1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Support/MachO.h" 11 12 #include "ObjectFileMachO.h" 13 14 #include "lldb/Core/ArchSpec.h" 15 #include "lldb/Core/DataBuffer.h" 16 #include "lldb/Host/FileSpec.h" 17 #include "lldb/Core/FileSpecList.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Core/StreamFile.h" 22 #include "lldb/Core/StreamString.h" 23 #include "lldb/Core/Timer.h" 24 #include "lldb/Core/UUID.h" 25 #include "lldb/Symbol/ClangNamespaceDecl.h" 26 #include "lldb/Symbol/ObjectFile.h" 27 28 29 using namespace lldb; 30 using namespace lldb_private; 31 using namespace llvm::MachO; 32 33 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 34 35 void 36 ObjectFileMachO::Initialize() 37 { 38 PluginManager::RegisterPlugin (GetPluginNameStatic(), 39 GetPluginDescriptionStatic(), 40 CreateInstance); 41 } 42 43 void 44 ObjectFileMachO::Terminate() 45 { 46 PluginManager::UnregisterPlugin (CreateInstance); 47 } 48 49 50 const char * 51 ObjectFileMachO::GetPluginNameStatic() 52 { 53 return "object-file.mach-o"; 54 } 55 56 const char * 57 ObjectFileMachO::GetPluginDescriptionStatic() 58 { 59 return "Mach-o object file reader (32 and 64 bit)"; 60 } 61 62 63 ObjectFile * 64 ObjectFileMachO::CreateInstance (Module* module, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length) 65 { 66 if (ObjectFileMachO::MagicBytesMatch(dataSP)) 67 { 68 std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module, dataSP, file, offset, length)); 69 if (objfile_ap.get() && objfile_ap->ParseHeader()) 70 return objfile_ap.release(); 71 } 72 return NULL; 73 } 74 75 76 static uint32_t 77 MachHeaderSizeFromMagic(uint32_t magic) 78 { 79 switch (magic) 80 { 81 case HeaderMagic32: 82 case HeaderMagic32Swapped: 83 return sizeof(struct mach_header); 84 85 case HeaderMagic64: 86 case HeaderMagic64Swapped: 87 return sizeof(struct mach_header_64); 88 break; 89 90 default: 91 break; 92 } 93 return 0; 94 } 95 96 97 bool 98 ObjectFileMachO::MagicBytesMatch (DataBufferSP& dataSP) 99 { 100 DataExtractor data(dataSP, lldb::endian::InlHostByteOrder(), 4); 101 uint32_t offset = 0; 102 uint32_t magic = data.GetU32(&offset); 103 return MachHeaderSizeFromMagic(magic) != 0; 104 } 105 106 107 ObjectFileMachO::ObjectFileMachO(Module* module, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length) : 108 ObjectFile(module, file, offset, length, dataSP), 109 m_mutex (Mutex::eMutexTypeRecursive), 110 m_header(), 111 m_sections_ap(), 112 m_symtab_ap(), 113 m_entry_point_address () 114 { 115 ::memset (&m_header, 0, sizeof(m_header)); 116 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 117 } 118 119 120 ObjectFileMachO::~ObjectFileMachO() 121 { 122 } 123 124 125 bool 126 ObjectFileMachO::ParseHeader () 127 { 128 lldb_private::Mutex::Locker locker(m_mutex); 129 bool can_parse = false; 130 uint32_t offset = 0; 131 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 132 // Leave magic in the original byte order 133 m_header.magic = m_data.GetU32(&offset); 134 switch (m_header.magic) 135 { 136 case HeaderMagic32: 137 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 138 m_data.SetAddressByteSize(4); 139 can_parse = true; 140 break; 141 142 case HeaderMagic64: 143 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 144 m_data.SetAddressByteSize(8); 145 can_parse = true; 146 break; 147 148 case HeaderMagic32Swapped: 149 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 150 m_data.SetAddressByteSize(4); 151 can_parse = true; 152 break; 153 154 case HeaderMagic64Swapped: 155 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 156 m_data.SetAddressByteSize(8); 157 can_parse = true; 158 break; 159 160 default: 161 break; 162 } 163 164 if (can_parse) 165 { 166 m_data.GetU32(&offset, &m_header.cputype, 6); 167 168 ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 169 170 if (SetModulesArchitecture (mach_arch)) 171 { 172 // Read in all only the load command data 173 DataBufferSP data_sp(m_file.ReadFileContents(m_offset, m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic))); 174 m_data.SetData (data_sp); 175 return true; 176 } 177 } 178 else 179 { 180 memset(&m_header, 0, sizeof(struct mach_header)); 181 } 182 return false; 183 } 184 185 186 ByteOrder 187 ObjectFileMachO::GetByteOrder () const 188 { 189 lldb_private::Mutex::Locker locker(m_mutex); 190 return m_data.GetByteOrder (); 191 } 192 193 bool 194 ObjectFileMachO::IsExecutable() const 195 { 196 return m_header.filetype == HeaderFileTypeExecutable; 197 } 198 199 size_t 200 ObjectFileMachO::GetAddressByteSize () const 201 { 202 lldb_private::Mutex::Locker locker(m_mutex); 203 return m_data.GetAddressByteSize (); 204 } 205 206 AddressClass 207 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 208 { 209 Symtab *symtab = GetSymtab(); 210 if (symtab) 211 { 212 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 213 if (symbol) 214 { 215 const AddressRange *range_ptr = symbol->GetAddressRangePtr(); 216 if (range_ptr) 217 { 218 const Section *section = range_ptr->GetBaseAddress().GetSection(); 219 if (section) 220 { 221 const SectionType section_type = section->GetType(); 222 switch (section_type) 223 { 224 case eSectionTypeInvalid: return eAddressClassUnknown; 225 case eSectionTypeCode: 226 if (m_header.cputype == llvm::MachO::CPUTypeARM) 227 { 228 // For ARM we have a bit in the n_desc field of the symbol 229 // that tells us ARM/Thumb which is bit 0x0008. 230 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 231 return eAddressClassCodeAlternateISA; 232 } 233 return eAddressClassCode; 234 235 case eSectionTypeContainer: return eAddressClassUnknown; 236 case eSectionTypeData: return eAddressClassData; 237 case eSectionTypeDataCString: return eAddressClassData; 238 case eSectionTypeDataCStringPointers: return eAddressClassData; 239 case eSectionTypeDataSymbolAddress: return eAddressClassData; 240 case eSectionTypeData4: return eAddressClassData; 241 case eSectionTypeData8: return eAddressClassData; 242 case eSectionTypeData16: return eAddressClassData; 243 case eSectionTypeDataPointers: return eAddressClassData; 244 case eSectionTypeZeroFill: return eAddressClassData; 245 case eSectionTypeDataObjCMessageRefs: return eAddressClassData; 246 case eSectionTypeDataObjCCFStrings: return eAddressClassData; 247 case eSectionTypeDebug: return eAddressClassDebug; 248 case eSectionTypeDWARFDebugAbbrev: return eAddressClassDebug; 249 case eSectionTypeDWARFDebugAranges: return eAddressClassDebug; 250 case eSectionTypeDWARFDebugFrame: return eAddressClassDebug; 251 case eSectionTypeDWARFDebugInfo: return eAddressClassDebug; 252 case eSectionTypeDWARFDebugLine: return eAddressClassDebug; 253 case eSectionTypeDWARFDebugLoc: return eAddressClassDebug; 254 case eSectionTypeDWARFDebugMacInfo: return eAddressClassDebug; 255 case eSectionTypeDWARFDebugPubNames: return eAddressClassDebug; 256 case eSectionTypeDWARFDebugPubTypes: return eAddressClassDebug; 257 case eSectionTypeDWARFDebugRanges: return eAddressClassDebug; 258 case eSectionTypeDWARFDebugStr: return eAddressClassDebug; 259 case eSectionTypeDWARFAppleNames: return eAddressClassDebug; 260 case eSectionTypeDWARFAppleTypes: return eAddressClassDebug; 261 case eSectionTypeDWARFAppleNamespaces: return eAddressClassDebug; 262 case eSectionTypeEHFrame: return eAddressClassRuntime; 263 case eSectionTypeOther: return eAddressClassUnknown; 264 } 265 } 266 } 267 268 const SymbolType symbol_type = symbol->GetType(); 269 switch (symbol_type) 270 { 271 case eSymbolTypeAny: return eAddressClassUnknown; 272 case eSymbolTypeAbsolute: return eAddressClassUnknown; 273 case eSymbolTypeExtern: return eAddressClassUnknown; 274 275 case eSymbolTypeCode: 276 case eSymbolTypeTrampoline: 277 if (m_header.cputype == llvm::MachO::CPUTypeARM) 278 { 279 // For ARM we have a bit in the n_desc field of the symbol 280 // that tells us ARM/Thumb which is bit 0x0008. 