1 //===-- ObjectFileMachO.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/StringRef.h" 10 11 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 13 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 14 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 15 #include "lldb/Core/Debugger.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Progress.h" 21 #include "lldb/Core/Section.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Host/Host.h" 24 #include "lldb/Host/SafeMachO.h" 25 #include "lldb/Symbol/DWARFCallFrameInfo.h" 26 #include "lldb/Symbol/LocateSymbolFile.h" 27 #include "lldb/Symbol/ObjectFile.h" 28 #include "lldb/Target/DynamicLoader.h" 29 #include "lldb/Target/MemoryRegionInfo.h" 30 #include "lldb/Target/Platform.h" 31 #include "lldb/Target/Process.h" 32 #include "lldb/Target/SectionLoadList.h" 33 #include "lldb/Target/Target.h" 34 #include "lldb/Target/Thread.h" 35 #include "lldb/Target/ThreadList.h" 36 #include "lldb/Utility/ArchSpec.h" 37 #include "lldb/Utility/DataBuffer.h" 38 #include "lldb/Utility/FileSpec.h" 39 #include "lldb/Utility/Log.h" 40 #include "lldb/Utility/RangeMap.h" 41 #include "lldb/Utility/RegisterValue.h" 42 #include "lldb/Utility/Status.h" 43 #include "lldb/Utility/StreamString.h" 44 #include "lldb/Utility/Timer.h" 45 #include "lldb/Utility/UUID.h" 46 47 #include "llvm/ADT/DenseSet.h" 48 #include "llvm/Support/FormatVariadic.h" 49 #include "llvm/Support/MemoryBuffer.h" 50 51 #include "ObjectFileMachO.h" 52 53 #if defined(__APPLE__) 54 #include <TargetConditionals.h> 55 // GetLLDBSharedCacheUUID() needs to call dlsym() 56 #include <dlfcn.h> 57 #endif 58 59 #ifndef __APPLE__ 60 #include "Utility/UuidCompatibility.h" 61 #else 62 #include <uuid/uuid.h> 63 #endif 64 65 #include <bitset> 66 #include <memory> 67 68 #if LLVM_SUPPORT_XCODE_SIGNPOSTS 69 // Unfortunately the signpost header pulls in the system MachO header, too. 70 #undef CPU_TYPE_ARM 71 #undef CPU_TYPE_ARM64 72 #undef CPU_TYPE_ARM64_32 73 #undef CPU_TYPE_I386 74 #undef CPU_TYPE_X86_64 75 #undef MH_BINDATLOAD 76 #undef MH_BUNDLE 77 #undef MH_CIGAM 78 #undef MH_CIGAM_64 79 #undef MH_CORE 80 #undef MH_DSYM 81 #undef MH_DYLDLINK 82 #undef MH_DYLIB 83 #undef MH_DYLIB_STUB 84 #undef MH_DYLINKER 85 #undef MH_DYLINKER 86 #undef MH_EXECUTE 87 #undef MH_FVMLIB 88 #undef MH_INCRLINK 89 #undef MH_KEXT_BUNDLE 90 #undef MH_MAGIC 91 #undef MH_MAGIC_64 92 #undef MH_NOUNDEFS 93 #undef MH_OBJECT 94 #undef MH_OBJECT 95 #undef MH_PRELOAD 96 97 #undef LC_BUILD_VERSION 98 #undef LC_VERSION_MIN_MACOSX 99 #undef LC_VERSION_MIN_IPHONEOS 100 #undef LC_VERSION_MIN_TVOS 101 #undef LC_VERSION_MIN_WATCHOS 102 103 #undef PLATFORM_MACOS 104 #undef PLATFORM_MACCATALYST 105 #undef PLATFORM_IOS 106 #undef PLATFORM_IOSSIMULATOR 107 #undef PLATFORM_TVOS 108 #undef PLATFORM_TVOSSIMULATOR 109 #undef PLATFORM_WATCHOS 110 #undef PLATFORM_WATCHOSSIMULATOR 111 #endif 112 113 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull 114 using namespace lldb; 115 using namespace lldb_private; 116 using namespace llvm::MachO; 117 118 LLDB_PLUGIN_DEFINE(ObjectFileMachO) 119 120 // Some structure definitions needed for parsing the dyld shared cache files 121 // found on iOS devices. 122 123 struct lldb_copy_dyld_cache_header_v1 { 124 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 125 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 126 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 127 uint32_t imagesOffset; 128 uint32_t imagesCount; 129 uint64_t dyldBaseAddress; 130 uint64_t codeSignatureOffset; 131 uint64_t codeSignatureSize; 132 uint64_t slideInfoOffset; 133 uint64_t slideInfoSize; 134 uint64_t localSymbolsOffset; 135 uint64_t localSymbolsSize; 136 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 137 // and later 138 }; 139 140 struct lldb_copy_dyld_cache_mapping_info { 141 uint64_t address; 142 uint64_t size; 143 uint64_t fileOffset; 144 uint32_t maxProt; 145 uint32_t initProt; 146 }; 147 148 struct lldb_copy_dyld_cache_local_symbols_info { 149 uint32_t nlistOffset; 150 uint32_t nlistCount; 151 uint32_t stringsOffset; 152 uint32_t stringsSize; 153 uint32_t entriesOffset; 154 uint32_t entriesCount; 155 }; 156 struct lldb_copy_dyld_cache_local_symbols_entry { 157 uint32_t dylibOffset; 158 uint32_t nlistStartIndex; 159 uint32_t nlistCount; 160 }; 161 162 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name, 163 const char *alt_name, size_t reg_byte_size, 164 Stream &data) { 165 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 166 if (reg_info == nullptr) 167 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 168 if (reg_info) { 169 lldb_private::RegisterValue reg_value; 170 if (reg_ctx->ReadRegister(reg_info, reg_value)) { 171 if (reg_info->byte_size >= reg_byte_size) 172 data.Write(reg_value.GetBytes(), reg_byte_size); 173 else { 174 data.Write(reg_value.GetBytes(), reg_info->byte_size); 175 for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i) 176 data.PutChar(0); 177 } 178 return; 179 } 180 } 181 // Just write zeros if all else fails 182 for (size_t i = 0; i < reg_byte_size; ++i) 183 data.PutChar(0); 184 } 185 186 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 { 187 public: 188 RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread, 189 const DataExtractor &data) 190 : RegisterContextDarwin_x86_64(thread, 0) { 191 SetRegisterDataFrom_LC_THREAD(data); 192 } 193 194 void InvalidateAllRegisters() override { 195 // Do nothing... registers are always valid... 196 } 197 198 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 199 lldb::offset_t offset = 0; 200 SetError(GPRRegSet, Read, -1); 201 SetError(FPURegSet, Read, -1); 202 SetError(EXCRegSet, Read, -1); 203 bool done = false; 204 205 while (!done) { 206 int flavor = data.GetU32(&offset); 207 if (flavor == 0) 208 done = true; 209 else { 210 uint32_t i; 211 uint32_t count = data.GetU32(&offset); 212 switch (flavor) { 213 case GPRRegSet: 214 for (i = 0; i < count; ++i) 215 (&gpr.rax)[i] = data.GetU64(&offset); 216 SetError(GPRRegSet, Read, 0); 217 done = true; 218 219 break; 220 case FPURegSet: 221 // TODO: fill in FPU regs.... 222 // SetError (FPURegSet, Read, -1); 223 done = true; 224 225 break; 226 case EXCRegSet: 227 exc.trapno = data.GetU32(&offset); 228 exc.err = data.GetU32(&offset); 229 exc.faultvaddr = data.GetU64(&offset); 230 SetError(EXCRegSet, Read, 0); 231 done = true; 232 break; 233 case 7: 234 case 8: 235 case 9: 236 // fancy flavors that encapsulate of the above flavors... 237 break; 238 239 default: 240 done = true; 241 break; 242 } 243 } 244 } 245 } 246 247 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 248 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 249 if (reg_ctx_sp) { 250 RegisterContext *reg_ctx = reg_ctx_sp.get(); 251 252 data.PutHex32(GPRRegSet); // Flavor 253 data.PutHex32(GPRWordCount); 254 PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data); 255 PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data); 256 PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data); 257 PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data); 258 PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data); 259 PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data); 260 PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data); 261 PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data); 262 PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data); 263 PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data); 264 PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data); 265 PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data); 266 PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data); 267 PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data); 268 PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data); 269 PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data); 270 PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data); 271 PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data); 272 PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data); 273 PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data); 274 PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data); 275 276 // // Write out the FPU registers 277 // const size_t fpu_byte_size = sizeof(FPU); 278 // size_t bytes_written = 0; 279 // data.PutHex32 (FPURegSet); 280 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 281 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 282 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 283 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, 284 // data); // uint16_t fcw; // "fctrl" 285 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, 286 // data); // uint16_t fsw; // "fstat" 287 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, 288 // data); // uint8_t ftw; // "ftag" 289 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 290 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, 291 // data); // uint16_t fop; // "fop" 292 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, 293 // data); // uint32_t ip; // "fioff" 294 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, 295 // data); // uint16_t cs; // "fiseg" 296 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 297 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, 298 // data); // uint32_t dp; // "fooff" 299 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, 300 // data); // uint16_t ds; // "foseg" 301 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 302 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, 303 // data); // uint32_t mxcsr; 304 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 305 // 4, data);// uint32_t mxcsrmask; 306 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, 307 // sizeof(MMSReg), data); 308 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, 309 // sizeof(MMSReg), data); 310 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, 311 // sizeof(MMSReg), data); 312 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, 313 // sizeof(MMSReg), data); 314 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, 315 // sizeof(MMSReg), data); 316 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, 317 // sizeof(MMSReg), data); 318 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, 319 // sizeof(MMSReg), data); 320 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, 321 // sizeof(MMSReg), data); 322 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, 323 // sizeof(XMMReg), data); 324 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, 325 // sizeof(XMMReg), data); 326 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, 327 // sizeof(XMMReg), data); 328 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, 329 // sizeof(XMMReg), data); 330 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, 331 // sizeof(XMMReg), data); 332 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, 333 // sizeof(XMMReg), data); 334 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, 335 // sizeof(XMMReg), data); 336 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, 337 // sizeof(XMMReg), data); 338 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, 339 // sizeof(XMMReg), data); 340 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, 341 // sizeof(XMMReg), data); 342 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, 343 // sizeof(XMMReg), data); 344 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, 345 // sizeof(XMMReg), data); 346 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, 347 // sizeof(XMMReg), data); 348 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, 349 // sizeof(XMMReg), data); 350 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, 351 // sizeof(XMMReg), data); 352 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, 353 // sizeof(XMMReg), data); 354 // 355 // // Fill rest with zeros 356 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ 357 // i) 358 // data.PutChar(0); 359 360 // Write out the EXC registers 361 data.PutHex32(EXCRegSet); 362 data.PutHex32(EXCWordCount); 363 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data); 364 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data); 365 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data); 366 return true; 367 } 368 return false; 369 } 370 371 protected: 372 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 373 374 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 375 376 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 377 378 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 379 return 0; 380 } 381 382 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 383 return 0; 384 } 385 386 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 387 return 0; 388 } 389 }; 390 391 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 { 392 public: 393 RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread, 394 const DataExtractor &data) 395 : RegisterContextDarwin_i386(thread, 0) { 396 SetRegisterDataFrom_LC_THREAD(data); 397 } 398 399 void InvalidateAllRegisters() override { 400 // Do nothing... registers are always valid... 401 } 402 403 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 404 lldb::offset_t offset = 0; 405 SetError(GPRRegSet, Read, -1); 406 SetError(FPURegSet, Read, -1); 407 SetError(EXCRegSet, Read, -1); 408 bool done = false; 409 410 while (!done) { 411 int flavor = data.GetU32(&offset); 412 if (flavor == 0) 413 done = true; 414 else { 415 uint32_t i; 416 uint32_t count = data.GetU32(&offset); 417 switch (flavor) { 418 case GPRRegSet: 419 for (i = 0; i < count; ++i) 420 (&gpr.eax)[i] = data.GetU32(&offset); 421 SetError(GPRRegSet, Read, 0); 422 done = true; 423 424 break; 425 case FPURegSet: 426 // TODO: fill in FPU regs.... 427 // SetError (FPURegSet, Read, -1); 428 done = true; 429 430 break; 431 case EXCRegSet: 432 exc.trapno = data.GetU32(&offset); 433 exc.err = data.GetU32(&offset); 434 exc.faultvaddr = data.GetU32(&offset); 435 SetError(EXCRegSet, Read, 0); 436 done = true; 437 break; 438 case 7: 439 case 8: 440 case 9: 441 // fancy flavors that encapsulate of the above flavors... 442 break; 443 444 default: 445 done = true; 446 break; 447 } 448 } 449 } 450 } 451 452 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 453 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 454 if (reg_ctx_sp) { 455 RegisterContext *reg_ctx = reg_ctx_sp.get(); 456 457 data.PutHex32(GPRRegSet); // Flavor 458 data.PutHex32(GPRWordCount); 459 PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data); 460 PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data); 461 PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data); 462 PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data); 463 PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data); 464 PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data); 465 PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data); 466 PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data); 467 PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data); 468 PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data); 469 PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data); 470 PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data); 471 PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data); 472 PrintRegisterValue(reg_ctx, "es", nullptr, 4, data); 473 PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data); 474 PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data); 475 476 // Write out the EXC registers 477 data.PutHex32(EXCRegSet); 478 data.PutHex32(EXCWordCount); 479 PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data); 480 PrintRegisterValue(reg_ctx, "err", nullptr, 4, data); 481 PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data); 482 return true; 483 } 484 return false; 485 } 486 487 protected: 488 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; } 489 490 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; } 491 492 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; } 493 494 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 495 return 0; 496 } 497 498 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 499 return 0; 500 } 501 502 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 503 return 0; 504 } 505 }; 506 507 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm { 508 public: 509 RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread, 510 const DataExtractor &data) 511 : RegisterContextDarwin_arm(thread, 0) { 512 SetRegisterDataFrom_LC_THREAD(data); 513 } 514 515 void InvalidateAllRegisters() override { 516 // Do nothing... registers are always valid... 517 } 518 519 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 520 lldb::offset_t offset = 0; 521 SetError(GPRRegSet, Read, -1); 522 SetError(FPURegSet, Read, -1); 523 SetError(EXCRegSet, Read, -1); 524 bool done = false; 525 526 while (!done) { 527 int flavor = data.GetU32(&offset); 528 uint32_t count = data.GetU32(&offset); 529 lldb::offset_t next_thread_state = offset + (count * 4); 530 switch (flavor) { 531 case GPRAltRegSet: 532 case GPRRegSet: 533 // On ARM, the CPSR register is also included in the count but it is 534 // not included in gpr.r so loop until (count-1). 535 for (uint32_t i = 0; i < (count - 1); ++i) { 536 gpr.r[i] = data.GetU32(&offset); 537 } 538 // Save cpsr explicitly. 539 gpr.cpsr = data.GetU32(&offset); 540 541 SetError(GPRRegSet, Read, 0); 542 offset = next_thread_state; 543 break; 544 545 case FPURegSet: { 546 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0]; 547 const int fpu_reg_buf_size = sizeof(fpu.floats); 548 if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 549 fpu_reg_buf) == fpu_reg_buf_size) { 550 offset += fpu_reg_buf_size; 551 fpu.fpscr = data.GetU32(&offset); 552 SetError(FPURegSet, Read, 0); 553 } else { 554 done = true; 555 } 556 } 557 offset = next_thread_state; 558 break; 559 560 case EXCRegSet: 561 if (count == 3) { 562 exc.exception = data.GetU32(&offset); 563 exc.fsr = data.GetU32(&offset); 564 exc.far = data.GetU32(&offset); 565 SetError(EXCRegSet, Read, 0); 566 } 567 done = true; 568 offset = next_thread_state; 569 break; 570 571 // Unknown register set flavor, stop trying to parse. 572 default: 573 done = true; 574 } 575 } 576 } 577 578 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 579 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 580 if (reg_ctx_sp) { 581 RegisterContext *reg_ctx = reg_ctx_sp.get(); 582 583 data.PutHex32(GPRRegSet); // Flavor 584 data.PutHex32(GPRWordCount); 585 PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data); 586 PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data); 587 PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data); 588 PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data); 589 PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data); 590 PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data); 591 PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data); 592 PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data); 593 PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data); 594 PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data); 595 PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data); 596 PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data); 597 PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data); 598 PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data); 599 PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data); 600 PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data); 601 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); 602 603 // Write out the EXC registers 604 // data.PutHex32 (EXCRegSet); 605 // data.PutHex32 (EXCWordCount); 606 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 607 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 608 // WriteRegister (reg_ctx, "far", NULL, 4, data); 609 return true; 610 } 611 return false; 612 } 613 614 protected: 615 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 616 617 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 618 619 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 620 621 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 622 623 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 624 return 0; 625 } 626 627 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 628 return 0; 629 } 630 631 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 632 return 0; 633 } 634 635 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 636 return -1; 637 } 638 }; 639 640 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 { 641 public: 642 RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread, 643 const DataExtractor &data) 644 : RegisterContextDarwin_arm64(thread, 0) { 645 SetRegisterDataFrom_LC_THREAD(data); 646 } 647 648 void InvalidateAllRegisters() override { 649 // Do nothing... registers are always valid... 650 } 651 652 void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) { 653 lldb::offset_t offset = 0; 654 SetError(GPRRegSet, Read, -1); 655 SetError(FPURegSet, Read, -1); 656 SetError(EXCRegSet, Read, -1); 657 bool done = false; 658 while (!done) { 659 int flavor = data.GetU32(&offset); 660 uint32_t count = data.GetU32(&offset); 661 lldb::offset_t next_thread_state = offset + (count * 4); 662 switch (flavor) { 663 case GPRRegSet: 664 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 665 // 32-bit register) 666 if (count >= (33 * 2) + 1) { 667 for (uint32_t i = 0; i < 29; ++i) 668 gpr.x[i] = data.GetU64(&offset); 669 gpr.fp = data.GetU64(&offset); 670 gpr.lr = data.GetU64(&offset); 671 gpr.sp = data.GetU64(&offset); 672 gpr.pc = data.GetU64(&offset); 673 gpr.cpsr = data.GetU32(&offset); 674 SetError(GPRRegSet, Read, 0); 675 } 676 offset = next_thread_state; 677 break; 678 case FPURegSet: { 679 uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0]; 680 const int fpu_reg_buf_size = sizeof(fpu); 681 if (fpu_reg_buf_size == count * sizeof(uint32_t) && 682 data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle, 683 fpu_reg_buf) == fpu_reg_buf_size) { 684 SetError(FPURegSet, Read, 0); 685 } else { 686 done = true; 687 } 688 } 689 offset = next_thread_state; 690 break; 691 case EXCRegSet: 692 if (count == 4) { 693 exc.far = data.GetU64(&offset); 694 exc.esr = data.GetU32(&offset); 695 exc.exception = data.GetU32(&offset); 696 SetError(EXCRegSet, Read, 0); 697 } 698 offset = next_thread_state; 699 break; 700 default: 701 done = true; 702 break; 703 } 704 } 705 } 706 707 static bool Create_LC_THREAD(Thread *thread, Stream &data) { 708 RegisterContextSP reg_ctx_sp(thread->GetRegisterContext()); 709 if (reg_ctx_sp) { 710 RegisterContext *reg_ctx = reg_ctx_sp.get(); 711 712 data.PutHex32(GPRRegSet); // Flavor 713 data.PutHex32(GPRWordCount); 714 PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data); 715 PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data); 716 PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data); 717 PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data); 718 PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data); 719 PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data); 720 PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data); 721 PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data); 722 PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data); 723 PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data); 724 PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data); 725 PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data); 726 PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data); 727 PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data); 728 PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data); 729 PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data); 730 PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data); 731 PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data); 732 PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data); 733 PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data); 734 PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data); 735 PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data); 736 PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data); 737 PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data); 738 PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data); 739 PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data); 740 PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data); 741 PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data); 742 PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data); 743 PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data); 744 PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data); 745 PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data); 746 PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data); 747 PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data); 748 data.PutHex32(0); // uint32_t pad at the end 749 750 // Write out the EXC registers 751 data.PutHex32(EXCRegSet); 752 data.PutHex32(EXCWordCount); 753 PrintRegisterValue(reg_ctx, "far", NULL, 8, data); 754 PrintRegisterValue(reg_ctx, "esr", NULL, 4, data); 755 PrintRegisterValue(reg_ctx, "exception", NULL, 4, data); 756 return true; 757 } 758 return false; 759 } 760 761 protected: 762 int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; } 763 764 int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; } 765 766 int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; } 767 768 int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; } 769 770 int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override { 771 return 0; 772 } 773 774 int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override { 775 return 0; 776 } 777 778 int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override { 779 return 0; 780 } 781 782 int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override { 783 return -1; 784 } 785 }; 786 787 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) { 788 switch (magic) { 789 case MH_MAGIC: 790 case MH_CIGAM: 791 return sizeof(struct llvm::MachO::mach_header); 792 793 case MH_MAGIC_64: 794 case MH_CIGAM_64: 795 return sizeof(struct llvm::MachO::mach_header_64); 796 break; 797 798 default: 799 break; 800 } 801 return 0; 802 } 803 804 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 805 806 char ObjectFileMachO::ID; 807 808 void ObjectFileMachO::Initialize() { 809 PluginManager::RegisterPlugin( 810 GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, 811 CreateMemoryInstance, GetModuleSpecifications, SaveCore); 812 } 813 814 void ObjectFileMachO::Terminate() { 815 PluginManager::UnregisterPlugin(CreateInstance); 816 } 817 818 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() { 819 static ConstString g_name("mach-o"); 820 return g_name; 821 } 822 823 const char *ObjectFileMachO::GetPluginDescriptionStatic() { 824 return "Mach-o object file reader (32 and 64 bit)"; 825 } 826 827 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp, 828 DataBufferSP &data_sp, 829 lldb::offset_t data_offset, 830 const FileSpec *file, 831 lldb::offset_t file_offset, 832 lldb::offset_t length) { 833 if (!data_sp) { 834 data_sp = MapFileData(*file, length, file_offset); 835 if (!data_sp) 836 return nullptr; 837 data_offset = 0; 838 } 839 840 if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 841 return nullptr; 842 843 // Update the data to contain the entire file if it doesn't already 844 if (data_sp->GetByteSize() < length) { 845 data_sp = MapFileData(*file, length, file_offset); 846 if (!data_sp) 847 return nullptr; 848 data_offset = 0; 849 } 850 auto objfile_up = std::make_unique<ObjectFileMachO>( 851 module_sp, data_sp, data_offset, file, file_offset, length); 852 if (!objfile_up || !objfile_up->ParseHeader()) 853 return nullptr; 854 855 return objfile_up.release(); 856 } 857 858 ObjectFile *ObjectFileMachO::CreateMemoryInstance( 859 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 860 const ProcessSP &process_sp, lldb::addr_t header_addr) { 861 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 862 std::unique_ptr<ObjectFile> objfile_up( 863 new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr)); 864 if (objfile_up.get() && objfile_up->ParseHeader()) 865 return objfile_up.release(); 866 } 867 return nullptr; 868 } 869 870 size_t ObjectFileMachO::GetModuleSpecifications( 871 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 872 lldb::offset_t data_offset, lldb::offset_t file_offset, 873 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 874 const size_t initial_count = specs.GetSize(); 875 876 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 877 DataExtractor data; 878 data.SetData(data_sp); 879 llvm::MachO::mach_header header; 880 if (ParseHeader(data, &data_offset, header)) { 881 size_t header_and_load_cmds = 882 header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 883 if (header_and_load_cmds >= data_sp->GetByteSize()) { 884 data_sp = MapFileData(file, header_and_load_cmds, file_offset); 885 data.SetData(data_sp); 886 data_offset = MachHeaderSizeFromMagic(header.magic); 887 } 888 if (data_sp) { 889 ModuleSpec base_spec; 890 base_spec.GetFileSpec() = file; 891 base_spec.SetObjectOffset(file_offset); 892 base_spec.SetObjectSize(length); 893 GetAllArchSpecs(header, data, data_offset, base_spec, specs); 894 } 895 } 896 } 897 return specs.GetSize() - initial_count; 898 } 899 900 ConstString ObjectFileMachO::GetSegmentNameTEXT() { 901 static ConstString g_segment_name_TEXT("__TEXT"); 902 return g_segment_name_TEXT; 903 } 904 905 ConstString ObjectFileMachO::GetSegmentNameDATA() { 906 static ConstString g_segment_name_DATA("__DATA"); 907 return g_segment_name_DATA; 908 } 909 910 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() { 911 static ConstString g_segment_name("__DATA_DIRTY"); 912 return g_segment_name; 913 } 914 915 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() { 916 static ConstString g_segment_name("__DATA_CONST"); 917 return g_segment_name; 918 } 919 920 ConstString ObjectFileMachO::GetSegmentNameOBJC() { 921 static ConstString g_segment_name_OBJC("__OBJC"); 922 return g_segment_name_OBJC; 923 } 924 925 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() { 926 static ConstString g_section_name_LINKEDIT("__LINKEDIT"); 927 return g_section_name_LINKEDIT; 928 } 929 930 ConstString ObjectFileMachO::GetSegmentNameDWARF() { 931 static ConstString g_section_name("__DWARF"); 932 return g_section_name; 933 } 934 935 ConstString ObjectFileMachO::GetSectionNameEHFrame() { 936 static ConstString g_section_name_eh_frame("__eh_frame"); 937 return g_section_name_eh_frame; 938 } 939 940 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp, 941 lldb::addr_t data_offset, 942 lldb::addr_t data_length) { 943 DataExtractor data; 944 data.SetData(data_sp, data_offset, data_length); 945 lldb::offset_t offset = 0; 946 uint32_t magic = data.GetU32(&offset); 947 return MachHeaderSizeFromMagic(magic) != 0; 948 } 949 950 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 