset);
2814                       nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2815                           &nlist_data_offset);
2816                       nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2817                           &nlist_data_offset);
2818                       nlist.n_value =
2819                           dsc_local_symbols_data.GetAddress_unchecked(
2820                               &nlist_data_offset);
2821 
2822                       SymbolType type = eSymbolTypeInvalid;
2823                       const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2824                           string_table_offset + nlist.n_strx);
2825 
2826                       if (symbol_name == NULL) {
2827                         // No symbol should be NULL, even the symbols with no
2828                         // string values should have an offset zero which
2829                         // points to an empty C-string
2830                         Host::SystemLog(
2831                             Host::eSystemLogError,
2832                             "error: DSC unmapped local symbol[%u] has invalid "
2833                             "string table offset 0x%x in %s, ignoring symbol\n",
2834                             entry_index, nlist.n_strx,
2835                             module_sp->GetFileSpec().GetPath().c_str());
2836                         continue;
2837                       }
2838                       if (symbol_name[0] == '\0')
2839                         symbol_name = NULL;
2840 
2841                       const char *symbol_name_non_abi_mangled = NULL;
2842 
2843                       SectionSP symbol_section;
2844                       uint32_t symbol_byte_size = 0;
2845                       bool add_nlist = true;
2846                       bool is_debug = ((nlist.n_type & N_STAB) != 0);
2847                       bool demangled_is_synthesized = false;
2848                       bool is_gsym = false;
2849                       bool set_value = true;
2850 
2851                       assert(sym_idx < num_syms);
2852 
2853                       sym[sym_idx].SetDebug(is_debug);
2854 
2855                       if (is_debug) {
2856                         switch (nlist.n_type) {
2857                         case N_GSYM:
2858                           // global symbol: name,,NO_SECT,type,0
2859                           // Sometimes the N_GSYM value contains the address.
2860 
2861                           // FIXME: In the .o files, we have a GSYM and a debug
2862                           // symbol for all the ObjC data.  They
2863                           // have the same address, but we want to ensure that
2864                           // we always find only the real symbol, 'cause we
2865                           // don't currently correctly attribute the
2866                           // GSYM one to the ObjCClass/Ivar/MetaClass
2867                           // symbol type.  This is a temporary hack to make
2868                           // sure the ObjectiveC symbols get treated correctly.
2869                           // To do this right, we should coalesce all the GSYM
2870                           // & global symbols that have the same address.
2871 
2872                           is_gsym = true;
2873                           sym[sym_idx].SetExternal(true);
2874 
2875                           if (symbol_name && symbol_name[0] == '_' &&
2876                               symbol_name[1] == 'O') {
2877                             llvm::StringRef symbol_name_ref(symbol_name);
2878                             if (symbol_name_ref.startswith(
2879                                     g_objc_v2_prefix_class)) {
2880                               symbol_name_non_abi_mangled = symbol_name + 1;
2881                               symbol_name =
2882                                   symbol_name + g_objc_v2_prefix_class.size();
2883                               type = eSymbolTypeObjCClass;
2884                               demangled_is_synthesized = true;
2885 
2886                             } else if (symbol_name_ref.startswith(
2887                                            g_objc_v2_prefix_metaclass)) {
2888                               symbol_name_non_abi_mangled = symbol_name + 1;
2889                               symbol_name = symbol_name +
2890                                             g_objc_v2_prefix_metaclass.size();
2891                               type = eSymbolTypeObjCMetaClass;
2892                               demangled_is_synthesized = true;
2893                             } else if (symbol_name_ref.startswith(
2894                                            g_objc_v2_prefix_ivar)) {
2895                               symbol_name_non_abi_mangled = symbol_name + 1;
2896                               symbol_name =
2897                                   symbol_name + g_objc_v2_prefix_ivar.size();
2898                               type = eSymbolTypeObjCIVar;
2899                               demangled_is_synthesized = true;
2900                             }
2901                           } else {
2902                             if (nlist.n_value != 0)
2903                               symbol_section = section_info.GetSection(
2904                                   nlist.n_sect, nlist.n_value);
2905                             type = eSymbolTypeData;
2906                           }
2907                           break;
2908 
2909                         case N_FNAME:
2910                           // procedure name (f77 kludge): name,,NO_SECT,0,0
2911                           type = eSymbolTypeCompiler;
2912                           break;
2913 
2914                         case N_FUN:
2915                           // procedure: name,,n_sect,linenumber,address
2916                           if (symbol_name) {
2917                             type = eSymbolTypeCode;
2918                             symbol_section = section_info.GetSection(
2919                                 nlist.n_sect, nlist.n_value);
2920 
2921                             N_FUN_addr_to_sym_idx.insert(
2922                                 std::make_pair(nlist.n_value, sym_idx));
2923                             // We use the current number of symbols in the
2924                             // symbol table in lieu of using nlist_idx in case
2925                             // we ever start trimming entries out
2926                             N_FUN_indexes.push_back(sym_idx);
2927                           } else {
2928                             type = eSymbolTypeCompiler;
2929 
2930                             if (!N_FUN_indexes.empty()) {
2931                               // Copy the size of the function into the
2932                               // original
2933                               // STAB entry so we don't have
2934                               // to hunt for it later
2935                               symtab->SymbolAtIndex(N_FUN_indexes.back())
2936                                   ->SetByteSize(nlist.n_value);
2937                               N_FUN_indexes.pop_back();
2938                               // We don't really need the end function STAB as
2939                               // it contains the size which we already placed
2940                               // with the original symbol, so don't add it if
2941                               // we want a minimal symbol table
2942                               add_nlist = false;
2943                             }
2944                           }
2945                           break;
2946 
2947                         case N_STSYM:
2948                           // static symbol: name,,n_sect,type,address
2949                           N_STSYM_addr_to_sym_idx.insert(
2950                               std::make_pair(nlist.n_value, sym_idx));
2951                           symbol_section = section_info.GetSection(
2952                               nlist.n_sect, nlist.n_value);
2953                           if (symbol_name && symbol_name[0]) {
2954                             type = ObjectFile::GetSymbolTypeFromName(
2955                                 symbol_name + 1, eSymbolTypeData);
2956                           }
2957                           break;
2958 
2959                         case N_LCSYM:
2960                           // .lcomm symbol: name,,n_sect,type,address
2961                           symbol_section = section_info.GetSection(
2962                               nlist.n_sect, nlist.n_value);
2963                           type = eSymbolTypeCommonBlock;
2964                           break;
2965 
2966                         case N_BNSYM:
2967                           // We use the current number of symbols in the symbol
2968                           // table in lieu of using nlist_idx in case we ever
2969                           // start trimming entries out Skip these if we want
2970                           // minimal symbol tables
2971                           add_nlist = false;
2972                           break;
2973 
2974                         case N_ENSYM:
2975                           // Set the size of the N_BNSYM to the terminating
2976                           // index of this N_ENSYM so that we can always skip
2977                           // the entire symbol if we need to navigate more
2978                           // quickly at the source level when parsing STABS
2979                           // Skip these if we want minimal symbol tables
2980                           add_nlist = false;
2981                           break;
2982 
2983                         case N_OPT:
2984                           // emitted with gcc2_compiled and in gcc source
2985                           type = eSymbolTypeCompiler;
2986                           break;
2987 
2988                         case N_RSYM:
2989                           // register sym: name,,NO_SECT,type,register
2990                           type = eSymbolTypeVariable;
2991                           break;
2992 
2993                         case N_SLINE:
2994                           // src line: 0,,n_sect,linenumber,address
2995                           symbol_section = section_info.GetSection(
2996                               nlist.n_sect, nlist.n_value);
2997                           type = eSymbolTypeLineEntry;
2998                           break;
2999 
3000                         case N_SSYM:
3001                           // structure elt: name,,NO_SECT,type,struct_offset
3002                           type = eSymbolTypeVariableType;
3003                           break;
3004 
3005                         case N_SO:
3006                           // source file name
3007                           type = eSymbolTypeSourceFile;
3008                           if (symbol_name == NULL) {
3009                             add_nlist = false;
3010                             if (N_SO_index != UINT32_MAX) {
3011                               // Set the size of the N_SO to the terminating
3012                               // index of this N_SO so that we can always skip
3013                               // the entire N_SO if we need to navigate more
3014                               // quickly at the source level when parsing STABS
3015                               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3016                               symbol_ptr->SetByteSize(sym_idx);
3017                               symbol_ptr->SetSizeIsSibling(true);
3018                             }
3019                             N_NSYM_indexes.clear();
3020                             N_INCL_indexes.clear();
3021                             N_BRAC_indexes.clear();
3022                             N_COMM_indexes.clear();
3023                             N_FUN_indexes.clear();
3024                             N_SO_index = UINT32_MAX;
3025                           } else {
3026                             // We use the current number of symbols in the
3027                             // symbol table in lieu of using nlist_idx in case
3028                             // we ever start trimming entries out
3029                             const bool N_SO_has_full_path =
3030                                 symbol_name[0] == '/';
3031                             if (N_SO_has_full_path) {
3032                               if ((N_SO_index == sym_idx - 1) &&
3033                                   ((sym_idx - 1) < num_syms)) {
3034                                 // We have two consecutive N_SO entries where
3035                                 // the first contains a directory and the
3036                                 // second contains a full path.
3037                                 sym[sym_idx - 1].GetMangled().SetValue(
3038                                     ConstString(symbol_name), false);
3039                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3040                                 add_nlist = false;
3041                               } else {
3042                                 // This is the first entry in a N_SO that
3043                                 // contains a directory or
3044                                 // a full path to the source file
3045                                 N_SO_index = sym_idx;
3046                               }
3047                             } else if ((N_SO_index == sym_idx - 1) &&
3048                                        ((sym_idx - 1) < num_syms)) {
3049                               // This is usually the second N_SO entry that
3050                               // contains just the filename, so here we combine
3051                               // it with the first one if we are minimizing the
3052                               // symbol table
3053                               const char *so_path =
3054                                   sym[sym_idx - 1]
3055                                       .GetMangled()
3056                                       .GetDemangledName(
3057                                           lldb::eLanguageTypeUnknown)
3058                                       .AsCString();
3059                               if (so_path && so_path[0]) {
3060                                 std::string full_so_path(so_path);
3061                                 const size_t double_slash_pos =
3062                                     full_so_path.find("//");
3063                                 if (double_slash_pos != std::string::npos) {
3064                                   // The linker has been generating bad N_SO
3065                                   // entries with doubled up paths
3066                                   // in the format "%s%s" where the first
3067                                   // string in the DW_AT_comp_dir, and the
3068                                   // second is the directory for the source
3069                                   // file so you end up with a path that looks
3070                                   // like "/tmp/src//tmp/src/"
3071                                   FileSpec so_dir(so_path, false);
3072                                   if (!FileSystem::Instance().Exists(so_dir)) {
3073                                     so_dir.SetFile(
3074                                         &full_so_path[double_slash_pos + 1],
3075                                         false);
3076                                     if (FileSystem::Instance().Exists(so_dir)) {
3077                                       // Trim off the incorrect path
3078                                       full_so_path.erase(0,
3079                                                          double_slash_pos + 1);
3080                                     }
3081                                   }
3082                                 }
3083                                 if (*full_so_path.rbegin() != '/')
3084                                   full_so_path += '/';
3085                                 full_so_path += symbol_name;
3086                                 sym[sym_idx - 1].GetMangled().SetValue(
3087                                     ConstString(full_so_path.c_str()), false);
3088                                 add_nlist = false;
3089                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3090                               }
3091                             } else {
3092                               // This could be a relative path to a N_SO
3093                               N_SO_index = sym_idx;
3094                             }
3095                           }
3096                           break;
3097 
3098                         case N_OSO:
3099                           // object file name: name,,0,0,st_mtime
3100                           type = eSymbolTypeObjectFile;
3101                           break;
3102 
3103                         case N_LSYM:
3104                           // local sym: name,,NO_SECT,type,offset
3105                           type = eSymbolTypeLocal;
3106                           break;
3107 
3108                         // INCL scopes
3109                         case N_BINCL:
3110                           // include file beginning: name,,NO_SECT,0,sum We use
3111                           // the current number of symbols in the symbol table
3112                           // in lieu of using nlist_idx in case we ever start
3113                           // trimming entries out
3114                           N_INCL_indexes.push_back(sym_idx);
3115                           type = eSymbolTypeScopeBegin;
3116                           break;
3117 
3118                         case N_EINCL:
3119                           // include file end: name,,NO_SECT,0,0
3120                           // Set the size of the N_BINCL to the terminating
3121                           // index of this N_EINCL so that we can always skip
3122                           // the entire symbol if we need to navigate more
3123                           // quickly at the source level when parsing STABS
3124                           if (!N_INCL_indexes.empty()) {
3125                             symbol_ptr =
3126                                 symtab->SymbolAtIndex(N_INCL_indexes.back());
3127                             symbol_ptr->SetByteSize(sym_idx + 1);
3128                             symbol_ptr->SetSizeIsSibling(true);
3129                             N_INCL_indexes.pop_back();
3130                           }
3131                           type = eSymbolTypeScopeEnd;
3132                           break;
3133 
3134                         case N_SOL:
3135                           // #included file name: name,,n_sect,0,address
3136                           type = eSymbolTypeHeaderFile;
3137 
3138                           // We currently don't use the header files on darwin
3139                           add_nlist = false;
3140                           break;
3141 
3142                         case N_PARAMS:
3143                           // compiler parameters: name,,NO_SECT,0,0
3144                           type = eSymbolTypeCompiler;
3145                           break;
3146 
3147                         case N_VERSION:
3148                           // compiler version: name,,NO_SECT,0,0
3149                           type = eSymbolTypeCompiler;
3150                           break;
3151 
3152                         case N_OLEVEL:
3153                           // compiler -O level: name,,NO_SECT,0,0
3154                           type = eSymbolTypeCompiler;
3155                           break;
3156 
3157                         case N_PSYM:
3158                           // parameter: name,,NO_SECT,type,offset
3159                           type = eSymbolTypeVariable;
3160                           break;
3161 
3162                         case N_ENTRY:
3163                           // alternate entry: name,,n_sect,linenumber,address
3164                           symbol_section = section_info.GetSection(
3165                               nlist.n_sect, nlist.n_value);
3166                           type = eSymbolTypeLineEntry;
3167                           break;
3168 
3169                         // Left and Right Braces
3170                         case N_LBRAC:
3171                           // left bracket: 0,,NO_SECT,nesting level,address We
3172                           // use the current number of symbols in the symbol
3173                           // table in lieu of using nlist_idx in case we ever
3174                           // start trimming entries out
3175                           symbol_section = section_info.GetSection(
3176                               nlist.n_sect, nlist.n_value);
3177                           N_BRAC_indexes.push_back(sym_idx);
3178                           type = eSymbolTypeScopeBegin;
3179                           break;
3180 
3181                         case N_RBRAC:
3182                           // right bracket: 0,,NO_SECT,nesting level,address
3183                           // Set the size of the N_LBRAC to the terminating
3184                           // index of this N_RBRAC so that we can always skip
3185                           // the entire symbol if we need to navigate more
3186                           // quickly at the source level when parsing STABS
3187                           symbol_section = section_info.GetSection(
3188                               nlist.n_sect, nlist.n_value);
3189                           if (!N_BRAC_indexes.empty()) {
3190                             symbol_ptr =
3191                                 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3192                             symbol_ptr->SetByteSize(sym_idx + 1);
3193                             symbol_ptr->SetSizeIsSibling(true);
3194                             N_BRAC_indexes.pop_back();
3195                           }
3196                           type = eSymbolTypeScopeEnd;
3197                           break;
3198 
3199                         case N_EXCL:
3200                           // deleted include file: name,,NO_SECT,0,sum
3201                           type = eSymbolTypeHeaderFile;
3202                           break;
3203 
3204                         // COMM scopes
3205                         case N_BCOMM:
3206                           // begin common: name,,NO_SECT,0,0
3207                           // We use the current number of symbols in the symbol
3208                           // table in lieu of using nlist_idx in case we ever
3209                           // start trimming entries out
3210                           type = eSymbolTypeScopeBegin;
3211                           N_COMM_indexes.push_back(sym_idx);
3212                           break;
3213 
3214                         case N_ECOML:
3215                           // end common (local name): 0,,n_sect,0,address
3216                           symbol_section = section_info.GetSection(
3217                               nlist.n_sect, nlist.n_value);
3218                         // Fall through
3219 
3220                         case N_ECOMM:
3221                           // end common: name,,n_sect,0,0
3222                           // Set the size of the N_BCOMM to the terminating
3223                           // index of this N_ECOMM/N_ECOML so that we can
3224                           // always skip the entire symbol if we need to
3225                           // navigate more quickly at the source level when
3226                           // parsing STABS
3227                           if (!N_COMM_indexes.empty()) {
3228                             symbol_ptr =
3229                                 symtab->SymbolAtIndex(N_COMM_indexes.back());
3230                             symbol_ptr->SetByteSize(sym_idx + 1);
3231                             symbol_ptr->SetSizeIsSibling(true);
3232                             N_COMM_indexes.pop_back();
3233                           }
3234                           type = eSymbolTypeScopeEnd;
3235                           break;
3236 
3237                         case N_LENG:
3238                           // second stab entry with length information
3239                           type = eSymbolTypeAdditional;
3240                           break;
3241 
3242                         default:
3243                           break;
3244                         }
3245                       } else {
3246                         // uint8_t n_pext    = N_PEXT & nlist.n_type;
3247                         uint8_t n_type = N_TYPE & nlist.n_type;
3248                         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3249 
3250                         switch (n_type) {
3251                         case N_INDR: {
3252                           const char *reexport_name_cstr =
3253                               strtab_data.PeekCStr(nlist.n_value);
3254                           if (reexport_name_cstr && reexport_name_cstr[0]) {
3255                             type = eSymbolTypeReExported;
3256                             ConstString reexport_name(
3257                                 reexport_name_cstr +
3258                                 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3259                             sym[sym_idx].SetReExportedSymbolName(reexport_name);
3260                             set_value = false;
3261                             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3262                             indirect_symbol_names.insert(
3263                                 ConstString(symbol_name +
3264                                             ((symbol_name[0] == '_') ? 1 : 0)));
3265                           } else
3266                             type = eSymbolTypeUndefined;
3267                         } break;
3268 
3269                         case N_UNDF:
3270                           if (symbol_name && symbol_name[0]) {
3271                             ConstString undefined_name(
3272                                 symbol_name +
3273                                 ((symbol_name[0] == '_') ? 1 : 0));
3274                             undefined_name_to_desc[undefined_name] =
3275                                 nlist.n_desc;
3276                           }
3277                         // Fall through
3278                         case N_PBUD:
3279                           type = eSymbolTypeUndefined;
3280                           break;
3281 
3282                         case N_ABS:
3283                           type = eSymbolTypeAbsolute;
3284                           break;
3285 
3286                         case N_SECT: {
3287                           symbol_section = section_info.GetSection(
3288                               nlist.n_sect, nlist.n_value);
3289 
3290                           if (symbol_section == NULL) {
3291                             // TODO: warn about this?
