1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/StringRef.h" 10 11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 15 #include "lldb/Core/Debugger.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Core/StreamFile.h" 22 #include "lldb/Host/Host.h" 23 #include "lldb/Symbol/DWARFCallFrameInfo.h" 24 #include "lldb/Symbol/ObjectFile.h" 25 #include "lldb/Target/DynamicLoader.h" 26 #include "lldb/Target/MemoryRegionInfo.h" 27 #include "lldb/Target/Platform.h" 28 #include "lldb/Target/Process.h" 29 #include "lldb/Target/SectionLoadList.h" 30 #include "lldb/Target/Target.h" 31 #include "lldb/Target/Thread.h" 32 #include "lldb/Target/ThreadList.h" 33 #include "lldb/Utility/ArchSpec.h" 34 #include "lldb/Utility/DataBuffer.h" 35 #include "lldb/Utility/FileSpec.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RangeMap.h" 38 #include "lldb/Utility/RegisterValue.h" 39 #include "lldb/Utility/Status.h" 40 #include "lldb/Utility/StreamString.h" 41 #include "lldb/Utility/Timer.h" 42 #include "lldb/Utility/UUID.h" 43 44 #include "lldb/Host/SafeMachO.h" 45 46 #include "llvm/Support/MemoryBuffer.h" 47 48 #include "ObjectFileMachO.h" 49 50 #if defined(__APPLE__) && \ 51 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) 52 // GetLLDBSharedCacheUUID() needs to call dlsym() 53 #include <dlfcn.h> 54 #endif 55 56 #ifndef __APPLE__ 57 #include "Utility/UuidCompatibility.h" 58 #else 59 #include <uuid/uuid.h> 60 #endif 61 62 #include <memory> 63 64 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 65 using namespace lldb; 66 using namespace lldb_private; 67 using namespace llvm::MachO; 68 69 // Some structure definitions needed for parsing the dyld shared cache files 70 // found on iOS devices. 71 72 struct lldb_copy_dyld_cache_header_v1 { 73 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 74 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 75 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 76 uint32_t imagesOffset; 77 uint32_t imagesCount; 78 uint64_t dyldBaseAddress; 79 uint64_t codeSignatureOffset; 80 uint64_t codeSignatureSize; 81 uint64_t slideInfoOffset; 82 uint64_t slideInfoSize; 83 uint64_t localSymbolsOffset; 84 uint64_t localSymbolsSize; 85 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 86 // and later 87 }; 88 89 struct lldb_copy_dyld_cache_mapping_info { 90 uint64_t address; 91 uint64_t size; 92 uint64_t fileOffset; 93 uint32_t maxProt; 94 uint32_t initProt; 95 }; 96 97 struct lldb_copy_dyld_cache_local_symbols_info { 98 uint32_t nlistOffset; 99 uint32_t nlistCount; 100 uint32_t stringsOffset; 101 uint32_t stringsSize; 102 uint32_t entriesOffset; 103 uint32_t entriesCount; 104 }; 105 struct lldb_copy_dyld_cache_local_symbols_entry { 106 uint32_t dylibOffset; 107 uint32_t nlistStartIndex; 108 uint32_t nlistCount; 109 }; 110 111 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { 112 public: 113 RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread, 114 const DataExtractor &data) 115 : RegisterContextDarwin_x86_64(thread, 0) { 116 SetRegisterDataFrom_LC_THREAD(data); 117 } 118 119 void InvalidateAllRegisters() override { 120 // Do nothing... registers are always valid... 121 } 122 123 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 124 lldb::offset_t offset = 0; 125 SetError(GPRRegSet, Read, -1); 126 SetError(FPURegSet, Read, -1); 127 SetError(EXCRegSet, Read, -1); 128 bool done = false; 129 130 while (!done) { 131 int flavor = data.GetU32(&offset); 132 if (flavor == 0) 133 done = true; 134 else { 135 uint32_t i; 136 uint32_t count = data.GetU32(&offset); 137 switch (flavor) { 138 case GPRRegSet: 139 for (i = 0; i < count; ++i) 140 (&gpr.rax)[i] = data.GetU64(&offset); 141 SetError(GPRRegSet, Read, 0); 142 done = true; 143 144 break; 145 case FPURegSet: 146 // TODO: fill in FPU regs.... 147 // SetError (FPURegSet, Read, -1); 148 done = true; 149 150 break; 151 case EXCRegSet: 152 exc.trapno = data.GetU32(&offset); 153 exc.err = data.GetU32(&offset); 154 exc.faultvaddr = data.GetU64(&offset); 155 SetError(EXCRegSet, Read, 0); 156 done = true; 157 break; 158 case 7: 159 case 8: 160 case 9: 161 // fancy flavors that encapsulate of the above flavors... 162 break; 163 164 default: 165 done = true; 166 break; 167 } 168 } 169 } 170 } 171 172 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name, 173 const char *alt_name, size_t reg_byte_size, 174 Stream &data) { 175 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 176 if (reg_info == nullptr) 177 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 178 if (reg_info) { 179 lldb_private::RegisterValue reg_value; 180 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 181 if (reg_info->byte_size >= reg_byte_size) 182 data.Write(reg_value.GetBytes(), reg_byte_size); 183 else { 184 data.Write(reg_value.GetBytes(), reg_info->byte_size); 185 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; 186 ++i) 187 data.PutChar(0); 188 } 189 return reg_byte_size; 190 } 191 } 192 // Just write zeros if all else fails 193 for (size_t i = 0; i < reg_byte_size; ++i) 194 data.PutChar(0); 195 return reg_byte_size; 196 } 197 198 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 199 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 200 if (reg_ctx_sp) { 201 RegisterContext *reg_ctx = reg_ctx_sp.get(); 202 203 data.PutHex32(GPRRegSet); // Flavor 204 data.PutHex32(GPRWordCount); 205 WriteRegister(reg_ctx, "rax", nullptr, 8, data); 206 WriteRegister(reg_ctx, "rbx", nullptr, 8, data); 207 WriteRegister(reg_ctx, "rcx", nullptr, 8, data); 208 WriteRegister(reg_ctx, "rdx", nullptr, 8, data); 209 WriteRegister(reg_ctx, "rdi", nullptr, 8, data); 210 WriteRegister(reg_ctx, "rsi", nullptr, 8, data); 211 WriteRegister(reg_ctx, "rbp", nullptr, 8, data); 212 WriteRegister(reg_ctx, "rsp", nullptr, 8, data); 213 WriteRegister(reg_ctx, "r8", nullptr, 8, data); 214 WriteRegister(reg_ctx, "r9", nullptr, 8, data); 215 WriteRegister(reg_ctx, "r10", nullptr, 8, data); 216 WriteRegister(reg_ctx, "r11", nullptr, 8, data); 217 WriteRegister(reg_ctx, "r12", nullptr, 8, data); 218 WriteRegister(reg_ctx, "r13", nullptr, 8, data); 219 WriteRegister(reg_ctx, "r14", nullptr, 8, data); 220 WriteRegister(reg_ctx, "r15", nullptr, 8, data); 221 WriteRegister(reg_ctx, "rip", nullptr, 8, data); 222 WriteRegister(reg_ctx, "rflags", nullptr, 8, data); 223 WriteRegister(reg_ctx, "cs", nullptr, 8, data); 224 WriteRegister(reg_ctx, "fs", nullptr, 8, data); 225 WriteRegister(reg_ctx, "gs", nullptr, 8, data); 226 227 // // Write out the FPU registers 228 // const size_t fpu_byte_size = sizeof(FPU); 229 // size_t bytes_written = 0; 230 // data.PutHex32 (FPURegSet); 231 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 232 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 233 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 234 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, 235 // data); // uint16_t fcw; // "fctrl" 236 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, 237 // data); // uint16_t fsw; // "fstat" 238 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, 239 // data); // uint8_t ftw; // "ftag" 240 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 241 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, 242 // data); // uint16_t fop; // "fop" 243 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, 244 // data); // uint32_t ip; // "fioff" 245 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, 246 // data); // uint16_t cs; // "fiseg" 247 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 248 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, 249 // data); // uint32_t dp; // "fooff" 250 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, 251 // data); // uint16_t ds; // "foseg" 252 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 253 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, 254 // data); // uint32_t mxcsr; 255 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 256 // 4, data);// uint32_t mxcsrmask; 257 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, 258 // sizeof(MMSReg), data); 259 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, 260 // sizeof(MMSReg), data); 261 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, 262 // sizeof(MMSReg), data); 263 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, 264 // sizeof(MMSReg), data); 265 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, 266 // sizeof(MMSReg), data); 267 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, 268 // sizeof(MMSReg), data); 269 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, 270 // sizeof(MMSReg), data); 271 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, 272 // sizeof(MMSReg), data); 273 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, 274 // sizeof(XMMReg), data); 275 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, 276 // sizeof(XMMReg), data); 277 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, 278 // sizeof(XMMReg), data); 279 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, 280 // sizeof(XMMReg), data); 281 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, 282 // sizeof(XMMReg), data); 283 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, 284 // sizeof(XMMReg), data); 285 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, 286 // sizeof(XMMReg), data); 287 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, 288 // sizeof(XMMReg), data); 289 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, 290 // sizeof(XMMReg), data); 291 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, 292 // sizeof(XMMReg), data); 293 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, 294 // sizeof(XMMReg), data); 295 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, 296 // sizeof(XMMReg), data); 297 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, 298 // sizeof(XMMReg), data); 299 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, 300 // sizeof(XMMReg), data); 301 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, 302 // sizeof(XMMReg), data); 303 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, 304 // sizeof(XMMReg), data); 305 // 306 // // Fill rest with zeros 307 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ 308 // i) 309 // data.PutChar(0); 310 311 // Write out the EXC registers 312 data.PutHex32(EXCRegSet); 313 data.PutHex32(EXCWordCount); 314 WriteRegister(reg_ctx, "trapno", nullptr, 4, data); 315 WriteRegister(reg_ctx, "err", nullptr, 4, data); 316 WriteRegister(reg_ctx, "faultvaddr", nullptr, 8, data); 317 return true; 318 } 319 return false; 320 } 321 322 protected: 323 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 324 325 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 326 327 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 328 329 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 330 return 0; 331 } 332 333 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 334 return 0; 335 } 336 337 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 338 return 0; 339 } 340 }; 341 342 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 { 343 public: 344 RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread, 345 const DataExtractor &data) 346 : RegisterContextDarwin_i386(thread, 0) { 347 SetRegisterDataFrom_LC_THREAD(data); 348 } 349 350 void InvalidateAllRegisters() override { 351 // Do nothing... registers are always valid... 352 } 353 354 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 355 lldb::offset_t offset = 0; 356 SetError(GPRRegSet, Read, -1); 357 SetError(FPURegSet, Read, -1); 358 SetError(EXCRegSet, Read, -1); 359 bool done = false; 360 361 while (!done) { 362 int flavor = data.GetU32(&offset); 363 if (flavor == 0) 364 done = true; 365 else { 366 uint32_t i; 367 uint32_t count = data.GetU32(&offset); 368 switch (flavor) { 369 case GPRRegSet: 370 for (i = 0; i < count; ++i) 371 (&gpr.eax)[i] = data.GetU32(&offset); 372 SetError(GPRRegSet, Read, 0); 373 done = true; 374 375 break; 376 case FPURegSet: 377 // TODO: fill in FPU regs.... 378 // SetError (FPURegSet, Read, -1); 379 done = true; 380 381 break; 382 case EXCRegSet: 383 exc.trapno = data.GetU32(&offset); 384 exc.err = data.GetU32(&offset); 385 exc.faultvaddr = data.GetU32(&offset); 386 SetError(EXCRegSet, Read, 0); 387 done = true; 388 break; 389 case 7: 390 case 8: 391 case 9: 392 // fancy flavors that encapsulate of the above flavors... 393 break; 394 395 default: 396 done = true; 397 break; 398 } 399 } 400 } 401 } 402 403 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name, 404 const char *alt_name, size_t reg_byte_size, 405 Stream &data) { 406 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 407 if (reg_info == nullptr) 408 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 409 if (reg_info) { 410 lldb_private::RegisterValue reg_value; 411 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 412 if (reg_info->byte_size >= reg_byte_size) 413 data.Write(reg_value.GetBytes(), reg_byte_size); 414 else { 415 data.Write(reg_value.GetBytes(), reg_info->byte_size); 416 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; 417 ++i) 418 data.PutChar(0); 419 } 420 return reg_byte_size; 421 } 422 } 423 // Just write zeros if all else fails 424 for (size_t i = 0; i < reg_byte_size; ++i) 425 data.PutChar(0); 426 return reg_byte_size; 427 } 428 429 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 430 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 431 if (reg_ctx_sp) { 432 RegisterContext *reg_ctx = reg_ctx_sp.get(); 433 434 data.PutHex32(GPRRegSet); // Flavor 435 data.PutHex32(GPRWordCount); 436 WriteRegister(reg_ctx, "eax", nullptr, 4, data); 437 WriteRegister(reg_ctx, "ebx", nullptr, 4, data); 438 WriteRegister(reg_ctx, "ecx", nullptr, 4, data); 439 WriteRegister(reg_ctx, "edx", nullptr, 4, data); 440 WriteRegister(reg_ctx, "edi", nullptr, 4, data); 441 WriteRegister(reg_ctx, "esi", nullptr, 4, data); 442 WriteRegister(reg_ctx, "ebp", nullptr, 4, data); 443 WriteRegister(reg_ctx, "esp", nullptr, 4, data); 444 WriteRegister(reg_ctx, "ss", nullptr, 4, data); 445 WriteRegister(reg_ctx, "eflags", nullptr, 4, data); 446 WriteRegister(reg_ctx, "eip", nullptr, 4, data); 447 WriteRegister(reg_ctx, "cs", nullptr, 4, data); 448 WriteRegister(reg_ctx, "ds", nullptr, 4, data); 449 WriteRegister(reg_ctx, "es", nullptr, 4, data); 450 WriteRegister(reg_ctx, "fs", nullptr, 4, data); 451 WriteRegister(reg_ctx, "gs", nullptr, 4, data); 452 453 // Write out the EXC registers 454 data.PutHex32(EXCRegSet); 455 data.PutHex32(EXCWordCount); 456 WriteRegister(reg_ctx, "trapno", nullptr, 4, data); 457 WriteRegister(reg_ctx, "err", nullptr, 4, data); 458 WriteRegister(reg_ctx, "faultvaddr", nullptr, 4, data); 459 return true; 460 } 461 return false; 462 } 463 464 protected: 465 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 466 467 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 468 469 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 470 471 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 472 return 0; 473 } 474 475 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 476 return 0; 477 } 478 479 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 480 return 0; 481 } 482 }; 483 484 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm { 485 public: 486 RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread, 487 const DataExtractor &data) 488 : RegisterContextDarwin_arm(thread, 0) { 489 SetRegisterDataFrom_LC_THREAD(data); 490 } 491 492 void InvalidateAllRegisters() override { 493 // Do nothing... registers are always valid... 494 } 495 496 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 497 lldb::offset_t offset = 0; 498 SetError(GPRRegSet, Read, -1); 499 SetError(FPURegSet, Read, -1); 500 SetError(EXCRegSet, Read, -1); 501 bool done = false; 502 503 while (!done) { 504 int flavor = data.GetU32(&offset); 505 uint32_t count = data.GetU32(&offset); 506 lldb::offset_t next_thread_state = offset + (count * 4); 507 switch (flavor) { 508 case GPRAltRegSet: 509 case GPRRegSet: 510 for (uint32_t i = 0; i < count; ++i) { 511 gpr.r[i] = data.GetU32(&offset); 512 } 513 514 // Note that gpr.cpsr is also copied by the above loop; this loop 515 // technically extends one element past the end of the gpr.r[] array. 516 517 SetError(GPRRegSet, Read, 0); 518 offset = next_thread_state; 519 break; 520 521 case FPURegSet: { 522 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0]; 523 const int fpu_reg_buf_size = sizeof(fpu.floats); 524 if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 525 fpu_reg_buf) == fpu_reg_buf_size) { 526 offset += fpu_reg_buf_size; 527 fpu.fpscr = data.GetU32(&offset); 528 SetError(FPURegSet, Read, 0); 529 } else { 530 done = true; 531 } 532 } 533 offset = next_thread_state; 534 break; 535 536 case EXCRegSet: 537 if (count == 3) { 538 exc.exception = data.GetU32(&offset); 539 exc.fsr = data.GetU32(&offset); 540 exc.far = data.GetU32(&offset); 541 SetError(EXCRegSet, Read, 0); 542 } 543 done = true; 544 offset = next_thread_state; 545 break; 546 547 // Unknown register set flavor, stop trying to parse. 548 default: 549 done = true; 550 } 551 } 552 } 553 554 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name, 555 const char *alt_name, size_t reg_byte_size, 556 Stream &data) { 557 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 558 if (reg_info == nullptr) 559 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 560 if (reg_info) { 561 lldb_private::RegisterValue reg_value; 562 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 563 if (reg_info->byte_size >= reg_byte_size) 564 data.Write(reg_value.GetBytes(), reg_byte_size); 565 else { 566 data.Write(reg_value.GetBytes(), reg_info->byte_size); 567 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; 568 ++i) 569 data.PutChar(0); 570 } 571 return reg_byte_size; 572 } 573 } 574 // Just write zeros if all else fails 575 for (size_t i = 0; i < reg_byte_size; ++i) 576 data.PutChar(0); 577 return reg_byte_size; 578 } 579 580 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 581 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 582 if (reg_ctx_sp) { 583 RegisterContext *reg_ctx = reg_ctx_sp.get(); 584 585 data.PutHex32(GPRRegSet); // Flavor 586 data.PutHex32(GPRWordCount); 587 WriteRegister(reg_ctx, "r0", nullptr, 4, data); 588 WriteRegister(reg_ctx, "r1", nullptr, 4, data); 589 WriteRegister(reg_ctx, "r2", nullptr, 4, data); 590 WriteRegister(reg_ctx, "r3", nullptr, 4, data); 591 WriteRegister(reg_ctx, "r4", nullptr, 4, data); 592 WriteRegister(reg_ctx, "r5", nullptr, 4, data); 593 WriteRegister(reg_ctx, "r6", nullptr, 4, data); 594 WriteRegister(reg_ctx, "r7", nullptr, 4, data); 595 WriteRegister(reg_ctx, "r8", nullptr, 4, data); 596 WriteRegister(reg_ctx, "r9", nullptr, 4, data); 597 WriteRegister(reg_ctx, "r10", nullptr, 4, data); 598 WriteRegister(reg_ctx, "r11", nullptr, 4, data); 599 WriteRegister(reg_ctx, "r12", nullptr, 4, data); 600 WriteRegister(reg_ctx, "sp", nullptr, 4, data); 601 WriteRegister(reg_ctx, "lr", nullptr, 4, data); 602 WriteRegister(reg_ctx, "pc", nullptr, 4, data); 603 WriteRegister(reg_ctx, "cpsr", nullptr, 4, data); 604 605 // Write out the EXC registers 606 // data.PutHex32 (EXCRegSet); 607 // data.PutHex32 (EXCWordCount); 608 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 609 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 610 // WriteRegister (reg_ctx, "far", NULL, 4, data); 611 return true; 612 } 613 return false; 614 } 615 616 protected: 617 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 618 619 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 620 621 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 622 623 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 624 625 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 626 return 0; 627 } 628 629 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 630 return 0; 631 } 632 633 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 634 return 0; 635 } 636 637 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 638 return -1; 639 } 640 }; 641 642 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 { 643 public: 644 RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread, 645 const DataExtractor &data) 646 : RegisterContextDarwin_arm64(thread, 0) { 647 SetRegisterDataFrom_LC_THREAD(data); 648 } 649 650 void InvalidateAllRegisters() override { 651 // Do nothing... registers are always valid... 652 } 653 654 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 655 lldb::offset_t offset = 0; 656 SetError(GPRRegSet, Read, -1); 657 SetError(FPURegSet, Read, -1); 658 SetError(EXCRegSet, Read, -1); 659 bool done = false; 660 while (!done) { 661 int flavor = data.GetU32(&offset); 662 uint32_t count = data.GetU32(&offset); 663 lldb::offset_t next_thread_state = offset + (count * 4); 664 switch (flavor) { 665 case GPRRegSet: 666 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 667 // 32-bit register) 668 if (count >= (33 * 2) + 1) { 669 for (uint32_t i = 0; i < 29; ++i) 670 gpr.x[i] = data.GetU64(&offset); 671 gpr.fp = data.GetU64(&offset); 672 gpr.lr = data.GetU64(&offset); 673 gpr.sp = data.GetU64(&offset); 674 gpr.pc = data.GetU64(&offset); 675 gpr.cpsr = data.GetU32(&offset); 676 SetError(GPRRegSet, Read, 0); 677 } 678 offset = next_thread_state; 679 break; 680 case FPURegSet: { 681 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0]; 682 const int fpu_reg_buf_size = sizeof(fpu); 683 if (fpu_reg_buf_size == count * sizeof(uint32_t) && 684 data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 685 fpu_reg_buf) == fpu_reg_buf_size) { 686 SetError(FPURegSet, Read, 0); 687 } else { 688 done = true; 689 } 690 } 691 offset = next_thread_state; 692 break; 693 case EXCRegSet: 694 if (count == 4) { 695 exc.far = data.GetU64(&offset); 696 exc.esr = data.GetU32(&offset); 697 exc.exception = data.GetU32(&offset); 698 SetError(EXCRegSet, Read, 0); 699 } 700 offset = next_thread_state; 701 break; 702 default: 703 done = true; 704 break; 705 } 706 } 707 } 708 709 static size_t WriteRegister(RegisterContext *reg_ctx, const char *name, 710 const char *alt_name, size_t reg_byte_size, 711 Stream &data) { 712 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 713 if (reg_info == nullptr) 714 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 715 if (reg_info) { 716 lldb_private::RegisterValue reg_value; 717 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 718 if (reg_info->byte_size >= reg_byte_size) 719 data.Write(reg_value.GetBytes(), reg_byte_size); 720 else { 721 data.Write(reg_value.GetBytes(), reg_info->byte_size); 722 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; 723 ++i) 724 data.PutChar(0); 725 } 726 return reg_byte_size; 727 } 728 } 729 // Just write zeros if all else fails 730 for (size_t i = 0; i < reg_byte_size; ++i) 731 data.PutChar(0); 732 return reg_byte_size; 733 } 734 735 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 736 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 737 if (reg_ctx_sp) { 738 RegisterContext *reg_ctx = reg_ctx_sp.get(); 739 740 data.PutHex32(GPRRegSet); // Flavor 741 data.PutHex32(GPRWordCount); 742 WriteRegister(reg_ctx, "x0", nullptr, 8, data); 743 WriteRegister(reg_ctx, "x1", nullptr, 8, data); 744 WriteRegister(reg_ctx, "x2", nullptr, 8, data); 745 WriteRegister(reg_ctx, "x3", nullptr, 8, data); 746 WriteRegister(reg_ctx, "x4", nullptr, 8, data); 747 WriteRegister(reg_ctx, "x5", nullptr, 8, data); 748 WriteRegister(reg_ctx, "x6", nullptr, 8, data); 749 WriteRegister(reg_ctx, "x7", nullptr, 8, data); 750 WriteRegister(reg_ctx, "x8", nullptr, 8, data); 751 WriteRegister(reg_ctx, "x9", nullptr, 8, data); 752 WriteRegister(reg_ctx, "x10", nullptr, 8, data); 753 WriteRegister(reg_ctx, "x11", nullptr, 8, data); 754 WriteRegister(reg_ctx, "x12", nullptr, 8, data); 755 WriteRegister(reg_ctx, "x13", nullptr, 8, data); 756 WriteRegister(reg_ctx, "x14", nullptr, 8, data); 757 WriteRegister(reg_ctx, "x15", nullptr, 8, data); 758 WriteRegister(reg_ctx, "x16", nullptr, 8, data); 759 WriteRegister(reg_ctx, "x17", nullptr, 8, data); 760 WriteRegister(reg_ctx, "x18", nullptr, 8, data); 761 WriteRegister(reg_ctx, "x19", nullptr, 8, data); 762 WriteRegister(reg_ctx, "x20", nullptr, 8, data); 763 WriteRegister(reg_ctx, "x21", nullptr, 8, data); 764 WriteRegister(reg_ctx, "x22", nullptr, 8, data); 765 WriteRegister(reg_ctx, "x23", nullptr, 8, data); 766 WriteRegister(reg_ctx, "x24", nullptr, 8, data); 767 WriteRegister(reg_ctx, "x25", nullptr, 8, data); 768 WriteRegister(reg_ctx, "x26", nullptr, 8, data); 769 WriteRegister(reg_ctx, "x27", nullptr, 8, data); 770 WriteRegister(reg_ctx, "x28", nullptr, 8, data); 771 WriteRegister(reg_ctx, "fp", nullptr, 8, data); 772 WriteRegister(reg_ctx, "lr", nullptr, 8, data); 773 WriteRegister(reg_ctx, "sp", nullptr, 8, data); 774 WriteRegister(reg_ctx, "pc", nullptr, 8, data); 775 WriteRegister(reg_ctx, "cpsr", nullptr, 4, data); 776 777 // Write out the EXC registers 778 // data.PutHex32 (EXCRegSet); 779 // data.PutHex32 (EXCWordCount); 780 // WriteRegister (reg_ctx, "far", NULL, 8, data); 781 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 782 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 783 return true; 784 } 785 return false; 786 } 787 788 protected: 789 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 790 791 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 792 793 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 794 795 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 796 797 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 798 return 0; 799 } 800 801 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 802 return 0; 803 } 804 805 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 806 return 0; 807 } 808 809 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 810 return -1; 811 } 812 }; 813 814 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { 815 switch (magic) { 816 case MH_MAGIC: 817 case MH_CIGAM: 818 return sizeof(struct mach_header); 819 820 case MH_MAGIC_64: 821 case MH_CIGAM_64: 822 return sizeof(struct mach_header_64); 823 break; 824 825 default: 826 break; 827 } 828 return 0; 829 } 830 831 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 832 833 void ObjectFileMachO::Initialize() { 834 PluginManager::RegisterPlugin( 835 GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, 836 CreateMemoryInstance, GetModuleSpecifications, SaveCore); 837 } 838 839 void ObjectFileMachO::Terminate() { 840 PluginManager::UnregisterPlugin(CreateInstance); 841 } 842 843 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() { 844 static ConstString g_name("mach-o"); 845 return g_name; 846 } 847 848 const char *ObjectFileMachO::GetPluginDescriptionStatic() { 849 return "Mach-o object file reader (32 and 64 bit)"; 850 } 851 852 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp, 853 DataBufferSP &data_sp, 854 lldb::offset_t data_offset, 855 const FileSpec *file, 856 lldb::offset_t file_offset, 857 lldb::offset_t length) { 858 if (!data_sp) { 859 data_sp = MapFileData(*file, length, file_offset); 860 if (!data_sp) 861 return nullptr; 862 data_offset = 0; 863 } 864 865 if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 866 return nullptr; 867 868 // Update the data to contain the entire file if it doesn't already 869 if (data_sp->GetByteSize() < length) { 870 data_sp = MapFileData(*file, length, file_offset); 871 if (!data_sp) 