951 DataBufferSP &data_sp, 952 lldb::offset_t data_offset, 953 const FileSpec *file, 954 lldb::offset_t file_offset, 955 lldb::offset_t length) 956 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 957 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 958 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 959 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 960 ::memset(&m_header, 0, sizeof(m_header)); 961 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 962 } 963 964 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 965 lldb::DataBufferSP &header_data_sp, 966 const lldb::ProcessSP &process_sp, 967 lldb::addr_t header_addr) 968 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 969 m_mach_segments(), m_mach_sections(), m_entry_point_address(), 970 m_thread_context_offsets(), m_thread_context_offsets_valid(false), 971 m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) { 972 ::memset(&m_header, 0, sizeof(m_header)); 973 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 974 } 975 976 bool ObjectFileMachO::ParseHeader(DataExtractor &data, 977 lldb::offset_t *data_offset_ptr, 978 llvm::MachO::mach_header &header) { 979 data.SetByteOrder(endian::InlHostByteOrder()); 980 // Leave magic in the original byte order 981 header.magic = data.GetU32(data_offset_ptr); 982 bool can_parse = false; 983 bool is_64_bit = false; 984 switch (header.magic) { 985 case MH_MAGIC: 986 data.SetByteOrder(endian::InlHostByteOrder()); 987 data.SetAddressByteSize(4); 988 can_parse = true; 989 break; 990 991 case MH_MAGIC_64: 992 data.SetByteOrder(endian::InlHostByteOrder()); 993 data.SetAddressByteSize(8); 994 can_parse = true; 995 is_64_bit = true; 996 break; 997 998 case MH_CIGAM: 999 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1000 ? eByteOrderLittle 1001 : eByteOrderBig); 1002 data.SetAddressByteSize(4); 1003 can_parse = true; 1004 break; 1005 1006 case MH_CIGAM_64: 1007 data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1008 ? eByteOrderLittle 1009 : eByteOrderBig); 1010 data.SetAddressByteSize(8); 1011 is_64_bit = true; 1012 can_parse = true; 1013 break; 1014 1015 default: 1016 break; 1017 } 1018 1019 if (can_parse) { 1020 data.GetU32(data_offset_ptr, &header.cputype, 6); 1021 if (is_64_bit) 1022 *data_offset_ptr += 4; 1023 return true; 1024 } else { 1025 memset(&header, 0, sizeof(header)); 1026 } 1027 return false; 1028 } 1029 1030 bool ObjectFileMachO::ParseHeader() { 1031 ModuleSP module_sp(GetModule()); 1032 if (!module_sp) 1033 return false; 1034 1035 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 1036 bool can_parse = false; 1037 lldb::offset_t offset = 0; 1038 m_data.SetByteOrder(endian::InlHostByteOrder()); 1039 // Leave magic in the original byte order 1040 m_header.magic = m_data.GetU32(&offset); 1041 switch (m_header.magic) { 1042 case MH_MAGIC: 1043 m_data.SetByteOrder(endian::InlHostByteOrder()); 1044 m_data.SetAddressByteSize(4); 1045 can_parse = true; 1046 break; 1047 1048 case MH_MAGIC_64: 1049 m_data.SetByteOrder(endian::InlHostByteOrder()); 1050 m_data.SetAddressByteSize(8); 1051 can_parse = true; 1052 break; 1053 1054 case MH_CIGAM: 1055 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1056 ? eByteOrderLittle 1057 : eByteOrderBig); 1058 m_data.SetAddressByteSize(4); 1059 can_parse = true; 1060 break; 1061 1062 case MH_CIGAM_64: 1063 m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig 1064 ? eByteOrderLittle 1065 : eByteOrderBig); 1066 m_data.SetAddressByteSize(8); 1067 can_parse = true; 1068 break; 1069 1070 default: 1071 break; 1072 } 1073 1074 if (can_parse) { 1075 m_data.GetU32(&offset, &m_header.cputype, 6); 1076 1077 ModuleSpecList all_specs; 1078 ModuleSpec base_spec; 1079 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), 1080 base_spec, all_specs); 1081 1082 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 1083 ArchSpec mach_arch = 1084 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); 1085 1086 // Check if the module has a required architecture 1087 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1088 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1089 continue; 1090 1091 if (SetModulesArchitecture(mach_arch)) { 1092 const size_t header_and_lc_size = 1093 m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1094 if (m_data.GetByteSize() < header_and_lc_size) { 1095 DataBufferSP data_sp; 1096 ProcessSP process_sp(m_process_wp.lock()); 1097 if (process_sp) { 1098 data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size); 1099 } else { 1100 // Read in all only the load command data from the file on disk 1101 data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset); 1102 if (data_sp->GetByteSize() != header_and_lc_size) 1103 continue; 1104 } 1105 if (data_sp) 1106 m_data.SetData(data_sp); 1107 } 1108 } 1109 return true; 1110 } 1111 // None found. 1112 return false; 1113 } else { 1114 memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header)); 1115 } 1116 return false; 1117 } 1118 1119 ByteOrder ObjectFileMachO::GetByteOrder() const { 1120 return m_data.GetByteOrder(); 1121 } 1122 1123 bool ObjectFileMachO::IsExecutable() const { 1124 return m_header.filetype == MH_EXECUTE; 1125 } 1126 1127 bool ObjectFileMachO::IsDynamicLoader() const { 1128 return m_header.filetype == MH_DYLINKER; 1129 } 1130 1131 bool ObjectFileMachO::IsSharedCacheBinary() const { 1132 return m_header.flags & MH_DYLIB_IN_CACHE; 1133 } 1134 1135 uint32_t ObjectFileMachO::GetAddressByteSize() const { 1136 return m_data.GetAddressByteSize(); 1137 } 1138 1139 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) { 1140 Symtab *symtab = GetSymtab(); 1141 if (!symtab) 1142 return AddressClass::eUnknown; 1143 1144 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1145 if (symbol) { 1146 if (symbol->ValueIsAddress()) { 1147 SectionSP section_sp(symbol->GetAddressRef().GetSection()); 1148 if (section_sp) { 1149 const lldb::SectionType section_type = section_sp->GetType(); 1150 switch (section_type) { 1151 case eSectionTypeInvalid: 1152 return AddressClass::eUnknown; 1153 1154 case eSectionTypeCode: 1155 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1156 // For ARM we have a bit in the n_desc field of the symbol that 1157 // tells us ARM/Thumb which is bit 0x0008. 1158 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1159 return AddressClass::eCodeAlternateISA; 1160 } 1161 return AddressClass::eCode; 1162 1163 case eSectionTypeContainer: 1164 return AddressClass::eUnknown; 1165 1166 case eSectionTypeData: 1167 case eSectionTypeDataCString: 1168 case eSectionTypeDataCStringPointers: 1169 case eSectionTypeDataSymbolAddress: 1170 case eSectionTypeData4: 1171 case eSectionTypeData8: 1172 case eSectionTypeData16: 1173 case eSectionTypeDataPointers: 1174 case eSectionTypeZeroFill: 1175 case eSectionTypeDataObjCMessageRefs: 1176 case eSectionTypeDataObjCCFStrings: 1177 case eSectionTypeGoSymtab: 1178 return AddressClass::eData; 1179 1180 case eSectionTypeDebug: 1181 case eSectionTypeDWARFDebugAbbrev: 1182 case eSectionTypeDWARFDebugAbbrevDwo: 1183 case eSectionTypeDWARFDebugAddr: 1184 case eSectionTypeDWARFDebugAranges: 1185 case eSectionTypeDWARFDebugCuIndex: 1186 case eSectionTypeDWARFDebugFrame: 1187 case eSectionTypeDWARFDebugInfo: 1188 case eSectionTypeDWARFDebugInfoDwo: 1189 case eSectionTypeDWARFDebugLine: 1190 case eSectionTypeDWARFDebugLineStr: 1191 case eSectionTypeDWARFDebugLoc: 1192 case eSectionTypeDWARFDebugLocDwo: 1193 case eSectionTypeDWARFDebugLocLists: 1194 case eSectionTypeDWARFDebugLocListsDwo: 1195 case eSectionTypeDWARFDebugMacInfo: 1196 case eSectionTypeDWARFDebugMacro: 1197 case eSectionTypeDWARFDebugNames: 1198 case eSectionTypeDWARFDebugPubNames: 1199 case eSectionTypeDWARFDebugPubTypes: 1200 case eSectionTypeDWARFDebugRanges: 1201 case eSectionTypeDWARFDebugRngLists: 1202 case eSectionTypeDWARFDebugRngListsDwo: 1203 case eSectionTypeDWARFDebugStr: 1204 case eSectionTypeDWARFDebugStrDwo: 1205 case eSectionTypeDWARFDebugStrOffsets: 1206 case eSectionTypeDWARFDebugStrOffsetsDwo: 1207 case eSectionTypeDWARFDebugTuIndex: 1208 case eSectionTypeDWARFDebugTypes: 1209 case eSectionTypeDWARFDebugTypesDwo: 1210 case eSectionTypeDWARFAppleNames: 1211 case eSectionTypeDWARFAppleTypes: 1212 case eSectionTypeDWARFAppleNamespaces: 1213 case eSectionTypeDWARFAppleObjC: 1214 case eSectionTypeDWARFGNUDebugAltLink: 1215 return AddressClass::eDebug; 1216 1217 case eSectionTypeEHFrame: 1218 case eSectionTypeARMexidx: 1219 case eSectionTypeARMextab: 1220 case eSectionTypeCompactUnwind: 1221 return AddressClass::eRuntime; 1222 1223 case eSectionTypeAbsoluteAddress: 1224 case eSectionTypeELFSymbolTable: 1225 case eSectionTypeELFDynamicSymbols: 1226 case eSectionTypeELFRelocationEntries: 1227 case eSectionTypeELFDynamicLinkInfo: 1228 case eSectionTypeOther: 1229 return AddressClass::eUnknown; 1230 } 1231 } 1232 } 1233 1234 const SymbolType symbol_type = symbol->GetType(); 1235 switch (symbol_type) { 1236 case eSymbolTypeAny: 1237 return AddressClass::eUnknown; 1238 case eSymbolTypeAbsolute: 1239 return AddressClass::eUnknown; 1240 1241 case eSymbolTypeCode: 1242 case eSymbolTypeTrampoline: 1243 case eSymbolTypeResolver: 1244 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) { 1245 // For ARM we have a bit in the n_desc field of the symbol that tells 1246 // us ARM/Thumb which is bit 0x0008. 1247 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1248 return AddressClass::eCodeAlternateISA; 1249 } 1250 return AddressClass::eCode; 1251 1252 case eSymbolTypeData: 1253 return AddressClass::eData; 1254 case eSymbolTypeRuntime: 1255 return AddressClass::eRuntime; 1256 case eSymbolTypeException: 1257 return AddressClass::eRuntime; 1258 case eSymbolTypeSourceFile: 1259 return AddressClass::eDebug; 1260 case eSymbolTypeHeaderFile: 1261 return AddressClass::eDebug; 1262 case eSymbolTypeObjectFile: 1263 return AddressClass::eDebug; 1264 case eSymbolTypeCommonBlock: 1265 return AddressClass::eDebug; 1266 case eSymbolTypeBlock: 1267 return AddressClass::eDebug; 1268 case eSymbolTypeLocal: 1269 return AddressClass::eData; 1270 case eSymbolTypeParam: 1271 return AddressClass::eData; 1272 case eSymbolTypeVariable: 1273 return AddressClass::eData; 1274 case eSymbolTypeVariableType: 1275 return AddressClass::eDebug; 1276 case eSymbolTypeLineEntry: 1277 return AddressClass::eDebug; 1278 case eSymbolTypeLineHeader: 1279 return AddressClass::eDebug; 1280 case eSymbolTypeScopeBegin: 1281 return AddressClass::eDebug; 1282 case eSymbolTypeScopeEnd: 1283 return AddressClass::eDebug; 1284 case eSymbolTypeAdditional: 1285 return AddressClass::eUnknown; 1286 case eSymbolTypeCompiler: 1287 return AddressClass::eDebug; 1288 case eSymbolTypeInstrumentation: 1289 return AddressClass::eDebug; 1290 case eSymbolTypeUndefined: 1291 return AddressClass::eUnknown; 1292 case eSymbolTypeObjCClass: 1293 return AddressClass::eRuntime; 1294 case eSymbolTypeObjCMetaClass: 1295 return AddressClass::eRuntime; 1296 case eSymbolTypeObjCIVar: 1297 return AddressClass::eRuntime; 1298 case eSymbolTypeReExported: 1299 return AddressClass::eRuntime; 1300 } 1301 } 1302 return AddressClass::eUnknown; 1303 } 1304 1305 Symtab *ObjectFileMachO::GetSymtab() { 1306 ModuleSP module_sp(GetModule()); 1307 if (module_sp) { 1308 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 1309 if (m_symtab_up == nullptr) { 1310 m_symtab_up = std::make_unique<Symtab>(this); 1311 std::lock_guard<std::recursive_mutex> symtab_guard( 1312 m_symtab_up->GetMutex()); 1313 ParseSymtab(); 1314 m_symtab_up->Finalize(); 1315 } 1316 } 1317 return m_symtab_up.get(); 1318 } 1319 1320 bool ObjectFileMachO::IsStripped() { 1321 if (m_dysymtab.cmd == 0) { 1322 ModuleSP module_sp(GetModule()); 1323 if (module_sp) { 1324 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1325 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1326 const lldb::offset_t load_cmd_offset = offset; 1327 1328 llvm::MachO::load_command lc; 1329 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 1330 break; 1331 if (lc.cmd == LC_DYSYMTAB) { 1332 m_dysymtab.cmd = lc.cmd; 1333 m_dysymtab.cmdsize = lc.cmdsize; 1334 if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1335 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == 1336 nullptr) { 1337 // Clear m_dysymtab if we were unable to read all items from the 1338 // load command 1339 ::memset(&m_dysymtab, 0, sizeof(m_dysymtab)); 1340 } 1341 } 1342 offset = load_cmd_offset + lc.cmdsize; 1343 } 1344 } 1345 } 1346 if (m_dysymtab.cmd) 1347 return m_dysymtab.nlocalsym <= 1; 1348 return false; 1349 } 1350 1351 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() { 1352 EncryptedFileRanges result; 1353 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1354 1355 llvm::MachO::encryption_info_command encryption_cmd; 1356 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1357 const lldb::offset_t load_cmd_offset = offset; 1358 if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr) 1359 break; 1360 1361 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the 1362 // 3 fields we care about, so treat them the same. 1363 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || 1364 encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) { 1365 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) { 1366 if (encryption_cmd.cryptid != 0) { 1367 EncryptedFileRanges::Entry entry; 1368 entry.SetRangeBase(encryption_cmd.cryptoff); 1369 entry.SetByteSize(encryption_cmd.cryptsize); 1370 result.Append(entry); 1371 } 1372 } 1373 } 1374 offset = load_cmd_offset + encryption_cmd.cmdsize; 1375 } 1376 1377 return result; 1378 } 1379 1380 void ObjectFileMachO::SanitizeSegmentCommand( 1381 llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) { 1382 if (m_length == 0 || seg_cmd.filesize == 0) 1383 return; 1384 1385 if (IsSharedCacheBinary() && !IsInMemory()) { 1386 // In shared cache images, the load commands are relative to the 1387 // shared cache file, and not the specific image we are 1388 // examining. Let's fix this up so that it looks like a normal 1389 // image. 1390 if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0) 1391 m_text_address = seg_cmd.vmaddr; 1392 if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0) 1393 m_linkedit_original_offset = seg_cmd.fileoff; 1394 1395 seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address; 1396 } 1397 1398 if (seg_cmd.fileoff > m_length) { 1399 // We have a load command that says it extends past the end of the file. 1400 // This is likely a corrupt file. We don't have any way to return an error 1401 // condition here (this method was likely invoked from something like 1402 // ObjectFile::GetSectionList()), so we just null out the section contents, 1403 // and dump a message to stdout. The most common case here is core file 1404 // debugging with a truncated file. 1405 const char *lc_segment_name = 1406 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1407 GetModule()->ReportWarning( 1408 "load command %u %s has a fileoff (0x%" PRIx64 1409 ") that extends beyond the end of the file (0x%" PRIx64 1410 "), ignoring this section", 1411 cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length); 1412 1413 seg_cmd.fileoff = 0; 1414 seg_cmd.filesize = 0; 1415 } 1416 1417 if (seg_cmd.fileoff + seg_cmd.filesize > m_length) { 1418 // We have a load command that says it extends past the end of the file. 1419 // This is likely a corrupt file. We don't have any way to return an error 1420 // condition here (this method was likely invoked from something like 1421 // ObjectFile::GetSectionList()), so we just null out the section contents, 1422 // and dump a message to stdout. The most common case here is core file 1423 // debugging with a truncated file. 1424 const char *lc_segment_name = 1425 seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1426 GetModule()->ReportWarning( 1427 "load command %u %s has a fileoff + filesize (0x%" PRIx64 1428 ") that extends beyond the end of the file (0x%" PRIx64 1429 "), the segment will be truncated to match", 1430 cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length); 1431 1432 // Truncate the length 1433 seg_cmd.filesize = m_length - seg_cmd.fileoff; 1434 } 1435 } 1436 1437 static uint32_t 1438 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) { 1439 uint32_t result = 0; 1440 if (seg_cmd.initprot & VM_PROT_READ) 1441 result |= ePermissionsReadable; 1442 if (seg_cmd.initprot & VM_PROT_WRITE) 1443 result |= ePermissionsWritable; 1444 if (seg_cmd.initprot & VM_PROT_EXECUTE) 1445 result |= ePermissionsExecutable; 1446 return result; 1447 } 1448 1449 static lldb::SectionType GetSectionType(uint32_t flags, 1450 ConstString section_name) { 1451 1452 if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1453 return eSectionTypeCode; 1454 1455 uint32_t mach_sect_type = flags & SECTION_TYPE; 1456 static ConstString g_sect_name_objc_data("__objc_data"); 1457 static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs"); 1458 static ConstString g_sect_name_objc_selrefs("__objc_selrefs"); 1459 static ConstString g_sect_name_objc_classrefs("__objc_classrefs"); 1460 static ConstString g_sect_name_objc_superrefs("__objc_superrefs"); 1461 static ConstString g_sect_name_objc_const("__objc_const"); 1462 static ConstString g_sect_name_objc_classlist("__objc_classlist"); 1463 static ConstString g_sect_name_cfstring("__cfstring"); 1464 1465 static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev"); 1466 static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges"); 1467 static ConstString g_sect_name_dwarf_debug_frame("__debug_frame"); 1468 static ConstString g_sect_name_dwarf_debug_info("__debug_info"); 1469 static ConstString g_sect_name_dwarf_debug_line("__debug_line"); 1470 static ConstString g_sect_name_dwarf_debug_loc("__debug_loc"); 1471 static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists"); 1472 static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo"); 1473 static ConstString g_sect_name_dwarf_debug_names("__debug_names"); 1474 static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames"); 1475 static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes"); 1476 static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges"); 1477 static ConstString g_sect_name_dwarf_debug_str("__debug_str"); 1478 static ConstString g_sect_name_dwarf_debug_types("__debug_types"); 1479 static ConstString g_sect_name_dwarf_apple_names("__apple_names"); 1480 static ConstString g_sect_name_dwarf_apple_types("__apple_types"); 1481 static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac"); 1482 static ConstString g_sect_name_dwarf_apple_objc("__apple_objc"); 1483 static ConstString g_sect_name_eh_frame("__eh_frame"); 1484 static ConstString g_sect_name_compact_unwind("__unwind_info"); 1485 static ConstString g_sect_name_text("__text"); 1486 static ConstString g_sect_name_data("__data"); 1487 static ConstString g_sect_name_go_symtab("__gosymtab"); 1488 1489 if (section_name == g_sect_name_dwarf_debug_abbrev) 1490 return eSectionTypeDWARFDebugAbbrev; 1491 if (section_name == g_sect_name_dwarf_debug_aranges) 1492 return eSectionTypeDWARFDebugAranges; 1493 if (section_name == g_sect_name_dwarf_debug_frame) 1494 return eSectionTypeDWARFDebugFrame; 1495 if (section_name == g_sect_name_dwarf_debug_info) 1496 return eSectionTypeDWARFDebugInfo; 1497 if (section_name == g_sect_name_dwarf_debug_line) 1498 return eSectionTypeDWARFDebugLine; 1499 if (section_name == g_sect_name_dwarf_debug_loc) 1500 return eSectionTypeDWARFDebugLoc; 1501 if (section_name == g_sect_name_dwarf_debug_loclists) 1502 return eSectionTypeDWARFDebugLocLists; 1503 if (section_name == g_sect_name_dwarf_debug_macinfo) 1504 return eSectionTypeDWARFDebugMacInfo; 1505 if (section_name == g_sect_name_dwarf_debug_names) 1506 return eSectionTypeDWARFDebugNames; 1507 if (section_name == g_sect_name_dwarf_debug_pubnames) 1508 return eSectionTypeDWARFDebugPubNames; 1509 if (section_name == g_sect_name_dwarf_debug_pubtypes) 1510 return eSectionTypeDWARFDebugPubTypes; 1511 if (section_name == g_sect_name_dwarf_debug_ranges) 1512 return eSectionTypeDWARFDebugRanges; 1513 if (section_name == g_sect_name_dwarf_debug_str) 1514 return eSectionTypeDWARFDebugStr; 1515 if (section_name == g_sect_name_dwarf_debug_types) 1516 return eSectionTypeDWARFDebugTypes; 1517 if (section_name == g_sect_name_dwarf_apple_names) 1518 return eSectionTypeDWARFAppleNames; 1519 if (section_name == g_sect_name_dwarf_apple_types) 1520 return eSectionTypeDWARFAppleTypes; 1521 if (section_name == g_sect_name_dwarf_apple_namespaces) 1522 return eSectionTypeDWARFAppleNamespaces; 1523 if (section_name == g_sect_name_dwarf_apple_objc) 1524 return eSectionTypeDWARFAppleObjC; 1525 if (section_name == g_sect_name_objc_selrefs) 1526 return eSectionTypeDataCStringPointers; 1527 if (section_name == g_sect_name_objc_msgrefs) 1528 return eSectionTypeDataObjCMessageRefs; 1529 if (section_name == g_sect_name_eh_frame) 1530 return eSectionTypeEHFrame; 1531 if (section_name == g_sect_name_compact_unwind) 1532 return eSectionTypeCompactUnwind; 1533 if (section_name == g_sect_name_cfstring) 1534 return eSectionTypeDataObjCCFStrings; 1535 if (section_name == g_sect_name_go_symtab) 1536 return eSectionTypeGoSymtab; 1537 if (section_name == g_sect_name_objc_data || 1538 section_name == g_sect_name_objc_classrefs || 1539 section_name == g_sect_name_objc_superrefs || 1540 section_name == g_sect_name_objc_const || 1541 section_name == g_sect_name_objc_classlist) { 1542 return eSectionTypeDataPointers; 1543 } 1544 1545 switch (mach_sect_type) { 1546 // TODO: categorize sections by other flags for regular sections 1547 case S_REGULAR: 1548 if (section_name == g_sect_name_text) 1549 return eSectionTypeCode; 1550 if (section_name == g_sect_name_data) 1551 return eSectionTypeData; 1552 return eSectionTypeOther; 1553 case S_ZEROFILL: 1554 return eSectionTypeZeroFill; 1555 case S_CSTRING_LITERALS: // section with only literal C strings 1556 return eSectionTypeDataCString; 1557 case S_4BYTE_LITERALS: // section with only 4 byte literals 1558 return eSectionTypeData4; 1559 case S_8BYTE_LITERALS: // section with only 8 byte literals 1560 return eSectionTypeData8; 1561 case S_LITERAL_POINTERS: // section with only pointers to literals 1562 return eSectionTypeDataPointers; 1563 case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers 1564 return eSectionTypeDataPointers; 1565 case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers 1566 return eSectionTypeDataPointers; 1567 case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in 1568 // the reserved2 field 1569 return eSectionTypeCode; 1570 case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for 1571 // initialization 1572 return eSectionTypeDataPointers; 1573 case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for 1574 // termination 1575 return eSectionTypeDataPointers; 1576 case S_COALESCED: 1577 return eSectionTypeOther; 1578 case S_GB_ZEROFILL: 1579 return eSectionTypeZeroFill; 1580 case S_INTERPOSING: // section with only pairs of function pointers for 1581 // interposing 1582 return eSectionTypeCode; 1583 case S_16BYTE_LITERALS: // section with only 16 byte literals 1584 return eSectionTypeData16; 1585 case S_DTRACE_DOF: 1586 return eSectionTypeDebug; 1587 case S_LAZY_DYLIB_SYMBOL_POINTERS: 1588 return eSectionTypeDataPointers; 1589 default: 1590 return eSectionTypeOther; 1591 } 1592 } 1593 1594 struct ObjectFileMachO::SegmentParsingContext { 1595 const EncryptedFileRanges EncryptedRanges; 1596 lldb_private::SectionList &UnifiedList; 1597 uint32_t NextSegmentIdx = 0; 1598 uint32_t NextSectionIdx = 0; 1599 bool FileAddressesChanged = false; 1600 1601 SegmentParsingContext(EncryptedFileRanges EncryptedRanges, 1602 lldb_private::SectionList &UnifiedList) 1603 : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {} 1604 }; 1605 1606 void ObjectFileMachO::ProcessSegmentCommand( 1607 const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset, 1608 uint32_t cmd_idx, SegmentParsingContext &context) { 1609 llvm::MachO::segment_command_64 load_cmd; 1610 memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_)); 1611 1612 if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) 1613 return; 1614 1615 ModuleSP module_sp = GetModule(); 1616 const bool is_core = GetType() == eTypeCoreFile; 1617 const bool is_dsym = (m_header.filetype == MH_DSYM); 1618 bool add_section = true; 1619 bool add_to_unified = true; 1620 ConstString const_segname( 1621 load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname))); 1622 1623 SectionSP unified_section_sp( 1624 context.UnifiedList.FindSectionByName(const_segname)); 1625 if (is_dsym && unified_section_sp) { 1626 if (const_segname == GetSegmentNameLINKEDIT()) { 1627 // We need to keep the __LINKEDIT segment private to this object file 1628 // only 1629 add_to_unified = false; 1630 } else { 1631 // This is the dSYM file and this section has already been created by the 1632 // object file, no need to create it. 1633 add_section = false; 1634 } 1635 } 1636 load_cmd.vmaddr = m_data.GetAddress(&offset); 1637 load_cmd.vmsize = m_data.GetAddress(&offset); 1638 load_cmd.fileoff = m_data.GetAddress(&offset); 1639 load_cmd.filesize = m_data.GetAddress(&offset); 1640 if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1641 return; 1642 1643 SanitizeSegmentCommand(load_cmd, cmd_idx); 1644 1645 const uint32_t segment_permissions = GetSegmentPermissions(load_cmd); 1646 const bool segment_is_encrypted = 1647 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1648 1649 // Keep a list of mach segments around in case we need to get at data that 1650 // isn't stored in the abstracted Sections. 1651 m_mach_segments.push_back(load_cmd); 1652 1653 // Use a segment ID of the segment index shifted left by 8 so they never 1654 // conflict with any of the sections. 1655 SectionSP segment_sp; 1656 if (add_section && (const_segname || is_core)) { 1657 segment_sp = std::make_shared<Section>( 1658 module_sp, // Module to which this section belongs 1659 this, // Object file to which this sections belongs 1660 ++context.NextSegmentIdx 1661 << 8, // Section ID is the 1 based segment index 1662 // shifted right by 8 bits as not to collide with any of the 256 1663 // section IDs that are possible 1664 const_segname, // Name of this section 1665 eSectionTypeContainer, // This section is a container of other 1666 // sections. 1667 load_cmd.vmaddr, // File VM address == addresses as they are 1668 // found in the object file 1669 load_cmd.vmsize, // VM size in bytes of this section 1670 load_cmd.fileoff, // Offset to the data for this section in 1671 // the file 1672 load_cmd.filesize, // Size in bytes of this section as found 1673 // in the file 1674 0, // Segments have no alignment information 1675 load_cmd.flags); // Flags for this section 1676 1677 segment_sp->SetIsEncrypted(segment_is_encrypted); 1678 m_sections_up->AddSection(segment_sp); 1679 segment_sp->SetPermissions(segment_permissions); 1680 if (add_to_unified) 1681 context.UnifiedList.AddSection(segment_sp); 1682 } else if (unified_section_sp) { 1683 // If this is a dSYM and the file addresses in the dSYM differ from the 1684 // file addresses in the ObjectFile, we must use the file base address for 1685 // the Section from the dSYM for the DWARF to resolve correctly. 1686 // This only happens with binaries in the shared cache in practice; 1687 // normally a mismatch like this would give a binary & dSYM that do not 1688 // match UUIDs. When a binary is included in the shared cache, its 1689 // segments are rearranged to optimize the shared cache, so its file 1690 // addresses will differ from what the ObjectFile had originally, 1691 // and what the dSYM has. 1692 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) { 1693 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 1694 if (log) { 1695 log->Printf( 1696 "Installing dSYM's %s segment file address over ObjectFile's " 1697 "so symbol table/debug info resolves correctly for %s", 1698 const_segname.AsCString(), 1699 module_sp->GetFileSpec().GetFilename().AsCString()); 1700 } 1701 1702 // Make sure we've parsed the symbol table from the ObjectFile before 1703 // we go around changing its Sections. 1704 module_sp->GetObjectFile()->GetSymtab(); 1705 // eh_frame would present the same problems but we parse that on a per- 1706 // function basis as-needed so it's more difficult to remove its use of 1707 // the Sections. Realistically, the environments where this code path 1708 // will be taken will not have eh_frame sections. 1709 1710 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1711 1712 // Notify the module that the section addresses have been changed once 1713 // we're done so any file-address caches can be updated. 1714 context.FileAddressesChanged = true; 1715 } 1716 m_sections_up->AddSection(unified_section_sp); 1717 } 1718 1719 llvm::MachO::section_64 sect64; 1720 ::memset(§64, 0, sizeof(sect64)); 1721 // Push a section into our mach sections for the section at index zero 1722 // (NO_SECT) if we don't have any mach sections yet... 1723 if (m_mach_sections.empty()) 1724 m_mach_sections.push_back(sect64); 1725 uint32_t segment_sect_idx; 1726 const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1; 1727 1728 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1729 for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects; 1730 ++segment_sect_idx) { 1731 if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname, 1732 sizeof(sect64.sectname)) == nullptr) 1733 break; 1734 if (m_data.GetU8(&offset, (uint8_t *)sect64.segname, 1735 sizeof(sect64.segname)) == nullptr) 1736 break; 1737 sect64.addr = m_data.GetAddress(&offset); 1738 sect64.size = m_data.GetAddress(&offset); 1739 1740 if (m_data.GetU32(&offset, §64.offset, num_u32s) == nullptr) 1741 break; 1742 1743 if (IsSharedCacheBinary() && !IsInMemory()) { 1744 sect64.offset = sect64.addr - m_text_address; 1745 } 1746 1747 // Keep a list of mach sections around in case we need to get at data that 1748 // isn't stored in the abstracted Sections. 1749 m_mach_sections.push_back(sect64); 1750 1751 if (add_section) { 1752 ConstString section_name( 1753 sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname))); 1754 if (!const_segname) { 1755 // We have a segment with no name so we need to conjure up segments 1756 // that correspond to the section's segname if there isn't already such 1757 // a section. If there is such a section, we resize the section so that 1758 // it spans all sections. We also mark these sections as fake so 1759 // address matches don't hit if they land in the gaps between the child 1760 // sections. 1761 const_segname.SetTrimmedCStringWithLength(sect64.segname, 1762 sizeof(sect64.segname)); 1763 segment_sp = context.UnifiedList.FindSectionByName(const_segname); 1764 if (segment_sp.get()) { 1765 Section *segment = segment_sp.get(); 1766 // Grow the section size as needed. 