3292                             add_nlist = false;
3293                             break;
3294                           }
3295 
3296                           if (TEXT_eh_frame_sectID == nlist.n_sect) {
3297                             type = eSymbolTypeException;
3298                           } else {
3299                             uint32_t section_type =
3300                                 symbol_section->Get() & SECTION_TYPE;
3301 
3302                             switch (section_type) {
3303                             case S_CSTRING_LITERALS:
3304                               type = eSymbolTypeData;
3305                               break; // section with only literal C strings
3306                             case S_4BYTE_LITERALS:
3307                               type = eSymbolTypeData;
3308                               break; // section with only 4 byte literals
3309                             case S_8BYTE_LITERALS:
3310                               type = eSymbolTypeData;
3311                               break; // section with only 8 byte literals
3312                             case S_LITERAL_POINTERS:
3313                               type = eSymbolTypeTrampoline;
3314                               break; // section with only pointers to literals
3315                             case S_NON_LAZY_SYMBOL_POINTERS:
3316                               type = eSymbolTypeTrampoline;
3317                               break; // section with only non-lazy symbol
3318                                      // pointers
3319                             case S_LAZY_SYMBOL_POINTERS:
3320                               type = eSymbolTypeTrampoline;
3321                               break; // section with only lazy symbol pointers
3322                             case S_SYMBOL_STUBS:
3323                               type = eSymbolTypeTrampoline;
3324                               break; // section with only symbol stubs, byte
3325                                      // size of stub in the reserved2 field
3326                             case S_MOD_INIT_FUNC_POINTERS:
3327                               type = eSymbolTypeCode;
3328                               break; // section with only function pointers for
3329                                      // initialization
3330                             case S_MOD_TERM_FUNC_POINTERS:
3331                               type = eSymbolTypeCode;
3332                               break; // section with only function pointers for
3333                                      // termination
3334                             case S_INTERPOSING:
3335                               type = eSymbolTypeTrampoline;
3336                               break; // section with only pairs of function
3337                                      // pointers for interposing
3338                             case S_16BYTE_LITERALS:
3339                               type = eSymbolTypeData;
3340                               break; // section with only 16 byte literals
3341                             case S_DTRACE_DOF:
3342                               type = eSymbolTypeInstrumentation;
3343                               break;
3344                             case S_LAZY_DYLIB_SYMBOL_POINTERS:
3345                               type = eSymbolTypeTrampoline;
3346                               break;
3347                             default:
3348                               switch (symbol_section->GetType()) {
3349                               case lldb::eSectionTypeCode:
3350                                 type = eSymbolTypeCode;
3351                                 break;
3352                               case eSectionTypeData:
3353                               case eSectionTypeDataCString: // Inlined C string
3354                                                             // data
3355                               case eSectionTypeDataCStringPointers: // Pointers
3356                                                                     // to C
3357                                                                     // string
3358                                                                     // data
3359                               case eSectionTypeDataSymbolAddress: // Address of
3360                                                                   // a symbol in
3361                                                                   // the symbol
3362                                                                   // table
3363                               case eSectionTypeData4:
3364                               case eSectionTypeData8:
3365                               case eSectionTypeData16:
3366                                 type = eSymbolTypeData;
3367                                 break;
3368                               default:
3369                                 break;
3370                               }
3371                               break;
3372                             }
3373 
3374                             if (type == eSymbolTypeInvalid) {
3375                               const char *symbol_sect_name =
3376                                   symbol_section->GetName().AsCString();
3377                               if (symbol_section->IsDescendant(
3378                                       text_section_sp.get())) {
3379                                 if (symbol_section->IsClear(
3380                                         S_ATTR_PURE_INSTRUCTIONS |
3381                                         S_ATTR_SELF_MODIFYING_CODE |
3382                                         S_ATTR_SOME_INSTRUCTIONS))
3383                                   type = eSymbolTypeData;
3384                                 else
3385                                   type = eSymbolTypeCode;
3386                               } else if (symbol_section->IsDescendant(
3387                                              data_section_sp.get()) ||
3388                                          symbol_section->IsDescendant(
3389                                              data_dirty_section_sp.get()) ||
3390                                          symbol_section->IsDescendant(
3391                                              data_const_section_sp.get())) {
3392                                 if (symbol_sect_name &&
3393                                     ::strstr(symbol_sect_name, "__objc") ==
3394                                         symbol_sect_name) {
3395                                   type = eSymbolTypeRuntime;
3396 
3397                                   if (symbol_name) {
3398                                     llvm::StringRef symbol_name_ref(
3399                                         symbol_name);
3400                                     if (symbol_name_ref.startswith("_OBJC_")) {
3401                                       static const llvm::StringRef
3402                                           g_objc_v2_prefix_class(
3403                                               "_OBJC_CLASS_$_");
3404                                       static const llvm::StringRef
3405                                           g_objc_v2_prefix_metaclass(
3406                                               "_OBJC_METACLASS_$_");
3407                                       static const llvm::StringRef
3408                                           g_objc_v2_prefix_ivar(
3409                                               "_OBJC_IVAR_$_");
3410                                       if (symbol_name_ref.startswith(
3411                                               g_objc_v2_prefix_class)) {
3412                                         symbol_name_non_abi_mangled =
3413                                             symbol_name + 1;
3414                                         symbol_name =
3415                                             symbol_name +
3416                                             g_objc_v2_prefix_class.size();
3417                                         type = eSymbolTypeObjCClass;
3418                                         demangled_is_synthesized = true;
3419                                       } else if (
3420                                           symbol_name_ref.startswith(
3421                                               g_objc_v2_prefix_metaclass)) {
3422                                         symbol_name_non_abi_mangled =
3423                                             symbol_name + 1;
3424                                         symbol_name =
3425                                             symbol_name +
3426                                             g_objc_v2_prefix_metaclass.size();
3427                                         type = eSymbolTypeObjCMetaClass;
3428                                         demangled_is_synthesized = true;
3429                                       } else if (symbol_name_ref.startswith(
3430                                                      g_objc_v2_prefix_ivar)) {
3431                                         symbol_name_non_abi_mangled =
3432                                             symbol_name + 1;
3433                                         symbol_name =
3434                                             symbol_name +
3435                                             g_objc_v2_prefix_ivar.size();
3436                                         type = eSymbolTypeObjCIVar;
3437                                         demangled_is_synthesized = true;
3438                                       }
3439                                     }
3440                                   }
3441                                 } else if (symbol_sect_name &&
3442                                            ::strstr(symbol_sect_name,
3443                                                     "__gcc_except_tab") ==
3444                                                symbol_sect_name) {
3445                                   type = eSymbolTypeException;
3446                                 } else {
3447                                   type = eSymbolTypeData;
3448                                 }
3449                               } else if (symbol_sect_name &&
3450                                          ::strstr(symbol_sect_name,
3451                                                   "__IMPORT") ==
3452                                              symbol_sect_name) {
3453                                 type = eSymbolTypeTrampoline;
3454                               } else if (symbol_section->IsDescendant(
3455                                              objc_section_sp.get())) {
3456                                 type = eSymbolTypeRuntime;
3457                                 if (symbol_name && symbol_name[0] == '.') {
3458                                   llvm::StringRef symbol_name_ref(symbol_name);
3459                                   static const llvm::StringRef
3460                                       g_objc_v1_prefix_class(
3461                                           ".objc_class_name_");
3462                                   if (symbol_name_ref.startswith(
3463                                           g_objc_v1_prefix_class)) {
3464                                     symbol_name_non_abi_mangled = symbol_name;
3465                                     symbol_name = symbol_name +
3466                                                   g_objc_v1_prefix_class.size();
3467                                     type = eSymbolTypeObjCClass;
3468                                     demangled_is_synthesized = true;
3469                                   }
3470                                 }
3471                               }
3472                             }
3473                           }
3474                         } break;
3475                         }
3476                       }
3477 
3478                       if (add_nlist) {
3479                         uint64_t symbol_value = nlist.n_value;
3480                         if (symbol_name_non_abi_mangled) {
3481                           sym[sym_idx].GetMangled().SetMangledName(
3482                               ConstString(symbol_name_non_abi_mangled));
3483                           sym[sym_idx].GetMangled().SetDemangledName(
3484                               ConstString(symbol_name));
3485                         } else {
3486                           bool symbol_name_is_mangled = false;
3487 
3488                           if (symbol_name && symbol_name[0] == '_') {
3489                             symbol_name_is_mangled = symbol_name[1] == '_';
3490                             symbol_name++; // Skip the leading underscore
3491                           }
3492 
3493                           if (symbol_name) {
3494                             ConstString const_symbol_name(symbol_name);
3495                             sym[sym_idx].GetMangled().SetValue(
3496                                 const_symbol_name, symbol_name_is_mangled);
3497                             if (is_gsym && is_debug) {
3498                               const char *gsym_name =
3499                                   sym[sym_idx]
3500                                       .GetMangled()
3501                                       .GetName(lldb::eLanguageTypeUnknown,
3502                                                Mangled::ePreferMangled)
3503                                       .GetCString();
3504                               if (gsym_name)
3505                                 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3506                             }
3507                           }
3508                         }
3509                         if (symbol_section) {
3510                           const addr_t section_file_addr =
3511                               symbol_section->GetFileAddress();
3512                           if (symbol_byte_size == 0 &&
3513                               function_starts_count > 0) {
3514                             addr_t symbol_lookup_file_addr = nlist.n_value;
3515                             // Do an exact address match for non-ARM addresses,
3516                             // else get the closest since the symbol might be a
3517                             // thumb symbol which has an address with bit zero
3518                             // set
3519                             FunctionStarts::Entry *func_start_entry =
3520                                 function_starts.FindEntry(
3521                                     symbol_lookup_file_addr, !is_arm);
3522                             if (is_arm && func_start_entry) {
3523                               // Verify that the function start address is the
3524                               // symbol address (ARM) or the symbol address + 1
3525                               // (thumb)
3526                               if (func_start_entry->addr !=
3527                                       symbol_lookup_file_addr &&
3528                                   func_start_entry->addr !=
3529                                       (symbol_lookup_file_addr + 1)) {
3530                                 // Not the right entry, NULL it out...