872 return nullptr; 873 data_offset = 0; 874 } 875 auto objfile_up = llvm::make_unique<ObjectFileMachO>( 876 module_sp, data_sp, data_offset, file, file_offset, length); 877 if (!objfile_up || !objfile_up->ParseHeader()) 878 return nullptr; 879 880 return objfile_up.release(); 881 } 882 883 ObjectFile *ObjectFileMachO::CreateMemoryInstance( 884 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 885 const ProcessSP &process_sp, lldb::addr_t header_addr) { 886 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 887 std::unique_ptr<ObjectFile> objfile_up( 888 new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr)); 889 if (objfile_up.get() && objfile_up->ParseHeader()) 890 return objfile_up.release(); 891 } 892 return nullptr; 893 } 894 895 size_t ObjectFileMachO::GetModuleSpecifications( 896 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 897 lldb::offset_t data_offset, lldb::offset_t file_offset, 898 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 899 const size_t initial_count = specs.GetSize(); 900 901 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 902 DataExtractor data; 903 data.SetData(data_sp); 904 llvm::MachO::mach_header header; 905 if (ParseHeader(data, &data_offset, header)) { 906 size_t header_and_load_cmds = 907 header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 908 if (header_and_load_cmds >= data_sp->GetByteSize()) { 909 data_sp = MapFileData(file, header_and_load_cmds, file_offset); 910 data.SetData(data_sp); 911 data_offset = MachHeaderSizeFromMagic(header.magic); 912 } 913 if (data_sp) { 914 ModuleSpec spec; 915 spec.GetFileSpec() = file; 916 spec.SetObjectOffset(file_offset); 917 spec.SetObjectSize(length); 918 919 spec.GetArchitecture() = GetArchitecture(header, data, data_offset); 920 if (spec.GetArchitecture().IsValid()) { 921 spec.GetUUID() = GetUUID(header, data, data_offset); 922 specs.Append(spec); 923 } 924 } 925 } 926 } 927 return specs.GetSize() - initial_count; 928 } 929 930 ConstString ObjectFileMachO::GetSegmentNameTEXT() { 931 static ConstString g_segment_name_TEXT("__TEXT"); 932 return g_segment_name_TEXT; 933 } 934 935 ConstString ObjectFileMachO::GetSegmentNameDATA() { 936 static ConstString g_segment_name_DATA("__DATA"); 937 return g_segment_name_DATA; 938 } 939 940 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() { 941 static ConstString g_segment_name("__DATA_DIRTY"); 942 return g_segment_name; 943 } 944 945 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() { 946 static ConstString g_segment_name("__DATA_CONST"); 947 return g_segment_name; 948 } 949 950 ConstString ObjectFileMachO::GetSegmentNameOBJC() { 951 static ConstString g_segment_name_OBJC("__OBJC"); 952 return g_segment_name_OBJC; 953 } 954 955 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() { 956 static ConstString g_section_name_LINKEDIT("__LINKEDIT"); 957 return g_section_name_LINKEDIT; 958 } 959 960 ConstString ObjectFileMachO::GetSegmentNameDWARF() { 961 static ConstString g_section_name("__DWARF"); 962 return g_section_name; 963 } 964 965 ConstString ObjectFileMachO::GetSectionNameEHFrame() { 966 static ConstString g_section_name_eh_frame("__eh_frame"); 967 return g_section_name_eh_frame; 968 } 969 970 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp, 971 lldb::addr_t data_offset, 972 lldb::addr_t data_length) { 973 DataExtractor data; 974 data.SetData(data_sp, data_offset, data_length); 975 lldb::offset_t offset = 0; 976 uint32_t magic = data.GetU32(&offset); 977 return MachHeaderSizeFromMagic(magic) != 0; 978 } 979 980 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 981 DataBufferSP &data_sp, 982 lldb::offset_t data_offset, 983 const FileSpec *file, 984 lldb::offset_t file_offset, 985 lldb::offset_t length) 986 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 987 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 988 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 989 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 990 ::memset(&m_header, 0, sizeof(m_header)); 991 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 992 } 993 994 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 995 lldb::DataBufferSP &header_data_sp, 996 const lldb::ProcessSP &process_sp, 997 lldb::addr_t header_addr) 998 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 999 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 1000 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 1001 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 1002 ::memset(&m_header, 0, sizeof(m_header)); 1003 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 1004 } 1005 1006 bool ObjectFileMachO::ParseHeader(DataExtractor &data, 1007 lldb::offset_t *data_offset_ptr, 1008 llvm::MachO::mach_header &header) { 1009 data.SetByteOrder(endian::InlHostByteOrder()); 1010 // Leave magic in the original byte order 1011 header.magic = data.GetU32(data_offset_ptr); 1012 bool can_parse = false; 1013 bool is_64_bit = false; 1014 switch (header.magic) { 1015 case MH_MAGIC: 1016 data.SetByteOrder(endian::InlHostByteOrder()); 1017 data.SetAddressByteSize(4); 1018 can_parse = true; 1019 break; 1020 1021 case MH_MAGIC_64: 1022 data.SetByteOrder(endian::InlHostByteOrder()); 1023 data.SetAddressByteSize(8); 1024 can_parse = true; 1025 is_64_bit = true; 1026 break; 1027 1028 case MH_CIGAM: 1029 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1030 ? eByteOrderLittle 1031 : eByteOrderBig); 1032 data.SetAddressByteSize(4); 1033 can_parse = true; 1034 break; 1035 1036 case MH_CIGAM_64: 1037 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1038 ? eByteOrderLittle 1039 : eByteOrderBig); 1040 data.SetAddressByteSize(8); 1041 is_64_bit = true; 1042 can_parse = true; 1043 break; 1044 1045 default: 1046 break; 1047 } 1048 1049 if (can_parse) { 1050 data.GetU32(data_offset_ptr, &header.cputype, 6); 1051 if (is_64_bit) 1052 *data_offset_ptr += 4; 1053 return true; 1054 } else { 1055 memset(&header, 0, sizeof(header)); 1056 } 1057 return false; 1058 } 1059 1060 bool ObjectFileMachO::ParseHeader() { 1061 ModuleSP module_sp(GetModule()); 1062 if (module_sp) { 1063 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 1064 bool can_parse = false; 1065 lldb::offset_t offset = 0; 1066 m_data.SetByteOrder(endian::InlHostByteOrder()); 1067 // Leave magic in the original byte order 1068 m_header.magic = m_data.GetU32(&offset); 1069 switch (m_header.magic) { 1070 case MH_MAGIC: 1071 m_data.SetByteOrder(endian::InlHostByteOrder()); 1072 m_data.SetAddressByteSize(4); 1073 can_parse = true; 1074 break; 1075 1076 case MH_MAGIC_64: 1077 m_data.SetByteOrder(endian::InlHostByteOrder()); 1078 m_data.SetAddressByteSize(8); 1079 can_parse = true; 1080 break; 1081 1082 case MH_CIGAM: 1083 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1084 ? eByteOrderLittle 1085 : eByteOrderBig); 1086 m_data.SetAddressByteSize(4); 1087 can_parse = true; 1088 break; 1089 1090 case MH_CIGAM_64: 1091 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1092 ? eByteOrderLittle 1093 : eByteOrderBig); 1094 m_data.SetAddressByteSize(8); 1095 can_parse = true; 1096 break; 1097 1098 default: 1099 break; 1100 } 1101 1102 if (can_parse) { 1103 m_data.GetU32(&offset, &m_header.cputype, 6); 1104 1105 if (ArchSpec mach_arch = GetArchitecture()) { 1106 // Check if the module has a required architecture 1107 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1108 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1109 return false; 1110 1111 if (SetModulesArchitecture(mach_arch)) { 1112 const size_t header_and_lc_size = 1113 m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1114 if (m_data.GetByteSize() < header_and_lc_size) { 1115 DataBufferSP data_sp; 1116 ProcessSP process_sp(m_process_wp.lock()); 1117 if (process_sp) { 1118 data_sp = 1119 ReadMemory(process_sp, m_memory_addr, header_and_lc_size); 1120 } else { 1121 // Read in all only the load command data from the file on disk 1122 data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset); 1123 if (data_sp->GetByteSize() != header_and_lc_size) 1124 return false; 1125 } 1126 if (data_sp) 1127 m_data.SetData(data_sp); 1128 } 1129 } 1130 return true; 1131 } 1132 } else { 1133 memset(&m_header, 0, sizeof(struct mach_header)); 1134 } 1135 } 1136 return false; 1137 } 1138 1139 ByteOrder ObjectFileMachO::GetByteOrder() const { 1140 return m_data.GetByteOrder(); 1141 } 1142 1143 bool ObjectFileMachO::IsExecutable() const { 1144 return m_header.filetype == MH_EXECUTE; 1145 } 1146 1147 uint32_t ObjectFileMachO::GetAddressByteSize() const { 1148 return m_data.GetAddressByteSize(); 1149 } 1150 1151 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) { 1152 Symtab *symtab = GetSymtab(); 1153 if (symtab) { 1154 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1155 if (symbol) { 1156 if (symbol->ValueIsAddress()) { 1157 SectionSP section_sp(symbol->GetAddressRef().GetSection()); 1158 if (section_sp) { 1159 const lldb::SectionType section_type = section_sp->GetType(); 1160 switch (section_type) { 1161 case eSectionTypeInvalid: 1162 return AddressClass::eUnknown; 1163 1164 case eSectionTypeCode: 1165 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1166 // For ARM we have a bit in the n_desc field of the symbol that 1167 // tells us ARM/Thumb which is bit 0x0008. 1168 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1169 return AddressClass::eCodeAlternateISA; 1170 } 1171 return AddressClass::eCode; 1172 1173 case eSectionTypeContainer: 1174 return AddressClass::eUnknown; 1175 1176 case eSectionTypeData: 1177 case eSectionTypeDataCString: 1178 case eSectionTypeDataCStringPointers: 1179 case eSectionTypeDataSymbolAddress: 1180 case eSectionTypeData4: 1181 case eSectionTypeData8: 1182 case eSectionTypeData16: 1183 case eSectionTypeDataPointers: 1184 case eSectionTypeZeroFill: 1185 case eSectionTypeDataObjCMessageRefs: 1186 case eSectionTypeDataObjCCFStrings: 1187 case eSectionTypeGoSymtab: 1188 return AddressClass::eData; 1189 1190 case eSectionTypeDebug: 1191 case eSectionTypeDWARFDebugAbbrev: 1192 case eSectionTypeDWARFDebugAbbrevDwo: 1193 case eSectionTypeDWARFDebugAddr: 1194 case eSectionTypeDWARFDebugAranges: 1195 case eSectionTypeDWARFDebugCuIndex: 1196 case eSectionTypeDWARFDebugFrame: 1197 case eSectionTypeDWARFDebugInfo: 1198 case eSectionTypeDWARFDebugInfoDwo: 1199 case eSectionTypeDWARFDebugLine: 1200 case eSectionTypeDWARFDebugLineStr: 1201 case eSectionTypeDWARFDebugLoc: 1202 case eSectionTypeDWARFDebugLocLists: 1203 case eSectionTypeDWARFDebugMacInfo: 1204 case eSectionTypeDWARFDebugMacro: 1205 case eSectionTypeDWARFDebugNames: 1206 case eSectionTypeDWARFDebugPubNames: 1207 case eSectionTypeDWARFDebugPubTypes: 1208 case eSectionTypeDWARFDebugRanges: 1209 case eSectionTypeDWARFDebugRngLists: 1210 case eSectionTypeDWARFDebugStr: 1211 case eSectionTypeDWARFDebugStrDwo: 1212 case eSectionTypeDWARFDebugStrOffsets: 1213 case eSectionTypeDWARFDebugStrOffsetsDwo: 1214 case eSectionTypeDWARFDebugTypes: 1215 case eSectionTypeDWARFAppleNames: 1216 case eSectionTypeDWARFAppleTypes: 1217 case eSectionTypeDWARFAppleNamespaces: 1218 case eSectionTypeDWARFAppleObjC: 1219 case eSectionTypeDWARFGNUDebugAltLink: 1220 return AddressClass::eDebug; 1221 1222 case eSectionTypeEHFrame: 1223 case eSectionTypeARMexidx: 1224 case eSectionTypeARMextab: 1225 case eSectionTypeCompactUnwind: 1226 return AddressClass::eRuntime; 1227 1228 case eSectionTypeAbsoluteAddress: 1229 case eSectionTypeELFSymbolTable: 1230 case eSectionTypeELFDynamicSymbols: 1231 case eSectionTypeELFRelocationEntries: 1232 case eSectionTypeELFDynamicLinkInfo: 1233 case eSectionTypeOther: 1234 return AddressClass::eUnknown; 1235 } 1236 } 1237 } 1238 1239 const SymbolType symbol_type = symbol->GetType(); 1240 switch (symbol_type) { 1241 case eSymbolTypeAny: 1242 return AddressClass::eUnknown; 1243 case eSymbolTypeAbsolute: 1244 return AddressClass::eUnknown; 1245 1246 case eSymbolTypeCode: 1247 case eSymbolTypeTrampoline: 1248 case eSymbolTypeResolver: 1249 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1250 // For ARM we have a bit in the n_desc field of the symbol that tells 1251 // us ARM/Thumb which is bit 0x0008. 1252 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1253 return AddressClass::eCodeAlternateISA; 1254 } 1255 return AddressClass::eCode; 1256 1257 case eSymbolTypeData: 1258 return AddressClass::eData; 1259 case eSymbolTypeRuntime: 1260 return AddressClass::eRuntime; 1261 case eSymbolTypeException: 1262 return AddressClass::eRuntime; 1263 case eSymbolTypeSourceFile: 1264 return AddressClass::eDebug; 1265 case eSymbolTypeHeaderFile: 1266 return AddressClass::eDebug; 1267 case eSymbolTypeObjectFile: 1268 return AddressClass::eDebug; 1269 case eSymbolTypeCommonBlock: 1270 return AddressClass::eDebug; 1271 case eSymbolTypeBlock: 1272 return AddressClass::eDebug; 1273 case eSymbolTypeLocal: 1274 return AddressClass::eData; 1275 case eSymbolTypeParam: 1276 return AddressClass::eData; 1277 case eSymbolTypeVariable: 1278 return AddressClass::eData; 1279 case eSymbolTypeVariableType: 1280 return AddressClass::eDebug; 1281 case eSymbolTypeLineEntry: 1282 return AddressClass::eDebug; 1283 case eSymbolTypeLineHeader: 1284 return AddressClass::eDebug; 1285 case eSymbolTypeScopeBegin: 1286 return AddressClass::eDebug; 1287 case eSymbolTypeScopeEnd: 1288 return AddressClass::eDebug; 1289 case eSymbolTypeAdditional: 1290 return AddressClass::eUnknown; 1291 case eSymbolTypeCompiler: 1292 return AddressClass::eDebug; 1293 case eSymbolTypeInstrumentation: 1294 return AddressClass::eDebug; 1295 case eSymbolTypeUndefined: 1296 return AddressClass::eUnknown; 1297 case eSymbolTypeObjCClass: 1298 return AddressClass::eRuntime; 1299 case eSymbolTypeObjCMetaClass: 1300 return AddressClass::eRuntime; 1301 case eSymbolTypeObjCIVar: 1302 return AddressClass::eRuntime; 1303 case eSymbolTypeReExported: 1304 return AddressClass::eRuntime; 1305 } 1306 } 1307 } 1308 return AddressClass::eUnknown; 1309 } 1310 1311 Symtab *ObjectFileMachO::GetSymtab() { 1312 ModuleSP module_sp(GetModule()); 1313 if (module_sp) { 1314 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 1315 if (m_symtab_up == nullptr) { 1316 m_symtab_up.reset(new Symtab(this)); 1317 std::lock_guard<std::recursive_mutex> symtab_guard( 1318 m_symtab_up->GetMutex()); 1319 ParseSymtab(); 1320 m_symtab_up->Finalize(); 1321 } 1322 } 1323 return m_symtab_up.get(); 1324 } 1325 1326 bool ObjectFileMachO::IsStripped() { 1327 if (m_dysymtab.cmd == 0) { 1328 ModuleSP module_sp(GetModule()); 1329 if (module_sp) { 1330 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1331 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1332 const lldb::offset_t load_cmd_offset = offset; 1333 1334 load_command lc; 1335 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 1336 break; 1337 if (lc.cmd == LC_DYSYMTAB) { 1338 m_dysymtab.cmd = lc.cmd; 1339 m_dysymtab.cmdsize = lc.cmdsize; 1340 if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1341 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == 1342 nullptr) { 1343 // Clear m_dysymtab if we were unable to read all items from the 1344 // load command 1345 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 1346 } 1347 } 1348 offset = load_cmd_offset + lc.cmdsize; 1349 } 1350 } 1351 } 1352 if (m_dysymtab.cmd) 1353 return m_dysymtab.nlocalsym <= 1; 1354 return false; 1355 } 1356 1357 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() { 1358 EncryptedFileRanges result; 1359 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1360 1361 encryption_info_command encryption_cmd; 1362 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1363 const lldb::offset_t load_cmd_offset = offset; 1364 if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr) 1365 break; 1366 1367 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the 1368 // 3 fields we care about, so treat them the same. 1369 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || 1370 encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) { 1371 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) { 1372 if (encryption_cmd.cryptid != 0) { 1373 EncryptedFileRanges::Entry entry; 1374 entry.SetRangeBase(encryption_cmd.cryptoff); 1375 entry.SetByteSize(encryption_cmd.cryptsize); 1376 result.Append(entry); 1377 } 1378 } 1379 } 1380 offset = load_cmd_offset + encryption_cmd.cmdsize; 1381 } 1382 1383 return result; 1384 } 1385 1386 void ObjectFileMachO::SanitizeSegmentCommand(segment_command_64 &seg_cmd, 1387 uint32_t cmd_idx) { 1388 if (m_length == 0 || seg_cmd.filesize == 0) 1389 return; 1390 1391 if (seg_cmd.fileoff > m_length) { 1392 // We have a load command that says it extends past the end of the file. 1393 // This is likely a corrupt file. We don't have any way to return an error 1394 // condition here (this method was likely invoked from something like 1395 // ObjectFile::GetSectionList()), so we just null out the section contents, 1396 // and dump a message to stdout. The most common case here is core file 1397 // debugging with a truncated file. 1398 const char *lc_segment_name = 1399 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1400 GetModule()->ReportWarning( 1401 "load command %u %s has a fileoff (0x%" PRIx64 1402 ") that extends beyond the end of the file (0x%" PRIx64 1403 "), ignoring this section", 1404 cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length); 1405 1406 seg_cmd.fileoff = 0; 1407 seg_cmd.filesize = 0; 1408 } 1409 1410 if (seg_cmd.fileoff + seg_cmd.filesize > m_length) { 1411 // We have a load command that says it extends past the end of the file. 1412 // This is likely a corrupt file. We don't have any way to return an error 1413 // condition here (this method was likely invoked from something like 1414 // ObjectFile::GetSectionList()), so we just null out the section contents, 1415 // and dump a message to stdout. The most common case here is core file 1416 // debugging with a truncated file. 1417 const char *lc_segment_name = 1418 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1419 GetModule()->ReportWarning( 1420 "load command %u %s has a fileoff + filesize (0x%" PRIx64 1421 ") that extends beyond the end of the file (0x%" PRIx64 1422 "), the segment will be truncated to match", 1423 cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length); 1424 1425 // Truncate the length 1426 seg_cmd.filesize = m_length - seg_cmd.fileoff; 1427 } 1428 } 1429 1430 static uint32_t GetSegmentPermissions(const segment_command_64 &seg_cmd) { 1431 uint32_t result = 0; 1432 if (seg_cmd.initprot & VM_PROT_READ) 1433 result |= ePermissionsReadable; 1434 if (seg_cmd.initprot & VM_PROT_WRITE) 1435 result |= ePermissionsWritable; 1436 if (seg_cmd.initprot & VM_PROT_EXECUTE) 1437 result |= ePermissionsExecutable; 1438 return result; 1439 } 1440 1441 static lldb::SectionType GetSectionType(uint32_t flags, 1442 ConstString section_name) { 1443 1444 if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1445 return eSectionTypeCode; 1446 1447 uint32_t mach_sect_type = flags & SECTION_TYPE; 1448 static ConstString g_sect_name_objc_data("__objc_data"); 1449 static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs"); 1450 static ConstString g_sect_name_objc_selrefs("__objc_selrefs"); 1451 static ConstString g_sect_name_objc_classrefs("__objc_classrefs"); 1452 static ConstString g_sect_name_objc_superrefs("__objc_superrefs"); 1453 static ConstString g_sect_name_objc_const("__objc_const"); 1454 static ConstString g_sect_name_objc_classlist("__objc_classlist"); 1455 static ConstString g_sect_name_cfstring("__cfstring"); 1456 1457 static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev"); 1458 static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges"); 1459 static ConstString g_sect_name_dwarf_debug_frame("__debug_frame"); 1460 static ConstString g_sect_name_dwarf_debug_info("__debug_info"); 1461 static ConstString g_sect_name_dwarf_debug_line("__debug_line"); 1462 static ConstString g_sect_name_dwarf_debug_loc("__debug_loc"); 1463 static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists"); 1464 static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo"); 1465 static ConstString g_sect_name_dwarf_debug_names("__debug_names"); 1466 static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames"); 1467 static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes"); 1468 static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges"); 1469 static ConstString g_sect_name_dwarf_debug_str("__debug_str"); 1470 static ConstString g_sect_name_dwarf_debug_types("__debug_types"); 1471 static ConstString g_sect_name_dwarf_apple_names("__apple_names"); 1472 static ConstString g_sect_name_dwarf_apple_types("__apple_types"); 1473 static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac"); 1474 static ConstString g_sect_name_dwarf_apple_objc("__apple_objc"); 1475 static ConstString g_sect_name_eh_frame("__eh_frame"); 1476 static ConstString g_sect_name_compact_unwind("__unwind_info"); 1477 static ConstString g_sect_name_text("__text"); 1478 static ConstString g_sect_name_data("__data"); 1479 static ConstString g_sect_name_go_symtab("__gosymtab"); 1480 1481 if (section_name == g_sect_name_dwarf_debug_abbrev) 1482 return eSectionTypeDWARFDebugAbbrev; 1483 if (section_name == g_sect_name_dwarf_debug_aranges) 1484 return eSectionTypeDWARFDebugAranges; 1485 if (section_name == g_sect_name_dwarf_debug_frame) 1486 return eSectionTypeDWARFDebugFrame; 1487 if (section_name == g_sect_name_dwarf_debug_info) 1488 return eSectionTypeDWARFDebugInfo; 1489 if (section_name == g_sect_name_dwarf_debug_line) 1490 return eSectionTypeDWARFDebugLine; 1491 if (section_name == g_sect_name_dwarf_debug_loc) 1492 return eSectionTypeDWARFDebugLoc; 1493 if (section_name == g_sect_name_dwarf_debug_loclists) 1494 return eSectionTypeDWARFDebugLocLists; 1495 if (section_name == g_sect_name_dwarf_debug_macinfo) 1496 return eSectionTypeDWARFDebugMacInfo; 1497 if (section_name == g_sect_name_dwarf_debug_names) 1498 return eSectionTypeDWARFDebugNames; 1499 if (section_name == g_sect_name_dwarf_debug_pubnames) 1500 return eSectionTypeDWARFDebugPubNames; 1501 if (section_name == g_sect_name_dwarf_debug_pubtypes) 1502 return eSectionTypeDWARFDebugPubTypes; 1503 if (section_name == g_sect_name_dwarf_debug_ranges) 1504 return eSectionTypeDWARFDebugRanges; 1505 if (section_name == g_sect_name_dwarf_debug_str) 1506 return eSectionTypeDWARFDebugStr; 1507 if (section_name == g_sect_name_dwarf_debug_types) 1508 return eSectionTypeDWARFDebugTypes; 1509 if (section_name == g_sect_name_dwarf_apple_names) 1510 return eSectionTypeDWARFAppleNames; 1511 if (section_name == g_sect_name_dwarf_apple_types) 1512 return eSectionTypeDWARFAppleTypes; 1513 if (section_name == g_sect_name_dwarf_apple_namespaces) 1514 return eSectionTypeDWARFAppleNamespaces; 1515 if (section_name == g_sect_name_dwarf_apple_objc) 1516 return eSectionTypeDWARFAppleObjC; 1517 if (section_name == g_sect_name_objc_selrefs) 1518 return eSectionTypeDataCStringPointers; 1519 if (section_name == g_sect_name_objc_msgrefs) 1520 return eSectionTypeDataObjCMessageRefs; 1521 if (section_name == g_sect_name_eh_frame) 1522 return eSectionTypeEHFrame; 1523 if (section_name == g_sect_name_compact_unwind) 1524 return eSectionTypeCompactUnwind; 1525 if (section_name == g_sect_name_cfstring) 1526 return eSectionTypeDataObjCCFStrings; 1527 if (section_name == g_sect_name_go_symtab) 1528 return eSectionTypeGoSymtab; 1529 if (section_name == g_sect_name_objc_data || 1530 section_name == g_sect_name_objc_classrefs || 1531 section_name == g_sect_name_objc_superrefs || 1532 section_name == g_sect_name_objc_const || 1533 section_name == g_sect_name_objc_classlist) { 1534 return eSectionTypeDataPointers; 1535 } 1536 1537 switch (mach_sect_type) { 1538 // TODO: categorize sections by other flags for regular sections 1539 case S_REGULAR: 1540 if (section_name == g_sect_name_text) 1541 return eSectionTypeCode; 1542 if (section_name == g_sect_name_data) 1543 return eSectionTypeData; 1544 return eSectionTypeOther; 1545 case S_ZEROFILL: 1546 return eSectionTypeZeroFill; 1547 case S_CSTRING_LITERALS: // section with only literal C strings 1548 return eSectionTypeDataCString; 1549 case S_4BYTE_LITERALS: // section with only 4 byte literals 1550 return eSectionTypeData4; 1551 case S_8BYTE_LITERALS: // section with only 8 byte literals 1552 return eSectionTypeData8; 1553 case S_LITERAL_POINTERS: // section with only pointers to literals 1554 return eSectionTypeDataPointers; 1555 case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers 1556 return eSectionTypeDataPointers; 1557 case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers 1558 return eSectionTypeDataPointers; 1559 case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in 1560 // the reserved2 field 1561 return eSectionTypeCode; 1562 case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for 1563 // initialization 1564 return eSectionTypeDataPointers; 1565 case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for 1566 // termination 1567 return eSectionTypeDataPointers; 1568 case S_COALESCED: 1569 return eSectionTypeOther; 1570 case S_GB_ZEROFILL: 1571 return eSectionTypeZeroFill; 1572 case S_INTERPOSING: // section with only pairs of function pointers for 1573 // interposing 1574 return eSectionTypeCode; 1575 case S_16BYTE_LITERALS: // section with only 16 byte literals 1576 return eSectionTypeData16; 1577 case S_DTRACE_DOF: 1578 return eSectionTypeDebug; 1579 case S_LAZY_DYLIB_SYMBOL_POINTERS: 1580 return eSectionTypeDataPointers; 1581 default: 1582 return eSectionTypeOther; 1583 } 1584 } 1585 1586 struct ObjectFileMachO::SegmentParsingContext { 1587 const EncryptedFileRanges EncryptedRanges; 1588 lldb_private::SectionList &UnifiedList; 1589 uint32_t NextSegmentIdx = 0; 1590 uint32_t NextSectionIdx = 0; 1591 bool FileAddressesChanged = false; 1592 1593 SegmentParsingContext(EncryptedFileRanges EncryptedRanges, 1594 lldb_private::SectionList &UnifiedList) 1595 : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {} 1596 }; 1597 1598 void ObjectFileMachO::ProcessSegmentCommand(const load_command &load_cmd_, 1599 lldb::offset_t offset, 1600 uint32_t cmd_idx, 1601 SegmentParsingContext &context) { 1602 segment_command_64 load_cmd; 1603 memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_)); 1604 1605 if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) 1606 return; 1607 1608 ModuleSP module_sp = GetModule(); 1609 const bool is_core = GetType() == eTypeCoreFile; 1610 const bool is_dsym = (m_header.filetype == MH_DSYM); 1611 bool add_section = true; 1612 bool add_to_unified = true; 1613 ConstString const_segname( 1614 load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname))); 1615 1616 SectionSP unified_section_sp( 1617 context.UnifiedList.FindSectionByName(const_segname)); 1618 if (is_dsym && unified_section_sp) { 1619 if (const_segname == GetSegmentNameLINKEDIT()) { 1620 // We need to keep the __LINKEDIT segment private to this object file 1621 // only 1622 add_to_unified = false; 1623 } else { 1624 // This is the dSYM file and this section has already been created by the 1625 // object file, no need to create it. 1626 add_section = false; 1627 } 1628 } 1629 load_cmd.vmaddr = m_data.GetAddress(&offset); 1630 load_cmd.vmsize = m_data.GetAddress(&offset); 1631 load_cmd.fileoff = m_data.GetAddress(&offset); 1632 load_cmd.filesize = m_data.GetAddress(&offset); 1633 if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1634 return; 1635 1636 SanitizeSegmentCommand(load_cmd, cmd_idx); 1637 1638 const uint32_t segment_permissions = GetSegmentPermissions(load_cmd); 1639 const bool segment_is_encrypted = 1640 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1641 1642 // Keep a list of mach segments around in case we need to get at data that 1643 // isn't stored in the abstracted Sections. 