1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // C Includes
11 // C++ Includes
12 // Other libraries and framework includes
13 #include "llvm/ADT/StringRef.h"
14 
15 // Project includes
16 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
17 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
18 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
19 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/FileSpecList.h"
22 #include "lldb/Core/Module.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Core/PluginManager.h"
25 #include "lldb/Core/RangeMap.h"
26 #include "lldb/Core/RegisterValue.h"
27 #include "lldb/Core/Section.h"
28 #include "lldb/Core/StreamFile.h"
29 #include "lldb/Host/Host.h"
30 #include "lldb/Symbol/DWARFCallFrameInfo.h"
31 #include "lldb/Symbol/ObjectFile.h"
32 #include "lldb/Target/DynamicLoader.h"
33 #include "lldb/Target/MemoryRegionInfo.h"
34 #include "lldb/Target/Platform.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/SectionLoadList.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 #include "lldb/Target/ThreadList.h"
40 #include "lldb/Utility/ArchSpec.h"
41 #include "lldb/Utility/DataBuffer.h"
42 #include "lldb/Utility/FileSpec.h"
43 #include "lldb/Utility/Log.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StreamString.h"
46 #include "lldb/Utility/Timer.h"
47 #include "lldb/Utility/UUID.h"
48 
49 #include "lldb/Utility/SafeMachO.h"
50 
51 #include "llvm/Support/MemoryBuffer.h"
52 
53 #include "ObjectFileMachO.h"
54 
55 #if defined(__APPLE__) &&                                                      \
56     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
57 // GetLLDBSharedCacheUUID() needs to call dlsym()
58 #include <dlfcn.h>
59 #endif
60 
61 #ifndef __APPLE__
62 #include "Utility/UuidCompatibility.h"
63 #else
64 #include <uuid/uuid.h>
65 #endif
66 
67 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
68 using namespace lldb;
69 using namespace lldb_private;
70 using namespace llvm::MachO;
71 
72 // Some structure definitions needed for parsing the dyld shared cache files
73 // found on iOS devices.
74 
75 struct lldb_copy_dyld_cache_header_v1 {
76   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
77   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
78   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
79   uint32_t imagesOffset;
80   uint32_t imagesCount;
81   uint64_t dyldBaseAddress;
82   uint64_t codeSignatureOffset;
83   uint64_t codeSignatureSize;
84   uint64_t slideInfoOffset;
85   uint64_t slideInfoSize;
86   uint64_t localSymbolsOffset;
87   uint64_t localSymbolsSize;
88   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
89                     // and later
90 };
91 
92 struct lldb_copy_dyld_cache_mapping_info {
93   uint64_t address;
94   uint64_t size;
95   uint64_t fileOffset;
96   uint32_t maxProt;
97   uint32_t initProt;
98 };
99 
100 struct lldb_copy_dyld_cache_local_symbols_info {
101   uint32_t nlistOffset;
102   uint32_t nlistCount;
103   uint32_t stringsOffset;
104   uint32_t stringsSize;
105   uint32_t entriesOffset;
106   uint32_t entriesCount;
107 };
108 struct lldb_copy_dyld_cache_local_symbols_entry {
109   uint32_t dylibOffset;
110   uint32_t nlistStartIndex;
111   uint32_t nlistCount;
112 };
113 
114 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
115 public:
116   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
117                                     const DataExtractor &data)
118       : RegisterContextDarwin_x86_64(thread, 0) {
119     SetRegisterDataFrom_LC_THREAD(data);
120   }
121 
122   void InvalidateAllRegisters() override {
123     // Do nothing... registers are always valid...
124   }
125 
126   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
127     lldb::offset_t offset = 0;
128     SetError(GPRRegSet, Read, -1);
129     SetError(FPURegSet, Read, -1);
130     SetError(EXCRegSet, Read, -1);
131     bool done = false;
132 
133     while (!done) {
134       int flavor = data.GetU32(&offset);
135       if (flavor == 0)
136         done = true;
137       else {
138         uint32_t i;
139         uint32_t count = data.GetU32(&offset);
140         switch (flavor) {
141         case GPRRegSet:
142           for (i = 0; i < count; ++i)
143             (&gpr.rax)[i] = data.GetU64(&offset);
144           SetError(GPRRegSet, Read, 0);
145           done = true;
146 
147           break;
148         case FPURegSet:
149           // TODO: fill in FPU regs....
150           // SetError (FPURegSet, Read, -1);
151           done = true;
152 
153           break;
154         case EXCRegSet:
155           exc.trapno = data.GetU32(&offset);
156           exc.err = data.GetU32(&offset);
157           exc.faultvaddr = data.GetU64(&offset);
158           SetError(EXCRegSet, Read, 0);
159           done = true;
160           break;
161         case 7:
162         case 8:
163         case 9:
164           // fancy flavors that encapsulate of the above
165           // flavors...
166           break;
167 
168         default:
169           done = true;
170           break;
171         }
172       }
173     }
174   }
175 
176   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
177                               const char *alt_name, size_t reg_byte_size,
178                               Stream &data) {
179     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
180     if (reg_info == NULL)
181       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
182     if (reg_info) {
183       lldb_private::RegisterValue reg_value;
184       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
185         if (reg_info->byte_size >= reg_byte_size)
186           data.Write(reg_value.GetBytes(), reg_byte_size);
187         else {
188           data.Write(reg_value.GetBytes(), reg_info->byte_size);
189           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
190                ++i)
191             data.PutChar(0);
192         }
193         return reg_byte_size;
194       }
195     }
196     // Just write zeros if all else fails
197     for (size_t i = 0; i < reg_byte_size; ++i)
198       data.PutChar(0);
199     return reg_byte_size;
200   }
201 
202   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
203     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
204     if (reg_ctx_sp) {
205       RegisterContext *reg_ctx = reg_ctx_sp.get();
206 
207       data.PutHex32(GPRRegSet); // Flavor
208       data.PutHex32(GPRWordCount);
209       WriteRegister(reg_ctx, "rax", NULL, 8, data);
210       WriteRegister(reg_ctx, "rbx", NULL, 8, data);
211       WriteRegister(reg_ctx, "rcx", NULL, 8, data);
212       WriteRegister(reg_ctx, "rdx", NULL, 8, data);
213       WriteRegister(reg_ctx, "rdi", NULL, 8, data);
214       WriteRegister(reg_ctx, "rsi", NULL, 8, data);
215       WriteRegister(reg_ctx, "rbp", NULL, 8, data);
216       WriteRegister(reg_ctx, "rsp", NULL, 8, data);
217       WriteRegister(reg_ctx, "r8", NULL, 8, data);
218       WriteRegister(reg_ctx, "r9", NULL, 8, data);
219       WriteRegister(reg_ctx, "r10", NULL, 8, data);
220       WriteRegister(reg_ctx, "r11", NULL, 8, data);
221       WriteRegister(reg_ctx, "r12", NULL, 8, data);
222       WriteRegister(reg_ctx, "r13", NULL, 8, data);
223       WriteRegister(reg_ctx, "r14", NULL, 8, data);
224       WriteRegister(reg_ctx, "r15", NULL, 8, data);
225       WriteRegister(reg_ctx, "rip", NULL, 8, data);
226       WriteRegister(reg_ctx, "rflags", NULL, 8, data);
227       WriteRegister(reg_ctx, "cs", NULL, 8, data);
228       WriteRegister(reg_ctx, "fs", NULL, 8, data);
229       WriteRegister(reg_ctx, "gs", NULL, 8, data);
230 
231       //            // Write out the FPU registers
232       //            const size_t fpu_byte_size = sizeof(FPU);
233       //            size_t bytes_written = 0;
234       //            data.PutHex32 (FPURegSet);
235       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
236       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
237       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
238       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
239       //            data);   // uint16_t    fcw;    // "fctrl"
240       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
241       //            data);  // uint16_t    fsw;    // "fstat"
242       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
243       //            data);   // uint8_t     ftw;    // "ftag"
244       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
245       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
246       //            data);     // uint16_t    fop;    // "fop"
247       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
248       //            data);    // uint32_t    ip;     // "fioff"
249       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
250       //            data);    // uint16_t    cs;     // "fiseg"
251       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
252       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
253       //            data);   // uint32_t    dp;     // "fooff"
254       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
255       //            data);    // uint16_t    ds;     // "foseg"
256       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
257       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
258       //            data);    // uint32_t    mxcsr;
259       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
260       //            4, data);// uint32_t    mxcsrmask;
261       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
262       //            sizeof(MMSReg), data);
263       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
264       //            sizeof(MMSReg), data);
265       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
266       //            sizeof(MMSReg), data);
267       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
268       //            sizeof(MMSReg), data);
269       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
270       //            sizeof(MMSReg), data);
271       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
272       //            sizeof(MMSReg), data);
273       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
274       //            sizeof(MMSReg), data);
275       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
276       //            sizeof(MMSReg), data);
277       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
278       //            sizeof(XMMReg), data);
279       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
280       //            sizeof(XMMReg), data);
281       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
282       //            sizeof(XMMReg), data);
283       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
284       //            sizeof(XMMReg), data);
285       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
286       //            sizeof(XMMReg), data);
287       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
288       //            sizeof(XMMReg), data);
289       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
290       //            sizeof(XMMReg), data);
291       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
292       //            sizeof(XMMReg), data);
293       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
294       //            sizeof(XMMReg), data);
295       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
296       //            sizeof(XMMReg), data);
297       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
298       //            sizeof(XMMReg), data);
299       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
300       //            sizeof(XMMReg), data);
301       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
302       //            sizeof(XMMReg), data);
303       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
304       //            sizeof(XMMReg), data);
305       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
306       //            sizeof(XMMReg), data);
307       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
308       //            sizeof(XMMReg), data);
309       //
310       //            // Fill rest with zeros
311       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
312       //            i)
313       //                data.PutChar(0);
314 
315       // Write out the EXC registers
316       data.PutHex32(EXCRegSet);
317       data.PutHex32(EXCWordCount);
318       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
319       WriteRegister(reg_ctx, "err", NULL, 4, data);
320       WriteRegister(reg_ctx, "faultvaddr", NULL, 8, data);
321       return true;
322     }
323     return false;
324   }
325 
326 protected:
327   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
328 
329   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
330 
331   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
332 
333   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
334     return 0;
335   }
336 
337   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
338     return 0;
339   }
340 
341   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
342     return 0;
343   }
344 };
345 
346 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
347 public:
348   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
349                                   const DataExtractor &data)
350       : RegisterContextDarwin_i386(thread, 0) {
351     SetRegisterDataFrom_LC_THREAD(data);
352   }
353 
354   void InvalidateAllRegisters() override {
355     // Do nothing... registers are always valid...
356   }
357 
358   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
359     lldb::offset_t offset = 0;
360     SetError(GPRRegSet, Read, -1);
361     SetError(FPURegSet, Read, -1);
362     SetError(EXCRegSet, Read, -1);
363     bool done = false;
364 
365     while (!done) {
366       int flavor = data.GetU32(&offset);
367       if (flavor == 0)
368         done = true;
369       else {
370         uint32_t i;
371         uint32_t count = data.GetU32(&offset);
372         switch (flavor) {
373         case GPRRegSet:
374           for (i = 0; i < count; ++i)
375             (&gpr.eax)[i] = data.GetU32(&offset);
376           SetError(GPRRegSet, Read, 0);
377           done = true;
378 
379           break;
380         case FPURegSet:
381           // TODO: fill in FPU regs....
382           // SetError (FPURegSet, Read, -1);
383           done = true;
384 
385           break;
386         case EXCRegSet:
387           exc.trapno = data.GetU32(&offset);
388           exc.err = data.GetU32(&offset);
389           exc.faultvaddr = data.GetU32(&offset);
390           SetError(EXCRegSet, Read, 0);
391           done = true;
392           break;
393         case 7:
394         case 8:
395         case 9:
396           // fancy flavors that encapsulate of the above
397           // flavors...
398           break;
399 
400         default:
401           done = true;
402           break;
403         }
404       }
405     }
406   }
407 
408   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
409                               const char *alt_name, size_t reg_byte_size,
410                               Stream &data) {
411     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
412     if (reg_info == NULL)
413       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
414     if (reg_info) {
415       lldb_private::RegisterValue reg_value;
416       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
417         if (reg_info->byte_size >= reg_byte_size)
418           data.Write(reg_value.GetBytes(), reg_byte_size);
419         else {
420           data.Write(reg_value.GetBytes(), reg_info->byte_size);
421           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
422                ++i)
423             data.PutChar(0);
424         }
425         return reg_byte_size;
426       }
427     }
428     // Just write zeros if all else fails
429     for (size_t i = 0; i < reg_byte_size; ++i)
430       data.PutChar(0);
431     return reg_byte_size;
432   }
433 
434   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
435     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
436     if (reg_ctx_sp) {
437       RegisterContext *reg_ctx = reg_ctx_sp.get();
438 
439       data.PutHex32(GPRRegSet); // Flavor
440       data.PutHex32(GPRWordCount);
441       WriteRegister(reg_ctx, "eax", NULL, 4, data);
442       WriteRegister(reg_ctx, "ebx", NULL, 4, data);
443       WriteRegister(reg_ctx, "ecx", NULL, 4, data);
444       WriteRegister(reg_ctx, "edx", NULL, 4, data);
445       WriteRegister(reg_ctx, "edi", NULL, 4, data);
446       WriteRegister(reg_ctx, "esi", NULL, 4, data);
447       WriteRegister(reg_ctx, "ebp", NULL, 4, data);
448       WriteRegister(reg_ctx, "esp", NULL, 4, data);
449       WriteRegister(reg_ctx, "ss", NULL, 4, data);
450       WriteRegister(reg_ctx, "eflags", NULL, 4, data);
451       WriteRegister(reg_ctx, "eip", NULL, 4, data);
452       WriteRegister(reg_ctx, "cs", NULL, 4, data);
453       WriteRegister(reg_ctx, "ds", NULL, 4, data);
454       WriteRegister(reg_ctx, "es", NULL, 4, data);
455       WriteRegister(reg_ctx, "fs", NULL, 4, data);
456       WriteRegister(reg_ctx, "gs", NULL, 4, data);
457 
458       // Write out the EXC registers
459       data.PutHex32(EXCRegSet);
460       data.PutHex32(EXCWordCount);
461       WriteRegister(reg_ctx, "trapno", NULL, 4, data);
462       WriteRegister(reg_ctx, "err", NULL, 4, data);
463       WriteRegister(reg_ctx, "faultvaddr", NULL, 4, data);
464       return true;
465     }
466     return false;
467   }
468 
469 protected:
470   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
471 
472   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
473 
474   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
475 
476   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
477     return 0;
478   }
479 
480   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
481     return 0;
482   }
483 
484   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
485     return 0;
486   }
487 };
488 
489 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
490 public:
491   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
492                                  const DataExtractor &data)
493       : RegisterContextDarwin_arm(thread, 0) {
494     SetRegisterDataFrom_LC_THREAD(data);
495   }
496 
497   void InvalidateAllRegisters() override {
498     // Do nothing... registers are always valid...
499   }
500 
501   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
502     lldb::offset_t offset = 0;
503     SetError(GPRRegSet, Read, -1);
504     SetError(FPURegSet, Read, -1);
505     SetError(EXCRegSet, Read, -1);
506     bool done = false;
507 
508     while (!done) {
509       int flavor = data.GetU32(&offset);
510       uint32_t count = data.GetU32(&offset);
511       lldb::offset_t next_thread_state = offset + (count * 4);
512       switch (flavor) {
513       case GPRAltRegSet:
514       case GPRRegSet:
515         for (uint32_t i = 0; i < count; ++i) {
516           gpr.r[i] = data.GetU32(&offset);
517         }
518 
519         // Note that gpr.cpsr is also copied by the above loop; this loop
520         // technically extends
521         // one element past the end of the gpr.r[] array.
522 
523         SetError(GPRRegSet, Read, 0);
524         offset = next_thread_state;
525         break;
526 
527       case FPURegSet: {
528         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
529         const int fpu_reg_buf_size = sizeof(fpu.floats);
530         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
531                               fpu_reg_buf) == fpu_reg_buf_size) {
532           offset += fpu_reg_buf_size;
533           fpu.fpscr = data.GetU32(&offset);
534           SetError(FPURegSet, Read, 0);
535         } else {
536           done = true;
537         }
538       }
539         offset = next_thread_state;
540         break;
541 
542       case EXCRegSet:
543         if (count == 3) {
544           exc.exception = data.GetU32(&offset);
545           exc.fsr = data.GetU32(&offset);
546           exc.far = data.GetU32(&offset);
547           SetError(EXCRegSet, Read, 0);
548         }
549         done = true;
550         offset = next_thread_state;
551         break;
552 
553       // Unknown register set flavor, stop trying to parse.
554       default:
555         done = true;
556       }
557     }
558   }
559 
560   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
561                               const char *alt_name, size_t reg_byte_size,
562                               Stream &data) {
563     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
564     if (reg_info == NULL)
565       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
566     if (reg_info) {
567       lldb_private::RegisterValue reg_value;
568       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
569         if (reg_info->byte_size >= reg_byte_size)
570           data.Write(reg_value.GetBytes(), reg_byte_size);
571         else {
572           data.Write(reg_value.GetBytes(), reg_info->byte_size);
573           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
574                ++i)
575             data.PutChar(0);
576         }
577         return reg_byte_size;
578       }
579     }
580     // Just write zeros if all else fails
581     for (size_t i = 0; i < reg_byte_size; ++i)
582       data.PutChar(0);
583     return reg_byte_size;
584   }
585 
586   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
587     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
588     if (reg_ctx_sp) {
589       RegisterContext *reg_ctx = reg_ctx_sp.get();
590 
591       data.PutHex32(GPRRegSet); // Flavor
592       data.PutHex32(GPRWordCount);
593       WriteRegister(reg_ctx, "r0", NULL, 4, data);
594       WriteRegister(reg_ctx, "r1", NULL, 4, data);
595       WriteRegister(reg_ctx, "r2", NULL, 4, data);
596       WriteRegister(reg_ctx, "r3", NULL, 4, data);
597       WriteRegister(reg_ctx, "r4", NULL, 4, data);
598       WriteRegister(reg_ctx, "r5", NULL, 4, data);
599       WriteRegister(reg_ctx, "r6", NULL, 4, data);
600       WriteRegister(reg_ctx, "r7", NULL, 4, data);
601       WriteRegister(reg_ctx, "r8", NULL, 4, data);
602       WriteRegister(reg_ctx, "r9", NULL, 4, data);
603       WriteRegister(reg_ctx, "r10", NULL, 4, data);
604       WriteRegister(reg_ctx, "r11", NULL, 4, data);
605       WriteRegister(reg_ctx, "r12", NULL, 4, data);
606       WriteRegister(reg_ctx, "sp", NULL, 4, data);
607       WriteRegister(reg_ctx, "lr", NULL, 4, data);
608       WriteRegister(reg_ctx, "pc", NULL, 4, data);
609       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
610 
611       // Write out the EXC registers
612       //            data.PutHex32 (EXCRegSet);
613       //            data.PutHex32 (EXCWordCount);
614       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
615       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
616       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
617       return true;
618     }
619     return false;
620   }
621 
622 protected:
623   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
624 
625   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
626 
627   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
628 
629   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
630 
631   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
632     return 0;
633   }
634 
635   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
636     return 0;
637   }
638 
639   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
640     return 0;
641   }
642 
643   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
644     return -1;
645   }
646 };
647 
648 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
649 public:
650   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
651                                    const DataExtractor &data)
652       : RegisterContextDarwin_arm64(thread, 0) {
653     SetRegisterDataFrom_LC_THREAD(data);
654   }
655 
656   void InvalidateAllRegisters() override {
657     // Do nothing... registers are always valid...