3531                                 func_start_entry = NULL;
3532                               }
3533                             }
3534                             if (func_start_entry) {
3535                               func_start_entry->data = true;
3536 
3537                               addr_t symbol_file_addr = func_start_entry->addr;
3538                               uint32_t symbol_flags = 0;
3539                               if (is_arm) {
3540                                 if (symbol_file_addr & 1)
3541                                   symbol_flags =
3542                                       MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3543                                 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3544                               }
3545 
3546                               const FunctionStarts::Entry
3547                                   *next_func_start_entry =
3548                                       function_starts.FindNextEntry(
3549                                           func_start_entry);
3550                               const addr_t section_end_file_addr =
3551                                   section_file_addr +
3552                                   symbol_section->GetByteSize();
3553                               if (next_func_start_entry) {
3554                                 addr_t next_symbol_file_addr =
3555                                     next_func_start_entry->addr;
3556                                 // Be sure the clear the Thumb address bit when
3557                                 // we calculate the size from the current and
3558                                 // next address
3559                                 if (is_arm)
3560                                   next_symbol_file_addr &=
3561                                       THUMB_ADDRESS_BIT_MASK;
3562                                 symbol_byte_size = std::min<lldb::addr_t>(
3563                                     next_symbol_file_addr - symbol_file_addr,
3564                                     section_end_file_addr - symbol_file_addr);
3565                               } else {
3566                                 symbol_byte_size =
3567                                     section_end_file_addr - symbol_file_addr;
3568                               }
3569                             }
3570                           }
3571                           symbol_value -= section_file_addr;
3572                         }
3573 
3574                         if (is_debug == false) {
3575                           if (type == eSymbolTypeCode) {
3576                             // See if we can find a N_FUN entry for any code
3577                             // symbols. If we do find a match, and the name
3578                             // matches, then we can merge the two into just the
3579                             // function symbol to avoid duplicate entries in
3580                             // the symbol table
3581                             std::pair<ValueToSymbolIndexMap::const_iterator,
3582                                       ValueToSymbolIndexMap::const_iterator>
3583                                 range;
3584                             range = N_FUN_addr_to_sym_idx.equal_range(
3585                                 nlist.n_value);
3586                             if (range.first != range.second) {
3587                               bool found_it = false;
3588                               for (ValueToSymbolIndexMap::const_iterator pos =
3589                                        range.first;
3590                                    pos != range.second; ++pos) {
3591                                 if (sym[sym_idx].GetMangled().GetName(
3592                                         lldb::eLanguageTypeUnknown,
3593                                         Mangled::ePreferMangled) ==
3594                                     sym[pos->second].GetMangled().GetName(
3595                                         lldb::eLanguageTypeUnknown,
3596                                         Mangled::ePreferMangled)) {
3597                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3598                                       pos->second;
3599                                   // We just need the flags from the linker
3600                                   // symbol, so put these flags
3601                                   // into the N_FUN flags to avoid duplicate
3602                                   // symbols in the symbol table
3603                                   sym[pos->second].SetExternal(
3604                                       sym[sym_idx].IsExternal());
3605                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3606                                                             nlist.n_desc);
3607                                   if (resolver_addresses.find(nlist.n_value) !=
3608                                       resolver_addresses.end())
3609                                     sym[pos->second].SetType(
3610                                         eSymbolTypeResolver);
3611                                   sym[sym_idx].Clear();
3612                                   found_it = true;
3613                                   break;
3614                                 }
3615                               }
3616                               if (found_it)
3617                                 continue;
3618                             } else {
3619                               if (resolver_addresses.find(nlist.n_value) !=
3620                                   resolver_addresses.end())
3621                                 type = eSymbolTypeResolver;
3622                             }
3623                           } else if (type == eSymbolTypeData ||
3624                                      type == eSymbolTypeObjCClass ||
3625                                      type == eSymbolTypeObjCMetaClass ||
3626                                      type == eSymbolTypeObjCIVar) {
3627                             // See if we can find a N_STSYM entry for any data
3628                             // symbols. If we do find a match, and the name
3629                             // matches, then we can merge the two into just the
3630                             // Static symbol to avoid duplicate entries in the
3631                             // symbol table
3632                             std::pair<ValueToSymbolIndexMap::const_iterator,
3633                                       ValueToSymbolIndexMap::const_iterator>
3634                                 range;
3635                             range = N_STSYM_addr_to_sym_idx.equal_range(
3636                                 nlist.n_value);
3637                             if (range.first != range.second) {
3638                               bool found_it = false;
3639                               for (ValueToSymbolIndexMap::const_iterator pos =
3640                                        range.first;
3641                                    pos != range.second; ++pos) {
3642                                 if (sym[sym_idx].GetMangled().GetName(
3643                                         lldb::eLanguageTypeUnknown,
3644                                         Mangled::ePreferMangled) ==
3645                                     sym[pos->second].GetMangled().GetName(
3646                                         lldb::eLanguageTypeUnknown,
3647                                         Mangled::ePreferMangled)) {
3648                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3649                                       pos->second;
3650                                   // We just need the flags from the linker
3651                                   // symbol, so put these flags
3652                                   // into the N_STSYM flags to avoid duplicate
3653                                   // symbols in the symbol table
3654                                   sym[pos->second].SetExternal(
3655                                       sym[sym_idx].IsExternal());
3656                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3657                                                             nlist.n_desc);
3658                                   sym[sym_idx].Clear();
3659                                   found_it = true;
3660                                   break;
3661                                 }
3662                               }
3663                               if (found_it)
3664                                 continue;
3665                             } else {
3666                               const char *gsym_name =
3667                                   sym[sym_idx]
3668                                       .GetMangled()
3669                                       .GetName(lldb::eLanguageTypeUnknown,
3670                                                Mangled::ePreferMangled)
3671                                       .GetCString();
3672                               if (gsym_name) {
3673                                 // Combine N_GSYM stab entries with the non
3674                                 // stab symbol
3675                                 ConstNameToSymbolIndexMap::const_iterator pos =
3676                                     N_GSYM_name_to_sym_idx.find(gsym_name);
3677                                 if (pos != N_GSYM_name_to_sym_idx.end()) {
3678                                   const uint32_t GSYM_sym_idx = pos->second;
3679                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3680                                       GSYM_sym_idx;
3681                                   // Copy the address, because often the N_GSYM
3682                                   // address has an invalid address of zero
3683                                   // when the global is a common symbol
3684                                   sym[GSYM_sym_idx].GetAddressRef().SetSection(
3685                                       symbol_section);
3686                                   sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3687                                       symbol_value);
3688                                   // We just need the flags from the linker
3689                                   // symbol, so put these flags
3690                                   // into the N_GSYM flags to avoid duplicate
3691                                   // symbols in the symbol table
3692                                   sym[GSYM_sym_idx].SetFlags(
3693                                       nlist.n_type << 16 | nlist.n_desc);
3694                                   sym[sym_idx].Clear();
3695                                   continue;
3696                                 }
3697                               }
3698                             }
3699                           }
3700                         }
3701 
3702                         sym[sym_idx].SetID(nlist_idx);
3703                         sym[sym_idx].SetType(type);
3704                         if (set_value) {
3705                           sym[sym_idx].GetAddressRef().SetSection(
3706                               symbol_section);
3707                           sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3708                         }
3709                         sym[sym_idx].SetFlags(nlist.n_type << 16 |
3710                                               nlist.n_desc);
3711 
3712                         if (symbol_byte_size > 0)
3713                           sym[sym_idx].SetByteSize(symbol_byte_size);
3714 
3715                         if (demangled_is_synthesized)
3716                           sym[sym_idx].SetDemangledNameIsSynthesized(true);
3717                         ++sym_idx;
3718                       } else {
3719                         sym[sym_idx].Clear();
3720                       }
3721                     }
3722                     /////////////////////////////
3723                   }
3724                   break; // No more entries to consider
3725                 }
3726               }
3727 
3728               for (const auto &pos : reexport_shlib_needs_fixup) {
3729                 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3730                 if (undef_pos != undefined_name_to_desc.end()) {
3731                   const uint8_t dylib_ordinal =
3732                       llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3733                   if (dylib_ordinal > 0 &&
3734                       dylib_ordinal < dylib_files.GetSize())
3735                     sym[pos.first].SetReExportedSymbolSharedLibrary(
3736                         dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3737                 }
3738               }
3739             }
3740           }
3741         }
3742       }
3743     }
3744 
3745     // Must reset this in case it was mutated above!
3746     nlist_data_offset = 0;
3747 #endif
3748 
3749     if (nlist_data.GetByteSize() > 0) {
3750 
3751       // If the sym array was not created while parsing the DSC unmapped
3752       // symbols, create it now.
3753       if (sym == nullptr) {
3754         sym = symtab->Resize(symtab_load_command.nsyms +
3755                              m_dysymtab.nindirectsyms);
3756         num_syms = symtab->GetNumSymbols();
3757       }
3758 
3759       if (unmapped_local_symbols_found) {
3760         assert(m_dysymtab.ilocalsym == 0);
3761         nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3762         nlist_idx = m_dysymtab.nlocalsym;
3763       } else {
3764         nlist_idx = 0;
3765       }
3766 
3767       typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3768       typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3769       UndefinedNameToDescMap undefined_name_to_desc;
3770       SymbolIndexToName reexport_shlib_needs_fixup;
3771       for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3772         struct nlist_64 nlist;
3773         if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3774                                                  nlist_byte_size))
3775           break;
3776 
3777         nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3778         nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3779         nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3780         nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3781         nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3782 
3783         SymbolType type = eSymbolTypeInvalid;
3784         const char *symbol_name = nullptr;
3785 
3786         if (have_strtab_data) {
3787           symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3788 
3789           if (symbol_name == nullptr) {
3790             // No symbol should be NULL, even the symbols with no string values
3791             // should have an offset zero which points to an empty C-string
3792             Host::SystemLog(Host::eSystemLogError,
3793                             "error: symbol[%u] has invalid string table offset "
3794                             "0x%x in %s, ignoring symbol\n",
3795                             nlist_idx, nlist.n_strx,
3796                             module_sp->GetFileSpec().GetPath().c_str());
3797             continue;
3798           }
3799           if (symbol_name[0] == '\0')
3800             symbol_name = nullptr;
3801         } else {
3802           const addr_t str_addr = strtab_addr + nlist.n_strx;
3803           Status str_error;
3804           if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3805                                              str_error))
3806             symbol_name = memory_symbol_name.c_str();
3807         }
3808         const char *symbol_name_non_abi_mangled = nullptr;
3809 
3810         SectionSP symbol_section;
3811         lldb::addr_t symbol_byte_size = 0;
3812         bool add_nlist = true;
3813         bool is_gsym = false;
3814         bool is_debug = ((nlist.n_type & N_STAB) != 0);
3815         bool demangled_is_synthesized = false;
3816         bool set_value = true;
3817         assert(sym_idx < num_syms);
3818 
3819         sym[sym_idx].SetDebug(is_debug);
3820 
3821         if (is_debug) {
3822           switch (nlist.n_type) {
3823           case N_GSYM:
3824             // global symbol: name,,NO_SECT,type,0
3825             // Sometimes the N_GSYM value contains the address.
3826 
3827             // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3828             // the ObjC data.  They
3829             // have the same address, but we want to ensure that we always find
3830             // only the real symbol, 'cause we don't currently correctly
3831             // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3832             // type.  This is a temporary hack to make sure the ObjectiveC
3833             // symbols get treated correctly.  To do this right, we should
3834             // coalesce all the GSYM & global symbols that have the same
3835             // address.
3836             is_gsym = true;
3837             sym[sym_idx].SetExternal(true);
3838 
3839             if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3840               llvm::StringRef symbol_name_ref(symbol_name);
3841               if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3842                 symbol_name_non_abi_mangled = symbol_name + 1;
3843                 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3844                 type = eSymbolTypeObjCClass;
3845                 demangled_is_synthesized = true;
3846 
3847               } else if (symbol_name_ref.startswith(
3848                              g_objc_v2_prefix_metaclass)) {
3849                 symbol_name_non_abi_mangled = symbol_name + 1;
3850                 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3851                 type = eSymbolTypeObjCMetaClass;
3852                 demangled_is_synthesized = true;
3853               } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3854                 symbol_name_non_abi_mangled = symbol_name + 1;
3855                 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3856                 type = eSymbolTypeObjCIVar;
3857                 demangled_is_synthesized = true;
3858               }
3859             } else {
3860               if (nlist.n_value != 0)
3861                 symbol_section =
3862                     section_info.GetSection(nlist.n_sect, nlist.n_value);
3863               type = eSymbolTypeData;
3864             }
3865             break;
3866 
3867           case N_FNAME:
3868             // procedure name (f77 kludge): name,,NO_SECT,0,0
3869             type = eSymbolTypeCompiler;
3870             break;
3871 
3872           case N_FUN:
3873             // procedure: name,,n_sect,linenumber,address
3874             if (symbol_name) {
3875               type = eSymbolTypeCode;
3876               symbol_section =
3877                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3878 
3879               N_FUN_addr_to_sym_idx.insert(
3880                   std::make_pair(nlist.n_value, sym_idx));
3881               // We use the current number of symbols in the symbol table in
3882               // lieu of using nlist_idx in case we ever start trimming entries
3883               // out
3884               N_FUN_indexes.push_back(sym_idx);
3885             } else {
3886               type = eSymbolTypeCompiler;
3887 
3888               if (!N_FUN_indexes.empty()) {
3889                 // Copy the size of the function into the original STAB entry
3890                 // so we don't have to hunt for it later
3891                 symtab->SymbolAtIndex(N_FUN_indexes.back())
3892                     ->SetByteSize(nlist.n_value);
3893                 N_FUN_indexes.pop_back();
3894                 // We don't really need the end function STAB as it contains
3895                 // the size which we already placed with the original symbol,
3896                 // so don't add it if we want a minimal symbol table
3897                 add_nlist = false;
3898               }
3899             }
3900             break;
3901 
3902           case N_STSYM:
3903             // static symbol: name,,n_sect,type,address
3904             N_STSYM_addr_to_sym_idx.insert(
3905                 std::make_pair(nlist.n_value, sym_idx));
3906             symbol_section =
3907                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3908             if (symbol_name && symbol_name[0]) {
3909               type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3910                                                        eSymbolTypeData);
3911             }
3912             break;
3913 
3914           case N_LCSYM:
3915             // .lcomm symbol: name,,n_sect,type,address
3916             symbol_section =
3917                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3918             type = eSymbolTypeCommonBlock;
3919             break;
3920 
3921           case N_BNSYM:
3922             // We use the current number of symbols in the symbol table in lieu
3923             // of using nlist_idx in case we ever start trimming entries out
3924             // Skip these if we want minimal symbol tables
3925             add_nlist = false;
3926             break;
3927 
3928           case N_ENSYM:
3929             // Set the size of the N_BNSYM to the terminating index of this
3930             // N_ENSYM so that we can always skip the entire symbol if we need
3931             // to navigate more quickly at the source level when parsing STABS
3932             // Skip these if we want minimal symbol tables
3933             add_nlist = false;
3934             break;
3935 
3936           case N_OPT:
3937             // emitted with gcc2_compiled and in gcc source
3938             type = eSymbolTypeCompiler;
3939             break;
3940 
3941           case N_RSYM:
3942             // register sym: name,,NO_SECT,type,register
3943             type = eSymbolTypeVariable;
3944             break;
3945 
3946           case N_SLINE:
3947             // src line: 0,,n_sect,linenumber,address
3948             symbol_section =
3949                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3950             type = eSymbolTypeLineEntry;
3951             break;
3952 
3953           case N_SSYM:
3954             // structure elt: name,,NO_SECT,type,struct_offset
3955             type = eSymbolTypeVariableType;
3956             break;
3957 
3958           case N_SO:
3959             // source file name
3960             type = eSymbolTypeSourceFile;
3961             if (symbol_name == nullptr) {
3962               add_nlist = false;
3963               if (N_SO_index != UINT32_MAX) {
3964                 // Set the size of the N_SO to the terminating index of this
3965                 // N_SO so that we can always skip the entire N_SO if we need
3966                 // to navigate more quickly at the source level when parsing
3967                 // STABS
3968                 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3969                 symbol_ptr->SetByteSize(sym_idx);
3970                 symbol_ptr->SetSizeIsSibling(true);
3971               }
3972               N_NSYM_indexes.clear();
3973               N_INCL_indexes.clear();
3974               N_BRAC_indexes.clear();
3975               N_COMM_indexes.clear();
3976               N_FUN_indexes.clear();
3977               N_SO_index = UINT32_MAX;
3978             } else {
3979               // We use the current number of symbols in the symbol table in
3980               // lieu of using nlist_idx in case we ever start trimming entries
3981               // out
3982               const bool N_SO_has_full_path = symbol_name[0] == '/';
3983               if (N_SO_has_full_path) {
3984                 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3985                   // We have two consecutive N_SO entries where the first
3986                   // contains a directory and the second contains a full path.