1644 m_mach_segments.push_back(load_cmd); 1645 1646 // Use a segment ID of the segment index shifted left by 8 so they never 1647 // conflict with any of the sections. 1648 SectionSP segment_sp; 1649 if (add_section && (const_segname || is_core)) { 1650 segment_sp = std::make_shared<Section>( 1651 module_sp, // Module to which this section belongs 1652 this, // Object file to which this sections belongs 1653 ++context.NextSegmentIdx 1654 << 8, // Section ID is the 1 based segment index 1655 // shifted right by 8 bits as not to collide with any of the 256 1656 // section IDs that are possible 1657 const_segname, // Name of this section 1658 eSectionTypeContainer, // This section is a container of other 1659 // sections. 1660 load_cmd.vmaddr, // File VM address == addresses as they are 1661 // found in the object file 1662 load_cmd.vmsize, // VM size in bytes of this section 1663 load_cmd.fileoff, // Offset to the data for this section in 1664 // the file 1665 load_cmd.filesize, // Size in bytes of this section as found 1666 // in the file 1667 0, // Segments have no alignment information 1668 load_cmd.flags); // Flags for this section 1669 1670 segment_sp->SetIsEncrypted(segment_is_encrypted); 1671 m_sections_up->AddSection(segment_sp); 1672 segment_sp->SetPermissions(segment_permissions); 1673 if (add_to_unified) 1674 context.UnifiedList.AddSection(segment_sp); 1675 } else if (unified_section_sp) { 1676 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) { 1677 // Check to see if the module was read from memory? 1678 if (module_sp->GetObjectFile()->GetBaseAddress().IsValid()) { 1679 // We have a module that is in memory and needs to have its file 1680 // address adjusted. We need to do this because when we load a file 1681 // from memory, its addresses will be slid already, yet the addresses 1682 // in the new symbol file will still be unslid. Since everything is 1683 // stored as section offset, this shouldn't cause any problems. 1684 1685 // Make sure we've parsed the symbol table from the ObjectFile before 1686 // we go around changing its Sections. 1687 module_sp->GetObjectFile()->GetSymtab(); 1688 // eh_frame would present the same problems but we parse that on a per- 1689 // function basis as-needed so it's more difficult to remove its use of 1690 // the Sections. Realistically, the environments where this code path 1691 // will be taken will not have eh_frame sections. 1692 1693 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1694 1695 // Notify the module that the section addresses have been changed once 1696 // we're done so any file-address caches can be updated. 1697 context.FileAddressesChanged = true; 1698 } 1699 } 1700 m_sections_up->AddSection(unified_section_sp); 1701 } 1702 1703 struct section_64 sect64; 1704 ::memset(§64, 0, sizeof(sect64)); 1705 // Push a section into our mach sections for the section at index zero 1706 // (NO_SECT) if we don't have any mach sections yet... 1707 if (m_mach_sections.empty()) 1708 m_mach_sections.push_back(sect64); 1709 uint32_t segment_sect_idx; 1710 const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1; 1711 1712 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1713 for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects; 1714 ++segment_sect_idx) { 1715 if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname, 1716 sizeof(sect64.sectname)) == nullptr) 1717 break; 1718 if (m_data.GetU8(&offset, (uint8_t *)sect64.segname, 1719 sizeof(sect64.segname)) == nullptr) 1720 break; 1721 sect64.addr = m_data.GetAddress(&offset); 1722 sect64.size = m_data.GetAddress(&offset); 1723 1724 if (m_data.GetU32(&offset, §64.offset, num_u32s) == nullptr) 1725 break; 1726 1727 // Keep a list of mach sections around in case we need to get at data that 1728 // isn't stored in the abstracted Sections. 1729 m_mach_sections.push_back(sect64); 1730 1731 if (add_section) { 1732 ConstString section_name( 1733 sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname))); 1734 if (!const_segname) { 1735 // We have a segment with no name so we need to conjure up segments 1736 // that correspond to the section's segname if there isn't already such 1737 // a section. If there is such a section, we resize the section so that 1738 // it spans all sections. We also mark these sections as fake so 1739 // address matches don't hit if they land in the gaps between the child 1740 // sections. 1741 const_segname.SetTrimmedCStringWithLength(sect64.segname, 1742 sizeof(sect64.segname)); 1743 segment_sp = context.UnifiedList.FindSectionByName(const_segname); 1744 if (segment_sp.get()) { 1745 Section *segment = segment_sp.get(); 1746 // Grow the section size as needed. 1747 const lldb::addr_t sect64_min_addr = sect64.addr; 1748 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1749 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1750 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1751 const lldb::addr_t curr_seg_max_addr = 1752 curr_seg_min_addr + curr_seg_byte_size; 1753 if (sect64_min_addr >= curr_seg_min_addr) { 1754 const lldb::addr_t new_seg_byte_size = 1755 sect64_max_addr - curr_seg_min_addr; 1756 // Only grow the section size if needed 1757 if (new_seg_byte_size > curr_seg_byte_size) 1758 segment->SetByteSize(new_seg_byte_size); 1759 } else { 1760 // We need to change the base address of the segment and adjust the 1761 // child section offsets for all existing children. 1762 const lldb::addr_t slide_amount = 1763 sect64_min_addr - curr_seg_min_addr; 1764 segment->Slide(slide_amount, false); 1765 segment->GetChildren().Slide(-slide_amount, false); 1766 segment->SetByteSize(curr_seg_max_addr - sect64_min_addr); 1767 } 1768 1769 // Grow the section size as needed. 1770 if (sect64.offset) { 1771 const lldb::addr_t segment_min_file_offset = 1772 segment->GetFileOffset(); 1773 const lldb::addr_t segment_max_file_offset = 1774 segment_min_file_offset + segment->GetFileSize(); 1775 1776 const lldb::addr_t section_min_file_offset = sect64.offset; 1777 const lldb::addr_t section_max_file_offset = 1778 section_min_file_offset + sect64.size; 1779 const lldb::addr_t new_file_offset = 1780 std::min(section_min_file_offset, segment_min_file_offset); 1781 const lldb::addr_t new_file_size = 1782 std::max(section_max_file_offset, segment_max_file_offset) - 1783 new_file_offset; 1784 segment->SetFileOffset(new_file_offset); 1785 segment->SetFileSize(new_file_size); 1786 } 1787 } else { 1788 // Create a fake section for the section's named segment 1789 segment_sp = std::make_shared<Section>( 1790 segment_sp, // Parent section 1791 module_sp, // Module to which this section belongs 1792 this, // Object file to which this section belongs 1793 ++context.NextSegmentIdx 1794 << 8, // Section ID is the 1 based segment index 1795 // shifted right by 8 bits as not to 1796 // collide with any of the 256 section IDs 1797 // that are possible 1798 const_segname, // Name of this section 1799 eSectionTypeContainer, // This section is a container of 1800 // other sections. 1801 sect64.addr, // File VM address == addresses as they are 1802 // found in the object file 1803 sect64.size, // VM size in bytes of this section 1804 sect64.offset, // Offset to the data for this section in 1805 // the file 1806 sect64.offset ? sect64.size : 0, // Size in bytes of 1807 // this section as 1808 // found in the file 1809 sect64.align, 1810 load_cmd.flags); // Flags for this section 1811 segment_sp->SetIsFake(true); 1812 segment_sp->SetPermissions(segment_permissions); 1813 m_sections_up->AddSection(segment_sp); 1814 if (add_to_unified) 1815 context.UnifiedList.AddSection(segment_sp); 1816 segment_sp->SetIsEncrypted(segment_is_encrypted); 1817 } 1818 } 1819 assert(segment_sp.get()); 1820 1821 lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name); 1822 1823 SectionSP section_sp(new Section( 1824 segment_sp, module_sp, this, ++context.NextSectionIdx, section_name, 1825 sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, 1826 sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align, 1827 sect64.flags)); 1828 // Set the section to be encrypted to match the segment 1829 1830 bool section_is_encrypted = false; 1831 if (!segment_is_encrypted && load_cmd.filesize != 0) 1832 section_is_encrypted = context.EncryptedRanges.FindEntryThatContains( 1833 sect64.offset) != nullptr; 1834 1835 section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted); 1836 section_sp->SetPermissions(segment_permissions); 1837 segment_sp->GetChildren().AddSection(section_sp); 1838 1839 if (segment_sp->IsFake()) { 1840 segment_sp.reset(); 1841 const_segname.Clear(); 1842 } 1843 } 1844 } 1845 if (segment_sp && is_dsym) { 1846 if (first_segment_sectID <= context.NextSectionIdx) { 1847 lldb::user_id_t sect_uid; 1848 for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx; 1849 ++sect_uid) { 1850 SectionSP curr_section_sp( 1851 segment_sp->GetChildren().FindSectionByID(sect_uid)); 1852 SectionSP next_section_sp; 1853 if (sect_uid + 1 <= context.NextSectionIdx) 1854 next_section_sp = 1855 segment_sp->GetChildren().FindSectionByID(sect_uid + 1); 1856 1857 if (curr_section_sp.get()) { 1858 if (curr_section_sp->GetByteSize() == 0) { 1859 if (next_section_sp.get() != nullptr) 1860 curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() - 1861 curr_section_sp->GetFileAddress()); 1862 else 1863 curr_section_sp->SetByteSize(load_cmd.vmsize); 1864 } 1865 } 1866 } 1867 } 1868 } 1869 } 1870 1871 void ObjectFileMachO::ProcessDysymtabCommand(const load_command &load_cmd, 1872 lldb::offset_t offset) { 1873 m_dysymtab.cmd = load_cmd.cmd; 1874 m_dysymtab.cmdsize = load_cmd.cmdsize; 1875 m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1876 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1877 } 1878 1879 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) { 1880 if (m_sections_up) 1881 return; 1882 1883 m_sections_up.reset(new SectionList()); 1884 1885 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1886 // bool dump_sections = false; 1887 ModuleSP module_sp(GetModule()); 1888 1889 offset = MachHeaderSizeFromMagic(m_header.magic); 1890 1891 SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list); 1892 struct load_command load_cmd; 1893 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1894 const lldb::offset_t load_cmd_offset = offset; 1895 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 1896 break; 1897 1898 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1899 ProcessSegmentCommand(load_cmd, offset, i, context); 1900 else if (load_cmd.cmd == LC_DYSYMTAB) 1901 ProcessDysymtabCommand(load_cmd, offset); 1902 1903 offset = load_cmd_offset + load_cmd.cmdsize; 1904 } 1905 1906 if (context.FileAddressesChanged && module_sp) 1907 module_sp->SectionFileAddressesChanged(); 1908 } 1909 1910 class MachSymtabSectionInfo { 1911 public: 1912 MachSymtabSectionInfo(SectionList *section_list) 1913 : m_section_list(section_list), m_section_infos() { 1914 // Get the number of sections down to a depth of 1 to include all segments 1915 // and their sections, but no other sections that may be added for debug 1916 // map or 1917 m_section_infos.resize(section_list->GetNumSections(1)); 1918 } 1919 1920 SectionSP GetSection(uint8_t n_sect, addr_t file_addr) { 1921 if (n_sect == 0) 1922 return SectionSP(); 1923 if (n_sect < m_section_infos.size()) { 1924 if (!m_section_infos[n_sect].section_sp) { 1925 SectionSP section_sp(m_section_list->FindSectionByID(n_sect)); 1926 m_section_infos[n_sect].section_sp = section_sp; 1927 if (section_sp) { 1928 m_section_infos[n_sect].vm_range.SetBaseAddress( 1929 section_sp->GetFileAddress()); 1930 m_section_infos[n_sect].vm_range.SetByteSize( 1931 section_sp->GetByteSize()); 1932 } else { 1933 Host::SystemLog(Host::eSystemLogError, 1934 "error: unable to find section for section %u\n", 1935 n_sect); 1936 } 1937 } 1938 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { 1939 // Symbol is in section. 1940 return m_section_infos[n_sect].section_sp; 1941 } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 && 1942 m_section_infos[n_sect].vm_range.GetBaseAddress() == 1943 file_addr) { 1944 // Symbol is in section with zero size, but has the same start address 1945 // as the section. This can happen with linker symbols (symbols that 1946 // start with the letter 'l' or 'L'. 1947 return m_section_infos[n_sect].section_sp; 1948 } 1949 } 1950 return m_section_list->FindSectionContainingFileAddress(file_addr); 1951 } 1952 1953 protected: 1954 struct SectionInfo { 1955 SectionInfo() : vm_range(), section_sp() {} 1956 1957 VMRange vm_range; 1958 SectionSP section_sp; 1959 }; 1960 SectionList *m_section_list; 1961 std::vector<SectionInfo> m_section_infos; 1962 }; 1963 1964 struct TrieEntry { 1965 TrieEntry() 1966 : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0), 1967 import_name() {} 1968 1969 void Clear() { 1970 name.Clear(); 1971 address = LLDB_INVALID_ADDRESS; 1972 flags = 0; 1973 other = 0; 1974 import_name.Clear(); 1975 } 1976 1977 void Dump() const { 1978 printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 1979 static_cast<unsigned long long>(address), 1980 static_cast<unsigned long long>(flags), 1981 static_cast<unsigned long long>(other), name.GetCString()); 1982 if (import_name) 1983 printf(" -> \"%s\"\n", import_name.GetCString()); 1984 else 1985 printf("\n"); 1986 } 1987 ConstString name; 1988 uint64_t address; 1989 uint64_t flags; 1990 uint64_t other; 1991 ConstString import_name; 1992 }; 1993 1994 struct TrieEntryWithOffset { 1995 lldb::offset_t nodeOffset; 1996 TrieEntry entry; 1997 1998 TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {} 1999 2000 void Dump(uint32_t idx) const { 2001 printf("[%3u] 0x%16.16llx: ", idx, 2002 static_cast<unsigned long long>(nodeOffset)); 2003 entry.Dump(); 2004 } 2005 2006 bool operator<(const TrieEntryWithOffset &other) const { 2007 return (nodeOffset < other.nodeOffset); 2008 } 2009 }; 2010 2011 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset, 2012 const bool is_arm, 2013 std::vector<llvm::StringRef> &nameSlices, 2014 std::set<lldb::addr_t> &resolver_addresses, 2015 std::vector<TrieEntryWithOffset> &output) { 2016 if (!data.ValidOffset(offset)) 2017 return true; 2018 2019 const uint64_t terminalSize = data.GetULEB128(&offset); 2020 lldb::offset_t children_offset = offset + terminalSize; 2021 if (terminalSize != 0) { 2022 TrieEntryWithOffset e(offset); 2023 e.entry.flags = data.GetULEB128(&offset); 2024 const char *import_name = nullptr; 2025 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) { 2026 e.entry.address = 0; 2027 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2028 import_name = data.GetCStr(&offset); 2029 } else { 2030 e.entry.address = data.GetULEB128(&offset); 2031 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) { 2032 e.entry.other = data.GetULEB128(&offset); 2033 uint64_t resolver_addr = e.entry.other; 2034 if (is_arm) 2035 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2036 resolver_addresses.insert(resolver_addr); 2037 } else 2038 e.entry.other = 0; 2039 } 2040 // Only add symbols that are reexport symbols with a valid import name 2041 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && 2042 import_name[0]) { 2043 std::string name; 2044 if (!nameSlices.empty()) { 2045 for (auto name_slice : nameSlices) 2046 name.append(name_slice.data(), name_slice.size()); 2047 } 2048 if (name.size() > 1) { 2049 // Skip the leading '_' 2050 e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1); 2051 } 2052 if (import_name) { 2053 // Skip the leading '_' 2054 e.entry.import_name.SetCString(import_name + 1); 2055 } 2056 output.push_back(e); 2057 } 2058 } 2059 2060 const uint8_t childrenCount = data.GetU8(&children_offset); 2061 for (uint8_t i = 0; i < childrenCount; ++i) { 2062 const char *cstr = data.GetCStr(&children_offset); 2063 if (cstr) 2064 nameSlices.push_back(llvm::StringRef(cstr)); 2065 else 2066 return false; // Corrupt data 2067 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2068 if (childNodeOffset) { 2069 if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices, 2070 resolver_addresses, output)) { 2071 return false; 2072 } 2073 } 2074 nameSlices.pop_back(); 2075 } 2076 return true; 2077 } 2078 2079 // Read the UUID out of a dyld_shared_cache file on-disk. 2080 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache, 2081 const ByteOrder byte_order, 2082 const uint32_t addr_byte_size) { 2083 UUID dsc_uuid; 2084 DataBufferSP DscData = MapFileData( 2085 dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2086 if (!DscData) 2087 return dsc_uuid; 2088 DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size); 2089 2090 char version_str[7]; 2091 lldb::offset_t offset = 0; 2092 memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6); 2093 version_str[6] = '\0'; 2094 if (strcmp(version_str, "dyld_v") == 0) { 2095 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid); 2096 dsc_uuid = UUID::fromOptionalData( 2097 dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t)); 2098 } 2099 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2100 if (log && dsc_uuid.IsValid()) { 2101 log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(), 2102 dsc_uuid.GetAsString().c_str()); 2103 } 2104 return dsc_uuid; 2105 } 2106 2107 size_t ObjectFileMachO::ParseSymtab() { 2108 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 2109 Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s", 2110 m_file.GetFilename().AsCString("")); 2111 ModuleSP module_sp(GetModule()); 2112 if (!module_sp) 2113 return 0; 2114 2115 struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0}; 2116 struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0}; 2117 struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 2118 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2119 FunctionStarts function_starts; 2120 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2121 uint32_t i; 2122 FileSpecList dylib_files; 2123 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2124 static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_"); 2125 static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_"); 2126 static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); 2127 2128 for (i = 0; i < m_header.ncmds; ++i) { 2129 const lldb::offset_t cmd_offset = offset; 2130 // Read in the load command and load command size 2131 struct load_command lc; 2132 if (m_data.GetU32(&offset, &lc, 2) == nullptr) 2133 break; 2134 // Watch for the symbol table load command 2135 switch (lc.cmd) { 2136 case LC_SYMTAB: 2137 symtab_load_command.cmd = lc.cmd; 2138 symtab_load_command.cmdsize = lc.cmdsize; 2139 // Read in the rest of the symtab load command 2140 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 2141 nullptr) // fill in symoff, nsyms, stroff, strsize fields 2142 return 0; 2143 if (symtab_load_command.symoff == 0) { 2144 if (log) 2145 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2146 return 0; 2147 } 2148 2149 if (symtab_load_command.stroff == 0) { 2150 if (log) 2151 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2152 return 0; 2153 } 2154 2155 if (symtab_load_command.nsyms == 0) { 2156 if (log) 2157 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2158 return 0; 2159 } 2160 2161 if (symtab_load_command.strsize == 0) { 2162 if (log) 2163 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2164 return 0; 2165 } 2166 break; 2167 2168 case LC_DYLD_INFO: 2169 case LC_DYLD_INFO_ONLY: 2170 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) { 2171 dyld_info.cmd = lc.cmd; 2172 dyld_info.cmdsize = lc.cmdsize; 2173 } else { 2174 memset(&dyld_info, 0, sizeof(dyld_info)); 2175 } 2176 break; 2177 2178 case LC_LOAD_DYLIB: 2179 case LC_LOAD_WEAK_DYLIB: 2180 case LC_REEXPORT_DYLIB: 2181 case LC_LOADFVMLIB: 2182 case LC_LOAD_UPWARD_DYLIB: { 2183 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2184 const char *path = m_data.PeekCStr(name_offset); 2185 if (path) { 2186 FileSpec file_spec(path); 2187 // Strip the path if there is @rpath, @executable, etc so we just use 2188 // the basename 2189 if (path[0] == '@') 2190 file_spec.GetDirectory().Clear(); 2191 2192 if (lc.cmd == LC_REEXPORT_DYLIB) { 2193 m_reexported_dylibs.AppendIfUnique(file_spec); 2194 } 2195 2196 dylib_files.Append(file_spec); 2197 } 2198 } break; 2199 2200 case LC_FUNCTION_STARTS: 2201 function_starts_load_command.cmd = lc.cmd; 2202 function_starts_load_command.cmdsize = lc.cmdsize; 2203 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == 2204 nullptr) // fill in symoff, nsyms, stroff, strsize fields 2205 memset(&function_starts_load_command, 0, 2206 sizeof(function_starts_load_command)); 2207 break; 2208 2209 default: 2210 break; 2211 } 2212 offset = cmd_offset + lc.cmdsize; 2213 } 2214 2215 if (symtab_load_command.cmd) { 2216 Symtab *symtab = m_symtab_up.get(); 2217 SectionList *section_list = GetSectionList(); 2218 if (section_list == nullptr) 2219 return 0; 2220 2221 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2222 const ByteOrder byte_order = m_data.GetByteOrder(); 2223 bool bit_width_32 = addr_byte_size == 4; 2224 const size_t nlist_byte_size = 2225 bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2226 2227 DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size); 2228 DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size); 2229 DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size); 2230 DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order, 2231 addr_byte_size); 2232 DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size); 2233 2234 const addr_t nlist_data_byte_size = 2235 symtab_load_command.nsyms * nlist_byte_size; 2236 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2237 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2238 2239 ProcessSP process_sp(m_process_wp.lock()); 2240 Process *process = process_sp.get(); 2241 2242 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2243 2244 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) { 2245 Target &target = process->GetTarget(); 2246 2247 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2248 2249 SectionSP linkedit_section_sp( 2250 section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2251 // Reading mach file from memory in a process or core file... 2252 2253 if (linkedit_section_sp) { 2254 addr_t linkedit_load_addr = 2255 linkedit_section_sp->GetLoadBaseAddress(&target); 2256 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) { 2257 // We might be trying to access the symbol table before the 2258 // __LINKEDIT's load address has been set in the target. We can't 2259 // fail to read the symbol table, so calculate the right address 2260 // manually 2261 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage( 2262 m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2263 } 2264 2265 const addr_t linkedit_file_offset = 2266 linkedit_section_sp->GetFileOffset(); 2267 const addr_t symoff_addr = linkedit_load_addr + 2268 symtab_load_command.symoff - 2269 linkedit_file_offset; 2270 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - 2271 linkedit_file_offset; 2272 2273 bool data_was_read = false; 2274 2275 #if defined(__APPLE__) && \ 2276 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) 2277 if (m_header.flags & 0x80000000u && 2278 process->GetAddressByteSize() == sizeof(void *)) { 2279 // This mach-o memory file is in the dyld shared cache. If this 2280 // program is not remote and this is iOS, then this process will 2281 // share the same shared cache as the process we are debugging and we 2282 // can read the entire __LINKEDIT from the address space in this 2283 // process. This is a needed optimization that is used for local iOS 2284 // debugging only since all shared libraries in the shared cache do 2285 // not have corresponding files that exist in the file system of the 2286 // device. They have been combined into a single file. This means we 2287 // always have to load these files from memory. All of the symbol and 2288 // string tables from all of the __LINKEDIT sections from the shared 2289 // libraries in the shared cache have been merged into a single large 2290 // symbol and string table. Reading all of this symbol and string 2291 // table data across can slow down debug launch times, so we optimize 2292 // this by reading the memory for the __LINKEDIT section from this 2293 // process. 2294 2295 UUID lldb_shared_cache; 2296 addr_t lldb_shared_cache_addr; 2297 GetLLDBSharedCacheUUID (lldb_shared_cache_addr, lldb_shared_cache); 2298 UUID process_shared_cache; 2299 addr_t process_shared_cache_addr; 2300 GetProcessSharedCacheUUID(process, process_shared_cache_addr, process_shared_cache); 2301 bool use_lldb_cache = true; 2302 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && 2303 (lldb_shared_cache != process_shared_cache 2304 || process_shared_cache_addr != lldb_shared_cache_addr)) { 2305 use_lldb_cache = false; 2306 } 2307 2308 PlatformSP platform_sp(target.GetPlatform()); 2309 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) { 2310 data_was_read = true; 2311 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, 2312 eByteOrderLittle); 2313 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, 2314 eByteOrderLittle); 2315 if (function_starts_load_command.cmd) { 2316 const addr_t func_start_addr = 2317 linkedit_load_addr + function_starts_load_command.dataoff - 2318 linkedit_file_offset; 2319 function_starts_data.SetData( 2320 (void *)func_start_addr, 2321 function_starts_load_command.datasize, eByteOrderLittle); 2322 } 2323 } 2324 } 2325 #endif 2326 2327 if (!data_was_read) { 2328 // Always load dyld - the dynamic linker - from memory if we didn't 2329 // find a binary anywhere else. lldb will not register 2330 // dylib/framework/bundle loads/unloads if we don't have the dyld 2331 // symbols, we force dyld to load from memory despite the user's 2332 // target.memory-module-load-level setting. 2333 if (memory_module_load_level == eMemoryModuleLoadLevelComplete || 2334 m_header.filetype == llvm::MachO::MH_DYLINKER) { 2335 DataBufferSP nlist_data_sp( 2336 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size)); 2337 if (nlist_data_sp) 2338 nlist_data.SetData(nlist_data_sp, 0, 2339 nlist_data_sp->GetByteSize()); 2340 if (m_dysymtab.nindirectsyms != 0) { 2341 const addr_t indirect_syms_addr = linkedit_load_addr + 2342 m_dysymtab.indirectsymoff - 2343 linkedit_file_offset; 2344 DataBufferSP indirect_syms_data_sp( 2345 ReadMemory(process_sp, indirect_syms_addr, 2346 m_dysymtab.nindirectsyms * 4)); 2347 if (indirect_syms_data_sp) 2348 indirect_symbol_index_data.SetData( 2349 indirect_syms_data_sp, 0, 2350 indirect_syms_data_sp->GetByteSize()); 2351 // If this binary is outside the shared cache, 2352 // cache the string table. 2353 // Binaries in the shared cache all share a giant string table, and 2354 // we can't share the string tables across multiple ObjectFileMachO's, 2355 // so we'd end up re-reading this mega-strtab for every binary 2356 // in the shared cache - it would be a big perf problem. 