658   }
659 
660   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
661     lldb::offset_t offset = 0;
662     SetError(GPRRegSet, Read, -1);
663     SetError(FPURegSet, Read, -1);
664     SetError(EXCRegSet, Read, -1);
665     bool done = false;
666     while (!done) {
667       int flavor = data.GetU32(&offset);
668       uint32_t count = data.GetU32(&offset);
669       lldb::offset_t next_thread_state = offset + (count * 4);
670       switch (flavor) {
671       case GPRRegSet:
672         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
673         // 32-bit register)
674         if (count >= (33 * 2) + 1) {
675           for (uint32_t i = 0; i < 29; ++i)
676             gpr.x[i] = data.GetU64(&offset);
677           gpr.fp = data.GetU64(&offset);
678           gpr.lr = data.GetU64(&offset);
679           gpr.sp = data.GetU64(&offset);
680           gpr.pc = data.GetU64(&offset);
681           gpr.cpsr = data.GetU32(&offset);
682           SetError(GPRRegSet, Read, 0);
683         }
684         offset = next_thread_state;
685         break;
686       case FPURegSet: {
687         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
688         const int fpu_reg_buf_size = sizeof(fpu);
689         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
690             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
691                               fpu_reg_buf) == fpu_reg_buf_size) {
692           SetError(FPURegSet, Read, 0);
693         } else {
694           done = true;
695         }
696       }
697         offset = next_thread_state;
698         break;
699       case EXCRegSet:
700         if (count == 4) {
701           exc.far = data.GetU64(&offset);
702           exc.esr = data.GetU32(&offset);
703           exc.exception = data.GetU32(&offset);
704           SetError(EXCRegSet, Read, 0);
705         }
706         offset = next_thread_state;
707         break;
708       default:
709         done = true;
710         break;
711       }
712     }
713   }
714 
715   static size_t WriteRegister(RegisterContext *reg_ctx, const char *name,
716                               const char *alt_name, size_t reg_byte_size,
717                               Stream &data) {
718     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
719     if (reg_info == NULL)
720       reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
721     if (reg_info) {
722       lldb_private::RegisterValue reg_value;
723       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
724         if (reg_info->byte_size >= reg_byte_size)
725           data.Write(reg_value.GetBytes(), reg_byte_size);
726         else {
727           data.Write(reg_value.GetBytes(), reg_info->byte_size);
728           for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n;
729                ++i)
730             data.PutChar(0);
731         }
732         return reg_byte_size;
733       }
734     }
735     // Just write zeros if all else fails
736     for (size_t i = 0; i < reg_byte_size; ++i)
737       data.PutChar(0);
738     return reg_byte_size;
739   }
740 
741   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
742     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
743     if (reg_ctx_sp) {
744       RegisterContext *reg_ctx = reg_ctx_sp.get();
745 
746       data.PutHex32(GPRRegSet); // Flavor
747       data.PutHex32(GPRWordCount);
748       WriteRegister(reg_ctx, "x0", NULL, 8, data);
749       WriteRegister(reg_ctx, "x1", NULL, 8, data);
750       WriteRegister(reg_ctx, "x2", NULL, 8, data);
751       WriteRegister(reg_ctx, "x3", NULL, 8, data);
752       WriteRegister(reg_ctx, "x4", NULL, 8, data);
753       WriteRegister(reg_ctx, "x5", NULL, 8, data);
754       WriteRegister(reg_ctx, "x6", NULL, 8, data);
755       WriteRegister(reg_ctx, "x7", NULL, 8, data);
756       WriteRegister(reg_ctx, "x8", NULL, 8, data);
757       WriteRegister(reg_ctx, "x9", NULL, 8, data);
758       WriteRegister(reg_ctx, "x10", NULL, 8, data);
759       WriteRegister(reg_ctx, "x11", NULL, 8, data);
760       WriteRegister(reg_ctx, "x12", NULL, 8, data);
761       WriteRegister(reg_ctx, "x13", NULL, 8, data);
762       WriteRegister(reg_ctx, "x14", NULL, 8, data);
763       WriteRegister(reg_ctx, "x15", NULL, 8, data);
764       WriteRegister(reg_ctx, "x16", NULL, 8, data);
765       WriteRegister(reg_ctx, "x17", NULL, 8, data);
766       WriteRegister(reg_ctx, "x18", NULL, 8, data);
767       WriteRegister(reg_ctx, "x19", NULL, 8, data);
768       WriteRegister(reg_ctx, "x20", NULL, 8, data);
769       WriteRegister(reg_ctx, "x21", NULL, 8, data);
770       WriteRegister(reg_ctx, "x22", NULL, 8, data);
771       WriteRegister(reg_ctx, "x23", NULL, 8, data);
772       WriteRegister(reg_ctx, "x24", NULL, 8, data);
773       WriteRegister(reg_ctx, "x25", NULL, 8, data);
774       WriteRegister(reg_ctx, "x26", NULL, 8, data);
775       WriteRegister(reg_ctx, "x27", NULL, 8, data);
776       WriteRegister(reg_ctx, "x28", NULL, 8, data);
777       WriteRegister(reg_ctx, "fp", NULL, 8, data);
778       WriteRegister(reg_ctx, "lr", NULL, 8, data);
779       WriteRegister(reg_ctx, "sp", NULL, 8, data);
780       WriteRegister(reg_ctx, "pc", NULL, 8, data);
781       WriteRegister(reg_ctx, "cpsr", NULL, 4, data);
782 
783       // Write out the EXC registers
784       //            data.PutHex32 (EXCRegSet);
785       //            data.PutHex32 (EXCWordCount);
786       //            WriteRegister (reg_ctx, "far", NULL, 8, data);
787       //            WriteRegister (reg_ctx, "esr", NULL, 4, data);
788       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
789       return true;
790     }
791     return false;
792   }
793 
794 protected:
795   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
796 
797   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
798 
799   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
800 
801   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
802 
803   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
804     return 0;
805   }
806 
807   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
808     return 0;
809   }
810 
811   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
812     return 0;
813   }
814 
815   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
816     return -1;
817   }
818 };
819 
820 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
821   switch (magic) {
822   case MH_MAGIC:
823   case MH_CIGAM:
824     return sizeof(struct mach_header);
825 
826   case MH_MAGIC_64:
827   case MH_CIGAM_64:
828     return sizeof(struct mach_header_64);
829     break;
830 
831   default:
832     break;
833   }
834   return 0;
835 }
836 
837 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
838 
839 void ObjectFileMachO::Initialize() {
840   PluginManager::RegisterPlugin(
841       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
842       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
843 }
844 
845 void ObjectFileMachO::Terminate() {
846   PluginManager::UnregisterPlugin(CreateInstance);
847 }
848 
849 lldb_private::ConstString ObjectFileMachO::GetPluginNameStatic() {
850   static ConstString g_name("mach-o");
851   return g_name;
852 }
853 
854 const char *ObjectFileMachO::GetPluginDescriptionStatic() {
855   return "Mach-o object file reader (32 and 64 bit)";
856 }
857 
858 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
859                                             DataBufferSP &data_sp,
860                                             lldb::offset_t data_offset,
861                                             const FileSpec *file,
862                                             lldb::offset_t file_offset,
863                                             lldb::offset_t length) {
864   if (!data_sp) {
865     data_sp = MapFileData(*file, length, file_offset);
866     if (!data_sp)
867       return nullptr;
868     data_offset = 0;
869   }
870 
871   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
872     return nullptr;
873 
874   // Update the data to contain the entire file if it doesn't already
875   if (data_sp->GetByteSize() < length) {
876     data_sp = MapFileData(*file, length, file_offset);
877     if (!data_sp)
878       return nullptr;
879     data_offset = 0;
880   }
881   auto objfile_ap = llvm::make_unique<ObjectFileMachO>(
882       module_sp, data_sp, data_offset, file, file_offset, length);
883   if (!objfile_ap || !objfile_ap->ParseHeader())
884     return nullptr;
885 
886   return objfile_ap.release();
887 }
888 
889 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
890     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
891     const ProcessSP &process_sp, lldb::addr_t header_addr) {
892   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
893     std::unique_ptr<ObjectFile> objfile_ap(
894         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
895     if (objfile_ap.get() && objfile_ap->ParseHeader())
896       return objfile_ap.release();
897   }
898   return NULL;
899 }
900 
901 size_t ObjectFileMachO::GetModuleSpecifications(
902     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
903     lldb::offset_t data_offset, lldb::offset_t file_offset,
904     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
905   const size_t initial_count = specs.GetSize();
906 
907   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
908     DataExtractor data;
909     data.SetData(data_sp);
910     llvm::MachO::mach_header header;
911     if (ParseHeader(data, &data_offset, header)) {
912       size_t header_and_load_cmds =
913           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
914       if (header_and_load_cmds >= data_sp->GetByteSize()) {
915         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
916         data.SetData(data_sp);
917         data_offset = MachHeaderSizeFromMagic(header.magic);
918       }
919       if (data_sp) {
920         ModuleSpec spec;
921         spec.GetFileSpec() = file;
922         spec.SetObjectOffset(file_offset);
923         spec.SetObjectSize(length);
924 
925         if (GetArchitecture(header, data, data_offset,
926                             spec.GetArchitecture())) {
927           if (spec.GetArchitecture().IsValid()) {
928             GetUUID(header, data, data_offset, spec.GetUUID());
929             specs.Append(spec);
930           }
931         }
932       }
933     }
934   }
935   return specs.GetSize() - initial_count;
936 }
937 
938 const ConstString &ObjectFileMachO::GetSegmentNameTEXT() {
939   static ConstString g_segment_name_TEXT("__TEXT");
940   return g_segment_name_TEXT;
941 }
942 
943 const ConstString &ObjectFileMachO::GetSegmentNameDATA() {
944   static ConstString g_segment_name_DATA("__DATA");
945   return g_segment_name_DATA;
946 }
947 
948 const ConstString &ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
949   static ConstString g_segment_name("__DATA_DIRTY");
950   return g_segment_name;
951 }
952 
953 const ConstString &ObjectFileMachO::GetSegmentNameDATA_CONST() {
954   static ConstString g_segment_name("__DATA_CONST");
955   return g_segment_name;
956 }
957 
958 const ConstString &ObjectFileMachO::GetSegmentNameOBJC() {
959   static ConstString g_segment_name_OBJC("__OBJC");
960   return g_segment_name_OBJC;
961 }
962 
963 const ConstString &ObjectFileMachO::GetSegmentNameLINKEDIT() {
964   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
965   return g_section_name_LINKEDIT;
966 }
967 
968 const ConstString &ObjectFileMachO::GetSectionNameEHFrame() {
969   static ConstString g_section_name_eh_frame("__eh_frame");
970   return g_section_name_eh_frame;
971 }
972 
973 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP &data_sp,
974                                       lldb::addr_t data_offset,
975                                       lldb::addr_t data_length) {
976   DataExtractor data;
977   data.SetData(data_sp, data_offset, data_length);
978   lldb::offset_t offset = 0;
979   uint32_t magic = data.GetU32(&offset);
980   return MachHeaderSizeFromMagic(magic) != 0;
981 }
982 
983 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
984                                  DataBufferSP &data_sp,
985                                  lldb::offset_t data_offset,
986                                  const FileSpec *file,
987                                  lldb::offset_t file_offset,
988                                  lldb::offset_t length)
989     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
990       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
991       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
992       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
993   ::memset(&m_header, 0, sizeof(m_header));
994   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
995 }
996 
997 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
998                                  lldb::DataBufferSP &header_data_sp,
999                                  const lldb::ProcessSP &process_sp,
1000                                  lldb::addr_t header_addr)
1001     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
1002       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
1003       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
1004       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
1005   ::memset(&m_header, 0, sizeof(m_header));
1006   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1007 }
1008 
1009 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
1010                                   lldb::offset_t *data_offset_ptr,
1011                                   llvm::MachO::mach_header &header) {
1012   data.SetByteOrder(endian::InlHostByteOrder());
1013   // Leave magic in the original byte order
1014   header.magic = data.GetU32(data_offset_ptr);
1015   bool can_parse = false;
1016   bool is_64_bit = false;
1017   switch (header.magic) {
1018   case MH_MAGIC:
1019     data.SetByteOrder(endian::InlHostByteOrder());
1020     data.SetAddressByteSize(4);
1021     can_parse = true;
1022     break;
1023 
1024   case MH_MAGIC_64:
1025     data.SetByteOrder(endian::InlHostByteOrder());
1026     data.SetAddressByteSize(8);
1027     can_parse = true;
1028     is_64_bit = true;
1029     break;
1030 
1031   case MH_CIGAM:
1032     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1033                           ? eByteOrderLittle
1034                           : eByteOrderBig);
1035     data.SetAddressByteSize(4);
1036     can_parse = true;
1037     break;
1038 
1039   case MH_CIGAM_64:
1040     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1041                           ? eByteOrderLittle
1042                           : eByteOrderBig);
1043     data.SetAddressByteSize(8);
1044     is_64_bit = true;
1045     can_parse = true;
1046     break;
1047 
1048   default:
1049     break;
1050   }
1051 
1052   if (can_parse) {
1053     data.GetU32(data_offset_ptr, &header.cputype, 6);
1054     if (is_64_bit)
1055       *data_offset_ptr += 4;
1056     return true;
1057   } else {
1058     memset(&header, 0, sizeof(header));
1059   }
1060   return false;
1061 }
1062 
1063 bool ObjectFileMachO::ParseHeader() {
1064   ModuleSP module_sp(GetModule());
1065   if (module_sp) {
1066     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1067     bool can_parse = false;
1068     lldb::offset_t offset = 0;
1069     m_data.SetByteOrder(endian::InlHostByteOrder());
1070     // Leave magic in the original byte order
1071     m_header.magic = m_data.GetU32(&offset);
1072     switch (m_header.magic) {
1073     case MH_MAGIC:
1074       m_data.SetByteOrder(endian::InlHostByteOrder());
1075       m_data.SetAddressByteSize(4);
1076       can_parse = true;
1077       break;
1078 
1079     case MH_MAGIC_64:
1080       m_data.SetByteOrder(endian::InlHostByteOrder());
1081       m_data.SetAddressByteSize(8);
1082       can_parse = true;
1083       break;
1084 
1085     case MH_CIGAM:
1086       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1087                               ? eByteOrderLittle
1088                               : eByteOrderBig);
1089       m_data.SetAddressByteSize(4);
1090       can_parse = true;
1091       break;
1092 
1093     case MH_CIGAM_64:
1094       m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1095                               ? eByteOrderLittle
1096                               : eByteOrderBig);
1097       m_data.SetAddressByteSize(8);
1098       can_parse = true;
1099       break;
1100 
1101     default:
1102       break;
1103     }
1104 
1105     if (can_parse) {
1106       m_data.GetU32(&offset, &m_header.cputype, 6);
1107 
1108       ArchSpec mach_arch;
1109 
1110       if (GetArchitecture(mach_arch)) {
1111         // Check if the module has a required architecture
1112         const ArchSpec &module_arch = module_sp->GetArchitecture();
1113         if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1114           return false;
1115 
1116         if (SetModulesArchitecture(mach_arch)) {
1117           const size_t header_and_lc_size =
1118               m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1119           if (m_data.GetByteSize() < header_and_lc_size) {
1120             DataBufferSP data_sp;
1121             ProcessSP process_sp(m_process_wp.lock());
1122             if (process_sp) {
1123               data_sp =
1124                   ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1125             } else {
1126               // Read in all only the load command data from the file on disk
1127               data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1128               if (data_sp->GetByteSize() != header_and_lc_size)
1129                 return false;
1130             }
1131             if (data_sp)
1132               m_data.SetData(data_sp);
1133           }
1134         }
1135         return true;
1136       }
1137     } else {
1138       memset(&m_header, 0, sizeof(struct mach_header));
1139     }
1140   }
1141   return false;
1142 }
1143 
1144 ByteOrder ObjectFileMachO::GetByteOrder() const {
1145   return m_data.GetByteOrder();
1146 }
1147 
1148 bool ObjectFileMachO::IsExecutable() const {
1149   return m_header.filetype == MH_EXECUTE;
1150 }
1151 
1152 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1153   return m_data.GetAddressByteSize();
1154 }
1155 
1156 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1157   Symtab *symtab = GetSymtab();
1158   if (symtab) {
1159     Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1160     if (symbol) {
1161       if (symbol->ValueIsAddress()) {
1162         SectionSP section_sp(symbol->GetAddressRef().GetSection());
1163         if (section_sp) {
1164           const lldb::SectionType section_type = section_sp->GetType();
1165           switch (section_type) {
1166           case eSectionTypeInvalid:
1167             return eAddressClassUnknown;
1168 
1169           case eSectionTypeCode:
1170             if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1171               // For ARM we have a bit in the n_desc field of the symbol
1172               // that tells us ARM/Thumb which is bit 0x0008.
1173               if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1174                 return eAddressClassCodeAlternateISA;
1175             }
1176             return eAddressClassCode;
1177 
1178           case eSectionTypeContainer:
1179             return eAddressClassUnknown;
1180 
1181           case eSectionTypeData:
1182           case eSectionTypeDataCString:
1183           case eSectionTypeDataCStringPointers:
1184           case eSectionTypeDataSymbolAddress:
1185           case eSectionTypeData4:
1186           case eSectionTypeData8:
1187           case eSectionTypeData16:
1188           case eSectionTypeDataPointers:
1189           case eSectionTypeZeroFill:
1190           case eSectionTypeDataObjCMessageRefs:
1191           case eSectionTypeDataObjCCFStrings:
1192           case eSectionTypeGoSymtab:
1193             return eAddressClassData;
1194 
1195           case eSectionTypeDebug:
1196           case eSectionTypeDWARFDebugAbbrev:
1197           case eSectionTypeDWARFDebugAddr:
1198           case eSectionTypeDWARFDebugAranges:
1199           case eSectionTypeDWARFDebugCuIndex:
1200           case eSectionTypeDWARFDebugFrame:
1201           case eSectionTypeDWARFDebugInfo:
1202           case eSectionTypeDWARFDebugLine:
1203           case eSectionTypeDWARFDebugLoc:
1204           case eSectionTypeDWARFDebugMacInfo:
1205           case eSectionTypeDWARFDebugMacro:
1206           case eSectionTypeDWARFDebugPubNames:
1207           case eSectionTypeDWARFDebugPubTypes:
1208           case eSectionTypeDWARFDebugRanges:
1209           case eSectionTypeDWARFDebugStr:
1210           case eSectionTypeDWARFDebugStrOffsets:
1211           case eSectionTypeDWARFAppleNames:
1212           case eSectionTypeDWARFAppleTypes:
1213           case eSectionTypeDWARFAppleNamespaces:
1214           case eSectionTypeDWARFAppleObjC:
1215             return eAddressClassDebug;
1216 
1217           case eSectionTypeEHFrame:
1218           case eSectionTypeARMexidx:
1219           case eSectionTypeARMextab:
1220           case eSectionTypeCompactUnwind:
1221             return eAddressClassRuntime;
1222 
1223           case eSectionTypeAbsoluteAddress:
1224           case eSectionTypeELFSymbolTable:
1225           case eSectionTypeELFDynamicSymbols:
1226           case eSectionTypeELFRelocationEntries:
1227           case eSectionTypeELFDynamicLinkInfo:
1228           case eSectionTypeOther:
1229             return eAddressClassUnknown;
1230           }
1231         }
1232       }
1233 
1234       const SymbolType symbol_type = symbol->GetType();
1235       switch (symbol_type) {
1236       case eSymbolTypeAny:
1237         return eAddressClassUnknown;
1238       case eSymbolTypeAbsolute:
1239         return eAddressClassUnknown;
1240 
1241       case eSymbolTypeCode:
1242       case eSymbolTypeTrampoline:
1243       case eSymbolTypeResolver:
1244         if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1245           // For ARM we have a bit in the n_desc field of the symbol
1246           // that tells us ARM/Thumb which is bit 0x0008.
1247           if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1248             return eAddressClassCodeAlternateISA;
1249         }
1250         return eAddressClassCode;
1251 
1252       case eSymbolTypeData:
1253         return eAddressClassData;
1254       case eSymbolTypeRuntime:
1255         return eAddressClassRuntime;
1256       case eSymbolTypeException:
1257         return eAddressClassRuntime;
1258       case eSymbolTypeSourceFile:
1259         return eAddressClassDebug;
1260       case eSymbolTypeHeaderFile:
1261         return eAddressClassDebug;
1262       case eSymbolTypeObjectFile:
1263         return eAddressClassDebug;
1264       case eSymbolTypeCommonBlock:
1265         return eAddressClassDebug;
1266       case eSymbolTypeBlock:
1267         return eAddressClassDebug;
1268       case eSymbolTypeLocal:
1269         return eAddressClassData;
1270       case eSymbolTypeParam:
1271         return eAddressClassData;
1272       case eSymbolTypeVariable:
1273         return eAddressClassData;
1274       case eSymbolTypeVariableType:
1275         return eAddressClassDebug;
1276       case eSymbolTypeLineEntry:
1277         return eAddressClassDebug;
1278       case eSymbolTypeLineHeader:
1279         return eAddressClassDebug;
1280       case eSymbolTypeScopeBegin:
1281         return eAddressClassDebug;
1282       case eSymbolTypeScopeEnd:
1283         return eAddressClassDebug;
1284       case eSymbolTypeAdditional:
1285         return eAddressClassUnknown;
1286       case eSymbolTypeCompiler:
1287         return eAddressClassDebug;
1288       case eSymbolTypeInstrumentation:
1289         return eAddressClassDebug;
1290       case eSymbolTypeUndefined:
1291         return eAddressClassUnknown;
1292       case eSymbolTypeObjCClass:
1293         return eAddressClassRuntime;
1294       case eSymbolTypeObjCMetaClass:
1295         return eAddressClassRuntime;
1296       case eSymbolTypeObjCIVar:
1297         return eAddressClassRuntime;
1298       case eSymbolTypeReExported:
1299         return eAddressClassRuntime;
1300       }
1301     }
1302   }
1303   return eAddressClassUnknown;
1304 }
1305 
1306 Symtab *ObjectFileMachO::GetSymtab() {
1307   ModuleSP module_sp(GetModule());
1308   if (module_sp) {
1309     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1310     if (m_symtab_ap.get() == NULL) {
1311       m_symtab_ap.reset(new Symtab(this));
1312       std::lock_guard<std::recursive_mutex> symtab_guard(
1313           m_symtab_ap->GetMutex());
1314       ParseSymtab();
1315       m_symtab_ap->Finalize();
1316     }
1317   }
1318   return m_symtab_ap.get();
1319 }
1320 
1321 bool ObjectFileMachO::IsStripped() {
1322   if (m_dysymtab.cmd == 0) {
1323     ModuleSP module_sp(GetModule());
1324     if (module_sp) {
1325       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1326       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1327         const lldb::offset_t load_cmd_offset = offset;
1328 
1329         load_command lc;
1330         if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
1331           break;
1332         if (lc.cmd == LC_DYSYMTAB) {
1333           m_dysymtab.cmd = lc.cmd;
1334           m_dysymtab.cmdsize = lc.cmdsize;
1335           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1336                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1337               NULL) {
1338             // Clear m_dysymtab if we were unable to read all items from the
1339             // load command
1340             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1341           }
1342         }
1343         offset = load_cmd_offset + lc.cmdsize;
1344       }
1345     }
1346   }
1347   if (m_dysymtab.cmd)
1348     return m_dysymtab.nlocalsym <= 1;
1349   return false;
1350 }
1351 
1352 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1353   if (!m_sections_ap.get()) {
1354     m_sections_ap.reset(new SectionList());
1355 
1356     const bool is_dsym = (m_header.filetype == MH_DSYM);
1357     lldb::user_id_t segID = 0;
1358     lldb::user_id_t sectID = 0;
1359     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1360     uint32_t i;
1361     const bool is_core = GetType() == eTypeCoreFile;
1362     // bool dump_sections = false;
1363     ModuleSP module_sp(GetModule());
1364     // First look up any LC_ENCRYPTION_INFO load commands
1365     typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges;
1366     EncryptedFileRanges encrypted_file_ranges;
1367     encryption_info_command encryption_cmd;
1368     for (i = 0; i < m_header.ncmds; ++i) {
1369       const lldb::offset_t load_cmd_offset = offset;
1370       if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
1371         break;
1372 
1373       // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for
1374       // the 3 fields we care about, so treat them the same.
1375       if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1376           encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1377         if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1378           if (encryption_cmd.cryptid != 0) {
1379             EncryptedFileRanges::Entry entry;
1380             entry.SetRangeBase(encryption_cmd.cryptoff);
1381             entry.SetByteSize(encryption_cmd.cryptsize);
1382             encrypted_file_ranges.Append(entry);
1383           }
1384         }
1385       }
1386       offset = load_cmd_offset + encryption_cmd.cmdsize;
1387     }
1388 
1389     bool section_file_addresses_changed = false;
1390 
1391     offset = MachHeaderSizeFromMagic(m_header.magic);
1392 
1393     struct segment_command_64 load_cmd;
1394     for (i = 0; i < m_header.ncmds; ++i) {
1395       const lldb::offset_t load_cmd_offset = offset;
1396       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
1397         break;
1398 
1399       if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) {
1400         if (m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16)) {
1401           bool add_section = true;
1402           bool add_to_unified = true;
1403           ConstString const_segname(load_cmd.segname,
1404                                     std::min<size_t>(strlen(load_cmd.segname),
1405                                                      sizeof(load_cmd.segname)));
1406 
1407           SectionSP unified_section_sp(
1408               unified_section_list.FindSectionByName(const_segname));
1409           if (is_dsym && unified_section_sp) {
1410             if (const_segname == GetSegmentNameLINKEDIT()) {
1411               // We need to keep the __LINKEDIT segment private to this object
1412               // file only
1413               add_to_unified = false;
1414             } else {
1415               // This is the dSYM file and this section has already been created
1416               // by
1417               // the object file, no need to create it.
1418               add_section = false;
1419             }
1420           }
1421           load_cmd.vmaddr = m_data.GetAddress(&offset);
1422           load_cmd.vmsize = m_data.GetAddress(&offset);
1423           load_cmd.fileoff = m_data.GetAddress(&offset);
1424           load_cmd.filesize = m_data.GetAddress(&offset);
1425           if (m_length != 0 && load_cmd.filesize != 0) {
1426             if (load_cmd.fileoff > m_length) {
1427               // We have a load command that says it extends past the end of the
1428               // file.  This is likely
1429               // a corrupt file.  We don't have any way to return an error
1430               // condition here (this method
1431               // was likely invoked from something like
1432               // ObjectFile::GetSectionList()) -- all we can do
1433               // is null out the SectionList vector and if a process has been
1434               // set up, dump a message
1435               // to stdout.  The most common case here is core file debugging
1436               // with a truncated file.
1437               const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64
1438                                                 ? "LC_SEGMENT_64"
1439                                                 : "LC_SEGMENT";
1440               module_sp->ReportWarning(
1441                   "load command %u %s has a fileoff (0x%" PRIx64
1442                   ") that extends beyond the end of the file (0x%" PRIx64
1443                   "), ignoring this section",
1444                   i, lc_segment_name, load_cmd.fileoff, m_length);
1445 
1446               load_cmd.fileoff = 0;
1447               load_cmd.filesize = 0;
1448             }
1449 
1450             if (load_cmd.fileoff + load_cmd.filesize > m_length) {
1451               // We have a load command that says it extends past the end of the
1452               // file.  This is likely
1453               // a corrupt file.  We don't have any way to return an error
1454               // condition here (this method
1455               // was likely invoked from something like
1456               // ObjectFile::GetSectionList()) -- all we can do
1457               // is null out the SectionList vector and if a process has been
1458               // set up, dump a message
1459               // to stdout.  The most common case here is core file debugging
1460               // with a truncated file.
1461               const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64
1462                                                 ? "LC_SEGMENT_64"
1463                                                 : "LC_SEGMENT";
1464               GetModule()->ReportWarning(
1465                   "load command %u %s has a fileoff + filesize (0x%" PRIx64
1466                   ") that extends beyond the end of the file (0x%" PRIx64
1467                   "), the segment will be truncated to match",
1468                   i, lc_segment_name, load_cmd.fileoff + load_cmd.filesize,
1469                   m_length);
1470 
1471               // Tuncase the length
1472               load_cmd.filesize = m_length - load_cmd.fileoff;
1473             }
1474           }
1475           if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) {
1476             uint32_t segment_permissions = 0;
1477             if (load_cmd.initprot & VM_PROT_READ)
1478               segment_permissions |= ePermissionsReadable;
1479             if (load_cmd.initprot & VM_PROT_WRITE)
1480               segment_permissions |= ePermissionsWritable;
1481             if (load_cmd.initprot & VM_PROT_EXECUTE)
1482               segment_permissions |= ePermissionsExecutable;
1483 
1484             const bool segment_is_encrypted =
1485                 (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1486 
1487             // Keep a list of mach segments around in case we need to
1488             // get at data that isn't stored in the abstracted Sections.
1489             m_mach_segments.push_back(load_cmd);
1490 
1491             // Use a segment ID of the segment index shifted left by 8 so they
1492             // never conflict with any of the sections.
1493             SectionSP segment_sp;
1494             if (add_section && (const_segname || is_core)) {
1495               segment_sp.reset(new Section(
1496                   module_sp,     // Module to which this section belongs
1497                   this,          // Object file to which this sections belongs
1498                   ++segID << 8,  // Section ID is the 1 based segment index
1499                                  // shifted right by 8 bits as not to collide
1500                                  // with any of the 256 section IDs that are
1501                                  // possible
1502                   const_segname, // Name of this section
1503                   eSectionTypeContainer, // This section is a container of other
1504                                          // sections.
1505                   load_cmd.vmaddr,   // File VM address == addresses as they are
1506                                      // found in the object file
1507                   load_cmd.vmsize,   // VM size in bytes of this section
1508                   load_cmd.fileoff,  // Offset to the data for this section in
1509                                      // the file
1510                   load_cmd.filesize, // Size in bytes of this section as found
1511                                      // in the file
1512                   0,                 // Segments have no alignment information
1513                   load_cmd.flags));  // Flags for this section
1514 
1515               segment_sp->SetIsEncrypted(segment_is_encrypted);
1516               m_sections_ap->AddSection(segment_sp);
1517               segment_sp->SetPermissions(segment_permissions);
1518               if (add_to_unified)
1519                 unified_section_list.AddSection(segment_sp);
1520             } else if (unified_section_sp) {
1521               if (is_dsym &&
1522                   unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1523                 // Check to see if the module was read from memory?