3987                   sym[sym_idx - 1].GetMangled().SetValue(
3988                       ConstString(symbol_name), false);
3989                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3990                   add_nlist = false;
3991                 } else {
3992                   // This is the first entry in a N_SO that contains a
3993                   // directory or a full path to the source file
3994                   N_SO_index = sym_idx;
3995                 }
3996               } else if ((N_SO_index == sym_idx - 1) &&
3997                          ((sym_idx - 1) < num_syms)) {
3998                 // This is usually the second N_SO entry that contains just the
3999                 // filename, so here we combine it with the first one if we are
4000                 // minimizing the symbol table
4001                 const char *so_path =
4002                     sym[sym_idx - 1]
4003                         .GetMangled()
4004                         .GetDemangledName(lldb::eLanguageTypeUnknown)
4005                         .AsCString();
4006                 if (so_path && so_path[0]) {
4007                   std::string full_so_path(so_path);
4008                   const size_t double_slash_pos = full_so_path.find("//");
4009                   if (double_slash_pos != std::string::npos) {
4010                     // The linker has been generating bad N_SO entries with
4011                     // doubled up paths in the format "%s%s" where the first
4012                     // string in the DW_AT_comp_dir, and the second is the
4013                     // directory for the source file so you end up with a path
4014                     // that looks like "/tmp/src//tmp/src/"
4015                     FileSpec so_dir(so_path);
4016                     if (!FileSystem::Instance().Exists(so_dir)) {
4017                       so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4018                                      FileSpec::Style::native);
4019                       if (FileSystem::Instance().Exists(so_dir)) {
4020                         // Trim off the incorrect path
4021                         full_so_path.erase(0, double_slash_pos + 1);
4022                       }
4023                     }
4024                   }
4025                   if (*full_so_path.rbegin() != '/')
4026                     full_so_path += '/';
4027                   full_so_path += symbol_name;
4028                   sym[sym_idx - 1].GetMangled().SetValue(
4029                       ConstString(full_so_path.c_str()), false);
4030                   add_nlist = false;
4031                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4032                 }
4033               } else {
4034                 // This could be a relative path to a N_SO
4035                 N_SO_index = sym_idx;
4036               }
4037             }
4038             break;
4039 
4040           case N_OSO:
4041             // object file name: name,,0,0,st_mtime
4042             type = eSymbolTypeObjectFile;
4043             break;
4044 
4045           case N_LSYM:
4046             // local sym: name,,NO_SECT,type,offset
4047             type = eSymbolTypeLocal;
4048             break;
4049 
4050           // INCL scopes
4051           case N_BINCL:
4052             // include file beginning: name,,NO_SECT,0,sum We use the current
4053             // number of symbols in the symbol table in lieu of using nlist_idx
4054             // in case we ever start trimming entries out
4055             N_INCL_indexes.push_back(sym_idx);
4056             type = eSymbolTypeScopeBegin;
4057             break;
4058 
4059           case N_EINCL:
4060             // include file end: name,,NO_SECT,0,0
4061             // Set the size of the N_BINCL to the terminating index of this
4062             // N_EINCL so that we can always skip the entire symbol if we need
4063             // to navigate more quickly at the source level when parsing STABS
4064             if (!N_INCL_indexes.empty()) {
4065               symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4066               symbol_ptr->SetByteSize(sym_idx + 1);
4067               symbol_ptr->SetSizeIsSibling(true);
4068               N_INCL_indexes.pop_back();
4069             }
4070             type = eSymbolTypeScopeEnd;
4071             break;
4072 
4073           case N_SOL:
4074             // #included file name: name,,n_sect,0,address
4075             type = eSymbolTypeHeaderFile;
4076 
4077             // We currently don't use the header files on darwin
4078             add_nlist = false;
4079             break;
4080 
4081           case N_PARAMS:
4082             // compiler parameters: name,,NO_SECT,0,0
4083             type = eSymbolTypeCompiler;
4084             break;
4085 
4086           case N_VERSION:
4087             // compiler version: name,,NO_SECT,0,0
4088             type = eSymbolTypeCompiler;
4089             break;
4090 
4091           case N_OLEVEL:
4092             // compiler -O level: name,,NO_SECT,0,0
4093             type = eSymbolTypeCompiler;
4094             break;
4095 
4096           case N_PSYM:
4097             // parameter: name,,NO_SECT,type,offset
4098             type = eSymbolTypeVariable;
4099             break;
4100 
4101           case N_ENTRY:
4102             // alternate entry: name,,n_sect,linenumber,address
4103             symbol_section =
4104                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4105             type = eSymbolTypeLineEntry;
4106             break;
4107 
4108           // Left and Right Braces
4109           case N_LBRAC:
4110             // left bracket: 0,,NO_SECT,nesting level,address We use the
4111             // current number of symbols in the symbol table in lieu of using
4112             // nlist_idx in case we ever start trimming entries out
4113             symbol_section =
4114                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4115             N_BRAC_indexes.push_back(sym_idx);
4116             type = eSymbolTypeScopeBegin;
4117             break;
4118 
4119           case N_RBRAC:
4120             // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4121             // the N_LBRAC to the terminating index of this N_RBRAC so that we
4122             // can always skip the entire symbol if we need to navigate more
4123             // quickly at the source level when parsing STABS
4124             symbol_section =
4125                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4126             if (!N_BRAC_indexes.empty()) {
4127               symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4128               symbol_ptr->SetByteSize(sym_idx + 1);
4129               symbol_ptr->SetSizeIsSibling(true);
4130               N_BRAC_indexes.pop_back();
4131             }
4132             type = eSymbolTypeScopeEnd;
4133             break;
4134 
4135           case N_EXCL:
4136             // deleted include file: name,,NO_SECT,0,sum
4137             type = eSymbolTypeHeaderFile;
4138             break;
4139 
4140           // COMM scopes
4141           case N_BCOMM:
4142             // begin common: name,,NO_SECT,0,0
4143             // We use the current number of symbols in the symbol table in lieu
4144             // of using nlist_idx in case we ever start trimming entries out
4145             type = eSymbolTypeScopeBegin;
4146             N_COMM_indexes.push_back(sym_idx);
4147             break;
4148 
4149           case N_ECOML:
4150             // end common (local name): 0,,n_sect,0,address
4151             symbol_section =
4152                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4153             LLVM_FALLTHROUGH;
4154 
4155           case N_ECOMM:
4156             // end common: name,,n_sect,0,0
4157             // Set the size of the N_BCOMM to the terminating index of this
4158             // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4159             // we need to navigate more quickly at the source level when
4160             // parsing STABS
4161             if (!N_COMM_indexes.empty()) {
4162               symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4163               symbol_ptr->SetByteSize(sym_idx + 1);
4164               symbol_ptr->SetSizeIsSibling(true);
4165               N_COMM_indexes.pop_back();
4166             }
4167             type = eSymbolTypeScopeEnd;
4168             break;
4169 
4170           case N_LENG:
4171             // second stab entry with length information
4172             type = eSymbolTypeAdditional;
4173             break;
4174 
4175           default:
4176             break;
4177           }
4178         } else {
4179           // uint8_t n_pext    = N_PEXT & nlist.n_type;
4180           uint8_t n_type = N_TYPE & nlist.n_type;
4181           sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4182 
4183           switch (n_type) {
4184           case N_INDR: {
4185             const char *reexport_name_cstr =
4186                 strtab_data.PeekCStr(nlist.n_value);
4187             if (reexport_name_cstr && reexport_name_cstr[0]) {
4188               type = eSymbolTypeReExported;
4189               ConstString reexport_name(
4190                   reexport_name_cstr +
4191                   ((reexport_name_cstr[0] == '_') ? 1 : 0));
4192               sym[sym_idx].SetReExportedSymbolName(reexport_name);
4193               set_value = false;
4194               reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4195               indirect_symbol_names.insert(
4196                   ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4197             } else
4198               type = eSymbolTypeUndefined;
4199           } break;
4200 
4201           case N_UNDF:
4202             if (symbol_name && symbol_name[0]) {
4203               ConstString undefined_name(symbol_name +
4204                                          ((symbol_name[0] == '_') ? 1 : 0));
4205               undefined_name_to_desc[undefined_name] = nlist.n_desc;
4206             }
4207             LLVM_FALLTHROUGH;
4208 
4209           case N_PBUD:
4210             type = eSymbolTypeUndefined;
4211             break;
4212 
4213           case N_ABS:
4214             type = eSymbolTypeAbsolute;
4215             break;
4216 
4217           case N_SECT: {
4218             symbol_section =
4219                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4220 
4221             if (!symbol_section) {
4222               // TODO: warn about this?
4223               add_nlist = false;
4224               break;
4225             }
4226 
4227             if (TEXT_eh_frame_sectID == nlist.n_sect) {
4228               type = eSymbolTypeException;
4229             } else {
4230               uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4231 
4232               switch (section_type) {
4233               case S_CSTRING_LITERALS:
4234                 type = eSymbolTypeData;
4235                 break; // section with only literal C strings
4236               case S_4BYTE_LITERALS:
4237                 type = eSymbolTypeData;
4238                 break; // section with only 4 byte literals
4239               case S_8BYTE_LITERALS:
4240                 type = eSymbolTypeData;
4241                 break; // section with only 8 byte literals
4242               case S_LITERAL_POINTERS:
4243                 type = eSymbolTypeTrampoline;
4244                 break; // section with only pointers to literals
4245               case S_NON_LAZY_SYMBOL_POINTERS:
4246                 type = eSymbolTypeTrampoline;
4247                 break; // section with only non-lazy symbol pointers
4248               case S_LAZY_SYMBOL_POINTERS:
4249                 type = eSymbolTypeTrampoline;
4250                 break; // section with only lazy symbol pointers
4251               case S_SYMBOL_STUBS:
4252                 type = eSymbolTypeTrampoline;
4253                 break; // section with only symbol stubs, byte size of stub in
4254                        // the reserved2 field
4255               case S_MOD_INIT_FUNC_POINTERS:
4256                 type = eSymbolTypeCode;
4257                 break; // section with only function pointers for initialization
4258               case S_MOD_TERM_FUNC_POINTERS:
4259                 type = eSymbolTypeCode;
4260                 break; // section with only function pointers for termination
4261               case S_INTERPOSING:
4262                 type = eSymbolTypeTrampoline;
4263                 break; // section with only pairs of function pointers for
4264                        // interposing
4265               case S_16BYTE_LITERALS:
4266                 type = eSymbolTypeData;
4267                 break; // section with only 16 byte literals
4268               case S_DTRACE_DOF:
4269                 type = eSymbolTypeInstrumentation;
4270                 break;
4271               case S_LAZY_DYLIB_SYMBOL_POINTERS:
4272                 type = eSymbolTypeTrampoline;
4273                 break;
4274               default:
4275                 switch (symbol_section->GetType()) {
4276                 case lldb::eSectionTypeCode:
4277                   type = eSymbolTypeCode;
4278                   break;
4279                 case eSectionTypeData:
4280                 case eSectionTypeDataCString:         // Inlined C string data
4281                 case eSectionTypeDataCStringPointers: // Pointers to C string
4282                                                       // data
4283                 case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4284                                                       // the symbol table
4285                 case eSectionTypeData4:
4286                 case eSectionTypeData8:
4287                 case eSectionTypeData16:
4288                   type = eSymbolTypeData;
4289                   break;
4290                 default:
4291                   break;
4292                 }
4293                 break;
4294               }
4295 
4296               if (type == eSymbolTypeInvalid) {
4297                 const char *symbol_sect_name =
4298                     symbol_section->GetName().AsCString();
4299                 if (symbol_section->IsDescendant(text_section_sp.get())) {
4300                   if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4301                                               S_ATTR_SELF_MODIFYING_CODE |
4302                                               S_ATTR_SOME_INSTRUCTIONS))
4303                     type = eSymbolTypeData;
4304                   else
4305                     type = eSymbolTypeCode;
4306                 } else if (symbol_section->IsDescendant(
4307                                data_section_sp.get()) ||
4308                            symbol_section->IsDescendant(
4309                                data_dirty_section_sp.get()) ||
4310                            symbol_section->IsDescendant(
4311                                data_const_section_sp.get())) {
4312                   if (symbol_sect_name &&
4313                       ::strstr(symbol_sect_name, "__objc") ==
4314                           symbol_sect_name) {
4315                     type = eSymbolTypeRuntime;
4316 
4317                     if (symbol_name) {
4318                       llvm::StringRef symbol_name_ref(symbol_name);
4319                       if (symbol_name_ref.startswith("_OBJC_")) {
4320                         static const llvm::StringRef g_objc_v2_prefix_class(
4321                             "_OBJC_CLASS_$_");
4322                         static const llvm::StringRef g_objc_v2_prefix_metaclass(
4323                             "_OBJC_METACLASS_$_");
4324                         static const llvm::StringRef g_objc_v2_prefix_ivar(
4325                             "_OBJC_IVAR_$_");
4326                         if (symbol_name_ref.startswith(
4327                                 g_objc_v2_prefix_class)) {
4328                           symbol_name_non_abi_mangled = symbol_name + 1;
4329                           symbol_name =
4330                               symbol_name + g_objc_v2_prefix_class.size();
4331                           type = eSymbolTypeObjCClass;
4332                           demangled_is_synthesized = true;
4333                         } else if (symbol_name_ref.startswith(
4334                                        g_objc_v2_prefix_metaclass)) {
4335                           symbol_name_non_abi_mangled = symbol_name + 1;
4336                           symbol_name =
4337                               symbol_name + g_objc_v2_prefix_metaclass.size();
4338                           type = eSymbolTypeObjCMetaClass;
4339                           demangled_is_synthesized = true;
4340                         } else if (symbol_name_ref.startswith(
4341                                        g_objc_v2_prefix_ivar)) {
4342                           symbol_name_non_abi_mangled = symbol_name + 1;
4343                           symbol_name =
4344                               symbol_name + g_objc_v2_prefix_ivar.size();
4345                           type = eSymbolTypeObjCIVar;
4346                           demangled_is_synthesized = true;
4347                         }
4348                       }
4349                     }
4350                   } else if (symbol_sect_name &&
4351                              ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4352                                  symbol_sect_name) {
4353                     type = eSymbolTypeException;
4354                   } else {
4355                     type = eSymbolTypeData;
4356                   }
4357                 } else if (symbol_sect_name &&
4358                            ::strstr(symbol_sect_name, "__IMPORT") ==
4359                                symbol_sect_name) {
4360                   type = eSymbolTypeTrampoline;
4361                 } else if (symbol_section->IsDescendant(
4362                                objc_section_sp.get())) {
4363                   type = eSymbolTypeRuntime;
4364                   if (symbol_name && symbol_name[0] == '.') {
4365                     llvm::StringRef symbol_name_ref(symbol_name);
4366                     static const llvm::StringRef g_objc_v1_prefix_class(
4367                         ".objc_class_name_");
4368                     if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4369                       symbol_name_non_abi_mangled = symbol_name;
4370                       symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4371                       type = eSymbolTypeObjCClass;
4372                       demangled_is_synthesized = true;
4373                     }
4374                   }
4375                 }
4376               }
4377             }
4378           } break;
4379           }
4380         }
4381 
4382         if (add_nlist) {
4383           uint64_t symbol_value = nlist.n_value;
4384 
4385           if (symbol_name_non_abi_mangled) {
4386             sym[sym_idx].GetMangled().SetMangledName(
4387                 ConstString(symbol_name_non_abi_mangled));
4388             sym[sym_idx].GetMangled().SetDemangledName(
4389                 ConstString(symbol_name));
4390           } else {
4391             bool symbol_name_is_mangled = false;
4392 
4393             if (symbol_name && symbol_name[0] == '_') {
4394               symbol_name_is_mangled = symbol_name[1] == '_';
4395               symbol_name++; // Skip the leading underscore
4396             }
4397 
4398             if (symbol_name) {
4399               ConstString const_symbol_name(symbol_name);
4400               sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4401                                                  symbol_name_is_mangled);
4402             }
4403           }
4404 
4405           if (is_gsym) {
4406             const char *gsym_name = sym[sym_idx]
4407                                         .GetMangled()
4408                                         .GetName(lldb::eLanguageTypeUnknown,
4409                                                  Mangled::ePreferMangled)
4410                                         .GetCString();
4411             if (gsym_name)
4412               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4413           }
4414 
4415           if (symbol_section) {
4416             const addr_t section_file_addr = symbol_section->GetFileAddress();
4417             if (symbol_byte_size == 0 && function_starts_count > 0) {
4418               addr_t symbol_lookup_file_addr = nlist.n_value;
4419               // Do an exact address match for non-ARM addresses, else get the
4420               // closest since the symbol might be a thumb symbol which has an
4421               // address with bit zero set
4422               FunctionStarts::Entry *func_start_entry =
4423                   function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4424               if (is_arm && func_start_entry) {
4425                 // Verify that the function start address is the symbol address
4426                 // (ARM) or the symbol address + 1 (thumb)
4427                 if (func_start_entry->addr != symbol_lookup_file_addr &&
4428                     func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4429                   // Not the right entry, NULL it out...