2357 // For binaries outside the shared cache, it's faster to read the 2358 // entire strtab at once instead of piece-by-piece as we process 2359 // the nlist records. 2360 if ((m_header.flags & 0x80000000u) == 0) { 2361 DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, 2362 strtab_data_byte_size)); 2363 if (strtab_data_sp) { 2364 strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2365 } 2366 } 2367 } 2368 } 2369 if (memory_module_load_level >= 2370 eMemoryModuleLoadLevelPartial) { 2371 if (function_starts_load_command.cmd) { 2372 const addr_t func_start_addr = 2373 linkedit_load_addr + function_starts_load_command.dataoff - 2374 linkedit_file_offset; 2375 DataBufferSP func_start_data_sp( 2376 ReadMemory(process_sp, func_start_addr, 2377 function_starts_load_command.datasize)); 2378 if (func_start_data_sp) 2379 function_starts_data.SetData(func_start_data_sp, 0, 2380 func_start_data_sp->GetByteSize()); 2381 } 2382 } 2383 } 2384 } 2385 } else { 2386 nlist_data.SetData(m_data, symtab_load_command.symoff, 2387 nlist_data_byte_size); 2388 strtab_data.SetData(m_data, symtab_load_command.stroff, 2389 strtab_data_byte_size); 2390 2391 if (dyld_info.export_size > 0) { 2392 dyld_trie_data.SetData(m_data, dyld_info.export_off, 2393 dyld_info.export_size); 2394 } 2395 2396 if (m_dysymtab.nindirectsyms != 0) { 2397 indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff, 2398 m_dysymtab.nindirectsyms * 4); 2399 } 2400 if (function_starts_load_command.cmd) { 2401 function_starts_data.SetData(m_data, 2402 function_starts_load_command.dataoff, 2403 function_starts_load_command.datasize); 2404 } 2405 } 2406 2407 if (nlist_data.GetByteSize() == 0 && 2408 memory_module_load_level == eMemoryModuleLoadLevelComplete) { 2409 if (log) 2410 module_sp->LogMessage(log, "failed to read nlist data"); 2411 return 0; 2412 } 2413 2414 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2415 if (!have_strtab_data) { 2416 if (process) { 2417 if (strtab_addr == LLDB_INVALID_ADDRESS) { 2418 if (log) 2419 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2420 return 0; 2421 } 2422 } else { 2423 if (log) 2424 module_sp->LogMessage(log, "failed to read strtab data"); 2425 return 0; 2426 } 2427 } 2428 2429 ConstString g_segment_name_TEXT = GetSegmentNameTEXT(); 2430 ConstString g_segment_name_DATA = GetSegmentNameDATA(); 2431 ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2432 ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2433 ConstString g_segment_name_OBJC = GetSegmentNameOBJC(); 2434 ConstString g_section_name_eh_frame = GetSectionNameEHFrame(); 2435 SectionSP text_section_sp( 2436 section_list->FindSectionByName(g_segment_name_TEXT)); 2437 SectionSP data_section_sp( 2438 section_list->FindSectionByName(g_segment_name_DATA)); 2439 SectionSP data_dirty_section_sp( 2440 section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2441 SectionSP data_const_section_sp( 2442 section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2443 SectionSP objc_section_sp( 2444 section_list->FindSectionByName(g_segment_name_OBJC)); 2445 SectionSP eh_frame_section_sp; 2446 if (text_section_sp.get()) 2447 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName( 2448 g_section_name_eh_frame); 2449 else 2450 eh_frame_section_sp = 2451 section_list->FindSectionByName(g_section_name_eh_frame); 2452 2453 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2454 2455 // lldb works best if it knows the start address of all functions in a 2456 // module. Linker symbols or debug info are normally the best source of 2457 // information for start addr / size but they may be stripped in a released 2458 // binary. Two additional sources of information exist in Mach-O binaries: 2459 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each 2460 // function's start address in the 2461 // binary, relative to the text section. 2462 // eh_frame - the eh_frame FDEs have the start addr & size of 2463 // each function 2464 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on 2465 // all modern binaries. 2466 // Binaries built to run on older releases may need to use eh_frame 2467 // information. 2468 2469 if (text_section_sp && function_starts_data.GetByteSize()) { 2470 FunctionStarts::Entry function_start_entry; 2471 function_start_entry.data = false; 2472 lldb::offset_t function_start_offset = 0; 2473 function_start_entry.addr = text_section_sp->GetFileAddress(); 2474 uint64_t delta; 2475 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 2476 0) { 2477 // Now append the current entry 2478 function_start_entry.addr += delta; 2479 function_starts.Append(function_start_entry); 2480 } 2481 } else { 2482 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the 2483 // load command claiming an eh_frame but it doesn't actually have the 2484 // eh_frame content. And if we have a dSYM, we don't need to do any of 2485 // this fill-in-the-missing-symbols works anyway - the debug info should 2486 // give us all the functions in the module. 2487 if (text_section_sp.get() && eh_frame_section_sp.get() && 2488 m_type != eTypeDebugInfo) { 2489 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, 2490 DWARFCallFrameInfo::EH); 2491 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2492 eh_frame.GetFunctionAddressAndSizeVector(functions); 2493 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2494 size_t count = functions.GetSize(); 2495 for (size_t i = 0; i < count; ++i) { 2496 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = 2497 functions.GetEntryAtIndex(i); 2498 if (func) { 2499 FunctionStarts::Entry function_start_entry; 2500 function_start_entry.addr = func->base - text_base_addr; 2501 function_starts.Append(function_start_entry); 2502 } 2503 } 2504 } 2505 } 2506 2507 const size_t function_starts_count = function_starts.GetSize(); 2508 2509 // For user process binaries (executables, dylibs, frameworks, bundles), if 2510 // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're 2511 // going to assume the binary has been stripped. Don't allow assembly 2512 // language instruction emulation because we don't know proper function 2513 // start boundaries. 2514 // 2515 // For all other types of binaries (kernels, stand-alone bare board 2516 // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame 2517 // sections - we should not make any assumptions about them based on that. 2518 if (function_starts_count == 0 && CalculateStrata() == eStrataUser) { 2519 m_allow_assembly_emulation_unwind_plans = false; 2520 Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet( 2521 LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND)); 2522 2523 if (unwind_or_symbol_log) 2524 module_sp->LogMessage( 2525 unwind_or_symbol_log, 2526 "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds"); 2527 } 2528 2529 const user_id_t TEXT_eh_frame_sectID = 2530 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2531 : static_cast<user_id_t>(NO_SECT); 2532 2533 lldb::offset_t nlist_data_offset = 0; 2534 2535 uint32_t N_SO_index = UINT32_MAX; 2536 2537 MachSymtabSectionInfo section_info(section_list); 2538 std::vector<uint32_t> N_FUN_indexes; 2539 std::vector<uint32_t> N_NSYM_indexes; 2540 std::vector<uint32_t> N_INCL_indexes; 2541 std::vector<uint32_t> N_BRAC_indexes; 2542 std::vector<uint32_t> N_COMM_indexes; 2543 typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap; 2544 typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2545 typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap; 2546 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2547 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2548 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2549 // Any symbols that get merged into another will get an entry in this map 2550 // so we know 2551 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2552 uint32_t nlist_idx = 0; 2553 Symbol *symbol_ptr = nullptr; 2554 2555 uint32_t sym_idx = 0; 2556 Symbol *sym = nullptr; 2557 size_t num_syms = 0; 2558 std::string memory_symbol_name; 2559 uint32_t unmapped_local_symbols_found = 0; 2560 2561 std::vector<TrieEntryWithOffset> trie_entries; 2562 std::set<lldb::addr_t> resolver_addresses; 2563 2564 if (dyld_trie_data.GetByteSize() > 0) { 2565 std::vector<llvm::StringRef> nameSlices; 2566 ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices, 2567 resolver_addresses, trie_entries); 2568 2569 ConstString text_segment_name("__TEXT"); 2570 SectionSP text_segment_sp = 2571 GetSectionList()->FindSectionByName(text_segment_name); 2572 if (text_segment_sp) { 2573 const lldb::addr_t text_segment_file_addr = 2574 text_segment_sp->GetFileAddress(); 2575 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) { 2576 for (auto &e : trie_entries) 2577 e.entry.address += text_segment_file_addr; 2578 } 2579 } 2580 } 2581 2582 typedef std::set<ConstString> IndirectSymbols; 2583 IndirectSymbols indirect_symbol_names; 2584 2585 #if defined(__APPLE__) && \ 2586 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) 2587 2588 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been 2589 // optimized by moving LOCAL symbols out of the memory mapped portion of 2590 // the DSC. The symbol information has all been retained, but it isn't 2591 // available in the normal nlist data. However, there *are* duplicate 2592 // entries of *some* 2593 // LOCAL symbols in the normal nlist data. To handle this situation 2594 // correctly, we must first attempt 2595 // to parse any DSC unmapped symbol information. If we find any, we set a 2596 // flag that tells the normal nlist parser to ignore all LOCAL symbols. 2597 2598 if (m_header.flags & 0x80000000u) { 2599 // Before we can start mapping the DSC, we need to make certain the 2600 // target process is actually using the cache we can find. 2601 2602 // Next we need to determine the correct path for the dyld shared cache. 2603 2604 ArchSpec header_arch; 2605 GetArchitecture(header_arch); 2606 char dsc_path[PATH_MAX]; 2607 char dsc_path_development[PATH_MAX]; 2608 2609 snprintf( 2610 dsc_path, sizeof(dsc_path), "%s%s%s", 2611 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2612 */ 2613 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2614 header_arch.GetArchitectureName()); 2615 2616 snprintf( 2617 dsc_path_development, sizeof(dsc_path), "%s%s%s%s", 2618 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2619 */ 2620 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2621 header_arch.GetArchitectureName(), ".development"); 2622 2623 FileSpec dsc_nondevelopment_filespec(dsc_path, false); 2624 FileSpec dsc_development_filespec(dsc_path_development, false); 2625 FileSpec dsc_filespec; 2626 2627 UUID dsc_uuid; 2628 UUID process_shared_cache_uuid; 2629 addr_t process_shared_cache_base_addr; 2630 2631 if (process) { 2632 GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, process_shared_cache_uuid); 2633 } 2634 2635 // First see if we can find an exact match for the inferior process 2636 // shared cache UUID in the development or non-development shared caches 2637 // on disk. 2638 if (process_shared_cache_uuid.IsValid()) { 2639 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2640 UUID dsc_development_uuid = GetSharedCacheUUID( 2641 dsc_development_filespec, byte_order, addr_byte_size); 2642 if (dsc_development_uuid.IsValid() && 2643 dsc_development_uuid == process_shared_cache_uuid) { 2644 dsc_filespec = dsc_development_filespec; 2645 dsc_uuid = dsc_development_uuid; 2646 } 2647 } 2648 if (!dsc_uuid.IsValid() && 2649 FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) { 2650 UUID dsc_nondevelopment_uuid = GetSharedCacheUUID( 2651 dsc_nondevelopment_filespec, byte_order, addr_byte_size); 2652 if (dsc_nondevelopment_uuid.IsValid() && 2653 dsc_nondevelopment_uuid == process_shared_cache_uuid) { 2654 dsc_filespec = dsc_nondevelopment_filespec; 2655 dsc_uuid = dsc_nondevelopment_uuid; 2656 } 2657 } 2658 } 2659 2660 // Failing a UUID match, prefer the development dyld_shared cache if both 2661 // are present. 2662 if (!FileSystem::Instance().Exists(dsc_filespec)) { 2663 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2664 dsc_filespec = dsc_development_filespec; 2665 } else { 2666 dsc_filespec = dsc_nondevelopment_filespec; 2667 } 2668 } 2669 2670 /* The dyld_cache_header has a pointer to the 2671 dyld_cache_local_symbols_info structure (localSymbolsOffset). 2672 The dyld_cache_local_symbols_info structure gives us three things: 2673 1. The start and count of the nlist records in the dyld_shared_cache 2674 file 2675 2. The start and size of the strings for these nlist records 2676 3. The start and count of dyld_cache_local_symbols_entry entries 2677 2678 There is one dyld_cache_local_symbols_entry per dylib/framework in the 2679 dyld shared cache. 2680 The "dylibOffset" field is the Mach-O header of this dylib/framework in 2681 the dyld shared cache. 2682 The dyld_cache_local_symbols_entry also lists the start of this 2683 dylib/framework's nlist records 2684 and the count of how many nlist records there are for this 2685 dylib/framework. 2686 */ 2687 2688 // Process the dyld shared cache header to find the unmapped symbols 2689 2690 DataBufferSP dsc_data_sp = MapFileData( 2691 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2692 if (!dsc_uuid.IsValid()) { 2693 dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size); 2694 } 2695 if (dsc_data_sp) { 2696 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2697 2698 bool uuid_match = true; 2699 if (dsc_uuid.IsValid() && process) { 2700 if (process_shared_cache_uuid.IsValid() && 2701 dsc_uuid != process_shared_cache_uuid) { 2702 // The on-disk dyld_shared_cache file is not the same as the one in 2703 // this process' memory, don't use it. 2704 uuid_match = false; 2705 ModuleSP module_sp(GetModule()); 2706 if (module_sp) 2707 module_sp->ReportWarning("process shared cache does not match " 2708 "on-disk dyld_shared_cache file, some " 2709 "symbol names will be missing."); 2710 } 2711 } 2712 2713 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2714 2715 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2716 2717 // If the mappingOffset points to a location inside the header, we've 2718 // opened an old dyld shared cache, and should not proceed further. 2719 if (uuid_match && 2720 mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) { 2721 2722 DataBufferSP dsc_mapping_info_data_sp = MapFileData( 2723 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info), 2724 mappingOffset); 2725 2726 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, 2727 byte_order, addr_byte_size); 2728 offset = 0; 2729 2730 // The File addresses (from the in-memory Mach-O load commands) for 2731 // the shared libraries in the shared library cache need to be 2732 // adjusted by an offset to match up with the dylibOffset identifying 2733 // field in the dyld_cache_local_symbol_entry's. This offset is 2734 // recorded in mapping_offset_value. 2735 const uint64_t mapping_offset_value = 2736 dsc_mapping_info_data.GetU64(&offset); 2737 2738 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, 2739 localSymbolsOffset); 2740 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2741 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2742 2743 if (localSymbolsOffset && localSymbolsSize) { 2744 // Map the local symbols 2745 DataBufferSP dsc_local_symbols_data_sp = 2746 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset); 2747 2748 if (dsc_local_symbols_data_sp) { 2749 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, 2750 byte_order, addr_byte_size); 2751 2752 offset = 0; 2753 2754 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2755 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2756 UndefinedNameToDescMap undefined_name_to_desc; 2757 SymbolIndexToName reexport_shlib_needs_fixup; 2758 2759 // Read the local_symbols_infos struct in one shot 2760 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2761 dsc_local_symbols_data.GetU32(&offset, 2762 &local_symbols_info.nlistOffset, 6); 2763 2764 SectionSP text_section_sp( 2765 section_list->FindSectionByName(GetSegmentNameTEXT())); 2766 2767 uint32_t header_file_offset = 2768 (text_section_sp->GetFileAddress() - mapping_offset_value); 2769 2770 offset = local_symbols_info.entriesOffset; 2771 for (uint32_t entry_index = 0; 2772 entry_index < local_symbols_info.entriesCount; 2773 entry_index++) { 2774 struct lldb_copy_dyld_cache_local_symbols_entry 2775 local_symbols_entry; 2776 local_symbols_entry.dylibOffset = 2777 dsc_local_symbols_data.GetU32(&offset); 2778 local_symbols_entry.nlistStartIndex = 2779 dsc_local_symbols_data.GetU32(&offset); 2780 local_symbols_entry.nlistCount = 2781 dsc_local_symbols_data.GetU32(&offset); 2782 2783 if (header_file_offset == local_symbols_entry.dylibOffset) { 2784 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2785 2786 // The normal nlist code cannot correctly size the Symbols 2787 // array, we need to allocate it here. 2788 sym = symtab->Resize( 2789 symtab_load_command.nsyms + m_dysymtab.nindirectsyms + 2790 unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2791 num_syms = symtab->GetNumSymbols(); 2792 2793 nlist_data_offset = 2794 local_symbols_info.nlistOffset + 2795 (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2796 uint32_t string_table_offset = 2797 local_symbols_info.stringsOffset; 2798 2799 for (uint32_t nlist_index = 0; 2800 nlist_index < local_symbols_entry.nlistCount; 2801 nlist_index++) { 2802 ///////////////////////////// 2803 { 2804 struct nlist_64 nlist; 2805 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize( 2806 nlist_data_offset, nlist_byte_size)) 2807 break; 2808 2809 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked( 2810 &nlist_data_offset); 2811 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked( 2812 &nlist_data_offset); 2813 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked( 2814 &nlist_data_offset); 2815 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked( 2816 &nlist_data_offset); 2817 nlist.n_value = 2818 dsc_local_symbols_data.GetAddress_unchecked( 2819 &nlist_data_offset); 2820 2821 SymbolType type = eSymbolTypeInvalid; 2822 const char *symbol_name = dsc_local_symbols_data.PeekCStr( 2823 string_table_offset + nlist.n_strx); 2824 2825 if (symbol_name == NULL) { 2826 // No symbol should be NULL, even the symbols with no 2827 // string values should have an offset zero which 2828 // points to an empty C-string 2829 Host::SystemLog( 2830 Host::eSystemLogError, 2831 "error: DSC unmapped local symbol[%u] has invalid " 2832 "string table offset 0x%x in %s, ignoring symbol\n", 2833 entry_index, nlist.n_strx, 2834 module_sp->GetFileSpec().GetPath().c_str()); 2835 continue; 2836 } 2837 if (symbol_name[0] == '\0') 2838 symbol_name = NULL; 2839 2840 const char *symbol_name_non_abi_mangled = NULL; 2841 2842 SectionSP symbol_section; 2843 uint32_t symbol_byte_size = 0; 2844 bool add_nlist = true; 2845 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2846 bool demangled_is_synthesized = false; 2847 bool is_gsym = false; 2848 bool set_value = true; 2849 2850 assert(sym_idx < num_syms); 2851 2852 sym[sym_idx].SetDebug(is_debug); 2853 2854 if (is_debug) { 2855 switch (nlist.n_type) { 2856 case N_GSYM: 2857 // global symbol: name,,NO_SECT,type,0 2858 // Sometimes the N_GSYM value contains the address. 2859 2860 // FIXME: In the .o files, we have a GSYM and a debug 2861 // symbol for all the ObjC data. They 2862 // have the same address, but we want to ensure that 2863 // we always find only the real symbol, 'cause we 2864 // don't currently correctly attribute the 2865 // GSYM one to the ObjCClass/Ivar/MetaClass 2866 // symbol type. This is a temporary hack to make 2867 // sure the ObjectiveC symbols get treated correctly. 2868 // To do this right, we should coalesce all the GSYM 2869 // & global symbols that have the same address. 2870 2871 is_gsym = true; 2872 sym[sym_idx].SetExternal(true); 2873 2874 if (symbol_name && symbol_name[0] == '_' && 2875 symbol_name[1] == 'O') { 2876 llvm::StringRef symbol_name_ref(symbol_name); 2877 if (symbol_name_ref.startswith( 2878 g_objc_v2_prefix_class)) { 2879 symbol_name_non_abi_mangled = symbol_name + 1; 2880 symbol_name = 2881 symbol_name + g_objc_v2_prefix_class.size(); 2882 type = eSymbolTypeObjCClass; 2883 demangled_is_synthesized = true; 2884 2885 } else if (symbol_name_ref.startswith( 2886 g_objc_v2_prefix_metaclass)) { 2887 symbol_name_non_abi_mangled = symbol_name + 1; 2888 symbol_name = symbol_name + 2889 g_objc_v2_prefix_metaclass.size(); 2890 type = eSymbolTypeObjCMetaClass; 2891 demangled_is_synthesized = true; 2892 } else if (symbol_name_ref.startswith( 2893 g_objc_v2_prefix_ivar)) { 2894 symbol_name_non_abi_mangled = symbol_name + 1; 2895 symbol_name = 2896 symbol_name + g_objc_v2_prefix_ivar.size(); 2897 type = eSymbolTypeObjCIVar; 2898 demangled_is_synthesized = true; 2899 } 2900 } else { 2901 if (nlist.n_value != 0) 2902 symbol_section = section_info.GetSection( 2903 nlist.n_sect, nlist.n_value); 2904 type = eSymbolTypeData; 2905 } 2906 break; 2907 2908 case N_FNAME: 2909 // procedure name (f77 kludge): name,,NO_SECT,0,0 2910 type = eSymbolTypeCompiler; 2911 break; 2912 2913 case N_FUN: 2914 // procedure: name,,n_sect,linenumber,address 2915 if (symbol_name) { 2916 type = eSymbolTypeCode; 2917 symbol_section = section_info.GetSection( 2918 nlist.n_sect, nlist.n_value); 2919 2920 N_FUN_addr_to_sym_idx.insert( 2921 std::make_pair(nlist.n_value, sym_idx)); 2922 // We use the current number of symbols in the 2923 // symbol table in lieu of using nlist_idx in case 2924 // we ever start trimming entries out 2925 N_FUN_indexes.push_back(sym_idx); 2926 } else { 2927 type = eSymbolTypeCompiler; 2928 2929 if (!N_FUN_indexes.empty()) { 2930 // Copy the size of the function into the 2931 // original 2932 // STAB entry so we don't have 2933 // to hunt for it later 2934 symtab->SymbolAtIndex(N_FUN_indexes.back()) 2935 ->SetByteSize(nlist.n_value); 2936 N_FUN_indexes.pop_back(); 2937 // We don't really need the end function STAB as 2938 // it contains the size which we already placed 2939 // with the original symbol, so don't add it if 2940 // we want a minimal symbol table 2941 add_nlist = false; 2942 } 2943 } 2944 break; 2945 2946 case N_STSYM: 2947 // static symbol: name,,n_sect,type,address 2948 N_STSYM_addr_to_sym_idx.insert( 2949 std::make_pair(nlist.n_value, sym_idx)); 2950 symbol_section = section_info.GetSection( 2951 nlist.n_sect, nlist.n_value); 2952 if (symbol_name && symbol_name[0]) { 2953 type = ObjectFile::GetSymbolTypeFromName( 2954 symbol_name + 1, eSymbolTypeData); 2955 } 2956 break; 2957 2958 case N_LCSYM: 2959 // .lcomm symbol: name,,n_sect,type,address 2960 symbol_section = section_info.GetSection( 2961 nlist.n_sect, nlist.n_value); 2962 type = eSymbolTypeCommonBlock; 2963 break; 2964 2965 case N_BNSYM: 2966 // We use the current number of symbols in the symbol 2967 // table in lieu of using nlist_idx in case we ever 2968 // start trimming entries out Skip these if we want 2969 // minimal symbol tables 2970 add_nlist = false; 2971 break; 2972 2973 case N_ENSYM: 2974 // Set the size of the N_BNSYM to the terminating 2975 // index of this N_ENSYM so that we can always skip 2976 // the entire symbol if we need to navigate more 2977 // quickly at the source level when parsing STABS 2978 // Skip these if we want minimal symbol tables 2979 add_nlist = false; 2980 break; 2981 2982 case N_OPT: 2983 // emitted with gcc2_compiled and in gcc source 2984 type = eSymbolTypeCompiler; 2985 break; 2986 2987 case N_RSYM: 2988 // register sym: name,,NO_SECT,type,register 2989 type = eSymbolTypeVariable; 2990 break; 2991 2992 case N_SLINE: 2993 // src line: 0,,n_sect,linenumber,address 2994 symbol_section = section_info.GetSection( 2995 nlist.n_sect, nlist.n_value); 2996 type = eSymbolTypeLineEntry; 2997 break; 2998 2999 case N_SSYM: 3000 // structure elt: name,,NO_SECT,type,struct_offset 3001 type = eSymbolTypeVariableType; 3002 break; 3003 3004 case N_SO: 3005 // source file name 3006 type = eSymbolTypeSourceFile; 3007 if (symbol_name == NULL) { 3008 add_nlist = false; 3009 if (N_SO_index != UINT32_MAX) { 3010 // Set the size of the N_SO to the terminating 3011 // index of this N_SO so that we can always skip 3012 // the entire N_SO if we need to navigate more 3013 // quickly at the source level when parsing STABS 3014 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3015 symbol_ptr->SetByteSize(sym_idx); 3016 symbol_ptr->SetSizeIsSibling(true); 3017 } 3018 N_NSYM_indexes.clear(); 3019 N_INCL_indexes.clear(); 3020 N_BRAC_indexes.clear(); 3021 N_COMM_indexes.clear(); 3022 N_FUN_indexes.clear(); 3023 N_SO_index = UINT32_MAX; 3024 } else { 3025 // We use the current number of symbols in the 3026 // symbol table in lieu of using nlist_idx in case 3027 // we ever start trimming entries out 3028 const bool N_SO_has_full_path = 3029 symbol_name[0] == '/'; 3030 if (N_SO_has_full_path) { 3031 if ((N_SO_index == sym_idx - 1) && 3032 ((sym_idx - 1) < num_syms)) { 3033 // We have two consecutive N_SO entries where 3034 // the first contains a directory and the 3035 // second contains a full path. 3036 sym[sym_idx - 1].GetMangled().SetValue( 3037 ConstString(symbol_name), false); 3038 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3039 add_nlist = false; 3040 } else { 3041 // This is the first entry in a N_SO that 3042 // contains a directory or 3043 // a full path to the source file 3044 N_SO_index = sym_idx; 3045 } 3046 } else if ((N_SO_index == sym_idx - 1) && 3047 ((sym_idx - 1) < num_syms)) { 3048 // This is usually the second N_SO entry that 3049 // contains just the filename, so here we combine 3050 // it with the first one if we are minimizing the 3051 // symbol table 3052 const char *so_path = 3053 sym[sym_idx - 1] 3054 .GetMangled() 3055 .GetDemangledName( 3056 lldb::eLanguageTypeUnknown) 3057 .AsCString(); 3058 if (so_path && so_path[0]) { 3059 std::string full_so_path(so_path); 3060 const size_t double_slash_pos = 3061 full_so_path.find("//"); 3062 if (double_slash_pos != std::string::npos) { 3063 // The linker has been generating bad N_SO 3064 // entries with doubled up paths 3065 // in the format "%s%s" where the first 3066 // string in the DW_AT_comp_dir, and the 3067 // second is the directory for the source 3068 // file so you end up with a path that looks 3069 // like "/tmp/src//tmp/src/" 3070 FileSpec so_dir(so_path, false); 3071 if (!FileSystem::Instance().Exists(so_dir)) { 3072 so_dir.SetFile( 3073 &full_so_path[double_slash_pos + 1], 3074 false); 3075 if (FileSystem::Instance().Exists(so_dir)) { 3076 // Trim off the incorrect path 3077 full_so_path.erase(0, 3078 double_slash_pos + 1); 3079 } 3080 } 3081 } 3082 if (*full_so_path.rbegin() != '/') 3083 full_so_path += '/'; 3084 full_so_path += symbol_name; 3085 sym[sym_idx - 1].GetMangled().SetValue( 3086 ConstString(full_so_path.c_str()), false); 3087 add_nlist = false; 3088 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3089 } 3090 } else { 3091 // This could be a relative path to a N_SO 3092 N_SO_index = sym_idx; 3093 } 3094 } 3095 break; 3096 3097 case N_OSO: 3098 // object file name: name,,0,0,st_mtime 3099 type = eSymbolTypeObjectFile; 3100 break; 3101 3102 case N_LSYM: 3103 // local sym: name,,NO_SECT,type,offset 3104 type = eSymbolTypeLocal; 3105 break; 3106 3107 // INCL scopes 3108 case N_BINCL: 3109 // include file beginning: name,,NO_SECT,0,sum We use 3110 // the current number of symbols in the symbol table 3111 // in lieu of using nlist_idx in case we ever start 3112 // trimming entries out 3113 N_INCL_indexes.push_back(sym_idx); 3114 type = eSymbolTypeScopeBegin; 3115 break; 3116 3117 case N_EINCL: 3118 // include file end: name,,NO_SECT,0,0 3119 // Set the size of the N_BINCL to the terminating 3120 // index of this N_EINCL so that we can always skip 3121 // the entire symbol if we need to navigate more 3122 // quickly at the source level when parsing STABS 3123 if (!N_INCL_indexes.empty()) { 3124 symbol_ptr = 3125 symtab->SymbolAtIndex(N_INCL_indexes.back()); 3126 symbol_ptr->SetByteSize(sym_idx + 1); 3127 symbol_ptr->SetSizeIsSibling(true); 3128 N_INCL_indexes.pop_back(); 3129 } 3130 type = eSymbolTypeScopeEnd; 3131 break; 3132 3133 case N_SOL: 3134 // #included file name: name,,n_sect,0,address 3135 type = eSymbolTypeHeaderFile; 3136 3137 // We currently don't use the header files on darwin 3138 add_nlist = false; 3139 break; 3140 3141 case N_PARAMS: 3142 // compiler parameters: name,,NO_SECT,0,0 3143 type = eSymbolTypeCompiler; 3144 break; 3145 3146 case N_VERSION: 3147 // compiler version: name,,NO_SECT,0,0 3148 type = eSymbolTypeCompiler; 3149 break; 3150 3151 case N_OLEVEL: 3152 // compiler -O level: name,,NO_SECT,0,0 3153 type = eSymbolTypeCompiler; 3154 break; 3155 3156 case N_PSYM: 3157 // parameter: name,,NO_SECT,type,offset 3158 type = eSymbolTypeVariable; 3159 break; 3160 3161 case N_ENTRY: 3162 // alternate entry: name,,n_sect,linenumber,address 3163 symbol_section = section_info.GetSection( 3164 nlist.n_sect, nlist.n_value); 3165 type = eSymbolTypeLineEntry; 3166 break; 3167 3168 // Left and Right Braces 3169 case N_LBRAC: 3170 // left bracket: 0,,NO_SECT,nesting level,address We 3171 // use the current number of symbols in the symbol 3172 // table in lieu of using nlist_idx in case we ever 3173 // start trimming entries out 3174 symbol_section = section_info.GetSection( 3175 nlist.n_sect, nlist.n_value); 3176 N_BRAC_indexes.push_back(sym_idx); 3177 type = eSymbolTypeScopeBegin; 3178 break; 3179 3180 case N_RBRAC: 3181 // right bracket: 0,,NO_SECT,nesting level,address 3182 // Set the size of the N_LBRAC to the terminating 3183 // index of this N_RBRAC so that we can always skip 3184 // the entire symbol if we need to navigate more 3185 // quickly at the source level when parsing STABS 3186 symbol_section = section_info.GetSection( 3187 nlist.n_sect, nlist.n_value); 3188 if (!N_BRAC_indexes.empty()) { 3189 symbol_ptr = 3190 symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3191 symbol_ptr->SetByteSize(sym_idx + 1); 3192 symbol_ptr->SetSizeIsSibling(true); 3193 N_BRAC_indexes.pop_back(); 3194 } 3195 type = eSymbolTypeScopeEnd; 3196 break; 3197 3198 case N_EXCL: 3199 // deleted include file: name,,NO_SECT,0,sum 3200 type = eSymbolTypeHeaderFile; 3201 break; 3202 3203 // COMM scopes 3204 case N_BCOMM: 3205 // begin common: name,,NO_SECT,0,0 3206 // We use the current number of symbols in the symbol 3207 // table in lieu of using nlist_idx in case we ever 3208 // start trimming entries out 3209 type = eSymbolTypeScopeBegin; 3210 N_COMM_indexes.push_back(sym_idx); 3211 break; 3212 3213 case N_ECOML: 3214 // end common (local name): 0,,n_sect,0,address 3215 symbol_section = section_info.GetSection( 3216 nlist.n_sect, nlist.n_value); 3217 // Fall through 3218 3219 case N_ECOMM: 3220 // end common: name,,n_sect,0,0 3221 // Set the size of the N_BCOMM to the terminating 3222 // index of this N_ECOMM/N_ECOML so that we can 3223 // always skip the entire symbol if we need to 3224 // navigate more quickly at the source level when 3225 // parsing STABS 3226 if (!N_COMM_indexes.empty()) { 3227 symbol_ptr = 3228 symtab->SymbolAtIndex(N_COMM_indexes.back()); 3229 symbol_ptr->SetByteSize(sym_idx + 1); 3230 symbol_ptr->SetSizeIsSibling(true); 3231 N_COMM_indexes.pop_back(); 3232 } 3233 type = eSymbolTypeScopeEnd; 3234 break; 3235 3236 case N_LENG: 3237 // second stab entry with length information 3238 type = eSymbolTypeAdditional; 3239 break; 3240 3241 default: 3242 break; 3243 } 3244 } else { 3245 // uint8_t n_pext = N_PEXT & nlist.n_type; 3246 uint8_t n_type = N_TYPE & nlist.n_type; 3247 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3248 3249 switch (n_type) { 3250 case N_INDR: { 3251 const char *reexport_name_cstr = 3252 strtab_data.PeekCStr(nlist.n_value); 3253 if (reexport_name_cstr && reexport_name_cstr[0]) { 3254 type = eSymbolTypeReExported; 3255 ConstString reexport_name( 3256 reexport_name_cstr + 3257 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3258 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3259 set_value = false; 3260 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3261 indirect_symbol_names.insert( 3262 ConstString(symbol_name + 3263 ((symbol_name[0] == '_') ? 1 : 0))); 3264 } else 3265 type = eSymbolTypeUndefined; 3266 } break; 3267 3268 case N_UNDF: 3269 if (symbol_name && symbol_name[0]) { 3270 ConstString undefined_name( 3271 symbol_name + 3272 ((symbol_name[0] == '_') ? 1 : 0)); 3273 undefined_name_to_desc[undefined_name] = 3274 nlist.n_desc; 3275 } 3276 // Fall through 3277 case N_PBUD: 3278 type = eSymbolTypeUndefined; 3279 break; 3280 3281 case N_ABS: 3282 type = eSymbolTypeAbsolute; 3283 break; 3284 3285 case N_SECT: { 3286 symbol_section = section_info.GetSection( 3287 nlist.n_sect, nlist.n_value); 3288 3289 if (symbol_section == NULL) { 3290 // TODO: warn about this? 3291 add_nlist = false; 3292 break; 3293 } 3294 3295 if (TEXT_eh_frame_sectID == nlist.n_sect) { 3296 type = eSymbolTypeException; 3297 } else { 3298 uint32_t section_type = 3299 symbol_section->Get() & SECTION_TYPE; 3300 3301 switch (section_type) { 3302 case S_CSTRING_LITERALS: 3303 type = eSymbolTypeData; 3304 break; // section with only literal C strings 3305 case S_4BYTE_LITERALS: 3306 type = eSymbolTypeData; 3307 break; // section with only 4 byte literals 3308 case S_8BYTE_LITERALS: 3309 type = eSymbolTypeData; 3310 break; // section with only 8 byte literals 3311 case S_LITERAL_POINTERS: 3312 type = eSymbolTypeTrampoline; 3313 break; // section with only pointers to literals 3314 case S_NON_LAZY_SYMBOL_POINTERS: 3315 type = eSymbolTypeTrampoline; 3316 break; // section with only non-lazy symbol 3317 // pointers 3318 case S_LAZY_SYMBOL_POINTERS: 3319 type = eSymbolTypeTrampoline; 3320 break; // section with only lazy symbol pointers 3321 case S_SYMBOL_STUBS: 3322 type = eSymbolTypeTrampoline; 3323 break; // section with only symbol stubs, byte 3324 // size of stub in the reserved2 field 3325 case S_MOD_INIT_FUNC_POINTERS: 3326 type = eSymbolTypeCode; 3327 break; // section with only function pointers for 3328 // initialization 3329 case S_MOD_TERM_FUNC_POINTERS: 3330 type = eSymbolTypeCode; 3331 break; // section with only function pointers for 3332 // termination 3333 case S_INTERPOSING: 3334 type = eSymbolTypeTrampoline; 3335 break; // section with only pairs of function 3336 // pointers for interposing 3337 case S_16BYTE_LITERALS: 3338 type = eSymbolTypeData; 3339 break; // section with only 16 byte literals 3340 case S_DTRACE_DOF: 3341 type = eSymbolTypeInstrumentation; 3342 break; 3343 case S_LAZY_DYLIB_SYMBOL_POINTERS: 3344 type = eSymbolTypeTrampoline; 3345 break; 3346 default: 3347 switch (symbol_section->GetType()) { 3348 case lldb::eSectionTypeCode: 3349 type = eSymbolTypeCode; 3350 break; 3351 case eSectionTypeData: 3352 case eSectionTypeDataCString: // Inlined C string 3353 // data 3354 case eSectionTypeDataCStringPointers: // Pointers 3355 // to C 3356 // string 3357 // data 3358 case eSectionTypeDataSymbolAddress: // Address of 3359 // a symbol in 3360 // the symbol 3361 // table 3362 case eSectionTypeData4: 3363 case eSectionTypeData8: 3364 case eSectionTypeData16: 3365 type = eSymbolTypeData; 3366 break; 3367 default: 3368 break; 3369 } 3370 break; 3371 } 3372 3373 if (type == eSymbolTypeInvalid) { 3374 const char *symbol_sect_name = 3375 symbol_section->GetName().AsCString(); 3376 if (symbol_section->IsDescendant( 3377 text_section_sp.get())) { 3378 if (symbol_section->IsClear( 3379 S_ATTR_PURE_INSTRUCTIONS | 3380 S_ATTR_SELF_MODIFYING_CODE | 3381 S_ATTR_SOME_INSTRUCTIONS)) 3382 type = eSymbolTypeData; 3383 else 3384 type = eSymbolTypeCode; 3385 } else if (symbol_section->IsDescendant( 3386 data_section_sp.get()) || 3387 symbol_section->IsDescendant( 3388 data_dirty_section_sp.get()) || 3389 symbol_section->IsDescendant( 3390 data_const_section_sp.get())) { 3391 if (symbol_sect_name && 3392 ::strstr(symbol_sect_name, "__objc") == 3393 symbol_sect_name) { 3394 type = eSymbolTypeRuntime; 3395 3396 if (symbol_name) { 3397 llvm::StringRef symbol_name_ref( 3398 symbol_name); 3399 if (symbol_name_ref.startswith("_OBJC_")) { 3400 static const llvm::StringRef 3401 g_objc_v2_prefix_class( 3402 "_OBJC_CLASS_$_"); 3403 static const llvm::StringRef 3404 g_objc_v2_prefix_metaclass( 3405 "_OBJC_METACLASS_$_"); 3406 static const llvm::StringRef 3407 g_objc_v2_prefix_ivar( 3408 "_OBJC_IVAR_$_"); 3409 if (symbol_name_ref.startswith( 3410 g_objc_v2_prefix_class)) { 3411 symbol_name_non_abi_mangled = 3412 symbol_name + 1; 3413 symbol_name = 3414 symbol_name + 3415 g_objc_v2_prefix_class.size(); 3416 type = eSymbolTypeObjCClass; 3417 demangled_is_synthesized = true; 3418 } else if ( 3419 symbol_name_ref.startswith( 3420 g_objc_v2_prefix_metaclass)) { 3421 symbol_name_non_abi_mangled = 3422 symbol_name + 1; 3423 symbol_name = 3424 symbol_name + 3425 g_objc_v2_prefix_metaclass.size(); 3426 type = eSymbolTypeObjCMetaClass; 3427 demangled_is_synthesized = true; 3428 } else if (symbol_name_ref.startswith( 3429 g_objc_v2_prefix_ivar)) { 3430 symbol_name_non_abi_mangled = 3431 symbol_name + 1; 3432 symbol_name = 3433 symbol_name + 3434 g_objc_v2_prefix_ivar.size(); 3435 type = eSymbolTypeObjCIVar; 3436 demangled_is_synthesized = true; 3437 } 3438 } 3439 } 3440 } else if (symbol_sect_name && 3441 ::strstr(symbol_sect_name, 3442 "__gcc_except_tab") == 3443 symbol_sect_name) { 3444 type = eSymbolTypeException; 3445 } else { 3446 type = eSymbolTypeData; 3447 } 3448 } else if (symbol_sect_name && 3449 ::strstr(symbol_sect_name, 3450 "__IMPORT") == 3451 symbol_sect_name) { 3452 type = eSymbolTypeTrampoline; 3453 } else if (symbol_section->IsDescendant( 3454 objc_section_sp.get())) { 3455 type = eSymbolTypeRuntime; 3456 if (symbol_name && symbol_name[0] == '.') { 3457 llvm::StringRef symbol_name_ref(symbol_name); 3458 static const llvm::StringRef 3459 g_objc_v1_prefix_class( 3460 ".objc_class_name_"); 3461 if (symbol_name_ref.startswith( 3462 g_objc_v1_prefix_class)) { 3463 symbol_name_non_abi_mangled = symbol_name; 3464 symbol_name = symbol_name + 3465 g_objc_v1_prefix_class.size(); 3466 type = eSymbolTypeObjCClass; 3467 demangled_is_synthesized = true; 3468 } 3469 } 3470 } 3471 } 3472 } 3473 } break; 3474 } 3475 } 3476 3477 if (add_nlist) { 3478 uint64_t symbol_value = nlist.n_value; 3479 if (symbol_name_non_abi_mangled) { 3480 sym[sym_idx].GetMangled().SetMangledName( 3481 ConstString(symbol_name_non_abi_mangled)); 3482 sym[sym_idx].GetMangled().SetDemangledName( 3483 ConstString(symbol_name)); 3484 } else { 3485 bool symbol_name_is_mangled = false; 3486 3487 if (symbol_name && symbol_name[0] == '_') { 3488 symbol_name_is_mangled = symbol_name[1] == '_'; 3489 symbol_name++; // Skip the leading underscore 3490 } 3491 3492 if (symbol_name) { 3493 ConstString const_symbol_name(symbol_name); 3494 sym[sym_idx].GetMangled().SetValue( 3495 const_symbol_name, symbol_name_is_mangled); 3496 if (is_gsym && is_debug) { 3497 const char *gsym_name = 3498 sym[sym_idx] 3499 .GetMangled() 3500 .GetName(lldb::eLanguageTypeUnknown, 3501 Mangled::ePreferMangled) 3502 .GetCString(); 3503 if (gsym_name) 3504 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3505 } 3506 } 3507 } 3508 if (symbol_section) { 3509 const addr_t section_file_addr = 3510 symbol_section->GetFileAddress(); 3511 if (symbol_byte_size == 0 && 3512 function_starts_count > 0) { 3513 addr_t symbol_lookup_file_addr = nlist.n_value; 3514 // Do an exact address match for non-ARM addresses, 3515 // else get the closest since the symbol might be a 3516 // thumb symbol which has an address with bit zero 3517 // set 3518 FunctionStarts::Entry *func_start_entry = 3519 function_starts.FindEntry( 3520 symbol_lookup_file_addr, !is_arm); 3521 if (is_arm && func_start_entry) { 3522 // Verify that the function start address is the 3523 // symbol address (ARM) or the symbol address + 1 3524 // (thumb) 3525 if (func_start_entry->addr != 3526 symbol_lookup_file_addr && 3527 func_start_entry->addr != 3528 (symbol_lookup_file_addr + 1)) { 3529 // Not the right entry, NULL it out... 3530 func_start_entry = NULL; 3531 } 3532 } 3533 if (func_start_entry) { 3534 func_start_entry->data = true; 3535 3536 addr_t symbol_file_addr = func_start_entry->addr; 3537 uint32_t symbol_flags = 0; 3538 if (is_arm) { 3539 if (symbol_file_addr & 1) 3540 symbol_flags = 3541 MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3542 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3543 } 3544 3545 const FunctionStarts::Entry 3546 *next_func_start_entry = 3547 function_starts.FindNextEntry( 3548 func_start_entry); 3549 const addr_t section_end_file_addr = 3550 section_file_addr + 3551 symbol_section->GetByteSize(); 3552 if (next_func_start_entry) { 3553 addr_t next_symbol_file_addr = 3554 next_func_start_entry->addr; 3555 // Be sure the clear the Thumb address bit when 3556 // we calculate the size from the current and 3557 // next address 3558 if (is_arm) 3559 next_symbol_file_addr &= 3560 THUMB_ADDRESS_BIT_MASK; 3561 symbol_byte_size = std::min<lldb::addr_t>( 3562 next_symbol_file_addr - symbol_file_addr, 3563 section_end_file_addr - symbol_file_addr); 3564 } else { 3565 symbol_byte_size = 3566 section_end_file_addr - symbol_file_addr; 3567 } 3568 } 3569 } 3570 symbol_value -= section_file_addr; 3571 } 3572 3573 if (is_debug == false) { 3574 if (type == eSymbolTypeCode) { 3575 // See if we can find a N_FUN entry for any code 3576 // symbols. If we do find a match, and the name 3577 // matches, then we can merge the two into just the 3578 // function symbol to avoid duplicate entries in 3579 // the symbol table 3580 std::pair<ValueToSymbolIndexMap::const_iterator, 3581 ValueToSymbolIndexMap::const_iterator> 3582 range; 3583 range = N_FUN_addr_to_sym_idx.equal_range( 3584 nlist.n_value); 3585 if (range.first != range.second) { 3586 bool found_it = false; 3587 for (ValueToSymbolIndexMap::const_iterator pos = 3588 range.first; 3589 pos != range.second; ++pos) { 3590 if (sym[sym_idx].GetMangled().GetName( 3591 lldb::eLanguageTypeUnknown, 3592 Mangled::ePreferMangled) == 3593 sym[pos->second].GetMangled().GetName( 3594 lldb::eLanguageTypeUnknown, 3595 Mangled::ePreferMangled)) { 3596 m_nlist_idx_to_sym_idx[nlist_idx] = 3597 pos->second; 3598 // We just need the flags from the linker 3599 // symbol, so put these flags 3600 // into the N_FUN flags to avoid duplicate 3601 // symbols in the symbol table 3602 sym[pos->second].SetExternal( 3603 sym[sym_idx].IsExternal()); 3604 sym[pos->second].SetFlags(nlist.n_type << 16 | 3605 nlist.n_desc); 3606 if (resolver_addresses.find(nlist.n_value) != 3607 resolver_addresses.end()) 3608 sym[pos->second].SetType( 3609 eSymbolTypeResolver); 3610 sym[sym_idx].Clear(); 3611 found_it = true; 3612 break; 3613 } 3614 } 3615 if (found_it) 3616 continue; 3617 } else { 3618 if (resolver_addresses.find(nlist.n_value) != 3619 resolver_addresses.end()) 3620 type = eSymbolTypeResolver; 3621 } 3622 } else if (type == eSymbolTypeData || 3623 type == eSymbolTypeObjCClass || 3624 type == eSymbolTypeObjCMetaClass || 3625 type == eSymbolTypeObjCIVar) { 3626 // See if we can find a N_STSYM entry for any data 3627 // symbols. If we do find a match, and the name 3628 // matches, then we can merge the two into just the 3629 // Static symbol to avoid duplicate entries in the 3630 // symbol table 3631 std::pair<ValueToSymbolIndexMap::const_iterator, 3632 ValueToSymbolIndexMap::const_iterator> 3633 range; 3634 range = N_STSYM_addr_to_sym_idx.equal_range( 3635 nlist.n_value); 3636 if (range.first != range.second) { 3637 bool found_it = false; 3638 for (ValueToSymbolIndexMap::const_iterator pos = 3639 range.first; 3640 pos != range.second; ++pos) { 3641 if (sym[sym_idx].GetMangled().GetName( 3642 lldb::eLanguageTypeUnknown, 3643 Mangled::ePreferMangled) == 3644 sym[pos->second].GetMangled().GetName( 3645 lldb::eLanguageTypeUnknown, 3646 Mangled::ePreferMangled)) { 3647 m_nlist_idx_to_sym_idx[nlist_idx] = 3648 pos->second; 3649 // We just need the flags from the linker 3650 // symbol, so put these flags 3651 // into the N_STSYM flags to avoid duplicate 3652 // symbols in the symbol table 3653 sym[pos->second].SetExternal( 3654 sym[sym_idx].IsExternal()); 3655 sym[pos->second].SetFlags(nlist.n_type << 16 | 3656 nlist.n_desc); 3657 sym[sym_idx].Clear(); 3658 found_it = true; 3659 break; 3660 } 3661 } 3662 if (found_it) 3663 continue; 3664 } else { 3665 const char *gsym_name = 3666 sym[sym_idx] 3667 .GetMangled() 3668 .GetName(lldb::eLanguageTypeUnknown, 3669 Mangled::ePreferMangled) 3670 .GetCString(); 3671 if (gsym_name) { 3672 // Combine N_GSYM stab entries with the non 3673 // stab symbol 3674 ConstNameToSymbolIndexMap::const_iterator pos = 3675 N_GSYM_name_to_sym_idx.find(gsym_name); 3676 if (pos != N_GSYM_name_to_sym_idx.end()) { 3677 const uint32_t GSYM_sym_idx = pos->second; 3678 m_nlist_idx_to_sym_idx[nlist_idx] = 3679 GSYM_sym_idx; 3680 // Copy the address, because often the N_GSYM 3681 // address has an invalid address of zero 3682 // when the global is a common symbol 3683 sym[GSYM_sym_idx].GetAddressRef().SetSection( 3684 symbol_section); 3685 sym[GSYM_sym_idx].GetAddressRef().SetOffset( 3686 symbol_value); 3687 // We just need the flags from the linker 3688 // symbol, so put these flags 3689 // into the N_GSYM flags to avoid duplicate 3690 // symbols in the symbol table 3691 sym[GSYM_sym_idx].SetFlags( 3692 nlist.n_type << 16 | nlist.n_desc); 3693 sym[sym_idx].Clear(); 3694 continue; 3695 } 3696 } 3697 } 3698 } 3699 } 3700 3701 sym[sym_idx].SetID(nlist_idx); 3702 sym[sym_idx].SetType(type); 3703 if (set_value) { 3704 sym[sym_idx].GetAddressRef().SetSection( 3705 symbol_section); 3706 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 3707 } 3708 sym[sym_idx].SetFlags(nlist.n_type << 16 | 3709 nlist.n_desc); 3710 3711 if (symbol_byte_size > 0) 3712 sym[sym_idx].SetByteSize(symbol_byte_size); 3713 3714 if (demangled_is_synthesized) 3715 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3716 ++sym_idx; 3717 } else { 3718 sym[sym_idx].Clear(); 3719 } 3720 } 3721 ///////////////////////////// 3722 } 3723 break; // No more entries to consider 3724 } 3725 } 3726 3727 for (const auto &pos : reexport_shlib_needs_fixup) { 3728 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3729 if (undef_pos != undefined_name_to_desc.end()) { 3730 const uint8_t dylib_ordinal = 3731 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3732 if (dylib_ordinal > 0 && 3733 dylib_ordinal < dylib_files.GetSize()) 3734 sym[pos.first].SetReExportedSymbolSharedLibrary( 3735 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 3736 } 3737 } 3738 } 3739 } 3740 } 3741 } 3742 } 3743 3744 // Must reset this in case it was mutated above! 3745 nlist_data_offset = 0; 3746 #endif 3747 3748 if (nlist_data.GetByteSize() > 0) { 3749 3750 // If the sym array was not created while parsing the DSC unmapped 3751 // symbols, create it now. 3752 if (sym == nullptr) { 3753 sym = symtab->Resize(symtab_load_command.nsyms + 3754 m_dysymtab.nindirectsyms); 3755 num_syms = symtab->GetNumSymbols(); 3756 } 3757 3758 if (unmapped_local_symbols_found) { 3759 assert(m_dysymtab.ilocalsym == 0); 3760 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3761 nlist_idx = m_dysymtab.nlocalsym; 3762 } else { 3763 nlist_idx = 0; 3764 } 3765 3766 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3767 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3768 UndefinedNameToDescMap undefined_name_to_desc; 3769 SymbolIndexToName reexport_shlib_needs_fixup; 3770 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { 3771 struct nlist_64 nlist; 3772 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, 3773 nlist_byte_size)) 3774 break; 3775 3776 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3777 nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset); 3778 nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset); 3779 nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset); 3780 nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset); 3781 3782 SymbolType type = eSymbolTypeInvalid; 3783 const char *symbol_name = nullptr; 3784 3785 if (have_strtab_data) { 3786 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3787 3788 if (symbol_name == nullptr) { 3789 // No symbol should be NULL, even the symbols with no string values 3790 // should have an offset zero which points to an empty C-string 3791 Host::SystemLog(Host::eSystemLogError, 3792 "error: symbol[%u] has invalid string table offset " 3793 "0x%x in %s, ignoring symbol\n", 3794 nlist_idx, nlist.n_strx, 3795 module_sp->GetFileSpec().GetPath().c_str()); 3796 continue; 3797 } 3798 if (symbol_name[0] == '\0') 3799 symbol_name = nullptr; 3800 } else { 3801 const addr_t str_addr = strtab_addr + nlist.n_strx; 3802 Status str_error; 3803 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, 3804 str_error)) 3805 symbol_name = memory_symbol_name.c_str(); 3806 } 3807 const char *symbol_name_non_abi_mangled = nullptr; 3808 3809 SectionSP symbol_section; 3810 lldb::addr_t symbol_byte_size = 0; 3811 bool add_nlist = true; 3812 bool is_gsym = false; 3813 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3814 bool demangled_is_synthesized = false; 3815 bool set_value = true; 3816 assert(sym_idx < num_syms); 3817 3818 sym[sym_idx].SetDebug(is_debug); 3819 3820 if (is_debug) { 3821 switch (nlist.n_type) { 3822 case N_GSYM: 3823 // global symbol: name,,NO_SECT,type,0 3824 // Sometimes the N_GSYM value contains the address. 3825 3826 // FIXME: In the .o files, we have a GSYM and a debug symbol for all 3827 // the ObjC data. They 3828 // have the same address, but we want to ensure that we always find 3829 // only the real symbol, 'cause we don't currently correctly 3830 // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol 3831 // type. This is a temporary hack to make sure the ObjectiveC 3832 // symbols get treated correctly. To do this right, we should 3833 // coalesce all the GSYM & global symbols that have the same 3834 // address. 3835 is_gsym = true; 3836 sym[sym_idx].SetExternal(true); 3837 3838 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { 3839 llvm::StringRef symbol_name_ref(symbol_name); 3840 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 3841 symbol_name_non_abi_mangled = symbol_name + 1; 3842 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3843 type = eSymbolTypeObjCClass; 3844 demangled_is_synthesized = true; 3845 3846 } else if (symbol_name_ref.startswith( 3847 g_objc_v2_prefix_metaclass)) { 3848 symbol_name_non_abi_mangled = symbol_name + 1; 3849 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3850 type = eSymbolTypeObjCMetaClass; 3851 demangled_is_synthesized = true; 3852 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { 3853 symbol_name_non_abi_mangled = symbol_name + 1; 3854 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3855 type = eSymbolTypeObjCIVar; 3856 demangled_is_synthesized = true; 3857 } 3858 } else { 3859 if (nlist.n_value != 0) 3860 symbol_section = 3861 section_info.GetSection(nlist.n_sect, nlist.n_value); 3862 type = eSymbolTypeData; 3863 } 3864 break; 3865 3866 case N_FNAME: 3867 // procedure name (f77 kludge): name,,NO_SECT,0,0 3868 type = eSymbolTypeCompiler; 3869 break; 3870 3871 case N_FUN: 3872 // procedure: name,,n_sect,linenumber,address 3873 if (symbol_name) { 3874 type = eSymbolTypeCode; 3875 symbol_section = 3876 section_info.GetSection(nlist.n_sect, nlist.n_value); 3877 3878 N_FUN_addr_to_sym_idx.insert( 3879 std::make_pair(nlist.n_value, sym_idx)); 3880 // We use the current number of symbols in the symbol table in 3881 // lieu of using nlist_idx in case we ever start trimming entries 3882 // out 3883 N_FUN_indexes.push_back(sym_idx); 3884 } else { 3885 type = eSymbolTypeCompiler; 3886 3887 if (!N_FUN_indexes.empty()) { 3888 // Copy the size of the function into the original STAB entry 3889 // so we don't have to hunt for it later 3890 symtab->SymbolAtIndex(N_FUN_indexes.back()) 3891 ->SetByteSize(nlist.n_value); 3892 N_FUN_indexes.pop_back(); 3893 // We don't really need the end function STAB as it contains 3894 // the size which we already placed with the original symbol, 3895 // so don't add it if we want a minimal symbol table 3896 add_nlist = false; 3897 } 3898 } 3899 break; 3900 3901 case N_STSYM: 3902 // static symbol: name,,n_sect,type,address 3903 N_STSYM_addr_to_sym_idx.insert( 3904 std::make_pair(nlist.n_value, sym_idx)); 3905 symbol_section = 3906 section_info.GetSection(nlist.n_sect, nlist.n_value); 3907 if (symbol_name && symbol_name[0]) { 3908 type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1, 3909 eSymbolTypeData); 3910 } 3911 break; 3912 3913 case N_LCSYM: 3914 // .lcomm symbol: name,,n_sect,type,address 3915 symbol_section = 3916 section_info.GetSection(nlist.n_sect, nlist.n_value); 3917 type = eSymbolTypeCommonBlock; 3918 break; 3919 3920 case N_BNSYM: 3921 // We use the current number of symbols in the symbol table in lieu 3922 // of using nlist_idx in case we ever start trimming entries out 3923 // Skip these if we want minimal symbol tables 3924 add_nlist = false; 3925 break; 3926 3927 case N_ENSYM: 3928 // Set the size of the N_BNSYM to the terminating index of this 3929 // N_ENSYM so that we can always skip the entire symbol if we need 3930 // to navigate more quickly at the source level when parsing STABS 3931 // Skip these if we want minimal symbol tables 3932 add_nlist = false; 3933 break; 3934 3935 case N_OPT: 3936 // emitted with gcc2_compiled and in gcc source 3937 type = eSymbolTypeCompiler; 3938 break; 3939 3940 case N_RSYM: 3941 // register sym: name,,NO_SECT,type,register 3942 type = eSymbolTypeVariable; 3943 break; 3944 3945 case N_SLINE: 3946 // src line: 0,,n_sect,linenumber,address 3947 symbol_section = 3948 section_info.GetSection(nlist.n_sect, nlist.n_value); 3949 type = eSymbolTypeLineEntry; 3950 break; 3951 3952 case N_SSYM: 3953 // structure elt: name,,NO_SECT,type,struct_offset 3954 type = eSymbolTypeVariableType; 3955 break; 3956 3957 case N_SO: 3958 // source file name 3959 type = eSymbolTypeSourceFile; 3960 if (symbol_name == nullptr) { 3961 add_nlist = false; 3962 if (N_SO_index != UINT32_MAX) { 3963 // Set the size of the N_SO to the terminating index of this 3964 // N_SO so that we can always skip the entire N_SO if we need 3965 // to navigate more quickly at the source level when parsing 3966 // STABS 3967 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3968 symbol_ptr->SetByteSize(sym_idx); 3969 symbol_ptr->SetSizeIsSibling(true); 3970 } 3971 N_NSYM_indexes.clear(); 3972 N_INCL_indexes.clear(); 