1524                 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) {
1525                   // We have a module that is in memory and needs to have its
1526                   // file address adjusted. We need to do this because when we
1527                   // load a file from memory, its addresses will be slid
1528                   // already,
1529                   // yet the addresses in the new symbol file will still be
1530                   // unslid.
1531                   // Since everything is stored as section offset, this
1532                   // shouldn't
1533                   // cause any problems.
1534 
1535                   // Make sure we've parsed the symbol table from the
1536                   // ObjectFile before we go around changing its Sections.
1537                   module_sp->GetObjectFile()->GetSymtab();
1538                   // eh_frame would present the same problems but we parse that
1539                   // on
1540                   // a per-function basis as-needed so it's more difficult to
1541                   // remove its use of the Sections.  Realistically, the
1542                   // environments
1543                   // where this code path will be taken will not have eh_frame
1544                   // sections.
1545 
1546                   unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1547 
1548                   // Notify the module that the section addresses have been
1549                   // changed once
1550                   // we're done so any file-address caches can be updated.
1551                   section_file_addresses_changed = true;
1552                 }
1553               }
1554               m_sections_ap->AddSection(unified_section_sp);
1555             }
1556 
1557             struct section_64 sect64;
1558             ::memset(&sect64, 0, sizeof(sect64));
1559             // Push a section into our mach sections for the section at
1560             // index zero (NO_SECT) if we don't have any mach sections yet...
1561             if (m_mach_sections.empty())
1562               m_mach_sections.push_back(sect64);
1563             uint32_t segment_sect_idx;
1564             const lldb::user_id_t first_segment_sectID = sectID + 1;
1565 
1566             const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1567             for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1568                  ++segment_sect_idx) {
1569               if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1570                                sizeof(sect64.sectname)) == NULL)
1571                 break;
1572               if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1573                                sizeof(sect64.segname)) == NULL)
1574                 break;
1575               sect64.addr = m_data.GetAddress(&offset);
1576               sect64.size = m_data.GetAddress(&offset);
1577 
1578               if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
1579                 break;
1580 
1581               // Keep a list of mach sections around in case we need to
1582               // get at data that isn't stored in the abstracted Sections.
1583               m_mach_sections.push_back(sect64);
1584 
1585               if (add_section) {
1586                 ConstString section_name(
1587                     sect64.sectname, std::min<size_t>(strlen(sect64.sectname),
1588                                                       sizeof(sect64.sectname)));
1589                 if (!const_segname) {
1590                   // We have a segment with no name so we need to conjure up
1591                   // segments that correspond to the section's segname if there
1592                   // isn't already such a section. If there is such a section,
1593                   // we resize the section so that it spans all sections.
1594                   // We also mark these sections as fake so address matches
1595                   // don't
1596                   // hit if they land in the gaps between the child sections.
1597                   const_segname.SetTrimmedCStringWithLength(
1598                       sect64.segname, sizeof(sect64.segname));
1599                   segment_sp =
1600                       unified_section_list.FindSectionByName(const_segname);
1601                   if (segment_sp.get()) {
1602                     Section *segment = segment_sp.get();
1603                     // Grow the section size as needed.
1604                     const lldb::addr_t sect64_min_addr = sect64.addr;
1605                     const lldb::addr_t sect64_max_addr =
1606                         sect64_min_addr + sect64.size;
1607                     const lldb::addr_t curr_seg_byte_size =
1608                         segment->GetByteSize();
1609                     const lldb::addr_t curr_seg_min_addr =
1610                         segment->GetFileAddress();
1611                     const lldb::addr_t curr_seg_max_addr =
1612                         curr_seg_min_addr + curr_seg_byte_size;
1613                     if (sect64_min_addr >= curr_seg_min_addr) {
1614                       const lldb::addr_t new_seg_byte_size =
1615                           sect64_max_addr - curr_seg_min_addr;
1616                       // Only grow the section size if needed
1617                       if (new_seg_byte_size > curr_seg_byte_size)
1618                         segment->SetByteSize(new_seg_byte_size);
1619                     } else {
1620                       // We need to change the base address of the segment and
1621                       // adjust the child section offsets for all existing
1622                       // children.
1623                       const lldb::addr_t slide_amount =
1624                           sect64_min_addr - curr_seg_min_addr;
1625                       segment->Slide(slide_amount, false);
1626                       segment->GetChildren().Slide(-slide_amount, false);
1627                       segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1628                     }
1629 
1630                     // Grow the section size as needed.
1631                     if (sect64.offset) {
1632                       const lldb::addr_t segment_min_file_offset =
1633                           segment->GetFileOffset();
1634                       const lldb::addr_t segment_max_file_offset =
1635                           segment_min_file_offset + segment->GetFileSize();
1636 
1637                       const lldb::addr_t section_min_file_offset =
1638                           sect64.offset;
1639                       const lldb::addr_t section_max_file_offset =
1640                           section_min_file_offset + sect64.size;
1641                       const lldb::addr_t new_file_offset = std::min(
1642                           section_min_file_offset, segment_min_file_offset);
1643                       const lldb::addr_t new_file_size =
1644                           std::max(section_max_file_offset,
1645                                    segment_max_file_offset) -
1646                           new_file_offset;
1647                       segment->SetFileOffset(new_file_offset);
1648                       segment->SetFileSize(new_file_size);
1649                     }
1650                   } else {
1651                     // Create a fake section for the section's named segment
1652                     segment_sp.reset(new Section(
1653                         segment_sp, // Parent section
1654                         module_sp,  // Module to which this section belongs
1655                         this,       // Object file to which this section belongs
1656                         ++segID << 8, // Section ID is the 1 based segment index
1657                                       // shifted right by 8 bits as not to
1658                                       // collide with any of the 256 section IDs
1659                                       // that are possible
1660                         const_segname,         // Name of this section
1661                         eSectionTypeContainer, // This section is a container of
1662                                                // other sections.
1663                         sect64.addr, // File VM address == addresses as they are
1664                                      // found in the object file
1665                         sect64.size, // VM size in bytes of this section
1666                         sect64.offset, // Offset to the data for this section in
1667                                        // the file
1668                         sect64.offset ? sect64.size : 0, // Size in bytes of
1669                                                          // this section as
1670                                                          // found in the file
1671                         sect64.align,
1672                         load_cmd.flags)); // Flags for this section
1673                     segment_sp->SetIsFake(true);
1674                     segment_sp->SetPermissions(segment_permissions);
1675                     m_sections_ap->AddSection(segment_sp);
1676                     if (add_to_unified)
1677                       unified_section_list.AddSection(segment_sp);
1678                     segment_sp->SetIsEncrypted(segment_is_encrypted);
1679                   }
1680                 }
1681                 assert(segment_sp.get());
1682 
1683                 lldb::SectionType sect_type = eSectionTypeOther;
1684 
1685                 if (sect64.flags &
1686                     (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1687                   sect_type = eSectionTypeCode;
1688                 else {
1689                   uint32_t mach_sect_type = sect64.flags & SECTION_TYPE;
1690                   static ConstString g_sect_name_objc_data("__objc_data");
1691                   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1692                   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1693                   static ConstString g_sect_name_objc_classrefs(
1694                       "__objc_classrefs");
1695                   static ConstString g_sect_name_objc_superrefs(
1696                       "__objc_superrefs");
1697                   static ConstString g_sect_name_objc_const("__objc_const");
1698                   static ConstString g_sect_name_objc_classlist(
1699                       "__objc_classlist");
1700                   static ConstString g_sect_name_cfstring("__cfstring");
1701 
1702                   static ConstString g_sect_name_dwarf_debug_abbrev(
1703                       "__debug_abbrev");
1704                   static ConstString g_sect_name_dwarf_debug_aranges(
1705                       "__debug_aranges");
1706                   static ConstString g_sect_name_dwarf_debug_frame(
1707                       "__debug_frame");
1708                   static ConstString g_sect_name_dwarf_debug_info(
1709                       "__debug_info");
1710                   static ConstString g_sect_name_dwarf_debug_line(
1711                       "__debug_line");
1712                   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1713                   static ConstString g_sect_name_dwarf_debug_macinfo(
1714                       "__debug_macinfo");
1715                   static ConstString g_sect_name_dwarf_debug_pubnames(
1716                       "__debug_pubnames");
1717                   static ConstString g_sect_name_dwarf_debug_pubtypes(
1718                       "__debug_pubtypes");
1719                   static ConstString g_sect_name_dwarf_debug_ranges(
1720                       "__debug_ranges");
1721                   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1722                   static ConstString g_sect_name_dwarf_apple_names(
1723                       "__apple_names");
1724                   static ConstString g_sect_name_dwarf_apple_types(
1725                       "__apple_types");
1726                   static ConstString g_sect_name_dwarf_apple_namespaces(
1727                       "__apple_namespac");
1728                   static ConstString g_sect_name_dwarf_apple_objc(
1729                       "__apple_objc");
1730                   static ConstString g_sect_name_eh_frame("__eh_frame");
1731                   static ConstString g_sect_name_compact_unwind(
1732                       "__unwind_info");
1733                   static ConstString g_sect_name_text("__text");
1734                   static ConstString g_sect_name_data("__data");
1735                   static ConstString g_sect_name_go_symtab("__gosymtab");
1736 
1737                   if (section_name == g_sect_name_dwarf_debug_abbrev)
1738                     sect_type = eSectionTypeDWARFDebugAbbrev;
1739                   else if (section_name == g_sect_name_dwarf_debug_aranges)
1740                     sect_type = eSectionTypeDWARFDebugAranges;
1741                   else if (section_name == g_sect_name_dwarf_debug_frame)
1742                     sect_type = eSectionTypeDWARFDebugFrame;
1743                   else if (section_name == g_sect_name_dwarf_debug_info)
1744                     sect_type = eSectionTypeDWARFDebugInfo;
1745                   else if (section_name == g_sect_name_dwarf_debug_line)
1746                     sect_type = eSectionTypeDWARFDebugLine;
1747                   else if (section_name == g_sect_name_dwarf_debug_loc)
1748                     sect_type = eSectionTypeDWARFDebugLoc;
1749                   else if (section_name == g_sect_name_dwarf_debug_macinfo)
1750                     sect_type = eSectionTypeDWARFDebugMacInfo;
1751                   else if (section_name == g_sect_name_dwarf_debug_pubnames)
1752                     sect_type = eSectionTypeDWARFDebugPubNames;
1753                   else if (section_name == g_sect_name_dwarf_debug_pubtypes)
1754                     sect_type = eSectionTypeDWARFDebugPubTypes;
1755                   else if (section_name == g_sect_name_dwarf_debug_ranges)
1756                     sect_type = eSectionTypeDWARFDebugRanges;
1757                   else if (section_name == g_sect_name_dwarf_debug_str)
1758                     sect_type = eSectionTypeDWARFDebugStr;
1759                   else if (section_name == g_sect_name_dwarf_apple_names)
1760                     sect_type = eSectionTypeDWARFAppleNames;
1761                   else if (section_name == g_sect_name_dwarf_apple_types)
1762                     sect_type = eSectionTypeDWARFAppleTypes;
1763                   else if (section_name == g_sect_name_dwarf_apple_namespaces)
1764                     sect_type = eSectionTypeDWARFAppleNamespaces;
1765                   else if (section_name == g_sect_name_dwarf_apple_objc)
1766                     sect_type = eSectionTypeDWARFAppleObjC;
1767                   else if (section_name == g_sect_name_objc_selrefs)
1768                     sect_type = eSectionTypeDataCStringPointers;
1769                   else if (section_name == g_sect_name_objc_msgrefs)
1770                     sect_type = eSectionTypeDataObjCMessageRefs;
1771                   else if (section_name == g_sect_name_eh_frame)
1772                     sect_type = eSectionTypeEHFrame;
1773                   else if (section_name == g_sect_name_compact_unwind)
1774                     sect_type = eSectionTypeCompactUnwind;
1775                   else if (section_name == g_sect_name_cfstring)
1776                     sect_type = eSectionTypeDataObjCCFStrings;
1777                   else if (section_name == g_sect_name_go_symtab)
1778                     sect_type = eSectionTypeGoSymtab;
1779                   else if (section_name == g_sect_name_objc_data ||
1780                            section_name == g_sect_name_objc_classrefs ||
1781                            section_name == g_sect_name_objc_superrefs ||
1782                            section_name == g_sect_name_objc_const ||
1783                            section_name == g_sect_name_objc_classlist) {
1784                     sect_type = eSectionTypeDataPointers;
1785                   }
1786 
1787                   if (sect_type == eSectionTypeOther) {
1788                     switch (mach_sect_type) {
1789                     // TODO: categorize sections by other flags for regular
1790                     // sections
1791                     case S_REGULAR:
1792                       if (section_name == g_sect_name_text)
1793                         sect_type = eSectionTypeCode;
1794                       else if (section_name == g_sect_name_data)
1795                         sect_type = eSectionTypeData;
1796                       else
1797                         sect_type = eSectionTypeOther;
1798                       break;
1799                     case S_ZEROFILL:
1800                       sect_type = eSectionTypeZeroFill;
1801                       break;
1802                     case S_CSTRING_LITERALS:
1803                       sect_type = eSectionTypeDataCString;
1804                       break; // section with only literal C strings
1805                     case S_4BYTE_LITERALS:
1806                       sect_type = eSectionTypeData4;
1807                       break; // section with only 4 byte literals
1808                     case S_8BYTE_LITERALS:
1809                       sect_type = eSectionTypeData8;
1810                       break; // section with only 8 byte literals
1811                     case S_LITERAL_POINTERS:
1812                       sect_type = eSectionTypeDataPointers;
1813                       break; // section with only pointers to literals
1814                     case S_NON_LAZY_SYMBOL_POINTERS:
1815                       sect_type = eSectionTypeDataPointers;
1816                       break; // section with only non-lazy symbol pointers
1817                     case S_LAZY_SYMBOL_POINTERS:
1818                       sect_type = eSectionTypeDataPointers;
1819                       break; // section with only lazy symbol pointers
1820                     case S_SYMBOL_STUBS:
1821                       sect_type = eSectionTypeCode;
1822                       break; // section with only symbol stubs, byte size of
1823                              // stub in the reserved2 field
1824                     case S_MOD_INIT_FUNC_POINTERS:
1825                       sect_type = eSectionTypeDataPointers;
1826                       break; // section with only function pointers for
1827                              // initialization
1828                     case S_MOD_TERM_FUNC_POINTERS:
1829                       sect_type = eSectionTypeDataPointers;
1830                       break; // section with only function pointers for
1831                              // termination
1832                     case S_COALESCED:
1833                       sect_type = eSectionTypeOther;
1834                       break;
1835                     case S_GB_ZEROFILL:
1836                       sect_type = eSectionTypeZeroFill;
1837                       break;
1838                     case S_INTERPOSING:
1839                       sect_type = eSectionTypeCode;
1840                       break; // section with only pairs of function pointers for
1841                              // interposing
1842                     case S_16BYTE_LITERALS:
1843                       sect_type = eSectionTypeData16;
1844                       break; // section with only 16 byte literals
1845                     case S_DTRACE_DOF:
1846                       sect_type = eSectionTypeDebug;
1847                       break;
1848                     case S_LAZY_DYLIB_SYMBOL_POINTERS:
1849                       sect_type = eSectionTypeDataPointers;
1850                       break;
1851                     default:
1852                       break;
1853                     }
1854                   }
1855                 }
1856 
1857                 SectionSP section_sp(new Section(
1858                     segment_sp, module_sp, this, ++sectID, section_name,
1859                     sect_type, sect64.addr - segment_sp->GetFileAddress(),
1860                     sect64.size, sect64.offset,
1861                     sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1862                     sect64.flags));
1863                 // Set the section to be encrypted to match the segment
1864 
1865                 bool section_is_encrypted = false;
1866                 if (!segment_is_encrypted && load_cmd.filesize != 0)
1867                   section_is_encrypted =
1868                       encrypted_file_ranges.FindEntryThatContains(
1869                           sect64.offset) != NULL;
1870 
1871                 section_sp->SetIsEncrypted(segment_is_encrypted ||
1872                                            section_is_encrypted);
1873                 section_sp->SetPermissions(segment_permissions);
1874                 segment_sp->GetChildren().AddSection(section_sp);
1875 
1876                 if (segment_sp->IsFake()) {
1877                   segment_sp.reset();
1878                   const_segname.Clear();
1879                 }
1880               }
1881             }
1882             if (segment_sp && is_dsym) {
1883               if (first_segment_sectID <= sectID) {
1884                 lldb::user_id_t sect_uid;
1885                 for (sect_uid = first_segment_sectID; sect_uid <= sectID;
1886                      ++sect_uid) {
1887                   SectionSP curr_section_sp(
1888                       segment_sp->GetChildren().FindSectionByID(sect_uid));
1889                   SectionSP next_section_sp;
1890                   if (sect_uid + 1 <= sectID)
1891                     next_section_sp =
1892                         segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1893 
1894                   if (curr_section_sp.get()) {
1895                     if (curr_section_sp->GetByteSize() == 0) {
1896                       if (next_section_sp.get() != NULL)
1897                         curr_section_sp->SetByteSize(
1898                             next_section_sp->GetFileAddress() -
1899                             curr_section_sp->GetFileAddress());
1900                       else
1901                         curr_section_sp->SetByteSize(load_cmd.vmsize);
1902                     }
1903                   }
1904                 }
1905               }
1906             }
1907           }
1908         }
1909       } else if (load_cmd.cmd == LC_DYSYMTAB) {
1910         m_dysymtab.cmd = load_cmd.cmd;
1911         m_dysymtab.cmdsize = load_cmd.cmdsize;
1912         m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1913                       (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1914       }
1915 
1916       offset = load_cmd_offset + load_cmd.cmdsize;
1917     }
1918 
1919     if (section_file_addresses_changed && module_sp.get()) {
1920       module_sp->SectionFileAddressesChanged();
1921     }
1922   }
1923 }
1924 
1925 class MachSymtabSectionInfo {
1926 public:
1927   MachSymtabSectionInfo(SectionList *section_list)
1928       : m_section_list(section_list), m_section_infos() {
1929     // Get the number of sections down to a depth of 1 to include
1930     // all segments and their sections, but no other sections that
1931     // may be added for debug map or
1932     m_section_infos.resize(section_list->GetNumSections(1));
1933   }
1934 
1935   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1936     if (n_sect == 0)
1937       return SectionSP();
1938     if (n_sect < m_section_infos.size()) {
1939       if (!m_section_infos[n_sect].section_sp) {
1940         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1941         m_section_infos[n_sect].section_sp = section_sp;
1942         if (section_sp) {
1943           m_section_infos[n_sect].vm_range.SetBaseAddress(
1944               section_sp->GetFileAddress());
1945           m_section_infos[n_sect].vm_range.SetByteSize(
1946               section_sp->GetByteSize());
1947         } else {
1948           Host::SystemLog(Host::eSystemLogError,
1949                           "error: unable to find section for section %u\n",
1950                           n_sect);
1951         }
1952       }
1953       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1954         // Symbol is in section.
1955         return m_section_infos[n_sect].section_sp;
1956       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1957                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1958                      file_addr) {
1959         // Symbol is in section with zero size, but has the same start
1960         // address as the section. This can happen with linker symbols
1961         // (symbols that start with the letter 'l' or 'L'.
1962         return m_section_infos[n_sect].section_sp;
1963       }
1964     }
1965     return m_section_list->FindSectionContainingFileAddress(file_addr);
1966   }
1967 
1968 protected:
1969   struct SectionInfo {
1970     SectionInfo() : vm_range(), section_sp() {}
1971 
1972     VMRange vm_range;
1973     SectionSP section_sp;
1974   };
1975   SectionList *m_section_list;
1976   std::vector<SectionInfo> m_section_infos;
1977 };
1978 
1979 struct TrieEntry {
1980   TrieEntry()
1981       : name(), address(LLDB_INVALID_ADDRESS), flags(0), other(0),
1982         import_name() {}
1983 
1984   void Clear() {
1985     name.Clear();
1986     address = LLDB_INVALID_ADDRESS;
1987     flags = 0;
1988     other = 0;
1989     import_name.Clear();
1990   }
1991 
1992   void Dump() const {
1993     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1994            static_cast<unsigned long long>(address),
1995            static_cast<unsigned long long>(flags),
1996            static_cast<unsigned long long>(other), name.GetCString());
1997     if (import_name)
1998       printf(" -> \"%s\"\n", import_name.GetCString());
1999     else
2000       printf("\n");
2001   }
2002   ConstString name;
2003   uint64_t address;
2004   uint64_t flags;
2005   uint64_t other;
2006   ConstString import_name;
2007 };
2008 
2009 struct TrieEntryWithOffset {
2010   lldb::offset_t nodeOffset;
2011   TrieEntry entry;
2012 
2013   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2014 
2015   void Dump(uint32_t idx) const {
2016     printf("[%3u] 0x%16.16llx: ", idx,
2017            static_cast<unsigned long long>(nodeOffset));
2018     entry.Dump();
2019   }
2020 
2021   bool operator<(const TrieEntryWithOffset &other) const {
2022     return (nodeOffset < other.nodeOffset);
2023   }
2024 };
2025 
2026 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2027                              const bool is_arm,
2028                              std::vector<llvm::StringRef> &nameSlices,
2029                              std::set<lldb::addr_t> &resolver_addresses,
2030                              std::vector<TrieEntryWithOffset> &output) {
2031   if (!data.ValidOffset(offset))
2032     return true;
2033 
2034   const uint64_t terminalSize = data.GetULEB128(&offset);
2035   lldb::offset_t children_offset = offset + terminalSize;
2036   if (terminalSize != 0) {
2037     TrieEntryWithOffset e(offset);
2038     e.entry.flags = data.GetULEB128(&offset);
2039     const char *import_name = NULL;
2040     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2041       e.entry.address = 0;
2042       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2043       import_name = data.GetCStr(&offset);
2044     } else {
2045       e.entry.address = data.GetULEB128(&offset);
2046       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2047         e.entry.other = data.GetULEB128(&offset);
2048         uint64_t resolver_addr = e.entry.other;
2049         if (is_arm)
2050           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2051         resolver_addresses.insert(resolver_addr);
2052       } else
2053         e.entry.other = 0;
2054     }
2055     // Only add symbols that are reexport symbols with a valid import name
2056     if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name &&
2057         import_name[0]) {
2058       std::string name;
2059       if (!nameSlices.empty()) {
2060         for (auto name_slice : nameSlices)
2061           name.append(name_slice.data(), name_slice.size());
2062       }
2063       if (name.size() > 1) {
2064         // Skip the leading '_'
2065         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2066       }
2067       if (import_name) {
2068         // Skip the leading '_'
2069         e.entry.import_name.SetCString(import_name + 1);
2070       }
2071       output.push_back(e);
2072     }
2073   }
2074 
2075   const uint8_t childrenCount = data.GetU8(&children_offset);
2076   for (uint8_t i = 0; i < childrenCount; ++i) {
2077     const char *cstr = data.GetCStr(&children_offset);
2078     if (cstr)
2079       nameSlices.push_back(llvm::StringRef(cstr));
2080     else
2081       return false; // Corrupt data
2082     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2083     if (childNodeOffset) {
2084       if (!ParseTrieEntries(data, childNodeOffset, is_arm, nameSlices,
2085                             resolver_addresses, output)) {
2086         return false;
2087       }
2088     }
2089     nameSlices.pop_back();
2090   }
2091   return true;
2092 }
2093 
2094 // Read the UUID out of a dyld_shared_cache file on-disk.