4430                   func_start_entry = nullptr;
4431                 }
4432               }
4433               if (func_start_entry) {
4434                 func_start_entry->data = true;
4435 
4436                 addr_t symbol_file_addr = func_start_entry->addr;
4437                 if (is_arm)
4438                   symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4439 
4440                 const FunctionStarts::Entry *next_func_start_entry =
4441                     function_starts.FindNextEntry(func_start_entry);
4442                 const addr_t section_end_file_addr =
4443                     section_file_addr + symbol_section->GetByteSize();
4444                 if (next_func_start_entry) {
4445                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4446                   // Be sure the clear the Thumb address bit when we calculate
4447                   // the size from the current and next address
4448                   if (is_arm)
4449                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4450                   symbol_byte_size = std::min<lldb::addr_t>(
4451                       next_symbol_file_addr - symbol_file_addr,
4452                       section_end_file_addr - symbol_file_addr);
4453                 } else {
4454                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4455                 }
4456               }
4457             }
4458             symbol_value -= section_file_addr;
4459           }
4460 
4461           if (!is_debug) {
4462             if (type == eSymbolTypeCode) {
4463               // See if we can find a N_FUN entry for any code symbols. If we
4464               // do find a match, and the name matches, then we can merge the
4465               // two into just the function symbol to avoid duplicate entries
4466               // in the symbol table
4467               std::pair<ValueToSymbolIndexMap::const_iterator,
4468                         ValueToSymbolIndexMap::const_iterator>
4469                   range;
4470               range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4471               if (range.first != range.second) {
4472                 bool found_it = false;
4473                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4474                      pos != range.second; ++pos) {
4475                   if (sym[sym_idx].GetMangled().GetName(
4476                           lldb::eLanguageTypeUnknown,
4477                           Mangled::ePreferMangled) ==
4478                       sym[pos->second].GetMangled().GetName(
4479                           lldb::eLanguageTypeUnknown,
4480                           Mangled::ePreferMangled)) {
4481                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4482                     // We just need the flags from the linker symbol, so put
4483                     // these flags into the N_FUN flags to avoid duplicate
4484                     // symbols in the symbol table
4485                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4486                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4487                                               nlist.n_desc);
4488                     if (resolver_addresses.find(nlist.n_value) !=
4489                         resolver_addresses.end())
4490                       sym[pos->second].SetType(eSymbolTypeResolver);
4491                     sym[sym_idx].Clear();
4492                     found_it = true;
4493                     break;
4494                   }
4495                 }
4496                 if (found_it)
4497                   continue;
4498               } else {
4499                 if (resolver_addresses.find(nlist.n_value) !=
4500                     resolver_addresses.end())
4501                   type = eSymbolTypeResolver;
4502               }
4503             } else if (type == eSymbolTypeData ||
4504                        type == eSymbolTypeObjCClass ||
4505                        type == eSymbolTypeObjCMetaClass ||
4506                        type == eSymbolTypeObjCIVar) {
4507               // See if we can find a N_STSYM entry for any data symbols. If we
4508               // do find a match, and the name matches, then we can merge the
4509               // two into just the Static symbol to avoid duplicate entries in
4510               // the symbol table
4511               std::pair<ValueToSymbolIndexMap::const_iterator,
4512                         ValueToSymbolIndexMap::const_iterator>
4513                   range;
4514               range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4515               if (range.first != range.second) {
4516                 bool found_it = false;
4517                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4518                      pos != range.second; ++pos) {
4519                   if (sym[sym_idx].GetMangled().GetName(
4520                           lldb::eLanguageTypeUnknown,
4521                           Mangled::ePreferMangled) ==
4522                       sym[pos->second].GetMangled().GetName(
4523                           lldb::eLanguageTypeUnknown,
4524                           Mangled::ePreferMangled)) {
4525                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4526                     // We just need the flags from the linker symbol, so put
4527                     // these flags into the N_STSYM flags to avoid duplicate
4528                     // symbols in the symbol table
4529                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4530                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4531                                               nlist.n_desc);
4532                     sym[sym_idx].Clear();
4533                     found_it = true;
4534                     break;
4535                   }
4536                 }
4537                 if (found_it)
4538                   continue;
4539               } else {
4540                 // Combine N_GSYM stab entries with the non stab symbol
4541                 const char *gsym_name = sym[sym_idx]
4542                                             .GetMangled()
4543                                             .GetName(lldb::eLanguageTypeUnknown,
4544                                                      Mangled::ePreferMangled)
4545                                             .GetCString();
4546                 if (gsym_name) {
4547                   ConstNameToSymbolIndexMap::const_iterator pos =
4548                       N_GSYM_name_to_sym_idx.find(gsym_name);
4549                   if (pos != N_GSYM_name_to_sym_idx.end()) {
4550                     const uint32_t GSYM_sym_idx = pos->second;
4551                     m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4552                     // Copy the address, because often the N_GSYM address has
4553                     // an invalid address of zero when the global is a common
4554                     // symbol
4555                     sym[GSYM_sym_idx].GetAddressRef().SetSection(
4556                         symbol_section);
4557                     sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4558                     // We just need the flags from the linker symbol, so put
4559                     // these flags into the N_GSYM flags to avoid duplicate
4560                     // symbols in the symbol table
4561                     sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4562                                                nlist.n_desc);
4563                     sym[sym_idx].Clear();
4564                     continue;
4565                   }
4566                 }
4567               }
4568             }
4569           }
4570 
4571           sym[sym_idx].SetID(nlist_idx);
4572           sym[sym_idx].SetType(type);
4573           if (set_value) {
4574             sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4575             sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4576           }
4577           sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4578 
4579           if (symbol_byte_size > 0)
4580             sym[sym_idx].SetByteSize(symbol_byte_size);
4581 
4582           if (demangled_is_synthesized)
4583             sym[sym_idx].SetDemangledNameIsSynthesized(true);
4584 
4585           ++sym_idx;
4586         } else {
4587           sym[sym_idx].Clear();
4588         }
4589       }
4590 
4591       for (const auto &pos : reexport_shlib_needs_fixup) {
4592         const auto undef_pos = undefined_name_to_desc.find(pos.second);
4593         if (undef_pos != undefined_name_to_desc.end()) {
4594           const uint8_t dylib_ordinal =
4595               llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4596           if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4597             sym[pos.first].SetReExportedSymbolSharedLibrary(
4598                 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4599         }
4600       }
4601     }
4602 
4603     uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4604 
4605     if (function_starts_count > 0) {
4606       uint32_t num_synthetic_function_symbols = 0;
4607       for (i = 0; i < function_starts_count; ++i) {
4608         if (!function_starts.GetEntryRef(i).data)
4609           ++num_synthetic_function_symbols;
4610       }
4611 
4612       if (num_synthetic_function_symbols > 0) {
4613         if (num_syms < sym_idx + num_synthetic_function_symbols) {
4614           num_syms = sym_idx + num_synthetic_function_symbols;
4615           sym = symtab->Resize(num_syms);
4616         }
4617         for (i = 0; i < function_starts_count; ++i) {
4618           const FunctionStarts::Entry *func_start_entry =
4619               function_starts.GetEntryAtIndex(i);
4620           if (!func_start_entry->data) {
4621             addr_t symbol_file_addr = func_start_entry->addr;
4622             uint32_t symbol_flags = 0;
4623             if (is_arm) {
4624               if (symbol_file_addr & 1)
4625                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4626               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4627             }
4628             Address symbol_addr;
4629             if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4630               SectionSP symbol_section(symbol_addr.GetSection());
4631               uint32_t symbol_byte_size = 0;
4632               if (symbol_section) {
4633                 const addr_t section_file_addr =
4634                     symbol_section->GetFileAddress();
4635                 const FunctionStarts::Entry *next_func_start_entry =
4636                     function_starts.FindNextEntry(func_start_entry);
4637                 const addr_t section_end_file_addr =
4638                     section_file_addr + symbol_section->GetByteSize();
4639                 if (next_func_start_entry) {
4640                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4641                   if (is_arm)
4642                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4643                   symbol_byte_size = std::min<lldb::addr_t>(
4644                       next_symbol_file_addr - symbol_file_addr,
4645                       section_end_file_addr - symbol_file_addr);
4646                 } else {
4647                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4648                 }
4649                 sym[sym_idx].SetID(synthetic_sym_id++);
4650                 sym[sym_idx].GetMangled().SetDemangledName(
4651                     GetNextSyntheticSymbolName());
4652                 sym[sym_idx].SetType(eSymbolTypeCode);
4653                 sym[sym_idx].SetIsSynthetic(true);
4654                 sym[sym_idx].GetAddressRef() = symbol_addr;
4655                 if (symbol_flags)
4656                   sym[sym_idx].SetFlags(symbol_flags);
4657                 if (symbol_byte_size)
4658                   sym[sym_idx].SetByteSize(symbol_byte_size);
4659                 ++sym_idx;
4660               }
4661             }
4662           }
4663         }
4664       }
4665     }
4666 
4667     // Trim our symbols down to just what we ended up with after removing any
4668     // symbols.
4669     if (sym_idx < num_syms) {
4670       num_syms = sym_idx;
4671       sym = symtab->Resize(num_syms);
4672     }
4673 
4674     // Now synthesize indirect symbols
4675     if (m_dysymtab.nindirectsyms != 0) {
4676       if (indirect_symbol_index_data.GetByteSize()) {
4677         NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4678             m_nlist_idx_to_sym_idx.end();
4679 
4680         for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4681              ++sect_idx) {
4682           if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4683               S_SYMBOL_STUBS) {
4684             uint32_t symbol_stub_byte_size =
4685                 m_mach_sections[sect_idx].reserved2;
4686             if (symbol_stub_byte_size == 0)
4687               continue;
4688 
4689             const uint32_t num_symbol_stubs =
4690                 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4691 
4692             if (num_symbol_stubs == 0)
4693               continue;
4694 
4695             const uint32_t symbol_stub_index_offset =
4696                 m_mach_sections[sect_idx].reserved1;
4697             for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4698                  ++stub_idx) {
4699               const uint32_t symbol_stub_index =
4700                   symbol_stub_index_offset + stub_idx;
4701               const lldb::addr_t symbol_stub_addr =
4702                   m_mach_sections[sect_idx].addr +
4703                   (stub_idx * symbol_stub_byte_size);
4704               lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4705               if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4706                       symbol_stub_offset, 4)) {
4707                 const uint32_t stub_sym_id =
4708                     indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4709                 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4710                   continue;
4711 
4712                 NListIndexToSymbolIndexMap::const_iterator index_pos =
4713                     m_nlist_idx_to_sym_idx.find(stub_sym_id);
4714                 Symbol *stub_symbol = nullptr;
4715                 if (index_pos != end_index_pos) {
4716                   // We have a remapping from the original nlist index to a
4717                   // current symbol index, so just look this up by index
4718                   stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4719                 } else {
4720                   // We need to lookup a symbol using the original nlist symbol
4721                   // index since this index is coming from the S_SYMBOL_STUBS
4722                   stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4723                 }
4724 
4725                 if (stub_symbol) {
4726                   Address so_addr(symbol_stub_addr, section_list);
4727 
4728                   if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4729                     // Change the external symbol into a trampoline that makes
4730                     // sense These symbols were N_UNDF N_EXT, and are useless
4731                     // to us, so we can re-use them so we don't have to make up
4732                     // a synthetic symbol for no good reason.
4733                     if (resolver_addresses.find(symbol_stub_addr) ==
4734                         resolver_addresses.end())
4735                       stub_symbol->SetType(eSymbolTypeTrampoline);
4736                     else
4737                       stub_symbol->SetType(eSymbolTypeResolver);
4738                     stub_symbol->SetExternal(false);
4739                     stub_symbol->GetAddressRef() = so_addr;
4740                     stub_symbol->SetByteSize(symbol_stub_byte_size);
4741                   } else {
4742                     // Make a synthetic symbol to describe the trampoline stub
4743                     Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4744                     if (sym_idx >= num_syms) {
4745                       sym = symtab->Resize(++num_syms);
4746                       stub_symbol = nullptr; // this pointer no longer valid
4747                     }
4748                     sym[sym_idx].SetID(synthetic_sym_id++);
4749                     sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4750                     if (resolver_addresses.find(symbol_stub_addr) ==
4751                         resolver_addresses.end())
4752                       sym[sym_idx].SetType(eSymbolTypeTrampoline);
4753                     else
4754                       sym[sym_idx].SetType(eSymbolTypeResolver);
4755                     sym[sym_idx].SetIsSynthetic(true);
4756                     sym[sym_idx].GetAddressRef() = so_addr;
4757                     sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4758                     ++sym_idx;
4759                   }
4760                 } else {
4761                   if (log)
4762                     log->Warning("symbol stub referencing symbol table symbol "
4763                                  "%u that isn't in our minimal symbol table, "
4764                                  "fix this!!!",
4765                                  stub_sym_id);
4766                 }
4767               }
4768             }
4769           }
4770         }
4771       }
4772     }
4773 
4774     if (!trie_entries.empty()) {
4775       for (const auto &e : trie_entries) {
4776         if (e.entry.import_name) {
4777           // Only add indirect symbols from the Trie entries if we didn't have
4778           // a N_INDR nlist entry for this already
4779           if (indirect_symbol_names.find(e.entry.name) ==
4780               indirect_symbol_names.end()) {
4781             // Make a synthetic symbol to describe re-exported symbol.
4782             if (sym_idx >= num_syms)
4783               sym = symtab->Resize(++num_syms);
4784             sym[sym_idx].SetID(synthetic_sym_id++);
4785             sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4786             sym[sym_idx].SetType(eSymbolTypeReExported);
4787             sym[sym_idx].SetIsSynthetic(true);
4788             sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4789             if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4790               sym[sym_idx].SetReExportedSymbolSharedLibrary(
4791                   dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4792             }
4793             ++sym_idx;
4794           }
4795         }
4796       }
4797     }
4798 
4799     //        StreamFile s(stdout, false);
4800     //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4801     //        symtab->Dump(&s, NULL, eSortOrderNone);
4802     // Set symbol byte sizes correctly since mach-o nlist entries don't have
4803     // sizes
4804     symtab->CalculateSymbolSizes();
4805 
4806     //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4807     //        symtab->Dump(&s, NULL, eSortOrderNone);
4808 
4809     return symtab->GetNumSymbols();
4810   }
4811   return 0;
4812 }
4813 
4814 void ObjectFileMachO::Dump(Stream *s) {
4815   ModuleSP module_sp(GetModule());
4816   if (module_sp) {
4817     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4818     s->Printf("%p: ", static_cast<void *>(this));
4819     s->Indent();
4820     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4821       s->PutCString("ObjectFileMachO64");
4822     else
4823       s->PutCString("ObjectFileMachO32");
4824 
4825     ArchSpec header_arch = GetArchitecture();
4826 
4827     *s << ", file = '" << m_file
4828        << "', triple = " << header_arch.GetTriple().getTriple() << "\n";
4829 
4830     SectionList *sections = GetSectionList();
4831     if (sections)
4832       sections->Dump(s, nullptr, true, UINT32_MAX);
4833 
4834     if (m_symtab_up)
4835       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4836   }
4837 }
4838 
4839 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4840                               const lldb_private::DataExtractor &data,
4841                               lldb::offset_t lc_offset) {
4842   uint32_t i;
4843   struct uuid_command load_cmd;
4844 
4845   lldb::offset_t offset = lc_offset;
4846   for (i = 0; i < header.ncmds; ++i) {
4847     const lldb::offset_t cmd_offset = offset;
4848     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4849       break;
4850 
4851     if (load_cmd.cmd == LC_UUID) {
4852       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4853 
4854       if (uuid_bytes) {
4855         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4856         // We pretend these object files have no UUID to prevent crashing.
