1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 #include "llvm/Support/MachO.h" 12 13 #include "ObjectFileMachO.h" 14 15 #include "lldb/lldb-private-log.h" 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/FileSpecList.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/RangeMap.h" 25 #include "lldb/Core/Section.h" 26 #include "lldb/Core/StreamFile.h" 27 #include "lldb/Core/StreamString.h" 28 #include "lldb/Core/Timer.h" 29 #include "lldb/Core/UUID.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/FileSpec.h" 32 #include "lldb/Symbol/ClangNamespaceDecl.h" 33 #include "lldb/Symbol/DWARFCallFrameInfo.h" 34 #include "lldb/Symbol/ObjectFile.h" 35 #include "lldb/Target/Platform.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/Target.h" 38 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 40 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 41 42 #if defined (__APPLE__) && defined (__arm__) 43 // GetLLDBSharedCacheUUID() needs to call dlsym() 44 #include <dlfcn.h> 45 #endif 46 47 #ifndef __APPLE__ 48 #include "Utility/UuidCompatibility.h" 49 #endif 50 51 using namespace lldb; 52 using namespace lldb_private; 53 using namespace llvm::MachO; 54 55 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 56 { 57 public: 58 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 59 RegisterContextDarwin_x86_64 (thread, 0) 60 { 61 SetRegisterDataFrom_LC_THREAD (data); 62 } 63 64 virtual void 65 InvalidateAllRegisters () 66 { 67 // Do nothing... registers are always valid... 68 } 69 70 void 71 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 72 { 73 lldb::offset_t offset = 0; 74 SetError (GPRRegSet, Read, -1); 75 SetError (FPURegSet, Read, -1); 76 SetError (EXCRegSet, Read, -1); 77 bool done = false; 78 79 while (!done) 80 { 81 int flavor = data.GetU32 (&offset); 82 if (flavor == 0) 83 done = true; 84 else 85 { 86 uint32_t i; 87 uint32_t count = data.GetU32 (&offset); 88 switch (flavor) 89 { 90 case GPRRegSet: 91 for (i=0; i<count; ++i) 92 (&gpr.rax)[i] = data.GetU64(&offset); 93 SetError (GPRRegSet, Read, 0); 94 done = true; 95 96 break; 97 case FPURegSet: 98 // TODO: fill in FPU regs.... 99 //SetError (FPURegSet, Read, -1); 100 done = true; 101 102 break; 103 case EXCRegSet: 104 exc.trapno = data.GetU32(&offset); 105 exc.err = data.GetU32(&offset); 106 exc.faultvaddr = data.GetU64(&offset); 107 SetError (EXCRegSet, Read, 0); 108 done = true; 109 break; 110 case 7: 111 case 8: 112 case 9: 113 // fancy flavors that encapsulate of the the above 114 // falvors... 115 break; 116 117 default: 118 done = true; 119 break; 120 } 121 } 122 } 123 } 124 protected: 125 virtual int 126 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 127 { 128 return 0; 129 } 130 131 virtual int 132 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 133 { 134 return 0; 135 } 136 137 virtual int 138 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 139 { 140 return 0; 141 } 142 143 virtual int 144 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 145 { 146 return 0; 147 } 148 149 virtual int 150 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 151 { 152 return 0; 153 } 154 155 virtual int 156 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 157 { 158 return 0; 159 } 160 }; 161 162 163 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 164 { 165 public: 166 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 167 RegisterContextDarwin_i386 (thread, 0) 168 { 169 SetRegisterDataFrom_LC_THREAD (data); 170 } 171 172 virtual void 173 InvalidateAllRegisters () 174 { 175 // Do nothing... registers are always valid... 176 } 177 178 void 179 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 180 { 181 lldb::offset_t offset = 0; 182 SetError (GPRRegSet, Read, -1); 183 SetError (FPURegSet, Read, -1); 184 SetError (EXCRegSet, Read, -1); 185 bool done = false; 186 187 while (!done) 188 { 189 int flavor = data.GetU32 (&offset); 190 if (flavor == 0) 191 done = true; 192 else 193 { 194 uint32_t i; 195 uint32_t count = data.GetU32 (&offset); 196 switch (flavor) 197 { 198 case GPRRegSet: 199 for (i=0; i<count; ++i) 200 (&gpr.eax)[i] = data.GetU32(&offset); 201 SetError (GPRRegSet, Read, 0); 202 done = true; 203 204 break; 205 case FPURegSet: 206 // TODO: fill in FPU regs.... 207 //SetError (FPURegSet, Read, -1); 208 done = true; 209 210 break; 211 case EXCRegSet: 212 exc.trapno = data.GetU32(&offset); 213 exc.err = data.GetU32(&offset); 214 exc.faultvaddr = data.GetU32(&offset); 215 SetError (EXCRegSet, Read, 0); 216 done = true; 217 break; 218 case 7: 219 case 8: 220 case 9: 221 // fancy flavors that encapsulate of the the above 222 // falvors... 223 break; 224 225 default: 226 done = true; 227 break; 228 } 229 } 230 } 231 } 232 protected: 233 virtual int 234 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 235 { 236 return 0; 237 } 238 239 virtual int 240 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 241 { 242 return 0; 243 } 244 245 virtual int 246 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 247 { 248 return 0; 249 } 250 251 virtual int 252 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 253 { 254 return 0; 255 } 256 257 virtual int 258 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 259 { 260 return 0; 261 } 262 263 virtual int 264 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 265 { 266 return 0; 267 } 268 }; 269 270 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 271 { 272 public: 273 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 274 RegisterContextDarwin_arm (thread, 0) 275 { 276 SetRegisterDataFrom_LC_THREAD (data); 277 } 278 279 virtual void 280 InvalidateAllRegisters () 281 { 282 // Do nothing... registers are always valid... 283 } 284 285 void 286 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 287 { 288 lldb::offset_t offset = 0; 289 SetError (GPRRegSet, Read, -1); 290 SetError (FPURegSet, Read, -1); 291 SetError (EXCRegSet, Read, -1); 292 bool done = false; 293 294 while (!done) 295 { 296 int flavor = data.GetU32 (&offset); 297 uint32_t count = data.GetU32 (&offset); 298 lldb::offset_t next_thread_state = offset + (count * 4); 299 switch (flavor) 300 { 301 case GPRRegSet: 302 for (uint32_t i=0; i<count; ++i) 303 { 304 gpr.r[i] = data.GetU32(&offset); 305 } 306 307 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 308 // one element past the end of the gpr.r[] array. 309 310 SetError (GPRRegSet, Read, 0); 311 offset = next_thread_state; 312 break; 313 314 case FPURegSet: 315 { 316 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 317 const int fpu_reg_buf_size = sizeof (fpu.floats); 318 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 319 { 320 offset += fpu_reg_buf_size; 321 fpu.fpscr = data.GetU32(&offset); 322 SetError (FPURegSet, Read, 0); 323 } 324 else 325 { 326 done = true; 327 } 328 } 329 offset = next_thread_state; 330 break; 331 332 case EXCRegSet: 333 if (count == 3) 334 { 335 exc.exception = data.GetU32(&offset); 336 exc.fsr = data.GetU32(&offset); 337 exc.far = data.GetU32(&offset); 338 SetError (EXCRegSet, Read, 0); 339 } 340 done = true; 341 offset = next_thread_state; 342 break; 343 344 // Unknown register set flavor, stop trying to parse. 345 default: 346 done = true; 347 } 348 } 349 } 350 protected: 351 virtual int 352 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 353 { 354 return -1; 355 } 356 357 virtual int 358 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 359 { 360 return -1; 361 } 362 363 virtual int 364 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 365 { 366 return -1; 367 } 368 369 virtual int 370 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 371 { 372 return -1; 373 } 374 375 virtual int 376 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 377 { 378 return 0; 379 } 380 381 virtual int 382 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 383 { 384 return 0; 385 } 386 387 virtual int 388 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 389 { 390 return 0; 391 } 392 393 virtual int 394 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 395 { 396 return -1; 397 } 398 }; 399 400 static uint32_t 401 MachHeaderSizeFromMagic(uint32_t magic) 402 { 403 switch (magic) 404 { 405 case HeaderMagic32: 406 case HeaderMagic32Swapped: 407 return sizeof(struct mach_header); 408 409 case HeaderMagic64: 410 case HeaderMagic64Swapped: 411 return sizeof(struct mach_header_64); 412 break; 413 414 default: 415 break; 416 } 417 return 0; 418 } 419 420 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 421 422 void 423 ObjectFileMachO::Initialize() 424 { 425 PluginManager::RegisterPlugin (GetPluginNameStatic(), 426 GetPluginDescriptionStatic(), 427 CreateInstance, 428 CreateMemoryInstance, 429 GetModuleSpecifications); 430 } 431 432 void 433 ObjectFileMachO::Terminate() 434 { 435 PluginManager::UnregisterPlugin (CreateInstance); 436 } 437 438 439 lldb_private::ConstString 440 ObjectFileMachO::GetPluginNameStatic() 441 { 442 static ConstString g_name("mach-o"); 443 return g_name; 444 } 445 446 const char * 447 ObjectFileMachO::GetPluginDescriptionStatic() 448 { 449 return "Mach-o object file reader (32 and 64 bit)"; 450 } 451 452 ObjectFile * 453 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 454 DataBufferSP& data_sp, 455 lldb::offset_t data_offset, 456 const FileSpec* file, 457 lldb::offset_t file_offset, 458 lldb::offset_t length) 459 { 460 if (!data_sp) 461 { 462 data_sp = file->MemoryMapFileContents(file_offset, length); 463 data_offset = 0; 464 } 465 466 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 467 { 468 // Update the data to contain the entire file if it doesn't already 469 if (data_sp->GetByteSize() < length) 470 { 471 data_sp = file->MemoryMapFileContents(file_offset, length); 472 data_offset = 0; 473 } 474 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 475 if (objfile_ap.get() && objfile_ap->ParseHeader()) 476 return objfile_ap.release(); 477 } 478 return NULL; 479 } 480 481 ObjectFile * 482 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 483 DataBufferSP& data_sp, 484 const ProcessSP &process_sp, 485 lldb::addr_t header_addr) 486 { 487 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 488 { 489 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 490 if (objfile_ap.get() && objfile_ap->ParseHeader()) 491 return objfile_ap.release(); 492 } 493 return NULL; 494 } 495 496 size_t 497 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 498 lldb::DataBufferSP& data_sp, 499 lldb::offset_t data_offset, 500 lldb::offset_t file_offset, 501 lldb::offset_t length, 502 lldb_private::ModuleSpecList &specs) 503 { 504 const size_t initial_count = specs.GetSize(); 505 506 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 507 { 508 DataExtractor data; 509 data.SetData(data_sp); 510 llvm::MachO::mach_header header; 511 if (ParseHeader (data, &data_offset, header)) 512 { 513 if (header.sizeofcmds >= data_sp->GetByteSize()) 514 { 515 data_sp = file.ReadFileContents(file_offset, header.sizeofcmds); 516 data.SetData(data_sp); 517 data_offset = MachHeaderSizeFromMagic(header.magic); 518 } 519 if (data_sp) 520 { 521 ModuleSpec spec; 522 spec.GetFileSpec() = file; 523 spec.GetArchitecture().SetArchitecture(eArchTypeMachO, 524 header.cputype, 525 header.cpusubtype); 526 if (spec.GetArchitecture().IsValid()) 527 { 528 GetUUID (header, data, data_offset, spec.GetUUID()); 529 specs.Append(spec); 530 } 531 } 532 } 533 } 534 return specs.GetSize() - initial_count; 535 } 536 537 538 539 const ConstString & 540 ObjectFileMachO::GetSegmentNameTEXT() 541 { 542 static ConstString g_segment_name_TEXT ("__TEXT"); 543 return g_segment_name_TEXT; 544 } 545 546 const ConstString & 547 ObjectFileMachO::GetSegmentNameDATA() 548 { 549 static ConstString g_segment_name_DATA ("__DATA"); 550 return g_segment_name_DATA; 551 } 552 553 const ConstString & 554 ObjectFileMachO::GetSegmentNameOBJC() 555 { 556 static ConstString g_segment_name_OBJC ("__OBJC"); 557 return g_segment_name_OBJC; 558 } 559 560 const ConstString & 561 ObjectFileMachO::GetSegmentNameLINKEDIT() 562 { 563 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 564 return g_section_name_LINKEDIT; 565 } 566 567 const ConstString & 568 ObjectFileMachO::GetSectionNameEHFrame() 569 { 570 static ConstString g_section_name_eh_frame ("__eh_frame"); 571 return g_section_name_eh_frame; 572 } 573 574 bool 575 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 576 lldb::addr_t data_offset, 577 lldb::addr_t data_length) 578 { 579 DataExtractor data; 580 data.SetData (data_sp, data_offset, data_length); 581 lldb::offset_t offset = 0; 582 uint32_t magic = data.GetU32(&offset); 583 return MachHeaderSizeFromMagic(magic) != 0; 584 } 585 586 587 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 588 DataBufferSP& data_sp, 589 lldb::offset_t data_offset, 590 const FileSpec* file, 591 lldb::offset_t file_offset, 592 lldb::offset_t length) : 593 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 594 m_mach_segments(), 595 m_mach_sections(), 596 m_entry_point_address(), 597 m_thread_context_offsets(), 598 m_thread_context_offsets_valid(false) 599 { 600 ::memset (&m_header, 0, sizeof(m_header)); 601 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 602 } 603 604 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 605 lldb::DataBufferSP& header_data_sp, 606 const lldb::ProcessSP &process_sp, 607 lldb::addr_t header_addr) : 608 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 609 m_mach_segments(), 610 m_mach_sections(), 611 m_entry_point_address(), 612 m_thread_context_offsets(), 613 m_thread_context_offsets_valid(false) 614 { 615 ::memset (&m_header, 0, sizeof(m_header)); 616 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 617 } 618 619 ObjectFileMachO::~ObjectFileMachO() 620 { 621 } 622 623 bool 624 ObjectFileMachO::ParseHeader (DataExtractor &data, 625 lldb::offset_t *data_offset_ptr, 626 llvm::MachO::mach_header &header) 627 { 628 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 629 // Leave magic in the original byte order 630 header.magic = data.GetU32(data_offset_ptr); 631 bool can_parse = false; 632 bool is_64_bit = false; 633 switch (header.magic) 634 { 635 case HeaderMagic32: 636 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 637 data.SetAddressByteSize(4); 638 can_parse = true; 639 break; 640 641 case HeaderMagic64: 642 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 643 data.SetAddressByteSize(8); 644 can_parse = true; 645 is_64_bit = true; 646 break; 647 648 case HeaderMagic32Swapped: 649 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 650 data.SetAddressByteSize(4); 651 can_parse = true; 652 break; 653 654 case HeaderMagic64Swapped: 655 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 656 data.SetAddressByteSize(8); 657 is_64_bit = true; 658 can_parse = true; 659 break; 660 661 default: 662 break; 663 } 664 665 if (can_parse) 666 { 667 data.GetU32(data_offset_ptr, &header.cputype, 6); 668 if (is_64_bit) 669 *data_offset_ptr += 4; 670 return true; 671 } 672 else 673 { 674 memset(&header, 0, sizeof(header)); 675 } 676 return false; 677 } 678 679 bool 680 ObjectFileMachO::ParseHeader () 681 { 682 ModuleSP module_sp(GetModule()); 683 if (module_sp) 684 { 685 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 686 bool can_parse = false; 687 lldb::offset_t offset = 0; 688 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 689 // Leave magic in the original byte order 690 m_header.magic = m_data.GetU32(&offset); 691 switch (m_header.magic) 692 { 693 case HeaderMagic32: 694 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 695 m_data.SetAddressByteSize(4); 696 can_parse = true; 697 break; 698 699 case HeaderMagic64: 700 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 701 m_data.SetAddressByteSize(8); 702 can_parse = true; 703 break; 704 705 case HeaderMagic32Swapped: 706 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 707 m_data.SetAddressByteSize(4); 708 can_parse = true; 709 break; 710 711 case HeaderMagic64Swapped: 712 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 713 m_data.SetAddressByteSize(8); 714 can_parse = true; 715 break; 716 717 default: 718 break; 719 } 720 721 if (can_parse) 722 { 723 m_data.GetU32(&offset, &m_header.cputype, 6); 724 725 ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 726 727 // Check if the module has a required architecture 728 const ArchSpec &module_arch = module_sp->GetArchitecture(); 729 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 730 return false; 731 732 if (SetModulesArchitecture (mach_arch)) 733 { 734 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 735 if (m_data.GetByteSize() < header_and_lc_size) 736 { 737 DataBufferSP data_sp; 738 ProcessSP process_sp (m_process_wp.lock()); 739 if (process_sp) 740 { 741 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 742 } 743 else 744 { 745 // Read in all only the load command data from the file on disk 746 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 747 if (data_sp->GetByteSize() != header_and_lc_size) 748 return false; 749 } 750 if (data_sp) 751 m_data.SetData (data_sp); 752 } 753 } 754 return true; 755 } 756 else 757 { 758 memset(&m_header, 0, sizeof(struct mach_header)); 759 } 760 } 761 return false; 762 } 763 764 765 ByteOrder 766 ObjectFileMachO::GetByteOrder () const 767 { 768 return m_data.GetByteOrder (); 769 } 770 771 bool 772 ObjectFileMachO::IsExecutable() const 773 { 774 return m_header.filetype == HeaderFileTypeExecutable; 775 } 776 777 uint32_t 778 ObjectFileMachO::GetAddressByteSize () const 779 { 780 return m_data.GetAddressByteSize (); 781 } 782 783 AddressClass 784 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 785 { 786 Symtab *symtab = GetSymtab(); 787 if (symtab) 788 { 789 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 790 if (symbol) 791 { 792 if (symbol->ValueIsAddress()) 793 { 794 SectionSP section_sp (symbol->GetAddress().GetSection()); 795 if (section_sp) 796 { 797 const SectionType section_type = section_sp->GetType(); 798 switch (section_type) 799 { 800 case eSectionTypeInvalid: return eAddressClassUnknown; 801 case eSectionTypeCode: 802 if (m_header.cputype == llvm::MachO::CPUTypeARM) 803 { 804 // For ARM we have a bit in the n_desc field of the symbol 805 // that tells us ARM/Thumb which is bit 0x0008. 