2095 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2096                                          const ByteOrder byte_order,
2097                                          const uint32_t addr_byte_size) {
2098   UUID dsc_uuid;
2099   DataBufferSP DscData = MapFileData(
2100       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2101   if (!DscData)
2102     return dsc_uuid;
2103   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2104 
2105   char version_str[7];
2106   lldb::offset_t offset = 0;
2107   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2108   version_str[6] = '\0';
2109   if (strcmp(version_str, "dyld_v") == 0) {
2110     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2111     uint8_t uuid_bytes[sizeof(uuid_t)];
2112     memcpy(uuid_bytes, dsc_header_data.GetData(&offset, sizeof(uuid_t)),
2113            sizeof(uuid_t));
2114     dsc_uuid.SetBytes(uuid_bytes);
2115   }
2116   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2117   if (log && dsc_uuid.IsValid()) {
2118     log->Printf("Shared cache %s has UUID %s", dyld_shared_cache.GetPath().c_str(),
2119                 dsc_uuid.GetAsString().c_str());
2120   }
2121   return dsc_uuid;
2122 }
2123 
2124 size_t ObjectFileMachO::ParseSymtab() {
2125   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
2126   Timer scoped_timer(func_cat, "ObjectFileMachO::ParseSymtab () module = %s",
2127                      m_file.GetFilename().AsCString(""));
2128   ModuleSP module_sp(GetModule());
2129   if (!module_sp)
2130     return 0;
2131 
2132   struct symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2133   struct linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2134   struct dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2135   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2136   FunctionStarts function_starts;
2137   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2138   uint32_t i;
2139   FileSpecList dylib_files;
2140   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
2141   static const llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2142   static const llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2143   static const llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2144 
2145   for (i = 0; i < m_header.ncmds; ++i) {
2146     const lldb::offset_t cmd_offset = offset;
2147     // Read in the load command and load command size
2148     struct load_command lc;
2149     if (m_data.GetU32(&offset, &lc, 2) == NULL)
2150       break;
2151     // Watch for the symbol table load command
2152     switch (lc.cmd) {
2153     case LC_SYMTAB:
2154       symtab_load_command.cmd = lc.cmd;
2155       symtab_load_command.cmdsize = lc.cmdsize;
2156       // Read in the rest of the symtab load command
2157       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2158           0) // fill in symoff, nsyms, stroff, strsize fields
2159         return 0;
2160       if (symtab_load_command.symoff == 0) {
2161         if (log)
2162           module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0");
2163         return 0;
2164       }
2165 
2166       if (symtab_load_command.stroff == 0) {
2167         if (log)
2168           module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0");
2169         return 0;
2170       }
2171 
2172       if (symtab_load_command.nsyms == 0) {
2173         if (log)
2174           module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0");
2175         return 0;
2176       }
2177 
2178       if (symtab_load_command.strsize == 0) {
2179         if (log)
2180           module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0");
2181         return 0;
2182       }
2183       break;
2184 
2185     case LC_DYLD_INFO:
2186     case LC_DYLD_INFO_ONLY:
2187       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2188         dyld_info.cmd = lc.cmd;
2189         dyld_info.cmdsize = lc.cmdsize;
2190       } else {
2191         memset(&dyld_info, 0, sizeof(dyld_info));
2192       }
2193       break;
2194 
2195     case LC_LOAD_DYLIB:
2196     case LC_LOAD_WEAK_DYLIB:
2197     case LC_REEXPORT_DYLIB:
2198     case LC_LOADFVMLIB:
2199     case LC_LOAD_UPWARD_DYLIB: {
2200       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2201       const char *path = m_data.PeekCStr(name_offset);
2202       if (path) {
2203         FileSpec file_spec(path, false);
2204         // Strip the path if there is @rpath, @executable, etc so we just use
2205         // the basename
2206         if (path[0] == '@')
2207           file_spec.GetDirectory().Clear();
2208 
2209         if (lc.cmd == LC_REEXPORT_DYLIB) {
2210           m_reexported_dylibs.AppendIfUnique(file_spec);
2211         }
2212 
2213         dylib_files.Append(file_spec);
2214       }
2215     } break;
2216 
2217     case LC_FUNCTION_STARTS:
2218       function_starts_load_command.cmd = lc.cmd;
2219       function_starts_load_command.cmdsize = lc.cmdsize;
2220       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2221           NULL) // fill in symoff, nsyms, stroff, strsize fields
2222         memset(&function_starts_load_command, 0,
2223                sizeof(function_starts_load_command));
2224       break;
2225 
2226     default:
2227       break;
2228     }
2229     offset = cmd_offset + lc.cmdsize;
2230   }
2231 
2232   if (symtab_load_command.cmd) {
2233     Symtab *symtab = m_symtab_ap.get();
2234     SectionList *section_list = GetSectionList();
2235     if (section_list == NULL)
2236       return 0;
2237 
2238     const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2239     const ByteOrder byte_order = m_data.GetByteOrder();
2240     bool bit_width_32 = addr_byte_size == 4;
2241     const size_t nlist_byte_size =
2242         bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2243 
2244     DataExtractor nlist_data(NULL, 0, byte_order, addr_byte_size);
2245     DataExtractor strtab_data(NULL, 0, byte_order, addr_byte_size);
2246     DataExtractor function_starts_data(NULL, 0, byte_order, addr_byte_size);
2247     DataExtractor indirect_symbol_index_data(NULL, 0, byte_order,
2248                                              addr_byte_size);
2249     DataExtractor dyld_trie_data(NULL, 0, byte_order, addr_byte_size);
2250 
2251     const addr_t nlist_data_byte_size =
2252         symtab_load_command.nsyms * nlist_byte_size;
2253     const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2254     addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2255 
2256     ProcessSP process_sp(m_process_wp.lock());
2257     Process *process = process_sp.get();
2258 
2259     uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2260 
2261     if (process && m_header.filetype != llvm::MachO::MH_OBJECT) {
2262       Target &target = process->GetTarget();
2263 
2264       memory_module_load_level = target.GetMemoryModuleLoadLevel();
2265 
2266       SectionSP linkedit_section_sp(
2267           section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2268       // Reading mach file from memory in a process or core file...
2269 
2270       if (linkedit_section_sp) {
2271         addr_t linkedit_load_addr =
2272             linkedit_section_sp->GetLoadBaseAddress(&target);
2273         if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2274           // We might be trying to access the symbol table before the
2275           // __LINKEDIT's load
2276           // address has been set in the target. We can't fail to read the
2277           // symbol table,
2278           // so calculate the right address manually
2279           linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2280               m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2281         }
2282 
2283         const addr_t linkedit_file_offset =
2284             linkedit_section_sp->GetFileOffset();
2285         const addr_t symoff_addr = linkedit_load_addr +
2286                                    symtab_load_command.symoff -
2287                                    linkedit_file_offset;
2288         strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2289                       linkedit_file_offset;
2290 
2291         bool data_was_read = false;
2292 
2293 #if defined(__APPLE__) &&                                                      \
2294     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2295         if (m_header.flags & 0x80000000u &&
2296             process->GetAddressByteSize() == sizeof(void *)) {
2297           // This mach-o memory file is in the dyld shared cache. If this
2298           // program is not remote and this is iOS, then this process will
2299           // share the same shared cache as the process we are debugging and
2300           // we can read the entire __LINKEDIT from the address space in this
2301           // process. This is a needed optimization that is used for local iOS
2302           // debugging only since all shared libraries in the shared cache do
2303           // not have corresponding files that exist in the file system of the
2304           // device. They have been combined into a single file. This means we
2305           // always have to load these files from memory. All of the symbol and
2306           // string tables from all of the __LINKEDIT sections from the shared
2307           // libraries in the shared cache have been merged into a single large
2308           // symbol and string table. Reading all of this symbol and string
2309           // table
2310           // data across can slow down debug launch times, so we optimize this
2311           // by
2312           // reading the memory for the __LINKEDIT section from this process.
2313 
2314           UUID lldb_shared_cache(GetLLDBSharedCacheUUID());
2315           UUID process_shared_cache(GetProcessSharedCacheUUID(process));
2316           bool use_lldb_cache = true;
2317           if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() &&
2318               lldb_shared_cache != process_shared_cache) {
2319             use_lldb_cache = false;
2320             ModuleSP module_sp(GetModule());
2321             if (module_sp)
2322               module_sp->ReportWarning("shared cache in process does not match "
2323                                        "lldb's own shared cache, startup will "
2324                                        "be slow.");
2325           }
2326 
2327           PlatformSP platform_sp(target.GetPlatform());
2328           if (platform_sp && platform_sp->IsHost() && use_lldb_cache) {
2329             data_was_read = true;
2330             nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size,
2331                                eByteOrderLittle);
2332             strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size,
2333                                 eByteOrderLittle);
2334             if (function_starts_load_command.cmd) {
2335               const addr_t func_start_addr =
2336                   linkedit_load_addr + function_starts_load_command.dataoff -
2337                   linkedit_file_offset;
2338               function_starts_data.SetData(
2339                   (void *)func_start_addr,
2340                   function_starts_load_command.datasize, eByteOrderLittle);
2341             }
2342           }
2343         }
2344 #endif
2345 
2346         if (!data_was_read) {
2347           // Always load dyld - the dynamic linker - from memory if we didn't
2348           // find a binary anywhere else.
2349           // lldb will not register dylib/framework/bundle loads/unloads if we
2350           // don't have the dyld symbols,
2351           // we force dyld to load from memory despite the user's
2352           // target.memory-module-load-level setting.
2353           if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2354               m_header.filetype == llvm::MachO::MH_DYLINKER) {
2355             DataBufferSP nlist_data_sp(
2356                 ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2357             if (nlist_data_sp)
2358               nlist_data.SetData(nlist_data_sp, 0,
2359                                  nlist_data_sp->GetByteSize());
2360             // Load strings individually from memory when loading from memory
2361             // since shared cache
2362             // string tables contain strings for all symbols from all shared
2363             // cached libraries
2364             // DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr,
2365             // strtab_data_byte_size));
2366             // if (strtab_data_sp)
2367             //    strtab_data.SetData (strtab_data_sp, 0,
2368             //    strtab_data_sp->GetByteSize());
2369             if (m_dysymtab.nindirectsyms != 0) {
2370               const addr_t indirect_syms_addr = linkedit_load_addr +
2371                                                 m_dysymtab.indirectsymoff -
2372                                                 linkedit_file_offset;
2373               DataBufferSP indirect_syms_data_sp(
2374                   ReadMemory(process_sp, indirect_syms_addr,
2375                              m_dysymtab.nindirectsyms * 4));
2376               if (indirect_syms_data_sp)
2377                 indirect_symbol_index_data.SetData(
2378                     indirect_syms_data_sp, 0,
2379                     indirect_syms_data_sp->GetByteSize());
2380             }
2381           } else if (memory_module_load_level >=
2382                      eMemoryModuleLoadLevelPartial) {
2383             if (function_starts_load_command.cmd) {
2384               const addr_t func_start_addr =
2385                   linkedit_load_addr + function_starts_load_command.dataoff -
2386                   linkedit_file_offset;
2387               DataBufferSP func_start_data_sp(
2388                   ReadMemory(process_sp, func_start_addr,
2389                              function_starts_load_command.datasize));
2390               if (func_start_data_sp)
2391                 function_starts_data.SetData(func_start_data_sp, 0,
2392                                              func_start_data_sp->GetByteSize());
2393             }
2394           }
2395         }
2396       }
2397     } else {
2398       nlist_data.SetData(m_data, symtab_load_command.symoff,
2399                          nlist_data_byte_size);
2400       strtab_data.SetData(m_data, symtab_load_command.stroff,
2401                           strtab_data_byte_size);
2402 
2403       if (dyld_info.export_size > 0) {
2404         dyld_trie_data.SetData(m_data, dyld_info.export_off,
2405                                dyld_info.export_size);
2406       }
2407 
2408       if (m_dysymtab.nindirectsyms != 0) {
2409         indirect_symbol_index_data.SetData(m_data, m_dysymtab.indirectsymoff,
2410                                            m_dysymtab.nindirectsyms * 4);
2411       }
2412       if (function_starts_load_command.cmd) {
2413         function_starts_data.SetData(m_data,
2414                                      function_starts_load_command.dataoff,
2415                                      function_starts_load_command.datasize);
2416       }
2417     }
2418 
2419     if (nlist_data.GetByteSize() == 0 &&
2420         memory_module_load_level == eMemoryModuleLoadLevelComplete) {
2421       if (log)
2422         module_sp->LogMessage(log, "failed to read nlist data");
2423       return 0;
2424     }
2425 
2426     const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2427     if (!have_strtab_data) {
2428       if (process) {
2429         if (strtab_addr == LLDB_INVALID_ADDRESS) {
2430           if (log)
2431             module_sp->LogMessage(log, "failed to locate the strtab in memory");
2432           return 0;
2433         }
2434       } else {
2435         if (log)
2436           module_sp->LogMessage(log, "failed to read strtab data");
2437         return 0;
2438       }
2439     }
2440 
2441     const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
2442     const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
2443     const ConstString &g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2444     const ConstString &g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2445     const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
2446     const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
2447     SectionSP text_section_sp(
2448         section_list->FindSectionByName(g_segment_name_TEXT));
2449     SectionSP data_section_sp(
2450         section_list->FindSectionByName(g_segment_name_DATA));
2451     SectionSP data_dirty_section_sp(
2452         section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2453     SectionSP data_const_section_sp(
2454         section_list->FindSectionByName(g_segment_name_DATA_CONST));
2455     SectionSP objc_section_sp(
2456         section_list->FindSectionByName(g_segment_name_OBJC));
2457     SectionSP eh_frame_section_sp;
2458     if (text_section_sp.get())
2459       eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2460           g_section_name_eh_frame);
2461     else
2462       eh_frame_section_sp =
2463           section_list->FindSectionByName(g_section_name_eh_frame);
2464 
2465     const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2466 
2467     // lldb works best if it knows the start address of all functions in a
2468     // module.
2469     // Linker symbols or debug info are normally the best source of information
2470     // for start addr / size but
2471     // they may be stripped in a released binary.
2472     // Two additional sources of information exist in Mach-O binaries:
2473     //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2474     //    function's start address in the
2475     //                         binary, relative to the text section.
2476     //    eh_frame           - the eh_frame FDEs have the start addr & size of
2477     //    each function
2478     //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2479     //  all modern binaries.
2480     //  Binaries built to run on older releases may need to use eh_frame
2481     //  information.
2482 
2483     if (text_section_sp && function_starts_data.GetByteSize()) {
2484       FunctionStarts::Entry function_start_entry;
2485       function_start_entry.data = false;
2486       lldb::offset_t function_start_offset = 0;
2487       function_start_entry.addr = text_section_sp->GetFileAddress();
2488       uint64_t delta;
2489       while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2490              0) {
2491         // Now append the current entry
2492         function_start_entry.addr += delta;
2493         function_starts.Append(function_start_entry);
2494       }
2495     } else {
2496       // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2497       // load command claiming an eh_frame
2498       // but it doesn't actually have the eh_frame content.  And if we have a
2499       // dSYM, we don't need to do any
2500       // of this fill-in-the-missing-symbols works anyway - the debug info
2501       // should give us all the functions in
2502       // the module.
2503       if (text_section_sp.get() && eh_frame_section_sp.get() &&
2504           m_type != eTypeDebugInfo) {
2505         DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2506                                     DWARFCallFrameInfo::EH);
2507         DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2508         eh_frame.GetFunctionAddressAndSizeVector(functions);
2509         addr_t text_base_addr = text_section_sp->GetFileAddress();
2510         size_t count = functions.GetSize();
2511         for (size_t i = 0; i < count; ++i) {
2512           const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2513               functions.GetEntryAtIndex(i);
2514           if (func) {
2515             FunctionStarts::Entry function_start_entry;
2516             function_start_entry.addr = func->base - text_base_addr;
2517             function_starts.Append(function_start_entry);
2518           }
2519         }
2520       }
2521     }
2522 
2523     const size_t function_starts_count = function_starts.GetSize();
2524 
2525     // For user process binaries (executables, dylibs, frameworks, bundles), if
2526     // we don't have
2527     // LC_FUNCTION_STARTS/eh_frame section in this binary, we're going to assume
2528     // the binary
2529     // has been stripped.  Don't allow assembly language instruction emulation
2530     // because we don't
2531     // know proper function start boundaries.
2532     //
2533     // For all other types of binaries (kernels, stand-alone bare board
2534     // binaries, kexts), they
2535     // may not have LC_FUNCTION_STARTS / eh_frame sections - we should not make
2536     // any assumptions
2537     // about them based on that.
2538     if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2539       m_allow_assembly_emulation_unwind_plans = false;
2540       Log *unwind_or_symbol_log(lldb_private::GetLogIfAnyCategoriesSet(
2541           LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_UNWIND));
2542 
2543       if (unwind_or_symbol_log)
2544         module_sp->LogMessage(
2545             unwind_or_symbol_log,
2546             "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2547     }
2548 
2549     const user_id_t TEXT_eh_frame_sectID =
2550         eh_frame_section_sp.get() ? eh_frame_section_sp->GetID()
2551                                   : static_cast<user_id_t>(NO_SECT);
2552 
2553     lldb::offset_t nlist_data_offset = 0;
2554 
2555     uint32_t N_SO_index = UINT32_MAX;
2556 
2557     MachSymtabSectionInfo section_info(section_list);
2558     std::vector<uint32_t> N_FUN_indexes;
2559     std::vector<uint32_t> N_NSYM_indexes;
2560     std::vector<uint32_t> N_INCL_indexes;
2561     std::vector<uint32_t> N_BRAC_indexes;
2562     std::vector<uint32_t> N_COMM_indexes;
2563     typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2564     typedef std::map<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2565     typedef std::map<const char *, uint32_t> ConstNameToSymbolIndexMap;
2566     ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2567     ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2568     ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2569     // Any symbols that get merged into another will get an entry
2570     // in this map so we know
2571     NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2572     uint32_t nlist_idx = 0;
2573     Symbol *symbol_ptr = NULL;
2574 
2575     uint32_t sym_idx = 0;
2576     Symbol *sym = NULL;
2577     size_t num_syms = 0;
2578     std::string memory_symbol_name;
2579     uint32_t unmapped_local_symbols_found = 0;
2580 
2581     std::vector<TrieEntryWithOffset> trie_entries;
2582     std::set<lldb::addr_t> resolver_addresses;
2583 
2584     if (dyld_trie_data.GetByteSize() > 0) {
2585       std::vector<llvm::StringRef> nameSlices;
2586       ParseTrieEntries(dyld_trie_data, 0, is_arm, nameSlices,
2587                        resolver_addresses, trie_entries);
2588 
2589       ConstString text_segment_name("__TEXT");
2590       SectionSP text_segment_sp =
2591           GetSectionList()->FindSectionByName(text_segment_name);
2592       if (text_segment_sp) {
2593         const lldb::addr_t text_segment_file_addr =
2594             text_segment_sp->GetFileAddress();
2595         if (text_segment_file_addr != LLDB_INVALID_ADDRESS) {
2596           for (auto &e : trie_entries)
2597             e.entry.address += text_segment_file_addr;
2598         }
2599       }
2600     }
2601 
2602     typedef std::set<ConstString> IndirectSymbols;
2603     IndirectSymbols indirect_symbol_names;
2604 
2605 #if defined(__APPLE__) &&                                                      \
2606     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
2607 
2608     // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2609     // optimized by moving LOCAL
2610     // symbols out of the memory mapped portion of the DSC. The symbol
2611     // information has all been retained,
2612     // but it isn't available in the normal nlist data. However, there *are*
2613     // duplicate entries of *some*
2614     // LOCAL symbols in the normal nlist data. To handle this situation
2615     // correctly, we must first attempt
2616     // to parse any DSC unmapped symbol information. If we find any, we set a
2617     // flag that tells the normal
2618     // nlist parser to ignore all LOCAL symbols.
2619 
2620     if (m_header.flags & 0x80000000u) {
2621       // Before we can start mapping the DSC, we need to make certain the target
2622       // process is actually
2623       // using the cache we can find.
2624 
2625       // Next we need to determine the correct path for the dyld shared cache.
2626 
2627       ArchSpec header_arch;
2628       GetArchitecture(header_arch);
2629       char dsc_path[PATH_MAX];
2630       char dsc_path_development[PATH_MAX];
2631 
2632       snprintf(
2633           dsc_path, sizeof(dsc_path), "%s%s%s",
2634           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2635                                                        */
2636           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2637           header_arch.GetArchitectureName());
2638 
2639       snprintf(
2640           dsc_path_development, sizeof(dsc_path), "%s%s%s%s",
2641           "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR
2642                                                        */
2643           "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
2644           header_arch.GetArchitectureName(), ".development");
2645 
2646       FileSpec dsc_nondevelopment_filespec(dsc_path, false);
2647       FileSpec dsc_development_filespec(dsc_path_development, false);
2648       FileSpec dsc_filespec;
2649 
2650       UUID dsc_uuid;
2651       UUID process_shared_cache_uuid;
2652 
2653       if (process) {
2654         process_shared_cache_uuid = GetProcessSharedCacheUUID(process);
2655       }
2656 
2657       // First see if we can find an exact match for the inferior process shared
2658       // cache UUID in
2659       // the development or non-development shared caches on disk.
2660       if (process_shared_cache_uuid.IsValid()) {
2661         if (dsc_development_filespec.Exists()) {
2662           UUID dsc_development_uuid = GetSharedCacheUUID(
2663               dsc_development_filespec, byte_order, addr_byte_size);
2664           if (dsc_development_uuid.IsValid() &&
2665               dsc_development_uuid == process_shared_cache_uuid) {
2666             dsc_filespec = dsc_development_filespec;
2667             dsc_uuid = dsc_development_uuid;
2668           }
2669         }
2670         if (!dsc_uuid.IsValid() && dsc_nondevelopment_filespec.Exists()) {
2671           UUID dsc_nondevelopment_uuid = GetSharedCacheUUID(
2672               dsc_nondevelopment_filespec, byte_order, addr_byte_size);
2673           if (dsc_nondevelopment_uuid.IsValid() &&
2674               dsc_nondevelopment_uuid == process_shared_cache_uuid) {
2675             dsc_filespec = dsc_nondevelopment_filespec;
2676             dsc_uuid = dsc_nondevelopment_uuid;
2677           }
2678         }
2679       }
2680 
2681       // Failing a UUID match, prefer the development dyld_shared cache if both
2682       // are present.
2683       if (!dsc_filespec.Exists()) {
2684         if (dsc_development_filespec.Exists()) {
2685           dsc_filespec = dsc_development_filespec;
2686         } else {
2687           dsc_filespec = dsc_nondevelopment_filespec;
2688         }
2689       }
2690 
2691       /* The dyld_cache_header has a pointer to the
2692          dyld_cache_local_symbols_info structure (localSymbolsOffset).
2693          The dyld_cache_local_symbols_info structure gives us three things:
2694            1. The start and count of the nlist records in the dyld_shared_cache
2695          file
2696            2. The start and size of the strings for these nlist records
2697            3. The start and count of dyld_cache_local_symbols_entry entries
2698 
2699          There is one dyld_cache_local_symbols_entry per dylib/framework in the
2700          dyld shared cache.
2701          The "dylibOffset" field is the Mach-O header of this dylib/framework in
2702          the dyld shared cache.
2703          The dyld_cache_local_symbols_entry also lists the start of this
2704          dylib/framework's nlist records
2705          and the count of how many nlist records there are for this
2706          dylib/framework.
2707       */
2708 
2709       // Process the dyld shared cache header to find the unmapped symbols
2710 
2711       DataBufferSP dsc_data_sp = MapFileData(
2712           dsc_filespec, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2713       if (!dsc_uuid.IsValid()) {
2714         dsc_uuid = GetSharedCacheUUID(dsc_filespec, byte_order, addr_byte_size);
2715       }
2716       if (dsc_data_sp) {
2717         DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size);
2718 
2719         bool uuid_match = true;
2720         if (dsc_uuid.IsValid() && process) {
2721           if (process_shared_cache_uuid.IsValid() &&
2722               dsc_uuid != process_shared_cache_uuid) {
2723             // The on-disk dyld_shared_cache file is not the same as the one in
2724             // this
2725             // process' memory, don't use it.
2726             uuid_match = false;
2727             ModuleSP module_sp(GetModule());
2728             if (module_sp)
2729               module_sp->ReportWarning("process shared cache does not match "
2730                                        "on-disk dyld_shared_cache file, some "
2731                                        "symbol names will be missing.");
2732           }
2733         }
2734 
2735         offset = offsetof(struct lldb_copy_dyld_cache_header_v1, mappingOffset);
2736 
2737         uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
2738 
2739         // If the mappingOffset points to a location inside the header, we've
2740         // opened an old dyld shared cache, and should not proceed further.
2741         if (uuid_match &&
2742             mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v1)) {
2743 
2744           DataBufferSP dsc_mapping_info_data_sp = MapFileData(
2745               dsc_filespec, sizeof(struct lldb_copy_dyld_cache_mapping_info),
2746               mappingOffset);
2747 
2748           DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp,
2749                                               byte_order, addr_byte_size);
2750           offset = 0;
2751 
2752           // The File addresses (from the in-memory Mach-O load commands) for
2753           // the shared libraries
2754           // in the shared library cache need to be adjusted by an offset to
2755           // match up with the
2756           // dylibOffset identifying field in the
2757           // dyld_cache_local_symbol_entry's.  This offset is
2758           // recorded in mapping_offset_value.
2759           const uint64_t mapping_offset_value =
2760               dsc_mapping_info_data.GetU64(&offset);
2761 
2762           offset = offsetof(struct lldb_copy_dyld_cache_header_v1,
2763                             localSymbolsOffset);
2764           uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
2765           uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
2766 
2767           if (localSymbolsOffset && localSymbolsSize) {
2768             // Map the local symbols
2769             DataBufferSP dsc_local_symbols_data_sp =
2770                 MapFileData(dsc_filespec, localSymbolsSize, localSymbolsOffset);
2771 
2772             if (dsc_local_symbols_data_sp) {
2773               DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp,
2774                                                    byte_order, addr_byte_size);
2775 
2776               offset = 0;
2777 
2778               typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
2779               typedef std::map<uint32_t, ConstString> SymbolIndexToName;
2780               UndefinedNameToDescMap undefined_name_to_desc;
2781               SymbolIndexToName reexport_shlib_needs_fixup;
2782 
2783               // Read the local_symbols_infos struct in one shot
2784               struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
2785               dsc_local_symbols_data.GetU32(&offset,
2786                                             &local_symbols_info.nlistOffset, 6);
2787 
2788               SectionSP text_section_sp(
2789                   section_list->FindSectionByName(GetSegmentNameTEXT()));
2790 
2791               uint32_t header_file_offset =
2792                   (text_section_sp->GetFileAddress() - mapping_offset_value);
2793 
2794               offset = local_symbols_info.entriesOffset;
2795               for (uint32_t entry_index = 0;
2796                    entry_index < local_symbols_info.entriesCount;
2797                    entry_index++) {
2798                 struct lldb_copy_dyld_cache_local_symbols_entry
2799                     local_symbols_entry;
2800                 local_symbols_entry.dylibOffset =
2801                     dsc_local_symbols_data.GetU32(&offset);
2802                 local_symbols_entry.nlistStartIndex =
2803                     dsc_local_symbols_data.GetU32(&offset);
2804                 local_symbols_entry.nlistCount =
2805                     dsc_local_symbols_data.GetU32(&offset);
2806 
2807                 if (header_file_offset == local_symbols_entry.dylibOffset) {
2808                   unmapped_local_symbols_found = local_symbols_entry.nlistCount;
2809 
2810                   // The normal nlist code cannot correctly size the Symbols
2811                   // array, we need to allocate it here.