281 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 282 return eAddressClassCodeAlternateISA; 283 } 284 return eAddressClassCode; 285 286 case eSymbolTypeData: return eAddressClassData; 287 case eSymbolTypeRuntime: return eAddressClassRuntime; 288 case eSymbolTypeException: return eAddressClassRuntime; 289 case eSymbolTypeSourceFile: return eAddressClassDebug; 290 case eSymbolTypeHeaderFile: return eAddressClassDebug; 291 case eSymbolTypeObjectFile: return eAddressClassDebug; 292 case eSymbolTypeCommonBlock: return eAddressClassDebug; 293 case eSymbolTypeBlock: return eAddressClassDebug; 294 case eSymbolTypeLocal: return eAddressClassData; 295 case eSymbolTypeParam: return eAddressClassData; 296 case eSymbolTypeVariable: return eAddressClassData; 297 case eSymbolTypeVariableType: return eAddressClassDebug; 298 case eSymbolTypeLineEntry: return eAddressClassDebug; 299 case eSymbolTypeLineHeader: return eAddressClassDebug; 300 case eSymbolTypeScopeBegin: return eAddressClassDebug; 301 case eSymbolTypeScopeEnd: return eAddressClassDebug; 302 case eSymbolTypeAdditional: return eAddressClassUnknown; 303 case eSymbolTypeCompiler: return eAddressClassDebug; 304 case eSymbolTypeInstrumentation:return eAddressClassDebug; 305 case eSymbolTypeUndefined: return eAddressClassUnknown; 306 } 307 } 308 } 309 return eAddressClassUnknown; 310 } 311 312 Symtab * 313 ObjectFileMachO::GetSymtab() 314 { 315 lldb_private::Mutex::Locker symfile_locker(m_mutex); 316 if (m_symtab_ap.get() == NULL) 317 { 318 m_symtab_ap.reset(new Symtab(this)); 319 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 320 ParseSymtab (true); 321 } 322 return m_symtab_ap.get(); 323 } 324 325 326 SectionList * 327 ObjectFileMachO::GetSectionList() 328 { 329 lldb_private::Mutex::Locker locker(m_mutex); 330 if (m_sections_ap.get() == NULL) 331 { 332 m_sections_ap.reset(new SectionList()); 333 ParseSections(); 334 } 335 return m_sections_ap.get(); 336 } 337 338 339 size_t 340 ObjectFileMachO::ParseSections () 341 { 342 lldb::user_id_t segID = 0; 343 lldb::user_id_t sectID = 0; 344 struct segment_command_64 load_cmd; 345 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 346 uint32_t i; 347 //bool dump_sections = false; 348 for (i=0; i<m_header.ncmds; ++i) 349 { 350 const uint32_t load_cmd_offset = offset; 351 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 352 break; 353 354 if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64) 355 { 356 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 357 { 358 load_cmd.vmaddr = m_data.GetAddress(&offset); 359 load_cmd.vmsize = m_data.GetAddress(&offset); 360 load_cmd.fileoff = m_data.GetAddress(&offset); 361 load_cmd.filesize = m_data.GetAddress(&offset); 362 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 363 { 364 365 const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0; 366 367 // Keep a list of mach segments around in case we need to 368 // get at data that isn't stored in the abstracted Sections. 369 m_mach_segments.push_back (load_cmd); 370 371 ConstString segment_name (load_cmd.segname, std::min<int>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 372 // Use a segment ID of the segment index shifted left by 8 so they 373 // never conflict with any of the sections. 374 SectionSP segment_sp; 375 if (segment_name) 376 { 377 segment_sp.reset(new Section (NULL, 378 GetModule(), // Module to which this section belongs 379 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 380 segment_name, // Name of this section 381 eSectionTypeContainer, // This section is a container of other sections. 382 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 383 load_cmd.vmsize, // VM size in bytes of this section 384 load_cmd.fileoff, // Offset to the data for this section in the file 385 load_cmd.filesize, // Size in bytes of this section as found in the the file 386 load_cmd.flags)); // Flags for this section 387 388 segment_sp->SetIsEncrypted (segment_is_encrypted); 389 m_sections_ap->AddSection(segment_sp); 390 } 391 392 struct section_64 sect64; 393 ::memset (§64, 0, sizeof(sect64)); 394 // Push a section into our mach sections for the section at 395 // index zero (NListSectionNoSection) if we don't have any 396 // mach sections yet... 397 if (m_mach_sections.empty()) 398 m_mach_sections.push_back(sect64); 399 uint32_t segment_sect_idx; 400 const lldb::user_id_t first_segment_sectID = sectID + 1; 401 402 403 const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8; 404 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 405 { 406 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 407 break; 408 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 409 break; 410 sect64.addr = m_data.GetAddress(&offset); 411 sect64.size = m_data.GetAddress(&offset); 412 413 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 414 break; 415 416 // Keep a list of mach sections around in case we need to 417 // get at data that isn't stored in the abstracted Sections. 418 m_mach_sections.push_back (sect64); 419 420 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 421 if (!segment_name) 422 { 423 // We have a segment with no name so we need to conjure up 424 // segments that correspond to the section's segname if there 425 // isn't already such a section. If there is such a section, 426 // we resize the section so that it spans all sections. 427 // We also mark these sections as fake so address matches don't 428 // hit if they land in the gaps between the child sections. 429 segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 430 segment_sp = m_sections_ap->FindSectionByName (segment_name); 431 if (segment_sp.get()) 432 { 433 Section *segment = segment_sp.get(); 434 // Grow the section size as needed. 435 const lldb::addr_t sect64_min_addr = sect64.addr; 436 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 437 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 438 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 439 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 440 if (sect64_min_addr >= curr_seg_min_addr) 441 { 442 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 443 // Only grow the section size if needed 444 if (new_seg_byte_size > curr_seg_byte_size) 445 segment->SetByteSize (new_seg_byte_size); 446 } 447 else 448 { 449 // We need to change the base address of the segment and 450 // adjust the child section offsets for all existing children. 451 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 452 segment->Slide(slide_amount, false); 453 segment->GetChildren().Slide (-slide_amount, false); 454 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 455 } 456 457 // Grow the section size as needed. 458 if (sect64.offset) 459 { 460 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 461 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 462 463 const lldb::addr_t section_min_file_offset = sect64.offset; 464 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 465 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 466 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 467 segment->SetFileOffset (new_file_offset); 468 segment->SetFileSize (new_file_size); 469 } 470 } 471 else 472 { 473 // Create a fake section for the section's named segment 474 segment_sp.reset(new Section(segment_sp.get(), // Parent section 475 GetModule(), // Module to which this section belongs 476 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 477 segment_name, // Name of this section 478 eSectionTypeContainer, // This section is a container of other sections. 