806 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 807 return eAddressClassCodeAlternateISA; 808 } 809 return eAddressClassCode; 810 811 case eSectionTypeContainer: return eAddressClassUnknown; 812 case eSectionTypeData: 813 case eSectionTypeDataCString: 814 case eSectionTypeDataCStringPointers: 815 case eSectionTypeDataSymbolAddress: 816 case eSectionTypeData4: 817 case eSectionTypeData8: 818 case eSectionTypeData16: 819 case eSectionTypeDataPointers: 820 case eSectionTypeZeroFill: 821 case eSectionTypeDataObjCMessageRefs: 822 case eSectionTypeDataObjCCFStrings: 823 return eAddressClassData; 824 case eSectionTypeDebug: 825 case eSectionTypeDWARFDebugAbbrev: 826 case eSectionTypeDWARFDebugAranges: 827 case eSectionTypeDWARFDebugFrame: 828 case eSectionTypeDWARFDebugInfo: 829 case eSectionTypeDWARFDebugLine: 830 case eSectionTypeDWARFDebugLoc: 831 case eSectionTypeDWARFDebugMacInfo: 832 case eSectionTypeDWARFDebugPubNames: 833 case eSectionTypeDWARFDebugPubTypes: 834 case eSectionTypeDWARFDebugRanges: 835 case eSectionTypeDWARFDebugStr: 836 case eSectionTypeDWARFAppleNames: 837 case eSectionTypeDWARFAppleTypes: 838 case eSectionTypeDWARFAppleNamespaces: 839 case eSectionTypeDWARFAppleObjC: 840 return eAddressClassDebug; 841 case eSectionTypeEHFrame: return eAddressClassRuntime; 842 case eSectionTypeELFSymbolTable: 843 case eSectionTypeELFDynamicSymbols: 844 case eSectionTypeELFRelocationEntries: 845 case eSectionTypeELFDynamicLinkInfo: 846 case eSectionTypeOther: return eAddressClassUnknown; 847 } 848 } 849 } 850 851 const SymbolType symbol_type = symbol->GetType(); 852 switch (symbol_type) 853 { 854 case eSymbolTypeAny: return eAddressClassUnknown; 855 case eSymbolTypeAbsolute: return eAddressClassUnknown; 856 857 case eSymbolTypeCode: 858 case eSymbolTypeTrampoline: 859 case eSymbolTypeResolver: 860 if (m_header.cputype == llvm::MachO::CPUTypeARM) 861 { 862 // For ARM we have a bit in the n_desc field of the symbol 863 // that tells us ARM/Thumb which is bit 0x0008. 864 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 865 return eAddressClassCodeAlternateISA; 866 } 867 return eAddressClassCode; 868 869 case eSymbolTypeData: return eAddressClassData; 870 case eSymbolTypeRuntime: return eAddressClassRuntime; 871 case eSymbolTypeException: return eAddressClassRuntime; 872 case eSymbolTypeSourceFile: return eAddressClassDebug; 873 case eSymbolTypeHeaderFile: return eAddressClassDebug; 874 case eSymbolTypeObjectFile: return eAddressClassDebug; 875 case eSymbolTypeCommonBlock: return eAddressClassDebug; 876 case eSymbolTypeBlock: return eAddressClassDebug; 877 case eSymbolTypeLocal: return eAddressClassData; 878 case eSymbolTypeParam: return eAddressClassData; 879 case eSymbolTypeVariable: return eAddressClassData; 880 case eSymbolTypeVariableType: return eAddressClassDebug; 881 case eSymbolTypeLineEntry: return eAddressClassDebug; 882 case eSymbolTypeLineHeader: return eAddressClassDebug; 883 case eSymbolTypeScopeBegin: return eAddressClassDebug; 884 case eSymbolTypeScopeEnd: return eAddressClassDebug; 885 case eSymbolTypeAdditional: return eAddressClassUnknown; 886 case eSymbolTypeCompiler: return eAddressClassDebug; 887 case eSymbolTypeInstrumentation:return eAddressClassDebug; 888 case eSymbolTypeUndefined: return eAddressClassUnknown; 889 case eSymbolTypeObjCClass: return eAddressClassRuntime; 890 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 891 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 892 } 893 } 894 } 895 return eAddressClassUnknown; 896 } 897 898 Symtab * 899 ObjectFileMachO::GetSymtab() 900 { 901 ModuleSP module_sp(GetModule()); 902 if (module_sp) 903 { 904 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 905 if (m_symtab_ap.get() == NULL) 906 { 907 m_symtab_ap.reset(new Symtab(this)); 908 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 909 ParseSymtab (); 910 m_symtab_ap->Finalize (); 911 } 912 } 913 return m_symtab_ap.get(); 914 } 915 916 bool 917 ObjectFileMachO::IsStripped () 918 { 919 if (m_dysymtab.cmd == 0) 920 { 921 ModuleSP module_sp(GetModule()); 922 if (module_sp) 923 { 924 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 925 for (uint32_t i=0; i<m_header.ncmds; ++i) 926 { 927 const lldb::offset_t load_cmd_offset = offset; 928 929 load_command lc; 930 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 931 break; 932 if (lc.cmd == LoadCommandDynamicSymtabInfo) 933 { 934 m_dysymtab.cmd = lc.cmd; 935 m_dysymtab.cmdsize = lc.cmdsize; 936 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 937 { 938 // Clear m_dysymtab if we were unable to read all items from the load command 939 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 940 } 941 } 942 offset = load_cmd_offset + lc.cmdsize; 943 } 944 } 945 } 946 if (m_dysymtab.cmd) 947 return m_dysymtab.nlocalsym == 0; 948 return false; 949 } 950 951 void 952 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 953 { 954 if (!m_sections_ap.get()) 955 { 956 m_sections_ap.reset(new SectionList()); 957 958 const bool is_dsym = (m_header.filetype == HeaderFileTypeDSYM); 959 lldb::user_id_t segID = 0; 960 lldb::user_id_t sectID = 0; 961 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 962 uint32_t i; 963 const bool is_core = GetType() == eTypeCoreFile; 964 //bool dump_sections = false; 965 ModuleSP module_sp (GetModule()); 966 // First look up any LC_ENCRYPTION_INFO load commands 967 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 968 EncryptedFileRanges encrypted_file_ranges; 969 encryption_info_command encryption_cmd; 970 for (i=0; i<m_header.ncmds; ++i) 971 { 972 const lldb::offset_t load_cmd_offset = offset; 973 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 974 break; 975 976 if (encryption_cmd.cmd == LoadCommandEncryptionInfo) 977 { 978 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 979 { 980 if (encryption_cmd.cryptid != 0) 981 { 982 EncryptedFileRanges::Entry entry; 983 entry.SetRangeBase(encryption_cmd.cryptoff); 984 entry.SetByteSize(encryption_cmd.cryptsize); 985 encrypted_file_ranges.Append(entry); 986 } 987 } 988 } 989 offset = load_cmd_offset + encryption_cmd.cmdsize; 990 } 991 992 offset = MachHeaderSizeFromMagic(m_header.magic); 993 994 struct segment_command_64 load_cmd; 995 for (i=0; i<m_header.ncmds; ++i) 996 { 997 const lldb::offset_t load_cmd_offset = offset; 998 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 999 break; 1000 1001 if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64) 1002 { 1003 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1004 { 1005 bool add_section = true; 1006 bool add_to_unified = true; 1007 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1008 1009 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1010 if (is_dsym && unified_section_sp) 1011 { 1012 if (const_segname == GetSegmentNameLINKEDIT()) 1013 { 1014 // We need to keep the __LINKEDIT segment private to this object file only 1015 add_to_unified = false; 1016 } 1017 else 1018 { 1019 // This is the dSYM file and this section has already been created by 1020 // the object file, no need to create it. 1021 add_section = false; 1022 } 1023 } 1024 load_cmd.vmaddr = m_data.GetAddress(&offset); 1025 load_cmd.vmsize = m_data.GetAddress(&offset); 1026 load_cmd.fileoff = m_data.GetAddress(&offset); 1027 load_cmd.filesize = m_data.GetAddress(&offset); 1028 if (m_length != 0 && load_cmd.filesize != 0) 1029 { 1030 if (load_cmd.fileoff > m_length) 1031 { 1032 // We have a load command that says it extends past the end of hte file. This is likely 1033 // a corrupt file. We don't have any way to return an error condition here (this method 1034 // was likely invokved from something like ObjectFile::GetSectionList()) -- all we can do 1035 // is null out the SectionList vector and if a process has been set up, dump a message 1036 // to stdout. The most common case here is core file debugging with a truncated file. 1037 const char *lc_segment_name = load_cmd.cmd == LoadCommandSegment64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1038 GetModule()->ReportError("is a corrupt mach-o file: load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 ")", 1039 i, 1040 lc_segment_name, 1041 load_cmd.fileoff, 1042 m_length); 1043 1044 load_cmd.fileoff = 0; 1045 load_cmd.filesize = 0; 1046 } 1047 1048 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1049 { 1050 // We have a load command that says it extends past the end of hte file. This is likely 1051 // a corrupt file. We don't have any way to return an error condition here (this method 1052 // was likely invokved from something like ObjectFile::GetSectionList()) -- all we can do 1053 // is null out the SectionList vector and if a process has been set up, dump a message 1054 // to stdout. The most common case here is core file debugging with a truncated file. 1055 const char *lc_segment_name = load_cmd.cmd == LoadCommandSegment64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1056 GetModule()->ReportError("is a corrupt mach-o file: load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated", 1057 i, 1058 lc_segment_name, 1059 load_cmd.fileoff + load_cmd.filesize, 1060 m_length); 1061 1062 // Tuncase the length 1063 load_cmd.filesize = m_length - load_cmd.fileoff; 1064 } 1065 } 1066 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1067 { 1068 1069 const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0; 1070 1071 // Keep a list of mach segments around in case we need to 1072 // get at data that isn't stored in the abstracted Sections. 1073 m_mach_segments.push_back (load_cmd); 1074 1075 // Use a segment ID of the segment index shifted left by 8 so they 1076 // never conflict with any of the sections. 1077 SectionSP segment_sp; 1078 if (add_section && (const_segname || is_core)) 1079 { 1080 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1081 this, // Object file to which this sections belongs 1082 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1083 const_segname, // Name of this section 1084 eSectionTypeContainer, // This section is a container of other sections. 1085 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1086 load_cmd.vmsize, // VM size in bytes of this section 1087 load_cmd.fileoff, // Offset to the data for this section in the file 1088 load_cmd.filesize, // Size in bytes of this section as found in the the file 1089 load_cmd.flags)); // Flags for this section 1090 1091 segment_sp->SetIsEncrypted (segment_is_encrypted); 1092 m_sections_ap->AddSection(segment_sp); 1093 if (add_to_unified) 1094 unified_section_list.AddSection(segment_sp); 1095 } 1096 else if (unified_section_sp) 1097 { 1098 m_sections_ap->AddSection(unified_section_sp); 1099 } 1100 1101 struct section_64 sect64; 1102 ::memset (§64, 0, sizeof(sect64)); 1103 // Push a section into our mach sections for the section at 1104 // index zero (NListSectionNoSection) if we don't have any 1105 // mach sections yet... 1106 if (m_mach_sections.empty()) 1107 m_mach_sections.push_back(sect64); 1108 uint32_t segment_sect_idx; 1109 const lldb::user_id_t first_segment_sectID = sectID + 1; 1110 1111 1112 const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8; 1113 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1114 { 1115 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1116 break; 1117 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1118 break; 1119 sect64.addr = m_data.GetAddress(&offset); 1120 sect64.size = m_data.GetAddress(&offset); 1121 1122 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1123 break; 1124 1125 // Keep a list of mach sections around in case we need to 1126 // get at data that isn't stored in the abstracted Sections. 1127 m_mach_sections.push_back (sect64); 1128 1129 if (add_section) 1130 { 1131 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1132 if (!const_segname) 1133 { 1134 // We have a segment with no name so we need to conjure up 1135 // segments that correspond to the section's segname if there 1136 // isn't already such a section. If there is such a section, 1137 // we resize the section so that it spans all sections. 1138 // We also mark these sections as fake so address matches don't 1139 // hit if they land in the gaps between the child sections. 1140 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1141 segment_sp = unified_section_list.FindSectionByName (const_segname); 1142 if (segment_sp.get()) 1143 { 1144 Section *segment = segment_sp.get(); 1145 // Grow the section size as needed. 1146 const lldb::addr_t sect64_min_addr = sect64.addr; 1147 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1148 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1149 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1150 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1151 if (sect64_min_addr >= curr_seg_min_addr) 1152 { 1153 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1154 // Only grow the section size if needed 1155 if (new_seg_byte_size > curr_seg_byte_size) 1156 segment->SetByteSize (new_seg_byte_size); 1157 } 1158 else 1159 { 1160 // We need to change the base address of the segment and 1161 // adjust the child section offsets for all existing children. 1162 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1163 segment->Slide(slide_amount, false); 1164 segment->GetChildren().Slide(-slide_amount, false); 1165 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1166 } 1167 1168 // Grow the section size as needed. 1169 if (sect64.offset) 1170 { 1171 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1172 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1173 1174 const lldb::addr_t section_min_file_offset = sect64.offset; 1175 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1176 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1177 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1178 segment->SetFileOffset (new_file_offset); 1179 segment->SetFileSize (new_file_size); 1180 } 1181 } 1182 else 1183 { 1184 // Create a fake section for the section's named segment 1185 segment_sp.reset(new Section (segment_sp, // Parent section 1186 module_sp, // Module to which this section belongs 1187 this, // Object file to which this section belongs 1188 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1189 const_segname, // Name of this section 1190 eSectionTypeContainer, // This section is a container of other sections. 