2812                   sym = symtab->Resize(
2813                       symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2814                       unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2815                   num_syms = symtab->GetNumSymbols();
2816 
2817                   nlist_data_offset =
2818                       local_symbols_info.nlistOffset +
2819                       (nlist_byte_size * local_symbols_entry.nlistStartIndex);
2820                   uint32_t string_table_offset =
2821                       local_symbols_info.stringsOffset;
2822 
2823                   for (uint32_t nlist_index = 0;
2824                        nlist_index < local_symbols_entry.nlistCount;
2825                        nlist_index++) {
2826                     /////////////////////////////
2827                     {
2828                       struct nlist_64 nlist;
2829                       if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(
2830                               nlist_data_offset, nlist_byte_size))
2831                         break;
2832 
2833                       nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(
2834                           &nlist_data_offset);
2835                       nlist.n_type = dsc_local_symbols_data.GetU8_unchecked(
2836                           &nlist_data_offset);
2837                       nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked(
2838                           &nlist_data_offset);
2839                       nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked(
2840                           &nlist_data_offset);
2841                       nlist.n_value =
2842                           dsc_local_symbols_data.GetAddress_unchecked(
2843                               &nlist_data_offset);
2844 
2845                       SymbolType type = eSymbolTypeInvalid;
2846                       const char *symbol_name = dsc_local_symbols_data.PeekCStr(
2847                           string_table_offset + nlist.n_strx);
2848 
2849                       if (symbol_name == NULL) {
2850                         // No symbol should be NULL, even the symbols with no
2851                         // string values should have an offset zero which points
2852                         // to an empty C-string
2853                         Host::SystemLog(
2854                             Host::eSystemLogError,
2855                             "error: DSC unmapped local symbol[%u] has invalid "
2856                             "string table offset 0x%x in %s, ignoring symbol\n",
2857                             entry_index, nlist.n_strx,
2858                             module_sp->GetFileSpec().GetPath().c_str());
2859                         continue;
2860                       }
2861                       if (symbol_name[0] == '\0')
2862                         symbol_name = NULL;
2863 
2864                       const char *symbol_name_non_abi_mangled = NULL;
2865 
2866                       SectionSP symbol_section;
2867                       uint32_t symbol_byte_size = 0;
2868                       bool add_nlist = true;
2869                       bool is_debug = ((nlist.n_type & N_STAB) != 0);
2870                       bool demangled_is_synthesized = false;
2871                       bool is_gsym = false;
2872                       bool set_value = true;
2873 
2874                       assert(sym_idx < num_syms);
2875 
2876                       sym[sym_idx].SetDebug(is_debug);
2877 
2878                       if (is_debug) {
2879                         switch (nlist.n_type) {
2880                         case N_GSYM:
2881                           // global symbol: name,,NO_SECT,type,0
2882                           // Sometimes the N_GSYM value contains the address.
2883 
2884                           // FIXME: In the .o files, we have a GSYM and a debug
2885                           // symbol for all the ObjC data.  They
2886                           // have the same address, but we want to ensure that
2887                           // we always find only the real symbol,
2888                           // 'cause we don't currently correctly attribute the
2889                           // GSYM one to the ObjCClass/Ivar/MetaClass
2890                           // symbol type.  This is a temporary hack to make sure
2891                           // the ObjectiveC symbols get treated
2892                           // correctly.  To do this right, we should coalesce
2893                           // all the GSYM & global symbols that have the
2894                           // same address.
2895 
2896                           is_gsym = true;
2897                           sym[sym_idx].SetExternal(true);
2898 
2899                           if (symbol_name && symbol_name[0] == '_' &&
2900                               symbol_name[1] == 'O') {
2901                             llvm::StringRef symbol_name_ref(symbol_name);
2902                             if (symbol_name_ref.startswith(
2903                                     g_objc_v2_prefix_class)) {
2904                               symbol_name_non_abi_mangled = symbol_name + 1;
2905                               symbol_name =
2906                                   symbol_name + g_objc_v2_prefix_class.size();
2907                               type = eSymbolTypeObjCClass;
2908                               demangled_is_synthesized = true;
2909 
2910                             } else if (symbol_name_ref.startswith(
2911                                            g_objc_v2_prefix_metaclass)) {
2912                               symbol_name_non_abi_mangled = symbol_name + 1;
2913                               symbol_name = symbol_name +
2914                                             g_objc_v2_prefix_metaclass.size();
2915                               type = eSymbolTypeObjCMetaClass;
2916                               demangled_is_synthesized = true;
2917                             } else if (symbol_name_ref.startswith(
2918                                            g_objc_v2_prefix_ivar)) {
2919                               symbol_name_non_abi_mangled = symbol_name + 1;
2920                               symbol_name =
2921                                   symbol_name + g_objc_v2_prefix_ivar.size();
2922                               type = eSymbolTypeObjCIVar;
2923                               demangled_is_synthesized = true;
2924                             }
2925                           } else {
2926                             if (nlist.n_value != 0)
2927                               symbol_section = section_info.GetSection(
2928                                   nlist.n_sect, nlist.n_value);
2929                             type = eSymbolTypeData;
2930                           }
2931                           break;
2932 
2933                         case N_FNAME:
2934                           // procedure name (f77 kludge): name,,NO_SECT,0,0
2935                           type = eSymbolTypeCompiler;
2936                           break;
2937 
2938                         case N_FUN:
2939                           // procedure: name,,n_sect,linenumber,address
2940                           if (symbol_name) {
2941                             type = eSymbolTypeCode;
2942                             symbol_section = section_info.GetSection(
2943                                 nlist.n_sect, nlist.n_value);
2944 
2945                             N_FUN_addr_to_sym_idx.insert(
2946                                 std::make_pair(nlist.n_value, sym_idx));
2947                             // We use the current number of symbols in the
2948                             // symbol table in lieu of
2949                             // using nlist_idx in case we ever start trimming
2950                             // entries out
2951                             N_FUN_indexes.push_back(sym_idx);
2952                           } else {
2953                             type = eSymbolTypeCompiler;
2954 
2955                             if (!N_FUN_indexes.empty()) {
2956                               // Copy the size of the function into the original
2957                               // STAB entry so we don't have
2958                               // to hunt for it later
2959                               symtab->SymbolAtIndex(N_FUN_indexes.back())
2960                                   ->SetByteSize(nlist.n_value);
2961                               N_FUN_indexes.pop_back();
2962                               // We don't really need the end function STAB as
2963                               // it contains the size which
2964                               // we already placed with the original symbol, so
2965                               // don't add it if we want a
2966                               // minimal symbol table
2967                               add_nlist = false;
2968                             }
2969                           }
2970                           break;
2971 
2972                         case N_STSYM:
2973                           // static symbol: name,,n_sect,type,address
2974                           N_STSYM_addr_to_sym_idx.insert(
2975                               std::make_pair(nlist.n_value, sym_idx));
2976                           symbol_section = section_info.GetSection(
2977                               nlist.n_sect, nlist.n_value);
2978                           if (symbol_name && symbol_name[0]) {
2979                             type = ObjectFile::GetSymbolTypeFromName(
2980                                 symbol_name + 1, eSymbolTypeData);
2981                           }
2982                           break;
2983 
2984                         case N_LCSYM:
2985                           // .lcomm symbol: name,,n_sect,type,address
2986                           symbol_section = section_info.GetSection(
2987                               nlist.n_sect, nlist.n_value);
2988                           type = eSymbolTypeCommonBlock;
2989                           break;
2990 
2991                         case N_BNSYM:
2992                           // We use the current number of symbols in the symbol
2993                           // table in lieu of
2994                           // using nlist_idx in case we ever start trimming
2995                           // entries out
2996                           // Skip these if we want minimal symbol tables
2997                           add_nlist = false;
2998                           break;
2999 
3000                         case N_ENSYM:
3001                           // Set the size of the N_BNSYM to the terminating
3002                           // index of this N_ENSYM
3003                           // so that we can always skip the entire symbol if we
3004                           // need to navigate
3005                           // more quickly at the source level when parsing STABS
3006                           // Skip these if we want minimal symbol tables
3007                           add_nlist = false;
3008                           break;
3009 
3010                         case N_OPT:
3011                           // emitted with gcc2_compiled and in gcc source
3012                           type = eSymbolTypeCompiler;
3013                           break;
3014 
3015                         case N_RSYM:
3016                           // register sym: name,,NO_SECT,type,register
3017                           type = eSymbolTypeVariable;
3018                           break;
3019 
3020                         case N_SLINE:
3021                           // src line: 0,,n_sect,linenumber,address
3022                           symbol_section = section_info.GetSection(
3023                               nlist.n_sect, nlist.n_value);
3024                           type = eSymbolTypeLineEntry;
3025                           break;
3026 
3027                         case N_SSYM:
3028                           // structure elt: name,,NO_SECT,type,struct_offset
3029                           type = eSymbolTypeVariableType;
3030                           break;
3031 
3032                         case N_SO:
3033                           // source file name
3034                           type = eSymbolTypeSourceFile;
3035                           if (symbol_name == NULL) {
3036                             add_nlist = false;
3037                             if (N_SO_index != UINT32_MAX) {
3038                               // Set the size of the N_SO to the terminating
3039                               // index of this N_SO
3040                               // so that we can always skip the entire N_SO if
3041                               // we need to navigate
3042                               // more quickly at the source level when parsing
3043                               // STABS
3044                               symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
3045                               symbol_ptr->SetByteSize(sym_idx);
3046                               symbol_ptr->SetSizeIsSibling(true);
3047                             }
3048                             N_NSYM_indexes.clear();
3049                             N_INCL_indexes.clear();
3050                             N_BRAC_indexes.clear();
3051                             N_COMM_indexes.clear();
3052                             N_FUN_indexes.clear();
3053                             N_SO_index = UINT32_MAX;
3054                           } else {
3055                             // We use the current number of symbols in the
3056                             // symbol table in lieu of
3057                             // using nlist_idx in case we ever start trimming
3058                             // entries out
3059                             const bool N_SO_has_full_path =
3060                                 symbol_name[0] == '/';
3061                             if (N_SO_has_full_path) {
3062                               if ((N_SO_index == sym_idx - 1) &&
3063                                   ((sym_idx - 1) < num_syms)) {
3064                                 // We have two consecutive N_SO entries where
3065                                 // the first contains a directory
3066                                 // and the second contains a full path.
3067                                 sym[sym_idx - 1].GetMangled().SetValue(
3068                                     ConstString(symbol_name), false);
3069                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3070                                 add_nlist = false;
3071                               } else {
3072                                 // This is the first entry in a N_SO that
3073                                 // contains a directory or
3074                                 // a full path to the source file
3075                                 N_SO_index = sym_idx;
3076                               }
3077                             } else if ((N_SO_index == sym_idx - 1) &&
3078                                        ((sym_idx - 1) < num_syms)) {
3079                               // This is usually the second N_SO entry that
3080                               // contains just the filename,
3081                               // so here we combine it with the first one if we
3082                               // are minimizing the symbol table
3083                               const char *so_path =
3084                                   sym[sym_idx - 1]
3085                                       .GetMangled()
3086                                       .GetDemangledName(
3087                                           lldb::eLanguageTypeUnknown)
3088                                       .AsCString();
3089                               if (so_path && so_path[0]) {
3090                                 std::string full_so_path(so_path);
3091                                 const size_t double_slash_pos =
3092                                     full_so_path.find("//");
3093                                 if (double_slash_pos != std::string::npos) {
3094                                   // The linker has been generating bad N_SO
3095                                   // entries with doubled up paths
3096                                   // in the format "%s%s" where the first string
3097                                   // in the DW_AT_comp_dir,
3098                                   // and the second is the directory for the
3099                                   // source file so you end up with
3100                                   // a path that looks like "/tmp/src//tmp/src/"
3101                                   FileSpec so_dir(so_path, false);
3102                                   if (!so_dir.Exists()) {
3103                                     so_dir.SetFile(
3104                                         &full_so_path[double_slash_pos + 1],
3105                                         false);
3106                                     if (so_dir.Exists()) {
3107                                       // Trim off the incorrect path
3108                                       full_so_path.erase(0,
3109                                                          double_slash_pos + 1);
3110                                     }
3111                                   }
3112                                 }
3113                                 if (*full_so_path.rbegin() != '/')
3114                                   full_so_path += '/';
3115                                 full_so_path += symbol_name;
3116                                 sym[sym_idx - 1].GetMangled().SetValue(
3117                                     ConstString(full_so_path.c_str()), false);
3118                                 add_nlist = false;
3119                                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3120                               }
3121                             } else {
3122                               // This could be a relative path to a N_SO
3123                               N_SO_index = sym_idx;
3124                             }
3125                           }
3126                           break;
3127 
3128                         case N_OSO:
3129                           // object file name: name,,0,0,st_mtime
3130                           type = eSymbolTypeObjectFile;
3131                           break;
3132 
3133                         case N_LSYM:
3134                           // local sym: name,,NO_SECT,type,offset
3135                           type = eSymbolTypeLocal;
3136                           break;
3137 
3138                         //----------------------------------------------------------------------
3139                         // INCL scopes
3140                         //----------------------------------------------------------------------
3141                         case N_BINCL:
3142                           // include file beginning: name,,NO_SECT,0,sum
3143                           // We use the current number of symbols in the symbol
3144                           // table in lieu of
3145                           // using nlist_idx in case we ever start trimming
3146                           // entries out
3147                           N_INCL_indexes.push_back(sym_idx);
3148                           type = eSymbolTypeScopeBegin;
3149                           break;
3150 
3151                         case N_EINCL:
3152                           // include file end: name,,NO_SECT,0,0
3153                           // Set the size of the N_BINCL to the terminating
3154                           // index of this N_EINCL
3155                           // so that we can always skip the entire symbol if we
3156                           // need to navigate
3157                           // more quickly at the source level when parsing STABS
3158                           if (!N_INCL_indexes.empty()) {
3159                             symbol_ptr =
3160                                 symtab->SymbolAtIndex(N_INCL_indexes.back());
3161                             symbol_ptr->SetByteSize(sym_idx + 1);
3162                             symbol_ptr->SetSizeIsSibling(true);
3163                             N_INCL_indexes.pop_back();
3164                           }
3165                           type = eSymbolTypeScopeEnd;
3166                           break;
3167 
3168                         case N_SOL:
3169                           // #included file name: name,,n_sect,0,address
3170                           type = eSymbolTypeHeaderFile;
3171 
3172                           // We currently don't use the header files on darwin
3173                           add_nlist = false;
3174                           break;
3175 
3176                         case N_PARAMS:
3177                           // compiler parameters: name,,NO_SECT,0,0
3178                           type = eSymbolTypeCompiler;
3179                           break;
3180 
3181                         case N_VERSION:
3182                           // compiler version: name,,NO_SECT,0,0
3183                           type = eSymbolTypeCompiler;
3184                           break;
3185 
3186                         case N_OLEVEL:
3187                           // compiler -O level: name,,NO_SECT,0,0
3188                           type = eSymbolTypeCompiler;
3189                           break;
3190 
3191                         case N_PSYM:
3192                           // parameter: name,,NO_SECT,type,offset
3193                           type = eSymbolTypeVariable;
3194                           break;
3195 
3196                         case N_ENTRY:
3197                           // alternate entry: name,,n_sect,linenumber,address
3198                           symbol_section = section_info.GetSection(
3199                               nlist.n_sect, nlist.n_value);
3200                           type = eSymbolTypeLineEntry;
3201                           break;
3202 
3203                         //----------------------------------------------------------------------
3204                         // Left and Right Braces
3205                         //----------------------------------------------------------------------
3206                         case N_LBRAC:
3207                           // left bracket: 0,,NO_SECT,nesting level,address
3208                           // We use the current number of symbols in the symbol
3209                           // table in lieu of
3210                           // using nlist_idx in case we ever start trimming
3211                           // entries out
3212                           symbol_section = section_info.GetSection(
3213                               nlist.n_sect, nlist.n_value);
3214                           N_BRAC_indexes.push_back(sym_idx);
3215                           type = eSymbolTypeScopeBegin;
3216                           break;
3217 
3218                         case N_RBRAC:
3219                           // right bracket: 0,,NO_SECT,nesting level,address
3220                           // Set the size of the N_LBRAC to the terminating
3221                           // index of this N_RBRAC
3222                           // so that we can always skip the entire symbol if we
3223                           // need to navigate
3224                           // more quickly at the source level when parsing STABS
3225                           symbol_section = section_info.GetSection(
3226                               nlist.n_sect, nlist.n_value);
3227                           if (!N_BRAC_indexes.empty()) {
3228                             symbol_ptr =
3229                                 symtab->SymbolAtIndex(N_BRAC_indexes.back());
3230                             symbol_ptr->SetByteSize(sym_idx + 1);
3231                             symbol_ptr->SetSizeIsSibling(true);
3232                             N_BRAC_indexes.pop_back();
3233                           }
3234                           type = eSymbolTypeScopeEnd;
3235                           break;
3236 
3237                         case N_EXCL:
3238                           // deleted include file: name,,NO_SECT,0,sum
3239                           type = eSymbolTypeHeaderFile;
3240                           break;
3241 
3242                         //----------------------------------------------------------------------
3243                         // COMM scopes
3244                         //----------------------------------------------------------------------
3245                         case N_BCOMM:
3246                           // begin common: name,,NO_SECT,0,0
3247                           // We use the current number of symbols in the symbol
3248                           // table in lieu of
3249                           // using nlist_idx in case we ever start trimming
3250                           // entries out
3251                           type = eSymbolTypeScopeBegin;
3252                           N_COMM_indexes.push_back(sym_idx);
3253                           break;
3254 
3255                         case N_ECOML:
3256                           // end common (local name): 0,,n_sect,0,address
3257                           symbol_section = section_info.GetSection(
3258                               nlist.n_sect, nlist.n_value);
3259                         // Fall through
3260 
3261                         case N_ECOMM:
3262                           // end common: name,,n_sect,0,0
3263                           // Set the size of the N_BCOMM to the terminating
3264                           // index of this N_ECOMM/N_ECOML
3265                           // so that we can always skip the entire symbol if we
3266                           // need to navigate
3267                           // more quickly at the source level when parsing STABS
3268                           if (!N_COMM_indexes.empty()) {
3269                             symbol_ptr =
3270                                 symtab->SymbolAtIndex(N_COMM_indexes.back());
3271                             symbol_ptr->SetByteSize(sym_idx + 1);
3272                             symbol_ptr->SetSizeIsSibling(true);
3273                             N_COMM_indexes.pop_back();
3274                           }
3275                           type = eSymbolTypeScopeEnd;
3276                           break;
3277 
3278                         case N_LENG:
3279                           // second stab entry with length information
3280                           type = eSymbolTypeAdditional;
3281                           break;
3282 
3283                         default:
3284                           break;
3285                         }
3286                       } else {
3287                         // uint8_t n_pext    = N_PEXT & nlist.n_type;
3288                         uint8_t n_type = N_TYPE & nlist.n_type;
3289                         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3290 
3291                         switch (n_type) {
3292                         case N_INDR: {
3293                           const char *reexport_name_cstr =
3294                               strtab_data.PeekCStr(nlist.n_value);
3295                           if (reexport_name_cstr && reexport_name_cstr[0]) {
3296                             type = eSymbolTypeReExported;
3297                             ConstString reexport_name(
3298                                 reexport_name_cstr +
3299                                 ((reexport_name_cstr[0] == '_') ? 1 : 0));
3300                             sym[sym_idx].SetReExportedSymbolName(reexport_name);
3301                             set_value = false;
3302                             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3303                             indirect_symbol_names.insert(
3304                                 ConstString(symbol_name +
3305                                             ((symbol_name[0] == '_') ? 1 : 0)));
3306                           } else
3307                             type = eSymbolTypeUndefined;
3308                         } break;
3309 
3310                         case N_UNDF:
3311                           if (symbol_name && symbol_name[0]) {
3312                             ConstString undefined_name(
3313                                 symbol_name +
3314                                 ((symbol_name[0] == '_') ? 1 : 0));
3315                             undefined_name_to_desc[undefined_name] =
3316                                 nlist.n_desc;
3317                           }
3318                         // Fall through
3319                         case N_PBUD:
3320                           type = eSymbolTypeUndefined;
3321                           break;
3322 
3323                         case N_ABS:
3324                           type = eSymbolTypeAbsolute;
3325                           break;
3326 
3327                         case N_SECT: {
3328                           symbol_section = section_info.GetSection(
3329                               nlist.n_sect, nlist.n_value);
3330 
3331                           if (symbol_section == NULL) {
3332                             // TODO: warn about this?