479 sect64.addr, // File VM address == addresses as they are found in the object file 480 sect64.size, // VM size in bytes of this section 481 sect64.offset, // Offset to the data for this section in the file 482 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file 483 load_cmd.flags)); // Flags for this section 484 segment_sp->SetIsFake(true); 485 m_sections_ap->AddSection(segment_sp); 486 segment_sp->SetIsEncrypted (segment_is_encrypted); 487 } 488 } 489 assert (segment_sp.get()); 490 491 uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType; 492 static ConstString g_sect_name_objc_data ("__objc_data"); 493 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 494 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 495 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 496 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 497 static ConstString g_sect_name_objc_const ("__objc_const"); 498 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 499 static ConstString g_sect_name_cfstring ("__cfstring"); 500 501 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 502 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 503 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 504 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 505 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 506 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 507 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 508 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 509 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 510 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 511 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 512 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 513 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 514 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 515 static ConstString g_sect_name_eh_frame ("__eh_frame"); 516 static ConstString g_sect_name_DATA ("__DATA"); 517 static ConstString g_sect_name_TEXT ("__TEXT"); 518 519 SectionType sect_type = eSectionTypeOther; 520 521 if (section_name == g_sect_name_dwarf_debug_abbrev) 522 sect_type = eSectionTypeDWARFDebugAbbrev; 523 else if (section_name == g_sect_name_dwarf_debug_aranges) 524 sect_type = eSectionTypeDWARFDebugAranges; 525 else if (section_name == g_sect_name_dwarf_debug_frame) 526 sect_type = eSectionTypeDWARFDebugFrame; 527 else if (section_name == g_sect_name_dwarf_debug_info) 528 sect_type = eSectionTypeDWARFDebugInfo; 529 else if (section_name == g_sect_name_dwarf_debug_line) 530 sect_type = eSectionTypeDWARFDebugLine; 531 else if (section_name == g_sect_name_dwarf_debug_loc) 532 sect_type = eSectionTypeDWARFDebugLoc; 533 else if (section_name == g_sect_name_dwarf_debug_macinfo) 534 sect_type = eSectionTypeDWARFDebugMacInfo; 535 else if (section_name == g_sect_name_dwarf_debug_pubnames) 536 sect_type = eSectionTypeDWARFDebugPubNames; 537 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 538 sect_type = eSectionTypeDWARFDebugPubTypes; 539 else if (section_name == g_sect_name_dwarf_debug_ranges) 540 sect_type = eSectionTypeDWARFDebugRanges; 541 else if (section_name == g_sect_name_dwarf_debug_str) 542 sect_type = eSectionTypeDWARFDebugStr; 543 else if (section_name == g_sect_name_dwarf_apple_names) 544 sect_type = eSectionTypeDWARFAppleNames; 545 else if (section_name == g_sect_name_dwarf_apple_types) 546 sect_type = eSectionTypeDWARFAppleTypes; 547 else if (section_name == g_sect_name_dwarf_apple_namespaces) 548 sect_type = eSectionTypeDWARFAppleNamespaces; 549 else if (section_name == g_sect_name_objc_selrefs) 550 sect_type = eSectionTypeDataCStringPointers; 551 else if (section_name == g_sect_name_objc_msgrefs) 552 sect_type = eSectionTypeDataObjCMessageRefs; 553 else if (section_name == g_sect_name_eh_frame) 554 sect_type = eSectionTypeEHFrame; 555 else if (section_name == g_sect_name_cfstring) 556 sect_type = eSectionTypeDataObjCCFStrings; 557 else if (section_name == g_sect_name_objc_data || 558 section_name == g_sect_name_objc_classrefs || 559 section_name == g_sect_name_objc_superrefs || 560 section_name == g_sect_name_objc_const || 561 section_name == g_sect_name_objc_classlist) 562 { 563 sect_type = eSectionTypeDataPointers; 564 } 565 566 if (sect_type == eSectionTypeOther) 567 { 568 switch (mach_sect_type) 569 { 570 // TODO: categorize sections by other flags for regular sections 571 case SectionTypeRegular: 572 if (segment_sp->GetName() == g_sect_name_TEXT) 573 sect_type = eSectionTypeCode; 574 else if (segment_sp->GetName() == g_sect_name_DATA) 575 sect_type = eSectionTypeData; 576 else 577 sect_type = eSectionTypeOther; 578 break; 579 case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break; 580 case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 581 case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 582 case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 583 case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 584 case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 585 case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 586 case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 587 case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 588 case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 589 case SectionTypeCoalesced: sect_type = eSectionTypeOther; break; 590 case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break; 591 case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 592 case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 593 case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break; 594 case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break; 595 default: break; 596 } 597 } 598 599 SectionSP section_sp(new Section(segment_sp.get(), 600 GetModule(), 601 ++sectID, 602 section_name, 603 sect_type, 604 sect64.addr - segment_sp->GetFileAddress(), 605 sect64.size, 606 sect64.offset, 607 sect64.offset == 0 ? 0 : sect64.size, 608 sect64.flags)); 609 // Set the section to be encrypted to match the segment 610 section_sp->SetIsEncrypted (segment_is_encrypted); 611 612 segment_sp->GetChildren().AddSection(section_sp); 613 614 if (segment_sp->IsFake()) 615 { 616 segment_sp.reset(); 617 segment_name.Clear(); 618 } 619 } 620 if (segment_sp && m_header.filetype == HeaderFileTypeDSYM) 621 { 622 if (first_segment_sectID <= sectID) 623 { 624 lldb::user_id_t sect_uid; 625 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 626 { 627 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 628 SectionSP next_section_sp; 629 if (sect_uid + 1 <= sectID) 630 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 631 632 if (curr_section_sp.get()) 633 { 634 if (curr_section_sp->GetByteSize() == 0) 635 { 636 if (next_section_sp.get() != NULL) 637 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 638 else 639 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 640 } 641 } 642 } 643 } 644 } 645 } 646 } 647 } 648 else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo) 649 { 650 m_dysymtab.cmd = load_cmd.cmd; 651 m_dysymtab.cmdsize = load_cmd.cmdsize; 652 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 653 } 654 655 offset = load_cmd_offset + load_cmd.cmdsize; 656 } 657 // if (dump_sections) 658 // { 659 // StreamFile s(stdout); 660 // m_sections_ap->Dump(&s, true); 661 // } 662 return sectID; // Return the number of sections we registered with the module 663 } 664 665 class MachSymtabSectionInfo 666 { 667 public: 668 669 MachSymtabSectionInfo (SectionList *section_list) : 670 m_section_list (section_list), 671 m_section_infos() 672 { 673 // Get the number of sections down to a depth of 1 to include 674 // all segments and their sections, but no other sections that 675 // may be added for debug map or 676 m_section_infos.resize(section_list->GetNumSections(1)); 677 } 678 679 680 Section * 681 GetSection (uint8_t n_sect, addr_t file_addr) 682 { 683 if (n_sect == 0) 684 return NULL; 685 if (n_sect < m_section_infos.size()) 686 { 687 if (m_section_infos[n_sect].section == NULL) 688 { 689 Section *section = m_section_list->FindSectionByID (n_sect).get(); 690 m_section_infos[n_sect].section = section; 691 if (section != NULL) 692 { 693 m_section_infos[n_sect].vm_range.SetBaseAddress (section->GetFileAddress()); 694 m_section_infos[n_sect].vm_range.SetByteSize (section->GetByteSize()); 695 } 696 else 697 { 698 fprintf (stderr, "error: unable to find section for section %u\n", n_sect); 699 } 700 } 701 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 702 { 703 // Symbol is in section. 704 return m_section_infos[n_sect].section; 705 } 706 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 707 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 708 { 709 // Symbol is in section with zero size, but has the same start 710 // address as the section. This can happen with linker symbols 711 // (symbols that start with the letter 'l' or 'L'. 712 return m_section_infos[n_sect].section; 713 } 714 } 715 return m_section_list->FindSectionContainingFileAddress(file_addr).get(); 716 } 717 718 protected: 719 struct SectionInfo 720 { 721 SectionInfo () : 722 vm_range(), 723 section (NULL) 724 { 725 } 726 727 VMRange vm_range; 728 Section *section; 729 }; 730 SectionList *m_section_list; 731 std::vector<SectionInfo> m_section_infos; 732 }; 733 734 735 736 size_t 737 ObjectFileMachO::ParseSymtab (bool minimize) 738 { 739 Timer scoped_timer(__PRETTY_FUNCTION__, 740 "ObjectFileMachO::ParseSymtab () module = %s", 741 m_file.GetFilename().AsCString("")); 742 struct symtab_command symtab_load_command; 743 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 744 uint32_t i; 745 for (i=0; i<m_header.ncmds; ++i) 746 { 747 const uint32_t cmd_offset = offset; 748 // Read in the load command and load command size 749 if (m_data.GetU32(&offset, &symtab_load_command, 2) == NULL) 750 break; 751 // Watch for the symbol table load command 752 if (symtab_load_command.cmd == LoadCommandSymtab) 753 { 754 // Read in the rest of the symtab load command 755 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4)) // fill in symoff, nsyms, stroff, strsize fields 756 { 757 Symtab *symtab = m_symtab_ap.get(); 758 SectionList *section_list = GetSectionList(); 759 assert(section_list); 760 const size_t addr_size = m_data.GetAddressByteSize(); 761 const ByteOrder endian = m_data.GetByteOrder(); 762 bool bit_width_32 = addr_size == 4; 763 const size_t nlist_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 764 765 DataBufferSP symtab_data_sp(m_file.ReadFileContents(m_offset + symtab_load_command.symoff, symtab_load_command.nsyms * nlist_size)); 766 DataBufferSP strtab_data_sp(m_file.ReadFileContents(m_offset + symtab_load_command.stroff, symtab_load_command.strsize)); 767 768 const char *strtab_data = (const char *)strtab_data_sp->GetBytes(); 769 // DataExtractor symtab_data(symtab_data_sp, endian, addr_size); 770 // DataExtractor strtab_data(strtab_data_sp, endian, addr_size); 771 772 static ConstString g_segment_name_TEXT ("__TEXT"); 773 static ConstString g_segment_name_DATA ("__DATA"); 774 static ConstString g_segment_name_OBJC ("__OBJC"); 775 static ConstString g_section_name_eh_frame ("__eh_frame"); 776 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 777 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 778 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 779 SectionSP eh_frame_section_sp; 780 if (text_section_sp.get()) 781 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 782 else 783 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 784 785 uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection; 786 //uint32_t symtab_offset = 0; 787 const uint8_t* nlist_data = symtab_data_sp->GetBytes(); 788 assert (symtab_data_sp->GetByteSize()/nlist_size >= symtab_load_command.nsyms); 789 790 791 if (endian != lldb::endian::InlHostByteOrder()) 792 { 793 // ... 794 assert (!"UNIMPLEMENTED: Swap all nlist entries"); 795 } 796 uint32_t N_SO_index = UINT32_MAX; 797 798 MachSymtabSectionInfo section_info (section_list); 799 std::vector<uint32_t> N_FUN_indexes; 800 std::vector<uint32_t> N_NSYM_indexes; 801 std::vector<uint32_t> N_INCL_indexes; 802 std::vector<uint32_t> N_BRAC_indexes; 803 std::vector<uint32_t> N_COMM_indexes; 804 typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap; 805 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 806 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 807 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 808 // Any symbols that get merged into another will get an entry 809 // in this map so we know 810 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 811 uint32_t nlist_idx = 0; 812 Symbol *symbol_ptr = NULL; 813 814 uint32_t sym_idx = 0; 815 Symbol *sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 816 uint32_t num_syms = symtab->GetNumSymbols(); 817 818 //symtab->Reserve (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 819 for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 820 { 821 struct nlist_64 nlist; 822 if (bit_width_32) 823 { 824 struct nlist* nlist32_ptr = (struct nlist*)(nlist_data + (nlist_idx * nlist_size)); 825 nlist.n_strx = nlist32_ptr->n_strx; 826 nlist.n_type = nlist32_ptr->n_type; 827 nlist.n_sect = nlist32_ptr->n_sect; 828 nlist.n_desc = nlist32_ptr->n_desc; 829 nlist.n_value = nlist32_ptr->n_value; 830 } 831 else 832 { 833 nlist = *((struct nlist_64*)(nlist_data + (nlist_idx * nlist_size))); 834 } 835 836 SymbolType type = eSymbolTypeInvalid; 837 const char* symbol_name = &strtab_data[nlist.n_strx]; 838 if (symbol_name[0] == '\0') 839 symbol_name = NULL; 840 Section* symbol_section = NULL; 841 bool add_nlist = true; 842 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 843 844 assert (sym_idx < num_syms); 845 846 sym[sym_idx].SetDebug (is_debug); 847 848 if (is_debug) 849 { 850 switch (nlist.n_type) 851 { 852 case StabGlobalSymbol: 853 // N_GSYM -- global symbol: name,,NO_SECT,type,0 854 // Sometimes the N_GSYM value contains the address. 