1191 sect64.addr, // File VM address == addresses as they are found in the object file 1192 sect64.size, // VM size in bytes of this section 1193 sect64.offset, // Offset to the data for this section in the file 1194 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file 1195 load_cmd.flags)); // Flags for this section 1196 segment_sp->SetIsFake(true); 1197 1198 m_sections_ap->AddSection(segment_sp); 1199 if (add_to_unified) 1200 unified_section_list.AddSection(segment_sp); 1201 segment_sp->SetIsEncrypted (segment_is_encrypted); 1202 } 1203 } 1204 assert (segment_sp.get()); 1205 1206 uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType; 1207 static ConstString g_sect_name_objc_data ("__objc_data"); 1208 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1209 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1210 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1211 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1212 static ConstString g_sect_name_objc_const ("__objc_const"); 1213 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1214 static ConstString g_sect_name_cfstring ("__cfstring"); 1215 1216 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1217 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1218 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1219 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1220 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1221 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1222 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1223 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1224 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1225 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1226 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1227 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1228 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1229 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1230 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1231 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1232 static ConstString g_sect_name_DATA ("__DATA"); 1233 static ConstString g_sect_name_TEXT ("__TEXT"); 1234 1235 SectionType sect_type = eSectionTypeOther; 1236 1237 if (section_name == g_sect_name_dwarf_debug_abbrev) 1238 sect_type = eSectionTypeDWARFDebugAbbrev; 1239 else if (section_name == g_sect_name_dwarf_debug_aranges) 1240 sect_type = eSectionTypeDWARFDebugAranges; 1241 else if (section_name == g_sect_name_dwarf_debug_frame) 1242 sect_type = eSectionTypeDWARFDebugFrame; 1243 else if (section_name == g_sect_name_dwarf_debug_info) 1244 sect_type = eSectionTypeDWARFDebugInfo; 1245 else if (section_name == g_sect_name_dwarf_debug_line) 1246 sect_type = eSectionTypeDWARFDebugLine; 1247 else if (section_name == g_sect_name_dwarf_debug_loc) 1248 sect_type = eSectionTypeDWARFDebugLoc; 1249 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1250 sect_type = eSectionTypeDWARFDebugMacInfo; 1251 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1252 sect_type = eSectionTypeDWARFDebugPubNames; 1253 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1254 sect_type = eSectionTypeDWARFDebugPubTypes; 1255 else if (section_name == g_sect_name_dwarf_debug_ranges) 1256 sect_type = eSectionTypeDWARFDebugRanges; 1257 else if (section_name == g_sect_name_dwarf_debug_str) 1258 sect_type = eSectionTypeDWARFDebugStr; 1259 else if (section_name == g_sect_name_dwarf_apple_names) 1260 sect_type = eSectionTypeDWARFAppleNames; 1261 else if (section_name == g_sect_name_dwarf_apple_types) 1262 sect_type = eSectionTypeDWARFAppleTypes; 1263 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1264 sect_type = eSectionTypeDWARFAppleNamespaces; 1265 else if (section_name == g_sect_name_dwarf_apple_objc) 1266 sect_type = eSectionTypeDWARFAppleObjC; 1267 else if (section_name == g_sect_name_objc_selrefs) 1268 sect_type = eSectionTypeDataCStringPointers; 1269 else if (section_name == g_sect_name_objc_msgrefs) 1270 sect_type = eSectionTypeDataObjCMessageRefs; 1271 else if (section_name == g_sect_name_eh_frame) 1272 sect_type = eSectionTypeEHFrame; 1273 else if (section_name == g_sect_name_cfstring) 1274 sect_type = eSectionTypeDataObjCCFStrings; 1275 else if (section_name == g_sect_name_objc_data || 1276 section_name == g_sect_name_objc_classrefs || 1277 section_name == g_sect_name_objc_superrefs || 1278 section_name == g_sect_name_objc_const || 1279 section_name == g_sect_name_objc_classlist) 1280 { 1281 sect_type = eSectionTypeDataPointers; 1282 } 1283 1284 if (sect_type == eSectionTypeOther) 1285 { 1286 switch (mach_sect_type) 1287 { 1288 // TODO: categorize sections by other flags for regular sections 1289 case SectionTypeRegular: 1290 if (segment_sp->GetName() == g_sect_name_TEXT) 1291 sect_type = eSectionTypeCode; 1292 else if (segment_sp->GetName() == g_sect_name_DATA) 1293 sect_type = eSectionTypeData; 1294 else 1295 sect_type = eSectionTypeOther; 1296 break; 1297 case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break; 1298 case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1299 case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1300 case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1301 case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1302 case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1303 case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1304 case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1305 case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1306 case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1307 case SectionTypeCoalesced: sect_type = eSectionTypeOther; break; 1308 case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break; 1309 case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1310 case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1311 case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break; 1312 case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break; 1313 default: break; 1314 } 1315 } 1316 1317 SectionSP section_sp(new Section (segment_sp, 1318 module_sp, 1319 this, 1320 ++sectID, 1321 section_name, 1322 sect_type, 1323 sect64.addr - segment_sp->GetFileAddress(), 1324 sect64.size, 1325 sect64.offset, 1326 sect64.offset == 0 ? 0 : sect64.size, 1327 sect64.flags)); 1328 // Set the section to be encrypted to match the segment 1329 1330 bool section_is_encrypted = false; 1331 if (!segment_is_encrypted && load_cmd.filesize != 0) 1332 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1333 1334 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1335 segment_sp->GetChildren().AddSection(section_sp); 1336 1337 if (segment_sp->IsFake()) 1338 { 1339 segment_sp.reset(); 1340 const_segname.Clear(); 1341 } 1342 } 1343 } 1344 if (segment_sp && is_dsym) 1345 { 1346 if (first_segment_sectID <= sectID) 1347 { 1348 lldb::user_id_t sect_uid; 1349 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1350 { 1351 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1352 SectionSP next_section_sp; 1353 if (sect_uid + 1 <= sectID) 1354 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1355 1356 if (curr_section_sp.get()) 1357 { 1358 if (curr_section_sp->GetByteSize() == 0) 1359 { 1360 if (next_section_sp.get() != NULL) 1361 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1362 else 1363 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1364 } 1365 } 1366 } 1367 } 1368 } 1369 } 1370 } 1371 } 1372 else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo) 1373 { 1374 m_dysymtab.cmd = load_cmd.cmd; 1375 m_dysymtab.cmdsize = load_cmd.cmdsize; 1376 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1377 } 1378 1379 offset = load_cmd_offset + load_cmd.cmdsize; 1380 } 1381 1382 // StreamFile s(stdout, false); // REMOVE THIS LINE 1383 // s.Printf ("Sections for %s:\n", m_file.GetPath().c_str());// REMOVE THIS LINE 1384 // m_sections_ap->Dump(&s, NULL, true, UINT32_MAX);// REMOVE THIS LINE 1385 } 1386 } 1387 1388 class MachSymtabSectionInfo 1389 { 1390 public: 1391 1392 MachSymtabSectionInfo (SectionList *section_list) : 1393 m_section_list (section_list), 1394 m_section_infos() 1395 { 1396 // Get the number of sections down to a depth of 1 to include 1397 // all segments and their sections, but no other sections that 1398 // may be added for debug map or 1399 m_section_infos.resize(section_list->GetNumSections(1)); 1400 } 1401 1402 1403 SectionSP 1404 GetSection (uint8_t n_sect, addr_t file_addr) 1405 { 1406 if (n_sect == 0) 1407 return SectionSP(); 1408 if (n_sect < m_section_infos.size()) 1409 { 1410 if (!m_section_infos[n_sect].section_sp) 1411 { 1412 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1413 m_section_infos[n_sect].section_sp = section_sp; 1414 if (section_sp) 1415 { 1416 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1417 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1418 } 1419 else 1420 { 1421 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1422 } 1423 } 1424 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1425 { 1426 // Symbol is in section. 1427 return m_section_infos[n_sect].section_sp; 1428 } 1429 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1430 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1431 { 1432 // Symbol is in section with zero size, but has the same start 1433 // address as the section. This can happen with linker symbols 1434 // (symbols that start with the letter 'l' or 'L'. 1435 return m_section_infos[n_sect].section_sp; 1436 } 1437 } 1438 return m_section_list->FindSectionContainingFileAddress(file_addr); 1439 } 1440 1441 protected: 1442 struct SectionInfo 1443 { 1444 SectionInfo () : 1445 vm_range(), 1446 section_sp () 1447 { 1448 } 1449 1450 VMRange vm_range; 1451 SectionSP section_sp; 1452 }; 1453 SectionList *m_section_list; 1454 std::vector<SectionInfo> m_section_infos; 1455 }; 1456 1457 size_t 1458 ObjectFileMachO::ParseSymtab () 1459 { 1460 Timer scoped_timer(__PRETTY_FUNCTION__, 1461 "ObjectFileMachO::ParseSymtab () module = %s", 1462 m_file.GetFilename().AsCString("")); 1463 ModuleSP module_sp (GetModule()); 1464 if (!module_sp) 1465 return 0; 1466 1467 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 1468 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 1469 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 1470 FunctionStarts function_starts; 1471 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1472 uint32_t i; 1473 1474 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 1475 1476 for (i=0; i<m_header.ncmds; ++i) 1477 { 1478 const lldb::offset_t cmd_offset = offset; 1479 // Read in the load command and load command size 1480 struct load_command lc; 1481 if (m_data.GetU32(&offset, &lc, 2) == NULL) 1482 break; 1483 // Watch for the symbol table load command 1484 switch (lc.cmd) 1485 { 1486 case LoadCommandSymtab: 1487 symtab_load_command.cmd = lc.cmd; 1488 symtab_load_command.cmdsize = lc.cmdsize; 1489 // Read in the rest of the symtab load command 1490 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 1491 return 0; 1492 if (symtab_load_command.symoff == 0) 1493 { 1494 if (log) 1495 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 1496 return 0; 1497 } 1498 1499 if (symtab_load_command.stroff == 0) 1500 { 1501 if (log) 1502 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 1503 return 0; 1504 } 1505 1506 if (symtab_load_command.nsyms == 0) 1507 { 1508 if (log) 1509 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 1510 return 0; 1511 } 1512 1513 if (symtab_load_command.strsize == 0) 1514 { 1515 if (log) 1516 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 1517 return 0; 1518 } 1519 break; 1520 1521 case LoadCommandFunctionStarts: 1522 function_starts_load_command.cmd = lc.cmd; 1523 function_starts_load_command.cmdsize = lc.cmdsize; 1524 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 1525 bzero (&function_starts_load_command, sizeof(function_starts_load_command)); 1526 break; 1527 1528 default: 1529 break; 1530 } 1531 offset = cmd_offset + lc.cmdsize; 1532 } 1533 1534 if (symtab_load_command.cmd) 1535 { 1536 Symtab *symtab = m_symtab_ap.get(); 1537 SectionList *section_list = GetSectionList(); 1538 if (section_list == NULL) 1539 return 0; 1540 1541 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 1542 const ByteOrder byte_order = m_data.GetByteOrder(); 1543 bool bit_width_32 = addr_byte_size == 4; 1544 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 1545 1546 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 1547 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 1548 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 1549 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 1550 1551 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 1552 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 1553 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 1554 1555 ProcessSP process_sp (m_process_wp.lock()); 1556 Process *process = process_sp.get(); 1557 1558 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 1559 1560 if (process) 1561 { 1562 Target &target = process->GetTarget(); 1563 1564 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 1565 1566 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 1567 // Reading mach file from memory in a process or core file... 1568 1569 if (linkedit_section_sp) 1570 { 1571 const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 1572 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 1573 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 1574 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 1575 1576 bool data_was_read = false; 1577 1578 #if defined (__APPLE__) && defined (__arm__) 1579 if (m_header.flags & 0x80000000u) 1580 { 1581 // This mach-o memory file is in the dyld shared cache. If this 1582 // program is not remote and this is iOS, then this process will 1583 // share the same shared cache as the process we are debugging and 1584 // we can read the entire __LINKEDIT from the address space in this 1585 // process. This is a needed optimization that is used for local iOS 1586 // debugging only since all shared libraries in the shared cache do 1587 // not have corresponding files that exist in the file system of the 1588 // device. They have been combined into a single file. This means we 1589 // always have to load these files from memory. All of the symbol and 1590 // string tables from all of the __LINKEDIT sections from the shared 1591 // libraries in the shared cache have been merged into a single large 1592 // symbol and string table. Reading all of this symbol and string table 1593 // data across can slow down debug launch times, so we optimize this by 1594 // reading the memory for the __LINKEDIT section from this process. 1595 1596 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 1597 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 1598 bool use_lldb_cache = true; 1599 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 1600 { 1601 use_lldb_cache = false; 1602 ModuleSP module_sp (GetModule()); 1603 if (module_sp) 1604 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 1605 1606 } 1607 1608 PlatformSP platform_sp (target.GetPlatform()); 1609 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 1610 { 1611 data_was_read = true; 1612 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 1613 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 1614 if (function_starts_load_command.cmd) 1615 { 1616 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1617 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 1618 } 1619 } 1620 } 1621 #endif 1622 1623 if (!data_was_read) 1624 { 1625 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 1626 { 1627 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 1628 if (nlist_data_sp) 1629 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 1630 // Load strings individually from memory when loading from memory since shared cache 1631 // string tables contain strings for all symbols from all shared cached libraries 1632 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 1633 //if (strtab_data_sp) 1634 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 1635 if (m_dysymtab.nindirectsyms != 0) 1636 { 1637 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 1638 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 1639 if (indirect_syms_data_sp) 1640 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 1641 } 1642 } 1643 1644 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 1645 { 1646 if (function_starts_load_command.cmd) 1647 { 1648 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 1649 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 1650 if (func_start_data_sp) 1651 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 1652 } 1653 } 1654 } 1655 } 1656 } 1657 else 1658 { 1659 nlist_data.SetData (m_data, 1660 symtab_load_command.symoff, 1661 nlist_data_byte_size); 1662 strtab_data.SetData (m_data, 1663 symtab_load_command.stroff, 1664 strtab_data_byte_size); 1665 if (m_dysymtab.nindirectsyms != 0) 1666 { 1667 indirect_symbol_index_data.SetData (m_data, 1668 m_dysymtab.indirectsymoff, 1669 m_dysymtab.nindirectsyms * 4); 1670 } 1671 if (function_starts_load_command.cmd) 1672 { 1673 function_starts_data.SetData (m_data, 1674 function_starts_load_command.dataoff, 1675 function_starts_load_command.datasize); 1676 } 1677 } 1678 1679 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 1680 { 1681 if (log) 1682 module_sp->LogMessage(log, "failed to read nlist data"); 1683 return 0; 1684 } 1685 1686 1687 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 1688 if (!have_strtab_data) 1689 { 1690 if (process) 1691 { 1692 if (strtab_addr == LLDB_INVALID_ADDRESS) 1693 { 1694 if (log) 1695 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 1696 return 0; 1697 } 1698 } 1699 else 1700 { 1701 if (log) 1702 module_sp->LogMessage(log, "failed to read strtab data"); 1703 return 0; 1704 } 1705 } 1706 1707 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 1708 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 1709 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 1710 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 1711 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 1712 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 1713 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 1714 SectionSP eh_frame_section_sp; 1715 if (text_section_sp.get()) 1716 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 1717 else 1718 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 1719 1720 const bool is_arm = (m_header.cputype == llvm::MachO::CPUTypeARM); 1721 1722 // lldb works best if it knows the start addresss of all functions in a module. 