1767 const lldb::addr_t sect64_min_addr = sect64.addr; 1768 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1769 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1770 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1771 const lldb::addr_t curr_seg_max_addr = 1772 curr_seg_min_addr + curr_seg_byte_size; 1773 if (sect64_min_addr >= curr_seg_min_addr) { 1774 const lldb::addr_t new_seg_byte_size = 1775 sect64_max_addr - curr_seg_min_addr; 1776 // Only grow the section size if needed 1777 if (new_seg_byte_size > curr_seg_byte_size) 1778 segment->SetByteSize(new_seg_byte_size); 1779 } else { 1780 // We need to change the base address of the segment and adjust the 1781 // child section offsets for all existing children. 1782 const lldb::addr_t slide_amount = 1783 sect64_min_addr - curr_seg_min_addr; 1784 segment->Slide(slide_amount, false); 1785 segment->GetChildren().Slide(-slide_amount, false); 1786 segment->SetByteSize(curr_seg_max_addr - sect64_min_addr); 1787 } 1788 1789 // Grow the section size as needed. 1790 if (sect64.offset) { 1791 const lldb::addr_t segment_min_file_offset = 1792 segment->GetFileOffset(); 1793 const lldb::addr_t segment_max_file_offset = 1794 segment_min_file_offset + segment->GetFileSize(); 1795 1796 const lldb::addr_t section_min_file_offset = sect64.offset; 1797 const lldb::addr_t section_max_file_offset = 1798 section_min_file_offset + sect64.size; 1799 const lldb::addr_t new_file_offset = 1800 std::min(section_min_file_offset, segment_min_file_offset); 1801 const lldb::addr_t new_file_size = 1802 std::max(section_max_file_offset, segment_max_file_offset) - 1803 new_file_offset; 1804 segment->SetFileOffset(new_file_offset); 1805 segment->SetFileSize(new_file_size); 1806 } 1807 } else { 1808 // Create a fake section for the section's named segment 1809 segment_sp = std::make_shared<Section>( 1810 segment_sp, // Parent section 1811 module_sp, // Module to which this section belongs 1812 this, // Object file to which this section belongs 1813 ++context.NextSegmentIdx 1814 << 8, // Section ID is the 1 based segment index 1815 // shifted right by 8 bits as not to 1816 // collide with any of the 256 section IDs 1817 // that are possible 1818 const_segname, // Name of this section 1819 eSectionTypeContainer, // This section is a container of 1820 // other sections. 1821 sect64.addr, // File VM address == addresses as they are 1822 // found in the object file 1823 sect64.size, // VM size in bytes of this section 1824 sect64.offset, // Offset to the data for this section in 1825 // the file 1826 sect64.offset ? sect64.size : 0, // Size in bytes of 1827 // this section as 1828 // found in the file 1829 sect64.align, 1830 load_cmd.flags); // Flags for this section 1831 segment_sp->SetIsFake(true); 1832 segment_sp->SetPermissions(segment_permissions); 1833 m_sections_up->AddSection(segment_sp); 1834 if (add_to_unified) 1835 context.UnifiedList.AddSection(segment_sp); 1836 segment_sp->SetIsEncrypted(segment_is_encrypted); 1837 } 1838 } 1839 assert(segment_sp.get()); 1840 1841 lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name); 1842 1843 SectionSP section_sp(new Section( 1844 segment_sp, module_sp, this, ++context.NextSectionIdx, section_name, 1845 sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size, 1846 sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align, 1847 sect64.flags)); 1848 // Set the section to be encrypted to match the segment 1849 1850 bool section_is_encrypted = false; 1851 if (!segment_is_encrypted && load_cmd.filesize != 0) 1852 section_is_encrypted = context.EncryptedRanges.FindEntryThatContains( 1853 sect64.offset) != nullptr; 1854 1855 section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted); 1856 section_sp->SetPermissions(segment_permissions); 1857 segment_sp->GetChildren().AddSection(section_sp); 1858 1859 if (segment_sp->IsFake()) { 1860 segment_sp.reset(); 1861 const_segname.Clear(); 1862 } 1863 } 1864 } 1865 if (segment_sp && is_dsym) { 1866 if (first_segment_sectID <= context.NextSectionIdx) { 1867 lldb::user_id_t sect_uid; 1868 for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx; 1869 ++sect_uid) { 1870 SectionSP curr_section_sp( 1871 segment_sp->GetChildren().FindSectionByID(sect_uid)); 1872 SectionSP next_section_sp; 1873 if (sect_uid + 1 <= context.NextSectionIdx) 1874 next_section_sp = 1875 segment_sp->GetChildren().FindSectionByID(sect_uid + 1); 1876 1877 if (curr_section_sp.get()) { 1878 if (curr_section_sp->GetByteSize() == 0) { 1879 if (next_section_sp.get() != nullptr) 1880 curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() - 1881 curr_section_sp->GetFileAddress()); 1882 else 1883 curr_section_sp->SetByteSize(load_cmd.vmsize); 1884 } 1885 } 1886 } 1887 } 1888 } 1889 } 1890 1891 void ObjectFileMachO::ProcessDysymtabCommand( 1892 const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) { 1893 m_dysymtab.cmd = load_cmd.cmd; 1894 m_dysymtab.cmdsize = load_cmd.cmdsize; 1895 m_data.GetU32(&offset, &m_dysymtab.ilocalsym, 1896 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1897 } 1898 1899 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) { 1900 if (m_sections_up) 1901 return; 1902 1903 m_sections_up = std::make_unique<SectionList>(); 1904 1905 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1906 // bool dump_sections = false; 1907 ModuleSP module_sp(GetModule()); 1908 1909 offset = MachHeaderSizeFromMagic(m_header.magic); 1910 1911 SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list); 1912 llvm::MachO::load_command load_cmd; 1913 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 1914 const lldb::offset_t load_cmd_offset = offset; 1915 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 1916 break; 1917 1918 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1919 ProcessSegmentCommand(load_cmd, offset, i, context); 1920 else if (load_cmd.cmd == LC_DYSYMTAB) 1921 ProcessDysymtabCommand(load_cmd, offset); 1922 1923 offset = load_cmd_offset + load_cmd.cmdsize; 1924 } 1925 1926 if (context.FileAddressesChanged && module_sp) 1927 module_sp->SectionFileAddressesChanged(); 1928 } 1929 1930 class MachSymtabSectionInfo { 1931 public: 1932 MachSymtabSectionInfo(SectionList *section_list) 1933 : m_section_list(section_list), m_section_infos() { 1934 // Get the number of sections down to a depth of 1 to include all segments 1935 // and their sections, but no other sections that may be added for debug 1936 // map or 1937 m_section_infos.resize(section_list->GetNumSections(1)); 1938 } 1939 1940 SectionSP GetSection(uint8_t n_sect, addr_t file_addr) { 1941 if (n_sect == 0) 1942 return SectionSP(); 1943 if (n_sect < m_section_infos.size()) { 1944 if (!m_section_infos[n_sect].section_sp) { 1945 SectionSP section_sp(m_section_list->FindSectionByID(n_sect)); 1946 m_section_infos[n_sect].section_sp = section_sp; 1947 if (section_sp) { 1948 m_section_infos[n_sect].vm_range.SetBaseAddress( 1949 section_sp->GetFileAddress()); 1950 m_section_infos[n_sect].vm_range.SetByteSize( 1951 section_sp->GetByteSize()); 1952 } else { 1953 std::string filename = "<unknown>"; 1954 SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0)); 1955 if (first_section_sp) 1956 filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath(); 1957 1958 Host::SystemLog(Host::eSystemLogError, 1959 "error: unable to find section %d for a symbol in " 1960 "%s, corrupt file?\n", 1961 n_sect, filename.c_str()); 1962 } 1963 } 1964 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) { 1965 // Symbol is in section. 1966 return m_section_infos[n_sect].section_sp; 1967 } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 && 1968 m_section_infos[n_sect].vm_range.GetBaseAddress() == 1969 file_addr) { 1970 // Symbol is in section with zero size, but has the same start address 1971 // as the section. This can happen with linker symbols (symbols that 1972 // start with the letter 'l' or 'L'. 1973 return m_section_infos[n_sect].section_sp; 1974 } 1975 } 1976 return m_section_list->FindSectionContainingFileAddress(file_addr); 1977 } 1978 1979 protected: 1980 struct SectionInfo { 1981 SectionInfo() : vm_range(), section_sp() {} 1982 1983 VMRange vm_range; 1984 SectionSP section_sp; 1985 }; 1986 SectionList *m_section_list; 1987 std::vector<SectionInfo> m_section_infos; 1988 }; 1989 1990 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63) 1991 struct TrieEntry { 1992 void Dump() const { 1993 printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 1994 static_cast<unsigned long long>(address), 1995 static_cast<unsigned long long>(flags), 1996 static_cast<unsigned long long>(other), name.GetCString()); 1997 if (import_name) 1998 printf(" -> \"%s\"\n", import_name.GetCString()); 1999 else 2000 printf("\n"); 2001 } 2002 ConstString name; 2003 uint64_t address = LLDB_INVALID_ADDRESS; 2004 uint64_t flags = 2005 0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, 2006 // TRIE_SYMBOL_IS_THUMB 2007 uint64_t other = 0; 2008 ConstString import_name; 2009 }; 2010 2011 struct TrieEntryWithOffset { 2012 lldb::offset_t nodeOffset; 2013 TrieEntry entry; 2014 2015 TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {} 2016 2017 void Dump(uint32_t idx) const { 2018 printf("[%3u] 0x%16.16llx: ", idx, 2019 static_cast<unsigned long long>(nodeOffset)); 2020 entry.Dump(); 2021 } 2022 2023 bool operator<(const TrieEntryWithOffset &other) const { 2024 return (nodeOffset < other.nodeOffset); 2025 } 2026 }; 2027 2028 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset, 2029 const bool is_arm, addr_t text_seg_base_addr, 2030 std::vector<llvm::StringRef> &nameSlices, 2031 std::set<lldb::addr_t> &resolver_addresses, 2032 std::vector<TrieEntryWithOffset> &reexports, 2033 std::vector<TrieEntryWithOffset> &ext_symbols) { 2034 if (!data.ValidOffset(offset)) 2035 return true; 2036 2037 // Terminal node -- end of a branch, possibly add this to 2038 // the symbol table or resolver table. 2039 const uint64_t terminalSize = data.GetULEB128(&offset); 2040 lldb::offset_t children_offset = offset + terminalSize; 2041 if (terminalSize != 0) { 2042 TrieEntryWithOffset e(offset); 2043 e.entry.flags = data.GetULEB128(&offset); 2044 const char *import_name = nullptr; 2045 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) { 2046 e.entry.address = 0; 2047 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2048 import_name = data.GetCStr(&offset); 2049 } else { 2050 e.entry.address = data.GetULEB128(&offset); 2051 if (text_seg_base_addr != LLDB_INVALID_ADDRESS) 2052 e.entry.address += text_seg_base_addr; 2053 if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) { 2054 e.entry.other = data.GetULEB128(&offset); 2055 uint64_t resolver_addr = e.entry.other; 2056 if (text_seg_base_addr != LLDB_INVALID_ADDRESS) 2057 resolver_addr += text_seg_base_addr; 2058 if (is_arm) 2059 resolver_addr &= THUMB_ADDRESS_BIT_MASK; 2060 resolver_addresses.insert(resolver_addr); 2061 } else 2062 e.entry.other = 0; 2063 } 2064 bool add_this_entry = false; 2065 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) && 2066 import_name && import_name[0]) { 2067 // add symbols that are reexport symbols with a valid import name. 2068 add_this_entry = true; 2069 } else if (e.entry.flags == 0 && 2070 (import_name == nullptr || import_name[0] == '\0')) { 2071 // add externally visible symbols, in case the nlist record has 2072 // been stripped/omitted. 2073 add_this_entry = true; 2074 } 2075 if (add_this_entry) { 2076 std::string name; 2077 if (!nameSlices.empty()) { 2078 for (auto name_slice : nameSlices) 2079 name.append(name_slice.data(), name_slice.size()); 2080 } 2081 if (name.size() > 1) { 2082 // Skip the leading '_' 2083 e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1); 2084 } 2085 if (import_name) { 2086 // Skip the leading '_' 2087 e.entry.import_name.SetCString(import_name + 1); 2088 } 2089 if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) { 2090 reexports.push_back(e); 2091 } else { 2092 if (is_arm && (e.entry.address & 1)) { 2093 e.entry.flags |= TRIE_SYMBOL_IS_THUMB; 2094 e.entry.address &= THUMB_ADDRESS_BIT_MASK; 2095 } 2096 ext_symbols.push_back(e); 2097 } 2098 } 2099 } 2100 2101 const uint8_t childrenCount = data.GetU8(&children_offset); 2102 for (uint8_t i = 0; i < childrenCount; ++i) { 2103 const char *cstr = data.GetCStr(&children_offset); 2104 if (cstr) 2105 nameSlices.push_back(llvm::StringRef(cstr)); 2106 else 2107 return false; // Corrupt data 2108 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2109 if (childNodeOffset) { 2110 if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr, 2111 nameSlices, resolver_addresses, reexports, 2112 ext_symbols)) { 2113 return false; 2114 } 2115 } 2116 nameSlices.pop_back(); 2117 } 2118 return true; 2119 } 2120 2121 static SymbolType GetSymbolType(const char *&symbol_name, 2122 bool &demangled_is_synthesized, 2123 const SectionSP &text_section_sp, 2124 const SectionSP &data_section_sp, 2125 const SectionSP &data_dirty_section_sp, 2126 const SectionSP &data_const_section_sp, 2127 const SectionSP &symbol_section) { 2128 SymbolType type = eSymbolTypeInvalid; 2129 2130 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 2131 if (symbol_section->IsDescendant(text_section_sp.get())) { 2132 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 2133 S_ATTR_SELF_MODIFYING_CODE | 2134 S_ATTR_SOME_INSTRUCTIONS)) 2135 type = eSymbolTypeData; 2136 else 2137 type = eSymbolTypeCode; 2138 } else if (symbol_section->IsDescendant(data_section_sp.get()) || 2139 symbol_section->IsDescendant(data_dirty_section_sp.get()) || 2140 symbol_section->IsDescendant(data_const_section_sp.get())) { 2141 if (symbol_sect_name && 2142 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { 2143 type = eSymbolTypeRuntime; 2144 2145 if (symbol_name) { 2146 llvm::StringRef symbol_name_ref(symbol_name); 2147 if (symbol_name_ref.startswith("OBJC_")) { 2148 static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_"); 2149 static const llvm::StringRef g_objc_v2_prefix_metaclass( 2150 "OBJC_METACLASS_$_"); 2151 static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_"); 2152 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 2153 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2154 type = eSymbolTypeObjCClass; 2155 demangled_is_synthesized = true; 2156 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { 2157 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2158 type = eSymbolTypeObjCMetaClass; 2159 demangled_is_synthesized = true; 2160 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { 2161 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2162 type = eSymbolTypeObjCIVar; 2163 demangled_is_synthesized = true; 2164 } 2165 } 2166 } 2167 } else if (symbol_sect_name && 2168 ::strstr(symbol_sect_name, "__gcc_except_tab") == 2169 symbol_sect_name) { 2170 type = eSymbolTypeException; 2171 } else { 2172 type = eSymbolTypeData; 2173 } 2174 } else if (symbol_sect_name && 2175 ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) { 2176 type = eSymbolTypeTrampoline; 2177 } 2178 return type; 2179 } 2180 2181 // Read the UUID out of a dyld_shared_cache file on-disk. 2182 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache, 2183 const ByteOrder byte_order, 2184 const uint32_t addr_byte_size) { 2185 UUID dsc_uuid; 2186 DataBufferSP DscData = MapFileData( 2187 dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2188 if (!DscData) 2189 return dsc_uuid; 2190 DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size); 2191 2192 char version_str[7]; 2193 lldb::offset_t offset = 0; 2194 memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6); 2195 version_str[6] = '\0'; 2196 if (strcmp(version_str, "dyld_v") == 0) { 2197 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid); 2198 dsc_uuid = UUID::fromOptionalData( 2199 dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t)); 2200 } 2201 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2202 if (log && dsc_uuid.IsValid()) { 2203 LLDB_LOGF(log, "Shared cache %s has UUID %s", 2204 dyld_shared_cache.GetPath().c_str(), 2205 dsc_uuid.GetAsString().c_str()); 2206 } 2207 return dsc_uuid; 2208 } 2209 2210 static llvm::Optional<struct nlist_64> 2211 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset, 2212 size_t nlist_byte_size) { 2213 struct nlist_64 nlist; 2214 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2215 return {}; 2216 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 2217 nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset); 2218 nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset); 2219 nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset); 2220 nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset); 2221 return nlist; 2222 } 2223 2224 enum { DebugSymbols = true, NonDebugSymbols = false }; 2225 2226 size_t ObjectFileMachO::ParseSymtab() { 2227 LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", 2228 m_file.GetFilename().AsCString("")); 2229 ModuleSP module_sp(GetModule()); 2230 if (!module_sp) 2231 return 0; 2232 2233 Progress progress(llvm::formatv("Parsing symbol table for {0}", 2234 m_file.GetFilename().AsCString("<Unknown>"))); 2235 2236 llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0}; 2237 llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0}; 2238 llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0}; 2239 llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 2240 // The data element of type bool indicates that this entry is thumb 2241 // code. 2242 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2243 2244 // Record the address of every function/data that we add to the symtab. 2245 // We add symbols to the table in the order of most information (nlist 2246 // records) to least (function starts), and avoid duplicating symbols 2247 // via this set. 2248 llvm::DenseSet<addr_t> symbols_added; 2249 2250 // We are using a llvm::DenseSet for "symbols_added" so we must be sure we 2251 // do not add the tombstone or empty keys to the set. 2252 auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) { 2253 // Don't add the tombstone or empty keys. 2254 if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1) 2255 return; 2256 symbols_added.insert(file_addr); 2257 }; 2258 FunctionStarts function_starts; 2259 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2260 uint32_t i; 2261 FileSpecList dylib_files; 2262 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 2263 llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_"); 2264 llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_"); 2265 llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); 2266 2267 for (i = 0; i < m_header.ncmds; ++i) { 2268 const lldb::offset_t cmd_offset = offset; 2269 // Read in the load command and load command size 2270 llvm::MachO::load_command lc; 2271 if (m_data.GetU32(&offset, &lc, 2) == nullptr) 2272 break; 2273 // Watch for the symbol table load command 2274 switch (lc.cmd) { 2275 case LC_SYMTAB: 2276 symtab_load_command.cmd = lc.cmd; 2277 symtab_load_command.cmdsize = lc.cmdsize; 2278 // Read in the rest of the symtab load command 2279 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 2280 nullptr) // fill in symoff, nsyms, stroff, strsize fields 2281 return 0; 2282 break; 2283 2284 case LC_DYLD_INFO: 2285 case LC_DYLD_INFO_ONLY: 2286 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) { 2287 dyld_info.cmd = lc.cmd; 2288 dyld_info.cmdsize = lc.cmdsize; 2289 } else { 2290 memset(&dyld_info, 0, sizeof(dyld_info)); 2291 } 2292 break; 2293 2294 case LC_LOAD_DYLIB: 2295 case LC_LOAD_WEAK_DYLIB: 2296 case LC_REEXPORT_DYLIB: 2297 case LC_LOADFVMLIB: 2298 case LC_LOAD_UPWARD_DYLIB: { 2299 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2300 const char *path = m_data.PeekCStr(name_offset); 2301 if (path) { 2302 FileSpec file_spec(path); 2303 // Strip the path if there is @rpath, @executable, etc so we just use 2304 // the basename 2305 if (path[0] == '@') 2306 file_spec.GetDirectory().Clear(); 2307 2308 if (lc.cmd == LC_REEXPORT_DYLIB) { 2309 m_reexported_dylibs.AppendIfUnique(file_spec); 2310 } 2311 2312 dylib_files.Append(file_spec); 2313 } 2314 } break; 2315 2316 case LC_DYLD_EXPORTS_TRIE: 2317 exports_trie_load_command.cmd = lc.cmd; 2318 exports_trie_load_command.cmdsize = lc.cmdsize; 2319 if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) == 2320 nullptr) // fill in offset and size fields 2321 memset(&exports_trie_load_command, 0, 2322 sizeof(exports_trie_load_command)); 2323 break; 2324 case LC_FUNCTION_STARTS: 2325 function_starts_load_command.cmd = lc.cmd; 2326 function_starts_load_command.cmdsize = lc.cmdsize; 2327 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == 2328 nullptr) // fill in data offset and size fields 2329 memset(&function_starts_load_command, 0, 2330 sizeof(function_starts_load_command)); 2331 break; 2332 2333 default: 2334 break; 2335 } 2336 offset = cmd_offset + lc.cmdsize; 2337 } 2338 2339 if (!symtab_load_command.cmd) 2340 return 0; 2341 2342 Symtab *symtab = m_symtab_up.get(); 2343 SectionList *section_list = GetSectionList(); 2344 if (section_list == nullptr) 2345 return 0; 2346 2347 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2348 const ByteOrder byte_order = m_data.GetByteOrder(); 2349 bool bit_width_32 = addr_byte_size == 4; 2350 const size_t nlist_byte_size = 2351 bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2352 2353 DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size); 2354 DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size); 2355 DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size); 2356 DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order, 2357 addr_byte_size); 2358 DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size); 2359 2360 const addr_t nlist_data_byte_size = 2361 symtab_load_command.nsyms * nlist_byte_size; 2362 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2363 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2364 2365 ProcessSP process_sp(m_process_wp.lock()); 2366 Process *process = process_sp.get(); 2367 2368 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2369 bool is_shared_cache_image = IsSharedCacheBinary(); 2370 bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory(); 2371 SectionSP linkedit_section_sp( 2372 section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2373 2374 if (process && m_header.filetype != llvm::MachO::MH_OBJECT && 2375 !is_local_shared_cache_image) { 2376 Target &target = process->GetTarget(); 2377 2378 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2379 2380 // Reading mach file from memory in a process or core file... 2381 2382 if (linkedit_section_sp) { 2383 addr_t linkedit_load_addr = 2384 linkedit_section_sp->GetLoadBaseAddress(&target); 2385 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) { 2386 // We might be trying to access the symbol table before the 2387 // __LINKEDIT's load address has been set in the target. We can't 2388 // fail to read the symbol table, so calculate the right address 2389 // manually 2390 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage( 2391 m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2392 } 2393 2394 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2395 const addr_t symoff_addr = linkedit_load_addr + 2396 symtab_load_command.symoff - 2397 linkedit_file_offset; 2398 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - 2399 linkedit_file_offset; 2400 2401 // Always load dyld - the dynamic linker - from memory if we didn't 2402 // find a binary anywhere else. lldb will not register 2403 // dylib/framework/bundle loads/unloads if we don't have the dyld 2404 // symbols, we force dyld to load from memory despite the user's 2405 // target.memory-module-load-level setting. 2406 if (memory_module_load_level == eMemoryModuleLoadLevelComplete || 2407 m_header.filetype == llvm::MachO::MH_DYLINKER) { 2408 DataBufferSP nlist_data_sp( 2409 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size)); 2410 if (nlist_data_sp) 2411 nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2412 if (m_dysymtab.nindirectsyms != 0) { 2413 const addr_t indirect_syms_addr = linkedit_load_addr + 2414 m_dysymtab.indirectsymoff - 2415 linkedit_file_offset; 2416 DataBufferSP indirect_syms_data_sp(ReadMemory( 2417 process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2418 if (indirect_syms_data_sp) 2419 indirect_symbol_index_data.SetData( 2420 indirect_syms_data_sp, 0, 2421 indirect_syms_data_sp->GetByteSize()); 2422 // If this binary is outside the shared cache, 2423 // cache the string table. 2424 // Binaries in the shared cache all share a giant string table, 2425 // and we can't share the string tables across multiple 2426 // ObjectFileMachO's, so we'd end up re-reading this mega-strtab 2427 // for every binary in the shared cache - it would be a big perf 2428 // problem. For binaries outside the shared cache, it's faster to 2429 // read the entire strtab at once instead of piece-by-piece as we 2430 // process the nlist records. 2431 if (!is_shared_cache_image) { 2432 DataBufferSP strtab_data_sp( 2433 ReadMemory(process_sp, strtab_addr, strtab_data_byte_size)); 2434 if (strtab_data_sp) { 2435 strtab_data.SetData(strtab_data_sp, 0, 2436 strtab_data_sp->GetByteSize()); 2437 } 2438 } 2439 } 2440 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) { 2441 if (function_starts_load_command.cmd) { 2442 const addr_t func_start_addr = 2443 linkedit_load_addr + function_starts_load_command.dataoff - 2444 linkedit_file_offset; 2445 DataBufferSP func_start_data_sp( 2446 ReadMemory(process_sp, func_start_addr, 2447 function_starts_load_command.datasize)); 2448 if (func_start_data_sp) 2449 function_starts_data.SetData(func_start_data_sp, 0, 2450 func_start_data_sp->GetByteSize()); 2451 } 2452 } 2453 } 2454 } 2455 } else { 2456 if (is_local_shared_cache_image) { 2457 // The load commands in shared cache images are relative to the 2458 // beginning of the shared cache, not the library image. The 2459 // data we get handed when creating the ObjectFileMachO starts 2460 // at the beginning of a specific library and spans to the end 2461 // of the cache to be able to reach the shared LINKEDIT 2462 // segments. We need to convert the load command offsets to be 2463 // relative to the beginning of our specific image. 2464 lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset(); 2465 lldb::offset_t linkedit_slide = 2466 linkedit_offset - m_linkedit_original_offset; 2467 symtab_load_command.symoff += linkedit_slide; 2468 symtab_load_command.stroff += linkedit_slide; 2469 dyld_info.export_off += linkedit_slide; 2470 m_dysymtab.indirectsymoff += linkedit_slide; 2471 function_starts_load_command.dataoff += linkedit_slide; 2472 exports_trie_load_command.dataoff += linkedit_slide; 2473 } 2474 2475 nlist_data.SetData(m_data, symtab_load_command.symoff, 2476 nlist_data_byte_size); 2477 strtab_data.SetData(m_data, symtab_load_command.stroff, 2478 strtab_data_byte_size); 2479 2480 // We shouldn't have exports data from both the LC_DYLD_INFO command 2481 // AND the LC_DYLD_EXPORTS_TRIE command in the same binary: 2482 lldbassert(!((dyld_info.export_size > 0) 2483 && (exports_trie_load_command.datasize > 0))); 2484 if (dyld_info.export_size > 0) { 2485 dyld_trie_data.SetData(m_data, dyld_info.export_off, 2486 dyld_info.export_size); 2487 } else if (exports_trie_load_command.datasize > 0) { 2488 dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff, 2489 exports_trie_load_command.datasize); 2490 } 2491 2492 if (m_dysymtab.nindirectsyms != 0) { 2493 indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff, 2494 m_dysymtab.nindirectsyms * 4); 2495 } 2496 if (function_starts_load_command.cmd) { 2497 function_starts_data.SetData(m_data, function_starts_load_command.dataoff, 2498 function_starts_load_command.datasize); 2499 } 2500 } 2501 2502 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2503 2504 ConstString g_segment_name_TEXT = GetSegmentNameTEXT(); 2505 ConstString g_segment_name_DATA = GetSegmentNameDATA(); 2506 ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY(); 2507 ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST(); 2508 ConstString g_segment_name_OBJC = GetSegmentNameOBJC(); 2509 ConstString g_section_name_eh_frame = GetSectionNameEHFrame(); 2510 SectionSP text_section_sp( 2511 section_list->FindSectionByName(g_segment_name_TEXT)); 2512 SectionSP data_section_sp( 2513 section_list->FindSectionByName(g_segment_name_DATA)); 2514 SectionSP data_dirty_section_sp( 2515 section_list->FindSectionByName(g_segment_name_DATA_DIRTY)); 2516 SectionSP data_const_section_sp( 2517 section_list->FindSectionByName(g_segment_name_DATA_CONST)); 2518 SectionSP objc_section_sp( 2519 section_list->FindSectionByName(g_segment_name_OBJC)); 2520 SectionSP eh_frame_section_sp; 2521 if (text_section_sp.get()) 2522 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName( 2523 g_section_name_eh_frame); 2524 else 2525 eh_frame_section_sp = 2526 section_list->FindSectionByName(g_section_name_eh_frame); 2527 2528 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2529 const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions(); 2530 2531 // lldb works best if it knows the start address of all functions in a 2532 // module. Linker symbols or debug info are normally the best source of 2533 // information for start addr / size but they may be stripped in a released 2534 // binary. Two additional sources of information exist in Mach-O binaries: 2535 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each 2536 // function's start address in the 2537 // binary, relative to the text section. 2538 // eh_frame - the eh_frame FDEs have the start addr & size of 2539 // each function 2540 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on 2541 // all modern binaries. 2542 // Binaries built to run on older releases may need to use eh_frame 2543 // information. 2544 2545 if (text_section_sp && function_starts_data.GetByteSize()) { 2546 FunctionStarts::Entry function_start_entry; 2547 function_start_entry.data = false; 2548 lldb::offset_t function_start_offset = 0; 2549 function_start_entry.addr = text_section_sp->GetFileAddress(); 2550 uint64_t delta; 2551 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 2552 0) { 2553 // Now append the current entry 2554 function_start_entry.addr += delta; 2555 if (is_arm) { 2556 if (function_start_entry.addr & 1) { 2557 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; 2558 function_start_entry.data = true; 2559 } else if (always_thumb) { 2560 function_start_entry.data = true; 2561 } 2562 } 2563 function_starts.Append(function_start_entry); 2564 } 2565 } else { 2566 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the 2567 // load command claiming an eh_frame but it doesn't actually have the 2568 // eh_frame content. And if we have a dSYM, we don't need to do any of 2569 // this fill-in-the-missing-symbols works anyway - the debug info should 2570 // give us all the functions in the module. 