4857 
4858         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4859                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4860                                        0xbb, 0x14, 0xf0, 0x0d};
4861 
4862         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4863           return UUID();
4864 
4865         return UUID::fromOptionalData(uuid_bytes, 16);
4866       }
4867       return UUID();
4868     }
4869     offset = cmd_offset + load_cmd.cmdsize;
4870   }
4871   return UUID();
4872 }
4873 
4874 static llvm::StringRef GetOSName(uint32_t cmd) {
4875   switch (cmd) {
4876   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4877     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4878   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4879     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4880   case llvm::MachO::LC_VERSION_MIN_TVOS:
4881     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4882   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4883     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4884   default:
4885     llvm_unreachable("unexpected LC_VERSION load command");
4886   }
4887 }
4888 
4889 namespace {
4890   struct OSEnv {
4891     llvm::StringRef os_type;
4892     llvm::StringRef environment;
4893     OSEnv(uint32_t cmd) {
4894       switch (cmd) {
4895       case PLATFORM_MACOS:
4896         os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4897         return;
4898       case PLATFORM_IOS:
4899         os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4900         return;
4901       case PLATFORM_TVOS:
4902         os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4903         return;
4904       case PLATFORM_WATCHOS:
4905         os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4906         return;
4907 // NEED_BRIDGEOS_TRIPLE      case PLATFORM_BRIDGEOS:
4908 // NEED_BRIDGEOS_TRIPLE        os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4909 // NEED_BRIDGEOS_TRIPLE        return;
4910 #if defined (PLATFORM_IOSSIMULATOR) && defined (PLATFORM_TVOSSIMULATOR) && defined (PLATFORM_WATCHOSSIMULATOR)
4911       case PLATFORM_IOSSIMULATOR:
4912         os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4913         environment =
4914             llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4915         return;
4916       case PLATFORM_TVOSSIMULATOR:
4917         os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4918         environment =
4919             llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4920         return;
4921       case PLATFORM_WATCHOSSIMULATOR:
4922         os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4923         environment =
4924             llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4925         return;
4926 #endif
4927       default: {
4928         Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS |
4929                                                         LIBLLDB_LOG_PROCESS));
4930         if (log)
4931           log->Printf("unsupported platform in LC_BUILD_VERSION");
4932       }
4933       }
4934     }
4935   };
4936 
4937   struct MinOS {
4938     uint32_t major_version, minor_version, patch_version;
4939     MinOS(uint32_t version)
4940         : major_version(version >> 16),
4941           minor_version((version >> 8) & 0xffu),
4942           patch_version(version & 0xffu) {}
4943   };
4944 } // namespace
4945 
4946 ArchSpec
4947 ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4948                                  const lldb_private::DataExtractor &data,
4949                                  lldb::offset_t lc_offset) {
4950   ArchSpec arch;
4951   arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4952 
4953   if (arch.IsValid()) {
4954     llvm::Triple &triple = arch.GetTriple();
4955 
4956     // Set OS to an unspecified unknown or a "*" so it can match any OS
4957     triple.setOS(llvm::Triple::UnknownOS);
4958     triple.setOSName(llvm::StringRef());
4959 
4960     if (header.filetype == MH_PRELOAD) {
4961       if (header.cputype == CPU_TYPE_ARM) {
4962         // If this is a 32-bit arm binary, and it's a standalone binary, force
4963         // the Vendor to Apple so we don't accidentally pick up the generic
4964         // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4965         // frame pointer register; most other armv7 ABIs use a combination of
4966         // r7 and r11.
4967         triple.setVendor(llvm::Triple::Apple);
4968       } else {
4969         // Set vendor to an unspecified unknown or a "*" so it can match any
4970         // vendor This is required for correct behavior of EFI debugging on
4971         // x86_64
4972         triple.setVendor(llvm::Triple::UnknownVendor);
4973         triple.setVendorName(llvm::StringRef());
4974       }
4975       return arch;
4976     } else {
4977       struct load_command load_cmd;
4978       llvm::SmallString<16> os_name;
4979       llvm::raw_svector_ostream os(os_name);
4980 
4981       // See if there is an LC_VERSION_MIN_* load command that can give
4982       // us the OS type.
4983       lldb::offset_t offset = lc_offset;
4984       for (uint32_t i = 0; i < header.ncmds; ++i) {
4985         const lldb::offset_t cmd_offset = offset;
4986         if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4987           break;
4988 
4989         struct version_min_command version_min;
4990         switch (load_cmd.cmd) {
4991         case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4992         case llvm::MachO::LC_VERSION_MIN_MACOSX:
4993         case llvm::MachO::LC_VERSION_MIN_TVOS:
4994         case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4995           if (load_cmd.cmdsize != sizeof(version_min))
4996             break;
4997           if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4998                                 data.GetByteOrder(), &version_min) == 0)
4999             break;
5000           MinOS min_os(version_min.version);
5001           os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5002              << min_os.minor_version << '.' << min_os.patch_version;
5003           triple.setOSName(os.str());
5004           return arch;
5005         }
5006         default:
5007           break;
5008         }
5009 
5010         offset = cmd_offset + load_cmd.cmdsize;
5011       }
5012 
5013       // See if there is an LC_BUILD_VERSION load command that can give
5014       // us the OS type.
5015 
5016       offset = lc_offset;
5017       for (uint32_t i = 0; i < header.ncmds; ++i) {
5018         const lldb::offset_t cmd_offset = offset;
5019         if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5020           break;
5021         do {
5022           if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5023             struct build_version_command build_version;
5024             if (load_cmd.cmdsize < sizeof(build_version)) {
5025               // Malformed load command.
5026               break;
5027             }
5028             if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5029                                   data.GetByteOrder(), &build_version) == 0)
5030               break;
5031             MinOS min_os(build_version.minos);
5032             OSEnv os_env(build_version.platform);
5033             if (os_env.os_type.empty())
5034               break;
5035             os << os_env.os_type << min_os.major_version << '.'
5036                << min_os.minor_version << '.' << min_os.patch_version;
5037             triple.setOSName(os.str());
5038             if (!os_env.environment.empty())
5039               triple.setEnvironmentName(os_env.environment);
5040             return arch;
5041           }
5042         } while (false);
5043         offset = cmd_offset + load_cmd.cmdsize;
5044       }
5045 
5046       if (header.filetype != MH_KEXT_BUNDLE) {
5047         // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5048         // so lets not say our Vendor is Apple, leave it as an unspecified
5049         // unknown
5050         triple.setVendor(llvm::Triple::UnknownVendor);
5051         triple.setVendorName(llvm::StringRef());
5052       }
5053     }
5054   }
5055   return arch;
5056 }
5057 
5058 UUID ObjectFileMachO::GetUUID() {
5059   ModuleSP module_sp(GetModule());
5060   if (module_sp) {
5061     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5062     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5063     return GetUUID(m_header, m_data, offset);
5064   }
5065   return UUID();
5066 }
5067 
5068 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5069   uint32_t count = 0;
5070   ModuleSP module_sp(GetModule());
5071   if (module_sp) {
5072     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5073     struct load_command load_cmd;
5074     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5075     std::vector<std::string> rpath_paths;
5076     std::vector<std::string> rpath_relative_paths;
5077     std::vector<std::string> at_exec_relative_paths;
5078     uint32_t i;
5079     for (i = 0; i < m_header.ncmds; ++i) {
5080       const uint32_t cmd_offset = offset;
5081       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5082         break;
5083 
5084       switch (load_cmd.cmd) {
5085       case LC_RPATH:
5086       case LC_LOAD_DYLIB:
5087       case LC_LOAD_WEAK_DYLIB:
5088       case LC_REEXPORT_DYLIB:
5089       case LC_LOAD_DYLINKER:
5090       case LC_LOADFVMLIB:
5091       case LC_LOAD_UPWARD_DYLIB: {
5092         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5093         const char *path = m_data.PeekCStr(name_offset);
5094         if (path) {
5095           if (load_cmd.cmd == LC_RPATH)
5096             rpath_paths.push_back(path);
5097           else {
5098             if (path[0] == '@') {
5099               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5100                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5101               else if (strncmp(path, "@executable_path",
5102                        strlen("@executable_path")) == 0)
5103                 at_exec_relative_paths.push_back(path
5104                                                  + strlen("@executable_path"));
5105             } else {
5106               FileSpec file_spec(path);
5107               if (files.AppendIfUnique(file_spec))
5108                 count++;
5109             }
5110           }
5111         }
5112       } break;
5113 
5114       default:
5115         break;
5116       }
5117       offset = cmd_offset + load_cmd.cmdsize;
5118     }
5119 
5120     FileSpec this_file_spec(m_file);
5121     FileSystem::Instance().Resolve(this_file_spec);
5122 
5123     if (!rpath_paths.empty()) {
5124       // Fixup all LC_RPATH values to be absolute paths
5125       std::string loader_path("@loader_path");
5126       std::string executable_path("@executable_path");
5127       for (auto &rpath : rpath_paths) {
5128         if (rpath.find(loader_path) == 0) {
5129           rpath.erase(0, loader_path.size());
5130           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5131         } else if (rpath.find(executable_path) == 0) {
5132           rpath.erase(0, executable_path.size());
5133           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5134         }
5135       }
5136 
5137       for (const auto &rpath_relative_path : rpath_relative_paths) {
5138         for (const auto &rpath : rpath_paths) {
5139           std::string path = rpath;
5140           path += rpath_relative_path;
5141           // It is OK to resolve this path because we must find a file on disk
5142           // for us to accept it anyway if it is rpath relative.
5143           FileSpec file_spec(path);
5144           FileSystem::Instance().Resolve(file_spec);
5145           if (FileSystem::Instance().Exists(file_spec) &&
5146               files.AppendIfUnique(file_spec)) {
5147             count++;
5148             break;
5149           }
5150         }
5151       }
5152     }
5153 
5154     // We may have @executable_paths but no RPATHS.  Figure those out here.
5155     // Only do this if this object file is the executable.  We have no way to
5156     // get back to the actual executable otherwise, so we won't get the right
5157     // path.
5158     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5159       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5160       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5161         FileSpec file_spec =
5162             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5163         if (FileSystem::Instance().Exists(file_spec) &&
5164             files.AppendIfUnique(file_spec))
5165           count++;
5166       }
5167     }
5168   }
5169   return count;
5170 }
5171 
5172 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5173   // If the object file is not an executable it can't hold the entry point.
5174   // m_entry_point_address is initialized to an invalid address, so we can just
5175   // return that. If m_entry_point_address is valid it means we've found it
5176   // already, so return the cached value.
5177 
5178   if (!IsExecutable() || m_entry_point_address.IsValid())
5179     return m_entry_point_address;
5180 
5181   // Otherwise, look for the UnixThread or Thread command.  The data for the
5182   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5183   //
5184   //  uint32_t flavor  - this is the flavor argument you would pass to
5185   //  thread_get_state
5186   //  uint32_t count   - this is the count of longs in the thread state data
5187   //  struct XXX_thread_state state - this is the structure from
5188   //  <machine/thread_status.h> corresponding to the flavor.
5189   //  <repeat this trio>
5190   //
5191   // So we just keep reading the various register flavors till we find the GPR
5192   // one, then read the PC out of there.
5193   // FIXME: We will need to have a "RegisterContext data provider" class at some
5194   // point that can get all the registers
5195   // out of data in this form & attach them to a given thread.  That should
5196   // underlie the MacOS X User process plugin, and we'll also need it for the
5197   // MacOS X Core File process plugin.  When we have that we can also use it
5198   // here.
5199   //
5200   // For now we hard-code the offsets and flavors we need:
5201   //
5202   //
5203 
5204   ModuleSP module_sp(GetModule());
5205   if (module_sp) {
5206     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5207     struct load_command load_cmd;
5208     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5209     uint32_t i;
5210     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5211     bool done = false;
5212 
5213     for (i = 0; i < m_header.ncmds; ++i) {
5214       const lldb::offset_t cmd_offset = offset;
5215       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5216         break;
5217 
5218       switch (load_cmd.cmd) {
5219       case LC_UNIXTHREAD:
5220       case LC_THREAD: {
5221         while (offset < cmd_offset + load_cmd.cmdsize) {
5222           uint32_t flavor = m_data.GetU32(&offset);
5223           uint32_t count = m_data.GetU32(&offset);
5224           if (count == 0) {
5225             // We've gotten off somehow, log and exit;
5226             return m_entry_point_address;
5227           }
5228 
5229           switch (m_header.cputype) {
5230           case llvm::MachO::CPU_TYPE_ARM:
5231             if (flavor == 1 ||
5232                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5233                              // mach/arm/thread_status.h
5234             {
5235               offset += 60; // This is the offset of pc in the GPR thread state
5236                             // data structure.
5237               start_address = m_data.GetU32(&offset);
5238               done = true;
5239             }
5240             break;
5241           case llvm::MachO::CPU_TYPE_ARM64:
5242             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5243             {
5244               offset += 256; // This is the offset of pc in the GPR thread state
5245                              // data structure.
5246               start_address = m_data.GetU64(&offset);
5247               done = true;
5248             }
5249             break;
5250           case llvm::MachO::CPU_TYPE_I386:
5251             if (flavor ==
5252                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5253             {
5254               offset += 40; // This is the offset of eip in the GPR thread state
5255                             // data structure.
5256               start_address = m_data.GetU32(&offset);
5257               done = true;
5258             }
5259             break;
5260           case llvm::MachO::CPU_TYPE_X86_64:
5261             if (flavor ==
5262                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5263             {
5264               offset += 16 * 8; // This is the offset of rip in the GPR thread
5265                                 // state data structure.
5266               start_address = m_data.GetU64(&offset);
5267               done = true;
5268             }
5269             break;
5270           default:
5271             return m_entry_point_address;
5272           }
5273           // Haven't found the GPR flavor yet, skip over the data for this
5274           // flavor:
5275           if (done)
5276             break;
5277           offset += count * 4;
5278         }
5279       } break;
5280       case LC_MAIN: {
5281         ConstString text_segment_name("__TEXT");
5282         uint64_t entryoffset = m_data.GetU64(&offset);
5283         SectionSP text_segment_sp =
5284             GetSectionList()->FindSectionByName(text_segment_name);
5285         if (text_segment_sp) {
5286           done = true;
5287           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5288         }
5289       } break;
5290 
5291       default:
5292         break;
5293       }
5294       if (done)
5295         break;
5296 
5297       // Go to the next load command:
5298       offset = cmd_offset + load_cmd.cmdsize;
5299     }
5300 
5301     if (start_address != LLDB_INVALID_ADDRESS) {
5302       // We got the start address from the load commands, so now resolve that
5303       // address in the sections of this ObjectFile:
5304       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5305               start_address, GetSectionList())) {
5306         m_entry_point_address.Clear();
5307       }
5308     } else {
5309       // We couldn't read the UnixThread load command - maybe it wasn't there.
5310       // As a fallback look for the "start" symbol in the main executable.
5311 
5312       ModuleSP module_sp(GetModule());
5313 
5314       if (module_sp) {
5315         SymbolContextList contexts;
5316         SymbolContext context;
5317         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5318                                                   eSymbolTypeCode, contexts)) {
5319           if (contexts.GetContextAtIndex(0, context))
5320             m_entry_point_address = context.symbol->GetAddress();
5321         }
5322       }
5323     }
5324   }
5325 
5326   return m_entry_point_address;
5327 }
5328 
5329 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5330   lldb_private::Address header_addr;
5331   SectionList *section_list = GetSectionList();
5332   if (section_list) {
5333     SectionSP text_segment_sp(
5334         section_list->FindSectionByName(GetSegmentNameTEXT()));
5335     if (text_segment_sp) {
5336       header_addr.SetSection(text_segment_sp);
5337       header_addr.SetOffset(0);
5338     }
5339   }
5340   return header_addr;
5341 }
5342 
5343 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5344   ModuleSP module_sp(GetModule());
5345   if (module_sp) {
5346     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5347     if (!m_thread_context_offsets_valid) {
5348       m_thread_context_offsets_valid = true;
5349       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5350       FileRangeArray::Entry file_range;
5351       thread_command thread_cmd;
5352       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5353         const uint32_t cmd_offset = offset;
5354         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5355           break;
5356 
5357         if (thread_cmd.cmd == LC_THREAD) {
5358           file_range.SetRangeBase(offset);
5359           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5360           m_thread_context_offsets.Append(file_range);
5361         }
5362         offset = cmd_offset + thread_cmd.cmdsize;
5363       }
5364     }
5365   }
5366   return m_thread_context_offsets.GetSize();
5367 }
5368 
5369 std::string ObjectFileMachO::GetIdentifierString() {
5370   std::string result;
5371   ModuleSP module_sp(GetModule());
5372   if (module_sp) {
5373     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5374 
5375     // First, look over the load commands for an LC_NOTE load command with
5376     // data_owner string "kern ver str" & use that if found.
5377     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5378     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5379       const uint32_t cmd_offset = offset;
5380       load_command lc;
5381       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5382         break;
5383       if (lc.cmd == LC_NOTE)
5384       {
5385           char data_owner[17];
5386           m_data.CopyData (offset, 16, data_owner);
5387           data_owner[16] = '\0';
5388           offset += 16;
5389           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5390           uint64_t size = m_data.GetU64_unchecked (&offset);
5391 
5392           // "kern ver str" has a uint32_t version and then a nul terminated
5393           // c-string.