1723 // Linker symbols or debug info are normally the best source of information for start addr / size but 1724 // they may be stripped in a released binary. 1725 // Two additional sources of information exist in Mach-O binaries: 1726 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 1727 // binary, relative to the text section. 1728 // eh_frame - the eh_frame FDEs have the start addr & size of each function 1729 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 1730 // Binaries built to run on older releases may need to use eh_frame information. 1731 1732 if (text_section_sp && function_starts_data.GetByteSize()) 1733 { 1734 FunctionStarts::Entry function_start_entry; 1735 function_start_entry.data = false; 1736 lldb::offset_t function_start_offset = 0; 1737 function_start_entry.addr = text_section_sp->GetFileAddress(); 1738 uint64_t delta; 1739 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 1740 { 1741 // Now append the current entry 1742 function_start_entry.addr += delta; 1743 function_starts.Append(function_start_entry); 1744 } 1745 } 1746 else 1747 { 1748 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 1749 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 1750 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 1751 // the module. 1752 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 1753 { 1754 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindGCC, true); 1755 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 1756 eh_frame.GetFunctionAddressAndSizeVector (functions); 1757 addr_t text_base_addr = text_section_sp->GetFileAddress(); 1758 size_t count = functions.GetSize(); 1759 for (size_t i = 0; i < count; ++i) 1760 { 1761 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 1762 if (func) 1763 { 1764 FunctionStarts::Entry function_start_entry; 1765 function_start_entry.addr = func->base - text_base_addr; 1766 function_starts.Append(function_start_entry); 1767 } 1768 } 1769 } 1770 } 1771 1772 const size_t function_starts_count = function_starts.GetSize(); 1773 1774 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection; 1775 1776 lldb::offset_t nlist_data_offset = 0; 1777 1778 uint32_t N_SO_index = UINT32_MAX; 1779 1780 MachSymtabSectionInfo section_info (section_list); 1781 std::vector<uint32_t> N_FUN_indexes; 1782 std::vector<uint32_t> N_NSYM_indexes; 1783 std::vector<uint32_t> N_INCL_indexes; 1784 std::vector<uint32_t> N_BRAC_indexes; 1785 std::vector<uint32_t> N_COMM_indexes; 1786 typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap; 1787 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 1788 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 1789 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 1790 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 1791 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 1792 // Any symbols that get merged into another will get an entry 1793 // in this map so we know 1794 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 1795 uint32_t nlist_idx = 0; 1796 Symbol *symbol_ptr = NULL; 1797 1798 uint32_t sym_idx = 0; 1799 Symbol *sym = NULL; 1800 size_t num_syms = 0; 1801 std::string memory_symbol_name; 1802 uint32_t unmapped_local_symbols_found = 0; 1803 1804 #if defined (__APPLE__) && defined (__arm__) 1805 1806 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 1807 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 1808 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 1809 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 1810 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 1811 // nlist parser to ignore all LOCAL symbols. 1812 1813 if (m_header.flags & 0x80000000u) 1814 { 1815 // Before we can start mapping the DSC, we need to make certain the target process is actually 1816 // using the cache we can find. 1817 1818 // Next we need to determine the correct path for the dyld shared cache. 1819 1820 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 1821 char dsc_path[PATH_MAX]; 1822 1823 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 1824 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 1825 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 1826 header_arch.GetArchitectureName()); 1827 1828 FileSpec dsc_filespec(dsc_path, false); 1829 1830 // We need definitions of two structures in the on-disk DSC, copy them here manually 1831 struct lldb_copy_dyld_cache_header_v0 1832 { 1833 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 1834 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 1835 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 1836 uint32_t imagesOffset; 1837 uint32_t imagesCount; 1838 uint64_t dyldBaseAddress; 1839 uint64_t codeSignatureOffset; 1840 uint64_t codeSignatureSize; 1841 uint64_t slideInfoOffset; 1842 uint64_t slideInfoSize; 1843 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 1844 uint64_t localSymbolsSize; // size of local symbols information 1845 }; 1846 struct lldb_copy_dyld_cache_header_v1 1847 { 1848 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 1849 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 1850 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 1851 uint32_t imagesOffset; 1852 uint32_t imagesCount; 1853 uint64_t dyldBaseAddress; 1854 uint64_t codeSignatureOffset; 1855 uint64_t codeSignatureSize; 1856 uint64_t slideInfoOffset; 1857 uint64_t slideInfoSize; 1858 uint64_t localSymbolsOffset; 1859 uint64_t localSymbolsSize; 1860 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 1861 }; 1862 1863 struct lldb_copy_dyld_cache_mapping_info 1864 { 1865 uint64_t address; 1866 uint64_t size; 1867 uint64_t fileOffset; 1868 uint32_t maxProt; 1869 uint32_t initProt; 1870 }; 1871 1872 struct lldb_copy_dyld_cache_local_symbols_info 1873 { 1874 uint32_t nlistOffset; 1875 uint32_t nlistCount; 1876 uint32_t stringsOffset; 1877 uint32_t stringsSize; 1878 uint32_t entriesOffset; 1879 uint32_t entriesCount; 1880 }; 1881 struct lldb_copy_dyld_cache_local_symbols_entry 1882 { 1883 uint32_t dylibOffset; 1884 uint32_t nlistStartIndex; 1885 uint32_t nlistCount; 1886 }; 1887 1888 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 1889 The dyld_cache_local_symbols_info structure gives us three things: 1890 1. The start and count of the nlist records in the dyld_shared_cache file 1891 2. The start and size of the strings for these nlist records 1892 3. The start and count of dyld_cache_local_symbols_entry entries 1893 1894 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 1895 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 1896 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 1897 and the count of how many nlist records there are for this dylib/framework. 1898 */ 1899 1900 // Process the dsc header to find the unmapped symbols 1901 // 1902 // Save some VM space, do not map the entire cache in one shot. 1903 1904 DataBufferSP dsc_data_sp; 1905 dsc_data_sp = dsc_filespec.MemoryMapFileContents(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 1906 1907 if (dsc_data_sp) 1908 { 1909 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 1910 1911 char version_str[17]; 1912 int version = -1; 1913 lldb::offset_t offset = 0; 1914 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 1915 version_str[16] = '\0'; 1916 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 1917 { 1918 int v; 1919 if (::sscanf (version_str + 6, "%d", &v) == 1) 1920 { 1921 version = v; 1922 } 1923 } 1924 1925 UUID dsc_uuid; 1926 if (version >= 1) 1927 { 1928 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 1929 uint8_t uuid_bytes[sizeof (uuid_t)]; 1930 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 1931 dsc_uuid.SetBytes (uuid_bytes); 1932 } 1933 1934 bool uuid_match = true; 1935 if (dsc_uuid.IsValid() && process) 1936 { 1937 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 1938 1939 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 1940 { 1941 // The on-disk dyld_shared_cache file is not the same as the one in this 1942 // process' memory, don't use it. 1943 uuid_match = false; 1944 ModuleSP module_sp (GetModule()); 1945 if (module_sp) 1946 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 1947 } 1948 } 1949 1950 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 1951 1952 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 1953 1954 // If the mappingOffset points to a location inside the header, we've 1955 // opened an old dyld shared cache, and should not proceed further. 1956 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 1957 { 1958 1959 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContents(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 1960 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 1961 offset = 0; 1962 1963 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 1964 // in the shared library cache need to be adjusted by an offset to match up with the 1965 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 1966 // recorded in mapping_offset_value. 1967 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 1968 1969 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 1970 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 1971 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 1972 1973 if (localSymbolsOffset && localSymbolsSize) 1974 { 1975 // Map the local symbols 1976 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContents(localSymbolsOffset, localSymbolsSize)) 1977 { 1978 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 1979 1980 offset = 0; 1981 1982 // Read the local_symbols_infos struct in one shot 1983 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 1984 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 1985 1986 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 1987 1988 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 1989 1990 offset = local_symbols_info.entriesOffset; 1991 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 1992 { 1993 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 1994 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 1995 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 1996 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 1997 1998 if (header_file_offset == local_symbols_entry.dylibOffset) 1999 { 2000 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2001 2002 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2003 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2004 num_syms = symtab->GetNumSymbols(); 2005 2006 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2007 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2008 2009 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2010 { 2011 ///////////////////////////// 2012 { 2013 struct nlist_64 nlist; 2014 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2015 break; 2016 2017 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2018 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2019 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2020 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2021 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2022 2023 SymbolType type = eSymbolTypeInvalid; 2024 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2025 2026 if (symbol_name == NULL) 2027 { 2028 // No symbol should be NULL, even the symbols with no 2029 // string values should have an offset zero which points 2030 // to an empty C-string 2031 Host::SystemLog (Host::eSystemLogError, 2032 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2033 entry_index, 2034 nlist.n_strx, 2035 module_sp->GetFileSpec().GetPath().c_str()); 2036 continue; 2037 } 2038 if (symbol_name[0] == '\0') 2039 symbol_name = NULL; 2040 2041 const char *symbol_name_non_abi_mangled = NULL; 2042 2043 SectionSP symbol_section; 2044 uint32_t symbol_byte_size = 0; 2045 bool add_nlist = true; 2046 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 2047 bool demangled_is_synthesized = false; 2048 bool is_gsym = false; 2049 2050 assert (sym_idx < num_syms); 2051 2052 sym[sym_idx].SetDebug (is_debug); 2053 2054 if (is_debug) 2055 { 2056 switch (nlist.n_type) 2057 { 2058 case StabGlobalSymbol: 2059 // N_GSYM -- global symbol: name,,NO_SECT,type,0 2060 // Sometimes the N_GSYM value contains the address. 2061 2062 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2063 // have the same address, but we want to ensure that we always find only the real symbol, 2064 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2065 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2066 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2067 // same address. 2068 2069 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 2070 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 2071 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 2072 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 2073 add_nlist = false; 2074 else 2075 { 2076 is_gsym = true; 2077 sym[sym_idx].SetExternal(true); 2078 if (nlist.n_value != 0) 2079 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2080 type = eSymbolTypeData; 2081 } 2082 break; 2083 2084 case StabFunctionName: 2085 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 2086 type = eSymbolTypeCompiler; 2087 break; 2088 2089 case StabFunction: 2090 // N_FUN -- procedure: name,,n_sect,linenumber,address 2091 if (symbol_name) 2092 { 2093 type = eSymbolTypeCode; 2094 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2095 2096 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 2097 // We use the current number of symbols in the symbol table in lieu of 2098 // using nlist_idx in case we ever start trimming entries out 2099 N_FUN_indexes.push_back(sym_idx); 2100 } 2101 else 2102 { 2103 type = eSymbolTypeCompiler; 2104 2105 if ( !N_FUN_indexes.empty() ) 2106 { 2107 // Copy the size of the function into the original STAB entry so we don't have 2108 // to hunt for it later 2109 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2110 N_FUN_indexes.pop_back(); 2111 // We don't really need the end function STAB as it contains the size which 2112 // we already placed with the original symbol, so don't add it if we want a 2113 // minimal symbol table 2114 add_nlist = false; 2115 } 2116 } 2117 break; 2118 2119 case StabStaticSymbol: 2120 // N_STSYM -- static symbol: name,,n_sect,type,address 2121 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 2122 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2123 type = eSymbolTypeData; 2124 break; 2125 2126 case StabLocalCommon: 2127 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 2128 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2129 type = eSymbolTypeCommonBlock; 2130 break; 2131 2132 case StabBeginSymbol: 2133 // N_BNSYM 2134 // We use the current number of symbols in the symbol table in lieu of 2135 // using nlist_idx in case we ever start trimming entries out 2136 // Skip these if we want minimal symbol tables 2137 add_nlist = false; 2138 break; 2139 2140 case StabEndSymbol: 2141 // N_ENSYM 2142 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2143 // so that we can always skip the entire symbol if we need to navigate 2144 // more quickly at the source level when parsing STABS 2145 // Skip these if we want minimal symbol tables 2146 add_nlist = false; 2147 break; 2148 2149 2150 case StabSourceFileOptions: 2151 // N_OPT - emitted with gcc2_compiled and in gcc source 2152 type = eSymbolTypeCompiler; 2153 break; 2154 2155 case StabRegisterSymbol: 2156 // N_RSYM - register sym: name,,NO_SECT,type,register 2157 type = eSymbolTypeVariable; 2158 break; 2159 2160 case StabSourceLine: 2161 // N_SLINE - src line: 0,,n_sect,linenumber,address 2162 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2163 type = eSymbolTypeLineEntry; 2164 break; 2165 2166 case StabStructureType: 2167 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 2168 type = eSymbolTypeVariableType; 2169 break; 2170 2171 case StabSourceFileName: 2172 // N_SO - source file name 2173 type = eSymbolTypeSourceFile; 2174 if (symbol_name == NULL) 2175 { 2176 add_nlist = false; 2177 if (N_SO_index != UINT32_MAX) 2178 { 2179 // Set the size of the N_SO to the terminating index of this N_SO 2180 // so that we can always skip the entire N_SO if we need to navigate 2181 // more quickly at the source level when parsing STABS 2182 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2183 symbol_ptr->SetByteSize(sym_idx); 2184 symbol_ptr->SetSizeIsSibling(true); 2185 } 2186 N_NSYM_indexes.clear(); 2187 N_INCL_indexes.clear(); 2188 N_BRAC_indexes.clear(); 2189 N_COMM_indexes.clear(); 2190 N_FUN_indexes.clear(); 2191 N_SO_index = UINT32_MAX; 2192 } 2193 else 2194 { 2195 // We use the current number of symbols in the symbol table in lieu of 2196 // using nlist_idx in case we ever start trimming entries out 2197 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2198 if (N_SO_has_full_path) 2199 { 2200 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2201 { 2202 // We have two consecutive N_SO entries where the first contains a directory 2203 // and the second contains a full path. 2204 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2205 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2206 add_nlist = false; 2207 } 2208 else 2209 { 2210 // This is the first entry in a N_SO that contains a directory or 2211 // a full path to the source file 2212 N_SO_index = sym_idx; 2213 } 2214 } 2215 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2216 { 2217 // This is usually the second N_SO entry that contains just the filename, 2218 // so here we combine it with the first one if we are minimizing the symbol table 2219 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 2220 if (so_path && so_path[0]) 2221 { 2222 std::string full_so_path (so_path); 2223 const size_t double_slash_pos = full_so_path.find("//"); 2224 if (double_slash_pos != std::string::npos) 2225 { 2226 // The linker has been generating bad N_SO entries with doubled up paths 2227 // in the format "%s%s" where the first stirng in the DW_AT_comp_dir, 2228 // and the second is the directory for the source file so you end up with 2229 // a path that looks like "/tmp/src//tmp/src/" 2230 FileSpec so_dir(so_path, false); 2231 if (!so_dir.Exists()) 2232 { 2233 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 2234 if (so_dir.Exists()) 2235 { 2236 // Trim off the incorrect path 2237 full_so_path.erase(0, double_slash_pos + 1); 2238 } 2239 } 2240 } 2241 if (*full_so_path.rbegin() != '/') 2242 full_so_path += '/'; 2243 full_so_path += symbol_name; 2244 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 2245 add_nlist = false; 2246 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2247 } 2248 } 2249 else 2250 { 2251 // This could be a relative path to a N_SO 2252 N_SO_index = sym_idx; 2253 } 2254 } 2255 break; 2256 2257 case StabObjectFileName: 2258 // N_OSO - object file name: name,,0,0,st_mtime 2259 type = eSymbolTypeObjectFile; 2260 break; 2261 2262 case StabLocalSymbol: 2263 // N_LSYM - local sym: name,,NO_SECT,type,offset 2264 type = eSymbolTypeLocal; 2265 break; 2266 2267 //---------------------------------------------------------------------- 2268 // INCL scopes 2269 //---------------------------------------------------------------------- 2270 case StabBeginIncludeFileName: 2271 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 2272 // We use the current number of symbols in the symbol table in lieu of 2273 // using nlist_idx in case we ever start trimming entries out 2274 N_INCL_indexes.push_back(sym_idx); 2275 type = eSymbolTypeScopeBegin; 2276 break; 2277 2278 case StabEndIncludeFile: 2279 // N_EINCL - include file end: name,,NO_SECT,0,0 2280 // Set the size of the N_BINCL to the terminating index of this N_EINCL 2281 // so that we can always skip the entire symbol if we need to navigate 2282 // more quickly at the source level when parsing STABS 2283 if ( !N_INCL_indexes.empty() ) 2284 { 2285 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 2286 symbol_ptr->SetByteSize(sym_idx + 1); 2287 symbol_ptr->SetSizeIsSibling(true); 2288 N_INCL_indexes.pop_back(); 2289 } 2290 type = eSymbolTypeScopeEnd; 2291 break; 2292 2293 case StabIncludeFileName: 2294 // N_SOL - #included file name: name,,n_sect,0,address 2295 type = eSymbolTypeHeaderFile; 2296 2297 // We currently don't use the header files on darwin 2298 add_nlist = false; 2299 break; 2300 2301 case StabCompilerParameters: 2302 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 2303 type = eSymbolTypeCompiler; 2304 break; 2305 2306 case StabCompilerVersion: 2307 // N_VERSION - compiler version: name,,NO_SECT,0,0 2308 type = eSymbolTypeCompiler; 2309 break; 2310 2311 case StabCompilerOptLevel: 2312 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 2313 type = eSymbolTypeCompiler; 2314 break; 2315 2316 case StabParameter: 2317 // N_PSYM - parameter: name,,NO_SECT,type,offset 2318 type = eSymbolTypeVariable; 2319 break; 2320 2321 case StabAlternateEntry: 2322 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 2323 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2324 type = eSymbolTypeLineEntry; 2325 break; 2326 2327 //---------------------------------------------------------------------- 2328 // Left and Right Braces 2329 //---------------------------------------------------------------------- 2330 case StabLeftBracket: 2331 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 2332 // We use the current number of symbols in the symbol table in lieu of 2333 // using nlist_idx in case we ever start trimming entries out 2334 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2335 N_BRAC_indexes.push_back(sym_idx); 2336 type = eSymbolTypeScopeBegin; 2337 break; 2338 2339 case StabRightBracket: 2340 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 2341 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 2342 // so that we can always skip the entire symbol if we need to navigate 2343 // more quickly at the source level when parsing STABS 2344 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2345 if ( !N_BRAC_indexes.empty() ) 2346 { 2347 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 2348 symbol_ptr->SetByteSize(sym_idx + 1); 2349 symbol_ptr->SetSizeIsSibling(true); 2350 N_BRAC_indexes.pop_back(); 2351 } 2352 type = eSymbolTypeScopeEnd; 2353 break; 2354 2355 case StabDeletedIncludeFile: 2356 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 2357 type = eSymbolTypeHeaderFile; 2358 break; 2359 2360 //---------------------------------------------------------------------- 2361 // COMM scopes 2362 //---------------------------------------------------------------------- 2363 case StabBeginCommon: 2364 // N_BCOMM - begin common: name,,NO_SECT,0,0 2365 // We use the current number of symbols in the symbol table in lieu of 2366 // using nlist_idx in case we ever start trimming entries out 2367 type = eSymbolTypeScopeBegin; 2368 N_COMM_indexes.push_back(sym_idx); 2369 break; 2370 2371 case StabEndCommonLocal: 2372 // N_ECOML - end common (local name): 0,,n_sect,0,address 2373 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2374 // Fall through 2375 2376 case StabEndCommon: 2377 // N_ECOMM - end common: name,,n_sect,0,0 2378 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 2379 // so that we can always skip the entire symbol if we need to navigate 2380 // more quickly at the source level when parsing STABS 2381 if ( !N_COMM_indexes.empty() ) 2382 { 2383 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 2384 symbol_ptr->SetByteSize(sym_idx + 1); 2385 symbol_ptr->SetSizeIsSibling(true); 2386 N_COMM_indexes.pop_back(); 2387 } 2388 type = eSymbolTypeScopeEnd; 2389 break; 2390 2391 case StabLength: 2392 // N_LENG - second stab entry with length information 2393 type = eSymbolTypeAdditional; 2394 break; 2395 2396 default: break; 2397 } 2398 } 2399 else 2400 { 2401 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 2402 uint8_t n_type = NlistMaskType & nlist.n_type; 2403 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 2404 2405 switch (n_type) 2406 { 2407 case NListTypeIndirect: // N_INDR - Fall through 2408 case NListTypePreboundUndefined:// N_PBUD - Fall through 2409 case NListTypeUndefined: // N_UNDF 2410 type = eSymbolTypeUndefined; 2411 break; 2412 2413 case NListTypeAbsolute: // N_ABS 2414 type = eSymbolTypeAbsolute; 2415 break; 2416 2417 case NListTypeSection: // N_SECT 2418 { 2419 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2420 2421 if (symbol_section == NULL) 2422 { 2423 // TODO: warn about this? 2424 add_nlist = false; 2425 break; 2426 } 2427 2428 if (TEXT_eh_frame_sectID == nlist.n_sect) 2429 { 2430 type = eSymbolTypeException; 2431 } 2432 else 2433 { 2434 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 2435 2436 switch (section_type) 2437 { 2438 case SectionTypeRegular: break; // regular section 2439 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 2440 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 2441 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 2442 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 2443 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 2444 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 2445 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 2446 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 2447 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 2448 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 2449 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 2450 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 2451 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 2452 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 2453 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 2454 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 2455 default: break; 2456 } 2457 2458 if (type == eSymbolTypeInvalid) 2459 { 2460 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2461 if (symbol_section->IsDescendant (text_section_sp.get())) 2462 { 2463 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 2464 SectionAttrUserSelfModifyingCode | 2465 SectionAttrSytemSomeInstructions)) 2466 type = eSymbolTypeData; 2467 else 2468 type = eSymbolTypeCode; 2469 } 2470 else if (symbol_section->IsDescendant(data_section_sp.get())) 2471 { 2472 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 2473 { 2474 type = eSymbolTypeRuntime; 2475 2476 if (symbol_name && 2477 symbol_name[0] == '_' && 2478 symbol_name[1] == 'O' && 2479 symbol_name[2] == 'B') 2480 { 2481 llvm::StringRef symbol_name_ref(symbol_name); 2482 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2483 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2484 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2485 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2486 { 2487 symbol_name_non_abi_mangled = symbol_name + 1; 2488 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2489 type = eSymbolTypeObjCClass; 2490 demangled_is_synthesized = true; 2491 } 2492 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2493 { 2494 symbol_name_non_abi_mangled = symbol_name + 1; 2495 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2496 type = eSymbolTypeObjCMetaClass; 2497 demangled_is_synthesized = true; 2498 } 2499 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2500 { 2501 symbol_name_non_abi_mangled = symbol_name + 1; 2502 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2503 type = eSymbolTypeObjCIVar; 2504 demangled_is_synthesized = true; 2505 } 2506 } 2507 } 2508 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 2509 { 2510 type = eSymbolTypeException; 2511 } 2512 else 2513 { 2514 type = eSymbolTypeData; 2515 } 2516 } 2517 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 2518 { 2519 type = eSymbolTypeTrampoline; 2520 } 2521 else if (symbol_section->IsDescendant(objc_section_sp.get())) 2522 { 2523 type = eSymbolTypeRuntime; 2524 if (symbol_name && symbol_name[0] == '.') 2525 { 2526 llvm::StringRef symbol_name_ref(symbol_name); 2527 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 2528 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 2529 { 2530 symbol_name_non_abi_mangled = symbol_name; 2531 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 2532 type = eSymbolTypeObjCClass; 2533 demangled_is_synthesized = true; 2534 } 2535 } 2536 } 2537 } 2538 } 2539 } 2540 break; 2541 } 2542 } 2543 2544 if (add_nlist) 2545 { 2546 uint64_t symbol_value = nlist.n_value; 2547 if (symbol_name_non_abi_mangled) 2548 { 2549 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 2550 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 2551 } 2552 else 2553 { 2554 bool symbol_name_is_mangled = false; 2555 2556 if (symbol_name && symbol_name[0] == '_') 2557 { 2558 symbol_name_is_mangled = symbol_name[1] == '_'; 2559 symbol_name++; // Skip the leading underscore 2560 } 2561 2562 if (symbol_name) 2563 { 2564 ConstString const_symbol_name(symbol_name); 2565 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 2566 if (is_gsym && is_debug) 2567 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 2568 } 2569 } 2570 if (symbol_section) 2571 { 2572 const addr_t section_file_addr = symbol_section->GetFileAddress(); 2573 if (symbol_byte_size == 0 && function_starts_count > 0) 2574 { 2575 addr_t symbol_lookup_file_addr = nlist.n_value; 2576 // Do an exact address match for non-ARM addresses, else get the closest since 2577 // the symbol might be a thumb symbol which has an address with bit zero set 2578 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 2579 if (is_arm && func_start_entry) 2580 { 2581 // Verify that the function start address is the symbol address (ARM) 2582 // or the symbol address + 1 (thumb) 2583 if (func_start_entry->addr != symbol_lookup_file_addr && 2584 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 2585 { 2586 // Not the right entry, NULL it out... 2587 func_start_entry = NULL; 2588 } 2589 } 2590 if (func_start_entry) 2591 { 2592 func_start_entry->data = true; 2593 2594 addr_t symbol_file_addr = func_start_entry->addr; 2595 uint32_t symbol_flags = 0; 2596 if (is_arm) 2597 { 2598 if (symbol_file_addr & 1) 2599 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 2600 symbol_file_addr &= 0xfffffffffffffffeull; 2601 } 2602 2603 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 2604 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 2605 if (next_func_start_entry) 2606 { 2607 addr_t next_symbol_file_addr = next_func_start_entry->addr; 2608 // Be sure the clear the Thumb address bit when we calculate the size 2609 // from the current and next address 2610 if (is_arm) 2611 next_symbol_file_addr &= 0xfffffffffffffffeull; 2612 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 2613 } 2614 else 2615 { 2616 symbol_byte_size = section_end_file_addr - symbol_file_addr; 2617 } 2618 } 2619 } 2620 symbol_value -= section_file_addr; 2621 } 2622 2623 if (is_debug == false) 2624 { 2625 if (type == eSymbolTypeCode) 2626 { 2627 // See if we can find a N_FUN entry for any code symbols. 2628 // If we do find a match, and the name matches, then we 2629 // can merge the two into just the function symbol to avoid 2630 // duplicate entries in the symbol table 2631 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 2632 if (pos != N_FUN_addr_to_sym_idx.end()) 2633 { 2634 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 2635 { 2636 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 2637 // We just need the flags from the linker symbol, so put these flags 2638 // into the N_FUN flags to avoid duplicate symbols in the symbol table 2639 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2640 sym[sym_idx].Clear(); 2641 continue; 2642 } 2643 } 2644 } 2645 else if (type == eSymbolTypeData) 2646 { 2647 // See if we can find a N_STSYM entry for any data symbols. 