2571 if (text_section_sp.get() && eh_frame_section_sp.get() && 2572 m_type != eTypeDebugInfo) { 2573 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, 2574 DWARFCallFrameInfo::EH); 2575 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2576 eh_frame.GetFunctionAddressAndSizeVector(functions); 2577 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2578 size_t count = functions.GetSize(); 2579 for (size_t i = 0; i < count; ++i) { 2580 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = 2581 functions.GetEntryAtIndex(i); 2582 if (func) { 2583 FunctionStarts::Entry function_start_entry; 2584 function_start_entry.addr = func->base - text_base_addr; 2585 if (is_arm) { 2586 if (function_start_entry.addr & 1) { 2587 function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK; 2588 function_start_entry.data = true; 2589 } else if (always_thumb) { 2590 function_start_entry.data = true; 2591 } 2592 } 2593 function_starts.Append(function_start_entry); 2594 } 2595 } 2596 } 2597 } 2598 2599 const size_t function_starts_count = function_starts.GetSize(); 2600 2601 // For user process binaries (executables, dylibs, frameworks, bundles), if 2602 // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're 2603 // going to assume the binary has been stripped. Don't allow assembly 2604 // language instruction emulation because we don't know proper function 2605 // start boundaries. 2606 // 2607 // For all other types of binaries (kernels, stand-alone bare board 2608 // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame 2609 // sections - we should not make any assumptions about them based on that. 2610 if (function_starts_count == 0 && CalculateStrata() == eStrataUser) { 2611 m_allow_assembly_emulation_unwind_plans = false; 2612 Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet( 2613 LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND)); 2614 2615 if (unwind_or_symbol_log) 2616 module_sp->LogMessage( 2617 unwind_or_symbol_log, 2618 "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds"); 2619 } 2620 2621 const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() 2622 ? eh_frame_section_sp->GetID() 2623 : static_cast<user_id_t>(NO_SECT); 2624 2625 lldb::offset_t nlist_data_offset = 0; 2626 2627 uint32_t N_SO_index = UINT32_MAX; 2628 2629 MachSymtabSectionInfo section_info(section_list); 2630 std::vector<uint32_t> N_FUN_indexes; 2631 std::vector<uint32_t> N_NSYM_indexes; 2632 std::vector<uint32_t> N_INCL_indexes; 2633 std::vector<uint32_t> N_BRAC_indexes; 2634 std::vector<uint32_t> N_COMM_indexes; 2635 typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap; 2636 typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2637 typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap; 2638 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2639 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2640 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2641 // Any symbols that get merged into another will get an entry in this map 2642 // so we know 2643 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2644 uint32_t nlist_idx = 0; 2645 Symbol *symbol_ptr = nullptr; 2646 2647 uint32_t sym_idx = 0; 2648 Symbol *sym = nullptr; 2649 size_t num_syms = 0; 2650 std::string memory_symbol_name; 2651 uint32_t unmapped_local_symbols_found = 0; 2652 2653 std::vector<TrieEntryWithOffset> reexport_trie_entries; 2654 std::vector<TrieEntryWithOffset> external_sym_trie_entries; 2655 std::set<lldb::addr_t> resolver_addresses; 2656 2657 if (dyld_trie_data.GetByteSize() > 0) { 2658 ConstString text_segment_name("__TEXT"); 2659 SectionSP text_segment_sp = 2660 GetSectionList()->FindSectionByName(text_segment_name); 2661 lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS; 2662 if (text_segment_sp) 2663 text_segment_file_addr = text_segment_sp->GetFileAddress(); 2664 std::vector<llvm::StringRef> nameSlices; 2665 ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr, 2666 nameSlices, resolver_addresses, reexport_trie_entries, 2667 external_sym_trie_entries); 2668 } 2669 2670 typedef std::set<ConstString> IndirectSymbols; 2671 IndirectSymbols indirect_symbol_names; 2672 2673 #if TARGET_OS_IPHONE 2674 2675 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been 2676 // optimized by moving LOCAL symbols out of the memory mapped portion of 2677 // the DSC. The symbol information has all been retained, but it isn't 2678 // available in the normal nlist data. However, there *are* duplicate 2679 // entries of *some* 2680 // LOCAL symbols in the normal nlist data. To handle this situation 2681 // correctly, we must first attempt 2682 // to parse any DSC unmapped symbol information. If we find any, we set a 2683 // flag that tells the normal nlist parser to ignore all LOCAL symbols. 2684 2685 if (IsSharedCacheBinary()) { 2686 // Before we can start mapping the DSC, we need to make certain the 2687 // target process is actually using the cache we can find. 2688 2689 // Next we need to determine the correct path for the dyld shared cache. 2690 2691 ArchSpec header_arch = GetArchitecture(); 2692 char dsc_path[PATH_MAX]; 2693 char dsc_path_development[PATH_MAX]; 2694 2695 snprintf( 2696 dsc_path, sizeof(dsc_path), "%s%s%s", 2697 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2698 */ 2699 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2700 header_arch.GetArchitectureName()); 2701 2702 snprintf( 2703 dsc_path_development, sizeof(dsc_path), "%s%s%s%s", 2704 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR 2705 */ 2706 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2707 header_arch.GetArchitectureName(), ".development"); 2708 2709 FileSpec dsc_nondevelopment_filespec(dsc_path); 2710 FileSpec dsc_development_filespec(dsc_path_development); 2711 FileSpec dsc_filespec; 2712 2713 UUID dsc_uuid; 2714 UUID process_shared_cache_uuid; 2715 addr_t process_shared_cache_base_addr; 2716 2717 if (process) { 2718 GetProcessSharedCacheUUID(process, process_shared_cache_base_addr, 2719 process_shared_cache_uuid); 2720 } 2721 2722 // First see if we can find an exact match for the inferior process 2723 // shared cache UUID in the development or non-development shared caches 2724 // on disk. 2725 if (process_shared_cache_uuid.IsValid()) { 2726 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2727 UUID dsc_development_uuid = GetSharedCacheUUID( 2728 dsc_development_filespec, byte_order, addr_byte_size); 2729 if (dsc_development_uuid.IsValid() && 2730 dsc_development_uuid == process_shared_cache_uuid) { 2731 dsc_filespec = dsc_development_filespec; 2732 dsc_uuid = dsc_development_uuid; 2733 } 2734 } 2735 if (!dsc_uuid.IsValid() && 2736 FileSystem::Instance().Exists(dsc_nondevelopment_filespec)) { 2737 UUID dsc_nondevelopment_uuid = GetSharedCacheUUID( 2738 dsc_nondevelopment_filespec, byte_order, addr_byte_size); 2739 if (dsc_nondevelopment_uuid.IsValid() && 2740 dsc_nondevelopment_uuid == process_shared_cache_uuid) { 2741 dsc_filespec = dsc_nondevelopment_filespec; 2742 dsc_uuid = dsc_nondevelopment_uuid; 2743 } 2744 } 2745 } 2746 2747 // Failing a UUID match, prefer the development dyld_shared cache if both 2748 // are present. 2749 if (!FileSystem::Instance().Exists(dsc_filespec)) { 2750 if (FileSystem::Instance().Exists(dsc_development_filespec)) { 2751 dsc_filespec = dsc_development_filespec; 2752 } else { 2753 dsc_filespec = dsc_nondevelopment_filespec; 2754 } 2755 } 2756 2757 /* The dyld_cache_header has a pointer to the 2758 dyld_cache_local_symbols_info structure (localSymbolsOffset). 2759 The dyld_cache_local_symbols_info structure gives us three things: 2760 1. The start and count of the nlist records in the dyld_shared_cache 2761 file 2762 2. The start and size of the strings for these nlist records 2763 3. The start and count of dyld_cache_local_symbols_entry entries 2764 2765 There is one dyld_cache_local_symbols_entry per dylib/framework in the 2766 dyld shared cache. 2767 The "dylibOffset" field is the Mach-O header of this dylib/framework in 2768 the dyld shared cache. 2769 The dyld_cache_local_symbols_entry also lists the start of this 2770 dylib/framework's nlist records 2771 and the count of how many nlist records there are for this 2772 dylib/framework. 2773 */ 2774 2775 // Process the dyld shared cache header to find the unmapped symbols 2776 2777 DataBufferSP dsc_data_sp = MapFileData( 2778 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0); 2779 if (!dsc_uuid.IsValid()) { 2780 dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size); 2781 } 2782 if (dsc_data_sp) { 2783 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2784 2785 bool uuid_match = true; 2786 if (dsc_uuid.IsValid() && process) { 2787 if (process_shared_cache_uuid.IsValid() && 2788 dsc_uuid != process_shared_cache_uuid) { 2789 // The on-disk dyld_shared_cache file is not the same as the one in 2790 // this process' memory, don't use it. 2791 uuid_match = false; 2792 ModuleSP module_sp(GetModule()); 2793 if (module_sp) 2794 module_sp->ReportWarning("process shared cache does not match " 2795 "on-disk dyld_shared_cache file, some " 2796 "symbol names will be missing."); 2797 } 2798 } 2799 2800 offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2801 2802 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2803 2804 // If the mappingOffset points to a location inside the header, we've 2805 // opened an old dyld shared cache, and should not proceed further. 2806 if (uuid_match && 2807 mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) { 2808 2809 DataBufferSP dsc_mapping_info_data_sp = MapFileData( 2810 dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info), 2811 mappingOffset); 2812 2813 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, 2814 byte_order, addr_byte_size); 2815 offset = 0; 2816 2817 // The File addresses (from the in-memory Mach-O load commands) for 2818 // the shared libraries in the shared library cache need to be 2819 // adjusted by an offset to match up with the dylibOffset identifying 2820 // field in the dyld_cache_local_symbol_entry's. This offset is 2821 // recorded in mapping_offset_value. 2822 const uint64_t mapping_offset_value = 2823 dsc_mapping_info_data.GetU64(&offset); 2824 2825 offset = 2826 offsetof(struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2827 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2828 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2829 2830 if (localSymbolsOffset && localSymbolsSize) { 2831 // Map the local symbols 2832 DataBufferSP dsc_local_symbols_data_sp = 2833 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset); 2834 2835 if (dsc_local_symbols_data_sp) { 2836 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, 2837 byte_order, addr_byte_size); 2838 2839 offset = 0; 2840 2841 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap; 2842 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName; 2843 UndefinedNameToDescMap undefined_name_to_desc; 2844 SymbolIndexToName reexport_shlib_needs_fixup; 2845 2846 // Read the local_symbols_infos struct in one shot 2847 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2848 dsc_local_symbols_data.GetU32(&offset, 2849 &local_symbols_info.nlistOffset, 6); 2850 2851 SectionSP text_section_sp( 2852 section_list->FindSectionByName(GetSegmentNameTEXT())); 2853 2854 uint32_t header_file_offset = 2855 (text_section_sp->GetFileAddress() - mapping_offset_value); 2856 2857 offset = local_symbols_info.entriesOffset; 2858 for (uint32_t entry_index = 0; 2859 entry_index < local_symbols_info.entriesCount; entry_index++) { 2860 struct lldb_copy_dyld_cache_local_symbols_entry 2861 local_symbols_entry; 2862 local_symbols_entry.dylibOffset = 2863 dsc_local_symbols_data.GetU32(&offset); 2864 local_symbols_entry.nlistStartIndex = 2865 dsc_local_symbols_data.GetU32(&offset); 2866 local_symbols_entry.nlistCount = 2867 dsc_local_symbols_data.GetU32(&offset); 2868 2869 if (header_file_offset == local_symbols_entry.dylibOffset) { 2870 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2871 2872 // The normal nlist code cannot correctly size the Symbols 2873 // array, we need to allocate it here. 2874 sym = symtab->Resize( 2875 symtab_load_command.nsyms + m_dysymtab.nindirectsyms + 2876 unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2877 num_syms = symtab->GetNumSymbols(); 2878 2879 nlist_data_offset = 2880 local_symbols_info.nlistOffset + 2881 (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2882 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2883 2884 for (uint32_t nlist_index = 0; 2885 nlist_index < local_symbols_entry.nlistCount; 2886 nlist_index++) { 2887 ///////////////////////////// 2888 { 2889 llvm::Optional<struct nlist_64> nlist_maybe = 2890 ParseNList(dsc_local_symbols_data, nlist_data_offset, 2891 nlist_byte_size); 2892 if (!nlist_maybe) 2893 break; 2894 struct nlist_64 nlist = *nlist_maybe; 2895 2896 SymbolType type = eSymbolTypeInvalid; 2897 const char *symbol_name = dsc_local_symbols_data.PeekCStr( 2898 string_table_offset + nlist.n_strx); 2899 2900 if (symbol_name == NULL) { 2901 // No symbol should be NULL, even the symbols with no 2902 // string values should have an offset zero which 2903 // points to an empty C-string 2904 Host::SystemLog( 2905 Host::eSystemLogError, 2906 "error: DSC unmapped local symbol[%u] has invalid " 2907 "string table offset 0x%x in %s, ignoring symbol\n", 2908 entry_index, nlist.n_strx, 2909 module_sp->GetFileSpec().GetPath().c_str()); 2910 continue; 2911 } 2912 if (symbol_name[0] == '\0') 2913 symbol_name = NULL; 2914 2915 const char *symbol_name_non_abi_mangled = NULL; 2916 2917 SectionSP symbol_section; 2918 uint32_t symbol_byte_size = 0; 2919 bool add_nlist = true; 2920 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2921 bool demangled_is_synthesized = false; 2922 bool is_gsym = false; 2923 bool set_value = true; 2924 2925 assert(sym_idx < num_syms); 2926 2927 sym[sym_idx].SetDebug(is_debug); 2928 2929 if (is_debug) { 2930 switch (nlist.n_type) { 2931 case N_GSYM: 2932 // global symbol: name,,NO_SECT,type,0 2933 // Sometimes the N_GSYM value contains the address. 2934 2935 // FIXME: In the .o files, we have a GSYM and a debug 2936 // symbol for all the ObjC data. They 2937 // have the same address, but we want to ensure that 2938 // we always find only the real symbol, 'cause we 2939 // don't currently correctly attribute the 2940 // GSYM one to the ObjCClass/Ivar/MetaClass 2941 // symbol type. This is a temporary hack to make 2942 // sure the ObjectiveC symbols get treated correctly. 2943 // To do this right, we should coalesce all the GSYM 2944 // & global symbols that have the same address. 2945 2946 is_gsym = true; 2947 sym[sym_idx].SetExternal(true); 2948 2949 if (symbol_name && symbol_name[0] == '_' && 2950 symbol_name[1] == 'O') { 2951 llvm::StringRef symbol_name_ref(symbol_name); 2952 if (symbol_name_ref.startswith( 2953 g_objc_v2_prefix_class)) { 2954 symbol_name_non_abi_mangled = symbol_name + 1; 2955 symbol_name = 2956 symbol_name + g_objc_v2_prefix_class.size(); 2957 type = eSymbolTypeObjCClass; 2958 demangled_is_synthesized = true; 2959 2960 } else if (symbol_name_ref.startswith( 2961 g_objc_v2_prefix_metaclass)) { 2962 symbol_name_non_abi_mangled = symbol_name + 1; 2963 symbol_name = 2964 symbol_name + g_objc_v2_prefix_metaclass.size(); 2965 type = eSymbolTypeObjCMetaClass; 2966 demangled_is_synthesized = true; 2967 } else if (symbol_name_ref.startswith( 2968 g_objc_v2_prefix_ivar)) { 2969 symbol_name_non_abi_mangled = symbol_name + 1; 2970 symbol_name = 2971 symbol_name + g_objc_v2_prefix_ivar.size(); 2972 type = eSymbolTypeObjCIVar; 2973 demangled_is_synthesized = true; 2974 } 2975 } else { 2976 if (nlist.n_value != 0) 2977 symbol_section = section_info.GetSection( 2978 nlist.n_sect, nlist.n_value); 2979 type = eSymbolTypeData; 2980 } 2981 break; 2982 2983 case N_FNAME: 2984 // procedure name (f77 kludge): name,,NO_SECT,0,0 2985 type = eSymbolTypeCompiler; 2986 break; 2987 2988 case N_FUN: 2989 // procedure: name,,n_sect,linenumber,address 2990 if (symbol_name) { 2991 type = eSymbolTypeCode; 2992 symbol_section = section_info.GetSection( 2993 nlist.n_sect, nlist.n_value); 2994 2995 N_FUN_addr_to_sym_idx.insert( 2996 std::make_pair(nlist.n_value, sym_idx)); 2997 // We use the current number of symbols in the 2998 // symbol table in lieu of using nlist_idx in case 2999 // we ever start trimming entries out 3000 N_FUN_indexes.push_back(sym_idx); 3001 } else { 3002 type = eSymbolTypeCompiler; 3003 3004 if (!N_FUN_indexes.empty()) { 3005 // Copy the size of the function into the 3006 // original 3007 // STAB entry so we don't have 3008 // to hunt for it later 3009 symtab->SymbolAtIndex(N_FUN_indexes.back()) 3010 ->SetByteSize(nlist.n_value); 3011 N_FUN_indexes.pop_back(); 3012 // We don't really need the end function STAB as 3013 // it contains the size which we already placed 3014 // with the original symbol, so don't add it if 3015 // we want a minimal symbol table 3016 add_nlist = false; 3017 } 3018 } 3019 break; 3020 3021 case N_STSYM: 3022 // static symbol: name,,n_sect,type,address 3023 N_STSYM_addr_to_sym_idx.insert( 3024 std::make_pair(nlist.n_value, sym_idx)); 3025 symbol_section = section_info.GetSection(nlist.n_sect, 3026 nlist.n_value); 3027 if (symbol_name && symbol_name[0]) { 3028 type = ObjectFile::GetSymbolTypeFromName( 3029 symbol_name + 1, eSymbolTypeData); 3030 } 3031 break; 3032 3033 case N_LCSYM: 3034 // .lcomm symbol: name,,n_sect,type,address 3035 symbol_section = section_info.GetSection(nlist.n_sect, 3036 nlist.n_value); 3037 type = eSymbolTypeCommonBlock; 3038 break; 3039 3040 case N_BNSYM: 3041 // We use the current number of symbols in the symbol 3042 // table in lieu of using nlist_idx in case we ever 3043 // start trimming entries out Skip these if we want 3044 // minimal symbol tables 3045 add_nlist = false; 3046 break; 3047 3048 case N_ENSYM: 3049 // Set the size of the N_BNSYM to the terminating 3050 // index of this N_ENSYM so that we can always skip 3051 // the entire symbol if we need to navigate more 3052 // quickly at the source level when parsing STABS 3053 // Skip these if we want minimal symbol tables 3054 add_nlist = false; 3055 break; 3056 3057 case N_OPT: 3058 // emitted with gcc2_compiled and in gcc source 3059 type = eSymbolTypeCompiler; 3060 break; 3061 3062 case N_RSYM: 3063 // register sym: name,,NO_SECT,type,register 3064 type = eSymbolTypeVariable; 3065 break; 3066 3067 case N_SLINE: 3068 // src line: 0,,n_sect,linenumber,address 3069 symbol_section = section_info.GetSection(nlist.n_sect, 3070 nlist.n_value); 3071 type = eSymbolTypeLineEntry; 3072 break; 3073 3074 case N_SSYM: 3075 // structure elt: name,,NO_SECT,type,struct_offset 3076 type = eSymbolTypeVariableType; 3077 break; 3078 3079 case N_SO: 3080 // source file name 3081 type = eSymbolTypeSourceFile; 3082 if (symbol_name == NULL) { 3083 add_nlist = false; 3084 if (N_SO_index != UINT32_MAX) { 3085 // Set the size of the N_SO to the terminating 3086 // index of this N_SO so that we can always skip 3087 // the entire N_SO if we need to navigate more 3088 // quickly at the source level when parsing STABS 3089 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3090 symbol_ptr->SetByteSize(sym_idx); 3091 symbol_ptr->SetSizeIsSibling(true); 3092 } 3093 N_NSYM_indexes.clear(); 3094 N_INCL_indexes.clear(); 3095 N_BRAC_indexes.clear(); 3096 N_COMM_indexes.clear(); 3097 N_FUN_indexes.clear(); 3098 N_SO_index = UINT32_MAX; 3099 } else { 3100 // We use the current number of symbols in the 3101 // symbol table in lieu of using nlist_idx in case 3102 // we ever start trimming entries out 3103 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3104 if (N_SO_has_full_path) { 3105 if ((N_SO_index == sym_idx - 1) && 3106 ((sym_idx - 1) < num_syms)) { 3107 // We have two consecutive N_SO entries where 3108 // the first contains a directory and the 3109 // second contains a full path. 3110 sym[sym_idx - 1].GetMangled().SetValue( 3111 ConstString(symbol_name), false); 3112 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3113 add_nlist = false; 3114 } else { 3115 // This is the first entry in a N_SO that 3116 // contains a directory or 3117 // a full path to the source file 3118 N_SO_index = sym_idx; 3119 } 3120 } else if ((N_SO_index == sym_idx - 1) && 3121 ((sym_idx - 1) < num_syms)) { 3122 // This is usually the second N_SO entry that 3123 // contains just the filename, so here we combine 3124 // it with the first one if we are minimizing the 3125 // symbol table 3126 const char *so_path = sym[sym_idx - 1] 3127 .GetMangled() 3128 .GetDemangledName() 3129 .AsCString(); 3130 if (so_path && so_path[0]) { 3131 std::string full_so_path(so_path); 3132 const size_t double_slash_pos = 3133 full_so_path.find("//"); 3134 if (double_slash_pos != std::string::npos) { 3135 // The linker has been generating bad N_SO 3136 // entries with doubled up paths 3137 // in the format "%s%s" where the first 3138 // string in the DW_AT_comp_dir, and the 3139 // second is the directory for the source 3140 // file so you end up with a path that looks 3141 // like "/tmp/src//tmp/src/" 3142 FileSpec so_dir(so_path); 3143 if (!FileSystem::Instance().Exists(so_dir)) { 3144 so_dir.SetFile( 3145 &full_so_path[double_slash_pos + 1], 3146 FileSpec::Style::native); 3147 if (FileSystem::Instance().Exists(so_dir)) { 3148 // Trim off the incorrect path 3149 full_so_path.erase(0, double_slash_pos + 1); 3150 } 3151 } 3152 } 3153 if (*full_so_path.rbegin() != '/') 3154 full_so_path += '/'; 3155 full_so_path += symbol_name; 3156 sym[sym_idx - 1].GetMangled().SetValue( 3157 ConstString(full_so_path.c_str()), false); 3158 add_nlist = false; 3159 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3160 } 3161 } else { 3162 // This could be a relative path to a N_SO 3163 N_SO_index = sym_idx; 3164 } 3165 } 3166 break; 3167 3168 case N_OSO: 3169 // object file name: name,,0,0,st_mtime 3170 type = eSymbolTypeObjectFile; 3171 break; 3172 3173 case N_LSYM: 3174 // local sym: name,,NO_SECT,type,offset 3175 type = eSymbolTypeLocal; 3176 break; 3177 3178 // INCL scopes 3179 case N_BINCL: 3180 // include file beginning: name,,NO_SECT,0,sum We use 3181 // the current number of symbols in the symbol table 3182 // in lieu of using nlist_idx in case we ever start 3183 // trimming entries out 3184 N_INCL_indexes.push_back(sym_idx); 3185 type = eSymbolTypeScopeBegin; 3186 break; 3187 3188 case N_EINCL: 3189 // include file end: name,,NO_SECT,0,0 3190 // Set the size of the N_BINCL to the terminating 3191 // index of this N_EINCL so that we can always skip 3192 // the entire symbol if we need to navigate more 3193 // quickly at the source level when parsing STABS 3194 if (!N_INCL_indexes.empty()) { 3195 symbol_ptr = 3196 symtab->SymbolAtIndex(N_INCL_indexes.back()); 3197 symbol_ptr->SetByteSize(sym_idx + 1); 3198 symbol_ptr->SetSizeIsSibling(true); 3199 N_INCL_indexes.pop_back(); 3200 } 3201 type = eSymbolTypeScopeEnd; 3202 break; 3203 3204 case N_SOL: 3205 // #included file name: name,,n_sect,0,address 3206 type = eSymbolTypeHeaderFile; 3207 3208 // We currently don't use the header files on darwin 3209 add_nlist = false; 3210 break; 3211 3212 case N_PARAMS: 3213 // compiler parameters: name,,NO_SECT,0,0 3214 type = eSymbolTypeCompiler; 3215 break; 3216 3217 case N_VERSION: 3218 // compiler version: name,,NO_SECT,0,0 3219 type = eSymbolTypeCompiler; 3220 break; 3221 3222 case N_OLEVEL: 3223 // compiler -O level: name,,NO_SECT,0,0 3224 type = eSymbolTypeCompiler; 3225 break; 3226 3227 case N_PSYM: 3228 // parameter: name,,NO_SECT,type,offset 3229 type = eSymbolTypeVariable; 3230 break; 3231 3232 case N_ENTRY: 3233 // alternate entry: name,,n_sect,linenumber,address 3234 symbol_section = section_info.GetSection(nlist.n_sect, 3235 nlist.n_value); 3236 type = eSymbolTypeLineEntry; 3237 break; 3238 3239 // Left and Right Braces 3240 case N_LBRAC: 3241 // left bracket: 0,,NO_SECT,nesting level,address We 3242 // use the current number of symbols in the symbol 3243 // table in lieu of using nlist_idx in case we ever 3244 // start trimming entries out 3245 symbol_section = section_info.GetSection(nlist.n_sect, 3246 nlist.n_value); 3247 N_BRAC_indexes.push_back(sym_idx); 3248 type = eSymbolTypeScopeBegin; 3249 break; 3250 3251 case N_RBRAC: 3252 // right bracket: 0,,NO_SECT,nesting level,address 3253 // Set the size of the N_LBRAC to the terminating 3254 // index of this N_RBRAC so that we can always skip 3255 // the entire symbol if we need to navigate more 3256 // quickly at the source level when parsing STABS 3257 symbol_section = section_info.GetSection(nlist.n_sect, 3258 nlist.n_value); 3259 if (!N_BRAC_indexes.empty()) { 3260 symbol_ptr = 3261 symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3262 symbol_ptr->SetByteSize(sym_idx + 1); 3263 symbol_ptr->SetSizeIsSibling(true); 3264 N_BRAC_indexes.pop_back(); 3265 } 3266 type = eSymbolTypeScopeEnd; 3267 break; 3268 3269 case N_EXCL: 3270 // deleted include file: name,,NO_SECT,0,sum 3271 type = eSymbolTypeHeaderFile; 3272 break; 3273 3274 // COMM scopes 3275 case N_BCOMM: 3276 // begin common: name,,NO_SECT,0,0 3277 // We use the current number of symbols in the symbol 3278 // table in lieu of using nlist_idx in case we ever 3279 // start trimming entries out 3280 type = eSymbolTypeScopeBegin; 3281 N_COMM_indexes.push_back(sym_idx); 3282 break; 3283 3284 case N_ECOML: 3285 // end common (local name): 0,,n_sect,0,address 3286 symbol_section = section_info.GetSection(nlist.n_sect, 3287 nlist.n_value); 3288 // Fall through 3289 3290 case N_ECOMM: 3291 // end common: name,,n_sect,0,0 3292 // Set the size of the N_BCOMM to the terminating 3293 // index of this N_ECOMM/N_ECOML so that we can 3294 // always skip the entire symbol if we need to 3295 // navigate more quickly at the source level when 3296 // parsing STABS 3297 if (!N_COMM_indexes.empty()) { 3298 symbol_ptr = 3299 symtab->SymbolAtIndex(N_COMM_indexes.back()); 3300 symbol_ptr->SetByteSize(sym_idx + 1); 3301 symbol_ptr->SetSizeIsSibling(true); 3302 N_COMM_indexes.pop_back(); 3303 } 3304 type = eSymbolTypeScopeEnd; 3305 break; 3306 3307 case N_LENG: 3308 // second stab entry with length information 3309 type = eSymbolTypeAdditional; 3310 break; 3311 3312 default: 3313 break; 3314 } 3315 } else { 3316 // uint8_t n_pext = N_PEXT & nlist.n_type; 3317 uint8_t n_type = N_TYPE & nlist.n_type; 3318 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3319 3320 switch (n_type) { 3321 case N_INDR: { 3322 const char *reexport_name_cstr = 3323 strtab_data.PeekCStr(nlist.n_value); 3324 if (reexport_name_cstr && reexport_name_cstr[0]) { 3325 type = eSymbolTypeReExported; 3326 ConstString reexport_name( 3327 reexport_name_cstr + 3328 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3329 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3330 set_value = false; 3331 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3332 indirect_symbol_names.insert(ConstString( 3333 symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3334 } else 3335 type = eSymbolTypeUndefined; 3336 } break; 3337 3338 case N_UNDF: 3339 if (symbol_name && symbol_name[0]) { 3340 ConstString undefined_name( 3341 symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3342 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3343 } 3344 // Fall through 3345 case N_PBUD: 3346 type = eSymbolTypeUndefined; 3347 break; 3348 3349 case N_ABS: 3350 type = eSymbolTypeAbsolute; 3351 break; 3352 3353 case N_SECT: { 3354 symbol_section = section_info.GetSection(nlist.n_sect, 3355 nlist.n_value); 3356 3357 if (symbol_section == NULL) { 3358 // TODO: warn about this? 3359 add_nlist = false; 3360 break; 3361 } 3362 3363 if (TEXT_eh_frame_sectID == nlist.n_sect) { 3364 type = eSymbolTypeException; 3365 } else { 3366 uint32_t section_type = 3367 symbol_section->Get() & SECTION_TYPE; 3368 3369 switch (section_type) { 3370 case S_CSTRING_LITERALS: 3371 type = eSymbolTypeData; 3372 break; // section with only literal C strings 3373 case S_4BYTE_LITERALS: 3374 type = eSymbolTypeData; 3375 break; // section with only 4 byte literals 3376 case S_8BYTE_LITERALS: 3377 type = eSymbolTypeData; 3378 break; // section with only 8 byte literals 3379 case S_LITERAL_POINTERS: 3380 type = eSymbolTypeTrampoline; 3381 break; // section with only pointers to literals 3382 case S_NON_LAZY_SYMBOL_POINTERS: 3383 type = eSymbolTypeTrampoline; 3384 break; // section with only non-lazy symbol 3385 // pointers 3386 case S_LAZY_SYMBOL_POINTERS: 3387 type = eSymbolTypeTrampoline; 3388 break; // section with only lazy symbol pointers 3389 case S_SYMBOL_STUBS: 3390 type = eSymbolTypeTrampoline; 3391 break; // section with only symbol stubs, byte 3392 // size of stub in the reserved2 field 3393 case S_MOD_INIT_FUNC_POINTERS: 3394 type = eSymbolTypeCode; 3395 break; // section with only function pointers for 3396 // initialization 3397 case S_MOD_TERM_FUNC_POINTERS: 3398 type = eSymbolTypeCode; 3399 break; // section with only function pointers for 3400 // termination 3401 case S_INTERPOSING: 3402 type = eSymbolTypeTrampoline; 3403 break; // section with only pairs of function 3404 // pointers for interposing 3405 case S_16BYTE_LITERALS: 3406 type = eSymbolTypeData; 3407 break; // section with only 16 byte literals 3408 case S_DTRACE_DOF: 3409 type = eSymbolTypeInstrumentation; 3410 break; 3411 case S_LAZY_DYLIB_SYMBOL_POINTERS: 3412 type = eSymbolTypeTrampoline; 3413 break; 3414 default: 3415 switch (symbol_section->GetType()) { 3416 case lldb::eSectionTypeCode: 3417 type = eSymbolTypeCode; 3418 break; 3419 case eSectionTypeData: 3420 case eSectionTypeDataCString: // Inlined C string 3421 // data 3422 case eSectionTypeDataCStringPointers: // Pointers 3423 // to C 3424 // string 3425 // data 3426 case eSectionTypeDataSymbolAddress: // Address of 3427 // a symbol in 3428 // the symbol 3429 // table 3430 case eSectionTypeData4: 3431 case eSectionTypeData8: 3432 case eSectionTypeData16: 3433 type = eSymbolTypeData; 3434 break; 3435 default: 3436 break; 3437 } 3438 break; 3439 } 3440 3441 if (type == eSymbolTypeInvalid) { 3442 const char *symbol_sect_name = 3443 symbol_section->GetName().AsCString(); 3444 if (symbol_section->IsDescendant( 3445 text_section_sp.get())) { 3446 if (symbol_section->IsClear( 3447 S_ATTR_PURE_INSTRUCTIONS | 3448 S_ATTR_SELF_MODIFYING_CODE | 3449 S_ATTR_SOME_INSTRUCTIONS)) 3450 type = eSymbolTypeData; 3451 else 3452 type = eSymbolTypeCode; 3453 } else if (symbol_section->IsDescendant( 3454 data_section_sp.get()) || 3455 symbol_section->IsDescendant( 3456 data_dirty_section_sp.get()) || 3457 symbol_section->IsDescendant( 3458 data_const_section_sp.get())) { 3459 if (symbol_sect_name && 3460 ::strstr(symbol_sect_name, "__objc") == 3461 symbol_sect_name) { 3462 type = eSymbolTypeRuntime; 3463 3464 if (symbol_name) { 3465 llvm::StringRef symbol_name_ref(symbol_name); 3466 if (symbol_name_ref.startswith("_OBJC_")) { 3467 llvm::StringRef 3468 g_objc_v2_prefix_class( 3469 "_OBJC_CLASS_$_"); 3470 llvm::StringRef 3471 g_objc_v2_prefix_metaclass( 3472 "_OBJC_METACLASS_$_"); 3473 llvm::StringRef 3474 g_objc_v2_prefix_ivar("_OBJC_IVAR_$_"); 3475 if (symbol_name_ref.startswith( 3476 g_objc_v2_prefix_class)) { 3477 symbol_name_non_abi_mangled = 3478 symbol_name + 1; 3479 symbol_name = 3480 symbol_name + 3481 g_objc_v2_prefix_class.size(); 3482 type = eSymbolTypeObjCClass; 3483 demangled_is_synthesized = true; 3484 } else if ( 3485 symbol_name_ref.startswith( 3486 g_objc_v2_prefix_metaclass)) { 