3973 N_BRAC_indexes.clear(); 3974 N_COMM_indexes.clear(); 3975 N_FUN_indexes.clear(); 3976 N_SO_index = UINT32_MAX; 3977 } else { 3978 // We use the current number of symbols in the symbol table in 3979 // lieu of using nlist_idx in case we ever start trimming entries 3980 // out 3981 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3982 if (N_SO_has_full_path) { 3983 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { 3984 // We have two consecutive N_SO entries where the first 3985 // contains a directory and the second contains a full path. 3986 sym[sym_idx - 1].GetMangled().SetValue( 3987 ConstString(symbol_name), false); 3988 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3989 add_nlist = false; 3990 } else { 3991 // This is the first entry in a N_SO that contains a 3992 // directory or a full path to the source file 3993 N_SO_index = sym_idx; 3994 } 3995 } else if ((N_SO_index == sym_idx - 1) && 3996 ((sym_idx - 1) < num_syms)) { 3997 // This is usually the second N_SO entry that contains just the 3998 // filename, so here we combine it with the first one if we are 3999 // minimizing the symbol table 4000 const char *so_path = 4001 sym[sym_idx - 1] 4002 .GetMangled() 4003 .GetDemangledName(lldb::eLanguageTypeUnknown) 4004 .AsCString(); 4005 if (so_path && so_path[0]) { 4006 std::string full_so_path(so_path); 4007 const size_t double_slash_pos = full_so_path.find("//"); 4008 if (double_slash_pos != std::string::npos) { 4009 // The linker has been generating bad N_SO entries with 4010 // doubled up paths in the format "%s%s" where the first 4011 // string in the DW_AT_comp_dir, and the second is the 4012 // directory for the source file so you end up with a path 4013 // that looks like "/tmp/src//tmp/src/" 4014 FileSpec so_dir(so_path); 4015 if (!FileSystem::Instance().Exists(so_dir)) { 4016 so_dir.SetFile(&full_so_path[double_slash_pos + 1], 4017 FileSpec::Style::native); 4018 if (FileSystem::Instance().Exists(so_dir)) { 4019 // Trim off the incorrect path 4020 full_so_path.erase(0, double_slash_pos + 1); 4021 } 4022 } 4023 } 4024 if (*full_so_path.rbegin() != '/') 4025 full_so_path += '/'; 4026 full_so_path += symbol_name; 4027 sym[sym_idx - 1].GetMangled().SetValue( 4028 ConstString(full_so_path.c_str()), false); 4029 add_nlist = false; 4030 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 4031 } 4032 } else { 4033 // This could be a relative path to a N_SO 4034 N_SO_index = sym_idx; 4035 } 4036 } 4037 break; 4038 4039 case N_OSO: 4040 // object file name: name,,0,0,st_mtime 4041 type = eSymbolTypeObjectFile; 4042 break; 4043 4044 case N_LSYM: 4045 // local sym: name,,NO_SECT,type,offset 4046 type = eSymbolTypeLocal; 4047 break; 4048 4049 // INCL scopes 4050 case N_BINCL: 4051 // include file beginning: name,,NO_SECT,0,sum We use the current 4052 // number of symbols in the symbol table in lieu of using nlist_idx 4053 // in case we ever start trimming entries out 4054 N_INCL_indexes.push_back(sym_idx); 4055 type = eSymbolTypeScopeBegin; 4056 break; 4057 4058 case N_EINCL: 4059 // include file end: name,,NO_SECT,0,0 4060 // Set the size of the N_BINCL to the terminating index of this 4061 // N_EINCL so that we can always skip the entire symbol if we need 4062 // to navigate more quickly at the source level when parsing STABS 4063 if (!N_INCL_indexes.empty()) { 4064 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 4065 symbol_ptr->SetByteSize(sym_idx + 1); 4066 symbol_ptr->SetSizeIsSibling(true); 4067 N_INCL_indexes.pop_back(); 4068 } 4069 type = eSymbolTypeScopeEnd; 4070 break; 4071 4072 case N_SOL: 4073 // #included file name: name,,n_sect,0,address 4074 type = eSymbolTypeHeaderFile; 4075 4076 // We currently don't use the header files on darwin 4077 add_nlist = false; 4078 break; 4079 4080 case N_PARAMS: 4081 // compiler parameters: name,,NO_SECT,0,0 4082 type = eSymbolTypeCompiler; 4083 break; 4084 4085 case N_VERSION: 4086 // compiler version: name,,NO_SECT,0,0 4087 type = eSymbolTypeCompiler; 4088 break; 4089 4090 case N_OLEVEL: 4091 // compiler -O level: name,,NO_SECT,0,0 4092 type = eSymbolTypeCompiler; 4093 break; 4094 4095 case N_PSYM: 4096 // parameter: name,,NO_SECT,type,offset 4097 type = eSymbolTypeVariable; 4098 break; 4099 4100 case N_ENTRY: 4101 // alternate entry: name,,n_sect,linenumber,address 4102 symbol_section = 4103 section_info.GetSection(nlist.n_sect, nlist.n_value); 4104 type = eSymbolTypeLineEntry; 4105 break; 4106 4107 // Left and Right Braces 4108 case N_LBRAC: 4109 // left bracket: 0,,NO_SECT,nesting level,address We use the 4110 // current number of symbols in the symbol table in lieu of using 4111 // nlist_idx in case we ever start trimming entries out 4112 symbol_section = 4113 section_info.GetSection(nlist.n_sect, nlist.n_value); 4114 N_BRAC_indexes.push_back(sym_idx); 4115 type = eSymbolTypeScopeBegin; 4116 break; 4117 4118 case N_RBRAC: 4119 // right bracket: 0,,NO_SECT,nesting level,address Set the size of 4120 // the N_LBRAC to the terminating index of this N_RBRAC so that we 4121 // can always skip the entire symbol if we need to navigate more 4122 // quickly at the source level when parsing STABS 4123 symbol_section = 4124 section_info.GetSection(nlist.n_sect, nlist.n_value); 4125 if (!N_BRAC_indexes.empty()) { 4126 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4127 symbol_ptr->SetByteSize(sym_idx + 1); 4128 symbol_ptr->SetSizeIsSibling(true); 4129 N_BRAC_indexes.pop_back(); 4130 } 4131 type = eSymbolTypeScopeEnd; 4132 break; 4133 4134 case N_EXCL: 4135 // deleted include file: name,,NO_SECT,0,sum 4136 type = eSymbolTypeHeaderFile; 4137 break; 4138 4139 // COMM scopes 4140 case N_BCOMM: 4141 // begin common: name,,NO_SECT,0,0 4142 // We use the current number of symbols in the symbol table in lieu 4143 // of using nlist_idx in case we ever start trimming entries out 4144 type = eSymbolTypeScopeBegin; 4145 N_COMM_indexes.push_back(sym_idx); 4146 break; 4147 4148 case N_ECOML: 4149 // end common (local name): 0,,n_sect,0,address 4150 symbol_section = 4151 section_info.GetSection(nlist.n_sect, nlist.n_value); 4152 LLVM_FALLTHROUGH; 4153 4154 case N_ECOMM: 4155 // end common: name,,n_sect,0,0 4156 // Set the size of the N_BCOMM to the terminating index of this 4157 // N_ECOMM/N_ECOML so that we can always skip the entire symbol if 4158 // we need to navigate more quickly at the source level when 4159 // parsing STABS 4160 if (!N_COMM_indexes.empty()) { 4161 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4162 symbol_ptr->SetByteSize(sym_idx + 1); 4163 symbol_ptr->SetSizeIsSibling(true); 4164 N_COMM_indexes.pop_back(); 4165 } 4166 type = eSymbolTypeScopeEnd; 4167 break; 4168 4169 case N_LENG: 4170 // second stab entry with length information 4171 type = eSymbolTypeAdditional; 4172 break; 4173 4174 default: 4175 break; 4176 } 4177 } else { 4178 // uint8_t n_pext = N_PEXT & nlist.n_type; 4179 uint8_t n_type = N_TYPE & nlist.n_type; 4180 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4181 4182 switch (n_type) { 4183 case N_INDR: { 4184 const char *reexport_name_cstr = 4185 strtab_data.PeekCStr(nlist.n_value); 4186 if (reexport_name_cstr && reexport_name_cstr[0]) { 4187 type = eSymbolTypeReExported; 4188 ConstString reexport_name( 4189 reexport_name_cstr + 4190 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4191 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4192 set_value = false; 4193 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4194 indirect_symbol_names.insert( 4195 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4196 } else 4197 type = eSymbolTypeUndefined; 4198 } break; 4199 4200 case N_UNDF: 4201 if (symbol_name && symbol_name[0]) { 4202 ConstString undefined_name(symbol_name + 4203 ((symbol_name[0] == '_') ? 1 : 0)); 4204 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4205 } 4206 LLVM_FALLTHROUGH; 4207 4208 case N_PBUD: 4209 type = eSymbolTypeUndefined; 4210 break; 4211 4212 case N_ABS: 4213 type = eSymbolTypeAbsolute; 4214 break; 4215 4216 case N_SECT: { 4217 symbol_section = 4218 section_info.GetSection(nlist.n_sect, nlist.n_value); 4219 4220 if (!symbol_section) { 4221 // TODO: warn about this? 4222 add_nlist = false; 4223 break; 4224 } 4225 4226 if (TEXT_eh_frame_sectID == nlist.n_sect) { 4227 type = eSymbolTypeException; 4228 } else { 4229 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4230 4231 switch (section_type) { 4232 case S_CSTRING_LITERALS: 4233 type = eSymbolTypeData; 4234 break; // section with only literal C strings 4235 case S_4BYTE_LITERALS: 4236 type = eSymbolTypeData; 4237 break; // section with only 4 byte literals 4238 case S_8BYTE_LITERALS: 4239 type = eSymbolTypeData; 4240 break; // section with only 8 byte literals 4241 case S_LITERAL_POINTERS: 4242 type = eSymbolTypeTrampoline; 4243 break; // section with only pointers to literals 4244 case S_NON_LAZY_SYMBOL_POINTERS: 4245 type = eSymbolTypeTrampoline; 4246 break; // section with only non-lazy symbol pointers 4247 case S_LAZY_SYMBOL_POINTERS: 4248 type = eSymbolTypeTrampoline; 4249 break; // section with only lazy symbol pointers 4250 case S_SYMBOL_STUBS: 4251 type = eSymbolTypeTrampoline; 4252 break; // section with only symbol stubs, byte size of stub in 4253 // the reserved2 field 4254 case S_MOD_INIT_FUNC_POINTERS: 4255 type = eSymbolTypeCode; 4256 break; // section with only function pointers for initialization 4257 case S_MOD_TERM_FUNC_POINTERS: 4258 type = eSymbolTypeCode; 4259 break; // section with only function pointers for termination 4260 case S_INTERPOSING: 4261 type = eSymbolTypeTrampoline; 4262 break; // section with only pairs of function pointers for 4263 // interposing 4264 case S_16BYTE_LITERALS: 4265 type = eSymbolTypeData; 4266 break; // section with only 16 byte literals 4267 case S_DTRACE_DOF: 4268 type = eSymbolTypeInstrumentation; 4269 break; 4270 case S_LAZY_DYLIB_SYMBOL_POINTERS: 4271 type = eSymbolTypeTrampoline; 4272 break; 4273 default: 4274 switch (symbol_section->GetType()) { 4275 case lldb::eSectionTypeCode: 4276 type = eSymbolTypeCode; 4277 break; 4278 case eSectionTypeData: 4279 case eSectionTypeDataCString: // Inlined C string data 4280 case eSectionTypeDataCStringPointers: // Pointers to C string 4281 // data 4282 case eSectionTypeDataSymbolAddress: // Address of a symbol in 4283 // the symbol table 4284 case eSectionTypeData4: 4285 case eSectionTypeData8: 4286 case eSectionTypeData16: 4287 type = eSymbolTypeData; 4288 break; 4289 default: 4290 break; 4291 } 4292 break; 4293 } 4294 4295 if (type == eSymbolTypeInvalid) { 4296 const char *symbol_sect_name = 4297 symbol_section->GetName().AsCString(); 4298 if (symbol_section->IsDescendant(text_section_sp.get())) { 4299 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4300 S_ATTR_SELF_MODIFYING_CODE | 4301 S_ATTR_SOME_INSTRUCTIONS)) 4302 type = eSymbolTypeData; 4303 else 4304 type = eSymbolTypeCode; 4305 } else if (symbol_section->IsDescendant( 4306 data_section_sp.get()) || 4307 symbol_section->IsDescendant( 4308 data_dirty_section_sp.get()) || 4309 symbol_section->IsDescendant( 4310 data_const_section_sp.get())) { 4311 if (symbol_sect_name && 4312 ::strstr(symbol_sect_name, "__objc") == 4313 symbol_sect_name) { 4314 type = eSymbolTypeRuntime; 4315 4316 if (symbol_name) { 4317 llvm::StringRef symbol_name_ref(symbol_name); 4318 if (symbol_name_ref.startswith("_OBJC_")) { 4319 static const llvm::StringRef g_objc_v2_prefix_class( 4320 "_OBJC_CLASS_$_"); 4321 static const llvm::StringRef g_objc_v2_prefix_metaclass( 4322 "_OBJC_METACLASS_$_"); 4323 static const llvm::StringRef g_objc_v2_prefix_ivar( 4324 "_OBJC_IVAR_$_"); 4325 if (symbol_name_ref.startswith( 4326 g_objc_v2_prefix_class)) { 4327 symbol_name_non_abi_mangled = symbol_name + 1; 4328 symbol_name = 4329 symbol_name + g_objc_v2_prefix_class.size(); 4330 type = eSymbolTypeObjCClass; 4331 demangled_is_synthesized = true; 4332 } else if (symbol_name_ref.startswith( 4333 g_objc_v2_prefix_metaclass)) { 4334 symbol_name_non_abi_mangled = symbol_name + 1; 4335 symbol_name = 4336 symbol_name + g_objc_v2_prefix_metaclass.size(); 4337 type = eSymbolTypeObjCMetaClass; 4338 demangled_is_synthesized = true; 4339 } else if (symbol_name_ref.startswith( 4340 g_objc_v2_prefix_ivar)) { 4341 symbol_name_non_abi_mangled = symbol_name + 1; 4342 symbol_name = 4343 symbol_name + g_objc_v2_prefix_ivar.size(); 4344 type = eSymbolTypeObjCIVar; 4345 demangled_is_synthesized = true; 4346 } 4347 } 4348 } 4349 } else if (symbol_sect_name && 4350 ::strstr(symbol_sect_name, "__gcc_except_tab") == 4351 symbol_sect_name) { 4352 type = eSymbolTypeException; 4353 } else { 4354 type = eSymbolTypeData; 4355 } 4356 } else if (symbol_sect_name && 4357 ::strstr(symbol_sect_name, "__IMPORT") == 4358 symbol_sect_name) { 4359 type = eSymbolTypeTrampoline; 4360 } else if (symbol_section->IsDescendant( 4361 objc_section_sp.get())) { 4362 type = eSymbolTypeRuntime; 4363 if (symbol_name && symbol_name[0] == '.') { 4364 llvm::StringRef symbol_name_ref(symbol_name); 4365 static const llvm::StringRef g_objc_v1_prefix_class( 4366 ".objc_class_name_"); 4367 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { 4368 symbol_name_non_abi_mangled = symbol_name; 4369 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4370 type = eSymbolTypeObjCClass; 4371 demangled_is_synthesized = true; 4372 } 4373 } 4374 } 4375 } 4376 } 4377 } break; 4378 } 4379 } 4380 4381 if (add_nlist) { 4382 uint64_t symbol_value = nlist.n_value; 4383 4384 if (symbol_name_non_abi_mangled) { 4385 sym[sym_idx].GetMangled().SetMangledName( 4386 ConstString(symbol_name_non_abi_mangled)); 4387 sym[sym_idx].GetMangled().SetDemangledName( 4388 ConstString(symbol_name)); 4389 } else { 4390 bool symbol_name_is_mangled = false; 4391 4392 if (symbol_name && symbol_name[0] == '_') { 4393 symbol_name_is_mangled = symbol_name[1] == '_'; 4394 symbol_name++; // Skip the leading underscore 4395 } 4396 4397 if (symbol_name) { 4398 ConstString const_symbol_name(symbol_name); 4399 sym[sym_idx].GetMangled().SetValue(const_symbol_name, 4400 symbol_name_is_mangled); 4401 } 4402 } 4403 4404 if (is_gsym) { 4405 const char *gsym_name = sym[sym_idx] 4406 .GetMangled() 4407 .GetName(lldb::eLanguageTypeUnknown, 4408 Mangled::ePreferMangled) 4409 .GetCString(); 4410 if (gsym_name) 4411 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4412 } 4413 4414 if (symbol_section) { 4415 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4416 if (symbol_byte_size == 0 && function_starts_count > 0) { 4417 addr_t symbol_lookup_file_addr = nlist.n_value; 4418 // Do an exact address match for non-ARM addresses, else get the 4419 // closest since the symbol might be a thumb symbol which has an 4420 // address with bit zero set 4421 FunctionStarts::Entry *func_start_entry = 4422 function_starts.FindEntry(symbol_lookup_file_addr, !is_arm); 4423 if (is_arm && func_start_entry) { 4424 // Verify that the function start address is the symbol address 4425 // (ARM) or the symbol address + 1 (thumb) 4426 if (func_start_entry->addr != symbol_lookup_file_addr && 4427 func_start_entry->addr != (symbol_lookup_file_addr + 1)) { 4428 // Not the right entry, NULL it out... 4429 func_start_entry = nullptr; 4430 } 4431 } 4432 if (func_start_entry) { 4433 func_start_entry->data = true; 4434 4435 addr_t symbol_file_addr = func_start_entry->addr; 4436 if (is_arm) 4437 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4438 4439 const FunctionStarts::Entry *next_func_start_entry = 4440 function_starts.FindNextEntry(func_start_entry); 4441 const addr_t section_end_file_addr = 4442 section_file_addr + symbol_section->GetByteSize(); 4443 if (next_func_start_entry) { 4444 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4445 // Be sure the clear the Thumb address bit when we calculate 4446 // the size from the current and next address 4447 if (is_arm) 4448 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4449 symbol_byte_size = std::min<lldb::addr_t>( 4450 next_symbol_file_addr - symbol_file_addr, 4451 section_end_file_addr - symbol_file_addr); 4452 } else { 4453 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4454 } 4455 } 4456 } 4457 symbol_value -= section_file_addr; 4458 } 4459 4460 if (!is_debug) { 4461 if (type == eSymbolTypeCode) { 4462 // See if we can find a N_FUN entry for any code symbols. If we 4463 // do find a match, and the name matches, then we can merge the 4464 // two into just the function symbol to avoid duplicate entries 4465 // in the symbol table 4466 std::pair<ValueToSymbolIndexMap::const_iterator, 4467 ValueToSymbolIndexMap::const_iterator> 4468 range; 4469 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4470 if (range.first != range.second) { 4471 bool found_it = false; 4472 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4473 pos != range.second; ++pos) { 4474 if (sym[sym_idx].GetMangled().GetName( 4475 lldb::eLanguageTypeUnknown, 4476 Mangled::ePreferMangled) == 4477 sym[pos->second].GetMangled().GetName( 4478 lldb::eLanguageTypeUnknown, 4479 Mangled::ePreferMangled)) { 4480 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4481 // We just need the flags from the linker symbol, so put 4482 // these flags into the N_FUN flags to avoid duplicate 4483 // symbols in the symbol table 4484 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4485 sym[pos->second].SetFlags(nlist.n_type << 16 | 4486 nlist.n_desc); 4487 if (resolver_addresses.find(nlist.n_value) != 4488 resolver_addresses.end()) 4489 sym[pos->second].SetType(eSymbolTypeResolver); 4490 sym[sym_idx].Clear(); 4491 found_it = true; 4492 break; 4493 } 4494 } 4495 if (found_it) 4496 continue; 4497 } else { 4498 if (resolver_addresses.find(nlist.n_value) != 4499 resolver_addresses.end()) 4500 type = eSymbolTypeResolver; 4501 } 4502 } else if (type == eSymbolTypeData || 4503 type == eSymbolTypeObjCClass || 4504 type == eSymbolTypeObjCMetaClass || 4505 type == eSymbolTypeObjCIVar) { 4506 // See if we can find a N_STSYM entry for any data symbols. If we 4507 // do find a match, and the name matches, then we can merge the 4508 // two into just the Static symbol to avoid duplicate entries in 4509 // the symbol table 4510 std::pair<ValueToSymbolIndexMap::const_iterator, 4511 ValueToSymbolIndexMap::const_iterator> 4512 range; 4513 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4514 if (range.first != range.second) { 4515 bool found_it = false; 4516 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4517 pos != range.second; ++pos) { 4518 if (sym[sym_idx].GetMangled().GetName( 4519 lldb::eLanguageTypeUnknown, 4520 Mangled::ePreferMangled) == 4521 sym[pos->second].GetMangled().GetName( 4522 lldb::eLanguageTypeUnknown, 4523 Mangled::ePreferMangled)) { 4524 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4525 // We just need the flags from the linker symbol, so put 4526 // these flags into the N_STSYM flags to avoid duplicate 4527 // symbols in the symbol table 4528 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4529 sym[pos->second].SetFlags(nlist.n_type << 16 | 4530 nlist.n_desc); 4531 sym[sym_idx].Clear(); 4532 found_it = true; 4533 break; 4534 } 4535 } 4536 if (found_it) 4537 continue; 4538 } else { 4539 // Combine N_GSYM stab entries with the non stab symbol 4540 const char *gsym_name = sym[sym_idx] 4541 .GetMangled() 4542 .GetName(lldb::eLanguageTypeUnknown, 4543 Mangled::ePreferMangled) 4544 .GetCString(); 4545 if (gsym_name) { 4546 ConstNameToSymbolIndexMap::const_iterator pos = 4547 N_GSYM_name_to_sym_idx.find(gsym_name); 4548 if (pos != N_GSYM_name_to_sym_idx.end()) { 4549 const uint32_t GSYM_sym_idx = pos->second; 4550 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4551 // Copy the address, because often the N_GSYM address has 4552 // an invalid address of zero when the global is a common 4553 // symbol 4554 sym[GSYM_sym_idx].GetAddressRef().SetSection( 4555 symbol_section); 4556 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value); 4557 // We just need the flags from the linker symbol, so put 4558 // these flags into the N_GSYM flags to avoid duplicate 4559 // symbols in the symbol table 4560 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | 4561 nlist.n_desc); 4562 sym[sym_idx].Clear(); 4563 continue; 4564 } 4565 } 4566 } 4567 } 4568 } 4569 4570 sym[sym_idx].SetID(nlist_idx); 4571 sym[sym_idx].SetType(type); 4572 if (set_value) { 4573 sym[sym_idx].GetAddressRef().SetSection(symbol_section); 4574 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 4575 } 4576 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4577 4578 if (symbol_byte_size > 0) 4579 sym[sym_idx].SetByteSize(symbol_byte_size); 4580 4581 if (demangled_is_synthesized) 4582 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4583 4584 ++sym_idx; 4585 } else { 4586 sym[sym_idx].Clear(); 4587 } 4588 } 4589 4590 for (const auto &pos : reexport_shlib_needs_fixup) { 4591 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4592 if (undef_pos != undefined_name_to_desc.end()) { 4593 const uint8_t dylib_ordinal = 4594 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4595 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4596 sym[pos.first].SetReExportedSymbolSharedLibrary( 4597 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 4598 } 4599 } 4600 } 4601 4602 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4603 4604 if (function_starts_count > 0) { 4605 uint32_t num_synthetic_function_symbols = 0; 4606 for (i = 0; i < function_starts_count; ++i) { 4607 if (!function_starts.GetEntryRef(i).data) 4608 ++num_synthetic_function_symbols; 4609 } 4610 4611 if (num_synthetic_function_symbols > 0) { 4612 if (num_syms < sym_idx + num_synthetic_function_symbols) { 4613 num_syms = sym_idx + num_synthetic_function_symbols; 4614 sym = symtab->Resize(num_syms); 4615 } 4616 for (i = 0; i < function_starts_count; ++i) { 4617 const FunctionStarts::Entry *func_start_entry = 4618 function_starts.GetEntryAtIndex(i); 4619 if (!func_start_entry->data) { 4620 addr_t symbol_file_addr = func_start_entry->addr; 4621 uint32_t symbol_flags = 0; 4622 if (is_arm) { 4623 if (symbol_file_addr & 1) 4624 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4625 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4626 } 4627 Address symbol_addr; 4628 if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) { 4629 SectionSP symbol_section(symbol_addr.GetSection()); 4630 uint32_t symbol_byte_size = 0; 4631 if (symbol_section) { 4632 const addr_t section_file_addr = 4633 symbol_section->GetFileAddress(); 4634 const FunctionStarts::Entry *next_func_start_entry = 4635 function_starts.FindNextEntry(func_start_entry); 4636 const addr_t section_end_file_addr = 4637 section_file_addr + symbol_section->GetByteSize(); 4638 if (next_func_start_entry) { 4639 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4640 if (is_arm) 4641 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4642 symbol_byte_size = std::min<lldb::addr_t>( 4643 next_symbol_file_addr - symbol_file_addr, 4644 section_end_file_addr - symbol_file_addr); 4645 } else { 4646 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4647 } 4648 sym[sym_idx].SetID(synthetic_sym_id++); 4649 sym[sym_idx].GetMangled().SetDemangledName( 4650 GetNextSyntheticSymbolName()); 4651 sym[sym_idx].SetType(eSymbolTypeCode); 4652 sym[sym_idx].SetIsSynthetic(true); 4653 sym[sym_idx].GetAddressRef() = symbol_addr; 4654 if (symbol_flags) 4655 sym[sym_idx].SetFlags(symbol_flags); 4656 if (symbol_byte_size) 4657 sym[sym_idx].SetByteSize(symbol_byte_size); 4658 ++sym_idx; 4659 } 4660 } 4661 } 4662 } 4663 } 4664 } 4665 4666 // Trim our symbols down to just what we ended up with after removing any 4667 // symbols. 4668 if (sym_idx < num_syms) { 4669 num_syms = sym_idx; 4670 sym = symtab->Resize(num_syms); 4671 } 4672 4673 // Now synthesize indirect symbols 4674 if (m_dysymtab.nindirectsyms != 0) { 4675 if (indirect_symbol_index_data.GetByteSize()) { 4676 NListIndexToSymbolIndexMap::const_iterator end_index_pos = 4677 m_nlist_idx_to_sym_idx.end(); 4678 4679 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); 4680 ++sect_idx) { 4681 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == 4682 S_SYMBOL_STUBS) { 4683 uint32_t symbol_stub_byte_size = 4684 m_mach_sections[sect_idx].reserved2; 4685 if (symbol_stub_byte_size == 0) 4686 continue; 4687 4688 const uint32_t num_symbol_stubs = 4689 m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4690 4691 if (num_symbol_stubs == 0) 4692 continue; 4693 4694 const uint32_t symbol_stub_index_offset = 4695 m_mach_sections[sect_idx].reserved1; 4696 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; 4697 ++stub_idx) { 4698 const uint32_t symbol_stub_index = 4699 symbol_stub_index_offset + stub_idx; 4700 const lldb::addr_t symbol_stub_addr = 4701 m_mach_sections[sect_idx].addr + 4702 (stub_idx * symbol_stub_byte_size); 4703 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4704 if (indirect_symbol_index_data.ValidOffsetForDataOfSize( 4705 symbol_stub_offset, 4)) { 4706 const uint32_t stub_sym_id = 4707 indirect_symbol_index_data.GetU32(&symbol_stub_offset); 4708 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4709 continue; 4710 4711 NListIndexToSymbolIndexMap::const_iterator index_pos = 4712 m_nlist_idx_to_sym_idx.find(stub_sym_id); 4713 Symbol *stub_symbol = nullptr; 4714 if (index_pos != end_index_pos) { 4715 // We have a remapping from the original nlist index to a 4716 // current symbol index, so just look this up by index 4717 stub_symbol = symtab->SymbolAtIndex(index_pos->second); 4718 } else { 4719 // We need to lookup a symbol using the original nlist symbol 4720 // index since this index is coming from the S_SYMBOL_STUBS 4721 stub_symbol = symtab->FindSymbolByID(stub_sym_id); 4722 } 4723 4724 if (stub_symbol) { 4725 Address so_addr(symbol_stub_addr, section_list); 4726 4727 if (stub_symbol->GetType() == eSymbolTypeUndefined) { 4728 // Change the external symbol into a trampoline that makes 4729 // sense These symbols were N_UNDF N_EXT, and are useless 4730 // to us, so we can re-use them so we don't have to make up 4731 // a synthetic symbol for no good reason. 4732 if (resolver_addresses.find(symbol_stub_addr) == 4733 resolver_addresses.end()) 4734 stub_symbol->SetType(eSymbolTypeTrampoline); 4735 else 4736 stub_symbol->SetType(eSymbolTypeResolver); 4737 stub_symbol->SetExternal(false); 4738 stub_symbol->GetAddressRef() = so_addr; 4739 stub_symbol->SetByteSize(symbol_stub_byte_size); 4740 } else { 4741 // Make a synthetic symbol to describe the trampoline stub 4742 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4743 if (sym_idx >= num_syms) { 4744 sym = symtab->Resize(++num_syms); 4745 stub_symbol = nullptr; // this pointer no longer valid 4746 } 4747 sym[sym_idx].SetID(synthetic_sym_id++); 4748 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4749 if (resolver_addresses.find(symbol_stub_addr) == 4750 resolver_addresses.end()) 4751 sym[sym_idx].SetType(eSymbolTypeTrampoline); 4752 else 4753 sym[sym_idx].SetType(eSymbolTypeResolver); 4754 sym[sym_idx].SetIsSynthetic(true); 4755 sym[sym_idx].GetAddressRef() = so_addr; 4756 sym[sym_idx].SetByteSize(symbol_stub_byte_size); 4757 ++sym_idx; 4758 } 4759 } else { 4760 if (log) 4761 log->Warning("symbol stub referencing symbol table symbol " 4762 "%u that isn't in our minimal symbol table, " 4763 "fix this!!!", 4764 stub_sym_id); 4765 } 4766 } 4767 } 4768 } 4769 } 4770 } 4771 } 4772 4773 if (!trie_entries.empty()) { 4774 for (const auto &e : trie_entries) { 4775 if (e.entry.import_name) { 4776 // Only add indirect symbols from the Trie entries if we didn't have 4777 // a N_INDR nlist entry for this already 4778 if (indirect_symbol_names.find(e.entry.name) == 4779 indirect_symbol_names.end()) { 4780 // Make a synthetic symbol to describe re-exported symbol. 