2648 // If we do find a match, and the name matches, then we 2649 // can merge the two into just the Static symbol to avoid 2650 // duplicate entries in the symbol table 2651 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 2652 if (pos != N_STSYM_addr_to_sym_idx.end()) 2653 { 2654 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 2655 { 2656 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 2657 // We just need the flags from the linker symbol, so put these flags 2658 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 2659 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2660 sym[sym_idx].Clear(); 2661 continue; 2662 } 2663 } 2664 else 2665 { 2666 // Combine N_GSYM stab entries with the non stab symbol 2667 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 2668 if (pos != N_GSYM_name_to_sym_idx.end()) 2669 { 2670 const uint32_t GSYM_sym_idx = pos->second; 2671 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 2672 // Copy the address, because often the N_GSYM address has an invalid address of zero 2673 // when the global is a common symbol 2674 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 2675 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 2676 // We just need the flags from the linker symbol, so put these flags 2677 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 2678 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2679 sym[sym_idx].Clear(); 2680 continue; 2681 } 2682 } 2683 } 2684 } 2685 2686 sym[sym_idx].SetID (nlist_idx); 2687 sym[sym_idx].SetType (type); 2688 sym[sym_idx].GetAddress().SetSection (symbol_section); 2689 sym[sym_idx].GetAddress().SetOffset (symbol_value); 2690 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 2691 2692 if (symbol_byte_size > 0) 2693 sym[sym_idx].SetByteSize(symbol_byte_size); 2694 2695 if (demangled_is_synthesized) 2696 sym[sym_idx].SetDemangledNameIsSynthesized(true); 2697 ++sym_idx; 2698 } 2699 else 2700 { 2701 sym[sym_idx].Clear(); 2702 } 2703 2704 } 2705 ///////////////////////////// 2706 } 2707 break; // No more entries to consider 2708 } 2709 } 2710 } 2711 } 2712 } 2713 } 2714 } 2715 2716 // Must reset this in case it was mutated above! 2717 nlist_data_offset = 0; 2718 #endif 2719 2720 if (nlist_data.GetByteSize() > 0) 2721 { 2722 2723 // If the sym array was not created while parsing the DSC unmapped 2724 // symbols, create it now. 2725 if (sym == NULL) 2726 { 2727 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 2728 num_syms = symtab->GetNumSymbols(); 2729 } 2730 2731 if (unmapped_local_symbols_found) 2732 { 2733 assert(m_dysymtab.ilocalsym == 0); 2734 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 2735 nlist_idx = m_dysymtab.nlocalsym; 2736 } 2737 else 2738 { 2739 nlist_idx = 0; 2740 } 2741 2742 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 2743 { 2744 struct nlist_64 nlist; 2745 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2746 break; 2747 2748 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 2749 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 2750 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 2751 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 2752 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 2753 2754 SymbolType type = eSymbolTypeInvalid; 2755 const char *symbol_name = NULL; 2756 2757 if (have_strtab_data) 2758 { 2759 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 2760 2761 if (symbol_name == NULL) 2762 { 2763 // No symbol should be NULL, even the symbols with no 2764 // string values should have an offset zero which points 2765 // to an empty C-string 2766 Host::SystemLog (Host::eSystemLogError, 2767 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2768 nlist_idx, 2769 nlist.n_strx, 2770 module_sp->GetFileSpec().GetPath().c_str()); 2771 continue; 2772 } 2773 if (symbol_name[0] == '\0') 2774 symbol_name = NULL; 2775 } 2776 else 2777 { 2778 const addr_t str_addr = strtab_addr + nlist.n_strx; 2779 Error str_error; 2780 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 2781 symbol_name = memory_symbol_name.c_str(); 2782 } 2783 const char *symbol_name_non_abi_mangled = NULL; 2784 2785 SectionSP symbol_section; 2786 lldb::addr_t symbol_byte_size = 0; 2787 bool add_nlist = true; 2788 bool is_gsym = false; 2789 bool is_debug = ((nlist.n_type & NlistMaskStab) != 0); 2790 bool demangled_is_synthesized = false; 2791 2792 assert (sym_idx < num_syms); 2793 2794 sym[sym_idx].SetDebug (is_debug); 2795 2796 if (is_debug) 2797 { 2798 switch (nlist.n_type) 2799 { 2800 case StabGlobalSymbol: 2801 // N_GSYM -- global symbol: name,,NO_SECT,type,0 2802 // Sometimes the N_GSYM value contains the address. 2803 2804 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2805 // have the same address, but we want to ensure that we always find only the real symbol, 2806 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2807 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2808 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2809 // same address. 2810 2811 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O' 2812 && (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0 2813 || strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0 2814 || strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0)) 2815 add_nlist = false; 2816 else 2817 { 2818 is_gsym = true; 2819 sym[sym_idx].SetExternal(true); 2820 if (nlist.n_value != 0) 2821 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2822 type = eSymbolTypeData; 2823 } 2824 break; 2825 2826 case StabFunctionName: 2827 // N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0 2828 type = eSymbolTypeCompiler; 2829 break; 2830 2831 case StabFunction: 2832 // N_FUN -- procedure: name,,n_sect,linenumber,address 2833 if (symbol_name) 2834 { 2835 type = eSymbolTypeCode; 2836 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2837 2838 N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx; 2839 // We use the current number of symbols in the symbol table in lieu of 2840 // using nlist_idx in case we ever start trimming entries out 2841 N_FUN_indexes.push_back(sym_idx); 2842 } 2843 else 2844 { 2845 type = eSymbolTypeCompiler; 2846 2847 if ( !N_FUN_indexes.empty() ) 2848 { 2849 // Copy the size of the function into the original STAB entry so we don't have 2850 // to hunt for it later 2851 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2852 N_FUN_indexes.pop_back(); 2853 // We don't really need the end function STAB as it contains the size which 2854 // we already placed with the original symbol, so don't add it if we want a 2855 // minimal symbol table 2856 add_nlist = false; 2857 } 2858 } 2859 break; 2860 2861 case StabStaticSymbol: 2862 // N_STSYM -- static symbol: name,,n_sect,type,address 2863 N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx; 2864 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2865 type = eSymbolTypeData; 2866 break; 2867 2868 case StabLocalCommon: 2869 // N_LCSYM -- .lcomm symbol: name,,n_sect,type,address 2870 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2871 type = eSymbolTypeCommonBlock; 2872 break; 2873 2874 case StabBeginSymbol: 2875 // N_BNSYM 2876 // We use the current number of symbols in the symbol table in lieu of 2877 // using nlist_idx in case we ever start trimming entries out 2878 // Skip these if we want minimal symbol tables 2879 add_nlist = false; 2880 break; 2881 2882 case StabEndSymbol: 2883 // N_ENSYM 2884 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2885 // so that we can always skip the entire symbol if we need to navigate 2886 // more quickly at the source level when parsing STABS 2887 // Skip these if we want minimal symbol tables 2888 add_nlist = false; 2889 break; 2890 2891 2892 case StabSourceFileOptions: 2893 // N_OPT - emitted with gcc2_compiled and in gcc source 2894 type = eSymbolTypeCompiler; 2895 break; 2896 2897 case StabRegisterSymbol: 2898 // N_RSYM - register sym: name,,NO_SECT,type,register 2899 type = eSymbolTypeVariable; 2900 break; 2901 2902 case StabSourceLine: 2903 // N_SLINE - src line: 0,,n_sect,linenumber,address 2904 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2905 type = eSymbolTypeLineEntry; 2906 break; 2907 2908 case StabStructureType: 2909 // N_SSYM - structure elt: name,,NO_SECT,type,struct_offset 2910 type = eSymbolTypeVariableType; 2911 break; 2912 2913 case StabSourceFileName: 2914 // N_SO - source file name 2915 type = eSymbolTypeSourceFile; 2916 if (symbol_name == NULL) 2917 { 2918 add_nlist = false; 2919 if (N_SO_index != UINT32_MAX) 2920 { 2921 // Set the size of the N_SO to the terminating index of this N_SO 2922 // so that we can always skip the entire N_SO if we need to navigate 2923 // more quickly at the source level when parsing STABS 2924 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2925 symbol_ptr->SetByteSize(sym_idx); 2926 symbol_ptr->SetSizeIsSibling(true); 2927 } 2928 N_NSYM_indexes.clear(); 2929 N_INCL_indexes.clear(); 2930 N_BRAC_indexes.clear(); 2931 N_COMM_indexes.clear(); 2932 N_FUN_indexes.clear(); 2933 N_SO_index = UINT32_MAX; 2934 } 2935 else 2936 { 2937 // We use the current number of symbols in the symbol table in lieu of 2938 // using nlist_idx in case we ever start trimming entries out 2939 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2940 if (N_SO_has_full_path) 2941 { 2942 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2943 { 2944 // We have two consecutive N_SO entries where the first contains a directory 2945 // and the second contains a full path. 2946 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2947 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2948 add_nlist = false; 2949 } 2950 else 2951 { 2952 // This is the first entry in a N_SO that contains a directory or 2953 // a full path to the source file 2954 N_SO_index = sym_idx; 2955 } 2956 } 2957 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2958 { 2959 // This is usually the second N_SO entry that contains just the filename, 2960 // so here we combine it with the first one if we are minimizing the symbol table 2961 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 2962 if (so_path && so_path[0]) 2963 { 2964 std::string full_so_path (so_path); 2965 const size_t double_slash_pos = full_so_path.find("//"); 2966 if (double_slash_pos != std::string::npos) 2967 { 2968 // The linker has been generating bad N_SO entries with doubled up paths 2969 // in the format "%s%s" where the first stirng in the DW_AT_comp_dir, 2970 // and the second is the directory for the source file so you end up with 2971 // a path that looks like "/tmp/src//tmp/src/" 2972 FileSpec so_dir(so_path, false); 2973 if (!so_dir.Exists()) 2974 { 2975 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 2976 if (so_dir.Exists()) 2977 { 2978 // Trim off the incorrect path 2979 full_so_path.erase(0, double_slash_pos + 1); 2980 } 2981 } 2982 } 2983 if (*full_so_path.rbegin() != '/') 2984 full_so_path += '/'; 2985 full_so_path += symbol_name; 2986 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 2987 add_nlist = false; 2988 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2989 } 2990 } 2991 else 2992 { 2993 // This could be a relative path to a N_SO 2994 N_SO_index = sym_idx; 2995 } 2996 } 2997 2998 break; 2999 3000 case StabObjectFileName: 3001 // N_OSO - object file name: name,,0,0,st_mtime 3002 type = eSymbolTypeObjectFile; 3003 break; 3004 3005 case StabLocalSymbol: 3006 // N_LSYM - local sym: name,,NO_SECT,type,offset 3007 type = eSymbolTypeLocal; 3008 break; 3009 3010 //---------------------------------------------------------------------- 3011 // INCL scopes 3012 //---------------------------------------------------------------------- 3013 case StabBeginIncludeFileName: 3014 // N_BINCL - include file beginning: name,,NO_SECT,0,sum 3015 // We use the current number of symbols in the symbol table in lieu of 3016 // using nlist_idx in case we ever start trimming entries out 3017 N_INCL_indexes.push_back(sym_idx); 3018 type = eSymbolTypeScopeBegin; 3019 break; 3020 3021 case StabEndIncludeFile: 3022 // N_EINCL - include file end: name,,NO_SECT,0,0 3023 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3024 // so that we can always skip the entire symbol if we need to navigate 3025 // more quickly at the source level when parsing STABS 3026 if ( !N_INCL_indexes.empty() ) 3027 { 3028 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3029 symbol_ptr->SetByteSize(sym_idx + 1); 3030 symbol_ptr->SetSizeIsSibling(true); 3031 N_INCL_indexes.pop_back(); 3032 } 3033 type = eSymbolTypeScopeEnd; 3034 break; 3035 3036 case StabIncludeFileName: 3037 // N_SOL - #included file name: name,,n_sect,0,address 3038 type = eSymbolTypeHeaderFile; 3039 3040 // We currently don't use the header files on darwin 3041 add_nlist = false; 3042 break; 3043 3044 case StabCompilerParameters: 3045 // N_PARAMS - compiler parameters: name,,NO_SECT,0,0 3046 type = eSymbolTypeCompiler; 3047 break; 3048 3049 case StabCompilerVersion: 3050 // N_VERSION - compiler version: name,,NO_SECT,0,0 3051 type = eSymbolTypeCompiler; 3052 break; 3053 3054 case StabCompilerOptLevel: 3055 // N_OLEVEL - compiler -O level: name,,NO_SECT,0,0 3056 type = eSymbolTypeCompiler; 3057 break; 3058 3059 case StabParameter: 3060 // N_PSYM - parameter: name,,NO_SECT,type,offset 3061 type = eSymbolTypeVariable; 3062 break; 3063 3064 case StabAlternateEntry: 3065 // N_ENTRY - alternate entry: name,,n_sect,linenumber,address 3066 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3067 type = eSymbolTypeLineEntry; 3068 break; 3069 3070 //---------------------------------------------------------------------- 3071 // Left and Right Braces 3072 //---------------------------------------------------------------------- 3073 case StabLeftBracket: 3074 // N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address 3075 // We use the current number of symbols in the symbol table in lieu of 3076 // using nlist_idx in case we ever start trimming entries out 3077 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3078 N_BRAC_indexes.push_back(sym_idx); 3079 type = eSymbolTypeScopeBegin; 3080 break; 3081 3082 case StabRightBracket: 3083 // N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address 3084 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3085 // so that we can always skip the entire symbol if we need to navigate 3086 // more quickly at the source level when parsing STABS 3087 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3088 if ( !N_BRAC_indexes.empty() ) 3089 { 3090 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3091 symbol_ptr->SetByteSize(sym_idx + 1); 3092 symbol_ptr->SetSizeIsSibling(true); 3093 N_BRAC_indexes.pop_back(); 3094 } 3095 type = eSymbolTypeScopeEnd; 3096 break; 3097 3098 case StabDeletedIncludeFile: 3099 // N_EXCL - deleted include file: name,,NO_SECT,0,sum 3100 type = eSymbolTypeHeaderFile; 3101 break; 3102 3103 //---------------------------------------------------------------------- 3104 // COMM scopes 3105 //---------------------------------------------------------------------- 3106 case StabBeginCommon: 3107 // N_BCOMM - begin common: name,,NO_SECT,0,0 3108 // We use the current number of symbols in the symbol table in lieu of 3109 // using nlist_idx in case we ever start trimming entries out 3110 type = eSymbolTypeScopeBegin; 3111 N_COMM_indexes.push_back(sym_idx); 3112 break; 3113 3114 case StabEndCommonLocal: 3115 // N_ECOML - end common (local name): 0,,n_sect,0,address 3116 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3117 // Fall through 3118 3119 case StabEndCommon: 3120 // N_ECOMM - end common: name,,n_sect,0,0 3121 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3122 // so that we can always skip the entire symbol if we need to navigate 3123 // more quickly at the source level when parsing STABS 3124 if ( !N_COMM_indexes.empty() ) 3125 { 3126 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3127 symbol_ptr->SetByteSize(sym_idx + 1); 3128 symbol_ptr->SetSizeIsSibling(true); 3129 N_COMM_indexes.pop_back(); 3130 } 3131 type = eSymbolTypeScopeEnd; 3132 break; 3133 3134 case StabLength: 3135 // N_LENG - second stab entry with length information 3136 type = eSymbolTypeAdditional; 3137 break; 3138 3139 default: break; 3140 } 3141 } 3142 else 3143 { 3144 //uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type; 3145 uint8_t n_type = NlistMaskType & nlist.n_type; 3146 sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0); 3147 3148 switch (n_type) 3149 { 3150 case NListTypeIndirect: // N_INDR - Fall through 3151 case NListTypePreboundUndefined:// N_PBUD - Fall through 3152 case NListTypeUndefined: // N_UNDF 3153 type = eSymbolTypeUndefined; 3154 break; 3155 3156 case NListTypeAbsolute: // N_ABS 3157 type = eSymbolTypeAbsolute; 3158 break; 3159 3160 case NListTypeSection: // N_SECT 3161 { 3162 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3163 3164 if (!symbol_section) 3165 { 3166 // TODO: warn about this? 3167 add_nlist = false; 3168 break; 3169 } 3170 3171 if (TEXT_eh_frame_sectID == nlist.n_sect) 3172 { 3173 type = eSymbolTypeException; 3174 } 3175 else 3176 { 3177 uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType; 3178 3179 switch (section_type) 3180 { 3181 case SectionTypeRegular: break; // regular section 3182 //case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section 3183 case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings 3184 case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals 3185 case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals 3186 case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3187 case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3188 case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3189 case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3190 case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3191 