3487 symbol_name_non_abi_mangled = 3488 symbol_name + 1; 3489 symbol_name = 3490 symbol_name + 3491 g_objc_v2_prefix_metaclass.size(); 3492 type = eSymbolTypeObjCMetaClass; 3493 demangled_is_synthesized = true; 3494 } else if (symbol_name_ref.startswith( 3495 g_objc_v2_prefix_ivar)) { 3496 symbol_name_non_abi_mangled = 3497 symbol_name + 1; 3498 symbol_name = 3499 symbol_name + 3500 g_objc_v2_prefix_ivar.size(); 3501 type = eSymbolTypeObjCIVar; 3502 demangled_is_synthesized = true; 3503 } 3504 } 3505 } 3506 } else if (symbol_sect_name && 3507 ::strstr(symbol_sect_name, 3508 "__gcc_except_tab") == 3509 symbol_sect_name) { 3510 type = eSymbolTypeException; 3511 } else { 3512 type = eSymbolTypeData; 3513 } 3514 } else if (symbol_sect_name && 3515 ::strstr(symbol_sect_name, "__IMPORT") == 3516 symbol_sect_name) { 3517 type = eSymbolTypeTrampoline; 3518 } else if (symbol_section->IsDescendant( 3519 objc_section_sp.get())) { 3520 type = eSymbolTypeRuntime; 3521 if (symbol_name && symbol_name[0] == '.') { 3522 llvm::StringRef symbol_name_ref(symbol_name); 3523 llvm::StringRef 3524 g_objc_v1_prefix_class(".objc_class_name_"); 3525 if (symbol_name_ref.startswith( 3526 g_objc_v1_prefix_class)) { 3527 symbol_name_non_abi_mangled = symbol_name; 3528 symbol_name = symbol_name + 3529 g_objc_v1_prefix_class.size(); 3530 type = eSymbolTypeObjCClass; 3531 demangled_is_synthesized = true; 3532 } 3533 } 3534 } 3535 } 3536 } 3537 } break; 3538 } 3539 } 3540 3541 if (add_nlist) { 3542 uint64_t symbol_value = nlist.n_value; 3543 if (symbol_name_non_abi_mangled) { 3544 sym[sym_idx].GetMangled().SetMangledName( 3545 ConstString(symbol_name_non_abi_mangled)); 3546 sym[sym_idx].GetMangled().SetDemangledName( 3547 ConstString(symbol_name)); 3548 } else { 3549 bool symbol_name_is_mangled = false; 3550 3551 if (symbol_name && symbol_name[0] == '_') { 3552 symbol_name_is_mangled = symbol_name[1] == '_'; 3553 symbol_name++; // Skip the leading underscore 3554 } 3555 3556 if (symbol_name) { 3557 ConstString const_symbol_name(symbol_name); 3558 sym[sym_idx].GetMangled().SetValue( 3559 const_symbol_name, symbol_name_is_mangled); 3560 if (is_gsym && is_debug) { 3561 const char *gsym_name = 3562 sym[sym_idx] 3563 .GetMangled() 3564 .GetName(Mangled::ePreferMangled) 3565 .GetCString(); 3566 if (gsym_name) 3567 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3568 } 3569 } 3570 } 3571 if (symbol_section) { 3572 const addr_t section_file_addr = 3573 symbol_section->GetFileAddress(); 3574 if (symbol_byte_size == 0 && 3575 function_starts_count > 0) { 3576 addr_t symbol_lookup_file_addr = nlist.n_value; 3577 // Do an exact address match for non-ARM addresses, 3578 // else get the closest since the symbol might be a 3579 // thumb symbol which has an address with bit zero 3580 // set 3581 FunctionStarts::Entry *func_start_entry = 3582 function_starts.FindEntry(symbol_lookup_file_addr, 3583 !is_arm); 3584 if (is_arm && func_start_entry) { 3585 // Verify that the function start address is the 3586 // symbol address (ARM) or the symbol address + 1 3587 // (thumb) 3588 if (func_start_entry->addr != 3589 symbol_lookup_file_addr && 3590 func_start_entry->addr != 3591 (symbol_lookup_file_addr + 1)) { 3592 // Not the right entry, NULL it out... 3593 func_start_entry = NULL; 3594 } 3595 } 3596 if (func_start_entry) { 3597 func_start_entry->data = true; 3598 3599 addr_t symbol_file_addr = func_start_entry->addr; 3600 uint32_t symbol_flags = 0; 3601 if (is_arm) { 3602 if (symbol_file_addr & 1) 3603 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3604 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3605 } 3606 3607 const FunctionStarts::Entry *next_func_start_entry = 3608 function_starts.FindNextEntry(func_start_entry); 3609 const addr_t section_end_file_addr = 3610 section_file_addr + 3611 symbol_section->GetByteSize(); 3612 if (next_func_start_entry) { 3613 addr_t next_symbol_file_addr = 3614 next_func_start_entry->addr; 3615 // Be sure the clear the Thumb address bit when 3616 // we calculate the size from the current and 3617 // next address 3618 if (is_arm) 3619 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 3620 symbol_byte_size = std::min<lldb::addr_t>( 3621 next_symbol_file_addr - symbol_file_addr, 3622 section_end_file_addr - symbol_file_addr); 3623 } else { 3624 symbol_byte_size = 3625 section_end_file_addr - symbol_file_addr; 3626 } 3627 } 3628 } 3629 symbol_value -= section_file_addr; 3630 } 3631 3632 if (is_debug == false) { 3633 if (type == eSymbolTypeCode) { 3634 // See if we can find a N_FUN entry for any code 3635 // symbols. If we do find a match, and the name 3636 // matches, then we can merge the two into just the 3637 // function symbol to avoid duplicate entries in 3638 // the symbol table 3639 auto range = 3640 N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3641 if (range.first != range.second) { 3642 bool found_it = false; 3643 for (auto pos = range.first; pos != range.second; 3644 ++pos) { 3645 if (sym[sym_idx].GetMangled().GetName( 3646 Mangled::ePreferMangled) == 3647 sym[pos->second].GetMangled().GetName( 3648 Mangled::ePreferMangled)) { 3649 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3650 // We just need the flags from the linker 3651 // symbol, so put these flags 3652 // into the N_FUN flags to avoid duplicate 3653 // symbols in the symbol table 3654 sym[pos->second].SetExternal( 3655 sym[sym_idx].IsExternal()); 3656 sym[pos->second].SetFlags(nlist.n_type << 16 | 3657 nlist.n_desc); 3658 if (resolver_addresses.find(nlist.n_value) != 3659 resolver_addresses.end()) 3660 sym[pos->second].SetType(eSymbolTypeResolver); 3661 sym[sym_idx].Clear(); 3662 found_it = true; 3663 break; 3664 } 3665 } 3666 if (found_it) 3667 continue; 3668 } else { 3669 if (resolver_addresses.find(nlist.n_value) != 3670 resolver_addresses.end()) 3671 type = eSymbolTypeResolver; 3672 } 3673 } else if (type == eSymbolTypeData || 3674 type == eSymbolTypeObjCClass || 3675 type == eSymbolTypeObjCMetaClass || 3676 type == eSymbolTypeObjCIVar) { 3677 // See if we can find a N_STSYM entry for any data 3678 // symbols. If we do find a match, and the name 3679 // matches, then we can merge the two into just the 3680 // Static symbol to avoid duplicate entries in the 3681 // symbol table 3682 auto range = N_STSYM_addr_to_sym_idx.equal_range( 3683 nlist.n_value); 3684 if (range.first != range.second) { 3685 bool found_it = false; 3686 for (auto pos = range.first; pos != range.second; 3687 ++pos) { 3688 if (sym[sym_idx].GetMangled().GetName( 3689 Mangled::ePreferMangled) == 3690 sym[pos->second].GetMangled().GetName( 3691 Mangled::ePreferMangled)) { 3692 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3693 // We just need the flags from the linker 3694 // symbol, so put these flags 3695 // into the N_STSYM flags to avoid duplicate 3696 // symbols in the symbol table 3697 sym[pos->second].SetExternal( 3698 sym[sym_idx].IsExternal()); 3699 sym[pos->second].SetFlags(nlist.n_type << 16 | 3700 nlist.n_desc); 3701 sym[sym_idx].Clear(); 3702 found_it = true; 3703 break; 3704 } 3705 } 3706 if (found_it) 3707 continue; 3708 } else { 3709 const char *gsym_name = 3710 sym[sym_idx] 3711 .GetMangled() 3712 .GetName(Mangled::ePreferMangled) 3713 .GetCString(); 3714 if (gsym_name) { 3715 // Combine N_GSYM stab entries with the non 3716 // stab symbol 3717 ConstNameToSymbolIndexMap::const_iterator pos = 3718 N_GSYM_name_to_sym_idx.find(gsym_name); 3719 if (pos != N_GSYM_name_to_sym_idx.end()) { 3720 const uint32_t GSYM_sym_idx = pos->second; 3721 m_nlist_idx_to_sym_idx[nlist_idx] = 3722 GSYM_sym_idx; 3723 // Copy the address, because often the N_GSYM 3724 // address has an invalid address of zero 3725 // when the global is a common symbol 3726 sym[GSYM_sym_idx].GetAddressRef().SetSection( 3727 symbol_section); 3728 sym[GSYM_sym_idx].GetAddressRef().SetOffset( 3729 symbol_value); 3730 add_symbol_addr(sym[GSYM_sym_idx] 3731 .GetAddress() 3732 .GetFileAddress()); 3733 // We just need the flags from the linker 3734 // symbol, so put these flags 3735 // into the N_GSYM flags to avoid duplicate 3736 // symbols in the symbol table 3737 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | 3738 nlist.n_desc); 3739 sym[sym_idx].Clear(); 3740 continue; 3741 } 3742 } 3743 } 3744 } 3745 } 3746 3747 sym[sym_idx].SetID(nlist_idx); 3748 sym[sym_idx].SetType(type); 3749 if (set_value) { 3750 sym[sym_idx].GetAddressRef().SetSection(symbol_section); 3751 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 3752 add_symbol_addr( 3753 sym[sym_idx].GetAddress().GetFileAddress()); 3754 } 3755 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 3756 3757 if (symbol_byte_size > 0) 3758 sym[sym_idx].SetByteSize(symbol_byte_size); 3759 3760 if (demangled_is_synthesized) 3761 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3762 ++sym_idx; 3763 } else { 3764 sym[sym_idx].Clear(); 3765 } 3766 } 3767 ///////////////////////////// 3768 } 3769 break; // No more entries to consider 3770 } 3771 } 3772 3773 for (const auto &pos : reexport_shlib_needs_fixup) { 3774 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3775 if (undef_pos != undefined_name_to_desc.end()) { 3776 const uint8_t dylib_ordinal = 3777 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3778 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3779 sym[pos.first].SetReExportedSymbolSharedLibrary( 3780 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 3781 } 3782 } 3783 } 3784 } 3785 } 3786 } 3787 } 3788 3789 // Must reset this in case it was mutated above! 3790 nlist_data_offset = 0; 3791 #endif 3792 3793 if (nlist_data.GetByteSize() > 0) { 3794 3795 // If the sym array was not created while parsing the DSC unmapped 3796 // symbols, create it now. 3797 if (sym == nullptr) { 3798 sym = 3799 symtab->Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3800 num_syms = symtab->GetNumSymbols(); 3801 } 3802 3803 if (unmapped_local_symbols_found) { 3804 assert(m_dysymtab.ilocalsym == 0); 3805 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3806 nlist_idx = m_dysymtab.nlocalsym; 3807 } else { 3808 nlist_idx = 0; 3809 } 3810 3811 typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap; 3812 typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName; 3813 UndefinedNameToDescMap undefined_name_to_desc; 3814 SymbolIndexToName reexport_shlib_needs_fixup; 3815 3816 // Symtab parsing is a huge mess. Everything is entangled and the code 3817 // requires access to a ridiculous amount of variables. LLDB depends 3818 // heavily on the proper merging of symbols and to get that right we need 3819 // to make sure we have parsed all the debug symbols first. Therefore we 3820 // invoke the lambda twice, once to parse only the debug symbols and then 3821 // once more to parse the remaining symbols. 3822 auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx, 3823 bool debug_only) { 3824 const bool is_debug = ((nlist.n_type & N_STAB) != 0); 3825 if (is_debug != debug_only) 3826 return true; 3827 3828 const char *symbol_name_non_abi_mangled = nullptr; 3829 const char *symbol_name = nullptr; 3830 3831 if (have_strtab_data) { 3832 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3833 3834 if (symbol_name == nullptr) { 3835 // No symbol should be NULL, even the symbols with no string values 3836 // should have an offset zero which points to an empty C-string 3837 Host::SystemLog(Host::eSystemLogError, 3838 "error: symbol[%u] has invalid string table offset " 3839 "0x%x in %s, ignoring symbol\n", 3840 nlist_idx, nlist.n_strx, 3841 module_sp->GetFileSpec().GetPath().c_str()); 3842 return true; 3843 } 3844 if (symbol_name[0] == '\0') 3845 symbol_name = nullptr; 3846 } else { 3847 const addr_t str_addr = strtab_addr + nlist.n_strx; 3848 Status str_error; 3849 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, 3850 str_error)) 3851 symbol_name = memory_symbol_name.c_str(); 3852 } 3853 3854 SymbolType type = eSymbolTypeInvalid; 3855 SectionSP symbol_section; 3856 lldb::addr_t symbol_byte_size = 0; 3857 bool add_nlist = true; 3858 bool is_gsym = false; 3859 bool demangled_is_synthesized = false; 3860 bool set_value = true; 3861 3862 assert(sym_idx < num_syms); 3863 sym[sym_idx].SetDebug(is_debug); 3864 3865 if (is_debug) { 3866 switch (nlist.n_type) { 3867 case N_GSYM: 3868 // global symbol: name,,NO_SECT,type,0 3869 // Sometimes the N_GSYM value contains the address. 3870 3871 // FIXME: In the .o files, we have a GSYM and a debug symbol for all 3872 // the ObjC data. They 3873 // have the same address, but we want to ensure that we always find 3874 // only the real symbol, 'cause we don't currently correctly 3875 // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol 3876 // type. This is a temporary hack to make sure the ObjectiveC 3877 // symbols get treated correctly. To do this right, we should 3878 // coalesce all the GSYM & global symbols that have the same 3879 // address. 3880 is_gsym = true; 3881 sym[sym_idx].SetExternal(true); 3882 3883 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') { 3884 llvm::StringRef symbol_name_ref(symbol_name); 3885 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 3886 symbol_name_non_abi_mangled = symbol_name + 1; 3887 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3888 type = eSymbolTypeObjCClass; 3889 demangled_is_synthesized = true; 3890 3891 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) { 3892 symbol_name_non_abi_mangled = symbol_name + 1; 3893 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3894 type = eSymbolTypeObjCMetaClass; 3895 demangled_is_synthesized = true; 3896 } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) { 3897 symbol_name_non_abi_mangled = symbol_name + 1; 3898 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3899 type = eSymbolTypeObjCIVar; 3900 demangled_is_synthesized = true; 3901 } 3902 } else { 3903 if (nlist.n_value != 0) 3904 symbol_section = 3905 section_info.GetSection(nlist.n_sect, nlist.n_value); 3906 type = eSymbolTypeData; 3907 } 3908 break; 3909 3910 case N_FNAME: 3911 // procedure name (f77 kludge): name,,NO_SECT,0,0 3912 type = eSymbolTypeCompiler; 3913 break; 3914 3915 case N_FUN: 3916 // procedure: name,,n_sect,linenumber,address 3917 if (symbol_name) { 3918 type = eSymbolTypeCode; 3919 symbol_section = 3920 section_info.GetSection(nlist.n_sect, nlist.n_value); 3921 3922 N_FUN_addr_to_sym_idx.insert( 3923 std::make_pair(nlist.n_value, sym_idx)); 3924 // We use the current number of symbols in the symbol table in 3925 // lieu of using nlist_idx in case we ever start trimming entries 3926 // out 3927 N_FUN_indexes.push_back(sym_idx); 3928 } else { 3929 type = eSymbolTypeCompiler; 3930 3931 if (!N_FUN_indexes.empty()) { 3932 // Copy the size of the function into the original STAB entry 3933 // so we don't have to hunt for it later 3934 symtab->SymbolAtIndex(N_FUN_indexes.back()) 3935 ->SetByteSize(nlist.n_value); 3936 N_FUN_indexes.pop_back(); 3937 // We don't really need the end function STAB as it contains 3938 // the size which we already placed with the original symbol, 3939 // so don't add it if we want a minimal symbol table 3940 add_nlist = false; 3941 } 3942 } 3943 break; 3944 3945 case N_STSYM: 3946 // static symbol: name,,n_sect,type,address 3947 N_STSYM_addr_to_sym_idx.insert( 3948 std::make_pair(nlist.n_value, sym_idx)); 3949 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3950 if (symbol_name && symbol_name[0]) { 3951 type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1, 3952 eSymbolTypeData); 3953 } 3954 break; 3955 3956 case N_LCSYM: 3957 // .lcomm symbol: name,,n_sect,type,address 3958 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3959 type = eSymbolTypeCommonBlock; 3960 break; 3961 3962 case N_BNSYM: 3963 // We use the current number of symbols in the symbol table in lieu 3964 // of using nlist_idx in case we ever start trimming entries out 3965 // Skip these if we want minimal symbol tables 3966 add_nlist = false; 3967 break; 3968 3969 case N_ENSYM: 3970 // Set the size of the N_BNSYM to the terminating index of this 3971 // N_ENSYM so that we can always skip the entire symbol if we need 3972 // to navigate more quickly at the source level when parsing STABS 3973 // Skip these if we want minimal symbol tables 3974 add_nlist = false; 3975 break; 3976 3977 case N_OPT: 3978 // emitted with gcc2_compiled and in gcc source 3979 type = eSymbolTypeCompiler; 3980 break; 3981 3982 case N_RSYM: 3983 // register sym: name,,NO_SECT,type,register 3984 type = eSymbolTypeVariable; 3985 break; 3986 3987 case N_SLINE: 3988 // src line: 0,,n_sect,linenumber,address 3989 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 3990 type = eSymbolTypeLineEntry; 3991 break; 3992 3993 case N_SSYM: 3994 // structure elt: name,,NO_SECT,type,struct_offset 3995 type = eSymbolTypeVariableType; 3996 break; 3997 3998 case N_SO: 3999 // source file name 4000 type = eSymbolTypeSourceFile; 4001 if (symbol_name == nullptr) { 4002 add_nlist = false; 4003 if (N_SO_index != UINT32_MAX) { 4004 // Set the size of the N_SO to the terminating index of this 4005 // N_SO so that we can always skip the entire N_SO if we need 4006 // to navigate more quickly at the source level when parsing 4007 // STABS 4008 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 4009 symbol_ptr->SetByteSize(sym_idx); 4010 symbol_ptr->SetSizeIsSibling(true); 4011 } 4012 N_NSYM_indexes.clear(); 4013 N_INCL_indexes.clear(); 4014 N_BRAC_indexes.clear(); 4015 N_COMM_indexes.clear(); 4016 N_FUN_indexes.clear(); 4017 N_SO_index = UINT32_MAX; 4018 } else { 4019 // We use the current number of symbols in the symbol table in 4020 // lieu of using nlist_idx in case we ever start trimming entries 4021 // out 4022 const bool N_SO_has_full_path = symbol_name[0] == '/'; 4023 if (N_SO_has_full_path) { 4024 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) { 4025 // We have two consecutive N_SO entries where the first 4026 // contains a directory and the second contains a full path. 4027 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), 4028 false); 4029 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 4030 add_nlist = false; 4031 } else { 4032 // This is the first entry in a N_SO that contains a 4033 // directory or a full path to the source file 4034 N_SO_index = sym_idx; 4035 } 4036 } else if ((N_SO_index == sym_idx - 1) && 4037 ((sym_idx - 1) < num_syms)) { 4038 // This is usually the second N_SO entry that contains just the 4039 // filename, so here we combine it with the first one if we are 4040 // minimizing the symbol table 4041 const char *so_path = 4042 sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 4043 if (so_path && so_path[0]) { 4044 std::string full_so_path(so_path); 4045 const size_t double_slash_pos = full_so_path.find("//"); 4046 if (double_slash_pos != std::string::npos) { 4047 // The linker has been generating bad N_SO entries with 4048 // doubled up paths in the format "%s%s" where the first 4049 // string in the DW_AT_comp_dir, and the second is the 4050 // directory for the source file so you end up with a path 4051 // that looks like "/tmp/src//tmp/src/" 4052 FileSpec so_dir(so_path); 4053 if (!FileSystem::Instance().Exists(so_dir)) { 4054 so_dir.SetFile(&full_so_path[double_slash_pos + 1], 4055 FileSpec::Style::native); 4056 if (FileSystem::Instance().Exists(so_dir)) { 4057 // Trim off the incorrect path 4058 full_so_path.erase(0, double_slash_pos + 1); 4059 } 4060 } 4061 } 4062 if (*full_so_path.rbegin() != '/') 4063 full_so_path += '/'; 4064 full_so_path += symbol_name; 4065 sym[sym_idx - 1].GetMangled().SetValue( 4066 ConstString(full_so_path.c_str()), false); 4067 add_nlist = false; 4068 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 4069 } 4070 } else { 4071 // This could be a relative path to a N_SO 4072 N_SO_index = sym_idx; 4073 } 4074 } 4075 break; 4076 4077 case N_OSO: 4078 // object file name: name,,0,0,st_mtime 4079 type = eSymbolTypeObjectFile; 4080 break; 4081 4082 case N_LSYM: 4083 // local sym: name,,NO_SECT,type,offset 4084 type = eSymbolTypeLocal; 4085 break; 4086 4087 // INCL scopes 4088 case N_BINCL: 4089 // include file beginning: name,,NO_SECT,0,sum We use the current 4090 // number of symbols in the symbol table in lieu of using nlist_idx 4091 // in case we ever start trimming entries out 4092 N_INCL_indexes.push_back(sym_idx); 4093 type = eSymbolTypeScopeBegin; 4094 break; 4095 4096 case N_EINCL: 4097 // include file end: name,,NO_SECT,0,0 4098 // Set the size of the N_BINCL to the terminating index of this 4099 // N_EINCL so that we can always skip the entire symbol if we need 4100 // to navigate more quickly at the source level when parsing STABS 4101 if (!N_INCL_indexes.empty()) { 4102 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 4103 symbol_ptr->SetByteSize(sym_idx + 1); 4104 symbol_ptr->SetSizeIsSibling(true); 4105 N_INCL_indexes.pop_back(); 4106 } 4107 type = eSymbolTypeScopeEnd; 4108 break; 4109 4110 case N_SOL: 4111 // #included file name: name,,n_sect,0,address 4112 type = eSymbolTypeHeaderFile; 4113 4114 // We currently don't use the header files on darwin 4115 add_nlist = false; 4116 break; 4117 4118 case N_PARAMS: 4119 // compiler parameters: name,,NO_SECT,0,0 4120 type = eSymbolTypeCompiler; 4121 break; 4122 4123 case N_VERSION: 4124 // compiler version: name,,NO_SECT,0,0 4125 type = eSymbolTypeCompiler; 4126 break; 4127 4128 case N_OLEVEL: 4129 // compiler -O level: name,,NO_SECT,0,0 4130 type = eSymbolTypeCompiler; 4131 break; 4132 4133 case N_PSYM: 4134 // parameter: name,,NO_SECT,type,offset 4135 type = eSymbolTypeVariable; 4136 break; 4137 4138 case N_ENTRY: 4139 // alternate entry: name,,n_sect,linenumber,address 4140 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4141 type = eSymbolTypeLineEntry; 4142 break; 4143 4144 // Left and Right Braces 4145 case N_LBRAC: 4146 // left bracket: 0,,NO_SECT,nesting level,address We use the 4147 // current number of symbols in the symbol table in lieu of using 4148 // nlist_idx in case we ever start trimming entries out 4149 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4150 N_BRAC_indexes.push_back(sym_idx); 4151 type = eSymbolTypeScopeBegin; 4152 break; 4153 4154 case N_RBRAC: 4155 // right bracket: 0,,NO_SECT,nesting level,address Set the size of 4156 // the N_LBRAC to the terminating index of this N_RBRAC so that we 4157 // can always skip the entire symbol if we need to navigate more 4158 // quickly at the source level when parsing STABS 4159 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4160 if (!N_BRAC_indexes.empty()) { 4161 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 4162 symbol_ptr->SetByteSize(sym_idx + 1); 4163 symbol_ptr->SetSizeIsSibling(true); 4164 N_BRAC_indexes.pop_back(); 4165 } 4166 type = eSymbolTypeScopeEnd; 4167 break; 4168 4169 case N_EXCL: 4170 // deleted include file: name,,NO_SECT,0,sum 4171 type = eSymbolTypeHeaderFile; 4172 break; 4173 4174 // COMM scopes 4175 case N_BCOMM: 4176 // begin common: name,,NO_SECT,0,0 4177 // We use the current number of symbols in the symbol table in lieu 4178 // of using nlist_idx in case we ever start trimming entries out 4179 type = eSymbolTypeScopeBegin; 4180 N_COMM_indexes.push_back(sym_idx); 4181 break; 4182 4183 case N_ECOML: 4184 // end common (local name): 0,,n_sect,0,address 4185 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4186 LLVM_FALLTHROUGH; 4187 4188 case N_ECOMM: 4189 // end common: name,,n_sect,0,0 4190 // Set the size of the N_BCOMM to the terminating index of this 4191 // N_ECOMM/N_ECOML so that we can always skip the entire symbol if 4192 // we need to navigate more quickly at the source level when 4193 // parsing STABS 4194 if (!N_COMM_indexes.empty()) { 4195 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4196 symbol_ptr->SetByteSize(sym_idx + 1); 4197 symbol_ptr->SetSizeIsSibling(true); 4198 N_COMM_indexes.pop_back(); 4199 } 4200 type = eSymbolTypeScopeEnd; 4201 break; 4202 4203 case N_LENG: 4204 // second stab entry with length information 4205 type = eSymbolTypeAdditional; 4206 break; 4207 4208 default: 4209 break; 4210 } 4211 } else { 4212 uint8_t n_type = N_TYPE & nlist.n_type; 4213 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4214 4215 switch (n_type) { 4216 case N_INDR: { 4217 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4218 if (reexport_name_cstr && reexport_name_cstr[0]) { 4219 type = eSymbolTypeReExported; 4220 ConstString reexport_name(reexport_name_cstr + 4221 ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4222 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4223 set_value = false; 4224 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4225 indirect_symbol_names.insert( 4226 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4227 } else 4228 type = eSymbolTypeUndefined; 4229 } break; 4230 4231 case N_UNDF: 4232 if (symbol_name && symbol_name[0]) { 4233 ConstString undefined_name(symbol_name + 4234 ((symbol_name[0] == '_') ? 1 : 0)); 4235 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4236 } 4237 LLVM_FALLTHROUGH; 4238 4239 case N_PBUD: 4240 type = eSymbolTypeUndefined; 4241 break; 4242 4243 case N_ABS: 4244 type = eSymbolTypeAbsolute; 4245 break; 4246 4247 case N_SECT: { 4248 symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value); 4249 4250 if (!symbol_section) { 4251 // TODO: warn about this? 4252 add_nlist = false; 4253 break; 4254 } 4255 4256 if (TEXT_eh_frame_sectID == nlist.n_sect) { 4257 type = eSymbolTypeException; 4258 } else { 4259 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4260 4261 switch (section_type) { 4262 case S_CSTRING_LITERALS: 4263 type = eSymbolTypeData; 4264 break; // section with only literal C strings 4265 case S_4BYTE_LITERALS: 4266 type = eSymbolTypeData; 4267 break; // section with only 4 byte literals 4268 case S_8BYTE_LITERALS: 4269 type = eSymbolTypeData; 4270 break; // section with only 8 byte literals 4271 case S_LITERAL_POINTERS: 4272 type = eSymbolTypeTrampoline; 4273 break; // section with only pointers to literals 4274 case S_NON_LAZY_SYMBOL_POINTERS: 4275 type = eSymbolTypeTrampoline; 4276 break; // section with only non-lazy symbol pointers 4277 case S_LAZY_SYMBOL_POINTERS: 4278 type = eSymbolTypeTrampoline; 4279 break; // section with only lazy symbol pointers 4280 case S_SYMBOL_STUBS: 4281 type = eSymbolTypeTrampoline; 4282 break; // section with only symbol stubs, byte size of stub in 4283 // the reserved2 field 4284 case S_MOD_INIT_FUNC_POINTERS: 4285 type = eSymbolTypeCode; 4286 break; // section with only function pointers for initialization 4287 case S_MOD_TERM_FUNC_POINTERS: 4288 type = eSymbolTypeCode; 4289 break; // section with only function pointers for termination 4290 case S_INTERPOSING: 4291 type = eSymbolTypeTrampoline; 4292 break; // section with only pairs of function pointers for 4293 // interposing 4294 case S_16BYTE_LITERALS: 4295 type = eSymbolTypeData; 4296 break; // section with only 16 byte literals 4297 case S_DTRACE_DOF: 4298 type = eSymbolTypeInstrumentation; 4299 break; 4300 case S_LAZY_DYLIB_SYMBOL_POINTERS: 4301 type = eSymbolTypeTrampoline; 4302 break; 4303 default: 4304 switch (symbol_section->GetType()) { 4305 case lldb::eSectionTypeCode: 4306 type = eSymbolTypeCode; 4307 break; 4308 case eSectionTypeData: 4309 case eSectionTypeDataCString: // Inlined C string data 4310 case eSectionTypeDataCStringPointers: // Pointers to C string 4311 // data 4312 case eSectionTypeDataSymbolAddress: // Address of a symbol in 4313 // the symbol table 4314 case eSectionTypeData4: 4315 case eSectionTypeData8: 4316 case eSectionTypeData16: 4317 type = eSymbolTypeData; 4318 break; 4319 default: 4320 break; 4321 } 4322 break; 4323 } 4324 4325 if (type == eSymbolTypeInvalid) { 4326 const char *symbol_sect_name = 4327 symbol_section->GetName().AsCString(); 4328 if (symbol_section->IsDescendant(text_section_sp.get())) { 4329 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4330 S_ATTR_SELF_MODIFYING_CODE | 4331 S_ATTR_SOME_INSTRUCTIONS)) 4332 type = eSymbolTypeData; 4333 else 4334 type = eSymbolTypeCode; 4335 } else if (symbol_section->IsDescendant(data_section_sp.get()) || 4336 symbol_section->IsDescendant( 4337 data_dirty_section_sp.get()) || 4338 symbol_section->IsDescendant( 4339 data_const_section_sp.get())) { 4340 if (symbol_sect_name && 4341 ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) { 4342 type = eSymbolTypeRuntime; 4343 4344 if (symbol_name) { 4345 llvm::StringRef symbol_name_ref(symbol_name); 4346 if (symbol_name_ref.startswith("_OBJC_")) { 4347 llvm::StringRef g_objc_v2_prefix_class( 4348 "_OBJC_CLASS_$_"); 4349 llvm::StringRef g_objc_v2_prefix_metaclass( 4350 "_OBJC_METACLASS_$_"); 4351 llvm::StringRef g_objc_v2_prefix_ivar( 4352 "_OBJC_IVAR_$_"); 4353 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) { 4354 symbol_name_non_abi_mangled = symbol_name + 1; 4355 symbol_name = 4356 symbol_name + g_objc_v2_prefix_class.size(); 4357 type = eSymbolTypeObjCClass; 4358 demangled_is_synthesized = true; 4359 } else if (symbol_name_ref.startswith( 4360 g_objc_v2_prefix_metaclass)) { 4361 symbol_name_non_abi_mangled = symbol_name + 1; 4362 symbol_name = 4363 symbol_name + g_objc_v2_prefix_metaclass.size(); 4364 type = eSymbolTypeObjCMetaClass; 4365 demangled_is_synthesized = true; 4366 } else if (symbol_name_ref.startswith( 4367 g_objc_v2_prefix_ivar)) { 4368 symbol_name_non_abi_mangled = symbol_name + 1; 4369 symbol_name = 4370 symbol_name + g_objc_v2_prefix_ivar.size(); 4371 type = eSymbolTypeObjCIVar; 4372 demangled_is_synthesized = true; 4373 } 4374 } 4375 } 4376 } else if (symbol_sect_name && 4377 ::strstr(symbol_sect_name, "__gcc_except_tab") == 4378 symbol_sect_name) { 4379 type = eSymbolTypeException; 4380 } else { 4381 type = eSymbolTypeData; 4382 } 4383 } else if (symbol_sect_name && 4384 ::strstr(symbol_sect_name, "__IMPORT") == 4385 symbol_sect_name) { 4386 type = eSymbolTypeTrampoline; 4387 } else if (symbol_section->IsDescendant(objc_section_sp.get())) { 4388 type = eSymbolTypeRuntime; 4389 if (symbol_name && symbol_name[0] == '.') { 4390 llvm::StringRef symbol_name_ref(symbol_name); 4391 llvm::StringRef g_objc_v1_prefix_class( 4392 ".objc_class_name_"); 4393 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) { 4394 symbol_name_non_abi_mangled = symbol_name; 4395 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4396 type = eSymbolTypeObjCClass; 4397 demangled_is_synthesized = true; 4398 } 4399 } 4400 } 4401 } 4402 } 4403 } break; 4404 } 4405 } 4406 4407 if (!add_nlist) { 4408 sym[sym_idx].Clear(); 4409 return true; 4410 } 4411 4412 uint64_t symbol_value = nlist.n_value; 4413 4414 if (symbol_name_non_abi_mangled) { 4415 sym[sym_idx].GetMangled().SetMangledName( 4416 ConstString(symbol_name_non_abi_mangled)); 4417 sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name)); 4418 } else { 4419 bool symbol_name_is_mangled = false; 4420 4421 if (symbol_name && symbol_name[0] == '_') { 4422 symbol_name_is_mangled = symbol_name[1] == '_'; 4423 symbol_name++; // Skip the leading underscore 4424 } 4425 4426 if (symbol_name) { 4427 ConstString const_symbol_name(symbol_name); 4428 sym[sym_idx].GetMangled().SetValue(const_symbol_name, 4429 symbol_name_is_mangled); 4430 } 4431 } 4432 4433 if (is_gsym) { 4434 const char *gsym_name = sym[sym_idx] 4435 .GetMangled() 4436 .GetName(Mangled::ePreferMangled) 4437 .GetCString(); 4438 if (gsym_name) 4439 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4440 } 4441 4442 if (symbol_section) { 4443 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4444 if (symbol_byte_size == 0 && function_starts_count > 0) { 4445 addr_t symbol_lookup_file_addr = nlist.n_value; 4446 // Do an exact address match for non-ARM addresses, else get the 4447 // closest since the symbol might be a thumb symbol which has an 4448 // address with bit zero set. 4449 FunctionStarts::Entry *func_start_entry = 4450 function_starts.FindEntry(symbol_lookup_file_addr, !is_arm); 4451 if (is_arm && func_start_entry) { 4452 // Verify that the function start address is the symbol address 4453 // (ARM) or the symbol address + 1 (thumb). 