855 sym[sym_idx].SetExternal(true); 856 if (nlist.n_value != 0) 857 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 858 type = eSymbolTypeData; 859 break; 860 861 case StabFunctionName: 862 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 863 type = eSymbolTypeCompiler; 864 break; 865 866 case StabFunction: 867 // N_FUN -- procedure: name,,n_sect,linenumber,address 868 if (symbol_name) 869 { 870 type = eSymbolTypeCode; 871 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 872 873 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 874 // We use the current number of symbols in the symbol table in lieu of 875 // using nlist_idx in case we ever start trimming entries out 876 N_FUN_indexes.push_back(sym_idx); 877 } 878 else 879 { 880 type = eSymbolTypeCompiler; 881 882 if ( !N_FUN_indexes.empty() ) 883 { 884 // Copy the size of the function into the original STAB entry so we don't have 885 // to hunt for it later 886 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 887 N_FUN_indexes.pop_back(); 888 // We don't really need the end function STAB as it contains the size which 889 // we already placed with the original symbol, so don't add it if we want a 890 // minimal symbol table 891 if (minimize) 892 add_nlist = false; 893 } 894 } 895 break; 896 897 case StabStaticSymbol: 898 // N_STSYM -- static symbol: name,,n_sect,type,address 899 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 900 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 901 type = eSymbolTypeData; 902 break; 903 904 case StabLocalCommon: 905 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 906 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 907 type = eSymbolTypeCommonBlock; 908 break; 909 910 case StabBeginSymbol: 911 // N_BNSYM 912 // We use the current number of symbols in the symbol table in lieu of 913 // using nlist_idx in case we ever start trimming entries out 914 if (minimize) 915 { 916 // Skip these if we want minimal symbol tables 917 add_nlist = false; 918 } 919 else 920 { 921 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 922 N_NSYM_indexes.push_back(sym_idx); 923 type = eSymbolTypeScopeBegin; 924 } 925 break; 926 927 case StabEndSymbol: 928 // N_ENSYM 929 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 930 // so that we can always skip the entire symbol if we need to navigate 931 // more quickly at the source level when parsing STABS 932 if (minimize) 933 { 934 // Skip these if we want minimal symbol tables 935 add_nlist = false; 936 } 937 else 938 { 939 if ( !N_NSYM_indexes.empty() ) 940 { 941 symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back()); 942 symbol_ptr->SetByteSize(sym_idx + 1); 943 symbol_ptr->SetSizeIsSibling(true); 944 N_NSYM_indexes.pop_back(); 945 } 946 type = eSymbolTypeScopeEnd; 947 } 948 break; 949 950 951 case StabSourceFileOptions: 952 // N_OPT - emitted with gcc2_compiled and in gcc source 953 type = eSymbolTypeCompiler; 954 break; 955 956 case StabRegisterSymbol: 957 // N_RSYM - register sym: name,,NO_SECT,type,register 958 type = eSymbolTypeVariable; 959 break; 960 961 case StabSourceLine: 962 // N_SLINE - src line: 0,,n_sect,linenumber,address 963 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 964 type = eSymbolTypeLineEntry; 965 break; 966 967 case StabStructureType: 968 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 969 type = eSymbolTypeVariableType; 970 break; 971 972 case StabSourceFileName: 973 // N_SO - source file name 974 type = eSymbolTypeSourceFile; 975 if (symbol_name == NULL) 976 { 977 if (minimize) 978 add_nlist = false; 979 if (N_SO_index != UINT32_MAX) 980 { 981 // Set the size of the N_SO to the terminating index of this N_SO 982 // so that we can always skip the entire N_SO if we need to navigate 983 // more quickly at the source level when parsing STABS 984 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 985 symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1)); 986 symbol_ptr->SetSizeIsSibling(true); 987 } 988 N_NSYM_indexes.clear(); 989 N_INCL_indexes.clear(); 990 N_BRAC_indexes.clear(); 991 N_COMM_indexes.clear(); 992 N_FUN_indexes.clear(); 993 N_SO_index = UINT32_MAX; 994 } 995 else 996 { 997 // We use the current number of symbols in the symbol table in lieu of 998 // using nlist_idx in case we ever start trimming entries out 999 if (symbol_name[0] == '/') 1000 N_SO_index = sym_idx; 1001 else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 1002 { 1003 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 1004 if (so_path && so_path[0]) 1005 { 1006 std::string full_so_path (so_path); 1007 if (*full_so_path.rbegin() != '/') 1008 full_so_path += '/'; 1009 full_so_path += symbol_name; 1010 sym[sym_idx - 1].GetMangled().SetValue(full_so_path.c_str(), false); 1011 add_nlist = false; 1012 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 1013 } 1014 } 1015 } 1016 1017 break; 1018 1019 case StabObjectFileName: 1020 // N_OSO - object file name: name,,0,0,st_mtime 1021 type = eSymbolTypeObjectFile; 1022 break; 1023 1024 case StabLocalSymbol: 1025 // N_LSYM - local sym: name,,NO_SECT,type,offset 1026 type = eSymbolTypeLocal; 1027 break; 1028 1029 //---------------------------------------------------------------------- 1030 // INCL scopes 1031 //---------------------------------------------------------------------- 1032 case StabBeginIncludeFileName: 1033 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 1034 // We use the current number of symbols in the symbol table in lieu of 1035 // using nlist_idx in case we ever start trimming entries out 1036 N_INCL_indexes.push_back(sym_idx); 1037 type = eSymbolTypeScopeBegin; 1038 break; 1039 1040 case StabEndIncludeFile: 1041 // N_EINCL - include file end: name,,NO_SECT,0,0 1042 // Set the size of the N_BINCL to the terminating index of this N_EINCL 1043 // so that we can always skip the entire symbol if we need to navigate 1044 // more quickly at the source level when parsing STABS 1045 if ( !N_INCL_indexes.empty() ) 1046 { 1047 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 1048 symbol_ptr->SetByteSize(sym_idx + 1); 1049 symbol_ptr->SetSizeIsSibling(true); 1050 N_INCL_indexes.pop_back(); 1051 } 1052 type = eSymbolTypeScopeEnd; 1053 break; 1054 1055 case StabIncludeFileName: 1056 // N_SOL - #included file name: name,,n_sect,0,address 1057 type = eSymbolTypeHeaderFile; 1058 1059 // We currently don't use the header files on darwin 1060 if (minimize) 1061 add_nlist = false; 1062 break; 1063 1064 case StabCompilerParameters: 1065 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 1066 type = eSymbolTypeCompiler; 1067 break; 1068 1069 case StabCompilerVersion: 1070 // N_VERSION - compiler version: name,,NO_SECT,0,0 1071 type = eSymbolTypeCompiler; 1072 break; 1073 1074 case StabCompilerOptLevel: 1075 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 1076 type = eSymbolTypeCompiler; 1077 break; 1078 1079 case StabParameter: 1080 // N_PSYM - parameter: name,,NO_SECT,type,offset 1081 type = eSymbolTypeVariable; 1082 break; 1083 1084 case StabAlternateEntry: 1085 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 1086 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1087 type = eSymbolTypeLineEntry; 1088 break; 1089 1090 //---------------------------------------------------------------------- 1091 // Left and Right Braces 1092 //---------------------------------------------------------------------- 1093 case StabLeftBracket: 1094 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 1095 // We use the current number of symbols in the symbol table in lieu of 1096 // using nlist_idx in case we ever start trimming entries out 1097 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1098 N_BRAC_indexes.push_back(sym_idx); 1099 type = eSymbolTypeScopeBegin; 1100 break; 1101 1102 case StabRightBracket: 1103 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 1104 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 1105 // so that we can always skip the entire symbol if we need to navigate 1106 // more quickly at the source level when parsing STABS 1107 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1108 if ( !N_BRAC_indexes.empty() ) 1109 { 1110 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 1111 