3333                             add_nlist = false;
3334                             break;
3335                           }
3336 
3337                           if (TEXT_eh_frame_sectID == nlist.n_sect) {
3338                             type = eSymbolTypeException;
3339                           } else {
3340                             uint32_t section_type =
3341                                 symbol_section->Get() & SECTION_TYPE;
3342 
3343                             switch (section_type) {
3344                             case S_CSTRING_LITERALS:
3345                               type = eSymbolTypeData;
3346                               break; // section with only literal C strings
3347                             case S_4BYTE_LITERALS:
3348                               type = eSymbolTypeData;
3349                               break; // section with only 4 byte literals
3350                             case S_8BYTE_LITERALS:
3351                               type = eSymbolTypeData;
3352                               break; // section with only 8 byte literals
3353                             case S_LITERAL_POINTERS:
3354                               type = eSymbolTypeTrampoline;
3355                               break; // section with only pointers to literals
3356                             case S_NON_LAZY_SYMBOL_POINTERS:
3357                               type = eSymbolTypeTrampoline;
3358                               break; // section with only non-lazy symbol
3359                                      // pointers
3360                             case S_LAZY_SYMBOL_POINTERS:
3361                               type = eSymbolTypeTrampoline;
3362                               break; // section with only lazy symbol pointers
3363                             case S_SYMBOL_STUBS:
3364                               type = eSymbolTypeTrampoline;
3365                               break; // section with only symbol stubs, byte
3366                                      // size of stub in the reserved2 field
3367                             case S_MOD_INIT_FUNC_POINTERS:
3368                               type = eSymbolTypeCode;
3369                               break; // section with only function pointers for
3370                                      // initialization
3371                             case S_MOD_TERM_FUNC_POINTERS:
3372                               type = eSymbolTypeCode;
3373                               break; // section with only function pointers for
3374                                      // termination
3375                             case S_INTERPOSING:
3376                               type = eSymbolTypeTrampoline;
3377                               break; // section with only pairs of function
3378                                      // pointers for interposing
3379                             case S_16BYTE_LITERALS:
3380                               type = eSymbolTypeData;
3381                               break; // section with only 16 byte literals
3382                             case S_DTRACE_DOF:
3383                               type = eSymbolTypeInstrumentation;
3384                               break;
3385                             case S_LAZY_DYLIB_SYMBOL_POINTERS:
3386                               type = eSymbolTypeTrampoline;
3387                               break;
3388                             default:
3389                               switch (symbol_section->GetType()) {
3390                               case lldb::eSectionTypeCode:
3391                                 type = eSymbolTypeCode;
3392                                 break;
3393                               case eSectionTypeData:
3394                               case eSectionTypeDataCString: // Inlined C string
3395                                                             // data
3396                               case eSectionTypeDataCStringPointers: // Pointers
3397                                                                     // to C
3398                                                                     // string
3399                                                                     // data
3400                               case eSectionTypeDataSymbolAddress: // Address of
3401                                                                   // a symbol in
3402                                                                   // the symbol
3403                                                                   // table
3404                               case eSectionTypeData4:
3405                               case eSectionTypeData8:
3406                               case eSectionTypeData16:
3407                                 type = eSymbolTypeData;
3408                                 break;
3409                               default:
3410                                 break;
3411                               }
3412                               break;
3413                             }
3414 
3415                             if (type == eSymbolTypeInvalid) {
3416                               const char *symbol_sect_name =
3417                                   symbol_section->GetName().AsCString();
3418                               if (symbol_section->IsDescendant(
3419                                       text_section_sp.get())) {
3420                                 if (symbol_section->IsClear(
3421                                         S_ATTR_PURE_INSTRUCTIONS |
3422                                         S_ATTR_SELF_MODIFYING_CODE |
3423                                         S_ATTR_SOME_INSTRUCTIONS))
3424                                   type = eSymbolTypeData;
3425                                 else
3426                                   type = eSymbolTypeCode;
3427                               } else if (symbol_section->IsDescendant(
3428                                              data_section_sp.get()) ||
3429                                          symbol_section->IsDescendant(
3430                                              data_dirty_section_sp.get()) ||
3431                                          symbol_section->IsDescendant(
3432                                              data_const_section_sp.get())) {
3433                                 if (symbol_sect_name &&
3434                                     ::strstr(symbol_sect_name, "__objc") ==
3435                                         symbol_sect_name) {
3436                                   type = eSymbolTypeRuntime;
3437 
3438                                   if (symbol_name) {
3439                                     llvm::StringRef symbol_name_ref(
3440                                         symbol_name);
3441                                     if (symbol_name_ref.startswith("_OBJC_")) {
3442                                       static const llvm::StringRef
3443                                           g_objc_v2_prefix_class(
3444                                               "_OBJC_CLASS_$_");
3445                                       static const llvm::StringRef
3446                                           g_objc_v2_prefix_metaclass(
3447                                               "_OBJC_METACLASS_$_");
3448                                       static const llvm::StringRef
3449                                           g_objc_v2_prefix_ivar(
3450                                               "_OBJC_IVAR_$_");
3451                                       if (symbol_name_ref.startswith(
3452                                               g_objc_v2_prefix_class)) {
3453                                         symbol_name_non_abi_mangled =
3454                                             symbol_name + 1;
3455                                         symbol_name =
3456                                             symbol_name +
3457                                             g_objc_v2_prefix_class.size();
3458                                         type = eSymbolTypeObjCClass;
3459                                         demangled_is_synthesized = true;
3460                                       } else if (
3461                                           symbol_name_ref.startswith(
3462                                               g_objc_v2_prefix_metaclass)) {
3463                                         symbol_name_non_abi_mangled =
3464                                             symbol_name + 1;
3465                                         symbol_name =
3466                                             symbol_name +
3467                                             g_objc_v2_prefix_metaclass.size();
3468                                         type = eSymbolTypeObjCMetaClass;
3469                                         demangled_is_synthesized = true;
3470                                       } else if (symbol_name_ref.startswith(
3471                                                      g_objc_v2_prefix_ivar)) {
3472                                         symbol_name_non_abi_mangled =
3473                                             symbol_name + 1;
3474                                         symbol_name =
3475                                             symbol_name +
3476                                             g_objc_v2_prefix_ivar.size();
3477                                         type = eSymbolTypeObjCIVar;
3478                                         demangled_is_synthesized = true;
3479                                       }
3480                                     }
3481                                   }
3482                                 } else if (symbol_sect_name &&
3483                                            ::strstr(symbol_sect_name,
3484                                                     "__gcc_except_tab") ==
3485                                                symbol_sect_name) {
3486                                   type = eSymbolTypeException;
3487                                 } else {
3488                                   type = eSymbolTypeData;
3489                                 }
3490                               } else if (symbol_sect_name &&
3491                                          ::strstr(symbol_sect_name,
3492                                                   "__IMPORT") ==
3493                                              symbol_sect_name) {
3494                                 type = eSymbolTypeTrampoline;
3495                               } else if (symbol_section->IsDescendant(
3496                                              objc_section_sp.get())) {
3497                                 type = eSymbolTypeRuntime;
3498                                 if (symbol_name && symbol_name[0] == '.') {
3499                                   llvm::StringRef symbol_name_ref(symbol_name);
3500                                   static const llvm::StringRef
3501                                       g_objc_v1_prefix_class(
3502                                           ".objc_class_name_");
3503                                   if (symbol_name_ref.startswith(
3504                                           g_objc_v1_prefix_class)) {
3505                                     symbol_name_non_abi_mangled = symbol_name;
3506                                     symbol_name = symbol_name +
3507                                                   g_objc_v1_prefix_class.size();
3508                                     type = eSymbolTypeObjCClass;
3509                                     demangled_is_synthesized = true;
3510                                   }
3511                                 }
3512                               }
3513                             }
3514                           }
3515                         } break;
3516                         }
3517                       }
3518 
3519                       if (add_nlist) {
3520                         uint64_t symbol_value = nlist.n_value;
3521                         if (symbol_name_non_abi_mangled) {
3522                           sym[sym_idx].GetMangled().SetMangledName(
3523                               ConstString(symbol_name_non_abi_mangled));
3524                           sym[sym_idx].GetMangled().SetDemangledName(
3525                               ConstString(symbol_name));
3526                         } else {
3527                           bool symbol_name_is_mangled = false;
3528 
3529                           if (symbol_name && symbol_name[0] == '_') {
3530                             symbol_name_is_mangled = symbol_name[1] == '_';
3531                             symbol_name++; // Skip the leading underscore
3532                           }
3533 
3534                           if (symbol_name) {
3535                             ConstString const_symbol_name(symbol_name);
3536                             sym[sym_idx].GetMangled().SetValue(
3537                                 const_symbol_name, symbol_name_is_mangled);
3538                             if (is_gsym && is_debug) {
3539                               const char *gsym_name =
3540                                   sym[sym_idx]
3541                                       .GetMangled()
3542                                       .GetName(lldb::eLanguageTypeUnknown,
3543                                                Mangled::ePreferMangled)
3544                                       .GetCString();
3545                               if (gsym_name)
3546                                 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3547                             }
3548                           }
3549                         }
3550                         if (symbol_section) {
3551                           const addr_t section_file_addr =
3552                               symbol_section->GetFileAddress();
3553                           if (symbol_byte_size == 0 &&
3554                               function_starts_count > 0) {
3555                             addr_t symbol_lookup_file_addr = nlist.n_value;
3556                             // Do an exact address match for non-ARM addresses,
3557                             // else get the closest since
3558                             // the symbol might be a thumb symbol which has an
3559                             // address with bit zero set
3560                             FunctionStarts::Entry *func_start_entry =
3561                                 function_starts.FindEntry(
3562                                     symbol_lookup_file_addr, !is_arm);
3563                             if (is_arm && func_start_entry) {
3564                               // Verify that the function start address is the
3565                               // symbol address (ARM)
3566                               // or the symbol address + 1 (thumb)
3567                               if (func_start_entry->addr !=
3568                                       symbol_lookup_file_addr &&
3569                                   func_start_entry->addr !=
3570                                       (symbol_lookup_file_addr + 1)) {
3571                                 // Not the right entry, NULL it out...
3572                                 func_start_entry = NULL;
3573                               }
3574                             }
3575                             if (func_start_entry) {
3576                               func_start_entry->data = true;
3577 
3578                               addr_t symbol_file_addr = func_start_entry->addr;
3579                               uint32_t symbol_flags = 0;
3580                               if (is_arm) {
3581                                 if (symbol_file_addr & 1)
3582                                   symbol_flags =
3583                                       MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3584                                 symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3585                               }
3586 
3587                               const FunctionStarts::Entry
3588                                   *next_func_start_entry =
3589                                       function_starts.FindNextEntry(
3590                                           func_start_entry);
3591                               const addr_t section_end_file_addr =
3592                                   section_file_addr +
3593                                   symbol_section->GetByteSize();
3594                               if (next_func_start_entry) {
3595                                 addr_t next_symbol_file_addr =
3596                                     next_func_start_entry->addr;
3597                                 // Be sure the clear the Thumb address bit when
3598                                 // we calculate the size
3599                                 // from the current and next address
3600                                 if (is_arm)
3601                                   next_symbol_file_addr &=
3602                                       THUMB_ADDRESS_BIT_MASK;
3603                                 symbol_byte_size = std::min<lldb::addr_t>(
3604                                     next_symbol_file_addr - symbol_file_addr,
3605                                     section_end_file_addr - symbol_file_addr);
3606                               } else {
3607                                 symbol_byte_size =
3608                                     section_end_file_addr - symbol_file_addr;
3609                               }
3610                             }
3611                           }
3612                           symbol_value -= section_file_addr;
3613                         }
3614 
3615                         if (is_debug == false) {
3616                           if (type == eSymbolTypeCode) {
3617                             // See if we can find a N_FUN entry for any code
3618                             // symbols.
3619                             // If we do find a match, and the name matches, then
3620                             // we
3621                             // can merge the two into just the function symbol
3622                             // to avoid
3623                             // duplicate entries in the symbol table
3624                             std::pair<ValueToSymbolIndexMap::const_iterator,
3625                                       ValueToSymbolIndexMap::const_iterator>
3626                                 range;
3627                             range = N_FUN_addr_to_sym_idx.equal_range(
3628                                 nlist.n_value);
3629                             if (range.first != range.second) {
3630                               bool found_it = false;
3631                               for (ValueToSymbolIndexMap::const_iterator pos =
3632                                        range.first;
3633                                    pos != range.second; ++pos) {
3634                                 if (sym[sym_idx].GetMangled().GetName(
3635                                         lldb::eLanguageTypeUnknown,
3636                                         Mangled::ePreferMangled) ==
3637                                     sym[pos->second].GetMangled().GetName(
3638                                         lldb::eLanguageTypeUnknown,
3639                                         Mangled::ePreferMangled)) {
3640                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3641                                       pos->second;
3642                                   // We just need the flags from the linker
3643                                   // symbol, so put these flags
3644                                   // into the N_FUN flags to avoid duplicate
3645                                   // symbols in the symbol table
3646                                   sym[pos->second].SetExternal(
3647                                       sym[sym_idx].IsExternal());
3648                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3649                                                             nlist.n_desc);
3650                                   if (resolver_addresses.find(nlist.n_value) !=
3651                                       resolver_addresses.end())
3652                                     sym[pos->second].SetType(
3653                                         eSymbolTypeResolver);
3654                                   sym[sym_idx].Clear();
3655                                   found_it = true;
3656                                   break;
3657                                 }
3658                               }
3659                               if (found_it)
3660                                 continue;
3661                             } else {
3662                               if (resolver_addresses.find(nlist.n_value) !=
3663                                   resolver_addresses.end())
3664                                 type = eSymbolTypeResolver;
3665                             }
3666                           } else if (type == eSymbolTypeData ||
3667                                      type == eSymbolTypeObjCClass ||
3668                                      type == eSymbolTypeObjCMetaClass ||
3669                                      type == eSymbolTypeObjCIVar) {
3670                             // See if we can find a N_STSYM entry for any data
3671                             // symbols.
3672                             // If we do find a match, and the name matches, then
3673                             // we
3674                             // can merge the two into just the Static symbol to
3675                             // avoid
3676                             // duplicate entries in the symbol table
3677                             std::pair<ValueToSymbolIndexMap::const_iterator,
3678                                       ValueToSymbolIndexMap::const_iterator>
3679                                 range;
3680                             range = N_STSYM_addr_to_sym_idx.equal_range(
3681                                 nlist.n_value);
3682                             if (range.first != range.second) {
3683                               bool found_it = false;
3684                               for (ValueToSymbolIndexMap::const_iterator pos =
3685                                        range.first;
3686                                    pos != range.second; ++pos) {
3687                                 if (sym[sym_idx].GetMangled().GetName(
3688                                         lldb::eLanguageTypeUnknown,
3689                                         Mangled::ePreferMangled) ==
3690                                     sym[pos->second].GetMangled().GetName(
3691                                         lldb::eLanguageTypeUnknown,
3692                                         Mangled::ePreferMangled)) {
3693                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3694                                       pos->second;
3695                                   // We just need the flags from the linker
3696                                   // symbol, so put these flags
3697                                   // into the N_STSYM flags to avoid duplicate
3698                                   // symbols in the symbol table
3699                                   sym[pos->second].SetExternal(
3700                                       sym[sym_idx].IsExternal());
3701                                   sym[pos->second].SetFlags(nlist.n_type << 16 |
3702                                                             nlist.n_desc);
3703                                   sym[sym_idx].Clear();
3704                                   found_it = true;
3705                                   break;
3706                                 }
3707                               }
3708                               if (found_it)
3709                                 continue;
3710                             } else {
3711                               const char *gsym_name =
3712                                   sym[sym_idx]
3713                                       .GetMangled()
3714                                       .GetName(lldb::eLanguageTypeUnknown,
3715                                                Mangled::ePreferMangled)
3716                                       .GetCString();
3717                               if (gsym_name) {
3718                                 // Combine N_GSYM stab entries with the non stab
3719                                 // symbol
3720                                 ConstNameToSymbolIndexMap::const_iterator pos =
3721                                     N_GSYM_name_to_sym_idx.find(gsym_name);
3722                                 if (pos != N_GSYM_name_to_sym_idx.end()) {
3723                                   const uint32_t GSYM_sym_idx = pos->second;
3724                                   m_nlist_idx_to_sym_idx[nlist_idx] =
3725                                       GSYM_sym_idx;
3726                                   // Copy the address, because often the N_GSYM
3727                                   // address has an invalid address of zero
3728                                   // when the global is a common symbol
3729                                   sym[GSYM_sym_idx].GetAddressRef().SetSection(
3730                                       symbol_section);
3731                                   sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3732                                       symbol_value);
3733                                   // We just need the flags from the linker
3734                                   // symbol, so put these flags
3735                                   // into the N_GSYM flags to avoid duplicate
3736                                   // symbols in the symbol table
3737                                   sym[GSYM_sym_idx].SetFlags(
3738                                       nlist.n_type << 16 | nlist.n_desc);
3739                                   sym[sym_idx].Clear();
3740                                   continue;
3741                                 }
3742                               }
3743                             }
3744                           }
3745                         }
3746 
3747                         sym[sym_idx].SetID(nlist_idx);
3748                         sym[sym_idx].SetType(type);
3749                         if (set_value) {
3750                           sym[sym_idx].GetAddressRef().SetSection(
3751                               symbol_section);
3752                           sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3753                         }
3754                         sym[sym_idx].SetFlags(nlist.n_type << 16 |
3755                                               nlist.n_desc);
3756 
3757                         if (symbol_byte_size > 0)
3758                           sym[sym_idx].SetByteSize(symbol_byte_size);
3759 
3760                         if (demangled_is_synthesized)
3761                           sym[sym_idx].SetDemangledNameIsSynthesized(true);
3762                         ++sym_idx;
3763                       } else {
3764                         sym[sym_idx].Clear();
3765                       }
3766                     }
3767                     /////////////////////////////
3768                   }
3769                   break; // No more entries to consider
3770                 }
3771               }
3772 
3773               for (const auto &pos : reexport_shlib_needs_fixup) {
3774                 const auto undef_pos = undefined_name_to_desc.find(pos.second);
3775                 if (undef_pos != undefined_name_to_desc.end()) {
3776                   const uint8_t dylib_ordinal =
3777                       llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3778                   if (dylib_ordinal > 0 &&
3779                       dylib_ordinal < dylib_files.GetSize())
3780                     sym[pos.first].SetReExportedSymbolSharedLibrary(
3781                         dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3782                 }
3783               }
3784             }
3785           }
3786         }
3787       }
3788     }
3789 
3790     // Must reset this in case it was mutated above!
3791     nlist_data_offset = 0;
3792 #endif
3793 
3794     if (nlist_data.GetByteSize() > 0) {
3795 
3796       // If the sym array was not created while parsing the DSC unmapped
3797       // symbols, create it now.
3798       if (sym == NULL) {
3799         sym = symtab->Resize(symtab_load_command.nsyms +
3800                              m_dysymtab.nindirectsyms);
3801         num_syms = symtab->GetNumSymbols();
3802       }
3803 
3804       if (unmapped_local_symbols_found) {
3805         assert(m_dysymtab.ilocalsym == 0);
3806         nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3807         nlist_idx = m_dysymtab.nlocalsym;
3808       } else {
3809         nlist_idx = 0;
3810       }
3811 
3812       typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap;
3813       typedef std::map<uint32_t, ConstString> SymbolIndexToName;
3814       UndefinedNameToDescMap undefined_name_to_desc;
3815       SymbolIndexToName reexport_shlib_needs_fixup;
3816       for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
3817         struct nlist_64 nlist;
3818         if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset,
3819                                                  nlist_byte_size))
3820           break;
3821 
3822         nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
3823         nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
3824         nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
3825         nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
3826         nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
3827 
3828         SymbolType type = eSymbolTypeInvalid;
3829         const char *symbol_name = NULL;
3830 
3831         if (have_strtab_data) {
3832           symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3833 
3834           if (symbol_name == NULL) {
3835             // No symbol should be NULL, even the symbols with no
3836             // string values should have an offset zero which points
3837             // to an empty C-string
3838             Host::SystemLog(Host::eSystemLogError,
3839                             "error: symbol[%u] has invalid string table offset "
3840                             "0x%x in %s, ignoring symbol\n",
3841                             nlist_idx, nlist.n_strx,
3842                             module_sp->GetFileSpec().GetPath().c_str());
3843             continue;
3844           }
3845           if (symbol_name[0] == '\0')
3846             symbol_name = NULL;
3847         } else {
3848           const addr_t str_addr = strtab_addr + nlist.n_strx;
3849           Status str_error;
3850           if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3851                                              str_error))
3852             symbol_name = memory_symbol_name.c_str();
3853         }
3854         const char *symbol_name_non_abi_mangled = NULL;
3855 
3856         SectionSP symbol_section;
3857         lldb::addr_t symbol_byte_size = 0;
3858         bool add_nlist = true;
3859         bool is_gsym = false;
3860         bool is_debug = ((nlist.n_type & N_STAB) != 0);
3861         bool demangled_is_synthesized = false;
3862         bool set_value = true;
3863         assert(sym_idx < num_syms);
3864 
3865         sym[sym_idx].SetDebug(is_debug);
3866 
3867         if (is_debug) {
3868           switch (nlist.n_type) {
3869           case N_GSYM:
3870             // global symbol: name,,NO_SECT,type,0
3871             // Sometimes the N_GSYM value contains the address.
3872 
3873             // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3874             // the ObjC data.  They
3875             // have the same address, but we want to ensure that we always find
3876             // only the real symbol,
3877             // 'cause we don't currently correctly attribute the GSYM one to the
3878             // ObjCClass/Ivar/MetaClass
3879             // symbol type.  This is a temporary hack to make sure the
3880             // ObjectiveC symbols get treated
3881             // correctly.  To do this right, we should coalesce all the GSYM &
3882             // global symbols that have the
3883             // same address.
3884             is_gsym = true;
3885             sym[sym_idx].SetExternal(true);
3886 
3887             if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3888               llvm::StringRef symbol_name_ref(symbol_name);
3889               if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3890                 symbol_name_non_abi_mangled = symbol_name + 1;
3891                 symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3892                 type = eSymbolTypeObjCClass;
3893                 demangled_is_synthesized = true;
3894 
3895               } else if (symbol_name_ref.startswith(
3896                              g_objc_v2_prefix_metaclass)) {
3897                 symbol_name_non_abi_mangled = symbol_name + 1;
3898                 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3899                 type = eSymbolTypeObjCMetaClass;
3900                 demangled_is_synthesized = true;
3901               } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3902                 symbol_name_non_abi_mangled = symbol_name + 1;
3903                 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3904                 type = eSymbolTypeObjCIVar;
3905                 demangled_is_synthesized = true;
3906               }
3907             } else {
3908               if (nlist.n_value != 0)
3909                 symbol_section =
3910                     section_info.GetSection(nlist.n_sect, nlist.n_value);
3911               type = eSymbolTypeData;
3912             }
3913             break;
3914 
3915           case N_FNAME:
3916             // procedure name (f77 kludge): name,,NO_SECT,0,0
3917             type = eSymbolTypeCompiler;
3918             break;
3919 
3920           case N_FUN:
3921             // procedure: name,,n_sect,linenumber,address
3922             if (symbol_name) {
3923               type = eSymbolTypeCode;
3924               symbol_section =
3925                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3926 
3927               N_FUN_addr_to_sym_idx.insert(
3928                   std::make_pair(nlist.n_value, sym_idx));
3929               // We use the current number of symbols in the symbol table in
3930               // lieu of
3931               // using nlist_idx in case we ever start trimming entries out
3932               N_FUN_indexes.push_back(sym_idx);
3933             } else {
3934               type = eSymbolTypeCompiler;
3935 
3936               if (!N_FUN_indexes.empty()) {
3937                 // Copy the size of the function into the original STAB entry so
3938                 // we don't have
3939                 // to hunt for it later
3940                 symtab->SymbolAtIndex(N_FUN_indexes.back())
3941                     ->SetByteSize(nlist.n_value);
3942                 N_FUN_indexes.pop_back();
3943                 // We don't really need the end function STAB as it contains the
3944                 // size which
3945                 // we already placed with the original symbol, so don't add it
3946                 // if we want a
3947                 // minimal symbol table
3948                 add_nlist = false;
3949               }
3950             }
3951             break;
3952 
3953           case N_STSYM:
3954             // static symbol: name,,n_sect,type,address
3955             N_STSYM_addr_to_sym_idx.insert(
3956                 std::make_pair(nlist.n_value, sym_idx));
3957             symbol_section =
3958                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3959             if (symbol_name && symbol_name[0]) {
3960               type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3961                                                        eSymbolTypeData);
3962             }
3963             break;
3964 
3965           case N_LCSYM:
3966             // .lcomm symbol: name,,n_sect,type,address
3967             symbol_section =
3968                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3969             type = eSymbolTypeCommonBlock;
3970             break;
3971 
3972           case N_BNSYM:
3973             // We use the current number of symbols in the symbol table in lieu
3974             // of
3975             // using nlist_idx in case we ever start trimming entries out
3976             // Skip these if we want minimal symbol tables
3977             add_nlist = false;
3978             break;
3979 
3980           case N_ENSYM:
3981             // Set the size of the N_BNSYM to the terminating index of this
3982             // N_ENSYM
3983             // so that we can always skip the entire symbol if we need to
3984             // navigate
3985             // more quickly at the source level when parsing STABS
3986             // Skip these if we want minimal symbol tables
3987             add_nlist = false;
3988             break;
3989 
3990           case N_OPT:
3991             // emitted with gcc2_compiled and in gcc source
3992             type = eSymbolTypeCompiler;
3993             break;
3994 
3995           case N_RSYM:
3996             // register sym: name,,NO_SECT,type,register
3997             type = eSymbolTypeVariable;
3998             break;
3999 
4000           case N_SLINE:
4001             // src line: 0,,n_sect,linenumber,address
4002             symbol_section =
4003                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4004             type = eSymbolTypeLineEntry;
4005             break;
4006 
4007           case N_SSYM:
4008             // structure elt: name,,NO_SECT,type,struct_offset
4009             type = eSymbolTypeVariableType;
4010             break;
4011 
4012           case N_SO:
4013             // source file name
4014             type = eSymbolTypeSourceFile;
4015             if (symbol_name == NULL) {
4016               add_nlist = false;
4017               if (N_SO_index != UINT32_MAX) {
4018                 // Set the size of the N_SO to the terminating index of this
4019                 // N_SO
4020                 // so that we can always skip the entire N_SO if we need to
4021                 // navigate
4022                 // more quickly at the source level when parsing STABS
4023                 symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
4024                 symbol_ptr->SetByteSize(sym_idx);
4025                 symbol_ptr->SetSizeIsSibling(true);
4026               }
4027               N_NSYM_indexes.clear();
4028               N_INCL_indexes.clear();
4029               N_BRAC_indexes.clear();
4030               N_COMM_indexes.clear();
4031               N_FUN_indexes.clear();
4032               N_SO_index = UINT32_MAX;
4033             } else {
4034               // We use the current number of symbols in the symbol table in
4035               // lieu of
4036               // using nlist_idx in case we ever start trimming entries out
4037               const bool N_SO_has_full_path = symbol_name[0] == '/';
4038               if (N_SO_has_full_path) {
4039                 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
4040                   // We have two consecutive N_SO entries where the first
4041                   // contains a directory
4042                   // and the second contains a full path.