4454 if (func_start_entry->addr != symbol_lookup_file_addr && 4455 func_start_entry->addr != (symbol_lookup_file_addr + 1)) { 4456 // Not the right entry, NULL it out... 4457 func_start_entry = nullptr; 4458 } 4459 } 4460 if (func_start_entry) { 4461 func_start_entry->data = true; 4462 4463 addr_t symbol_file_addr = func_start_entry->addr; 4464 if (is_arm) 4465 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4466 4467 const FunctionStarts::Entry *next_func_start_entry = 4468 function_starts.FindNextEntry(func_start_entry); 4469 const addr_t section_end_file_addr = 4470 section_file_addr + symbol_section->GetByteSize(); 4471 if (next_func_start_entry) { 4472 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4473 // Be sure the clear the Thumb address bit when we calculate the 4474 // size from the current and next address 4475 if (is_arm) 4476 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4477 symbol_byte_size = std::min<lldb::addr_t>( 4478 next_symbol_file_addr - symbol_file_addr, 4479 section_end_file_addr - symbol_file_addr); 4480 } else { 4481 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4482 } 4483 } 4484 } 4485 symbol_value -= section_file_addr; 4486 } 4487 4488 if (!is_debug) { 4489 if (type == eSymbolTypeCode) { 4490 // See if we can find a N_FUN entry for any code symbols. If we do 4491 // find a match, and the name matches, then we can merge the two into 4492 // just the function symbol to avoid duplicate entries in the symbol 4493 // table. 4494 std::pair<ValueToSymbolIndexMap::const_iterator, 4495 ValueToSymbolIndexMap::const_iterator> 4496 range; 4497 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4498 if (range.first != range.second) { 4499 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4500 pos != range.second; ++pos) { 4501 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == 4502 sym[pos->second].GetMangled().GetName( 4503 Mangled::ePreferMangled)) { 4504 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4505 // We just need the flags from the linker symbol, so put these 4506 // flags into the N_FUN flags to avoid duplicate symbols in the 4507 // symbol table. 4508 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4509 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4510 if (resolver_addresses.find(nlist.n_value) != 4511 resolver_addresses.end()) 4512 sym[pos->second].SetType(eSymbolTypeResolver); 4513 sym[sym_idx].Clear(); 4514 return true; 4515 } 4516 } 4517 } else { 4518 if (resolver_addresses.find(nlist.n_value) != 4519 resolver_addresses.end()) 4520 type = eSymbolTypeResolver; 4521 } 4522 } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass || 4523 type == eSymbolTypeObjCMetaClass || 4524 type == eSymbolTypeObjCIVar) { 4525 // See if we can find a N_STSYM entry for any data symbols. If we do 4526 // find a match, and the name matches, then we can merge the two into 4527 // just the Static symbol to avoid duplicate entries in the symbol 4528 // table. 4529 std::pair<ValueToSymbolIndexMap::const_iterator, 4530 ValueToSymbolIndexMap::const_iterator> 4531 range; 4532 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4533 if (range.first != range.second) { 4534 for (ValueToSymbolIndexMap::const_iterator pos = range.first; 4535 pos != range.second; ++pos) { 4536 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == 4537 sym[pos->second].GetMangled().GetName( 4538 Mangled::ePreferMangled)) { 4539 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4540 // We just need the flags from the linker symbol, so put these 4541 // flags into the N_STSYM flags to avoid duplicate symbols in 4542 // the symbol table. 4543 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4544 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4545 sym[sym_idx].Clear(); 4546 return true; 4547 } 4548 } 4549 } else { 4550 // Combine N_GSYM stab entries with the non stab symbol. 4551 const char *gsym_name = sym[sym_idx] 4552 .GetMangled() 4553 .GetName(Mangled::ePreferMangled) 4554 .GetCString(); 4555 if (gsym_name) { 4556 ConstNameToSymbolIndexMap::const_iterator pos = 4557 N_GSYM_name_to_sym_idx.find(gsym_name); 4558 if (pos != N_GSYM_name_to_sym_idx.end()) { 4559 const uint32_t GSYM_sym_idx = pos->second; 4560 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4561 // Copy the address, because often the N_GSYM address has an 4562 // invalid address of zero when the global is a common symbol. 4563 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section); 4564 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value); 4565 add_symbol_addr( 4566 sym[GSYM_sym_idx].GetAddress().GetFileAddress()); 4567 // We just need the flags from the linker symbol, so put these 4568 // flags into the N_GSYM flags to avoid duplicate symbols in 4569 // the symbol table. 4570 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4571 sym[sym_idx].Clear(); 4572 return true; 4573 } 4574 } 4575 } 4576 } 4577 } 4578 4579 sym[sym_idx].SetID(nlist_idx); 4580 sym[sym_idx].SetType(type); 4581 if (set_value) { 4582 sym[sym_idx].GetAddressRef().SetSection(symbol_section); 4583 sym[sym_idx].GetAddressRef().SetOffset(symbol_value); 4584 if (symbol_section) 4585 add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress()); 4586 } 4587 sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc); 4588 if (nlist.n_desc & N_WEAK_REF) 4589 sym[sym_idx].SetIsWeak(true); 4590 4591 if (symbol_byte_size > 0) 4592 sym[sym_idx].SetByteSize(symbol_byte_size); 4593 4594 if (demangled_is_synthesized) 4595 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4596 4597 ++sym_idx; 4598 return true; 4599 }; 4600 4601 // First parse all the nlists but don't process them yet. See the next 4602 // comment for an explanation why. 4603 std::vector<struct nlist_64> nlists; 4604 nlists.reserve(symtab_load_command.nsyms); 4605 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) { 4606 if (auto nlist = 4607 ParseNList(nlist_data, nlist_data_offset, nlist_byte_size)) 4608 nlists.push_back(*nlist); 4609 else 4610 break; 4611 } 4612 4613 // Now parse all the debug symbols. This is needed to merge non-debug 4614 // symbols in the next step. Non-debug symbols are always coalesced into 4615 // the debug symbol. Doing this in one step would mean that some symbols 4616 // won't be merged. 4617 nlist_idx = 0; 4618 for (auto &nlist : nlists) { 4619 if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols)) 4620 break; 4621 } 4622 4623 // Finally parse all the non debug symbols. 4624 nlist_idx = 0; 4625 for (auto &nlist : nlists) { 4626 if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols)) 4627 break; 4628 } 4629 4630 for (const auto &pos : reexport_shlib_needs_fixup) { 4631 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4632 if (undef_pos != undefined_name_to_desc.end()) { 4633 const uint8_t dylib_ordinal = 4634 llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4635 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4636 sym[pos.first].SetReExportedSymbolSharedLibrary( 4637 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1)); 4638 } 4639 } 4640 } 4641 4642 // Count how many trie symbols we'll add to the symbol table 4643 int trie_symbol_table_augment_count = 0; 4644 for (auto &e : external_sym_trie_entries) { 4645 if (symbols_added.find(e.entry.address) == symbols_added.end()) 4646 trie_symbol_table_augment_count++; 4647 } 4648 4649 if (num_syms < sym_idx + trie_symbol_table_augment_count) { 4650 num_syms = sym_idx + trie_symbol_table_augment_count; 4651 sym = symtab->Resize(num_syms); 4652 } 4653 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4654 4655 // Add symbols from the trie to the symbol table. 4656 for (auto &e : external_sym_trie_entries) { 4657 if (symbols_added.find(e.entry.address) != symbols_added.end()) 4658 continue; 4659 4660 // Find the section that this trie address is in, use that to annotate 4661 // symbol type as we add the trie address and name to the symbol table. 4662 Address symbol_addr; 4663 if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) { 4664 SectionSP symbol_section(symbol_addr.GetSection()); 4665 const char *symbol_name = e.entry.name.GetCString(); 4666 bool demangled_is_synthesized = false; 4667 SymbolType type = 4668 GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp, 4669 data_section_sp, data_dirty_section_sp, 4670 data_const_section_sp, symbol_section); 4671 4672 sym[sym_idx].SetType(type); 4673 if (symbol_section) { 4674 sym[sym_idx].SetID(synthetic_sym_id++); 4675 sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name)); 4676 if (demangled_is_synthesized) 4677 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4678 sym[sym_idx].SetIsSynthetic(true); 4679 sym[sym_idx].SetExternal(true); 4680 sym[sym_idx].GetAddressRef() = symbol_addr; 4681 add_symbol_addr(symbol_addr.GetFileAddress()); 4682 if (e.entry.flags & TRIE_SYMBOL_IS_THUMB) 4683 sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB); 4684 ++sym_idx; 4685 } 4686 } 4687 } 4688 4689 if (function_starts_count > 0) { 4690 uint32_t num_synthetic_function_symbols = 0; 4691 for (i = 0; i < function_starts_count; ++i) { 4692 if (symbols_added.find(function_starts.GetEntryRef(i).addr) == 4693 symbols_added.end()) 4694 ++num_synthetic_function_symbols; 4695 } 4696 4697 if (num_synthetic_function_symbols > 0) { 4698 if (num_syms < sym_idx + num_synthetic_function_symbols) { 4699 num_syms = sym_idx + num_synthetic_function_symbols; 4700 sym = symtab->Resize(num_syms); 4701 } 4702 for (i = 0; i < function_starts_count; ++i) { 4703 const FunctionStarts::Entry *func_start_entry = 4704 function_starts.GetEntryAtIndex(i); 4705 if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) { 4706 addr_t symbol_file_addr = func_start_entry->addr; 4707 uint32_t symbol_flags = 0; 4708 if (func_start_entry->data) 4709 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4710 Address symbol_addr; 4711 if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) { 4712 SectionSP symbol_section(symbol_addr.GetSection()); 4713 uint32_t symbol_byte_size = 0; 4714 if (symbol_section) { 4715 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4716 const FunctionStarts::Entry *next_func_start_entry = 4717 function_starts.FindNextEntry(func_start_entry); 4718 const addr_t section_end_file_addr = 4719 section_file_addr + symbol_section->GetByteSize(); 4720 if (next_func_start_entry) { 4721 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4722 if (is_arm) 4723 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK; 4724 symbol_byte_size = std::min<lldb::addr_t>( 4725 next_symbol_file_addr - symbol_file_addr, 4726 section_end_file_addr - symbol_file_addr); 4727 } else { 4728 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4729 } 4730 sym[sym_idx].SetID(synthetic_sym_id++); 4731 // Don't set the name for any synthetic symbols, the Symbol 4732 // object will generate one if needed when the name is accessed 4733 // via accessors. 4734 sym[sym_idx].GetMangled().SetDemangledName(ConstString()); 4735 sym[sym_idx].SetType(eSymbolTypeCode); 4736 sym[sym_idx].SetIsSynthetic(true); 4737 sym[sym_idx].GetAddressRef() = symbol_addr; 4738 add_symbol_addr(symbol_addr.GetFileAddress()); 4739 if (symbol_flags) 4740 sym[sym_idx].SetFlags(symbol_flags); 4741 if (symbol_byte_size) 4742 sym[sym_idx].SetByteSize(symbol_byte_size); 4743 ++sym_idx; 4744 } 4745 } 4746 } 4747 } 4748 } 4749 } 4750 4751 // Trim our symbols down to just what we ended up with after removing any 4752 // symbols. 4753 if (sym_idx < num_syms) { 4754 num_syms = sym_idx; 4755 sym = symtab->Resize(num_syms); 4756 } 4757 4758 // Now synthesize indirect symbols 4759 if (m_dysymtab.nindirectsyms != 0) { 4760 if (indirect_symbol_index_data.GetByteSize()) { 4761 NListIndexToSymbolIndexMap::const_iterator end_index_pos = 4762 m_nlist_idx_to_sym_idx.end(); 4763 4764 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); 4765 ++sect_idx) { 4766 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == 4767 S_SYMBOL_STUBS) { 4768 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4769 if (symbol_stub_byte_size == 0) 4770 continue; 4771 4772 const uint32_t num_symbol_stubs = 4773 m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4774 4775 if (num_symbol_stubs == 0) 4776 continue; 4777 4778 const uint32_t symbol_stub_index_offset = 4779 m_mach_sections[sect_idx].reserved1; 4780 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) { 4781 const uint32_t symbol_stub_index = 4782 symbol_stub_index_offset + stub_idx; 4783 const lldb::addr_t symbol_stub_addr = 4784 m_mach_sections[sect_idx].addr + 4785 (stub_idx * symbol_stub_byte_size); 4786 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4787 if (indirect_symbol_index_data.ValidOffsetForDataOfSize( 4788 symbol_stub_offset, 4)) { 4789 const uint32_t stub_sym_id = 4790 indirect_symbol_index_data.GetU32(&symbol_stub_offset); 4791 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4792 continue; 4793 4794 NListIndexToSymbolIndexMap::const_iterator index_pos = 4795 m_nlist_idx_to_sym_idx.find(stub_sym_id); 4796 Symbol *stub_symbol = nullptr; 4797 if (index_pos != end_index_pos) { 4798 // We have a remapping from the original nlist index to a 4799 // current symbol index, so just look this up by index 4800 stub_symbol = symtab->SymbolAtIndex(index_pos->second); 4801 } else { 4802 // We need to lookup a symbol using the original nlist symbol 4803 // index since this index is coming from the S_SYMBOL_STUBS 4804 stub_symbol = symtab->FindSymbolByID(stub_sym_id); 4805 } 4806 4807 if (stub_symbol) { 4808 Address so_addr(symbol_stub_addr, section_list); 4809 4810 if (stub_symbol->GetType() == eSymbolTypeUndefined) { 4811 // Change the external symbol into a trampoline that makes 4812 // sense These symbols were N_UNDF N_EXT, and are useless 4813 // to us, so we can re-use them so we don't have to make up 4814 // a synthetic symbol for no good reason. 4815 if (resolver_addresses.find(symbol_stub_addr) == 4816 resolver_addresses.end()) 4817 stub_symbol->SetType(eSymbolTypeTrampoline); 4818 else 4819 stub_symbol->SetType(eSymbolTypeResolver); 4820 stub_symbol->SetExternal(false); 4821 stub_symbol->GetAddressRef() = so_addr; 4822 stub_symbol->SetByteSize(symbol_stub_byte_size); 4823 } else { 4824 // Make a synthetic symbol to describe the trampoline stub 4825 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4826 if (sym_idx >= num_syms) { 4827 sym = symtab->Resize(++num_syms); 4828 stub_symbol = nullptr; // this pointer no longer valid 4829 } 4830 sym[sym_idx].SetID(synthetic_sym_id++); 4831 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4832 if (resolver_addresses.find(symbol_stub_addr) == 4833 resolver_addresses.end()) 4834 sym[sym_idx].SetType(eSymbolTypeTrampoline); 4835 else 4836 sym[sym_idx].SetType(eSymbolTypeResolver); 4837 sym[sym_idx].SetIsSynthetic(true); 4838 sym[sym_idx].GetAddressRef() = so_addr; 4839 add_symbol_addr(so_addr.GetFileAddress()); 4840 sym[sym_idx].SetByteSize(symbol_stub_byte_size); 4841 ++sym_idx; 4842 } 4843 } else { 4844 if (log) 4845 log->Warning("symbol stub referencing symbol table symbol " 4846 "%u that isn't in our minimal symbol table, " 4847 "fix this!!!", 4848 stub_sym_id); 4849 } 4850 } 4851 } 4852 } 4853 } 4854 } 4855 } 4856 4857 if (!reexport_trie_entries.empty()) { 4858 for (const auto &e : reexport_trie_entries) { 4859 if (e.entry.import_name) { 4860 // Only add indirect symbols from the Trie entries if we didn't have 4861 // a N_INDR nlist entry for this already 4862 if (indirect_symbol_names.find(e.entry.name) == 4863 indirect_symbol_names.end()) { 4864 // Make a synthetic symbol to describe re-exported symbol. 4865 if (sym_idx >= num_syms) 4866 sym = symtab->Resize(++num_syms); 4867 sym[sym_idx].SetID(synthetic_sym_id++); 4868 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4869 sym[sym_idx].SetType(eSymbolTypeReExported); 4870 sym[sym_idx].SetIsSynthetic(true); 4871 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4872 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) { 4873 sym[sym_idx].SetReExportedSymbolSharedLibrary( 4874 dylib_files.GetFileSpecAtIndex(e.entry.other - 1)); 4875 } 4876 ++sym_idx; 4877 } 4878 } 4879 } 4880 } 4881 4882 // StreamFile s(stdout, false); 4883 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4884 // symtab->Dump(&s, NULL, eSortOrderNone); 4885 // Set symbol byte sizes correctly since mach-o nlist entries don't have 4886 // sizes 4887 symtab->CalculateSymbolSizes(); 4888 4889 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4890 // symtab->Dump(&s, NULL, eSortOrderNone); 4891 4892 return symtab->GetNumSymbols(); 4893 } 4894 4895 void ObjectFileMachO::Dump(Stream *s) { 4896 ModuleSP module_sp(GetModule()); 4897 if (module_sp) { 4898 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 4899 s->Printf("%p: ", static_cast<void *>(this)); 4900 s->Indent(); 4901 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4902 s->PutCString("ObjectFileMachO64"); 4903 else 4904 s->PutCString("ObjectFileMachO32"); 4905 4906 *s << ", file = '" << m_file; 4907 ModuleSpecList all_specs; 4908 ModuleSpec base_spec; 4909 GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), 4910 base_spec, all_specs); 4911 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 4912 *s << "', triple"; 4913 if (e) 4914 s->Printf("[%d]", i); 4915 *s << " = "; 4916 *s << all_specs.GetModuleSpecRefAtIndex(i) 4917 .GetArchitecture() 4918 .GetTriple() 4919 .getTriple(); 4920 } 4921 *s << "\n"; 4922 SectionList *sections = GetSectionList(); 4923 if (sections) 4924 sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true, 4925 UINT32_MAX); 4926 4927 if (m_symtab_up) 4928 m_symtab_up->Dump(s, nullptr, eSortOrderNone); 4929 } 4930 } 4931 4932 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header, 4933 const lldb_private::DataExtractor &data, 4934 lldb::offset_t lc_offset) { 4935 uint32_t i; 4936 llvm::MachO::uuid_command load_cmd; 4937 4938 lldb::offset_t offset = lc_offset; 4939 for (i = 0; i < header.ncmds; ++i) { 4940 const lldb::offset_t cmd_offset = offset; 4941 if (data.GetU32(&offset, &load_cmd, 2) == nullptr) 4942 break; 4943 4944 if (load_cmd.cmd == LC_UUID) { 4945 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4946 4947 if (uuid_bytes) { 4948 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4949 // We pretend these object files have no UUID to prevent crashing. 4950 4951 const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8, 4952 0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63, 4953 0xbb, 0x14, 0xf0, 0x0d}; 4954 4955 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4956 return UUID(); 4957 4958 return UUID::fromOptionalData(uuid_bytes, 16); 4959 } 4960 return UUID(); 4961 } 4962 offset = cmd_offset + load_cmd.cmdsize; 4963 } 4964 return UUID(); 4965 } 4966 4967 static llvm::StringRef GetOSName(uint32_t cmd) { 4968 switch (cmd) { 4969 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 4970 return llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4971 case llvm::MachO::LC_VERSION_MIN_MACOSX: 4972 return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4973 case llvm::MachO::LC_VERSION_MIN_TVOS: 4974 return llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4975 case llvm::MachO::LC_VERSION_MIN_WATCHOS: 4976 return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4977 default: 4978 llvm_unreachable("unexpected LC_VERSION load command"); 4979 } 4980 } 4981 4982 namespace { 4983 struct OSEnv { 4984 llvm::StringRef os_type; 4985 llvm::StringRef environment; 4986 OSEnv(uint32_t cmd) { 4987 switch (cmd) { 4988 case llvm::MachO::PLATFORM_MACOS: 4989 os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX); 4990 return; 4991 case llvm::MachO::PLATFORM_IOS: 4992 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 4993 return; 4994 case llvm::MachO::PLATFORM_TVOS: 4995 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 4996 return; 4997 case llvm::MachO::PLATFORM_WATCHOS: 4998 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 4999 return; 5000 // NEED_BRIDGEOS_TRIPLE case llvm::MachO::PLATFORM_BRIDGEOS: 5001 // NEED_BRIDGEOS_TRIPLE os_type = 5002 // llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS); 5003 // NEED_BRIDGEOS_TRIPLE return; 5004 case llvm::MachO::PLATFORM_MACCATALYST: 5005 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 5006 environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI); 5007 return; 5008 case llvm::MachO::PLATFORM_IOSSIMULATOR: 5009 os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS); 5010 environment = 5011 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 5012 return; 5013 case llvm::MachO::PLATFORM_TVOSSIMULATOR: 5014 os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS); 5015 environment = 5016 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 5017 return; 5018 case llvm::MachO::PLATFORM_WATCHOSSIMULATOR: 5019 os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS); 5020 environment = 5021 llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator); 5022 return; 5023 default: { 5024 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 5025 LIBLLDB_LOG_PROCESS)); 5026 LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION"); 5027 } 5028 } 5029 } 5030 }; 5031 5032 struct MinOS { 5033 uint32_t major_version, minor_version, patch_version; 5034 MinOS(uint32_t version) 5035 : major_version(version >> 16), minor_version((version >> 8) & 0xffu), 5036 patch_version(version & 0xffu) {} 5037 }; 5038 } // namespace 5039 5040 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header, 5041 const lldb_private::DataExtractor &data, 5042 lldb::offset_t lc_offset, 5043 ModuleSpec &base_spec, 5044 lldb_private::ModuleSpecList &all_specs) { 5045 auto &base_arch = base_spec.GetArchitecture(); 5046 base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype); 5047 if (!base_arch.IsValid()) 5048 return; 5049 5050 bool found_any = false; 5051 auto add_triple = [&](const llvm::Triple &triple) { 5052 auto spec = base_spec; 5053 spec.GetArchitecture().GetTriple() = triple; 5054 if (spec.GetArchitecture().IsValid()) { 5055 spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset); 5056 all_specs.Append(spec); 5057 found_any = true; 5058 } 5059 }; 5060 5061 // Set OS to an unspecified unknown or a "*" so it can match any OS 5062 llvm::Triple base_triple = base_arch.GetTriple(); 5063 base_triple.setOS(llvm::Triple::UnknownOS); 5064 base_triple.setOSName(llvm::StringRef()); 5065 5066 if (header.filetype == MH_PRELOAD) { 5067 if (header.cputype == CPU_TYPE_ARM) { 5068 // If this is a 32-bit arm binary, and it's a standalone binary, force 5069 // the Vendor to Apple so we don't accidentally pick up the generic 5070 // armv7 ABI at runtime. Apple's armv7 ABI always uses r7 for the 5071 // frame pointer register; most other armv7 ABIs use a combination of 5072 // r7 and r11. 5073 base_triple.setVendor(llvm::Triple::Apple); 5074 } else { 5075 // Set vendor to an unspecified unknown or a "*" so it can match any 5076 // vendor This is required for correct behavior of EFI debugging on 5077 // x86_64 5078 base_triple.setVendor(llvm::Triple::UnknownVendor); 5079 base_triple.setVendorName(llvm::StringRef()); 5080 } 5081 return add_triple(base_triple); 5082 } 5083 5084 llvm::MachO::load_command load_cmd; 5085 5086 // See if there is an LC_VERSION_MIN_* load command that can give 5087 // us the OS type. 5088 lldb::offset_t offset = lc_offset; 5089 for (uint32_t i = 0; i < header.ncmds; ++i) { 5090 const lldb::offset_t cmd_offset = offset; 5091 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 5092 break; 5093 5094 llvm::MachO::version_min_command version_min; 5095 switch (load_cmd.cmd) { 5096 case llvm::MachO::LC_VERSION_MIN_MACOSX: 5097 case llvm::MachO::LC_VERSION_MIN_IPHONEOS: 5098 case llvm::MachO::LC_VERSION_MIN_TVOS: 5099 case llvm::MachO::LC_VERSION_MIN_WATCHOS: { 5100 if (load_cmd.cmdsize != sizeof(version_min)) 5101 break; 5102 if (data.ExtractBytes(cmd_offset, sizeof(version_min), 5103 data.GetByteOrder(), &version_min) == 0) 5104 break; 5105 MinOS min_os(version_min.version); 5106 llvm::SmallString<32> os_name; 5107 llvm::raw_svector_ostream os(os_name); 5108 os << GetOSName(load_cmd.cmd) << min_os.major_version << '.' 5109 << min_os.minor_version << '.' << min_os.patch_version; 5110 5111 auto triple = base_triple; 5112 triple.setOSName(os.str()); 5113 5114 // Disambiguate legacy simulator platforms. 5115 if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX && 5116 (base_triple.getArch() == llvm::Triple::x86_64 || 5117 base_triple.getArch() == llvm::Triple::x86)) { 5118 // The combination of legacy LC_VERSION_MIN load command and 5119 // x86 architecture always indicates a simulator environment. 5120 // The combination of LC_VERSION_MIN and arm architecture only 5121 // appears for native binaries. Back-deploying simulator 5122 // binaries on Apple Silicon Macs use the modern unambigous 5123 // LC_BUILD_VERSION load commands; no special handling required. 5124 triple.setEnvironment(llvm::Triple::Simulator); 5125 } 5126 add_triple(triple); 5127 break; 5128 } 5129 default: 5130 break; 5131 } 5132 5133 offset = cmd_offset + load_cmd.cmdsize; 5134 } 5135 5136 // See if there are LC_BUILD_VERSION load commands that can give 5137 // us the OS type. 5138 offset = lc_offset; 5139 for (uint32_t i = 0; i < header.ncmds; ++i) { 5140 const lldb::offset_t cmd_offset = offset; 5141 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 5142 break; 5143 5144 do { 5145 if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) { 5146 llvm::MachO::build_version_command build_version; 5147 if (load_cmd.cmdsize < sizeof(build_version)) { 5148 // Malformed load command. 5149 break; 5150 } 5151 if (data.ExtractBytes(cmd_offset, sizeof(build_version), 5152 data.GetByteOrder(), &build_version) == 0) 5153 break; 5154 MinOS min_os(build_version.minos); 5155 OSEnv os_env(build_version.platform); 5156 llvm::SmallString<16> os_name; 5157 llvm::raw_svector_ostream os(os_name); 5158 os << os_env.os_type << min_os.major_version << '.' 5159 << min_os.minor_version << '.' << min_os.patch_version; 5160 auto triple = base_triple; 5161 triple.setOSName(os.str()); 5162 os_name.clear(); 5163 if (!os_env.environment.empty()) 5164 triple.setEnvironmentName(os_env.environment); 5165 add_triple(triple); 5166 } 5167 } while (0); 5168 offset = cmd_offset + load_cmd.cmdsize; 5169 } 5170 5171 if (!found_any) { 5172 if (header.filetype == MH_KEXT_BUNDLE) { 5173 base_triple.setVendor(llvm::Triple::Apple); 5174 add_triple(base_triple); 5175 } else { 5176 // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT 5177 // so lets not say our Vendor is Apple, leave it as an unspecified 5178 // unknown. 5179 base_triple.setVendor(llvm::Triple::UnknownVendor); 5180 base_triple.setVendorName(llvm::StringRef()); 5181 add_triple(base_triple); 5182 } 5183 } 5184 } 5185 5186 ArchSpec ObjectFileMachO::GetArchitecture( 5187 ModuleSP module_sp, const llvm::MachO::mach_header &header, 5188 const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) { 5189 ModuleSpecList all_specs; 5190 ModuleSpec base_spec; 5191 GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic), 5192 base_spec, all_specs); 5193 5194 // If the object file offers multiple alternative load commands, 5195 // pick the one that matches the module. 5196 if (module_sp) { 5197 const ArchSpec &module_arch = module_sp->GetArchitecture(); 5198 for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) { 5199 ArchSpec mach_arch = 5200 all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture(); 5201 if (module_arch.IsCompatibleMatch(mach_arch)) 5202 return mach_arch; 5203 } 5204 } 5205 5206 // Return the first arch we found. 5207 if (all_specs.GetSize() == 0) 5208 return {}; 5209 return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture(); 5210 } 5211 5212 UUID ObjectFileMachO::GetUUID() { 5213 ModuleSP module_sp(GetModule()); 5214 if (module_sp) { 5215 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5216 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5217 return GetUUID(m_header, m_data, offset); 5218 } 5219 return UUID(); 5220 } 5221 5222 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) { 5223 uint32_t count = 0; 5224 ModuleSP module_sp(GetModule()); 5225 if (module_sp) { 5226 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5227 llvm::MachO::load_command load_cmd; 5228 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5229 std::vector<std::string> rpath_paths; 5230 std::vector<std::string> rpath_relative_paths; 5231 std::vector<std::string> at_exec_relative_paths; 5232 uint32_t i; 5233 for (i = 0; i < m_header.ncmds; ++i) { 5234 const uint32_t cmd_offset = offset; 5235 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5236 break; 5237 5238 switch (load_cmd.cmd) { 5239 case LC_RPATH: 5240 case LC_LOAD_DYLIB: 5241 case LC_LOAD_WEAK_DYLIB: 5242 case LC_REEXPORT_DYLIB: 5243 case LC_LOAD_DYLINKER: 5244 case LC_LOADFVMLIB: 5245 case LC_LOAD_UPWARD_DYLIB: { 5246 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 5247 const char *path = m_data.PeekCStr(name_offset); 5248 if (path) { 5249 if (load_cmd.cmd == LC_RPATH) 5250 rpath_paths.push_back(path); 5251 else { 5252 if (path[0] == '@') { 5253 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 5254 rpath_relative_paths.push_back(path + strlen("@rpath")); 5255 else if (strncmp(path, "@executable_path", 5256 strlen("@executable_path")) == 0) 5257 at_exec_relative_paths.push_back(path + 5258 strlen("@executable_path")); 5259 } else { 5260 FileSpec file_spec(path); 5261 if (files.AppendIfUnique(file_spec)) 5262 count++; 5263 } 5264 } 5265 } 5266 } break; 5267 5268 default: 5269 break; 5270 } 5271 offset = cmd_offset + load_cmd.cmdsize; 5272 } 5273 5274 FileSpec this_file_spec(m_file); 5275 FileSystem::Instance().Resolve(this_file_spec); 5276 5277 if (!rpath_paths.empty()) { 5278 // Fixup all LC_RPATH values to be absolute paths 5279 std::string loader_path("@loader_path"); 5280 std::string executable_path("@executable_path"); 5281 for (auto &rpath : rpath_paths) { 5282 if (llvm::StringRef(rpath).startswith(loader_path)) { 5283 rpath.erase(0, loader_path.size()); 5284 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5285 } else if (llvm::StringRef(rpath).startswith(executable_path)) { 5286 rpath.erase(0, executable_path.size()); 5287 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 5288 } 5289 } 5290 5291 for (const auto &rpath_relative_path : rpath_relative_paths) { 5292 for (const auto &rpath : rpath_paths) { 5293 std::string path = rpath; 5294 path += rpath_relative_path; 5295 // It is OK to resolve this path because we must find a file on disk 5296 // for us to accept it anyway if it is rpath relative. 