symbol_ptr->SetByteSize(sym_idx + 1); 1112 symbol_ptr->SetSizeIsSibling(true); 1113 N_BRAC_indexes.pop_back(); 1114 } 1115 type = eSymbolTypeScopeEnd; 1116 break; 1117 1118 case StabDeletedIncludeFile: 1119 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 1120 type = eSymbolTypeHeaderFile; 1121 break; 1122 1123 //---------------------------------------------------------------------- 1124 // COMM scopes 1125 //---------------------------------------------------------------------- 1126 case StabBeginCommon: 1127 // N_BCOMM - begin common: name,,NO_SECT,0,0 1128 // We use the current number of symbols in the symbol table in lieu of 1129 // using nlist_idx in case we ever start trimming entries out 1130 type = eSymbolTypeScopeBegin; 1131 N_COMM_indexes.push_back(sym_idx); 1132 break; 1133 1134 case StabEndCommonLocal: 1135 // N_ECOML - end common (local name): 0,,n_sect,0,address 1136 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1137 // Fall through 1138 1139 case StabEndCommon: 1140 // N_ECOMM - end common: name,,n_sect,0,0 1141 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 1142 // so that we can always skip the entire symbol if we need to navigate 1143 // more quickly at the source level when parsing STABS 1144 if ( !N_COMM_indexes.empty() ) 1145 { 1146 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 1147 symbol_ptr->SetByteSize(sym_idx + 1); 1148 symbol_ptr->SetSizeIsSibling(true); 1149 N_COMM_indexes.pop_back(); 1150 } 1151 type = eSymbolTypeScopeEnd; 1152 break; 1153 1154 case StabLength: 1155 // N_LENG - second stab entry with length information 1156 type = eSymbolTypeAdditional; 1157 break; 1158 1159 default: break; 1160 } 1161 } 1162 else 1163 { 1164 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 1165 uint8_t n_type = NlistMaskType & nlist.n_type; 1166 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 1167 1168 if (symbol_name && ::strstr (symbol_name, ".objc") == symbol_name) 1169 { 1170 type = eSymbolTypeRuntime; 1171 } 1172 else 1173 { 1174 switch (n_type) 1175 { 1176 case NListTypeIndirect: // N_INDR - Fall through 1177 case NListTypePreboundUndefined:// N_PBUD - Fall through 1178 case NListTypeUndefined: // N_UNDF 1179 type = eSymbolTypeExtern; 1180 break; 1181 1182 case NListTypeAbsolute: // N_ABS 1183 type = eSymbolTypeAbsolute; 1184 break; 1185 1186 case NListTypeSection: // N_SECT 1187 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 1188 1189 if (symbol_section == NULL) 1190 { 1191 // TODO: warn about this? 1192 add_nlist = false; 1193 break; 1194 } 1195 1196 if (TEXT_eh_frame_sectID == nlist.n_sect) 1197 { 1198 type = eSymbolTypeException; 1199 } 1200 else 1201 { 1202 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 1203 1204 switch (section_type) 1205 { 1206 case SectionTypeRegular: break; // regular section 1207 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 1208 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 1209 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 1210 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 1211 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 1212 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 1213 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 1214 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1215 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 1216 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 1217 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 1218 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 1219 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 1220 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 1221 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 1222 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 1223 default: break; 1224 } 1225 1226 if (type == eSymbolTypeInvalid) 1227 { 1228 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 1229 if (symbol_section->IsDescendant (text_section_sp.get())) 1230 { 1231 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 1232 SectionAttrUserSelfModifyingCode | 1233 SectionAttrSytemSomeInstructions)) 1234 type = eSymbolTypeData; 1235 else 1236 type = eSymbolTypeCode; 1237 } 1238 else 1239 if (symbol_section->IsDescendant(data_section_sp.get())) 1240 { 1241 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 1242 { 1243 type = eSymbolTypeRuntime; 1244 } 1245 else 1246 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 1247 { 1248 type = eSymbolTypeException; 1249 } 1250 else 1251 { 1252 type = eSymbolTypeData; 1253 } 1254 } 1255 else 1256 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 1257 { 1258 type = eSymbolTypeTrampoline; 1259 } 1260 else 1261 if (symbol_section->IsDescendant(objc_section_sp.get())) 1262 { 1263 type = eSymbolTypeRuntime; 1264 } 1265 } 1266 } 1267 break; 1268 } 1269 } 1270 } 1271 if (add_nlist) 1272 { 1273 bool symbol_name_is_mangled = false; 1274 if (symbol_name && symbol_name[0] == '_') 1275 { 1276 symbol_name_is_mangled = symbol_name[1] == '_'; 1277 symbol_name++; // Skip the leading underscore 1278 } 1279 uint64_t symbol_value = nlist.n_value; 1280 1281 if (symbol_name) 1282 sym[sym_idx].GetMangled().SetValue(symbol_name, symbol_name_is_mangled); 1283 if (is_debug == false) 1284 { 1285 if (type == eSymbolTypeCode) 1286 { 1287 // See if we can find a N_FUN entry for any code symbols. 1288 // If we do find a match, and the name matches, then we 1289 // can merge the two into just the function symbol to avoid 1290 // duplicate entries in the symbol table 1291 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 1292 if (pos != N_FUN_addr_to_sym_idx.end()) 1293 { 1294 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 1295 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 1296 { 1297 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 1298 // We just need the flags from the linker symbol, so put these flags 1299 // into the N_FUN flags to avoid duplicate symbols in the symbol table 1300 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1301 sym[sym_idx].Clear(); 1302 continue; 1303 } 1304 } 1305 } 1306 else if (type == eSymbolTypeData) 1307 { 1308 // See if we can find a N_STSYM entry for any data symbols. 1309 // If we do find a match, and the name matches, then we 1310 // can merge the two into just the Static symbol to avoid 1311 // duplicate entries in the symbol table 1312 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 1313 if (pos != N_STSYM_addr_to_sym_idx.end()) 1314 { 1315 if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) || 1316 (symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName())) 1317 { 1318 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 1319 // We just need the flags from the linker symbol, so put these flags 1320 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 1321 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1322 sym[sym_idx].Clear(); 1323 continue; 1324 } 1325 } 1326 } 1327 } 1328 if (symbol_section != NULL) 1329 symbol_value -= symbol_section->GetFileAddress(); 1330 1331 sym[sym_idx].SetID (nlist_idx); 1332 sym[sym_idx].SetType (type); 1333 sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetSection (symbol_section); 1334 sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetOffset (symbol_value); 1335 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 1336 1337 ++sym_idx; 1338 } 1339 else 1340 { 1341 sym[sym_idx].Clear(); 1342 } 1343 1344 } 1345 1346 // STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value 1347 // is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all 1348 // such entries by figuring out what the address for the global is by looking up this non-STAB 1349 // entry and copying the value into the debug symbol's value to save us the hassle in the 1350 // debug symbol parser. 