5394           if (strcmp ("kern ver str", data_owner) == 0)
5395           {
5396               offset = fileoff;
5397               uint32_t version;
5398               if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5399               {
5400                   if (version == 1)
5401                   {
5402                       uint32_t strsize = size - sizeof (uint32_t);
5403                       char *buf = (char*) malloc (strsize);
5404                       if (buf)
5405                       {
5406                           m_data.CopyData (offset, strsize, buf);
5407                           buf[strsize - 1] = '\0';
5408                           result = buf;
5409                           if (buf)
5410                               free (buf);
5411                           return result;
5412                       }
5413                   }
5414               }
5415           }
5416       }
5417       offset = cmd_offset + lc.cmdsize;
5418     }
5419 
5420     // Second, make a pass over the load commands looking for an obsolete
5421     // LC_IDENT load command.
5422     offset = MachHeaderSizeFromMagic(m_header.magic);
5423     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5424       const uint32_t cmd_offset = offset;
5425       struct ident_command ident_command;
5426       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5427         break;
5428       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5429         char *buf = (char *) malloc (ident_command.cmdsize);
5430         if (buf != nullptr
5431             && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5432           buf[ident_command.cmdsize - 1] = '\0';
5433           result = buf;
5434         }
5435         if (buf)
5436           free (buf);
5437       }
5438       offset = cmd_offset + ident_command.cmdsize;
5439     }
5440 
5441   }
5442   return result;
5443 }
5444 
5445 bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5446   address = LLDB_INVALID_ADDRESS;
5447   uuid.Clear();
5448   ModuleSP module_sp(GetModule());
5449   if (module_sp) {
5450     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5451     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5452     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5453       const uint32_t cmd_offset = offset;
5454       load_command lc;
5455       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5456         break;
5457       if (lc.cmd == LC_NOTE)
5458       {
5459           char data_owner[17];
5460           memset (data_owner, 0, sizeof (data_owner));
5461           m_data.CopyData (offset, 16, data_owner);
5462           offset += 16;
5463           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5464           uint64_t size = m_data.GetU64_unchecked (&offset);
5465 
5466           // "main bin spec" (main binary specification) data payload is
5467           // formatted:
5468           //    uint32_t version       [currently 1]
5469           //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user process]
5470           //    uint64_t address       [ UINT64_MAX if address not specified ]
5471           //    uuid_t   uuid          [ all zero's if uuid not specified ]
5472           //    uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12.  0 for unspecified ]
5473 
5474           if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5475           {
5476               offset = fileoff;
5477               uint32_t version;
5478               if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5479               {
5480                   uint32_t type = 0;
5481                   uuid_t raw_uuid;
5482                   memset (raw_uuid, 0, sizeof (uuid_t));
5483 
5484                   if (m_data.GetU32(&offset, &type, 1) &&
5485                       m_data.GetU64(&offset, &address, 1) &&
5486                       m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5487                     uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5488                     return true;
5489                   }
5490               }
5491           }
5492       }
5493       offset = cmd_offset + lc.cmdsize;
5494     }
5495   }
5496   return false;
5497 }
5498 
5499 lldb::RegisterContextSP
5500 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5501                                          lldb_private::Thread &thread) {
5502   lldb::RegisterContextSP reg_ctx_sp;
5503 
5504   ModuleSP module_sp(GetModule());
5505   if (module_sp) {
5506     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5507     if (!m_thread_context_offsets_valid)
5508       GetNumThreadContexts();
5509 
5510     const FileRangeArray::Entry *thread_context_file_range =
5511         m_thread_context_offsets.GetEntryAtIndex(idx);
5512     if (thread_context_file_range) {
5513 
5514       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5515                          thread_context_file_range->GetByteSize());
5516 
5517       switch (m_header.cputype) {
5518       case llvm::MachO::CPU_TYPE_ARM64:
5519         reg_ctx_sp =
5520             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5521         break;
5522 
5523       case llvm::MachO::CPU_TYPE_ARM:
5524         reg_ctx_sp =
5525             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5526         break;
5527 
5528       case llvm::MachO::CPU_TYPE_I386:
5529         reg_ctx_sp =
5530             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5531         break;
5532 
5533       case llvm::MachO::CPU_TYPE_X86_64:
5534         reg_ctx_sp =
5535             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5536         break;
5537       }
5538     }
5539   }
5540   return reg_ctx_sp;
5541 }
5542 
5543 ObjectFile::Type ObjectFileMachO::CalculateType() {
5544   switch (m_header.filetype) {
5545   case MH_OBJECT: // 0x1u
5546     if (GetAddressByteSize() == 4) {
5547       // 32 bit kexts are just object files, but they do have a valid
5548       // UUID load command.
5549       if (GetUUID()) {
5550         // this checking for the UUID load command is not enough we could
5551         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5552         // this is required of kexts
5553         if (m_strata == eStrataInvalid)
5554           m_strata = eStrataKernel;
5555         return eTypeSharedLibrary;
5556       }
5557     }
5558     return eTypeObjectFile;
5559 
5560   case MH_EXECUTE:
5561     return eTypeExecutable; // 0x2u
5562   case MH_FVMLIB:
5563     return eTypeSharedLibrary; // 0x3u
5564   case MH_CORE:
5565     return eTypeCoreFile; // 0x4u
5566   case MH_PRELOAD:
5567     return eTypeSharedLibrary; // 0x5u
5568   case MH_DYLIB:
5569     return eTypeSharedLibrary; // 0x6u
5570   case MH_DYLINKER:
5571     return eTypeDynamicLinker; // 0x7u
5572   case MH_BUNDLE:
5573     return eTypeSharedLibrary; // 0x8u
5574   case MH_DYLIB_STUB:
5575     return eTypeStubLibrary; // 0x9u
5576   case MH_DSYM:
5577     return eTypeDebugInfo; // 0xAu
5578   case MH_KEXT_BUNDLE:
5579     return eTypeSharedLibrary; // 0xBu
5580   default:
5581     break;
5582   }
5583   return eTypeUnknown;
5584 }
5585 
5586 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5587   switch (m_header.filetype) {
5588   case MH_OBJECT: // 0x1u
5589   {
5590     // 32 bit kexts are just object files, but they do have a valid
5591     // UUID load command.
5592     if (GetUUID()) {
5593       // this checking for the UUID load command is not enough we could
5594       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5595       // this is required of kexts
5596       if (m_type == eTypeInvalid)
5597         m_type = eTypeSharedLibrary;
5598 
5599       return eStrataKernel;
5600     }
5601   }
5602     return eStrataUnknown;
5603 
5604   case MH_EXECUTE: // 0x2u
5605     // Check for the MH_DYLDLINK bit in the flags
5606     if (m_header.flags & MH_DYLDLINK) {
5607       return eStrataUser;
5608     } else {
5609       SectionList *section_list = GetSectionList();
5610       if (section_list) {
5611         static ConstString g_kld_section_name("__KLD");
5612         if (section_list->FindSectionByName(g_kld_section_name))
5613           return eStrataKernel;
5614       }
5615     }
5616     return eStrataRawImage;
5617 
5618   case MH_FVMLIB:
5619     return eStrataUser; // 0x3u
5620   case MH_CORE:
5621     return eStrataUnknown; // 0x4u
5622   case MH_PRELOAD:
5623     return eStrataRawImage; // 0x5u
5624   case MH_DYLIB:
5625     return eStrataUser; // 0x6u
5626   case MH_DYLINKER:
5627     return eStrataUser; // 0x7u
5628   case MH_BUNDLE:
5629     return eStrataUser; // 0x8u
5630   case MH_DYLIB_STUB:
5631     return eStrataUser; // 0x9u
5632   case MH_DSYM:
5633     return eStrataUnknown; // 0xAu
5634   case MH_KEXT_BUNDLE:
5635     return eStrataKernel; // 0xBu
5636   default:
5637     break;
5638   }
5639   return eStrataUnknown;
5640 }
5641 
5642 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5643   ModuleSP module_sp(GetModule());
5644   if (module_sp) {
5645     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5646     struct dylib_command load_cmd;
5647     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5648     uint32_t version_cmd = 0;
5649     uint64_t version = 0;
5650     uint32_t i;
5651     for (i = 0; i < m_header.ncmds; ++i) {
5652       const lldb::offset_t cmd_offset = offset;
5653       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5654         break;
5655 
5656       if (load_cmd.cmd == LC_ID_DYLIB) {
5657         if (version_cmd == 0) {
5658           version_cmd = load_cmd.cmd;
5659           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5660             break;
5661           version = load_cmd.dylib.current_version;
5662         }
5663         break; // Break for now unless there is another more complete version
5664                // number load command in the future.
5665       }
5666       offset = cmd_offset + load_cmd.cmdsize;
5667     }
5668 
5669     if (version_cmd == LC_ID_DYLIB) {
5670       unsigned major = (version & 0xFFFF0000ull) >> 16;
5671       unsigned minor = (version & 0x0000FF00ull) >> 8;
5672       unsigned subminor = (version & 0x000000FFull);
5673       return llvm::VersionTuple(major, minor, subminor);
5674     }
5675   }
5676   return llvm::VersionTuple();
5677 }
5678 
5679 ArchSpec ObjectFileMachO::GetArchitecture() {
5680   ModuleSP module_sp(GetModule());
5681   ArchSpec arch;
5682   if (module_sp) {
5683     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5684 
5685     return GetArchitecture(m_header, m_data,
5686                            MachHeaderSizeFromMagic(m_header.magic));
5687   }
5688   return arch;
5689 }
5690 
5691 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) {
5692   uuid.Clear();
5693   base_addr = LLDB_INVALID_ADDRESS;
5694   if (process && process->GetDynamicLoader()) {
5695     DynamicLoader *dl = process->GetDynamicLoader();
5696     LazyBool using_shared_cache;
5697     LazyBool private_shared_cache;
5698     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5699                                   private_shared_cache);
5700   }
5701   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5702   if (log)
5703     log->Printf("inferior process shared cache has a UUID of %s, base address 0x%" PRIx64 , uuid.GetAsString().c_str(), base_addr);
5704 }
5705 
5706 // From dyld SPI header dyld_process_info.h
5707 typedef void *dyld_process_info;
5708 struct lldb_copy__dyld_process_cache_info {
5709   uuid_t cacheUUID;          // UUID of cache used by process
5710   uint64_t cacheBaseAddress; // load address of dyld shared cache
5711   bool noCache;              // process is running without a dyld cache
5712   bool privateCache; // process is using a private copy of its dyld cache
5713 };
5714 
5715 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with llvm
5716 // enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile errors.
5717 // So we need to use the actual underlying types of task_t and kern_return_t
5718 // below.
5719 extern "C" unsigned int /*task_t*/ mach_task_self();
5720 
5721 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5722   uuid.Clear();
5723   base_addr = LLDB_INVALID_ADDRESS;
5724 
5725 #if defined(__APPLE__) &&                                                      \
5726     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5727   uint8_t *(*dyld_get_all_image_infos)(void);
5728   dyld_get_all_image_infos =
5729       (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5730   if (dyld_get_all_image_infos) {
5731     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5732     if (dyld_all_image_infos_address) {
5733       uint32_t *version = (uint32_t *)
5734           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5735       if (*version >= 13) {
5736         uuid_t *sharedCacheUUID_address = 0;
5737         int wordsize = sizeof(uint8_t *);
5738         if (wordsize == 8) {
5739           sharedCacheUUID_address =
5740               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5741                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5742           if (*version >= 15)
5743             base_addr = *(uint64_t *) ((uint8_t *) dyld_all_image_infos_address
5744                           + 176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5745         } else {
5746           sharedCacheUUID_address =
5747               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5748                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5749           if (*version >= 15) {
5750             base_addr = 0;
5751             base_addr = *(uint32_t *) ((uint8_t *) dyld_all_image_infos_address
5752                           + 100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5753           }
5754         }
5755         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5756       }
5757     }
5758   } else {
5759     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5760     dyld_process_info (*dyld_process_info_create)(unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError);
5761     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5762     void (*dyld_process_info_release)(dyld_process_info info);
5763 
5764     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *))
5765                dlsym (RTLD_DEFAULT, "_dyld_process_info_create");
5766     dyld_process_info_get_cache = (void (*)(void *, void *))
5767                dlsym (RTLD_DEFAULT, "_dyld_process_info_get_cache");
5768     dyld_process_info_release = (void (*)(void *))
5769                dlsym (RTLD_DEFAULT, "_dyld_process_info_release");
5770 
5771     if (dyld_process_info_create && dyld_process_info_get_cache) {
5772       unsigned int /*kern_return_t */ kern_ret;
5773 		  dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5774       if (process_info) {
5775         struct lldb_copy__dyld_process_cache_info sc_info;
5776         memset (&sc_info, 0, sizeof (struct lldb_copy__dyld_process_cache_info));
5777         dyld_process_info_get_cache (process_info, &sc_info);
5778         if (sc_info.cacheBaseAddress != 0) {
5779           base_addr = sc_info.cacheBaseAddress;
5780           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5781         }
5782         dyld_process_info_release (process_info);
5783       }
5784     }
5785   }
5786   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5787   if (log && uuid.IsValid())
5788     log->Printf("lldb's in-memory shared cache has a UUID of %s base address of 0x%" PRIx64, uuid.GetAsString().c_str(), base_addr);
5789 #endif
5790 }
5791 
5792 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5793   if (!m_min_os_version) {
5794     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5795     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5796       const lldb::offset_t load_cmd_offset = offset;
5797 
5798       version_min_command lc;
5799       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5800         break;
5801       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5802           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5803           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5804           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5805         if (m_data.GetU32(&offset, &lc.version,
5806                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5807           const uint32_t xxxx = lc.version >> 16;
5808           const uint32_t yy = (lc.version >> 8) & 0xffu;
5809           const uint32_t zz = lc.version & 0xffu;
5810           if (xxxx) {
5811             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5812             break;
5813           }
5814         }
5815       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5816         // struct build_version_command {
5817         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5818         //     uint32_t    cmdsize;        /* sizeof(struct build_version_command) plus */
5819         //                                 /* ntools * sizeof(struct build_tool_version) */
5820         //     uint32_t    platform;       /* platform */
5821         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5822         //     uint32_t    sdk;            /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
5823         //     uint32_t    ntools;         /* number of tool entries following this */
5824         // };
5825 
5826         offset += 4;  // skip platform
5827         uint32_t minos = m_data.GetU32(&offset);
5828 
5829         const uint32_t xxxx = minos >> 16;
5830         const uint32_t yy = (minos >> 8) & 0xffu;
5831         const uint32_t zz = minos & 0xffu;
5832         if (xxxx) {
5833             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5834             break;
5835         }
5836       }
5837 
5838       offset = load_cmd_offset + lc.cmdsize;
5839     }
5840 
5841     if (!m_min_os_version) {
5842       // Set version to an empty value so we don't keep trying to
5843       m_min_os_version = llvm::VersionTuple();
5844     }
5845   }
5846 
5847   return *m_min_os_version;
5848 }
5849 
5850 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5851                                         uint32_t num_versions) {
5852   if (m_sdk_versions.empty()) {
5853     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5854     bool success = false;
5855     for (uint32_t i = 0; !success && i < m_header.ncmds; ++i) {
5856       const lldb::offset_t load_cmd_offset = offset;
5857 
5858       version_min_command lc;
5859       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5860         break;
5861       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5862           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5863           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5864           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5865         if (m_data.GetU32(&offset, &lc.version,
5866                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5867           const uint32_t xxxx = lc.sdk >> 16;
5868           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5869           const uint32_t zz = lc.sdk & 0xffu;
5870           if (xxxx) {
5871             m_sdk_versions.push_back(xxxx);
5872             m_sdk_versions.push_back(yy);
5873             m_sdk_versions.push_back(zz);
5874             success = true;
5875           } else {
5876             GetModule()->ReportWarning(
5877                 "minimum OS version load command with invalid (0) version found.");
5878           }
5879         }
5880       }
5881       offset = load_cmd_offset + lc.cmdsize;
5882     }
5883 
5884     if (!success) {
5885       offset = MachHeaderSizeFromMagic(m_header.magic);
5886       for (uint32_t i = 0; !success && i < m_header.ncmds; ++i) {
5887         const lldb::offset_t load_cmd_offset = offset;
5888 
5889         version_min_command lc;
5890         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5891           break;
5892         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5893           // struct build_version_command {
5894           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5895           //     uint32_t    cmdsize;        /* sizeof(struct
5896           //     build_version_command) plus */
5897           //                                 /* ntools * sizeof(struct
5898           //                                 build_tool_version) */
5899           //     uint32_t    platform;       /* platform */
5900           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5901           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
5902           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
5903           //     of tool entries following this */
5904           // };
5905 
5906           offset += 4; // skip platform
5907           uint32_t minos = m_data.GetU32(&offset);
5908 
5909           const uint32_t xxxx = minos >> 16;
5910           const uint32_t yy = (minos >> 8) & 0xffu;
5911           const uint32_t zz = minos & 0xffu;
5912           if (xxxx) {
5913             m_sdk_versions.push_back(xxxx);
5914             m_sdk_versions.push_back(yy);
5915             m_sdk_versions.push_back(zz);
5916             success = true;
5917           }
5918         }
5919         offset = load_cmd_offset + lc.cmdsize;
5920       }
5921     }
5922 
5923     if (!success) {
5924       // Push an invalid value so we don't try to find
5925       // the version # again on the next call to this
5926       // method.