4043                   sym[sym_idx - 1].GetMangled().SetValue(
4044                       ConstString(symbol_name), false);
4045                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4046                   add_nlist = false;
4047                 } else {
4048                   // This is the first entry in a N_SO that contains a directory
4049                   // or
4050                   // a full path to the source file
4051                   N_SO_index = sym_idx;
4052                 }
4053               } else if ((N_SO_index == sym_idx - 1) &&
4054                          ((sym_idx - 1) < num_syms)) {
4055                 // This is usually the second N_SO entry that contains just the
4056                 // filename,
4057                 // so here we combine it with the first one if we are minimizing
4058                 // the symbol table
4059                 const char *so_path =
4060                     sym[sym_idx - 1]
4061                         .GetMangled()
4062                         .GetDemangledName(lldb::eLanguageTypeUnknown)
4063                         .AsCString();
4064                 if (so_path && so_path[0]) {
4065                   std::string full_so_path(so_path);
4066                   const size_t double_slash_pos = full_so_path.find("//");
4067                   if (double_slash_pos != std::string::npos) {
4068                     // The linker has been generating bad N_SO entries with
4069                     // doubled up paths
4070                     // in the format "%s%s" where the first string in the
4071                     // DW_AT_comp_dir,
4072                     // and the second is the directory for the source file so
4073                     // you end up with
4074                     // a path that looks like "/tmp/src//tmp/src/"
4075                     FileSpec so_dir(so_path, false);
4076                     if (!so_dir.Exists()) {
4077                       so_dir.SetFile(&full_so_path[double_slash_pos + 1],
4078                                      false);
4079                       if (so_dir.Exists()) {
4080                         // Trim off the incorrect path
4081                         full_so_path.erase(0, double_slash_pos + 1);
4082                       }
4083                     }
4084                   }
4085                   if (*full_so_path.rbegin() != '/')
4086                     full_so_path += '/';
4087                   full_so_path += symbol_name;
4088                   sym[sym_idx - 1].GetMangled().SetValue(
4089                       ConstString(full_so_path.c_str()), false);
4090                   add_nlist = false;
4091                   m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
4092                 }
4093               } else {
4094                 // This could be a relative path to a N_SO
4095                 N_SO_index = sym_idx;
4096               }
4097             }
4098             break;
4099 
4100           case N_OSO:
4101             // object file name: name,,0,0,st_mtime
4102             type = eSymbolTypeObjectFile;
4103             break;
4104 
4105           case N_LSYM:
4106             // local sym: name,,NO_SECT,type,offset
4107             type = eSymbolTypeLocal;
4108             break;
4109 
4110           //----------------------------------------------------------------------
4111           // INCL scopes
4112           //----------------------------------------------------------------------
4113           case N_BINCL:
4114             // include file beginning: name,,NO_SECT,0,sum
4115             // We use the current number of symbols in the symbol table in lieu
4116             // of
4117             // using nlist_idx in case we ever start trimming entries out
4118             N_INCL_indexes.push_back(sym_idx);
4119             type = eSymbolTypeScopeBegin;
4120             break;
4121 
4122           case N_EINCL:
4123             // include file end: name,,NO_SECT,0,0
4124             // Set the size of the N_BINCL to the terminating index of this
4125             // N_EINCL
4126             // so that we can always skip the entire symbol if we need to
4127             // navigate
4128             // more quickly at the source level when parsing STABS
4129             if (!N_INCL_indexes.empty()) {
4130               symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
4131               symbol_ptr->SetByteSize(sym_idx + 1);
4132               symbol_ptr->SetSizeIsSibling(true);
4133               N_INCL_indexes.pop_back();
4134             }
4135             type = eSymbolTypeScopeEnd;
4136             break;
4137 
4138           case N_SOL:
4139             // #included file name: name,,n_sect,0,address
4140             type = eSymbolTypeHeaderFile;
4141 
4142             // We currently don't use the header files on darwin
4143             add_nlist = false;
4144             break;
4145 
4146           case N_PARAMS:
4147             // compiler parameters: name,,NO_SECT,0,0
4148             type = eSymbolTypeCompiler;
4149             break;
4150 
4151           case N_VERSION:
4152             // compiler version: name,,NO_SECT,0,0
4153             type = eSymbolTypeCompiler;
4154             break;
4155 
4156           case N_OLEVEL:
4157             // compiler -O level: name,,NO_SECT,0,0
4158             type = eSymbolTypeCompiler;
4159             break;
4160 
4161           case N_PSYM:
4162             // parameter: name,,NO_SECT,type,offset
4163             type = eSymbolTypeVariable;
4164             break;
4165 
4166           case N_ENTRY:
4167             // alternate entry: name,,n_sect,linenumber,address
4168             symbol_section =
4169                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4170             type = eSymbolTypeLineEntry;
4171             break;
4172 
4173           //----------------------------------------------------------------------
4174           // Left and Right Braces
4175           //----------------------------------------------------------------------
4176           case N_LBRAC:
4177             // left bracket: 0,,NO_SECT,nesting level,address
4178             // We use the current number of symbols in the symbol table in lieu
4179             // of
4180             // using nlist_idx in case we ever start trimming entries out
4181             symbol_section =
4182                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4183             N_BRAC_indexes.push_back(sym_idx);
4184             type = eSymbolTypeScopeBegin;
4185             break;
4186 
4187           case N_RBRAC:
4188             // right bracket: 0,,NO_SECT,nesting level,address
4189             // Set the size of the N_LBRAC to the terminating index of this
4190             // N_RBRAC
4191             // so that we can always skip the entire symbol if we need to
4192             // navigate
4193             // more quickly at the source level when parsing STABS
4194             symbol_section =
4195                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4196             if (!N_BRAC_indexes.empty()) {
4197               symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
4198               symbol_ptr->SetByteSize(sym_idx + 1);
4199               symbol_ptr->SetSizeIsSibling(true);
4200               N_BRAC_indexes.pop_back();
4201             }
4202             type = eSymbolTypeScopeEnd;
4203             break;
4204 
4205           case N_EXCL:
4206             // deleted include file: name,,NO_SECT,0,sum
4207             type = eSymbolTypeHeaderFile;
4208             break;
4209 
4210           //----------------------------------------------------------------------
4211           // COMM scopes
4212           //----------------------------------------------------------------------
4213           case N_BCOMM:
4214             // begin common: name,,NO_SECT,0,0
4215             // We use the current number of symbols in the symbol table in lieu
4216             // of
4217             // using nlist_idx in case we ever start trimming entries out
4218             type = eSymbolTypeScopeBegin;
4219             N_COMM_indexes.push_back(sym_idx);
4220             break;
4221 
4222           case N_ECOML:
4223             // end common (local name): 0,,n_sect,0,address
4224             symbol_section =
4225                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4226             LLVM_FALLTHROUGH;
4227 
4228           case N_ECOMM:
4229             // end common: name,,n_sect,0,0
4230             // Set the size of the N_BCOMM to the terminating index of this
4231             // N_ECOMM/N_ECOML
4232             // so that we can always skip the entire symbol if we need to
4233             // navigate
4234             // more quickly at the source level when parsing STABS
4235             if (!N_COMM_indexes.empty()) {
4236               symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
4237               symbol_ptr->SetByteSize(sym_idx + 1);
4238               symbol_ptr->SetSizeIsSibling(true);
4239               N_COMM_indexes.pop_back();
4240             }
4241             type = eSymbolTypeScopeEnd;
4242             break;
4243 
4244           case N_LENG:
4245             // second stab entry with length information
4246             type = eSymbolTypeAdditional;
4247             break;
4248 
4249           default:
4250             break;
4251           }
4252         } else {
4253           // uint8_t n_pext    = N_PEXT & nlist.n_type;
4254           uint8_t n_type = N_TYPE & nlist.n_type;
4255           sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4256 
4257           switch (n_type) {
4258           case N_INDR: {
4259             const char *reexport_name_cstr =
4260                 strtab_data.PeekCStr(nlist.n_value);
4261             if (reexport_name_cstr && reexport_name_cstr[0]) {
4262               type = eSymbolTypeReExported;
4263               ConstString reexport_name(
4264                   reexport_name_cstr +
4265                   ((reexport_name_cstr[0] == '_') ? 1 : 0));
4266               sym[sym_idx].SetReExportedSymbolName(reexport_name);
4267               set_value = false;
4268               reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4269               indirect_symbol_names.insert(
4270                   ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4271             } else
4272               type = eSymbolTypeUndefined;
4273           } break;
4274 
4275           case N_UNDF:
4276             if (symbol_name && symbol_name[0]) {
4277               ConstString undefined_name(symbol_name +
4278                                          ((symbol_name[0] == '_') ? 1 : 0));
4279               undefined_name_to_desc[undefined_name] = nlist.n_desc;
4280             }
4281             LLVM_FALLTHROUGH;
4282 
4283           case N_PBUD:
4284             type = eSymbolTypeUndefined;
4285             break;
4286 
4287           case N_ABS:
4288             type = eSymbolTypeAbsolute;
4289             break;
4290 
4291           case N_SECT: {
4292             symbol_section =
4293                 section_info.GetSection(nlist.n_sect, nlist.n_value);
4294 
4295             if (!symbol_section) {
4296               // TODO: warn about this?
4297               add_nlist = false;
4298               break;
4299             }
4300 
4301             if (TEXT_eh_frame_sectID == nlist.n_sect) {
4302               type = eSymbolTypeException;
4303             } else {
4304               uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4305 
4306               switch (section_type) {
4307               case S_CSTRING_LITERALS:
4308                 type = eSymbolTypeData;
4309                 break; // section with only literal C strings
4310               case S_4BYTE_LITERALS:
4311                 type = eSymbolTypeData;
4312                 break; // section with only 4 byte literals
4313               case S_8BYTE_LITERALS:
4314                 type = eSymbolTypeData;
4315                 break; // section with only 8 byte literals
4316               case S_LITERAL_POINTERS:
4317                 type = eSymbolTypeTrampoline;
4318                 break; // section with only pointers to literals
4319               case S_NON_LAZY_SYMBOL_POINTERS:
4320                 type = eSymbolTypeTrampoline;
4321                 break; // section with only non-lazy symbol pointers
4322               case S_LAZY_SYMBOL_POINTERS:
4323                 type = eSymbolTypeTrampoline;
4324                 break; // section with only lazy symbol pointers
4325               case S_SYMBOL_STUBS:
4326                 type = eSymbolTypeTrampoline;
4327                 break; // section with only symbol stubs, byte size of stub in
4328                        // the reserved2 field
4329               case S_MOD_INIT_FUNC_POINTERS:
4330                 type = eSymbolTypeCode;
4331                 break; // section with only function pointers for initialization
4332               case S_MOD_TERM_FUNC_POINTERS:
4333                 type = eSymbolTypeCode;
4334                 break; // section with only function pointers for termination
4335               case S_INTERPOSING:
4336                 type = eSymbolTypeTrampoline;
4337                 break; // section with only pairs of function pointers for
4338                        // interposing
4339               case S_16BYTE_LITERALS:
4340                 type = eSymbolTypeData;
4341                 break; // section with only 16 byte literals
4342               case S_DTRACE_DOF:
4343                 type = eSymbolTypeInstrumentation;
4344                 break;
4345               case S_LAZY_DYLIB_SYMBOL_POINTERS:
4346                 type = eSymbolTypeTrampoline;
4347                 break;
4348               default:
4349                 switch (symbol_section->GetType()) {
4350                 case lldb::eSectionTypeCode:
4351                   type = eSymbolTypeCode;
4352                   break;
4353                 case eSectionTypeData:
4354                 case eSectionTypeDataCString:         // Inlined C string data
4355                 case eSectionTypeDataCStringPointers: // Pointers to C string
4356                                                       // data
4357                 case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4358                                                       // the symbol table
4359                 case eSectionTypeData4:
4360                 case eSectionTypeData8:
4361                 case eSectionTypeData16:
4362                   type = eSymbolTypeData;
4363                   break;
4364                 default:
4365                   break;
4366                 }
4367                 break;
4368               }
4369 
4370               if (type == eSymbolTypeInvalid) {
4371                 const char *symbol_sect_name =
4372                     symbol_section->GetName().AsCString();
4373                 if (symbol_section->IsDescendant(text_section_sp.get())) {
4374                   if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4375                                               S_ATTR_SELF_MODIFYING_CODE |
4376                                               S_ATTR_SOME_INSTRUCTIONS))
4377                     type = eSymbolTypeData;
4378                   else
4379                     type = eSymbolTypeCode;
4380                 } else if (symbol_section->IsDescendant(
4381                                data_section_sp.get()) ||
4382                            symbol_section->IsDescendant(
4383                                data_dirty_section_sp.get()) ||
4384                            symbol_section->IsDescendant(
4385                                data_const_section_sp.get())) {
4386                   if (symbol_sect_name &&
4387                       ::strstr(symbol_sect_name, "__objc") ==
4388                           symbol_sect_name) {
4389                     type = eSymbolTypeRuntime;
4390 
4391                     if (symbol_name) {
4392                       llvm::StringRef symbol_name_ref(symbol_name);
4393                       if (symbol_name_ref.startswith("_OBJC_")) {
4394                         static const llvm::StringRef g_objc_v2_prefix_class(
4395                             "_OBJC_CLASS_$_");
4396                         static const llvm::StringRef g_objc_v2_prefix_metaclass(
4397                             "_OBJC_METACLASS_$_");
4398                         static const llvm::StringRef g_objc_v2_prefix_ivar(
4399                             "_OBJC_IVAR_$_");
4400                         if (symbol_name_ref.startswith(
4401                                 g_objc_v2_prefix_class)) {
4402                           symbol_name_non_abi_mangled = symbol_name + 1;
4403                           symbol_name =
4404                               symbol_name + g_objc_v2_prefix_class.size();
4405                           type = eSymbolTypeObjCClass;
4406                           demangled_is_synthesized = true;
4407                         } else if (symbol_name_ref.startswith(
4408                                        g_objc_v2_prefix_metaclass)) {
4409                           symbol_name_non_abi_mangled = symbol_name + 1;
4410                           symbol_name =
4411                               symbol_name + g_objc_v2_prefix_metaclass.size();
4412                           type = eSymbolTypeObjCMetaClass;
4413                           demangled_is_synthesized = true;
4414                         } else if (symbol_name_ref.startswith(
4415                                        g_objc_v2_prefix_ivar)) {
4416                           symbol_name_non_abi_mangled = symbol_name + 1;
4417                           symbol_name =
4418                               symbol_name + g_objc_v2_prefix_ivar.size();
4419                           type = eSymbolTypeObjCIVar;
4420                           demangled_is_synthesized = true;
4421                         }
4422                       }
4423                     }
4424                   } else if (symbol_sect_name &&
4425                              ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4426                                  symbol_sect_name) {
4427                     type = eSymbolTypeException;
4428                   } else {
4429                     type = eSymbolTypeData;
4430                   }
4431                 } else if (symbol_sect_name &&
4432                            ::strstr(symbol_sect_name, "__IMPORT") ==
4433                                symbol_sect_name) {
4434                   type = eSymbolTypeTrampoline;
4435                 } else if (symbol_section->IsDescendant(
4436                                objc_section_sp.get())) {
4437                   type = eSymbolTypeRuntime;
4438                   if (symbol_name && symbol_name[0] == '.') {
4439                     llvm::StringRef symbol_name_ref(symbol_name);
4440                     static const llvm::StringRef g_objc_v1_prefix_class(
4441                         ".objc_class_name_");
4442                     if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4443                       symbol_name_non_abi_mangled = symbol_name;
4444                       symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4445                       type = eSymbolTypeObjCClass;
4446                       demangled_is_synthesized = true;
4447                     }
4448                   }
4449                 }
4450               }
4451             }
4452           } break;
4453           }
4454         }
4455 
4456         if (add_nlist) {
4457           uint64_t symbol_value = nlist.n_value;
4458 
4459           if (symbol_name_non_abi_mangled) {
4460             sym[sym_idx].GetMangled().SetMangledName(
4461                 ConstString(symbol_name_non_abi_mangled));
4462             sym[sym_idx].GetMangled().SetDemangledName(
4463                 ConstString(symbol_name));
4464           } else {
4465             bool symbol_name_is_mangled = false;
4466 
4467             if (symbol_name && symbol_name[0] == '_') {
4468               symbol_name_is_mangled = symbol_name[1] == '_';
4469               symbol_name++; // Skip the leading underscore
4470             }
4471 
4472             if (symbol_name) {
4473               ConstString const_symbol_name(symbol_name);
4474               sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4475                                                  symbol_name_is_mangled);
4476             }
4477           }
4478 
4479           if (is_gsym) {
4480             const char *gsym_name = sym[sym_idx]
4481                                         .GetMangled()
4482                                         .GetName(lldb::eLanguageTypeUnknown,
4483                                                  Mangled::ePreferMangled)
4484                                         .GetCString();
4485             if (gsym_name)
4486               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4487           }
4488 
4489           if (symbol_section) {
4490             const addr_t section_file_addr = symbol_section->GetFileAddress();
4491             if (symbol_byte_size == 0 && function_starts_count > 0) {
4492               addr_t symbol_lookup_file_addr = nlist.n_value;
4493               // Do an exact address match for non-ARM addresses, else get the
4494               // closest since
4495               // the symbol might be a thumb symbol which has an address with
4496               // bit zero set
4497               FunctionStarts::Entry *func_start_entry =
4498                   function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4499               if (is_arm && func_start_entry) {
4500                 // Verify that the function start address is the symbol address
4501                 // (ARM)
4502                 // or the symbol address + 1 (thumb)
4503                 if (func_start_entry->addr != symbol_lookup_file_addr &&
4504                     func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4505                   // Not the right entry, NULL it out...
4506                   func_start_entry = NULL;
4507                 }
4508               }
4509               if (func_start_entry) {
4510                 func_start_entry->data = true;
4511 
4512                 addr_t symbol_file_addr = func_start_entry->addr;
4513                 if (is_arm)
4514                   symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4515 
4516                 const FunctionStarts::Entry *next_func_start_entry =
4517                     function_starts.FindNextEntry(func_start_entry);
4518                 const addr_t section_end_file_addr =
4519                     section_file_addr + symbol_section->GetByteSize();
4520                 if (next_func_start_entry) {
4521                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4522                   // Be sure the clear the Thumb address bit when we calculate
4523                   // the size
4524                   // from the current and next address
4525                   if (is_arm)
4526                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4527                   symbol_byte_size = std::min<lldb::addr_t>(
4528                       next_symbol_file_addr - symbol_file_addr,
4529                       section_end_file_addr - symbol_file_addr);
4530                 } else {
4531                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4532                 }
4533               }
4534             }
4535             symbol_value -= section_file_addr;
4536           }
4537 
4538           if (is_debug == false) {
4539             if (type == eSymbolTypeCode) {
4540               // See if we can find a N_FUN entry for any code symbols.
4541               // If we do find a match, and the name matches, then we
4542               // can merge the two into just the function symbol to avoid
4543               // duplicate entries in the symbol table
4544               std::pair<ValueToSymbolIndexMap::const_iterator,
4545                         ValueToSymbolIndexMap::const_iterator>
4546                   range;
4547               range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4548               if (range.first != range.second) {
4549                 bool found_it = false;
4550                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4551                      pos != range.second; ++pos) {
4552                   if (sym[sym_idx].GetMangled().GetName(
4553                           lldb::eLanguageTypeUnknown,
4554                           Mangled::ePreferMangled) ==
4555                       sym[pos->second].GetMangled().GetName(
4556                           lldb::eLanguageTypeUnknown,
4557                           Mangled::ePreferMangled)) {
4558                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4559                     // We just need the flags from the linker symbol, so put
4560                     // these flags
4561                     // into the N_FUN flags to avoid duplicate symbols in the
4562                     // symbol table
4563                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4564                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4565                                               nlist.n_desc);
4566                     if (resolver_addresses.find(nlist.n_value) !=
4567                         resolver_addresses.end())
4568                       sym[pos->second].SetType(eSymbolTypeResolver);
4569                     sym[sym_idx].Clear();
4570                     found_it = true;
4571                     break;
4572                   }
4573                 }
4574                 if (found_it)
4575                   continue;
4576               } else {
4577                 if (resolver_addresses.find(nlist.n_value) !=
4578                     resolver_addresses.end())
4579                   type = eSymbolTypeResolver;
4580               }
4581             } else if (type == eSymbolTypeData ||
4582                        type == eSymbolTypeObjCClass ||
4583                        type == eSymbolTypeObjCMetaClass ||
4584                        type == eSymbolTypeObjCIVar) {
4585               // See if we can find a N_STSYM entry for any data symbols.
4586               // If we do find a match, and the name matches, then we
4587               // can merge the two into just the Static symbol to avoid
4588               // duplicate entries in the symbol table
4589               std::pair<ValueToSymbolIndexMap::const_iterator,
4590                         ValueToSymbolIndexMap::const_iterator>
4591                   range;
4592               range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4593               if (range.first != range.second) {
4594                 bool found_it = false;
4595                 for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4596                      pos != range.second; ++pos) {
4597                   if (sym[sym_idx].GetMangled().GetName(
4598                           lldb::eLanguageTypeUnknown,
4599                           Mangled::ePreferMangled) ==
4600                       sym[pos->second].GetMangled().GetName(
4601                           lldb::eLanguageTypeUnknown,
4602                           Mangled::ePreferMangled)) {
4603                     m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4604                     // We just need the flags from the linker symbol, so put
4605                     // these flags
4606                     // into the N_STSYM flags to avoid duplicate symbols in the
4607                     // symbol table
4608                     sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4609                     sym[pos->second].SetFlags(nlist.n_type << 16 |
4610                                               nlist.n_desc);
4611                     sym[sym_idx].Clear();
4612                     found_it = true;
4613                     break;
4614                   }
4615                 }
4616                 if (found_it)
4617                   continue;
4618               } else {
4619                 // Combine N_GSYM stab entries with the non stab symbol
4620                 const char *gsym_name = sym[sym_idx]
4621                                             .GetMangled()
4622                                             .GetName(lldb::eLanguageTypeUnknown,
4623                                                      Mangled::ePreferMangled)
4624                                             .GetCString();
4625                 if (gsym_name) {
4626                   ConstNameToSymbolIndexMap::const_iterator pos =
4627                       N_GSYM_name_to_sym_idx.find(gsym_name);
4628                   if (pos != N_GSYM_name_to_sym_idx.end()) {
4629                     const uint32_t GSYM_sym_idx = pos->second;
4630                     m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4631                     // Copy the address, because often the N_GSYM address has an
4632                     // invalid address of zero
4633                     // when the global is a common symbol
4634                     sym[GSYM_sym_idx].GetAddressRef().SetSection(
4635                         symbol_section);
4636                     sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4637                     // We just need the flags from the linker symbol, so put
4638                     // these flags
4639                     // into the N_GSYM flags to avoid duplicate symbols in the
4640                     // symbol table
4641                     sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
4642                                                nlist.n_desc);
4643                     sym[sym_idx].Clear();
4644                     continue;
4645                   }
4646                 }
4647               }
4648             }
4649           }
4650 
4651           sym[sym_idx].SetID(nlist_idx);
4652           sym[sym_idx].SetType(type);
4653           if (set_value) {
4654             sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4655             sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4656           }
4657           sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4658 
4659           if (symbol_byte_size > 0)
4660             sym[sym_idx].SetByteSize(symbol_byte_size);
4661 
4662           if (demangled_is_synthesized)
4663             sym[sym_idx].SetDemangledNameIsSynthesized(true);
4664 
4665           ++sym_idx;
4666         } else {
4667           sym[sym_idx].Clear();
4668         }
4669       }
4670 
4671       for (const auto &pos : reexport_shlib_needs_fixup) {
4672         const auto undef_pos = undefined_name_to_desc.find(pos.second);
4673         if (undef_pos != undefined_name_to_desc.end()) {
4674           const uint8_t dylib_ordinal =
4675               llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4676           if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4677             sym[pos.first].SetReExportedSymbolSharedLibrary(
4678                 dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4679         }
4680       }
4681     }
4682 
4683     uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4684 
4685     if (function_starts_count > 0) {
4686       uint32_t num_synthetic_function_symbols = 0;
4687       for (i = 0; i < function_starts_count; ++i) {
4688         if (function_starts.GetEntryRef(i).data == false)
4689           ++num_synthetic_function_symbols;
4690       }
4691 
4692       if (num_synthetic_function_symbols > 0) {
4693         if (num_syms < sym_idx + num_synthetic_function_symbols) {
4694           num_syms = sym_idx + num_synthetic_function_symbols;
4695           sym = symtab->Resize(num_syms);
4696         }
4697         for (i = 0; i < function_starts_count; ++i) {
4698           const FunctionStarts::Entry *func_start_entry =
4699               function_starts.GetEntryAtIndex(i);
4700           if (func_start_entry->data == false) {
4701             addr_t symbol_file_addr = func_start_entry->addr;
4702             uint32_t symbol_flags = 0;
4703             if (is_arm) {
4704               if (symbol_file_addr & 1)
4705                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4706               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4707             }
4708             Address symbol_addr;
4709             if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4710               SectionSP symbol_section(symbol_addr.GetSection());
4711               uint32_t symbol_byte_size = 0;
4712               if (symbol_section) {
4713                 const addr_t section_file_addr =
4714                     symbol_section->GetFileAddress();
4715                 const FunctionStarts::Entry *next_func_start_entry =
4716                     function_starts.FindNextEntry(func_start_entry);
4717                 const addr_t section_end_file_addr =
4718                     section_file_addr + symbol_section->GetByteSize();
4719                 if (next_func_start_entry) {
4720                   addr_t next_symbol_file_addr = next_func_start_entry->addr;
4721                   if (is_arm)
4722                     next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4723                   symbol_byte_size = std::min<lldb::addr_t>(
4724                       next_symbol_file_addr - symbol_file_addr,
4725                       section_end_file_addr - symbol_file_addr);
4726                 } else {
4727                   symbol_byte_size = section_end_file_addr - symbol_file_addr;
4728                 }
4729                 sym[sym_idx].SetID(synthetic_sym_id++);
4730                 sym[sym_idx].GetMangled().SetDemangledName(
4731                     GetNextSyntheticSymbolName());
4732                 sym[sym_idx].SetType(eSymbolTypeCode);
4733                 sym[sym_idx].SetIsSynthetic(true);
4734                 sym[sym_idx].GetAddressRef() = symbol_addr;
4735                 if (symbol_flags)
4736                   sym[sym_idx].SetFlags(symbol_flags);
4737                 if (symbol_byte_size)
4738                   sym[sym_idx].SetByteSize(symbol_byte_size);
4739                 ++sym_idx;
4740               }
4741             }
4742           }
4743         }
4744       }
4745     }
4746 
4747     // Trim our symbols down to just what we ended up with after
4748     // removing any symbols.