1351 1352 Symbol *global_symbol = NULL; 1353 for (nlist_idx = 0; 1354 nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL; 1355 nlist_idx++) 1356 { 1357 if (global_symbol->GetValue().GetFileAddress() == 0) 1358 { 1359 std::vector<uint32_t> indexes; 1360 if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0) 1361 { 1362 std::vector<uint32_t>::const_iterator pos; 1363 std::vector<uint32_t>::const_iterator end = indexes.end(); 1364 for (pos = indexes.begin(); pos != end; ++pos) 1365 { 1366 symbol_ptr = symtab->SymbolAtIndex(*pos); 1367 if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false) 1368 { 1369 global_symbol->SetValue(symbol_ptr->GetValue()); 1370 break; 1371 } 1372 } 1373 } 1374 } 1375 } 1376 1377 // Trim our symbols down to just what we ended up with after 1378 // removing any symbols. 1379 if (sym_idx < num_syms) 1380 { 1381 num_syms = sym_idx; 1382 sym = symtab->Resize (num_syms); 1383 } 1384 1385 // Now synthesize indirect symbols 1386 if (m_dysymtab.nindirectsyms != 0) 1387 { 1388 DataBufferSP indirect_symbol_indexes_sp(m_file.ReadFileContents(m_offset + m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4)); 1389 1390 if (indirect_symbol_indexes_sp && indirect_symbol_indexes_sp->GetByteSize()) 1391 { 1392 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 1393 DataExtractor indirect_symbol_index_data (indirect_symbol_indexes_sp, m_data.GetByteOrder(), m_data.GetAddressByteSize()); 1394 1395 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 1396 { 1397 if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs) 1398 { 1399 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 1400 if (symbol_stub_byte_size == 0) 1401 continue; 1402 1403 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 1404 1405 if (num_symbol_stubs == 0) 1406 continue; 1407 1408 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 1409 uint32_t synthetic_stub_sym_id = symtab_load_command.nsyms; 1410 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 1411 { 1412 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 1413 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 1414 uint32_t symbol_stub_offset = symbol_stub_index * 4; 1415 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 1416 { 1417 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 1418 if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal)) 1419 continue; 1420 1421 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 1422 Symbol *stub_symbol = NULL; 1423 if (index_pos != end_index_pos) 1424 { 1425 // We have a remapping from the original nlist index to 1426 // a current symbol index, so just look this up by index 1427 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 1428 } 1429 else 1430 { 1431 // We need to lookup a symbol using the original nlist 1432 // symbol index since this index is coming from the 1433 // S_SYMBOL_STUBS 1434 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 1435 } 1436 1437 assert (stub_symbol); 1438 if (stub_symbol) 1439 { 1440 Address so_addr(symbol_stub_addr, section_list); 1441 1442 if (stub_symbol->GetType() == eSymbolTypeExtern) 1443 { 1444 // Change the external symbol into a trampoline that makes sense 1445 // These symbols were N_UNDF N_EXT, and are useless to us, so we 1446 // can re-use them so we don't have to make up a synthetic symbol 1447 // for no good reason. 1448 stub_symbol->SetType (eSymbolTypeTrampoline); 1449 stub_symbol->SetExternal (false); 1450 stub_symbol->GetAddressRangeRef().GetBaseAddress() = so_addr; 1451 stub_symbol->GetAddressRangeRef().SetByteSize (symbol_stub_byte_size); 1452 } 1453 else 1454 { 1455 // Make a synthetic symbol to describe the trampoline stub 1456 if (sym_idx >= num_syms) 1457 sym = symtab->Resize (++num_syms); 1458 sym[sym_idx].SetID (synthetic_stub_sym_id++); 1459 sym[sym_idx].GetMangled() = stub_symbol->GetMangled(); 1460 sym[sym_idx].SetType (eSymbolTypeTrampoline); 1461 sym[sym_idx].SetIsSynthetic (true); 1462 sym[sym_idx].GetAddressRangeRef().GetBaseAddress() = so_addr; 1463 sym[sym_idx].GetAddressRangeRef().SetByteSize (symbol_stub_byte_size); 1464 ++sym_idx; 1465 } 1466 } 1467 } 1468 } 1469 } 1470 } 1471 } 1472 } 1473 1474 return symtab->GetNumSymbols(); 1475 } 1476 } 1477 offset = cmd_offset + symtab_load_command.cmdsize; 1478 } 1479 return 0; 1480 } 1481 1482 1483 void 1484 ObjectFileMachO::Dump (Stream *s) 1485 { 1486 lldb_private::Mutex::Locker locker(m_mutex); 1487 s->Printf("%p: ", this); 1488 s->Indent(); 1489 if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped) 1490 s->PutCString("ObjectFileMachO64"); 1491 else 1492 s->PutCString("ObjectFileMachO32"); 1493 1494 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 1495 1496 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 1497 1498 if (m_sections_ap.get()) 1499 m_sections_ap->Dump(s, NULL, true, UINT32_MAX); 1500 1501 if (m_symtab_ap.get()) 1502 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 1503 } 1504 1505 1506 bool 1507 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 1508 { 1509 lldb_private::Mutex::Locker locker(m_mutex); 1510 struct uuid_command load_cmd; 1511 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 1512 uint32_t i; 1513 for (i=0; i<m_header.ncmds; ++i) 1514 { 1515 const uint32_t cmd_offset = offset; 1516 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1517 break; 1518 1519 if (load_cmd.cmd == LoadCommandUUID) 1520 { 1521 const uint8_t *uuid_bytes = m_data.PeekData(offset, 16); 1522 if (uuid_bytes) 1523 { 1524 uuid->SetBytes (uuid_bytes); 1525 return true; 1526 } 1527 return false; 1528 } 1529 offset = cmd_offset + load_cmd.cmdsize; 1530 } 1531 return false; 1532 } 1533 1534 1535 uint32_t 1536 ObjectFileMachO::GetDependentModules (FileSpecList& files) 1537 { 1538 lldb_private::Mutex::Locker locker(m_mutex); 1539 struct load_command load_cmd; 1540 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 1541 uint32_t count = 0; 1542 const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system 1543 uint32_t i; 1544 for (i=0; i<m_header.ncmds; ++i) 1545 { 1546 const uint32_t cmd_offset = offset; 1547 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1548 break; 1549 1550 switch (load_cmd.cmd) 1551 { 1552 case LoadCommandDylibLoad: 1553 case LoadCommandDylibLoadWeak: 1554 case LoadCommandDylibReexport: 1555 case LoadCommandDynamicLinkerLoad: 1556 case LoadCommandFixedVMShlibLoad: 1557 case LoadCommandDylibLoadUpward: 1558 { 1559 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 1560 const char *path = m_data.PeekCStr(name_offset); 1561 // Skip any path that starts with '@' since these are usually: 1562 // @executable_path/.../file 1563 // @rpath/.../file 1564 if (path && path[0] != '@') 1565 { 1566 FileSpec file_spec(path, resolve_path); 1567 if (files.AppendIfUnique(file_spec)) 1568 count++; 1569 } 1570 } 1571 break; 1572 1573 default: 1574 break; 1575 } 1576 offset = cmd_offset + load_cmd.cmdsize; 1577 } 1578 return count; 1579 } 1580 1581 lldb_private::Address 1582 ObjectFileMachO::GetEntryPointAddress () 1583 { 1584 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 1585 // is initialized to an invalid address, so we can just return that. 1586 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 1587 1588 if (!IsExecutable() || m_entry_point_address.IsValid()) 