4781 if (sym_idx >= num_syms) 4782 sym = symtab->Resize(++num_syms); 4783 sym[sym_idx].SetID(synthetic_sym_id++); 4784 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4785 sym[sym_idx].SetType(eSymbolTypeReExported); 4786 sym[sym_idx].SetIsSynthetic(true); 4787 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4788 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) { 4789 sym[sym_idx].SetReExportedSymbolSharedLibrary( 4790 dylib_files.GetFileSpecAtIndex(e.entry.other - 1)); 4791 } 4792 ++sym_idx; 4793 } 4794 } 4795 } 4796 } 4797 4798 // StreamFile s(stdout, false); 4799 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4800 // symtab->Dump(&s, NULL, eSortOrderNone); 4801 // Set symbol byte sizes correctly since mach-o nlist entries don't have 4802 // sizes 4803 symtab->CalculateSymbolSizes(); 4804 4805 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4806 // symtab->Dump(&s, NULL, eSortOrderNone); 4807 4808 return symtab->GetNumSymbols(); 4809 } 4810 return 0; 4811 } 4812 4813 void ObjectFileMachO::Dump(Stream *s) { 4814 ModuleSP module_sp(GetModule()); 4815 if (module_sp) { 4816 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 4817 s->Printf("%p: ", static_cast<void *>(this)); 4818 s->Indent(); 4819 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4820 s->PutCString("ObjectFileMachO64"); 4821 else 4822 s->PutCString("ObjectFileMachO32"); 4823 4824 ArchSpec header_arch = GetArchitecture(); 4825 4826 *s << ", file = '" << m_file 4827 << "', triple = " << header_arch.GetTriple().getTriple() << "\n"; 4828 4829 SectionList *sections = GetSectionList(); 4830 if (sections) 4831 sections->Dump(s, nullptr, true, UINT32_MAX); 4832 4833 if (m_symtab_up) 4834 m_symtab_up->Dump(s, nullptr, eSortOrderNone); 4835 } 4836 } 4837 4838 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header, 4839 const lldb_private::DataExtractor &data, 4840 lldb::offset_t lc_offset) { 4841 uint32_t i; 4842 struct uuid_command load_cmd; 4843 4844 lldb::offset_t offset = lc_offset; 4845 for (i = 0; i < header.ncmds; ++i) { 4846 const lldb::offset_t cmd_offset = offset; 4847 if (data.GetU32(&offset, &load_cmd, 2) == nullptr) 4848 break; 4849 4850 if (load_cmd.cmd == LC_UUID) { 4851 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4852 4853 if (uuid_bytes) { 4854 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4855 // We pretend these object files have no UUID to prevent crashing. 4856 4857 const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8, 4858 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63, 4859 0xbb, 0x14, 0xf0, 0x0d}; 4860 4861 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4862 return UUID(); 4863 4864 return UUID::fromOptionalData(uuid_bytes, 16); 4865 } 4866 return UUID(); 4867 } 4868 offset = cmd_offset + load_cmd.cmdsize; 4869 } 4870 return UUID(); 4871 } 4872 4873 static llvm::StringRef GetOSName(uint32_t cmd) { 4874 switch (cmd) { 4875 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 4876 return llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4877 case llvm::MachO::LC_VERSION_MIN_MACOSX: 4878 return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4879 case llvm::MachO::LC_VERSION_MIN_TVOS: 4880 return llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4881 case llvm::MachO::LC_VERSION_MIN_WATCHOS: 4882 return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4883 default: 4884 llvm_unreachable("unexpected LC_VERSION load command"); 4885 } 4886 } 4887 4888 namespace { 4889 struct OSEnv { 4890 llvm::StringRef os_type; 4891 llvm::StringRef environment; 4892 OSEnv(uint32_t cmd) { 4893 switch (cmd) { 4894 case PLATFORM_MACOS: 4895 os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4896 return; 4897 case PLATFORM_IOS: 4898 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4899 return; 4900 case PLATFORM_TVOS: 4901 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4902 return; 4903 case PLATFORM_WATCHOS: 4904 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4905 return; 4906 // NEED_BRIDGEOS_TRIPLE case PLATFORM_BRIDGEOS: 4907 // NEED_BRIDGEOS_TRIPLE os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS); 4908 // NEED_BRIDGEOS_TRIPLE return; 4909 #if defined (PLATFORM_IOSSIMULATOR) && defined (PLATFORM_TVOSSIMULATOR) && defined (PLATFORM_WATCHOSSIMULATOR) 4910 case PLATFORM_IOSSIMULATOR: 4911 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4912 environment = 4913 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4914 return; 4915 case PLATFORM_TVOSSIMULATOR: 4916 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4917 environment = 4918 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4919 return; 4920 case PLATFORM_WATCHOSSIMULATOR: 4921 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4922 environment = 4923 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 4924 return; 4925 #endif 4926 default: { 4927 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 4928 LIBLLDB_LOG_PROCESS)); 4929 if (log) 4930 log->Printf("unsupported platform in LC_BUILD_VERSION"); 4931 } 4932 } 4933 } 4934 }; 4935 4936 struct MinOS { 4937 uint32_t major_version, minor_version, patch_version; 4938 MinOS(uint32_t version) 4939 : major_version(version >> 16), 4940 minor_version((version >> 8) & 0xffu), 4941 patch_version(version & 0xffu) {} 4942 }; 4943 } // namespace 4944 4945 ArchSpec 4946 ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header, 4947 const lldb_private::DataExtractor &data, 4948 lldb::offset_t lc_offset) { 4949 ArchSpec arch; 4950 arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype); 4951 4952 if (arch.IsValid()) { 4953 llvm::Triple &triple = arch.GetTriple(); 4954 4955 // Set OS to an unspecified unknown or a "*" so it can match any OS 4956 triple.setOS(llvm::Triple::UnknownOS); 4957 triple.setOSName(llvm::StringRef()); 4958 4959 if (header.filetype == MH_PRELOAD) { 4960 if (header.cputype == CPU_TYPE_ARM) { 4961 // If this is a 32-bit arm binary, and it's a standalone binary, force 4962 // the Vendor to Apple so we don't accidentally pick up the generic 4963 // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the 4964 // frame pointer register; most other armv7 ABIs use a combination of 4965 // r7 and r11. 4966 triple.setVendor(llvm::Triple::Apple); 4967 } else { 4968 // Set vendor to an unspecified unknown or a "*" so it can match any 4969 // vendor This is required for correct behavior of EFI debugging on 4970 // x86_64 4971 triple.setVendor(llvm::Triple::UnknownVendor); 4972 triple.setVendorName(llvm::StringRef()); 4973 } 4974 return arch; 4975 } else { 4976 struct load_command load_cmd; 4977 llvm::SmallString<16> os_name; 4978 llvm::raw_svector_ostream os(os_name); 4979 4980 // See if there is an LC_VERSION_MIN_* load command that can give 4981 // us the OS type. 4982 lldb::offset_t offset = lc_offset; 4983 for (uint32_t i = 0; i < header.ncmds; ++i) { 4984 const lldb::offset_t cmd_offset = offset; 4985 if (data.GetU32(&offset, &load_cmd, 2) == nullptr) 4986 break; 4987 4988 struct version_min_command version_min; 4989 switch (load_cmd.cmd) { 4990 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 4991 case llvm::MachO::LC_VERSION_MIN_MACOSX: 4992 case llvm::MachO::LC_VERSION_MIN_TVOS: 4993 case llvm::MachO::LC_VERSION_MIN_WATCHOS: { 4994 if (load_cmd.cmdsize != sizeof(version_min)) 4995 break; 4996 if (data.ExtractBytes(cmd_offset, sizeof(version_min), 4997 data.GetByteOrder(), &version_min) == 0) 4998 break; 4999 MinOS min_os(version_min.version); 5000 os << GetOSName(load_cmd.cmd) << min_os.major_version << '.' 5001 << min_os.minor_version << '.' << min_os.patch_version; 5002 triple.setOSName(os.str()); 5003 return arch; 5004 } 5005 default: 5006 break; 5007 } 5008 5009 offset = cmd_offset + load_cmd.cmdsize; 5010 } 5011 5012 // See if there is an LC_BUILD_VERSION load command that can give 5013 // us the OS type. 5014 5015 offset = lc_offset; 5016 for (uint32_t i = 0; i < header.ncmds; ++i) { 5017 const lldb::offset_t cmd_offset = offset; 5018 if (data.GetU32(&offset, &load_cmd, 2) == nullptr) 5019 break; 5020 do { 5021 if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) { 5022 struct build_version_command build_version; 5023 if (load_cmd.cmdsize < sizeof(build_version)) { 5024 // Malformed load command. 5025 break; 5026 } 5027 if (data.ExtractBytes(cmd_offset, sizeof(build_version), 5028 data.GetByteOrder(), &build_version) == 0) 5029 break; 5030 MinOS min_os(build_version.minos); 5031 OSEnv os_env(build_version.platform); 5032 if (os_env.os_type.empty()) 5033 break; 5034 os << os_env.os_type << min_os.major_version << '.' 5035 << min_os.minor_version << '.' << min_os.patch_version; 5036 triple.setOSName(os.str()); 5037 if (!os_env.environment.empty()) 5038 triple.setEnvironmentName(os_env.environment); 5039 return arch; 5040 } 5041 } while (false); 5042 offset = cmd_offset + load_cmd.cmdsize; 5043 } 5044 5045 if (header.filetype != MH_KEXT_BUNDLE) { 5046 // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT 5047 // so lets not say our Vendor is Apple, leave it as an unspecified 5048 // unknown 5049 triple.setVendor(llvm::Triple::UnknownVendor); 5050 triple.setVendorName(llvm::StringRef()); 5051 } 5052 } 5053 } 5054 return arch; 5055 } 5056 5057 UUID ObjectFileMachO::GetUUID() { 5058 ModuleSP module_sp(GetModule()); 5059 if (module_sp) { 5060 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5061 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5062 return GetUUID(m_header, m_data, offset); 5063 } 5064 return UUID(); 5065 } 5066 5067 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) { 5068 uint32_t count = 0; 5069 ModuleSP module_sp(GetModule()); 5070 if (module_sp) { 5071 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5072 struct load_command load_cmd; 5073 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5074 std::vector<std::string> rpath_paths; 5075 std::vector<std::string> rpath_relative_paths; 5076 std::vector<std::string> at_exec_relative_paths; 5077 uint32_t i; 5078 for (i = 0; i < m_header.ncmds; ++i) { 5079 const uint32_t cmd_offset = offset; 5080 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5081 break; 5082 5083 switch (load_cmd.cmd) { 5084 case LC_RPATH: 5085 case LC_LOAD_DYLIB: 5086 case LC_LOAD_WEAK_DYLIB: 5087 case LC_REEXPORT_DYLIB: 5088 case LC_LOAD_DYLINKER: 5089 case LC_LOADFVMLIB: 5090 case LC_LOAD_UPWARD_DYLIB: { 5091 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 5092 const char *path = m_data.PeekCStr(name_offset); 5093 if (path) { 5094 if (load_cmd.cmd == LC_RPATH) 5095 rpath_paths.push_back(path); 5096 else { 5097 if (path[0] == '@') { 5098 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 5099 rpath_relative_paths.push_back(path + strlen("@rpath")); 5100 else if (strncmp(path, "@executable_path", 5101 strlen("@executable_path")) == 0) 5102 at_exec_relative_paths.push_back(path 5103 + strlen("@executable_path")); 5104 } else { 5105 FileSpec file_spec(path); 5106 if (files.AppendIfUnique(file_spec)) 5107 count++; 5108 } 5109 } 5110 } 5111 } break; 5112 5113 default: 5114 break; 5115 } 5116 offset = cmd_offset + load_cmd.cmdsize; 5117 } 5118 5119 FileSpec this_file_spec(m_file); 5120 FileSystem::Instance().Resolve(this_file_spec); 5121 5122 if (!rpath_paths.empty()) { 5123 // Fixup all LC_RPATH values to be absolute paths 5124 std::string loader_path("@loader_path"); 5125 std::string executable_path("@executable_path"); 5126 for (auto &rpath : rpath_paths) { 5127 if (rpath.find(loader_path) == 0) { 5128 rpath.erase(0, loader_path.size()); 5129 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5130 } else if (rpath.find(executable_path) == 0) { 5131 rpath.erase(0, executable_path.size()); 5132 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5133 } 5134 } 5135 5136 for (const auto &rpath_relative_path : rpath_relative_paths) { 5137 for (const auto &rpath : rpath_paths) { 5138 std::string path = rpath; 5139 path += rpath_relative_path; 5140 // It is OK to resolve this path because we must find a file on disk 5141 // for us to accept it anyway if it is rpath relative. 5142 FileSpec file_spec(path); 5143 FileSystem::Instance().Resolve(file_spec); 5144 if (FileSystem::Instance().Exists(file_spec) && 5145 files.AppendIfUnique(file_spec)) { 5146 count++; 5147 break; 5148 } 5149 } 5150 } 5151 } 5152 5153 // We may have @executable_paths but no RPATHS. Figure those out here. 5154 // Only do this if this object file is the executable. We have no way to 5155 // get back to the actual executable otherwise, so we won't get the right 5156 // path. 5157 if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) { 5158 FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent(); 5159 for (const auto &at_exec_relative_path : at_exec_relative_paths) { 5160 FileSpec file_spec = 5161 exec_dir.CopyByAppendingPathComponent(at_exec_relative_path); 5162 if (FileSystem::Instance().Exists(file_spec) && 5163 files.AppendIfUnique(file_spec)) 5164 count++; 5165 } 5166 } 5167 } 5168 return count; 5169 } 5170 5171 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() { 5172 // If the object file is not an executable it can't hold the entry point. 5173 // m_entry_point_address is initialized to an invalid address, so we can just 5174 // return that. If m_entry_point_address is valid it means we've found it 5175 // already, so return the cached value. 5176 5177 if (!IsExecutable() || m_entry_point_address.IsValid()) 5178 return m_entry_point_address; 5179 5180 // Otherwise, look for the UnixThread or Thread command. The data for the 5181 // Thread command is given in /usr/include/mach-o.h, but it is basically: 5182 // 5183 // uint32_t flavor - this is the flavor argument you would pass to 5184 // thread_get_state 5185 // uint32_t count - this is the count of longs in the thread state data 5186 // struct XXX_thread_state state - this is the structure from 5187 // <machine/thread_status.h> corresponding to the flavor. 5188 // <repeat this trio> 5189 // 5190 // So we just keep reading the various register flavors till we find the GPR 5191 // one, then read the PC out of there. 5192 // FIXME: We will need to have a "RegisterContext data provider" class at some 5193 // point that can get all the registers 5194 // out of data in this form & attach them to a given thread. That should 5195 // underlie the MacOS X User process plugin, and we'll also need it for the 5196 // MacOS X Core File process plugin. When we have that we can also use it 5197 // here. 5198 // 5199 // For now we hard-code the offsets and flavors we need: 5200 // 5201 // 5202 5203 ModuleSP module_sp(GetModule()); 5204 if (module_sp) { 5205 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5206 struct load_command load_cmd; 5207 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5208 uint32_t i; 5209 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 5210 bool done = false; 5211 5212 for (i = 0; i < m_header.ncmds; ++i) { 5213 const lldb::offset_t cmd_offset = offset; 5214 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5215 break; 5216 5217 switch (load_cmd.cmd) { 5218 case LC_UNIXTHREAD: 5219 case LC_THREAD: { 5220 while (offset < cmd_offset + load_cmd.cmdsize) { 5221 uint32_t flavor = m_data.GetU32(&offset); 5222 uint32_t count = m_data.GetU32(&offset); 5223 if (count == 0) { 5224 // We've gotten off somehow, log and exit; 5225 return m_entry_point_address; 5226 } 5227 5228 switch (m_header.cputype) { 5229 case llvm::MachO::CPU_TYPE_ARM: 5230 if (flavor == 1 || 5231 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from 5232 // mach/arm/thread_status.h 5233 { 5234 offset += 60; // This is the offset of pc in the GPR thread state 5235 // data structure. 5236 start_address = m_data.GetU32(&offset); 5237 done = true; 5238 } 5239 break; 5240 case llvm::MachO::CPU_TYPE_ARM64: 5241 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 5242 { 5243 offset += 256; // This is the offset of pc in the GPR thread state 5244 // data structure. 5245 start_address = m_data.GetU64(&offset); 5246 done = true; 5247 } 5248 break; 5249 case llvm::MachO::CPU_TYPE_I386: 5250 if (flavor == 5251 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5252 { 5253 offset += 40; // This is the offset of eip in the GPR thread state 5254 // data structure. 5255 start_address = m_data.GetU32(&offset); 5256 done = true; 5257 } 5258 break; 5259 case llvm::MachO::CPU_TYPE_X86_64: 5260 if (flavor == 5261 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5262 { 5263 offset += 16 * 8; // This is the offset of rip in the GPR thread 5264 // state data structure. 5265 start_address = m_data.GetU64(&offset); 5266 done = true; 5267 } 5268 break; 5269 default: 5270 return m_entry_point_address; 5271 } 5272 // Haven't found the GPR flavor yet, skip over the data for this 5273 // flavor: 5274 if (done) 5275 break; 5276 offset += count * 4; 5277 } 5278 } break; 5279 case LC_MAIN: { 5280 ConstString text_segment_name("__TEXT"); 5281 uint64_t entryoffset = m_data.GetU64(&offset); 5282 SectionSP text_segment_sp = 5283 GetSectionList()->FindSectionByName(text_segment_name); 5284 if (text_segment_sp) { 5285 done = true; 5286 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5287 } 5288 } break; 5289 5290 default: 5291 break; 5292 } 5293 if (done) 5294 break; 5295 5296 // Go to the next load command: 5297 offset = cmd_offset + load_cmd.cmdsize; 5298 } 5299 5300 if (start_address != LLDB_INVALID_ADDRESS) { 5301 // We got the start address from the load commands, so now resolve that 5302 // address in the sections of this ObjectFile: 5303 if (!m_entry_point_address.ResolveAddressUsingFileSections( 5304 start_address, GetSectionList())) { 5305 m_entry_point_address.Clear(); 5306 } 5307 } else { 5308 // We couldn't read the UnixThread load command - maybe it wasn't there. 5309 // As a fallback look for the "start" symbol in the main executable. 5310 5311 ModuleSP module_sp(GetModule()); 5312 5313 if (module_sp) { 5314 SymbolContextList contexts; 5315 SymbolContext context; 5316 if (module_sp->FindSymbolsWithNameAndType(ConstString("start"), 5317 eSymbolTypeCode, contexts)) { 5318 if (contexts.GetContextAtIndex(0, context)) 5319 m_entry_point_address = context.symbol->GetAddress(); 5320 } 5321 } 5322 } 5323 } 5324 5325 return m_entry_point_address; 5326 } 5327 5328 lldb_private::Address ObjectFileMachO::GetBaseAddress() { 5329 lldb_private::Address header_addr; 5330 SectionList *section_list = GetSectionList(); 5331 if (section_list) { 5332 SectionSP text_segment_sp( 5333 section_list->FindSectionByName(GetSegmentNameTEXT())); 5334 if (text_segment_sp) { 5335 header_addr.SetSection(text_segment_sp); 5336 header_addr.SetOffset(0); 5337 } 5338 } 5339 return header_addr; 5340 } 5341 5342 uint32_t ObjectFileMachO::GetNumThreadContexts() { 5343 ModuleSP module_sp(GetModule()); 5344 if (module_sp) { 5345 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5346 if (!m_thread_context_offsets_valid) { 5347 m_thread_context_offsets_valid = true; 5348 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5349 FileRangeArray::Entry file_range; 5350 thread_command thread_cmd; 5351 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5352 const uint32_t cmd_offset = offset; 5353 if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr) 5354 break; 5355 5356 if (thread_cmd.cmd == LC_THREAD) { 5357 file_range.SetRangeBase(offset); 5358 file_range.SetByteSize(thread_cmd.cmdsize - 8); 5359 m_thread_context_offsets.Append(file_range); 5360 } 5361 offset = cmd_offset + thread_cmd.cmdsize; 5362 } 5363 } 5364 } 5365 return m_thread_context_offsets.GetSize(); 5366 } 5367 5368 std::string ObjectFileMachO::GetIdentifierString() { 5369 std::string result; 5370 ModuleSP module_sp(GetModule()); 5371 if (module_sp) { 5372 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5373 5374 // First, look over the load commands for an LC_NOTE load command with 5375 // data_owner string "kern ver str" & use that if found. 5376 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5377 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5378 const uint32_t cmd_offset = offset; 5379 load_command lc; 5380 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5381 break; 5382 if (lc.cmd == LC_NOTE) 5383 { 5384 char data_owner[17]; 5385 m_data.CopyData (offset, 16, data_owner); 5386 data_owner[16] = '\0'; 5387 offset += 16; 5388 uint64_t fileoff = m_data.GetU64_unchecked (&offset); 5389 uint64_t size = m_data.GetU64_unchecked (&offset); 5390 5391 // "kern ver str" has a uint32_t version and then a nul terminated 5392 // c-string. 5393 if (strcmp ("kern ver str", data_owner) == 0) 5394 { 5395 offset = fileoff; 5396 uint32_t version; 5397 if (m_data.GetU32 (&offset, &version, 1) != nullptr) 5398 { 5399 if (version == 1) 5400 { 5401 uint32_t strsize = size - sizeof (uint32_t); 5402 char *buf = (char*) malloc (strsize); 5403 if (buf) 5404 { 5405 m_data.CopyData (offset, strsize, buf); 5406 buf[strsize - 1] = '\0'; 5407 result = buf; 5408 if (buf) 5409 free (buf); 5410 return result; 5411 } 5412 } 5413 } 5414 } 5415 } 5416 offset = cmd_offset + lc.cmdsize; 5417 } 5418 5419 // Second, make a pass over the load commands looking for an obsolete 5420 // LC_IDENT load command. 5421 offset = MachHeaderSizeFromMagic(m_header.magic); 5422 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5423 const uint32_t cmd_offset = offset; 5424 struct ident_command ident_command; 5425 if (m_data.GetU32(&offset, &ident_command, 2) == nullptr) 5426 break; 5427 if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) { 5428 char *buf = (char *) malloc (ident_command.cmdsize); 5429 if (buf != nullptr 5430 && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) { 5431 buf[ident_command.cmdsize - 1] = '\0'; 5432 result = buf; 5433 } 5434 if (buf) 5435 free (buf); 5436 } 5437 offset = cmd_offset + ident_command.cmdsize; 5438 } 5439 5440 } 5441 return result; 5442 } 5443 5444 bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) { 5445 address = LLDB_INVALID_ADDRESS; 5446 uuid.Clear(); 5447 ModuleSP module_sp(GetModule()); 5448 if (module_sp) { 5449 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5450 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5451 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5452 const uint32_t cmd_offset = offset; 5453 load_command lc; 5454 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5455 break; 5456 if (lc.cmd == LC_NOTE) 5457 { 5458 char data_owner[17]; 5459 memset (data_owner, 0, sizeof (data_owner)); 5460 m_data.CopyData (offset, 16, data_owner); 5461 offset += 16; 5462 uint64_t fileoff = m_data.GetU64_unchecked (&offset); 5463 uint64_t size = m_data.GetU64_unchecked (&offset); 5464 5465 // "main bin spec" (main binary specification) data payload is 5466 // formatted: 5467 // uint32_t version [currently 1] 5468 // uint32_t type [0 == unspecified, 1 == kernel, 2 == user process] 5469 // uint64_t address [ UINT64_MAX if address not specified ] 5470 // uuid_t uuid [ all zero's if uuid not specified ] 5471 // uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12. 0 for unspecified ] 5472 5473 if (strcmp ("main bin spec", data_owner) == 0 && size >= 32) 5474 { 5475 offset = fileoff; 5476 uint32_t version; 5477 if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1) 5478 { 5479 uint32_t type = 0; 5480 uuid_t raw_uuid; 5481 memset (raw_uuid, 0, sizeof (uuid_t)); 5482 5483 if (m_data.GetU32(&offset, &type, 1) && 5484 m_data.GetU64(&offset, &address, 1) && 5485 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) { 5486 uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t)); 5487 return true; 5488 } 5489 } 5490 } 5491 } 5492 offset = cmd_offset + lc.cmdsize; 5493 } 5494 } 5495 return false; 5496 } 5497 5498 lldb::RegisterContextSP 5499 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx, 5500 lldb_private::Thread &thread) { 5501 lldb::RegisterContextSP reg_ctx_sp; 5502 5503 ModuleSP module_sp(GetModule()); 5504 if (module_sp) { 5505 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5506 if (!m_thread_context_offsets_valid) 5507 GetNumThreadContexts(); 5508 5509 const FileRangeArray::Entry *thread_context_file_range = 5510 m_thread_context_offsets.GetEntryAtIndex(idx); 5511 if (thread_context_file_range) { 5512 5513 DataExtractor data(m_data, thread_context_file_range->GetRangeBase(), 5514 thread_context_file_range->GetByteSize()); 5515 5516 switch (m_header.cputype) { 5517 case llvm::MachO::CPU_TYPE_ARM64: 5518 reg_ctx_sp = 5519 std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data); 5520 break; 5521 5522 case llvm::MachO::CPU_TYPE_ARM: 5523 reg_ctx_sp = 5524 std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data); 5525 break; 5526 5527 case llvm::MachO::CPU_TYPE_I386: 5528 reg_ctx_sp = 5529 std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data); 5530 break; 5531 5532 case llvm::MachO::CPU_TYPE_X86_64: 5533 reg_ctx_sp = 5534 std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data); 5535 break; 5536 } 5537 } 5538 } 5539 return reg_ctx_sp; 5540 } 5541 5542 ObjectFile::Type ObjectFileMachO::CalculateType() { 5543 switch (m_header.filetype) { 5544 case MH_OBJECT: // 0x1u 5545 if (GetAddressByteSize() == 4) { 5546 // 32 bit kexts are just object files, but they do have a valid 5547 // UUID load command. 5548 if (GetUUID()) { 5549 // this checking for the UUID load command is not enough we could 5550 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5551 // this is required of kexts 5552 if (m_strata == eStrataInvalid) 5553 m_strata = eStrataKernel; 5554 return eTypeSharedLibrary; 5555 } 5556 } 5557 return eTypeObjectFile; 5558 5559 case MH_EXECUTE: 5560 return eTypeExecutable; // 0x2u 5561 case MH_FVMLIB: 5562 return eTypeSharedLibrary; // 0x3u 5563 case MH_CORE: 5564 return eTypeCoreFile; // 0x4u 5565 case MH_PRELOAD: 5566 return eTypeSharedLibrary; // 0x5u 5567 case MH_DYLIB: 5568 return eTypeSharedLibrary; // 0x6u 5569 case MH_DYLINKER: 5570 return eTypeDynamicLinker; // 0x7u 5571 case MH_BUNDLE: 5572 return eTypeSharedLibrary; // 0x8u 5573 case MH_DYLIB_STUB: 5574 return eTypeStubLibrary; // 0x9u 5575 case MH_DSYM: 5576 return eTypeDebugInfo; // 0xAu 5577 case MH_KEXT_BUNDLE: 5578 return eTypeSharedLibrary; // 0xBu 5579 default: 5580 break; 5581 } 5582 return eTypeUnknown; 5583 } 5584 5585 ObjectFile::Strata ObjectFileMachO::CalculateStrata() { 5586 switch (m_header.filetype) { 5587 case MH_OBJECT: // 0x1u 5588 { 5589 // 32 bit kexts are just object files, but they do have a valid 5590 // UUID load command. 