5927       m_sdk_versions.push_back(UINT32_MAX);
5928     }
5929   }
5930 
5931   // Legitimate version numbers will have 3 entries pushed
5932   // on to m_sdk_versions.  If we only have one value, it's
5933   // the sentinel value indicating that this object file
5934   // does not have a valid minimum os version #.
5935   if (m_sdk_versions.size() > 1) {
5936     if (versions != nullptr && num_versions > 0) {
5937       for (size_t i = 0; i < num_versions; ++i) {
5938         if (i < m_sdk_versions.size())
5939           versions[i] = m_sdk_versions[i];
5940         else
5941           versions[i] = 0;
5942       }
5943     }
5944     return m_sdk_versions.size();
5945   }
5946   // Call the superclasses version that will empty out the data
5947   return ObjectFile::GetSDKVersion(versions, num_versions);
5948 }
5949 
5950 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5951   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5952 }
5953 
5954 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5955   return m_allow_assembly_emulation_unwind_plans;
5956 }
5957 
5958 // PluginInterface protocol
5959 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5960   return GetPluginNameStatic();
5961 }
5962 
5963 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5964 
5965 Section *ObjectFileMachO::GetMachHeaderSection() {
5966   // Find the first address of the mach header which is the first non-zero file
5967   // sized section whose file offset is zero. This is the base file address of
5968   // the mach-o file which can be subtracted from the vmaddr of the other
5969   // segments found in memory and added to the load address
5970   ModuleSP module_sp = GetModule();
5971   if (!module_sp)
5972     return nullptr;
5973   SectionList *section_list = GetSectionList();
5974   if (!section_list)
5975     return nullptr;
5976   const size_t num_sections = section_list->GetSize();
5977   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5978     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5979     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
5980       return section;
5981   }
5982   return nullptr;
5983 }
5984 
5985 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
5986   if (!section)
5987     return false;
5988   const bool is_dsym = (m_header.filetype == MH_DSYM);
5989   if (section->GetFileSize() == 0 && !is_dsym)
5990     return false;
5991   if (section->IsThreadSpecific())
5992     return false;
5993   if (GetModule().get() != section->GetModule().get())
5994     return false;
5995   // Be careful with __LINKEDIT and __DWARF segments
5996   if (section->GetName() == GetSegmentNameLINKEDIT() ||
5997       section->GetName() == GetSegmentNameDWARF()) {
5998     // Only map __LINKEDIT and __DWARF if we have an in memory image and
5999     // this isn't a kernel binary like a kext or mach_kernel.
6000     const bool is_memory_image = (bool)m_process_wp.lock();
6001     const Strata strata = GetStrata();
6002     if (is_memory_image == false || strata == eStrataKernel)
6003       return false;
6004   }
6005   return true;
6006 }
6007 
6008 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6009     lldb::addr_t header_load_address, const Section *header_section,
6010     const Section *section) {
6011   ModuleSP module_sp = GetModule();
6012   if (module_sp && header_section && section &&
6013       header_load_address != LLDB_INVALID_ADDRESS) {
6014     lldb::addr_t file_addr = header_section->GetFileAddress();
6015     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6016       return section->GetFileAddress() - file_addr + header_load_address;
6017   }
6018   return LLDB_INVALID_ADDRESS;
6019 }
6020 
6021 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6022                                      bool value_is_offset) {
6023   ModuleSP module_sp = GetModule();
6024   if (module_sp) {
6025     size_t num_loaded_sections = 0;
6026     SectionList *section_list = GetSectionList();
6027     if (section_list) {
6028       const size_t num_sections = section_list->GetSize();
6029 
6030       if (value_is_offset) {
6031         // "value" is an offset to apply to each top level segment
6032         for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6033           // Iterate through the object file sections to find all of the
6034           // sections that size on disk (to avoid __PAGEZERO) and load them
6035           SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6036           if (SectionIsLoadable(section_sp.get()))
6037             if (target.GetSectionLoadList().SetSectionLoadAddress(
6038                     section_sp, section_sp->GetFileAddress() + value))
6039               ++num_loaded_sections;
6040         }
6041       } else {
6042         // "value" is the new base address of the mach_header, adjust each
6043         // section accordingly
6044 
6045         Section *mach_header_section = GetMachHeaderSection();
6046         if (mach_header_section) {
6047           for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6048             SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6049 
6050             lldb::addr_t section_load_addr =
6051                 CalculateSectionLoadAddressForMemoryImage(
6052                     value, mach_header_section, section_sp.get());
6053             if (section_load_addr != LLDB_INVALID_ADDRESS) {
6054               if (target.GetSectionLoadList().SetSectionLoadAddress(
6055                       section_sp, section_load_addr))
6056                 ++num_loaded_sections;
6057             }
6058           }
6059         }
6060       }
6061     }
6062     return num_loaded_sections > 0;
6063   }
6064   return false;
6065 }
6066 
6067 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6068                                const FileSpec &outfile, Status &error) {
6069   if (process_sp) {
6070     Target &target = process_sp->GetTarget();
6071     const ArchSpec target_arch = target.GetArchitecture();
6072     const llvm::Triple &target_triple = target_arch.GetTriple();
6073     if (target_triple.getVendor() == llvm::Triple::Apple &&
6074         (target_triple.getOS() == llvm::Triple::MacOSX ||
6075          target_triple.getOS() == llvm::Triple::IOS ||
6076          target_triple.getOS() == llvm::Triple::WatchOS ||
6077          target_triple.getOS() == llvm::Triple::TvOS)) {
6078          // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) {
6079       bool make_core = false;
6080       switch (target_arch.GetMachine()) {
6081       case llvm::Triple::aarch64:
6082       case llvm::Triple::arm:
6083       case llvm::Triple::thumb:
6084       case llvm::Triple::x86:
6085       case llvm::Triple::x86_64:
6086         make_core = true;
6087         break;
6088       default:
6089         error.SetErrorStringWithFormat("unsupported core architecture: %s",
6090                                        target_triple.str().c_str());
6091         break;
6092       }
6093 
6094       if (make_core) {
6095         std::vector<segment_command_64> segment_load_commands;
6096         //                uint32_t range_info_idx = 0;
6097         MemoryRegionInfo range_info;
6098         Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6099         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6100         const ByteOrder byte_order = target_arch.GetByteOrder();
6101         if (range_error.Success()) {
6102           while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6103             const addr_t addr = range_info.GetRange().GetRangeBase();
6104             const addr_t size = range_info.GetRange().GetByteSize();
6105 
6106             if (size == 0)
6107               break;
6108 
6109             // Calculate correct protections
6110             uint32_t prot = 0;
6111             if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6112               prot |= VM_PROT_READ;
6113             if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6114               prot |= VM_PROT_WRITE;
6115             if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6116               prot |= VM_PROT_EXECUTE;
6117 
6118             if (prot != 0) {
6119               uint32_t cmd_type = LC_SEGMENT_64;
6120               uint32_t segment_size = sizeof(segment_command_64);
6121               if (addr_byte_size == 4) {
6122                 cmd_type = LC_SEGMENT;
6123                 segment_size = sizeof(segment_command);
6124               }
6125               segment_command_64 segment = {
6126                   cmd_type,     // uint32_t cmd;
6127                   segment_size, // uint32_t cmdsize;
6128                   {0},          // char segname[16];
6129                   addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6130                   size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6131                   0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6132                   size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6133                   prot, // uint32_t maxprot;
6134                   prot, // uint32_t initprot;
6135                   0,    // uint32_t nsects;
6136                   0};   // uint32_t flags;
6137               segment_load_commands.push_back(segment);
6138             } else {
6139               // No protections and a size of 1 used to be returned from old
6140               // debugservers when we asked about a region that was past the
6141               // last memory region and it indicates the end...
6142               if (size == 1)
6143                 break;
6144             }
6145 
6146             range_error = process_sp->GetMemoryRegionInfo(
6147                 range_info.GetRange().GetRangeEnd(), range_info);
6148             if (range_error.Fail())
6149               break;
6150           }
6151 
6152           StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6153 
6154           mach_header_64 mach_header;
6155           if (addr_byte_size == 8) {
6156             mach_header.magic = MH_MAGIC_64;
6157           } else {
6158             mach_header.magic = MH_MAGIC;
6159           }
6160           mach_header.cputype = target_arch.GetMachOCPUType();
6161           mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6162           mach_header.filetype = MH_CORE;
6163           mach_header.ncmds = segment_load_commands.size();
6164           mach_header.flags = 0;
6165           mach_header.reserved = 0;
6166           ThreadList &thread_list = process_sp->GetThreadList();
6167           const uint32_t num_threads = thread_list.GetSize();
6168 
6169           // Make an array of LC_THREAD data items. Each one contains the
6170           // contents of the LC_THREAD load command. The data doesn't contain
6171           // the load command + load command size, we will add the load command
6172           // and load command size as we emit the data.
6173           std::vector<StreamString> LC_THREAD_datas(num_threads);
6174           for (auto &LC_THREAD_data : LC_THREAD_datas) {
6175             LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6176             LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6177             LC_THREAD_data.SetByteOrder(byte_order);
6178           }
6179           for (uint32_t thread_idx = 0; thread_idx < num_threads;
6180                ++thread_idx) {
6181             ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6182             if (thread_sp) {
6183               switch (mach_header.cputype) {
6184               case llvm::MachO::CPU_TYPE_ARM64:
6185                 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6186                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6187                 break;
6188 
6189               case llvm::MachO::CPU_TYPE_ARM:
6190                 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6191                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6192                 break;
6193 
6194               case llvm::MachO::CPU_TYPE_I386:
6195                 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6196                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6197                 break;
6198 
6199               case llvm::MachO::CPU_TYPE_X86_64:
6200                 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6201                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6202                 break;
6203               }
6204             }
6205           }
6206 
6207           // The size of the load command is the size of the segments...
6208           if (addr_byte_size == 8) {
6209             mach_header.sizeofcmds = segment_load_commands.size() *
6210                                      sizeof(struct segment_command_64);
6211           } else {
6212             mach_header.sizeofcmds =
6213                 segment_load_commands.size() * sizeof(struct segment_command);
6214           }
6215 
6216           // and the size of all LC_THREAD load command
6217           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6218             ++mach_header.ncmds;
6219             mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6220           }
6221 
6222           // Write the mach header
6223           buffer.PutHex32(mach_header.magic);
6224           buffer.PutHex32(mach_header.cputype);
6225           buffer.PutHex32(mach_header.cpusubtype);
6226           buffer.PutHex32(mach_header.filetype);
6227           buffer.PutHex32(mach_header.ncmds);
6228           buffer.PutHex32(mach_header.sizeofcmds);
6229           buffer.PutHex32(mach_header.flags);
6230           if (addr_byte_size == 8) {
6231             buffer.PutHex32(mach_header.reserved);
6232           }
6233 
6234           // Skip the mach header and all load commands and align to the next
6235           // 0x1000 byte boundary
6236           addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6237           if (file_offset & 0x00000fff) {
6238             file_offset += 0x00001000ull;
6239             file_offset &= (~0x00001000ull + 1);
6240           }
6241 
6242           for (auto &segment : segment_load_commands) {
6243             segment.fileoff = file_offset;
6244             file_offset += segment.filesize;
6245           }
6246 
6247           // Write out all of the LC_THREAD load commands
6248           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6249             const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6250             buffer.PutHex32(LC_THREAD);
6251             buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6252             buffer.Write(LC_THREAD_data.GetString().data(),
6253                          LC_THREAD_data_size);
6254           }
6255 
6256           // Write out all of the segment load commands
6257           for (const auto &segment : segment_load_commands) {
6258             printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6259                    ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6260                    ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6261                    segment.cmd, segment.cmdsize, segment.vmaddr,
6262                    segment.vmaddr + segment.vmsize, segment.fileoff,
6263                    segment.filesize, segment.maxprot, segment.initprot,
6264                    segment.nsects, segment.flags);
6265 
6266             buffer.PutHex32(segment.cmd);
6267             buffer.PutHex32(segment.cmdsize);
6268             buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6269             if (addr_byte_size == 8) {
6270               buffer.PutHex64(segment.vmaddr);
6271               buffer.PutHex64(segment.vmsize);
6272               buffer.PutHex64(segment.fileoff);
6273               buffer.PutHex64(segment.filesize);
6274             } else {
6275               buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6276               buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6277               buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6278               buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6279             }
6280             buffer.PutHex32(segment.maxprot);
6281             buffer.PutHex32(segment.initprot);
6282             buffer.PutHex32(segment.nsects);
6283             buffer.PutHex32(segment.flags);
6284           }
6285 
6286           File core_file;
6287           std::string core_file_path(outfile.GetPath());
6288           error = FileSystem::Instance().Open(core_file, outfile,
6289                                               File::eOpenOptionWrite |
6290                                                   File::eOpenOptionTruncate |
6291                                                   File::eOpenOptionCanCreate);
6292           if (error.Success()) {
6293             // Read 1 page at a time
6294             uint8_t bytes[0x1000];
6295             // Write the mach header and load commands out to the core file
6296             size_t bytes_written = buffer.GetString().size();
6297             error = core_file.Write(buffer.GetString().data(), bytes_written);
6298             if (error.Success()) {
6299               // Now write the file data for all memory segments in the process
6300               for (const auto &segment : segment_load_commands) {
6301                 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6302                   error.SetErrorStringWithFormat(
6303                       "unable to seek to offset 0x%" PRIx64 " in '%s'",
6304                       segment.fileoff, core_file_path.c_str());
6305                   break;
6306                 }
6307 
6308                 printf("Saving %" PRId64
6309                        " bytes of data for memory region at 0x%" PRIx64 "\n",
6310                        segment.vmsize, segment.vmaddr);
6311                 addr_t bytes_left = segment.vmsize;
6312                 addr_t addr = segment.vmaddr;
6313                 Status memory_read_error;
6314                 while (bytes_left > 0 && error.Success()) {
6315                   const size_t bytes_to_read =
6316                       bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6317 
6318                   // In a savecore setting, we don't really care about caching,
6319                   // as the data is dumped and very likely never read again,
6320                   // so we call ReadMemoryFromInferior to bypass it.
6321                   const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6322                       addr, bytes, bytes_to_read, memory_read_error);
6323 
6324                   if (bytes_read == bytes_to_read) {
6325                     size_t bytes_written = bytes_read;
6326                     error = core_file.Write(bytes, bytes_written);
6327                     bytes_left -= bytes_read;
6328                     addr += bytes_read;
6329                   } else {
6330                     // Some pages within regions are not readable, those should
6331                     // be zero filled
6332                     memset(bytes, 0, bytes_to_read);
6333                     size_t bytes_written = bytes_to_read;
6334                     error = core_file.Write(bytes, bytes_written);
6335                     bytes_left -= bytes_to_read;
6336                     addr += bytes_to_read;
6337                   }
6338                 }
6339               }
6340             }
6341           }
6342         } else {
6343           error.SetErrorString(
6344               "process doesn't support getting memory region info");
6345         }
6346       }
6347       return true; // This is the right plug to handle saving core files for
6348                    // this process
6349     }
6350   }
6351   return false;
6352 }
6353