case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination 3192 //case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced 3193 //case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes) 3194 case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3195 case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals 3196 case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break; 3197 case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break; 3198 default: break; 3199 } 3200 3201 if (type == eSymbolTypeInvalid) 3202 { 3203 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3204 if (symbol_section->IsDescendant (text_section_sp.get())) 3205 { 3206 if (symbol_section->IsClear(SectionAttrUserPureInstructions | 3207 SectionAttrUserSelfModifyingCode | 3208 SectionAttrSytemSomeInstructions)) 3209 type = eSymbolTypeData; 3210 else 3211 type = eSymbolTypeCode; 3212 } 3213 else 3214 if (symbol_section->IsDescendant(data_section_sp.get())) 3215 { 3216 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3217 { 3218 type = eSymbolTypeRuntime; 3219 3220 if (symbol_name && 3221 symbol_name[0] == '_' && 3222 symbol_name[1] == 'O' && 3223 symbol_name[2] == 'B') 3224 { 3225 llvm::StringRef symbol_name_ref(symbol_name); 3226 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 3227 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 3228 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 3229 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3230 { 3231 symbol_name_non_abi_mangled = symbol_name + 1; 3232 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3233 type = eSymbolTypeObjCClass; 3234 demangled_is_synthesized = true; 3235 } 3236 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3237 { 3238 symbol_name_non_abi_mangled = symbol_name + 1; 3239 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3240 type = eSymbolTypeObjCMetaClass; 3241 demangled_is_synthesized = true; 3242 } 3243 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3244 { 3245 symbol_name_non_abi_mangled = symbol_name + 1; 3246 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3247 type = eSymbolTypeObjCIVar; 3248 demangled_is_synthesized = true; 3249 } 3250 } 3251 } 3252 else 3253 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3254 { 3255 type = eSymbolTypeException; 3256 } 3257 else 3258 { 3259 type = eSymbolTypeData; 3260 } 3261 } 3262 else 3263 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3264 { 3265 type = eSymbolTypeTrampoline; 3266 } 3267 else 3268 if (symbol_section->IsDescendant(objc_section_sp.get())) 3269 { 3270 type = eSymbolTypeRuntime; 3271 if (symbol_name && symbol_name[0] == '.') 3272 { 3273 llvm::StringRef symbol_name_ref(symbol_name); 3274 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3275 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3276 { 3277 symbol_name_non_abi_mangled = symbol_name; 3278 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3279 type = eSymbolTypeObjCClass; 3280 demangled_is_synthesized = true; 3281 } 3282 } 3283 } 3284 } 3285 } 3286 } 3287 break; 3288 } 3289 } 3290 3291 if (add_nlist) 3292 { 3293 uint64_t symbol_value = nlist.n_value; 3294 3295 if (symbol_name_non_abi_mangled) 3296 { 3297 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3298 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3299 } 3300 else 3301 { 3302 bool symbol_name_is_mangled = false; 3303 3304 if (symbol_name && symbol_name[0] == '_') 3305 { 3306 symbol_name_is_mangled = symbol_name[1] == '_'; 3307 symbol_name++; // Skip the leading underscore 3308 } 3309 3310 if (symbol_name) 3311 { 3312 ConstString const_symbol_name(symbol_name); 3313 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3314 if (is_gsym && is_debug) 3315 { 3316 N_GSYM_name_to_sym_idx[sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()] = sym_idx; 3317 } 3318 } 3319 } 3320 if (symbol_section) 3321 { 3322 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3323 if (symbol_byte_size == 0 && function_starts_count > 0) 3324 { 3325 addr_t symbol_lookup_file_addr = nlist.n_value; 3326 // Do an exact address match for non-ARM addresses, else get the closest since 3327 // the symbol might be a thumb symbol which has an address with bit zero set 3328 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3329 if (is_arm && func_start_entry) 3330 { 3331 // Verify that the function start address is the symbol address (ARM) 3332 // or the symbol address + 1 (thumb) 3333 if (func_start_entry->addr != symbol_lookup_file_addr && 3334 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3335 { 3336 // Not the right entry, NULL it out... 3337 func_start_entry = NULL; 3338 } 3339 } 3340 if (func_start_entry) 3341 { 3342 func_start_entry->data = true; 3343 3344 addr_t symbol_file_addr = func_start_entry->addr; 3345 if (is_arm) 3346 symbol_file_addr &= 0xfffffffffffffffeull; 3347 3348 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3349 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3350 if (next_func_start_entry) 3351 { 3352 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3353 // Be sure the clear the Thumb address bit when we calculate the size 3354 // from the current and next address 3355 if (is_arm) 3356 next_symbol_file_addr &= 0xfffffffffffffffeull; 3357 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3358 } 3359 else 3360 { 3361 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3362 } 3363 } 3364 } 3365 symbol_value -= section_file_addr; 3366 } 3367 3368 if (is_debug == false) 3369 { 3370 if (type == eSymbolTypeCode) 3371 { 3372 // See if we can find a N_FUN entry for any code symbols. 3373 // If we do find a match, and the name matches, then we 3374 // can merge the two into just the function symbol to avoid 3375 // duplicate entries in the symbol table 3376 ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value); 3377 if (pos != N_FUN_addr_to_sym_idx.end()) 3378 { 3379 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3380 { 3381 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3382 // We just need the flags from the linker symbol, so put these flags 3383 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3384 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3385 sym[sym_idx].Clear(); 3386 continue; 3387 } 3388 } 3389 } 3390 else if (type == eSymbolTypeData) 3391 { 3392 // See if we can find a N_STSYM entry for any data symbols. 3393 // If we do find a match, and the name matches, then we 3394 // can merge the two into just the Static symbol to avoid 3395 // duplicate entries in the symbol table 3396 ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value); 3397 if (pos != N_STSYM_addr_to_sym_idx.end()) 3398 { 3399 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3400 { 3401 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3402 // We just need the flags from the linker symbol, so put these flags 3403 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3404 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3405 sym[sym_idx].Clear(); 3406 continue; 3407 } 3408 } 3409 else 3410 { 3411 // Combine N_GSYM stab entries with the non stab symbol 3412 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString()); 3413 if (pos != N_GSYM_name_to_sym_idx.end()) 3414 { 3415 const uint32_t GSYM_sym_idx = pos->second; 3416 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3417 // Copy the address, because often the N_GSYM address has an invalid address of zero 3418 // when the global is a common symbol 3419 sym[GSYM_sym_idx].GetAddress().SetSection (symbol_section); 3420 sym[GSYM_sym_idx].GetAddress().SetOffset (symbol_value); 3421 // We just need the flags from the linker symbol, so put these flags 3422 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3423 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3424 sym[sym_idx].Clear(); 3425 continue; 3426 } 3427 } 3428 } 3429 } 3430 3431 sym[sym_idx].SetID (nlist_idx); 3432 sym[sym_idx].SetType (type); 3433 sym[sym_idx].GetAddress().SetSection (symbol_section); 3434 sym[sym_idx].GetAddress().SetOffset (symbol_value); 3435 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3436 3437 if (symbol_byte_size > 0) 3438 sym[sym_idx].SetByteSize(symbol_byte_size); 3439 3440 if (demangled_is_synthesized) 3441 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3442 3443 ++sym_idx; 3444 } 3445 else 3446 { 3447 sym[sym_idx].Clear(); 3448 } 3449 3450 } 3451 3452 // STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value 3453 // is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all 3454 // such entries by figuring out what the address for the global is by looking up this non-STAB 3455 // entry and copying the value into the debug symbol's value to save us the hassle in the 3456 // debug symbol parser. 3457 3458 Symbol *global_symbol = NULL; 3459 for (nlist_idx = 0; 3460 nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL; 3461 nlist_idx++) 3462 { 3463 if (global_symbol->GetAddress().GetFileAddress() == 0) 3464 { 3465 std::vector<uint32_t> indexes; 3466 if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0) 3467 { 3468 std::vector<uint32_t>::const_iterator pos; 3469 std::vector<uint32_t>::const_iterator end = indexes.end(); 3470 for (pos = indexes.begin(); pos != end; ++pos) 3471 { 3472 symbol_ptr = symtab->SymbolAtIndex(*pos); 3473 if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false) 3474 { 3475 global_symbol->GetAddress() = symbol_ptr->GetAddress(); 3476 break; 3477 } 3478 } 3479 } 3480 } 3481 } 3482 } 3483 3484 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 3485 3486 if (function_starts_count > 0) 3487 { 3488 char synthetic_function_symbol[PATH_MAX]; 3489 uint32_t num_synthetic_function_symbols = 0; 3490 for (i=0; i<function_starts_count; ++i) 3491 { 3492 if (function_starts.GetEntryRef (i).data == false) 3493 ++num_synthetic_function_symbols; 3494 } 3495 3496 if (num_synthetic_function_symbols > 0) 3497 { 3498 if (num_syms < sym_idx + num_synthetic_function_symbols) 3499 { 3500 num_syms = sym_idx + num_synthetic_function_symbols; 3501 sym = symtab->Resize (num_syms); 3502 } 3503 uint32_t synthetic_function_symbol_idx = 0; 3504 for (i=0; i<function_starts_count; ++i) 3505 { 3506 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 3507 if (func_start_entry->data == false) 3508 { 3509 addr_t symbol_file_addr = func_start_entry->addr; 3510 uint32_t symbol_flags = 0; 3511 if (is_arm) 3512 { 3513 if (symbol_file_addr & 1) 3514 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3515 symbol_file_addr &= 0xfffffffffffffffeull; 3516 } 3517 Address symbol_addr; 3518 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 3519 { 3520 SectionSP symbol_section (symbol_addr.GetSection()); 3521 uint32_t symbol_byte_size = 0; 3522 if (symbol_section) 3523 { 3524 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3525 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3526 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3527 if (next_func_start_entry) 3528 { 3529 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3530 if (is_arm) 3531 next_symbol_file_addr &= 0xfffffffffffffffeull; 3532 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3533 } 3534 else 3535 { 3536 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3537 } 3538 snprintf (synthetic_function_symbol, 3539 sizeof(synthetic_function_symbol), 3540 "___lldb_unnamed_function%u$$%s", 3541 ++synthetic_function_symbol_idx, 3542 module_sp->GetFileSpec().GetFilename().GetCString()); 3543 sym[sym_idx].SetID (synthetic_sym_id++); 3544 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 3545 sym[sym_idx].SetType (eSymbolTypeCode); 3546 sym[sym_idx].SetIsSynthetic (true); 3547 sym[sym_idx].GetAddress() = symbol_addr; 3548 if (symbol_flags) 3549 sym[sym_idx].SetFlags (symbol_flags); 3550 if (symbol_byte_size) 3551 sym[sym_idx].SetByteSize (symbol_byte_size); 3552 ++sym_idx; 3553 } 3554 } 3555 } 3556 } 3557 } 3558 } 3559 3560 // Trim our symbols down to just what we ended up with after 3561 // removing any symbols. 3562 if (sym_idx < num_syms) 3563 { 3564 num_syms = sym_idx; 3565 sym = symtab->Resize (num_syms); 3566 } 3567 3568 // Now synthesize indirect symbols 3569 if (m_dysymtab.nindirectsyms != 0) 3570 { 3571 if (indirect_symbol_index_data.GetByteSize()) 3572 { 3573 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 3574 3575 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 3576 { 3577 if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs) 3578 { 3579 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 3580 if (symbol_stub_byte_size == 0) 3581 continue; 3582 3583 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 3584 3585 if (num_symbol_stubs == 0) 3586 continue; 3587 3588 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 3589 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 3590 { 3591 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 3592 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 3593 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 3594 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 3595 { 3596 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 3597 if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal)) 3598 continue; 3599 3600 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 3601 Symbol *stub_symbol = NULL; 3602 if (index_pos != end_index_pos) 3603 { 3604 // We have a remapping from the original nlist index to 3605 // a current symbol index, so just look this up by index 3606 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 3607 } 3608 else 3609 { 3610 // We need to lookup a symbol using the original nlist 3611 // symbol index since this index is coming from the 3612 // S_SYMBOL_STUBS 3613 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 3614 } 3615 3616 if (stub_symbol) 3617 { 3618 Address so_addr(symbol_stub_addr, section_list); 3619 3620 if (stub_symbol->GetType() == eSymbolTypeUndefined) 3621 { 3622 // Change the external symbol into a trampoline that makes sense 3623 // These symbols were N_UNDF N_EXT, and are useless to us, so we 3624 // can re-use them so we don't have to make up a synthetic symbol 3625 // for no good reason. 3626 stub_symbol->SetType (eSymbolTypeTrampoline); 3627 stub_symbol->SetExternal (false); 3628 stub_symbol->GetAddress() = so_addr; 3629 stub_symbol->SetByteSize (symbol_stub_byte_size); 3630 } 3631 else 3632 { 3633 // Make a synthetic symbol to describe the trampoline stub 3634 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 3635 if (sym_idx >= num_syms) 3636 { 3637 sym = symtab->Resize (++num_syms); 3638 stub_symbol = NULL; // this pointer no longer valid 3639 } 3640 sym[sym_idx].SetID (synthetic_sym_id++); 3641 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 3642 sym[sym_idx].SetType (eSymbolTypeTrampoline); 3643 sym[sym_idx].SetIsSynthetic (true); 3644 sym[sym_idx].GetAddress() = so_addr; 3645 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 3646 ++sym_idx; 3647 } 3648 } 3649 else 3650 { 3651 if (log) 3652 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 3653 } 3654 } 3655 } 3656 } 3657 } 3658 } 3659 } 3660 3661 // StreamFile s(stdout, false); 3662 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 3663 // symtab->Dump(&s, NULL, eSortOrderNone); 3664 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 3665 symtab->CalculateSymbolSizes(); 3666 3667 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 3668 // symtab->Dump(&s, NULL, eSortOrderNone); 3669 3670 return symtab->GetNumSymbols(); 3671 } 3672 return 0; 3673 } 3674 3675 3676 void 3677 ObjectFileMachO::Dump (Stream *s) 3678 { 3679 ModuleSP module_sp(GetModule()); 3680 if (module_sp) 3681 { 3682 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3683 s->Printf("%p: ", this); 3684 s->Indent(); 3685 if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped) 3686 s->PutCString("ObjectFileMachO64"); 3687 else 3688 s->PutCString("ObjectFileMachO32"); 3689 3690 ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 3691 3692 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 3693 3694 SectionList *sections = GetSectionList(); 3695 if (sections) 3696 sections->Dump(s, NULL, true, UINT32_MAX); 3697 3698 if (m_symtab_ap.get()) 3699 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 3700 } 3701 } 3702 3703 bool 3704 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 3705 const lldb_private::DataExtractor &data, 3706 lldb::offset_t lc_offset, 3707 lldb_private::UUID& uuid) 3708 { 3709 uint32_t i; 3710 struct uuid_command load_cmd; 3711 3712 lldb::offset_t offset = lc_offset; 3713 for (i=0; i<header.ncmds; ++i) 3714 { 3715 const lldb::offset_t cmd_offset = offset; 3716 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 3717 break; 3718 3719 if (load_cmd.cmd == LoadCommandUUID) 3720 { 3721 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 3722 3723 if (uuid_bytes) 3724 { 3725 // OpenCL on Mac OS X uses the same UUID for each of its object files. 