5297 FileSpec file_spec(path); 5298 FileSystem::Instance().Resolve(file_spec); 5299 if (FileSystem::Instance().Exists(file_spec) && 5300 files.AppendIfUnique(file_spec)) { 5301 count++; 5302 break; 5303 } 5304 } 5305 } 5306 } 5307 5308 // We may have @executable_paths but no RPATHS. Figure those out here. 5309 // Only do this if this object file is the executable. We have no way to 5310 // get back to the actual executable otherwise, so we won't get the right 5311 // path. 5312 if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) { 5313 FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent(); 5314 for (const auto &at_exec_relative_path : at_exec_relative_paths) { 5315 FileSpec file_spec = 5316 exec_dir.CopyByAppendingPathComponent(at_exec_relative_path); 5317 if (FileSystem::Instance().Exists(file_spec) && 5318 files.AppendIfUnique(file_spec)) 5319 count++; 5320 } 5321 } 5322 } 5323 return count; 5324 } 5325 5326 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() { 5327 // If the object file is not an executable it can't hold the entry point. 5328 // m_entry_point_address is initialized to an invalid address, so we can just 5329 // return that. If m_entry_point_address is valid it means we've found it 5330 // already, so return the cached value. 5331 5332 if ((!IsExecutable() && !IsDynamicLoader()) || 5333 m_entry_point_address.IsValid()) { 5334 return m_entry_point_address; 5335 } 5336 5337 // Otherwise, look for the UnixThread or Thread command. The data for the 5338 // Thread command is given in /usr/include/mach-o.h, but it is basically: 5339 // 5340 // uint32_t flavor - this is the flavor argument you would pass to 5341 // thread_get_state 5342 // uint32_t count - this is the count of longs in the thread state data 5343 // struct XXX_thread_state state - this is the structure from 5344 // <machine/thread_status.h> corresponding to the flavor. 5345 // <repeat this trio> 5346 // 5347 // So we just keep reading the various register flavors till we find the GPR 5348 // one, then read the PC out of there. 5349 // FIXME: We will need to have a "RegisterContext data provider" class at some 5350 // point that can get all the registers 5351 // out of data in this form & attach them to a given thread. That should 5352 // underlie the MacOS X User process plugin, and we'll also need it for the 5353 // MacOS X Core File process plugin. When we have that we can also use it 5354 // here. 5355 // 5356 // For now we hard-code the offsets and flavors we need: 5357 // 5358 // 5359 5360 ModuleSP module_sp(GetModule()); 5361 if (module_sp) { 5362 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5363 llvm::MachO::load_command load_cmd; 5364 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5365 uint32_t i; 5366 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 5367 bool done = false; 5368 5369 for (i = 0; i < m_header.ncmds; ++i) { 5370 const lldb::offset_t cmd_offset = offset; 5371 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5372 break; 5373 5374 switch (load_cmd.cmd) { 5375 case LC_UNIXTHREAD: 5376 case LC_THREAD: { 5377 while (offset < cmd_offset + load_cmd.cmdsize) { 5378 uint32_t flavor = m_data.GetU32(&offset); 5379 uint32_t count = m_data.GetU32(&offset); 5380 if (count == 0) { 5381 // We've gotten off somehow, log and exit; 5382 return m_entry_point_address; 5383 } 5384 5385 switch (m_header.cputype) { 5386 case llvm::MachO::CPU_TYPE_ARM: 5387 if (flavor == 1 || 5388 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 5389 // from mach/arm/thread_status.h 5390 { 5391 offset += 60; // This is the offset of pc in the GPR thread state 5392 // data structure. 5393 start_address = m_data.GetU32(&offset); 5394 done = true; 5395 } 5396 break; 5397 case llvm::MachO::CPU_TYPE_ARM64: 5398 case llvm::MachO::CPU_TYPE_ARM64_32: 5399 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 5400 { 5401 offset += 256; // This is the offset of pc in the GPR thread state 5402 // data structure. 5403 start_address = m_data.GetU64(&offset); 5404 done = true; 5405 } 5406 break; 5407 case llvm::MachO::CPU_TYPE_I386: 5408 if (flavor == 5409 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 5410 { 5411 offset += 40; // This is the offset of eip in the GPR thread state 5412 // data structure. 5413 start_address = m_data.GetU32(&offset); 5414 done = true; 5415 } 5416 break; 5417 case llvm::MachO::CPU_TYPE_X86_64: 5418 if (flavor == 5419 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 5420 { 5421 offset += 16 * 8; // This is the offset of rip in the GPR thread 5422 // state data structure. 5423 start_address = m_data.GetU64(&offset); 5424 done = true; 5425 } 5426 break; 5427 default: 5428 return m_entry_point_address; 5429 } 5430 // Haven't found the GPR flavor yet, skip over the data for this 5431 // flavor: 5432 if (done) 5433 break; 5434 offset += count * 4; 5435 } 5436 } break; 5437 case LC_MAIN: { 5438 ConstString text_segment_name("__TEXT"); 5439 uint64_t entryoffset = m_data.GetU64(&offset); 5440 SectionSP text_segment_sp = 5441 GetSectionList()->FindSectionByName(text_segment_name); 5442 if (text_segment_sp) { 5443 done = true; 5444 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5445 } 5446 } break; 5447 5448 default: 5449 break; 5450 } 5451 if (done) 5452 break; 5453 5454 // Go to the next load command: 5455 offset = cmd_offset + load_cmd.cmdsize; 5456 } 5457 5458 if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) { 5459 if (GetSymtab()) { 5460 Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType( 5461 ConstString("_dyld_start"), SymbolType::eSymbolTypeCode, 5462 Symtab::eDebugAny, Symtab::eVisibilityAny); 5463 if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) { 5464 start_address = dyld_start_sym->GetAddress().GetFileAddress(); 5465 } 5466 } 5467 } 5468 5469 if (start_address != LLDB_INVALID_ADDRESS) { 5470 // We got the start address from the load commands, so now resolve that 5471 // address in the sections of this ObjectFile: 5472 if (!m_entry_point_address.ResolveAddressUsingFileSections( 5473 start_address, GetSectionList())) { 5474 m_entry_point_address.Clear(); 5475 } 5476 } else { 5477 // We couldn't read the UnixThread load command - maybe it wasn't there. 5478 // As a fallback look for the "start" symbol in the main executable. 5479 5480 ModuleSP module_sp(GetModule()); 5481 5482 if (module_sp) { 5483 SymbolContextList contexts; 5484 SymbolContext context; 5485 module_sp->FindSymbolsWithNameAndType(ConstString("start"), 5486 eSymbolTypeCode, contexts); 5487 if (contexts.GetSize()) { 5488 if (contexts.GetContextAtIndex(0, context)) 5489 m_entry_point_address = context.symbol->GetAddress(); 5490 } 5491 } 5492 } 5493 } 5494 5495 return m_entry_point_address; 5496 } 5497 5498 lldb_private::Address ObjectFileMachO::GetBaseAddress() { 5499 lldb_private::Address header_addr; 5500 SectionList *section_list = GetSectionList(); 5501 if (section_list) { 5502 SectionSP text_segment_sp( 5503 section_list->FindSectionByName(GetSegmentNameTEXT())); 5504 if (text_segment_sp) { 5505 header_addr.SetSection(text_segment_sp); 5506 header_addr.SetOffset(0); 5507 } 5508 } 5509 return header_addr; 5510 } 5511 5512 uint32_t ObjectFileMachO::GetNumThreadContexts() { 5513 ModuleSP module_sp(GetModule()); 5514 if (module_sp) { 5515 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5516 if (!m_thread_context_offsets_valid) { 5517 m_thread_context_offsets_valid = true; 5518 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5519 FileRangeArray::Entry file_range; 5520 llvm::MachO::thread_command thread_cmd; 5521 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5522 const uint32_t cmd_offset = offset; 5523 if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr) 5524 break; 5525 5526 if (thread_cmd.cmd == LC_THREAD) { 5527 file_range.SetRangeBase(offset); 5528 file_range.SetByteSize(thread_cmd.cmdsize - 8); 5529 m_thread_context_offsets.Append(file_range); 5530 } 5531 offset = cmd_offset + thread_cmd.cmdsize; 5532 } 5533 } 5534 } 5535 return m_thread_context_offsets.GetSize(); 5536 } 5537 5538 std::string ObjectFileMachO::GetIdentifierString() { 5539 std::string result; 5540 ModuleSP module_sp(GetModule()); 5541 if (module_sp) { 5542 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5543 5544 // First, look over the load commands for an LC_NOTE load command with 5545 // data_owner string "kern ver str" & use that if found. 5546 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5547 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5548 const uint32_t cmd_offset = offset; 5549 llvm::MachO::load_command lc; 5550 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5551 break; 5552 if (lc.cmd == LC_NOTE) { 5553 char data_owner[17]; 5554 m_data.CopyData(offset, 16, data_owner); 5555 data_owner[16] = '\0'; 5556 offset += 16; 5557 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5558 uint64_t size = m_data.GetU64_unchecked(&offset); 5559 5560 // "kern ver str" has a uint32_t version and then a nul terminated 5561 // c-string. 5562 if (strcmp("kern ver str", data_owner) == 0) { 5563 offset = fileoff; 5564 uint32_t version; 5565 if (m_data.GetU32(&offset, &version, 1) != nullptr) { 5566 if (version == 1) { 5567 uint32_t strsize = size - sizeof(uint32_t); 5568 char *buf = (char *)malloc(strsize); 5569 if (buf) { 5570 m_data.CopyData(offset, strsize, buf); 5571 buf[strsize - 1] = '\0'; 5572 result = buf; 5573 if (buf) 5574 free(buf); 5575 return result; 5576 } 5577 } 5578 } 5579 } 5580 } 5581 offset = cmd_offset + lc.cmdsize; 5582 } 5583 5584 // Second, make a pass over the load commands looking for an obsolete 5585 // LC_IDENT load command. 5586 offset = MachHeaderSizeFromMagic(m_header.magic); 5587 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5588 const uint32_t cmd_offset = offset; 5589 llvm::MachO::ident_command ident_command; 5590 if (m_data.GetU32(&offset, &ident_command, 2) == nullptr) 5591 break; 5592 if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) { 5593 char *buf = (char *)malloc(ident_command.cmdsize); 5594 if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize, 5595 buf) == ident_command.cmdsize) { 5596 buf[ident_command.cmdsize - 1] = '\0'; 5597 result = buf; 5598 } 5599 if (buf) 5600 free(buf); 5601 } 5602 offset = cmd_offset + ident_command.cmdsize; 5603 } 5604 } 5605 return result; 5606 } 5607 5608 addr_t ObjectFileMachO::GetAddressMask() { 5609 addr_t mask = 0; 5610 ModuleSP module_sp(GetModule()); 5611 if (module_sp) { 5612 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5613 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5614 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5615 const uint32_t cmd_offset = offset; 5616 llvm::MachO::load_command lc; 5617 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5618 break; 5619 if (lc.cmd == LC_NOTE) { 5620 char data_owner[17]; 5621 m_data.CopyData(offset, 16, data_owner); 5622 data_owner[16] = '\0'; 5623 offset += 16; 5624 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5625 5626 // "addrable bits" has a uint32_t version and a uint32_t 5627 // number of bits used in addressing. 5628 if (strcmp("addrable bits", data_owner) == 0) { 5629 offset = fileoff; 5630 uint32_t version; 5631 if (m_data.GetU32(&offset, &version, 1) != nullptr) { 5632 if (version == 3) { 5633 uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset); 5634 if (num_addr_bits != 0) { 5635 mask = ~((1ULL << num_addr_bits) - 1); 5636 } 5637 break; 5638 } 5639 } 5640 } 5641 } 5642 offset = cmd_offset + lc.cmdsize; 5643 } 5644 } 5645 return mask; 5646 } 5647 5648 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &address, UUID &uuid, 5649 ObjectFile::BinaryType &type) { 5650 address = LLDB_INVALID_ADDRESS; 5651 uuid.Clear(); 5652 ModuleSP module_sp(GetModule()); 5653 if (module_sp) { 5654 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5655 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5656 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 5657 const uint32_t cmd_offset = offset; 5658 llvm::MachO::load_command lc; 5659 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 5660 break; 5661 if (lc.cmd == LC_NOTE) { 5662 char data_owner[17]; 5663 memset(data_owner, 0, sizeof(data_owner)); 5664 m_data.CopyData(offset, 16, data_owner); 5665 offset += 16; 5666 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 5667 uint64_t size = m_data.GetU64_unchecked(&offset); 5668 5669 // "main bin spec" (main binary specification) data payload is 5670 // formatted: 5671 // uint32_t version [currently 1] 5672 // uint32_t type [0 == unspecified, 1 == kernel, 5673 // 2 == user process, 3 == firmware ] 5674 // uint64_t address [ UINT64_MAX if address not specified ] 5675 // uuid_t uuid [ all zero's if uuid not specified ] 5676 // uint32_t log2_pagesize [ process page size in log base 5677 // 2, e.g. 4k pages are 12. 5678 // 0 for unspecified ] 5679 // uint32_t unused [ for alignment ] 5680 5681 if (strcmp("main bin spec", data_owner) == 0 && size >= 32) { 5682 offset = fileoff; 5683 uint32_t version; 5684 if (m_data.GetU32(&offset, &version, 1) != nullptr && version == 1) { 5685 uint32_t binspec_type = 0; 5686 uuid_t raw_uuid; 5687 memset(raw_uuid, 0, sizeof(uuid_t)); 5688 5689 if (m_data.GetU32(&offset, &binspec_type, 1) && 5690 m_data.GetU64(&offset, &address, 1) && 5691 m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) { 5692 uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t)); 5693 // convert the "main bin spec" type into our 5694 // ObjectFile::BinaryType enum 5695 switch (binspec_type) { 5696 case 0: 5697 type = eBinaryTypeUnknown; 5698 break; 5699 case 1: 5700 type = eBinaryTypeKernel; 5701 break; 5702 case 2: 5703 type = eBinaryTypeUser; 5704 break; 5705 case 3: 5706 type = eBinaryTypeStandalone; 5707 break; 5708 } 5709 return true; 5710 } 5711 } 5712 } 5713 } 5714 offset = cmd_offset + lc.cmdsize; 5715 } 5716 } 5717 return false; 5718 } 5719 5720 lldb::RegisterContextSP 5721 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx, 5722 lldb_private::Thread &thread) { 5723 lldb::RegisterContextSP reg_ctx_sp; 5724 5725 ModuleSP module_sp(GetModule()); 5726 if (module_sp) { 5727 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5728 if (!m_thread_context_offsets_valid) 5729 GetNumThreadContexts(); 5730 5731 const FileRangeArray::Entry *thread_context_file_range = 5732 m_thread_context_offsets.GetEntryAtIndex(idx); 5733 if (thread_context_file_range) { 5734 5735 DataExtractor data(m_data, thread_context_file_range->GetRangeBase(), 5736 thread_context_file_range->GetByteSize()); 5737 5738 switch (m_header.cputype) { 5739 case llvm::MachO::CPU_TYPE_ARM64: 5740 case llvm::MachO::CPU_TYPE_ARM64_32: 5741 reg_ctx_sp = 5742 std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data); 5743 break; 5744 5745 case llvm::MachO::CPU_TYPE_ARM: 5746 reg_ctx_sp = 5747 std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data); 5748 break; 5749 5750 case llvm::MachO::CPU_TYPE_I386: 5751 reg_ctx_sp = 5752 std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data); 5753 break; 5754 5755 case llvm::MachO::CPU_TYPE_X86_64: 5756 reg_ctx_sp = 5757 std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data); 5758 break; 5759 } 5760 } 5761 } 5762 return reg_ctx_sp; 5763 } 5764 5765 ObjectFile::Type ObjectFileMachO::CalculateType() { 5766 switch (m_header.filetype) { 5767 case MH_OBJECT: // 0x1u 5768 if (GetAddressByteSize() == 4) { 5769 // 32 bit kexts are just object files, but they do have a valid 5770 // UUID load command. 5771 if (GetUUID()) { 5772 // this checking for the UUID load command is not enough we could 5773 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5774 // this is required of kexts 5775 if (m_strata == eStrataInvalid) 5776 m_strata = eStrataKernel; 5777 return eTypeSharedLibrary; 5778 } 5779 } 5780 return eTypeObjectFile; 5781 5782 case MH_EXECUTE: 5783 return eTypeExecutable; // 0x2u 5784 case MH_FVMLIB: 5785 return eTypeSharedLibrary; // 0x3u 5786 case MH_CORE: 5787 return eTypeCoreFile; // 0x4u 5788 case MH_PRELOAD: 5789 return eTypeSharedLibrary; // 0x5u 5790 case MH_DYLIB: 5791 return eTypeSharedLibrary; // 0x6u 5792 case MH_DYLINKER: 5793 return eTypeDynamicLinker; // 0x7u 5794 case MH_BUNDLE: 5795 return eTypeSharedLibrary; // 0x8u 5796 case MH_DYLIB_STUB: 5797 return eTypeStubLibrary; // 0x9u 5798 case MH_DSYM: 5799 return eTypeDebugInfo; // 0xAu 5800 case MH_KEXT_BUNDLE: 5801 return eTypeSharedLibrary; // 0xBu 5802 default: 5803 break; 5804 } 5805 return eTypeUnknown; 5806 } 5807 5808 ObjectFile::Strata ObjectFileMachO::CalculateStrata() { 5809 switch (m_header.filetype) { 5810 case MH_OBJECT: // 0x1u 5811 { 5812 // 32 bit kexts are just object files, but they do have a valid 5813 // UUID load command. 5814 if (GetUUID()) { 5815 // this checking for the UUID load command is not enough we could 5816 // eventually look for the symbol named "OSKextGetCurrentIdentifier" as 5817 // this is required of kexts 5818 if (m_type == eTypeInvalid) 5819 m_type = eTypeSharedLibrary; 5820 5821 return eStrataKernel; 5822 } 5823 } 5824 return eStrataUnknown; 5825 5826 case MH_EXECUTE: // 0x2u 5827 // Check for the MH_DYLDLINK bit in the flags 5828 if (m_header.flags & MH_DYLDLINK) { 5829 return eStrataUser; 5830 } else { 5831 SectionList *section_list = GetSectionList(); 5832 if (section_list) { 5833 static ConstString g_kld_section_name("__KLD"); 5834 if (section_list->FindSectionByName(g_kld_section_name)) 5835 return eStrataKernel; 5836 } 5837 } 5838 return eStrataRawImage; 5839 5840 case MH_FVMLIB: 5841 return eStrataUser; // 0x3u 5842 case MH_CORE: 5843 return eStrataUnknown; // 0x4u 5844 case MH_PRELOAD: 5845 return eStrataRawImage; // 0x5u 5846 case MH_DYLIB: 5847 return eStrataUser; // 0x6u 5848 case MH_DYLINKER: 5849 return eStrataUser; // 0x7u 5850 case MH_BUNDLE: 5851 return eStrataUser; // 0x8u 5852 case MH_DYLIB_STUB: 5853 return eStrataUser; // 0x9u 5854 case MH_DSYM: 5855 return eStrataUnknown; // 0xAu 5856 case MH_KEXT_BUNDLE: 5857 return eStrataKernel; // 0xBu 5858 default: 5859 break; 5860 } 5861 return eStrataUnknown; 5862 } 5863 5864 llvm::VersionTuple ObjectFileMachO::GetVersion() { 5865 ModuleSP module_sp(GetModule()); 5866 if (module_sp) { 5867 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5868 llvm::MachO::dylib_command load_cmd; 5869 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5870 uint32_t version_cmd = 0; 5871 uint64_t version = 0; 5872 uint32_t i; 5873 for (i = 0; i < m_header.ncmds; ++i) { 5874 const lldb::offset_t cmd_offset = offset; 5875 if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr) 5876 break; 5877 5878 if (load_cmd.cmd == LC_ID_DYLIB) { 5879 if (version_cmd == 0) { 5880 version_cmd = load_cmd.cmd; 5881 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr) 5882 break; 5883 version = load_cmd.dylib.current_version; 5884 } 5885 break; // Break for now unless there is another more complete version 5886 // number load command in the future. 5887 } 5888 offset = cmd_offset + load_cmd.cmdsize; 5889 } 5890 5891 if (version_cmd == LC_ID_DYLIB) { 5892 unsigned major = (version & 0xFFFF0000ull) >> 16; 5893 unsigned minor = (version & 0x0000FF00ull) >> 8; 5894 unsigned subminor = (version & 0x000000FFull); 5895 return llvm::VersionTuple(major, minor, subminor); 5896 } 5897 } 5898 return llvm::VersionTuple(); 5899 } 5900 5901 ArchSpec ObjectFileMachO::GetArchitecture() { 5902 ModuleSP module_sp(GetModule()); 5903 ArchSpec arch; 5904 if (module_sp) { 5905 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 5906 5907 return GetArchitecture(module_sp, m_header, m_data, 5908 MachHeaderSizeFromMagic(m_header.magic)); 5909 } 5910 return arch; 5911 } 5912 5913 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process, 5914 addr_t &base_addr, UUID &uuid) { 5915 uuid.Clear(); 5916 base_addr = LLDB_INVALID_ADDRESS; 5917 if (process && process->GetDynamicLoader()) { 5918 DynamicLoader *dl = process->GetDynamicLoader(); 5919 LazyBool using_shared_cache; 5920 LazyBool private_shared_cache; 5921 dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache, 5922 private_shared_cache); 5923 } 5924 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 5925 LIBLLDB_LOG_PROCESS)); 5926 LLDB_LOGF( 5927 log, 5928 "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64, 5929 uuid.GetAsString().c_str(), base_addr); 5930 } 5931 5932 // From dyld SPI header dyld_process_info.h 5933 typedef void *dyld_process_info; 5934 struct lldb_copy__dyld_process_cache_info { 5935 uuid_t cacheUUID; // UUID of cache used by process 5936 uint64_t cacheBaseAddress; // load address of dyld shared cache 5937 bool noCache; // process is running without a dyld cache 5938 bool privateCache; // process is using a private copy of its dyld cache 5939 }; 5940 5941 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with 5942 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile 5943 // errors. So we need to use the actual underlying types of task_t and 5944 // kern_return_t below. 5945 extern "C" unsigned int /*task_t*/ mach_task_self(); 5946 5947 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) { 5948 uuid.Clear(); 5949 base_addr = LLDB_INVALID_ADDRESS; 5950 5951 #if defined(__APPLE__) 5952 uint8_t *(*dyld_get_all_image_infos)(void); 5953 dyld_get_all_image_infos = 5954 (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5955 if (dyld_get_all_image_infos) { 5956 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5957 if (dyld_all_image_infos_address) { 5958 uint32_t *version = (uint32_t *) 5959 dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5960 if (*version >= 13) { 5961 uuid_t *sharedCacheUUID_address = 0; 5962 int wordsize = sizeof(uint8_t *); 5963 if (wordsize == 8) { 5964 sharedCacheUUID_address = 5965 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5966 160); // sharedCacheUUID <mach-o/dyld_images.h> 5967 if (*version >= 15) 5968 base_addr = 5969 *(uint64_t 5970 *)((uint8_t *)dyld_all_image_infos_address + 5971 176); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5972 } else { 5973 sharedCacheUUID_address = 5974 (uuid_t *)((uint8_t *)dyld_all_image_infos_address + 5975 84); // sharedCacheUUID <mach-o/dyld_images.h> 5976 if (*version >= 15) { 5977 base_addr = 0; 5978 base_addr = 5979 *(uint32_t 5980 *)((uint8_t *)dyld_all_image_infos_address + 5981 100); // sharedCacheBaseAddress <mach-o/dyld_images.h> 5982 } 5983 } 5984 uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t)); 5985 } 5986 } 5987 } else { 5988 // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI 5989 dyld_process_info (*dyld_process_info_create)( 5990 unsigned int /* task_t */ task, uint64_t timestamp, 5991 unsigned int /*kern_return_t*/ *kernelError); 5992 void (*dyld_process_info_get_cache)(void *info, void *cacheInfo); 5993 void (*dyld_process_info_release)(dyld_process_info info); 5994 5995 dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t, 5996 unsigned int /*kern_return_t*/ *)) 5997 dlsym(RTLD_DEFAULT, "_dyld_process_info_create"); 5998 dyld_process_info_get_cache = (void (*)(void *, void *))dlsym( 5999 RTLD_DEFAULT, "_dyld_process_info_get_cache"); 6000 dyld_process_info_release = 6001 (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release"); 6002 6003 if (dyld_process_info_create && dyld_process_info_get_cache) { 6004 unsigned int /*kern_return_t */ kern_ret; 6005 dyld_process_info process_info = 6006 dyld_process_info_create(::mach_task_self(), 0, &kern_ret); 6007 if (process_info) { 6008 struct lldb_copy__dyld_process_cache_info sc_info; 6009 memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info)); 6010 dyld_process_info_get_cache(process_info, &sc_info); 6011 if (sc_info.cacheBaseAddress != 0) { 6012 base_addr = sc_info.cacheBaseAddress; 6013 uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t)); 6014 } 6015 dyld_process_info_release(process_info); 6016 } 6017 } 6018 } 6019 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS | 6020 LIBLLDB_LOG_PROCESS)); 6021 if (log && uuid.IsValid()) 6022 LLDB_LOGF(log, 6023 "lldb's in-memory shared cache has a UUID of %s base address of " 6024 "0x%" PRIx64, 6025 uuid.GetAsString().c_str(), base_addr); 6026 #endif 6027 } 6028 6029 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() { 6030 if (!m_min_os_version) { 6031 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 6032 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6033 const lldb::offset_t load_cmd_offset = offset; 6034 6035 llvm::MachO::version_min_command lc; 6036 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6037 break; 6038 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 6039 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 6040 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 6041 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 6042 if (m_data.GetU32(&offset, &lc.version, 6043 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 6044 const uint32_t xxxx = lc.version >> 16; 6045 const uint32_t yy = (lc.version >> 8) & 0xffu; 6046 const uint32_t zz = lc.version & 0xffu; 6047 if (xxxx) { 6048 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 6049 break; 6050 } 6051 } 6052 } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 6053 // struct build_version_command { 6054 // uint32_t cmd; /* LC_BUILD_VERSION */ 6055 // uint32_t cmdsize; /* sizeof(struct 6056 // build_version_command) plus */ 6057 // /* ntools * sizeof(struct 6058 // build_tool_version) */ 6059 // uint32_t platform; /* platform */ 6060 // uint32_t minos; /* X.Y.Z is encoded in nibbles 6061 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded in 6062 // nibbles xxxx.yy.zz */ uint32_t ntools; /* number of 6063 // tool entries following this */ 6064 // }; 6065 6066 offset += 4; // skip platform 6067 uint32_t minos = m_data.GetU32(&offset); 6068 6069 const uint32_t xxxx = minos >> 16; 6070 const uint32_t yy = (minos >> 8) & 0xffu; 6071 const uint32_t zz = minos & 0xffu; 6072 if (xxxx) { 6073 m_min_os_version = llvm::VersionTuple(xxxx, yy, zz); 6074 break; 6075 } 6076 } 6077 6078 offset = load_cmd_offset + lc.cmdsize; 6079 } 6080 6081 if (!m_min_os_version) { 6082 // Set version to an empty value so we don't keep trying to 6083 m_min_os_version = llvm::VersionTuple(); 6084 } 6085 } 6086 6087 return *m_min_os_version; 6088 } 6089 6090 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() { 6091 if (!m_sdk_versions.hasValue()) { 6092 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 6093 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6094 const lldb::offset_t load_cmd_offset = offset; 6095 6096 llvm::MachO::version_min_command lc; 6097 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6098 break; 6099 if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX || 6100 lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS || 6101 lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS || 6102 lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) { 6103 if (m_data.GetU32(&offset, &lc.version, 6104 (sizeof(lc) / sizeof(uint32_t)) - 2)) { 6105 const uint32_t xxxx = lc.sdk >> 16; 6106 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 6107 const uint32_t zz = lc.sdk & 0xffu; 6108 if (xxxx) { 6109 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); 6110 break; 6111 } else { 6112 GetModule()->ReportWarning("minimum OS version load command with " 6113 "invalid (0) version found."); 6114 } 6115 } 6116 } 6117 offset = load_cmd_offset + lc.cmdsize; 6118 } 6119 6120 if (!m_sdk_versions.hasValue()) { 6121 offset = MachHeaderSizeFromMagic(m_header.magic); 6122 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6123 const lldb::offset_t load_cmd_offset = offset; 6124 6125 llvm::MachO::version_min_command lc; 6126 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6127 break; 6128 if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) { 6129 // struct build_version_command { 6130 // uint32_t cmd; /* LC_BUILD_VERSION */ 6131 // uint32_t cmdsize; /* sizeof(struct 6132 // build_version_command) plus */ 6133 // /* ntools * sizeof(struct 6134 // build_tool_version) */ 6135 // uint32_t platform; /* platform */ 6136 // uint32_t minos; /* X.Y.Z is encoded in nibbles 6137 // xxxx.yy.zz */ uint32_t sdk; /* X.Y.Z is encoded 6138 // in nibbles xxxx.yy.zz */ uint32_t ntools; /* number 6139 // of tool entries following this */ 6140 // }; 6141 6142 offset += 4; // skip platform 6143 uint32_t minos = m_data.GetU32(&offset); 6144 6145 const uint32_t xxxx = minos >> 16; 6146 const uint32_t yy = (minos >> 8) & 0xffu; 6147 const uint32_t zz = minos & 0xffu; 6148 if (xxxx) { 6149 m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz); 6150 break; 6151 } 6152 } 6153 offset = load_cmd_offset + lc.cmdsize; 6154 } 6155 } 6156 6157 if (!m_sdk_versions.hasValue()) 6158 m_sdk_versions = llvm::VersionTuple(); 6159 } 6160 6161 return m_sdk_versions.getValue(); 6162 } 6163 6164 bool ObjectFileMachO::GetIsDynamicLinkEditor() { 6165 return m_header.filetype == llvm::MachO::MH_DYLINKER; 6166 } 6167 6168 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() { 6169 return m_allow_assembly_emulation_unwind_plans; 6170 } 6171 6172 // PluginInterface protocol 6173 lldb_private::ConstString ObjectFileMachO::GetPluginName() { 6174 return GetPluginNameStatic(); 6175 } 6176 6177 Section *ObjectFileMachO::GetMachHeaderSection() { 6178 // Find the first address of the mach header which is the first non-zero file 6179 // sized section whose file offset is zero. This is the base file address of 6180 // the mach-o file which can be subtracted from the vmaddr of the other 6181 // segments found in memory and added to the load address 6182 ModuleSP module_sp = GetModule(); 6183 if (!module_sp) 6184 return nullptr; 6185 SectionList *section_list = GetSectionList(); 6186 if (!section_list) 6187 return nullptr; 6188 const size_t num_sections = section_list->GetSize(); 6189 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6190 Section *section = section_list->GetSectionAtIndex(sect_idx).get(); 6191 if (section->GetFileOffset() == 0 && SectionIsLoadable(section)) 6192 return section; 6193 } 6194 return nullptr; 6195 } 6196 6197 bool ObjectFileMachO::SectionIsLoadable(const Section *section) { 6198 if (!section) 6199 return false; 6200 const bool is_dsym = (m_header.filetype == MH_DSYM); 6201 if (section->GetFileSize() == 0 && !is_dsym) 6202 return false; 6203 if (section->IsThreadSpecific()) 6204 return false; 6205 if (GetModule().get() != section->GetModule().get()) 6206 return false; 6207 // Be careful with __LINKEDIT and __DWARF segments 6208 if (section->GetName() == GetSegmentNameLINKEDIT() || 6209 section->GetName() == GetSegmentNameDWARF()) { 6210 // Only map __LINKEDIT and __DWARF if we have an in memory image and 6211 // this isn't a kernel binary like a kext or mach_kernel. 