1589 return m_entry_point_address; 1590 1591 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 1592 // /usr/include/mach-o.h, but it is basically: 1593 // 1594 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 1595 // uint32_t count - this is the count of longs in the thread state data 1596 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 1597 // <repeat this trio> 1598 // 1599 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 1600 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 1601 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 1602 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 1603 // 1604 // For now we hard-code the offsets and flavors we need: 1605 // 1606 // 1607 1608 lldb_private::Mutex::Locker locker(m_mutex); 1609 struct load_command load_cmd; 1610 uint32_t offset = MachHeaderSizeFromMagic(m_header.magic); 1611 uint32_t i; 1612 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 1613 bool done = false; 1614 1615 for (i=0; i<m_header.ncmds; ++i) 1616 { 1617 const uint32_t cmd_offset = offset; 1618 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1619 break; 1620 1621 switch (load_cmd.cmd) 1622 { 1623 case LoadCommandUnixThread: 1624 case LoadCommandThread: 1625 { 1626 while (offset < cmd_offset + load_cmd.cmdsize) 1627 { 1628 uint32_t flavor = m_data.GetU32(&offset); 1629 uint32_t count = m_data.GetU32(&offset); 1630 if (count == 0) 1631 { 1632 // We've gotten off somehow, log and exit; 1633 return m_entry_point_address; 1634 } 1635 1636 switch (m_header.cputype) 1637 { 1638 case llvm::MachO::CPUTypeARM: 1639 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 1640 { 1641 offset += 60; // This is the offset of pc in the GPR thread state data structure. 1642 start_address = m_data.GetU32(&offset); 1643 done = true; 1644 } 1645 break; 1646 case llvm::MachO::CPUTypeI386: 1647 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 1648 { 1649 offset += 40; // This is the offset of eip in the GPR thread state data structure. 1650 start_address = m_data.GetU32(&offset); 1651 done = true; 1652 } 1653 break; 1654 case llvm::MachO::CPUTypeX86_64: 1655 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 1656 { 1657 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 1658 start_address = m_data.GetU64(&offset); 1659 done = true; 1660 } 1661 break; 1662 default: 1663 return m_entry_point_address; 1664 } 1665 // Haven't found the GPR flavor yet, skip over the data for this flavor: 1666 if (done) 1667 break; 1668 offset += count * 4; 1669 } 1670 } 1671 break; 1672 1673 default: 1674 break; 1675 } 1676 if (done) 1677 break; 1678 1679 // Go to the next load command: 1680 offset = cmd_offset + load_cmd.cmdsize; 1681 } 1682 1683 if (start_address != LLDB_INVALID_ADDRESS) 1684 { 1685 // We got the start address from the load commands, so now resolve that address in the sections 1686 // of this ObjectFile: 1687 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 1688 { 1689 m_entry_point_address.Clear(); 1690 } 1691 } 1692 else 1693 { 1694 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 1695 // "start" symbol in the main executable. 1696 1697 SymbolContextList contexts; 1698 SymbolContext context; 1699 if (!m_module->FindSymbolsWithNameAndType(ConstString ("start"), NULL, eSymbolTypeCode, contexts)) 1700 return m_entry_point_address; 1701 1702 contexts.GetContextAtIndex(0, context); 1703 1704 m_entry_point_address = context.symbol->GetValue(); 1705 } 1706 1707 return m_entry_point_address; 1708 1709 } 1710 1711 ObjectFile::Type 1712 ObjectFileMachO::CalculateType() 1713 { 1714 switch (m_header.filetype) 1715 { 1716 case HeaderFileTypeObject: // 0x1u MH_OBJECT 1717 if (GetAddressByteSize () == 4) 1718 { 1719 // 32 bit kexts are just object files, but they do have a valid 1720 // UUID load command. 1721 UUID uuid; 1722 if (GetUUID(&uuid)) 1723 { 1724 // this checking for the UUID load command is not enough 1725 // we could eventually look for the symbol named 1726 // "OSKextGetCurrentIdentifier" as this is required of kexts 1727 if (m_strata == eStrataInvalid) 1728 m_strata = eStrataKernel; 1729 return eTypeSharedLibrary; 1730 } 1731 } 1732 return eTypeObjectFile; 1733 1734 case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE 1735 case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB 1736 case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE 1737 case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD 1738 case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB 1739 case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER 1740 case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE 1741 case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB 1742 case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM 1743 case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE 1744 default: 1745 break; 1746 } 1747 return eTypeUnknown; 1748 } 1749 1750 ObjectFile::Strata 1751 ObjectFileMachO::CalculateStrata() 1752 { 1753 switch (m_header.filetype) 1754 { 1755 case HeaderFileTypeObject: // 0x1u MH_OBJECT 1756 { 1757 // 32 bit kexts are just object files, but they do have a valid 1758 // UUID load command. 1759 UUID uuid; 1760 if (GetUUID(&uuid)) 1761 { 1762 // this checking for the UUID load command is not enough 1763 // we could eventually look for the symbol named 1764 // "OSKextGetCurrentIdentifier" as this is required of kexts 1765 if (m_type == eTypeInvalid) 1766 m_type = eTypeSharedLibrary; 1767 1768 return eStrataKernel; 1769 } 1770 } 1771 return eStrataUnknown; 1772 1773 case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE 1774 // Check for the MH_DYLDLINK bit in the flags 1775 if (m_header.flags & HeaderFlagBitIsDynamicLinkObject) 1776 return eStrataUser; 1777 return eStrataKernel; 1778 1779 case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB 1780 case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE 1781 case HeaderFileTypePreloadedExecutable: return eStrataUser; // 0x5u MH_PRELOAD 1782 case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB 1783 case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER 1784 case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE 1785 case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB 1786 case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM 1787 case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE 1788 default: 1789 break; 1790 } 1791 return eStrataUnknown; 1792 } 1793 1794 1795 bool 1796 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 1797 { 1798 lldb_private::Mutex::Locker locker(m_mutex); 1799 arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 1800 1801 // Files with type MH_PRELOAD are currently used in cases where the image 1802 // debugs at the addresses in the file itself. Below we set the OS to 1803 // unknown to make sure we use the DynamicLoaderStatic()... 1804 if (m_header.filetype == HeaderFileTypePreloadedExecutable) 1805 { 1806 arch.GetTriple().setOS (llvm::Triple::UnknownOS); 1807 } 1808 1809 return true; 1810 } 1811 1812 1813 //------------------------------------------------------------------ 1814 // PluginInterface protocol 1815 //------------------------------------------------------------------ 1816 const char * 1817 ObjectFileMachO::GetPluginName() 1818 { 1819 return "ObjectFileMachO"; 1820 } 1821 1822 const char * 1823 ObjectFileMachO::GetShortPluginName() 1824 { 1825 return GetPluginNameStatic(); 1826 } 1827 1828 uint32_t 1829 ObjectFileMachO::GetPluginVersion() 1830 { 1831 return 1; 1832 } 1833 1834