3726 // We pretend these object files have no UUID to prevent crashing. 3727 3728 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 3729 0x3b, 0xa8, 3730 0x4b, 0x16, 3731 0xb6, 0xa4, 3732 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 3733 3734 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 3735 return false; 3736 3737 uuid.SetBytes (uuid_bytes); 3738 return true; 3739 } 3740 return false; 3741 } 3742 offset = cmd_offset + load_cmd.cmdsize; 3743 } 3744 return false; 3745 } 3746 3747 bool 3748 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 3749 { 3750 ModuleSP module_sp(GetModule()); 3751 if (module_sp) 3752 { 3753 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3754 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3755 return GetUUID (m_header, m_data, offset, *uuid); 3756 } 3757 return false; 3758 } 3759 3760 3761 uint32_t 3762 ObjectFileMachO::GetDependentModules (FileSpecList& files) 3763 { 3764 uint32_t count = 0; 3765 ModuleSP module_sp(GetModule()); 3766 if (module_sp) 3767 { 3768 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3769 struct load_command load_cmd; 3770 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3771 const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system 3772 uint32_t i; 3773 for (i=0; i<m_header.ncmds; ++i) 3774 { 3775 const uint32_t cmd_offset = offset; 3776 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3777 break; 3778 3779 switch (load_cmd.cmd) 3780 { 3781 case LoadCommandDylibLoad: 3782 case LoadCommandDylibLoadWeak: 3783 case LoadCommandDylibReexport: 3784 case LoadCommandDynamicLinkerLoad: 3785 case LoadCommandFixedVMShlibLoad: 3786 case LoadCommandDylibLoadUpward: 3787 { 3788 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 3789 const char *path = m_data.PeekCStr(name_offset); 3790 // Skip any path that starts with '@' since these are usually: 3791 // @executable_path/.../file 3792 // @rpath/.../file 3793 if (path && path[0] != '@') 3794 { 3795 FileSpec file_spec(path, resolve_path); 3796 if (files.AppendIfUnique(file_spec)) 3797 count++; 3798 } 3799 } 3800 break; 3801 3802 default: 3803 break; 3804 } 3805 offset = cmd_offset + load_cmd.cmdsize; 3806 } 3807 } 3808 return count; 3809 } 3810 3811 lldb_private::Address 3812 ObjectFileMachO::GetEntryPointAddress () 3813 { 3814 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 3815 // is initialized to an invalid address, so we can just return that. 3816 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 3817 3818 if (!IsExecutable() || m_entry_point_address.IsValid()) 3819 return m_entry_point_address; 3820 3821 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 3822 // /usr/include/mach-o.h, but it is basically: 3823 // 3824 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 3825 // uint32_t count - this is the count of longs in the thread state data 3826 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 3827 // <repeat this trio> 3828 // 3829 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 3830 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 3831 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 3832 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 3833 // 3834 // For now we hard-code the offsets and flavors we need: 3835 // 3836 // 3837 3838 ModuleSP module_sp(GetModule()); 3839 if (module_sp) 3840 { 3841 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3842 struct load_command load_cmd; 3843 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3844 uint32_t i; 3845 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 3846 bool done = false; 3847 3848 for (i=0; i<m_header.ncmds; ++i) 3849 { 3850 const lldb::offset_t cmd_offset = offset; 3851 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 3852 break; 3853 3854 switch (load_cmd.cmd) 3855 { 3856 case LoadCommandUnixThread: 3857 case LoadCommandThread: 3858 { 3859 while (offset < cmd_offset + load_cmd.cmdsize) 3860 { 3861 uint32_t flavor = m_data.GetU32(&offset); 3862 uint32_t count = m_data.GetU32(&offset); 3863 if (count == 0) 3864 { 3865 // We've gotten off somehow, log and exit; 3866 return m_entry_point_address; 3867 } 3868 3869 switch (m_header.cputype) 3870 { 3871 case llvm::MachO::CPUTypeARM: 3872 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 3873 { 3874 offset += 60; // This is the offset of pc in the GPR thread state data structure. 3875 start_address = m_data.GetU32(&offset); 3876 done = true; 3877 } 3878 break; 3879 case llvm::MachO::CPUTypeI386: 3880 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 3881 { 3882 offset += 40; // This is the offset of eip in the GPR thread state data structure. 3883 start_address = m_data.GetU32(&offset); 3884 done = true; 3885 } 3886 break; 3887 case llvm::MachO::CPUTypeX86_64: 3888 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 3889 { 3890 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 3891 start_address = m_data.GetU64(&offset); 3892 done = true; 3893 } 3894 break; 3895 default: 3896 return m_entry_point_address; 3897 } 3898 // Haven't found the GPR flavor yet, skip over the data for this flavor: 3899 if (done) 3900 break; 3901 offset += count * 4; 3902 } 3903 } 3904 break; 3905 case LoadCommandMain: 3906 { 3907 ConstString text_segment_name ("__TEXT"); 3908 uint64_t entryoffset = m_data.GetU64(&offset); 3909 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 3910 if (text_segment_sp) 3911 { 3912 done = true; 3913 start_address = text_segment_sp->GetFileAddress() + entryoffset; 3914 } 3915 } 3916 3917 default: 3918 break; 3919 } 3920 if (done) 3921 break; 3922 3923 // Go to the next load command: 3924 offset = cmd_offset + load_cmd.cmdsize; 3925 } 3926 3927 if (start_address != LLDB_INVALID_ADDRESS) 3928 { 3929 // We got the start address from the load commands, so now resolve that address in the sections 3930 // of this ObjectFile: 3931 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 3932 { 3933 m_entry_point_address.Clear(); 3934 } 3935 } 3936 else 3937 { 3938 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 3939 // "start" symbol in the main executable. 3940 3941 ModuleSP module_sp (GetModule()); 3942 3943 if (module_sp) 3944 { 3945 SymbolContextList contexts; 3946 SymbolContext context; 3947 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 3948 { 3949 if (contexts.GetContextAtIndex(0, context)) 3950 m_entry_point_address = context.symbol->GetAddress(); 3951 } 3952 } 3953 } 3954 } 3955 3956 return m_entry_point_address; 3957 3958 } 3959 3960 lldb_private::Address 3961 ObjectFileMachO::GetHeaderAddress () 3962 { 3963 lldb_private::Address header_addr; 3964 SectionList *section_list = GetSectionList(); 3965 if (section_list) 3966 { 3967 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 3968 if (text_segment_sp) 3969 { 3970 header_addr.SetSection (text_segment_sp); 3971 header_addr.SetOffset (0); 3972 } 3973 } 3974 return header_addr; 3975 } 3976 3977 uint32_t 3978 ObjectFileMachO::GetNumThreadContexts () 3979 { 3980 ModuleSP module_sp(GetModule()); 3981 if (module_sp) 3982 { 3983 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 3984 if (!m_thread_context_offsets_valid) 3985 { 3986 m_thread_context_offsets_valid = true; 3987 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 3988 FileRangeArray::Entry file_range; 3989 thread_command thread_cmd; 3990 for (uint32_t i=0; i<m_header.ncmds; ++i) 3991 { 3992 const uint32_t cmd_offset = offset; 3993 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 3994 break; 3995 3996 if (thread_cmd.cmd == LoadCommandThread) 3997 { 3998 file_range.SetRangeBase (offset); 3999 file_range.SetByteSize (thread_cmd.cmdsize - 8); 4000 m_thread_context_offsets.Append (file_range); 4001 } 4002 offset = cmd_offset + thread_cmd.cmdsize; 4003 } 4004 } 4005 } 4006 return m_thread_context_offsets.GetSize(); 4007 } 4008 4009 lldb::RegisterContextSP 4010 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 4011 { 4012 lldb::RegisterContextSP reg_ctx_sp; 4013 4014 ModuleSP module_sp(GetModule()); 4015 if (module_sp) 4016 { 4017 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4018 if (!m_thread_context_offsets_valid) 4019 GetNumThreadContexts (); 4020 4021 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 4022 if (thread_context_file_range) 4023 { 4024 4025 DataExtractor data (m_data, 4026 thread_context_file_range->GetRangeBase(), 4027 thread_context_file_range->GetByteSize()); 4028 4029 switch (m_header.cputype) 4030 { 4031 case llvm::MachO::CPUTypeARM: 4032 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 4033 break; 4034 4035 case llvm::MachO::CPUTypeI386: 4036 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 4037 break; 4038 4039 case llvm::MachO::CPUTypeX86_64: 4040 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 4041 break; 4042 } 4043 } 4044 } 4045 return reg_ctx_sp; 4046 } 4047 4048 4049 ObjectFile::Type 4050 ObjectFileMachO::CalculateType() 4051 { 4052 switch (m_header.filetype) 4053 { 4054 case HeaderFileTypeObject: // 0x1u MH_OBJECT 4055 if (GetAddressByteSize () == 4) 4056 { 4057 // 32 bit kexts are just object files, but they do have a valid 4058 // UUID load command. 4059 UUID uuid; 4060 if (GetUUID(&uuid)) 4061 { 4062 // this checking for the UUID load command is not enough 4063 // we could eventually look for the symbol named 4064 // "OSKextGetCurrentIdentifier" as this is required of kexts 4065 if (m_strata == eStrataInvalid) 4066 m_strata = eStrataKernel; 4067 return eTypeSharedLibrary; 4068 } 4069 } 4070 return eTypeObjectFile; 4071 4072 case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE 4073 case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB 4074 case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE 4075 case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD 4076 case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB 4077 case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER 4078 case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE 4079 case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB 4080 case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM 4081 case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE 4082 default: 4083 break; 4084 } 4085 return eTypeUnknown; 4086 } 4087 4088 ObjectFile::Strata 4089 ObjectFileMachO::CalculateStrata() 4090 { 4091 switch (m_header.filetype) 4092 { 4093 case HeaderFileTypeObject: // 0x1u MH_OBJECT 4094 { 4095 // 32 bit kexts are just object files, but they do have a valid 4096 // UUID load command. 4097 UUID uuid; 4098 if (GetUUID(&uuid)) 4099 { 4100 // this checking for the UUID load command is not enough 4101 // we could eventually look for the symbol named 4102 // "OSKextGetCurrentIdentifier" as this is required of kexts 4103 if (m_type == eTypeInvalid) 4104 m_type = eTypeSharedLibrary; 4105 4106 return eStrataKernel; 4107 } 4108 } 4109 return eStrataUnknown; 4110 4111 case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE 4112 // Check for the MH_DYLDLINK bit in the flags 4113 if (m_header.flags & HeaderFlagBitIsDynamicLinkObject) 4114 { 4115 return eStrataUser; 4116 } 4117 else 4118 { 4119 SectionList *section_list = GetSectionList(); 4120 if (section_list) 4121 { 4122 static ConstString g_kld_section_name ("__KLD"); 4123 if (section_list->FindSectionByName(g_kld_section_name)) 4124 return eStrataKernel; 4125 } 4126 } 4127 return eStrataRawImage; 4128 4129 case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB 4130 case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE 4131 case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD 4132 case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB 4133 case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER 4134 case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE 4135 case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB 4136 case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM 4137 case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE 4138 default: 4139 break; 4140 } 4141 return eStrataUnknown; 4142 } 4143 4144 4145 uint32_t 4146 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 4147 { 4148 ModuleSP module_sp(GetModule()); 4149 if (module_sp) 4150 { 4151 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4152 struct dylib_command load_cmd; 4153 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4154 uint32_t version_cmd = 0; 4155 uint64_t version = 0; 4156 uint32_t i; 4157 for (i=0; i<m_header.ncmds; ++i) 4158 { 4159 const lldb::offset_t cmd_offset = offset; 4160 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4161 break; 4162 4163 if (load_cmd.cmd == LoadCommandDylibIdent) 4164 { 4165 if (version_cmd == 0) 4166 { 4167 version_cmd = load_cmd.cmd; 4168 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 4169 break; 4170 version = load_cmd.dylib.current_version; 4171 } 4172 break; // Break for now unless there is another more complete version 4173 // number load command in the future. 4174 } 4175 offset = cmd_offset + load_cmd.cmdsize; 4176 } 4177 4178 if (version_cmd == LoadCommandDylibIdent) 4179 { 4180 if (versions != NULL && num_versions > 0) 4181 { 4182 if (num_versions > 0) 4183 versions[0] = (version & 0xFFFF0000ull) >> 16; 4184 if (num_versions > 1) 4185 versions[1] = (version & 0x0000FF00ull) >> 8; 4186 if (num_versions > 2) 4187 versions[2] = (version & 0x000000FFull); 4188 // Fill in an remaining version numbers with invalid values 4189 for (i=3; i<num_versions; ++i) 4190 versions[i] = UINT32_MAX; 4191 } 4192 // The LC_ID_DYLIB load command has a version with 3 version numbers 4193 // in it, so always return 3 4194 return 3; 4195 } 4196 } 4197 return false; 4198 } 4199 4200 bool 4201 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 4202 { 4203 ModuleSP module_sp(GetModule()); 4204 if (module_sp) 4205 { 4206 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4207 arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype); 4208 4209 // Files with type MH_PRELOAD are currently used in cases where the image 4210 // debugs at the addresses in the file itself. Below we set the OS to 4211 // unknown to make sure we use the DynamicLoaderStatic()... 4212 if (m_header.filetype == HeaderFileTypePreloadedExecutable) 4213 { 4214 arch.GetTriple().setOS (llvm::Triple::UnknownOS); 4215 } 4216 return true; 4217 } 4218 return false; 4219 } 4220 4221 4222 UUID 4223 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 4224 { 4225 UUID uuid; 4226 if (process) 4227 { 4228 addr_t all_image_infos = process->GetImageInfoAddress(); 4229 4230 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 4231 // or it may be the address of the dyld_all_image_infos structure (want). The first four 4232 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 4233 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 4234 4235 Error err; 4236 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 4237 if (version_or_magic != -1 4238 && version_or_magic != HeaderMagic32 4239 && version_or_magic != HeaderMagic32Swapped 4240 && version_or_magic != HeaderMagic64 4241 && version_or_magic != HeaderMagic64Swapped 4242 && version_or_magic >= 13) 4243 { 4244 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 4245 int wordsize = process->GetAddressByteSize(); 4246 if (wordsize == 8) 4247 { 4248 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 4249 } 4250 if (wordsize == 4) 4251 { 4252 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 4253 } 4254 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 4255 { 4256 uuid_t shared_cache_uuid; 4257 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 4258 { 4259 uuid.SetBytes (shared_cache_uuid); 4260 } 4261 } 4262 } 4263 } 4264 return uuid; 4265 } 4266 4267 UUID 4268 ObjectFileMachO::GetLLDBSharedCacheUUID () 4269 { 4270 UUID uuid; 4271 #if defined (__APPLE__) && defined (__arm__) 4272 uint8_t *(*dyld_get_all_image_infos)(void); 4273 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 4274 if (dyld_get_all_image_infos) 4275 { 4276 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 4277 if (dyld_all_image_infos_address) 4278 { 4279 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 4280 if (*version >= 13) 4281 { 4282 uuid_t *sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 4283 uuid.SetBytes (sharedCacheUUID_address); 4284 } 4285 } 4286 } 4287 #endif 4288 return uuid; 4289 } 4290 4291 4292 //------------------------------------------------------------------ 4293 // PluginInterface protocol 4294 //------------------------------------------------------------------ 4295 lldb_private::ConstString 4296 ObjectFileMachO::GetPluginName() 4297 { 4298 return GetPluginNameStatic(); 4299 } 4300 4301 uint32_t 4302 ObjectFileMachO::GetPluginVersion() 4303 { 4304 return 1; 4305 } 4306 4307