6212 const bool is_memory_image = (bool)m_process_wp.lock(); 6213 const Strata strata = GetStrata(); 6214 if (is_memory_image == false || strata == eStrataKernel) 6215 return false; 6216 } 6217 return true; 6218 } 6219 6220 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage( 6221 lldb::addr_t header_load_address, const Section *header_section, 6222 const Section *section) { 6223 ModuleSP module_sp = GetModule(); 6224 if (module_sp && header_section && section && 6225 header_load_address != LLDB_INVALID_ADDRESS) { 6226 lldb::addr_t file_addr = header_section->GetFileAddress(); 6227 if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section)) 6228 return section->GetFileAddress() - file_addr + header_load_address; 6229 } 6230 return LLDB_INVALID_ADDRESS; 6231 } 6232 6233 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value, 6234 bool value_is_offset) { 6235 ModuleSP module_sp = GetModule(); 6236 if (!module_sp) 6237 return false; 6238 6239 SectionList *section_list = GetSectionList(); 6240 if (!section_list) 6241 return false; 6242 6243 size_t num_loaded_sections = 0; 6244 const size_t num_sections = section_list->GetSize(); 6245 6246 if (value_is_offset) { 6247 // "value" is an offset to apply to each top level segment 6248 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6249 // Iterate through the object file sections to find all of the 6250 // sections that size on disk (to avoid __PAGEZERO) and load them 6251 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6252 if (SectionIsLoadable(section_sp.get())) 6253 if (target.GetSectionLoadList().SetSectionLoadAddress( 6254 section_sp, section_sp->GetFileAddress() + value)) 6255 ++num_loaded_sections; 6256 } 6257 } else { 6258 // "value" is the new base address of the mach_header, adjust each 6259 // section accordingly 6260 6261 Section *mach_header_section = GetMachHeaderSection(); 6262 if (mach_header_section) { 6263 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 6264 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 6265 6266 lldb::addr_t section_load_addr = 6267 CalculateSectionLoadAddressForMemoryImage( 6268 value, mach_header_section, section_sp.get()); 6269 if (section_load_addr != LLDB_INVALID_ADDRESS) { 6270 if (target.GetSectionLoadList().SetSectionLoadAddress( 6271 section_sp, section_load_addr)) 6272 ++num_loaded_sections; 6273 } 6274 } 6275 } 6276 } 6277 return num_loaded_sections > 0; 6278 } 6279 6280 struct all_image_infos_header { 6281 uint32_t version; // currently 1 6282 uint32_t imgcount; // number of binary images 6283 uint64_t entries_fileoff; // file offset in the corefile of where the array of 6284 // struct entry's begin. 6285 uint32_t entries_size; // size of 'struct entry'. 6286 uint32_t unused; 6287 }; 6288 6289 struct image_entry { 6290 uint64_t filepath_offset; // offset in corefile to c-string of the file path, 6291 // UINT64_MAX if unavailable. 6292 uuid_t uuid; // uint8_t[16]. should be set to all zeroes if 6293 // uuid is unknown. 6294 uint64_t load_address; // UINT64_MAX if unknown. 6295 uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's. 6296 uint32_t segment_count; // The number of segments for this binary. 6297 uint32_t unused; 6298 6299 image_entry() { 6300 filepath_offset = UINT64_MAX; 6301 memset(&uuid, 0, sizeof(uuid_t)); 6302 segment_count = 0; 6303 load_address = UINT64_MAX; 6304 seg_addrs_offset = UINT64_MAX; 6305 unused = 0; 6306 } 6307 image_entry(const image_entry &rhs) { 6308 filepath_offset = rhs.filepath_offset; 6309 memcpy(&uuid, &rhs.uuid, sizeof(uuid_t)); 6310 segment_count = rhs.segment_count; 6311 seg_addrs_offset = rhs.seg_addrs_offset; 6312 load_address = rhs.load_address; 6313 unused = rhs.unused; 6314 } 6315 }; 6316 6317 struct segment_vmaddr { 6318 char segname[16]; 6319 uint64_t vmaddr; 6320 uint64_t unused; 6321 6322 segment_vmaddr() { 6323 memset(&segname, 0, 16); 6324 vmaddr = UINT64_MAX; 6325 unused = 0; 6326 } 6327 segment_vmaddr(const segment_vmaddr &rhs) { 6328 memcpy(&segname, &rhs.segname, 16); 6329 vmaddr = rhs.vmaddr; 6330 unused = rhs.unused; 6331 } 6332 }; 6333 6334 // Write the payload for the "all image infos" LC_NOTE into 6335 // the supplied all_image_infos_payload, assuming that this 6336 // will be written into the corefile starting at 6337 // initial_file_offset. 6338 // 6339 // The placement of this payload is a little tricky. We're 6340 // laying this out as 6341 // 6342 // 1. header (struct all_image_info_header) 6343 // 2. Array of fixed-size (struct image_entry)'s, one 6344 // per binary image present in the process. 6345 // 3. Arrays of (struct segment_vmaddr)'s, a varying number 6346 // for each binary image. 6347 // 4. Variable length c-strings of binary image filepaths, 6348 // one per binary. 6349 // 6350 // To compute where everything will be laid out in the 6351 // payload, we need to iterate over the images and calculate 6352 // how many segment_vmaddr structures each image will need, 6353 // and how long each image's filepath c-string is. There 6354 // are some multiple passes over the image list while calculating 6355 // everything. 6356 6357 static offset_t CreateAllImageInfosPayload( 6358 const lldb::ProcessSP &process_sp, offset_t initial_file_offset, 6359 StreamString &all_image_infos_payload, SaveCoreStyle core_style) { 6360 Target &target = process_sp->GetTarget(); 6361 ModuleList modules = target.GetImages(); 6362 6363 // stack-only corefiles have no reason to include binaries that 6364 // are not executing; we're trying to make the smallest corefile 6365 // we can, so leave the rest out. 6366 if (core_style == SaveCoreStyle::eSaveCoreStackOnly) 6367 modules.Clear(); 6368 6369 std::set<std::string> executing_uuids; 6370 ThreadList &thread_list(process_sp->GetThreadList()); 6371 for (uint32_t i = 0; i < thread_list.GetSize(); i++) { 6372 ThreadSP thread_sp = thread_list.GetThreadAtIndex(i); 6373 uint32_t stack_frame_count = thread_sp->GetStackFrameCount(); 6374 for (uint32_t j = 0; j < stack_frame_count; j++) { 6375 StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j); 6376 Address pc = stack_frame_sp->GetFrameCodeAddress(); 6377 ModuleSP module_sp = pc.GetModule(); 6378 if (module_sp) { 6379 UUID uuid = module_sp->GetUUID(); 6380 if (uuid.IsValid()) { 6381 executing_uuids.insert(uuid.GetAsString()); 6382 modules.AppendIfNeeded(module_sp); 6383 } 6384 } 6385 } 6386 } 6387 size_t modules_count = modules.GetSize(); 6388 6389 struct all_image_infos_header infos; 6390 infos.version = 1; 6391 infos.imgcount = modules_count; 6392 infos.entries_size = sizeof(image_entry); 6393 infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header); 6394 infos.unused = 0; 6395 6396 all_image_infos_payload.PutHex32(infos.version); 6397 all_image_infos_payload.PutHex32(infos.imgcount); 6398 all_image_infos_payload.PutHex64(infos.entries_fileoff); 6399 all_image_infos_payload.PutHex32(infos.entries_size); 6400 all_image_infos_payload.PutHex32(infos.unused); 6401 6402 // First create the structures for all of the segment name+vmaddr vectors 6403 // for each module, so we will know the size of them as we add the 6404 // module entries. 6405 std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs; 6406 for (size_t i = 0; i < modules_count; i++) { 6407 ModuleSP module = modules.GetModuleAtIndex(i); 6408 6409 SectionList *sections = module->GetSectionList(); 6410 size_t sections_count = sections->GetSize(); 6411 std::vector<segment_vmaddr> segment_vmaddrs; 6412 for (size_t j = 0; j < sections_count; j++) { 6413 SectionSP section = sections->GetSectionAtIndex(j); 6414 if (!section->GetParent().get()) { 6415 addr_t vmaddr = section->GetLoadBaseAddress(&target); 6416 if (vmaddr == LLDB_INVALID_ADDRESS) 6417 continue; 6418 ConstString name = section->GetName(); 6419 segment_vmaddr seg_vmaddr; 6420 strncpy(seg_vmaddr.segname, name.AsCString(), 6421 sizeof(seg_vmaddr.segname)); 6422 seg_vmaddr.vmaddr = vmaddr; 6423 seg_vmaddr.unused = 0; 6424 segment_vmaddrs.push_back(seg_vmaddr); 6425 } 6426 } 6427 modules_segment_vmaddrs.push_back(segment_vmaddrs); 6428 } 6429 6430 offset_t size_of_vmaddr_structs = 0; 6431 for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) { 6432 size_of_vmaddr_structs += 6433 modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr); 6434 } 6435 6436 offset_t size_of_filepath_cstrings = 0; 6437 for (size_t i = 0; i < modules_count; i++) { 6438 ModuleSP module_sp = modules.GetModuleAtIndex(i); 6439 size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1; 6440 } 6441 6442 // Calculate the file offsets of our "all image infos" payload in the 6443 // corefile. initial_file_offset the original value passed in to this method. 6444 6445 offset_t start_of_entries = 6446 initial_file_offset + sizeof(all_image_infos_header); 6447 offset_t start_of_seg_vmaddrs = 6448 start_of_entries + sizeof(image_entry) * modules_count; 6449 offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs; 6450 6451 offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings; 6452 6453 // Now write the one-per-module 'struct image_entry' into the 6454 // StringStream; keep track of where the struct segment_vmaddr 6455 // entries for each module will end up in the corefile. 6456 6457 offset_t current_string_offset = start_of_filenames; 6458 offset_t current_segaddrs_offset = start_of_seg_vmaddrs; 6459 std::vector<struct image_entry> image_entries; 6460 for (size_t i = 0; i < modules_count; i++) { 6461 ModuleSP module_sp = modules.GetModuleAtIndex(i); 6462 6463 struct image_entry ent; 6464 memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid)); 6465 if (modules_segment_vmaddrs[i].size() > 0) { 6466 ent.segment_count = modules_segment_vmaddrs[i].size(); 6467 ent.seg_addrs_offset = current_segaddrs_offset; 6468 } 6469 ent.filepath_offset = current_string_offset; 6470 ObjectFile *objfile = module_sp->GetObjectFile(); 6471 if (objfile) { 6472 Address base_addr(objfile->GetBaseAddress()); 6473 if (base_addr.IsValid()) { 6474 ent.load_address = base_addr.GetLoadAddress(&target); 6475 } 6476 } 6477 6478 all_image_infos_payload.PutHex64(ent.filepath_offset); 6479 all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid)); 6480 all_image_infos_payload.PutHex64(ent.load_address); 6481 all_image_infos_payload.PutHex64(ent.seg_addrs_offset); 6482 all_image_infos_payload.PutHex32(ent.segment_count); 6483 6484 if (executing_uuids.find(module_sp->GetUUID().GetAsString()) != 6485 executing_uuids.end()) 6486 all_image_infos_payload.PutHex32(1); 6487 else 6488 all_image_infos_payload.PutHex32(0); 6489 6490 current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr); 6491 current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1; 6492 } 6493 6494 // Now write the struct segment_vmaddr entries into the StringStream. 6495 6496 for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) { 6497 if (modules_segment_vmaddrs[i].size() == 0) 6498 continue; 6499 for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) { 6500 all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname)); 6501 all_image_infos_payload.PutHex64(segvm.vmaddr); 6502 all_image_infos_payload.PutHex64(segvm.unused); 6503 } 6504 } 6505 6506 for (size_t i = 0; i < modules_count; i++) { 6507 ModuleSP module_sp = modules.GetModuleAtIndex(i); 6508 std::string filepath = module_sp->GetFileSpec().GetPath(); 6509 all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1); 6510 } 6511 6512 return final_file_offset; 6513 } 6514 6515 // Temp struct used to combine contiguous memory regions with 6516 // identical permissions. 6517 struct page_object { 6518 addr_t addr; 6519 addr_t size; 6520 uint32_t prot; 6521 }; 6522 6523 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp, 6524 const FileSpec &outfile, 6525 lldb::SaveCoreStyle &core_style, Status &error) { 6526 if (!process_sp) 6527 return false; 6528 6529 // Default on macOS is to create a dirty-memory-only corefile. 6530 if (core_style == SaveCoreStyle::eSaveCoreUnspecified) { 6531 core_style = SaveCoreStyle::eSaveCoreDirtyOnly; 6532 } 6533 6534 Target &target = process_sp->GetTarget(); 6535 const ArchSpec target_arch = target.GetArchitecture(); 6536 const llvm::Triple &target_triple = target_arch.GetTriple(); 6537 if (target_triple.getVendor() == llvm::Triple::Apple && 6538 (target_triple.getOS() == llvm::Triple::MacOSX || 6539 target_triple.getOS() == llvm::Triple::IOS || 6540 target_triple.getOS() == llvm::Triple::WatchOS || 6541 target_triple.getOS() == llvm::Triple::TvOS)) { 6542 // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS)) 6543 // { 6544 bool make_core = false; 6545 switch (target_arch.GetMachine()) { 6546 case llvm::Triple::aarch64: 6547 case llvm::Triple::aarch64_32: 6548 case llvm::Triple::arm: 6549 case llvm::Triple::thumb: 6550 case llvm::Triple::x86: 6551 case llvm::Triple::x86_64: 6552 make_core = true; 6553 break; 6554 default: 6555 error.SetErrorStringWithFormat("unsupported core architecture: %s", 6556 target_triple.str().c_str()); 6557 break; 6558 } 6559 6560 if (make_core) { 6561 std::vector<llvm::MachO::segment_command_64> segment_load_commands; 6562 // uint32_t range_info_idx = 0; 6563 MemoryRegionInfo range_info; 6564 Status range_error = process_sp->GetMemoryRegionInfo(0, range_info); 6565 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 6566 const ByteOrder byte_order = target_arch.GetByteOrder(); 6567 std::vector<page_object> pages_to_copy; 6568 6569 if (range_error.Success()) { 6570 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) { 6571 // Calculate correct protections 6572 uint32_t prot = 0; 6573 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 6574 prot |= VM_PROT_READ; 6575 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 6576 prot |= VM_PROT_WRITE; 6577 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 6578 prot |= VM_PROT_EXECUTE; 6579 6580 const addr_t addr = range_info.GetRange().GetRangeBase(); 6581 const addr_t size = range_info.GetRange().GetByteSize(); 6582 6583 if (size == 0) 6584 break; 6585 6586 bool include_this_region = true; 6587 bool dirty_pages_only = false; 6588 if (core_style == SaveCoreStyle::eSaveCoreStackOnly) { 6589 dirty_pages_only = true; 6590 if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) { 6591 include_this_region = false; 6592 } 6593 } 6594 if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) { 6595 dirty_pages_only = true; 6596 } 6597 6598 if (prot != 0 && include_this_region) { 6599 addr_t pagesize = range_info.GetPageSize(); 6600 const llvm::Optional<std::vector<addr_t>> &dirty_page_list = 6601 range_info.GetDirtyPageList(); 6602 if (dirty_pages_only && dirty_page_list.hasValue()) { 6603 for (addr_t dirtypage : dirty_page_list.getValue()) { 6604 page_object obj; 6605 obj.addr = dirtypage; 6606 obj.size = pagesize; 6607 obj.prot = prot; 6608 pages_to_copy.push_back(obj); 6609 } 6610 } else { 6611 page_object obj; 6612 obj.addr = addr; 6613 obj.size = size; 6614 obj.prot = prot; 6615 pages_to_copy.push_back(obj); 6616 } 6617 } 6618 6619 range_error = process_sp->GetMemoryRegionInfo( 6620 range_info.GetRange().GetRangeEnd(), range_info); 6621 if (range_error.Fail()) 6622 break; 6623 } 6624 6625 // Combine contiguous entries that have the same 6626 // protections so we don't have an excess of 6627 // load commands. 6628 std::vector<page_object> combined_page_objects; 6629 page_object last_obj; 6630 last_obj.addr = LLDB_INVALID_ADDRESS; 6631 last_obj.size = 0; 6632 for (page_object obj : pages_to_copy) { 6633 if (last_obj.addr == LLDB_INVALID_ADDRESS) { 6634 last_obj = obj; 6635 continue; 6636 } 6637 if (last_obj.addr + last_obj.size == obj.addr && 6638 last_obj.prot == obj.prot) { 6639 last_obj.size += obj.size; 6640 continue; 6641 } 6642 combined_page_objects.push_back(last_obj); 6643 last_obj = obj; 6644 } 6645 // Add the last entry we were looking to combine 6646 // on to the array. 6647 if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0) 6648 combined_page_objects.push_back(last_obj); 6649 6650 for (page_object obj : combined_page_objects) { 6651 uint32_t cmd_type = LC_SEGMENT_64; 6652 uint32_t segment_size = sizeof(llvm::MachO::segment_command_64); 6653 if (addr_byte_size == 4) { 6654 cmd_type = LC_SEGMENT; 6655 segment_size = sizeof(llvm::MachO::segment_command); 6656 } 6657 llvm::MachO::segment_command_64 segment = { 6658 cmd_type, // uint32_t cmd; 6659 segment_size, // uint32_t cmdsize; 6660 {0}, // char segname[16]; 6661 obj.addr, // uint64_t vmaddr; // uint32_t for 32-bit 6662 // Mach-O 6663 obj.size, // uint64_t vmsize; // uint32_t for 32-bit 6664 // Mach-O 6665 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 6666 obj.size, // uint64_t filesize; // uint32_t for 32-bit 6667 // Mach-O 6668 obj.prot, // uint32_t maxprot; 6669 obj.prot, // uint32_t initprot; 6670 0, // uint32_t nsects; 6671 0}; // uint32_t flags; 6672 segment_load_commands.push_back(segment); 6673 } 6674 6675 StreamString buffer(Stream::eBinary, addr_byte_size, byte_order); 6676 6677 llvm::MachO::mach_header_64 mach_header; 6678 if (addr_byte_size == 8) { 6679 mach_header.magic = MH_MAGIC_64; 6680 } else { 6681 mach_header.magic = MH_MAGIC; 6682 } 6683 mach_header.cputype = target_arch.GetMachOCPUType(); 6684 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 6685 mach_header.filetype = MH_CORE; 6686 mach_header.ncmds = segment_load_commands.size(); 6687 mach_header.flags = 0; 6688 mach_header.reserved = 0; 6689 ThreadList &thread_list = process_sp->GetThreadList(); 6690 const uint32_t num_threads = thread_list.GetSize(); 6691 6692 // Make an array of LC_THREAD data items. Each one contains the 6693 // contents of the LC_THREAD load command. The data doesn't contain 6694 // the load command + load command size, we will add the load command 6695 // and load command size as we emit the data. 6696 std::vector<StreamString> LC_THREAD_datas(num_threads); 6697 for (auto &LC_THREAD_data : LC_THREAD_datas) { 6698 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 6699 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 6700 LC_THREAD_data.SetByteOrder(byte_order); 6701 } 6702 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) { 6703 ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx)); 6704 if (thread_sp) { 6705 switch (mach_header.cputype) { 6706 case llvm::MachO::CPU_TYPE_ARM64: 6707 case llvm::MachO::CPU_TYPE_ARM64_32: 6708 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD( 6709 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6710 break; 6711 6712 case llvm::MachO::CPU_TYPE_ARM: 6713 RegisterContextDarwin_arm_Mach::Create_LC_THREAD( 6714 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6715 break; 6716 6717 case llvm::MachO::CPU_TYPE_I386: 6718 RegisterContextDarwin_i386_Mach::Create_LC_THREAD( 6719 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6720 break; 6721 6722 case llvm::MachO::CPU_TYPE_X86_64: 6723 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD( 6724 thread_sp.get(), LC_THREAD_datas[thread_idx]); 6725 break; 6726 } 6727 } 6728 } 6729 6730 // The size of the load command is the size of the segments... 6731 if (addr_byte_size == 8) { 6732 mach_header.sizeofcmds = segment_load_commands.size() * 6733 sizeof(llvm::MachO::segment_command_64); 6734 } else { 6735 mach_header.sizeofcmds = segment_load_commands.size() * 6736 sizeof(llvm::MachO::segment_command); 6737 } 6738 6739 // and the size of all LC_THREAD load command 6740 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6741 ++mach_header.ncmds; 6742 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 6743 } 6744 6745 // Bits will be set to indicate which bits are NOT used in 6746 // addressing in this process or 0 for unknown. 6747 uint64_t address_mask = process_sp->GetCodeAddressMask(); 6748 if (address_mask != 0) { 6749 // LC_NOTE "addrable bits" 6750 mach_header.ncmds++; 6751 mach_header.sizeofcmds += sizeof(llvm::MachO::note_command); 6752 } 6753 6754 // LC_NOTE "all image infos" 6755 mach_header.ncmds++; 6756 mach_header.sizeofcmds += sizeof(llvm::MachO::note_command); 6757 6758 // Write the mach header 6759 buffer.PutHex32(mach_header.magic); 6760 buffer.PutHex32(mach_header.cputype); 6761 buffer.PutHex32(mach_header.cpusubtype); 6762 buffer.PutHex32(mach_header.filetype); 6763 buffer.PutHex32(mach_header.ncmds); 6764 buffer.PutHex32(mach_header.sizeofcmds); 6765 buffer.PutHex32(mach_header.flags); 6766 if (addr_byte_size == 8) { 6767 buffer.PutHex32(mach_header.reserved); 6768 } 6769 6770 // Skip the mach header and all load commands and align to the next 6771 // 0x1000 byte boundary 6772 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 6773 6774 file_offset = llvm::alignTo(file_offset, 16); 6775 std::vector<std::unique_ptr<LCNoteEntry>> lc_notes; 6776 6777 // Add "addrable bits" LC_NOTE when an address mask is available 6778 if (address_mask != 0) { 6779 std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up( 6780 new LCNoteEntry(addr_byte_size, byte_order)); 6781 addrable_bits_lcnote_up->name = "addrable bits"; 6782 addrable_bits_lcnote_up->payload_file_offset = file_offset; 6783 int bits = std::bitset<64>(~address_mask).count(); 6784 addrable_bits_lcnote_up->payload.PutHex32(3); // version 6785 addrable_bits_lcnote_up->payload.PutHex32( 6786 bits); // # of bits used for addressing 6787 addrable_bits_lcnote_up->payload.PutHex64(0); // unused 6788 6789 file_offset += addrable_bits_lcnote_up->payload.GetSize(); 6790 6791 lc_notes.push_back(std::move(addrable_bits_lcnote_up)); 6792 } 6793 6794 // Add "all image infos" LC_NOTE 6795 std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up( 6796 new LCNoteEntry(addr_byte_size, byte_order)); 6797 all_image_infos_lcnote_up->name = "all image infos"; 6798 all_image_infos_lcnote_up->payload_file_offset = file_offset; 6799 file_offset = CreateAllImageInfosPayload( 6800 process_sp, file_offset, all_image_infos_lcnote_up->payload, 6801 core_style); 6802 lc_notes.push_back(std::move(all_image_infos_lcnote_up)); 6803 6804 // Add LC_NOTE load commands 6805 for (auto &lcnote : lc_notes) { 6806 // Add the LC_NOTE load command to the file. 6807 buffer.PutHex32(LC_NOTE); 6808 buffer.PutHex32(sizeof(llvm::MachO::note_command)); 6809 char namebuf[16]; 6810 memset(namebuf, 0, sizeof(namebuf)); 6811 // this is the uncommon case where strncpy is exactly 6812 // the right one, doesn't need to be nul terminated. 6813 strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf)); 6814 buffer.PutRawBytes(namebuf, sizeof(namebuf)); 6815 buffer.PutHex64(lcnote->payload_file_offset); 6816 buffer.PutHex64(lcnote->payload.GetSize()); 6817 } 6818 6819 // Align to 4096-byte page boundary for the LC_SEGMENTs. 6820 file_offset = llvm::alignTo(file_offset, 4096); 6821 6822 for (auto &segment : segment_load_commands) { 6823 segment.fileoff = file_offset; 6824 file_offset += segment.filesize; 6825 } 6826 6827 // Write out all of the LC_THREAD load commands 6828 for (const auto &LC_THREAD_data : LC_THREAD_datas) { 6829 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 6830 buffer.PutHex32(LC_THREAD); 6831 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 6832 buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size); 6833 } 6834 6835 // Write out all of the segment load commands 6836 for (const auto &segment : segment_load_commands) { 6837 buffer.PutHex32(segment.cmd); 6838 buffer.PutHex32(segment.cmdsize); 6839 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 6840 if (addr_byte_size == 8) { 6841 buffer.PutHex64(segment.vmaddr); 6842 buffer.PutHex64(segment.vmsize); 6843 buffer.PutHex64(segment.fileoff); 6844 buffer.PutHex64(segment.filesize); 6845 } else { 6846 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 6847 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 6848 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 6849 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 6850 } 6851 buffer.PutHex32(segment.maxprot); 6852 buffer.PutHex32(segment.initprot); 6853 buffer.PutHex32(segment.nsects); 6854 buffer.PutHex32(segment.flags); 6855 } 6856 6857 std::string core_file_path(outfile.GetPath()); 6858 auto core_file = FileSystem::Instance().Open( 6859 outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate | 6860 File::eOpenOptionCanCreate); 6861 if (!core_file) { 6862 error = core_file.takeError(); 6863 } else { 6864 // Read 1 page at a time 6865 uint8_t bytes[0x1000]; 6866 // Write the mach header and load commands out to the core file 6867 size_t bytes_written = buffer.GetString().size(); 6868 error = 6869 core_file.get()->Write(buffer.GetString().data(), bytes_written); 6870 if (error.Success()) { 6871 6872 for (auto &lcnote : lc_notes) { 6873 if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) == 6874 -1) { 6875 error.SetErrorStringWithFormat("Unable to seek to corefile pos " 6876 "to write '%s' LC_NOTE payload", 6877 lcnote->name.c_str()); 6878 return false; 6879 } 6880 bytes_written = lcnote->payload.GetSize(); 6881 error = core_file.get()->Write(lcnote->payload.GetData(), 6882 bytes_written); 6883 if (!error.Success()) 6884 return false; 6885 } 6886 6887 // Now write the file data for all memory segments in the process 6888 for (const auto &segment : segment_load_commands) { 6889 if (core_file.get()->SeekFromStart(segment.fileoff) == -1) { 6890 error.SetErrorStringWithFormat( 6891 "unable to seek to offset 0x%" PRIx64 " in '%s'", 6892 segment.fileoff, core_file_path.c_str()); 6893 break; 6894 } 6895 6896 target.GetDebugger().GetAsyncOutputStream()->Printf( 6897 "Saving %" PRId64 6898 " bytes of data for memory region at 0x%" PRIx64 "\n", 6899 segment.vmsize, segment.vmaddr); 6900 addr_t bytes_left = segment.vmsize; 6901 addr_t addr = segment.vmaddr; 6902 Status memory_read_error; 6903 while (bytes_left > 0 && error.Success()) { 6904 const size_t bytes_to_read = 6905 bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 6906 6907 // In a savecore setting, we don't really care about caching, 6908 // as the data is dumped and very likely never read again, 6909 // so we call ReadMemoryFromInferior to bypass it. 6910 const size_t bytes_read = process_sp->ReadMemoryFromInferior( 6911 addr, bytes, bytes_to_read, memory_read_error); 6912 6913 if (bytes_read == bytes_to_read) { 6914 size_t bytes_written = bytes_read; 6915 error = core_file.get()->Write(bytes, bytes_written); 6916 bytes_left -= bytes_read; 6917 addr += bytes_read; 6918 } else { 6919 // Some pages within regions are not readable, those should 6920 // be zero filled 6921 memset(bytes, 0, bytes_to_read); 6922 size_t bytes_written = bytes_to_read; 6923 error = core_file.get()->Write(bytes, bytes_written); 6924 bytes_left -= bytes_to_read; 6925 addr += bytes_to_read; 6926 } 6927 } 6928 } 6929 } 6930 } 6931 } else { 6932 error.SetErrorString( 6933 "process doesn't support getting memory region info"); 6934 } 6935 } 6936 return true; // This is the right plug to handle saving core files for 6937 // this process 6938 } 6939 return false; 6940 } 6941 6942 ObjectFileMachO::MachOCorefileAllImageInfos 6943 ObjectFileMachO::GetCorefileAllImageInfos() { 6944 MachOCorefileAllImageInfos image_infos; 6945 6946 // Look for an "all image infos" LC_NOTE. 6947 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 6948 for (uint32_t i = 0; i < m_header.ncmds; ++i) { 6949 const uint32_t cmd_offset = offset; 6950 llvm::MachO::load_command lc; 6951 if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr) 6952 break; 6953 if (lc.cmd == LC_NOTE) { 6954 char data_owner[17]; 6955 m_data.CopyData(offset, 16, data_owner); 6956 data_owner[16] = '\0'; 6957 offset += 16; 6958 uint64_t fileoff = m_data.GetU64_unchecked(&offset); 6959 offset += 4; /* size unused */ 6960 6961 if (strcmp("all image infos", data_owner) == 0) { 6962 offset = fileoff; 6963 // Read the struct all_image_infos_header. 6964 uint32_t version = m_data.GetU32(&offset); 6965 if (version != 1) { 6966 return image_infos; 6967 } 6968 uint32_t imgcount = m_data.GetU32(&offset); 6969 uint64_t entries_fileoff = m_data.GetU64(&offset); 6970 offset += 4; // uint32_t entries_size; 6971 offset += 4; // uint32_t unused; 6972 6973 offset = entries_fileoff; 6974 for (uint32_t i = 0; i < imgcount; i++) { 6975 // Read the struct image_entry. 6976 offset_t filepath_offset = m_data.GetU64(&offset); 6977 uuid_t uuid; 6978 memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)), 6979 sizeof(uuid_t)); 6980 uint64_t load_address = m_data.GetU64(&offset); 6981 offset_t seg_addrs_offset = m_data.GetU64(&offset); 6982 uint32_t segment_count = m_data.GetU32(&offset); 6983 uint32_t currently_executing = m_data.GetU32(&offset); 6984 6985 MachOCorefileImageEntry image_entry; 6986 image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset); 6987 image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t)); 6988 image_entry.load_address = load_address; 6989 image_entry.currently_executing = currently_executing; 6990 6991 offset_t seg_vmaddrs_offset = seg_addrs_offset; 6992 for (uint32_t j = 0; j < segment_count; j++) { 6993 char segname[17]; 6994 m_data.CopyData(seg_vmaddrs_offset, 16, segname); 6995 segname[16] = '\0'; 6996 seg_vmaddrs_offset += 16; 6997 uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset); 6998 seg_vmaddrs_offset += 8; /* unused */ 6999 7000 std::tuple<ConstString, addr_t> new_seg{ConstString(segname), 7001 vmaddr}; 7002 image_entry.segment_load_addresses.push_back(new_seg); 7003 } 7004 image_infos.all_image_infos.push_back(image_entry); 7005 } 7006 } 7007 } 7008 offset = cmd_offset + lc.cmdsize; 7009 } 7010 7011 return image_infos; 7012 } 7013 7014 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) { 7015 MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos(); 7016 bool added_images = false; 7017 if (image_infos.IsValid()) { 7018 for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) { 7019 ModuleSpec module_spec; 7020 module_spec.GetUUID() = image.uuid; 7021 module_spec.GetFileSpec() = FileSpec(image.filename.c_str()); 7022 if (image.currently_executing) { 7023 Symbols::DownloadObjectAndSymbolFile(module_spec, true); 7024 if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) { 7025 process.GetTarget().GetOrCreateModule(module_spec, false); 7026 } 7027 } 7028 Status error; 7029 ModuleSP module_sp = 7030 process.GetTarget().GetOrCreateModule(module_spec, false, &error); 7031 if (!module_sp.get() || !module_sp->GetObjectFile()) { 7032 if (image.load_address != LLDB_INVALID_ADDRESS) { 7033 module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(), 7034 image.load_address); 7035 } 7036 } 7037 if (module_sp.get()) { 7038 added_images = true; 7039 for (auto name_vmaddr_tuple : image.segment_load_addresses) { 7040 SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList(); 7041 if (sectlist) { 7042 SectionSP sect_sp = 7043 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple)); 7044 if (sect_sp) { 7045 process.GetTarget().SetSectionLoadAddress( 7046 sect_sp, std::get<1>(name_vmaddr_tuple)); 7047 } 7048 } 7049 } 7050 } 7051 } 7052 } 7053 return added_images; 7054 } 7055