5591 if (GetUUID()) { 5592 // this checking for the UUID load command is not enough we could 5593 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5594 // this is required of kexts 5595 if (m_type == eTypeInvalid) 5596 m_type = eTypeSharedLibrary; 5597 5598 return eStrataKernel; 5599 } 5600 } 5601 return eStrataUnknown; 5602 5603 case MH_EXECUTE: // 0x2u 5604 // Check for the MH_DYLDLINK bit in the flags 5605 if (m_header.flags & MH_DYLDLINK) { 5606 return eStrataUser; 5607 } else { 5608 SectionList *section_list = GetSectionList(); 5609 if (section_list) { 5610 static ConstString g_kld_section_name("__KLD"); 5611 if (section_list->FindSectionByName(g_kld_section_name)) 5612 return eStrataKernel; 5613 } 5614 } 5615 return eStrataRawImage; 5616 5617 case MH_FVMLIB: 5618 return eStrataUser; // 0x3u 5619 case MH_CORE: 5620 return eStrataUnknown; // 0x4u 5621 case MH_PRELOAD: 5622 return eStrataRawImage; // 0x5u 5623 case MH_DYLIB: 5624 return eStrataUser; // 0x6u 5625 case MH_DYLINKER: 5626 return eStrataUser; // 0x7u 5627 case MH_BUNDLE: 5628 return eStrataUser; // 0x8u 5629 case MH_DYLIB_STUB: 5630 return eStrataUser; // 0x9u 5631 case MH_DSYM: 5632 return eStrataUnknown; // 0xAu 5633 case MH_KEXT_BUNDLE: 5634 return eStrataKernel; // 0xBu 5635 default: 5636 break; 5637 } 5638 return eStrataUnknown; 5639 } 5640 5641 llvm::VersionTuple ObjectFileMachO::GetVersion() { 5642 ModuleSP module_sp(GetModule()); 5643 if (module_sp) { 5644 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5645 struct dylib_command load_cmd; 5646 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5647 uint32_t version_cmd = 0; 5648 uint64_t version = 0; 5649 uint32_t i; 5650 for (i = 0; i < m_header.ncmds; ++i) { 5651 const lldb::offset_t cmd_offset = offset; 5652 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5653 break; 5654 5655 if (load_cmd.cmd == LC_ID_DYLIB) { 5656 if (version_cmd == 0) { 5657 version_cmd = load_cmd.cmd; 5658 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr) 5659 break; 5660 version = load_cmd.dylib.current_version; 5661 } 5662 break; // Break for now unless there is another more complete version 5663 // number load command in the future. 5664 } 5665 offset = cmd_offset + load_cmd.cmdsize; 5666 } 5667 5668 if (version_cmd == LC_ID_DYLIB) { 5669 unsigned major = (version & 0xFFFF0000ull) >> 16; 5670 unsigned minor = (version & 0x0000FF00ull) >> 8; 5671 unsigned subminor = (version & 0x000000FFull); 5672 return llvm::VersionTuple(major, minor, subminor); 5673 } 5674 } 5675 return llvm::VersionTuple(); 5676 } 5677 5678 ArchSpec ObjectFileMachO::GetArchitecture() { 5679 ModuleSP module_sp(GetModule()); 5680 ArchSpec arch; 5681 if (module_sp) { 5682 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5683 5684 return GetArchitecture(m_header, m_data, 5685 MachHeaderSizeFromMagic(m_header.magic)); 5686 } 5687 return arch; 5688 } 5689 5690 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, addr_t &base_addr, UUID &uuid) { 5691 uuid.Clear(); 5692 base_addr = LLDB_INVALID_ADDRESS; 5693 if (process && process->GetDynamicLoader()) { 5694 DynamicLoader *dl = process->GetDynamicLoader(); 5695 LazyBool using_shared_cache; 5696 LazyBool private_shared_cache; 5697 dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache, 5698 private_shared_cache); 5699 } 5700 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS)); 5701 if (log) 5702 log->Printf("inferior process shared cache has a UUID of %s, base address 0x%" PRIx64 , uuid.GetAsString().c_str(), base_addr); 5703 } 5704 5705 // From dyld SPI header dyld_process_info.h 5706 typedef void *dyld_process_info; 5707 struct lldb_copy__dyld_process_cache_info { 5708 uuid_t cacheUUID; // UUID of cache used by process 5709 uint64_t cacheBaseAddress; // load address of dyld shared cache 5710 bool noCache; // process is running without a dyld cache 5711 bool privateCache; // process is using a private copy of its dyld cache 5712 }; 5713 5714 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with llvm 5715 // enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile errors. 5716 // So we need to use the actual underlying types of task_t and kern_return_t 5717 // below. 5718 extern "C" unsigned int /*task_t*/ mach_task_self(); 5719 5720 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) { 5721 uuid.Clear(); 5722 base_addr = LLDB_INVALID_ADDRESS; 5723 5724 #if defined(__APPLE__) && \ 5725 (defined(__arm__) || defined(__arm64__) || defined(__aarch64__)) 5726 uint8_t *(*dyld_get_all_image_infos)(void); 5727 dyld_get_all_image_infos = 5728 (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5729 if (dyld_get_all_image_infos) { 5730 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5731 if (dyld_all_image_infos_address) { 5732 uint32_t *version = (uint32_t *) 5733 dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5734 if (*version >= 13) { 5735 uuid_t *sharedCacheUUID_address = 0; 5736 int wordsize = sizeof(uint8_t *); 5737 if (wordsize == 8) { 5738 sharedCacheUUID_address = 5739 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5740 160); // sharedCacheUUID <mach-o/dyld_images.h> 5741 if (*version >= 15) 5742 base_addr = *(uint64_t *) ((uint8_t *) dyld_all_image_infos_address 5743 + 176); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5744 } else { 5745 sharedCacheUUID_address = 5746 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5747 84); // sharedCacheUUID <mach-o/dyld_images.h> 5748 if (*version >= 15) { 5749 base_addr = 0; 5750 base_addr = *(uint32_t *) ((uint8_t *) dyld_all_image_infos_address 5751 + 100); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5752 } 5753 } 5754 uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t)); 5755 } 5756 } 5757 } else { 5758 // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI 5759 dyld_process_info (*dyld_process_info_create)(unsigned int /* task_t */ task, uint64_t timestamp, unsigned int /*kern_return_t*/ *kernelError); 5760 void (*dyld_process_info_get_cache)(void *info, void *cacheInfo); 5761 void (*dyld_process_info_release)(dyld_process_info info); 5762 5763 dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, unsigned int /*kern_return_t*/ *)) 5764 dlsym (RTLD_DEFAULT, "_dyld_process_info_create"); 5765 dyld_process_info_get_cache = (void (*)(void *, void *)) 5766 dlsym (RTLD_DEFAULT, "_dyld_process_info_get_cache"); 5767 dyld_process_info_release = (void (*)(void *)) 5768 dlsym (RTLD_DEFAULT, "_dyld_process_info_release"); 5769 5770 if (dyld_process_info_create && dyld_process_info_get_cache) { 5771 unsigned int /*kern_return_t */ kern_ret; 5772 dyld_process_info process_info = dyld_process_info_create(::mach_task_self(), 0, &kern_ret); 5773 if (process_info) { 5774 struct lldb_copy__dyld_process_cache_info sc_info; 5775 memset (&sc_info, 0, sizeof (struct lldb_copy__dyld_process_cache_info)); 5776 dyld_process_info_get_cache (process_info, &sc_info); 5777 if (sc_info.cacheBaseAddress != 0) { 5778 base_addr = sc_info.cacheBaseAddress; 5779 uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t)); 5780 } 5781 dyld_process_info_release (process_info); 5782 } 5783 } 5784 } 5785 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS)); 5786 if (log && uuid.IsValid()) 5787 log->Printf("lldb's in-memory shared cache has a UUID of %s base address of 0x%" PRIx64, uuid.GetAsString().c_str(), base_addr); 5788 #endif 5789 } 5790 5791 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() { 5792 if (!m_min_os_version) { 5793 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5794 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5795 const lldb::offset_t load_cmd_offset = offset; 5796 5797 version_min_command lc; 5798 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5799 break; 5800 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 5801 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 5802 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 5803 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 5804 if (m_data.GetU32(&offset, &lc.version, 5805 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 5806 const uint32_t xxxx = lc.version >> 16; 5807 const uint32_t yy = (lc.version >> 8) & 0xffu; 5808 const uint32_t zz = lc.version & 0xffu; 5809 if (xxxx) { 5810 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 5811 break; 5812 } 5813 } 5814 } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 5815 // struct build_version_command { 5816 // uint32_t cmd; /* LC_BUILD_VERSION */ 5817 // uint32_t cmdsize; /* sizeof(struct build_version_command) plus */ 5818 // /* ntools * sizeof(struct build_tool_version) */ 5819 // uint32_t platform; /* platform */ 5820 // uint32_t minos; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */ 5821 // uint32_t sdk; /* X.Y.Z is encoded in nibbles xxxx.yy.zz */ 5822 // uint32_t ntools; /* number of tool entries following this */ 5823 // }; 5824 5825 offset += 4; // skip platform 5826 uint32_t minos = m_data.GetU32(&offset); 5827 5828 const uint32_t xxxx = minos >> 16; 5829 const uint32_t yy = (minos >> 8) & 0xffu; 5830 const uint32_t zz = minos & 0xffu; 5831 if (xxxx) { 5832 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 5833 break; 5834 } 5835 } 5836 5837 offset = load_cmd_offset + lc.cmdsize; 5838 } 5839 5840 if (!m_min_os_version) { 5841 // Set version to an empty value so we don't keep trying to 5842 m_min_os_version = llvm::VersionTuple(); 5843 } 5844 } 5845 5846 return *m_min_os_version; 5847 } 5848 5849 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions, 5850 uint32_t num_versions) { 5851 if (m_sdk_versions.empty()) { 5852 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5853 bool success = false; 5854 for (uint32_t i = 0; !success && i < m_header.ncmds; ++i) { 5855 const lldb::offset_t load_cmd_offset = offset; 5856 5857 version_min_command lc; 5858 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5859 break; 5860 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 5861 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 5862 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 5863 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 5864 if (m_data.GetU32(&offset, &lc.version, 5865 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 5866 const uint32_t xxxx = lc.sdk >> 16; 5867 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5868 const uint32_t zz = lc.sdk & 0xffu; 5869 if (xxxx) { 5870 m_sdk_versions.push_back(xxxx); 5871 m_sdk_versions.push_back(yy); 5872 m_sdk_versions.push_back(zz); 5873 success = true; 5874 } else { 5875 GetModule()->ReportWarning( 5876 "minimum OS version load command with invalid (0) version found."); 5877 } 5878 } 5879 } 5880 offset = load_cmd_offset + lc.cmdsize; 5881 } 5882 5883 if (!success) { 5884 offset = MachHeaderSizeFromMagic(m_header.magic); 5885 for (uint32_t i = 0; !success && i < m_header.ncmds; ++i) { 5886 const lldb::offset_t load_cmd_offset = offset; 5887 5888 version_min_command lc; 5889 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5890 break; 5891 if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 5892 // struct build_version_command { 5893 // uint32_t cmd; /* LC_BUILD_VERSION */ 5894 // uint32_t cmdsize; /* sizeof(struct 5895 // build_version_command) plus */ 5896 // /* ntools * sizeof(struct 5897 // build_tool_version) */ 5898 // uint32_t platform; /* platform */ 5899 // uint32_t minos; /* X.Y.Z is encoded in nibbles 5900 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded 5901 // in nibbles xxxx.yy.zz */ uint32_t ntools; /* number 5902 // of tool entries following this */ 5903 // }; 5904 5905 offset += 4; // skip platform 5906 uint32_t minos = m_data.GetU32(&offset); 5907 5908 const uint32_t xxxx = minos >> 16; 5909 const uint32_t yy = (minos >> 8) & 0xffu; 5910 const uint32_t zz = minos & 0xffu; 5911 if (xxxx) { 5912 m_sdk_versions.push_back(xxxx); 5913 m_sdk_versions.push_back(yy); 5914 m_sdk_versions.push_back(zz); 5915 success = true; 5916 } 5917 } 5918 offset = load_cmd_offset + lc.cmdsize; 5919 } 5920 } 5921 5922 if (!success) { 5923 // Push an invalid value so we don't try to find 5924 // the version # again on the next call to this 5925 // method. 5926 m_sdk_versions.push_back(UINT32_MAX); 5927 } 5928 } 5929 5930 // Legitimate version numbers will have 3 entries pushed 5931 // on to m_sdk_versions. If we only have one value, it's 5932 // the sentinel value indicating that this object file 5933 // does not have a valid minimum os version #. 5934 if (m_sdk_versions.size() > 1) { 5935 if (versions != nullptr && num_versions > 0) { 5936 for (size_t i = 0; i < num_versions; ++i) { 5937 if (i < m_sdk_versions.size()) 5938 versions[i] = m_sdk_versions[i]; 5939 else 5940 versions[i] = 0; 5941 } 5942 } 5943 return m_sdk_versions.size(); 5944 } 5945 // Call the superclasses version that will empty out the data 5946 return ObjectFile::GetSDKVersion(versions, num_versions); 5947 } 5948 5949 bool ObjectFileMachO::GetIsDynamicLinkEditor() { 5950 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5951 } 5952 5953 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() { 5954 return m_allow_assembly_emulation_unwind_plans; 5955 } 5956 5957 // PluginInterface protocol 5958 lldb_private::ConstString ObjectFileMachO::GetPluginName() { 5959 return GetPluginNameStatic(); 5960 } 5961 5962 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; } 5963 5964 Section *ObjectFileMachO::GetMachHeaderSection() { 5965 // Find the first address of the mach header which is the first non-zero file 5966 // sized section whose file offset is zero. This is the base file address of 5967 // the mach-o file which can be subtracted from the vmaddr of the other 5968 // segments found in memory and added to the load address 5969 ModuleSP module_sp = GetModule(); 5970 if (!module_sp) 5971 return nullptr; 5972 SectionList *section_list = GetSectionList(); 5973 if (!section_list) 5974 return nullptr; 5975 const size_t num_sections = section_list->GetSize(); 5976 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 5977 Section *section = section_list->GetSectionAtIndex(sect_idx).get(); 5978 if (section->GetFileOffset() == 0 && SectionIsLoadable(section)) 5979 return section; 5980 } 5981 return nullptr; 5982 } 5983 5984 bool ObjectFileMachO::SectionIsLoadable(const Section *section) { 5985 if (!section) 5986 return false; 5987 const bool is_dsym = (m_header.filetype == MH_DSYM); 5988 if (section->GetFileSize() == 0 && !is_dsym) 5989 return false; 5990 if (section->IsThreadSpecific()) 5991 return false; 5992 if (GetModule().get() != section->GetModule().get()) 5993 return false; 5994 // Be careful with __LINKEDIT and __DWARF segments 5995 if (section->GetName() == GetSegmentNameLINKEDIT() || 5996 section->GetName() == GetSegmentNameDWARF()) { 5997 // Only map __LINKEDIT and __DWARF if we have an in memory image and 5998 // this isn't a kernel binary like a kext or mach_kernel. 5999 const bool is_memory_image = (bool)m_process_wp.lock(); 6000 const Strata strata = GetStrata(); 6001 if (is_memory_image == false || strata == eStrataKernel) 6002 return false; 6003 } 6004 return true; 6005 } 6006 6007 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage( 6008 lldb::addr_t header_load_address, const Section *header_section, 6009 const Section *section) { 6010 ModuleSP module_sp = GetModule(); 6011 if (module_sp && header_section && section && 6012 header_load_address != LLDB_INVALID_ADDRESS) { 6013 lldb::addr_t file_addr = header_section->GetFileAddress(); 6014 if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section)) 6015 return section->GetFileAddress() - file_addr + header_load_address; 6016 } 6017 return LLDB_INVALID_ADDRESS; 6018 } 6019 6020 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value, 6021 bool value_is_offset) { 6022 ModuleSP module_sp = GetModule(); 6023 if (module_sp) { 6024 size_t num_loaded_sections = 0; 6025 SectionList *section_list = GetSectionList(); 6026 if (section_list) { 6027 const size_t num_sections = section_list->GetSize(); 6028 6029 if (value_is_offset) { 6030 // "value" is an offset to apply to each top level segment 6031 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6032 // Iterate through the object file sections to find all of the 6033 // sections that size on disk (to avoid __PAGEZERO) and load them 6034 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6035 if (SectionIsLoadable(section_sp.get())) 6036 if (target.GetSectionLoadList().SetSectionLoadAddress( 6037 section_sp, section_sp->GetFileAddress() + value)) 6038 ++num_loaded_sections; 6039 } 6040 } else { 6041 // "value" is the new base address of the mach_header, adjust each 6042 // section accordingly 6043 6044 Section *mach_header_section = GetMachHeaderSection(); 6045 if (mach_header_section) { 6046 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6047 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6048 6049 lldb::addr_t section_load_addr = 6050 CalculateSectionLoadAddressForMemoryImage( 6051 value, mach_header_section, section_sp.get()); 6052 if (section_load_addr != LLDB_INVALID_ADDRESS) { 6053 if (target.GetSectionLoadList().SetSectionLoadAddress( 6054 section_sp, section_load_addr)) 6055 ++num_loaded_sections; 6056 } 6057 } 6058 } 6059 } 6060 } 6061 return num_loaded_sections > 0; 6062 } 6063 return false; 6064 } 6065 6066 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp, 6067 const FileSpec &outfile, Status &error) { 6068 if (process_sp) { 6069 Target &target = process_sp->GetTarget(); 6070 const ArchSpec target_arch = target.GetArchitecture(); 6071 const llvm::Triple &target_triple = target_arch.GetTriple(); 6072 if (target_triple.getVendor() == llvm::Triple::Apple && 6073 (target_triple.getOS() == llvm::Triple::MacOSX || 6074 target_triple.getOS() == llvm::Triple::IOS || 6075 target_triple.getOS() == llvm::Triple::WatchOS || 6076 target_triple.getOS() == llvm::Triple::TvOS)) { 6077 // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) { 6078 bool make_core = false; 6079 switch (target_arch.GetMachine()) { 6080 case llvm::Triple::aarch64: 6081 case llvm::Triple::arm: 6082 case llvm::Triple::thumb: 6083 case llvm::Triple::x86: 6084 case llvm::Triple::x86_64: 6085 make_core = true; 6086 break; 6087 default: 6088 error.SetErrorStringWithFormat("unsupported core architecture: %s", 6089 target_triple.str().c_str()); 6090 break; 6091 } 6092 6093 if (make_core) { 6094 std::vector<segment_command_64> segment_load_commands; 6095 // uint32_t range_info_idx = 0; 6096 MemoryRegionInfo range_info; 6097 Status range_error = process_sp->GetMemoryRegionInfo(0, range_info); 6098 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 6099 const ByteOrder byte_order = target_arch.GetByteOrder(); 6100 if (range_error.Success()) { 6101 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) { 6102 const addr_t addr = range_info.GetRange().GetRangeBase(); 6103 const addr_t size = range_info.GetRange().GetByteSize(); 6104 6105 if (size == 0) 6106 break; 6107 6108 // Calculate correct protections 6109 uint32_t prot = 0; 6110 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 6111 prot |= VM_PROT_READ; 6112 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 6113 prot |= VM_PROT_WRITE; 6114 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 6115 prot |= VM_PROT_EXECUTE; 6116 6117 if (prot != 0) { 6118 uint32_t cmd_type = LC_SEGMENT_64; 6119 uint32_t segment_size = sizeof(segment_command_64); 6120 if (addr_byte_size == 4) { 6121 cmd_type = LC_SEGMENT; 6122 segment_size = sizeof(segment_command); 6123 } 6124 segment_command_64 segment = { 6125 cmd_type, // uint32_t cmd; 6126 segment_size, // uint32_t cmdsize; 6127 {0}, // char segname[16]; 6128 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 6129 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 6130 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 6131 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 6132 prot, // uint32_t maxprot; 6133 prot, // uint32_t initprot; 6134 0, // uint32_t nsects; 6135 0}; // uint32_t flags; 6136 segment_load_commands.push_back(segment); 6137 } else { 6138 // No protections and a size of 1 used to be returned from old 6139 // debugservers when we asked about a region that was past the 6140 // last memory region and it indicates the end... 6141 if (size == 1) 6142 break; 6143 } 6144 6145 range_error = process_sp->GetMemoryRegionInfo( 6146 range_info.GetRange().GetRangeEnd(), range_info); 6147 if (range_error.Fail()) 6148 break; 6149 } 6150 6151 StreamString buffer(Stream::eBinary, addr_byte_size, byte_order); 6152 6153 mach_header_64 mach_header; 6154 if (addr_byte_size == 8) { 6155 mach_header.magic = MH_MAGIC_64; 6156 } else { 6157 mach_header.magic = MH_MAGIC; 6158 } 6159 mach_header.cputype = target_arch.GetMachOCPUType(); 6160 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 6161 mach_header.filetype = MH_CORE; 6162 mach_header.ncmds = segment_load_commands.size(); 6163 mach_header.flags = 0; 6164 mach_header.reserved = 0; 6165 ThreadList &thread_list = process_sp->GetThreadList(); 6166 const uint32_t num_threads = thread_list.GetSize(); 6167 6168 // Make an array of LC_THREAD data items. Each one contains the 6169 // contents of the LC_THREAD load command. The data doesn't contain 6170 // the load command + load command size, we will add the load command 6171 // and load command size as we emit the data. 6172 std::vector<StreamString> LC_THREAD_datas(num_threads); 6173 for (auto &LC_THREAD_data : LC_THREAD_datas) { 6174 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 6175 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 6176 LC_THREAD_data.SetByteOrder(byte_order); 6177 } 6178 for (uint32_t thread_idx = 0; thread_idx < num_threads; 6179 ++thread_idx) { 6180 ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); 6181 if (thread_sp) { 6182 switch (mach_header.cputype) { 6183 case llvm::MachO::CPU_TYPE_ARM64: 6184 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD( 6185 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6186 break; 6187 6188 case llvm::MachO::CPU_TYPE_ARM: 6189 RegisterContextDarwin_arm_Mach::Create_LC_THREAD( 6190 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6191 break; 6192 6193 case llvm::MachO::CPU_TYPE_I386: 6194 RegisterContextDarwin_i386_Mach::Create_LC_THREAD( 6195 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6196 break; 6197 6198 case llvm::MachO::CPU_TYPE_X86_64: 6199 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD( 6200 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6201 break; 6202 } 6203 } 6204 } 6205 6206 // The size of the load command is the size of the segments... 6207 if (addr_byte_size == 8) { 6208 mach_header.sizeofcmds = segment_load_commands.size() * 6209 sizeof(struct segment_command_64); 6210 } else { 6211 mach_header.sizeofcmds = 6212 segment_load_commands.size() * sizeof(struct segment_command); 6213 } 6214 6215 // and the size of all LC_THREAD load command 6216 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6217 ++mach_header.ncmds; 6218 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 6219 } 6220 6221 // Write the mach header 6222 buffer.PutHex32(mach_header.magic); 6223 buffer.PutHex32(mach_header.cputype); 6224 buffer.PutHex32(mach_header.cpusubtype); 6225 buffer.PutHex32(mach_header.filetype); 6226 buffer.PutHex32(mach_header.ncmds); 6227 buffer.PutHex32(mach_header.sizeofcmds); 6228 buffer.PutHex32(mach_header.flags); 6229 if (addr_byte_size == 8) { 6230 buffer.PutHex32(mach_header.reserved); 6231 } 6232 6233 // Skip the mach header and all load commands and align to the next 6234 // 0x1000 byte boundary 6235 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 6236 if (file_offset & 0x00000fff) { 6237 file_offset += 0x00001000ull; 6238 file_offset &= (~0x00001000ull + 1); 6239 } 6240 6241 for (auto &segment : segment_load_commands) { 6242 segment.fileoff = file_offset; 6243 file_offset += segment.filesize; 6244 } 6245 6246 // Write out all of the LC_THREAD load commands 6247 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6248 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 6249 buffer.PutHex32(LC_THREAD); 6250 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 6251 buffer.Write(LC_THREAD_data.GetString().data(), 6252 LC_THREAD_data_size); 6253 } 6254 6255 // Write out all of the segment load commands 6256 for (const auto &segment : segment_load_commands) { 6257 printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 6258 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 6259 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 6260 segment.cmd, segment.cmdsize, segment.vmaddr, 6261 segment.vmaddr + segment.vmsize, segment.fileoff, 6262 segment.filesize, segment.maxprot, segment.initprot, 6263 segment.nsects, segment.flags); 6264 6265 buffer.PutHex32(segment.cmd); 6266 buffer.PutHex32(segment.cmdsize); 6267 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 6268 if (addr_byte_size == 8) { 6269 buffer.PutHex64(segment.vmaddr); 6270 buffer.PutHex64(segment.vmsize); 6271 buffer.PutHex64(segment.fileoff); 6272 buffer.PutHex64(segment.filesize); 6273 } else { 6274 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 6275 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 6276 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 6277 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 6278 } 6279 buffer.PutHex32(segment.maxprot); 6280 buffer.PutHex32(segment.initprot); 6281 buffer.PutHex32(segment.nsects); 6282 buffer.PutHex32(segment.flags); 6283 } 6284 6285 File core_file; 6286 std::string core_file_path(outfile.GetPath()); 6287 error = FileSystem::Instance().Open(core_file, outfile, 6288 File::eOpenOptionWrite | 6289 File::eOpenOptionTruncate | 6290 File::eOpenOptionCanCreate); 6291 if (error.Success()) { 6292 // Read 1 page at a time 6293 uint8_t bytes[0x1000]; 6294 // Write the mach header and load commands out to the core file 6295 size_t bytes_written = buffer.GetString().size(); 6296 error = core_file.Write(buffer.GetString().data(), bytes_written); 6297 if (error.Success()) { 6298 // Now write the file data for all memory segments in the process 6299 for (const auto &segment : segment_load_commands) { 6300 if (core_file.SeekFromStart(segment.fileoff) == -1) { 6301 error.SetErrorStringWithFormat( 6302 "unable to seek to offset 0x%" PRIx64 " in '%s'", 6303 segment.fileoff, core_file_path.c_str()); 6304 break; 6305 } 6306 6307 printf("Saving %" PRId64 6308 " bytes of data for memory region at 0x%" PRIx64 "\n", 6309 segment.vmsize, segment.vmaddr); 6310 addr_t bytes_left = segment.vmsize; 6311 addr_t addr = segment.vmaddr; 6312 Status memory_read_error; 6313 while (bytes_left > 0 && error.Success()) { 6314 const size_t bytes_to_read = 6315 bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 6316 6317 // In a savecore setting, we don't really care about caching, 6318 // as the data is dumped and very likely never read again, 6319 // so we call ReadMemoryFromInferior to bypass it. 6320 const size_t bytes_read = process_sp->ReadMemoryFromInferior( 6321 addr, bytes, bytes_to_read, memory_read_error); 6322 6323 if (bytes_read == bytes_to_read) { 6324 size_t bytes_written = bytes_read; 6325 error = core_file.Write(bytes, bytes_written); 6326 bytes_left -= bytes_read; 6327 addr += bytes_read; 6328 } else { 6329 // Some pages within regions are not readable, those should 6330 // be zero filled 6331 memset(bytes, 0, bytes_to_read); 6332 size_t bytes_written = bytes_to_read; 6333 error = core_file.Write(bytes, bytes_written); 6334 bytes_left -= bytes_to_read; 6335 addr += bytes_to_read; 6336 } 6337 } 6338 } 6339 } 6340 } 6341 } else { 6342 error.SetErrorString( 6343 "process doesn't support getting memory region info"); 6344 } 6345 } 6346 return true; // This is the right plug to handle saving core files for 6347 // this process 6348 } 6349 } 6350 return false; 6351 } 6352