4749     if (sym_idx < num_syms) {
4750       num_syms = sym_idx;
4751       sym = symtab->Resize(num_syms);
4752     }
4753 
4754     // Now synthesize indirect symbols
4755     if (m_dysymtab.nindirectsyms != 0) {
4756       if (indirect_symbol_index_data.GetByteSize()) {
4757         NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4758             m_nlist_idx_to_sym_idx.end();
4759 
4760         for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4761              ++sect_idx) {
4762           if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4763               S_SYMBOL_STUBS) {
4764             uint32_t symbol_stub_byte_size =
4765                 m_mach_sections[sect_idx].reserved2;
4766             if (symbol_stub_byte_size == 0)
4767               continue;
4768 
4769             const uint32_t num_symbol_stubs =
4770                 m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4771 
4772             if (num_symbol_stubs == 0)
4773               continue;
4774 
4775             const uint32_t symbol_stub_index_offset =
4776                 m_mach_sections[sect_idx].reserved1;
4777             for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs;
4778                  ++stub_idx) {
4779               const uint32_t symbol_stub_index =
4780                   symbol_stub_index_offset + stub_idx;
4781               const lldb::addr_t symbol_stub_addr =
4782                   m_mach_sections[sect_idx].addr +
4783                   (stub_idx * symbol_stub_byte_size);
4784               lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4785               if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4786                       symbol_stub_offset, 4)) {
4787                 const uint32_t stub_sym_id =
4788                     indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4789                 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4790                   continue;
4791 
4792                 NListIndexToSymbolIndexMap::const_iterator index_pos =
4793                     m_nlist_idx_to_sym_idx.find(stub_sym_id);
4794                 Symbol *stub_symbol = NULL;
4795                 if (index_pos != end_index_pos) {
4796                   // We have a remapping from the original nlist index to
4797                   // a current symbol index, so just look this up by index
4798                   stub_symbol = symtab->SymbolAtIndex(index_pos->second);
4799                 } else {
4800                   // We need to lookup a symbol using the original nlist
4801                   // symbol index since this index is coming from the
4802                   // S_SYMBOL_STUBS
4803                   stub_symbol = symtab->FindSymbolByID(stub_sym_id);
4804                 }
4805 
4806                 if (stub_symbol) {
4807                   Address so_addr(symbol_stub_addr, section_list);
4808 
4809                   if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4810                     // Change the external symbol into a trampoline that makes
4811                     // sense
4812                     // These symbols were N_UNDF N_EXT, and are useless to us,
4813                     // so we
4814                     // can re-use them so we don't have to make up a synthetic
4815                     // symbol
4816                     // for no good reason.
4817                     if (resolver_addresses.find(symbol_stub_addr) ==
4818                         resolver_addresses.end())
4819                       stub_symbol->SetType(eSymbolTypeTrampoline);
4820                     else
4821                       stub_symbol->SetType(eSymbolTypeResolver);
4822                     stub_symbol->SetExternal(false);
4823                     stub_symbol->GetAddressRef() = so_addr;
4824                     stub_symbol->SetByteSize(symbol_stub_byte_size);
4825                   } else {
4826                     // Make a synthetic symbol to describe the trampoline stub
4827                     Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4828                     if (sym_idx >= num_syms) {
4829                       sym = symtab->Resize(++num_syms);
4830                       stub_symbol = NULL; // this pointer no longer valid
4831                     }
4832                     sym[sym_idx].SetID(synthetic_sym_id++);
4833                     sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4834                     if (resolver_addresses.find(symbol_stub_addr) ==
4835                         resolver_addresses.end())
4836                       sym[sym_idx].SetType(eSymbolTypeTrampoline);
4837                     else
4838                       sym[sym_idx].SetType(eSymbolTypeResolver);
4839                     sym[sym_idx].SetIsSynthetic(true);
4840                     sym[sym_idx].GetAddressRef() = so_addr;
4841                     sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4842                     ++sym_idx;
4843                   }
4844                 } else {
4845                   if (log)
4846                     log->Warning("symbol stub referencing symbol table symbol "
4847                                  "%u that isn't in our minimal symbol table, "
4848                                  "fix this!!!",
4849                                  stub_sym_id);
4850                 }
4851               }
4852             }
4853           }
4854         }
4855       }
4856     }
4857 
4858     if (!trie_entries.empty()) {
4859       for (const auto &e : trie_entries) {
4860         if (e.entry.import_name) {
4861           // Only add indirect symbols from the Trie entries if we
4862           // didn't have a N_INDR nlist entry for this already
4863           if (indirect_symbol_names.find(e.entry.name) ==
4864               indirect_symbol_names.end()) {
4865             // Make a synthetic symbol to describe re-exported symbol.
4866             if (sym_idx >= num_syms)
4867               sym = symtab->Resize(++num_syms);
4868             sym[sym_idx].SetID(synthetic_sym_id++);
4869             sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4870             sym[sym_idx].SetType(eSymbolTypeReExported);
4871             sym[sym_idx].SetIsSynthetic(true);
4872             sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4873             if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4874               sym[sym_idx].SetReExportedSymbolSharedLibrary(
4875                   dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4876             }
4877             ++sym_idx;
4878           }
4879         }
4880       }
4881     }
4882 
4883     //        StreamFile s(stdout, false);
4884     //        s.Printf ("Symbol table before CalculateSymbolSizes():\n");
4885     //        symtab->Dump(&s, NULL, eSortOrderNone);
4886     // Set symbol byte sizes correctly since mach-o nlist entries don't have
4887     // sizes
4888     symtab->CalculateSymbolSizes();
4889 
4890     //        s.Printf ("Symbol table after CalculateSymbolSizes():\n");
4891     //        symtab->Dump(&s, NULL, eSortOrderNone);
4892 
4893     return symtab->GetNumSymbols();
4894   }
4895   return 0;
4896 }
4897 
4898 void ObjectFileMachO::Dump(Stream *s) {
4899   ModuleSP module_sp(GetModule());
4900   if (module_sp) {
4901     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4902     s->Printf("%p: ", static_cast<void *>(this));
4903     s->Indent();
4904     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4905       s->PutCString("ObjectFileMachO64");
4906     else
4907       s->PutCString("ObjectFileMachO32");
4908 
4909     ArchSpec header_arch;
4910     GetArchitecture(header_arch);
4911 
4912     *s << ", file = '" << m_file
4913        << "', arch = " << header_arch.GetArchitectureName() << "\n";
4914 
4915     SectionList *sections = GetSectionList();
4916     if (sections)
4917       sections->Dump(s, NULL, true, UINT32_MAX);
4918 
4919     if (m_symtab_ap.get())
4920       m_symtab_ap->Dump(s, NULL, eSortOrderNone);
4921   }
4922 }
4923 
4924 bool ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4925                               const lldb_private::DataExtractor &data,
4926                               lldb::offset_t lc_offset,
4927                               lldb_private::UUID &uuid) {
4928   uint32_t i;
4929   struct uuid_command load_cmd;
4930 
4931   lldb::offset_t offset = lc_offset;
4932   for (i = 0; i < header.ncmds; ++i) {
4933     const lldb::offset_t cmd_offset = offset;
4934     if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4935       break;
4936 
4937     if (load_cmd.cmd == LC_UUID) {
4938       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4939 
4940       if (uuid_bytes) {
4941         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4942         // We pretend these object files have no UUID to prevent crashing.
4943 
4944         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4945                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4946                                        0xbb, 0x14, 0xf0, 0x0d};
4947 
4948         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4949           return false;
4950 
4951         uuid.SetBytes(uuid_bytes);
4952         return true;
4953       }
4954       return false;
4955     }
4956     offset = cmd_offset + load_cmd.cmdsize;
4957   }
4958   return false;
4959 }
4960 
4961 bool ObjectFileMachO::GetArchitecture(const llvm::MachO::mach_header &header,
4962                                       const lldb_private::DataExtractor &data,
4963                                       lldb::offset_t lc_offset,
4964                                       ArchSpec &arch) {
4965   arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4966 
4967   if (arch.IsValid()) {
4968     llvm::Triple &triple = arch.GetTriple();
4969 
4970     // Set OS to an unspecified unknown or a "*" so it can match any OS
4971     triple.setOS(llvm::Triple::UnknownOS);
4972     triple.setOSName(llvm::StringRef());
4973 
4974     if (header.filetype == MH_PRELOAD) {
4975       if (header.cputype == CPU_TYPE_ARM) {
4976         // If this is a 32-bit arm binary, and it's a standalone binary,
4977         // force the Vendor to Apple so we don't accidentally pick up
4978         // the generic armv7 ABI at runtime.  Apple's armv7 ABI always uses
4979         // r7 for the frame pointer register; most other armv7 ABIs use a
4980         // combination of r7 and r11.
4981         triple.setVendor(llvm::Triple::Apple);
4982       } else {
4983         // Set vendor to an unspecified unknown or a "*" so it can match any
4984         // vendor
4985         // This is required for correct behavior of EFI debugging on x86_64
4986         triple.setVendor(llvm::Triple::UnknownVendor);
4987         triple.setVendorName(llvm::StringRef());
4988       }
4989       return true;
4990     } else {
4991       struct load_command load_cmd;
4992 
4993       lldb::offset_t offset = lc_offset;
4994       for (uint32_t i = 0; i < header.ncmds; ++i) {
4995         const lldb::offset_t cmd_offset = offset;
4996         if (data.GetU32(&offset, &load_cmd, 2) == NULL)
4997           break;
4998 
4999         switch (load_cmd.cmd) {
5000         case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
5001           triple.setOS(llvm::Triple::IOS);
5002           return true;
5003 
5004         case llvm::MachO::LC_VERSION_MIN_MACOSX:
5005           triple.setOS(llvm::Triple::MacOSX);
5006           return true;
5007 
5008         case llvm::MachO::LC_VERSION_MIN_TVOS:
5009           triple.setOS(llvm::Triple::TvOS);
5010           return true;
5011 
5012         case llvm::MachO::LC_VERSION_MIN_WATCHOS:
5013           triple.setOS(llvm::Triple::WatchOS);
5014           return true;
5015 
5016         default:
5017           break;
5018         }
5019 
5020         offset = cmd_offset + load_cmd.cmdsize;
5021       }
5022 
5023       if (header.filetype != MH_KEXT_BUNDLE) {
5024         // We didn't find a LC_VERSION_MIN load command and this isn't a KEXT
5025         // so lets not say our Vendor is Apple, leave it as an unspecified
5026         // unknown
5027         triple.setVendor(llvm::Triple::UnknownVendor);
5028         triple.setVendorName(llvm::StringRef());
5029       }
5030     }
5031   }
5032   return arch.IsValid();
5033 }
5034 
5035 bool ObjectFileMachO::GetUUID(lldb_private::UUID *uuid) {
5036   ModuleSP module_sp(GetModule());
5037   if (module_sp) {
5038     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5039     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5040     return GetUUID(m_header, m_data, offset, *uuid);
5041   }
5042   return false;
5043 }
5044 
5045 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5046   uint32_t count = 0;
5047   ModuleSP module_sp(GetModule());
5048   if (module_sp) {
5049     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5050     struct load_command load_cmd;
5051     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5052     std::vector<std::string> rpath_paths;
5053     std::vector<std::string> rpath_relative_paths;
5054     std::vector<std::string> at_exec_relative_paths;
5055     const bool resolve_path = false; // Don't resolve the dependent file paths
5056                                      // since they may not reside on this system
5057     uint32_t i;
5058     for (i = 0; i < m_header.ncmds; ++i) {
5059       const uint32_t cmd_offset = offset;
5060       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5061         break;
5062 
5063       switch (load_cmd.cmd) {
5064       case LC_RPATH:
5065       case LC_LOAD_DYLIB:
5066       case LC_LOAD_WEAK_DYLIB:
5067       case LC_REEXPORT_DYLIB:
5068       case LC_LOAD_DYLINKER:
5069       case LC_LOADFVMLIB:
5070       case LC_LOAD_UPWARD_DYLIB: {
5071         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5072         const char *path = m_data.PeekCStr(name_offset);
5073         if (path) {
5074           if (load_cmd.cmd == LC_RPATH)
5075             rpath_paths.push_back(path);
5076           else {
5077             if (path[0] == '@') {
5078               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5079                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5080               else if (strncmp(path, "@executable_path",
5081                        strlen("@executable_path")) == 0)
5082                 at_exec_relative_paths.push_back(path
5083                                                  + strlen("@executable_path"));
5084             } else {
5085               FileSpec file_spec(path, resolve_path);
5086               if (files.AppendIfUnique(file_spec))
5087                 count++;
5088             }
5089           }
5090         }
5091       } break;
5092 
5093       default:
5094         break;
5095       }
5096       offset = cmd_offset + load_cmd.cmdsize;
5097     }
5098 
5099     FileSpec this_file_spec(m_file);
5100     this_file_spec.ResolvePath();
5101 
5102     if (!rpath_paths.empty()) {
5103       // Fixup all LC_RPATH values to be absolute paths
5104       std::string loader_path("@loader_path");
5105       std::string executable_path("@executable_path");
5106       for (auto &rpath : rpath_paths) {
5107         if (rpath.find(loader_path) == 0) {
5108           rpath.erase(0, loader_path.size());
5109           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5110         } else if (rpath.find(executable_path) == 0) {
5111           rpath.erase(0, executable_path.size());
5112           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5113         }
5114       }
5115 
5116       for (const auto &rpath_relative_path : rpath_relative_paths) {
5117         for (const auto &rpath : rpath_paths) {
5118           std::string path = rpath;
5119           path += rpath_relative_path;
5120           // It is OK to resolve this path because we must find a file on
5121           // disk for us to accept it anyway if it is rpath relative.
5122           FileSpec file_spec(path, true);
5123           // Remove any redundant parts of the path (like "../foo") since
5124           // LC_RPATH values often contain "..".
5125           file_spec = file_spec.GetNormalizedPath();
5126           if (file_spec.Exists() && files.AppendIfUnique(file_spec)) {
5127             count++;
5128             break;
5129           }
5130         }
5131       }
5132     }
5133 
5134     // We may have @executable_paths but no RPATHS.  Figure those out here.
5135     // Only do this if this object file is the executable.  We have no way to
5136     // get back to the actual executable otherwise, so we won't get the right
5137     // path.
5138     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5139       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5140       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5141         FileSpec file_spec =
5142             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5143         file_spec = file_spec.GetNormalizedPath();
5144         if (file_spec.Exists() && files.AppendIfUnique(file_spec))
5145           count++;
5146       }
5147     }
5148   }
5149   return count;
5150 }
5151 
5152 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5153   // If the object file is not an executable it can't hold the entry point.
5154   // m_entry_point_address
5155   // is initialized to an invalid address, so we can just return that.
5156   // If m_entry_point_address is valid it means we've found it already, so
5157   // return the cached value.
5158 
5159   if (!IsExecutable() || m_entry_point_address.IsValid())
5160     return m_entry_point_address;
5161 
5162   // Otherwise, look for the UnixThread or Thread command.  The data for the
5163   // Thread command is given in
5164   // /usr/include/mach-o.h, but it is basically:
5165   //
5166   //  uint32_t flavor  - this is the flavor argument you would pass to
5167   //  thread_get_state
5168   //  uint32_t count   - this is the count of longs in the thread state data
5169   //  struct XXX_thread_state state - this is the structure from
5170   //  <machine/thread_status.h> corresponding to the flavor.
5171   //  <repeat this trio>
5172   //
5173   // So we just keep reading the various register flavors till we find the GPR
5174   // one, then read the PC out of there.
5175   // FIXME: We will need to have a "RegisterContext data provider" class at some
5176   // point that can get all the registers
5177   // out of data in this form & attach them to a given thread.  That should
5178   // underlie the MacOS X User process plugin,
5179   // and we'll also need it for the MacOS X Core File process plugin.  When we
5180   // have that we can also use it here.
5181   //
5182   // For now we hard-code the offsets and flavors we need:
5183   //
5184   //
5185 
5186   ModuleSP module_sp(GetModule());
5187   if (module_sp) {
5188     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5189     struct load_command load_cmd;
5190     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5191     uint32_t i;
5192     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5193     bool done = false;
5194 
5195     for (i = 0; i < m_header.ncmds; ++i) {
5196       const lldb::offset_t cmd_offset = offset;
5197       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5198         break;
5199 
5200       switch (load_cmd.cmd) {
5201       case LC_UNIXTHREAD:
5202       case LC_THREAD: {
5203         while (offset < cmd_offset + load_cmd.cmdsize) {
5204           uint32_t flavor = m_data.GetU32(&offset);
5205           uint32_t count = m_data.GetU32(&offset);
5206           if (count == 0) {
5207             // We've gotten off somehow, log and exit;
5208             return m_entry_point_address;
5209           }
5210 
5211           switch (m_header.cputype) {
5212           case llvm::MachO::CPU_TYPE_ARM:
5213             if (flavor == 1 ||
5214                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32 from
5215                              // mach/arm/thread_status.h
5216             {
5217               offset += 60; // This is the offset of pc in the GPR thread state
5218                             // data structure.
5219               start_address = m_data.GetU32(&offset);
5220               done = true;
5221             }
5222             break;
5223           case llvm::MachO::CPU_TYPE_ARM64:
5224             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5225             {
5226               offset += 256; // This is the offset of pc in the GPR thread state
5227                              // data structure.
5228               start_address = m_data.GetU64(&offset);
5229               done = true;
5230             }
5231             break;
5232           case llvm::MachO::CPU_TYPE_I386:
5233             if (flavor ==
5234                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5235             {
5236               offset += 40; // This is the offset of eip in the GPR thread state
5237                             // data structure.
5238               start_address = m_data.GetU32(&offset);
5239               done = true;
5240             }
5241             break;
5242           case llvm::MachO::CPU_TYPE_X86_64:
5243             if (flavor ==
5244                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5245             {
5246               offset += 16 * 8; // This is the offset of rip in the GPR thread
5247                                 // state data structure.
5248               start_address = m_data.GetU64(&offset);
5249               done = true;
5250             }
5251             break;
5252           default:
5253             return m_entry_point_address;
5254           }
5255           // Haven't found the GPR flavor yet, skip over the data for this
5256           // flavor:
5257           if (done)
5258             break;
5259           offset += count * 4;
5260         }
5261       } break;
5262       case LC_MAIN: {
5263         ConstString text_segment_name("__TEXT");
5264         uint64_t entryoffset = m_data.GetU64(&offset);
5265         SectionSP text_segment_sp =
5266             GetSectionList()->FindSectionByName(text_segment_name);
5267         if (text_segment_sp) {
5268           done = true;
5269           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5270         }
5271       } break;
5272 
5273       default:
5274         break;
5275       }
5276       if (done)
5277         break;
5278 
5279       // Go to the next load command:
5280       offset = cmd_offset + load_cmd.cmdsize;
5281     }
5282 
5283     if (start_address != LLDB_INVALID_ADDRESS) {
5284       // We got the start address from the load commands, so now resolve that
5285       // address in the sections
5286       // of this ObjectFile:
5287       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5288               start_address, GetSectionList())) {
5289         m_entry_point_address.Clear();
5290       }
5291     } else {
5292       // We couldn't read the UnixThread load command - maybe it wasn't there.
5293       // As a fallback look for the
5294       // "start" symbol in the main executable.
5295 
5296       ModuleSP module_sp(GetModule());
5297 
5298       if (module_sp) {
5299         SymbolContextList contexts;
5300         SymbolContext context;
5301         if (module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5302                                                   eSymbolTypeCode, contexts)) {
5303           if (contexts.GetContextAtIndex(0, context))
5304             m_entry_point_address = context.symbol->GetAddress();
5305         }
5306       }
5307     }
5308   }
5309 
5310   return m_entry_point_address;
5311 }
5312 
5313 lldb_private::Address ObjectFileMachO::GetHeaderAddress() {
5314   lldb_private::Address header_addr;
5315   SectionList *section_list = GetSectionList();
5316   if (section_list) {
5317     SectionSP text_segment_sp(
5318         section_list->FindSectionByName(GetSegmentNameTEXT()));
5319     if (text_segment_sp) {
5320       header_addr.SetSection(text_segment_sp);
5321       header_addr.SetOffset(0);
5322     }
5323   }
5324   return header_addr;
5325 }
5326 
5327 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5328   ModuleSP module_sp(GetModule());
5329   if (module_sp) {
5330     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5331     if (!m_thread_context_offsets_valid) {
5332       m_thread_context_offsets_valid = true;
5333       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5334       FileRangeArray::Entry file_range;
5335       thread_command thread_cmd;
5336       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5337         const uint32_t cmd_offset = offset;
5338         if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
5339           break;
5340 
5341         if (thread_cmd.cmd == LC_THREAD) {
5342           file_range.SetRangeBase(offset);
5343           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5344           m_thread_context_offsets.Append(file_range);
5345         }
5346         offset = cmd_offset + thread_cmd.cmdsize;
5347       }
5348     }
5349   }
5350   return m_thread_context_offsets.GetSize();
5351 }
5352 
5353 std::string ObjectFileMachO::GetIdentifierString() {
5354   std::string result;
5355   ModuleSP module_sp(GetModule());
5356   if (module_sp) {
5357     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5358 
5359     // First, look over the load commands for an LC_NOTE load command
5360     // with data_owner string "kern ver str" & use that if found.
5361     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5362     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5363       const uint32_t cmd_offset = offset;
5364       load_command lc;
5365       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5366           break;
5367       if (lc.cmd == LC_NOTE)
5368       {
5369           char data_owner[17];
5370           m_data.CopyData (offset, 16, data_owner);
5371           data_owner[16] = '\0';
5372           offset += 16;
5373           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5374           uint64_t size = m_data.GetU64_unchecked (&offset);
5375 
5376           // "kern ver str" has a uint32_t version and then a
5377           // nul terminated c-string.
5378           if (strcmp ("kern ver str", data_owner) == 0)
5379           {
5380               offset = fileoff;
5381               uint32_t version;
5382               if (m_data.GetU32 (&offset, &version, 1) != nullptr)
5383               {
5384                   if (version == 1)
5385                   {
5386                       uint32_t strsize = size - sizeof (uint32_t);
5387                       char *buf = (char*) malloc (strsize);
5388                       if (buf)
5389                       {
5390                           m_data.CopyData (offset, strsize, buf);
5391                           buf[strsize - 1] = '\0';
5392                           result = buf;
5393                           if (buf)
5394                               free (buf);
5395                           return result;
5396                       }
5397                   }
5398               }
5399           }
5400       }
5401       offset = cmd_offset + lc.cmdsize;
5402     }
5403 
5404     // Second, make a pass over the load commands looking for an
5405     // obsolete LC_IDENT load command.
5406     offset = MachHeaderSizeFromMagic(m_header.magic);
5407     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5408       const uint32_t cmd_offset = offset;
5409       struct ident_command ident_command;
5410       if (m_data.GetU32(&offset, &ident_command, 2) == NULL)
5411         break;
5412       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5413         char *buf = (char *) malloc (ident_command.cmdsize);
5414         if (buf != nullptr
5415             && m_data.CopyData (offset, ident_command.cmdsize, buf) == ident_command.cmdsize) {
5416           buf[ident_command.cmdsize - 1] = '\0';
5417           result = buf;
5418         }
5419         if (buf)
5420           free (buf);
5421       }
5422       offset = cmd_offset + ident_command.cmdsize;
5423     }
5424 
5425   }
5426   return result;
5427 }
5428 
5429 bool ObjectFileMachO::GetCorefileMainBinaryInfo (addr_t &address, UUID &uuid) {
5430   address = LLDB_INVALID_ADDRESS;
5431   uuid.Clear();
5432   ModuleSP module_sp(GetModule());
5433   if (module_sp) {
5434     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5435     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5436     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5437       const uint32_t cmd_offset = offset;
5438       load_command lc;
5439       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5440           break;
5441       if (lc.cmd == LC_NOTE)
5442       {
5443           char data_owner[17];
5444           memset (data_owner, 0, sizeof (data_owner));
5445           m_data.CopyData (offset, 16, data_owner);
5446           offset += 16;
5447           uint64_t fileoff = m_data.GetU64_unchecked (&offset);
5448           uint64_t size = m_data.GetU64_unchecked (&offset);
5449 
5450           // "main bin spec" (main binary specification) data payload is formatted:
5451           //    uint32_t version       [currently 1]
5452           //    uint32_t type          [0 == unspecified, 1 == kernel, 2 == user process]
5453           //    uint64_t address       [ UINT64_MAX if address not specified ]
5454           //    uuid_t   uuid          [ all zero's if uuid not specified ]
5455           //    uint32_t log2_pagesize [ process page size in log base 2, e.g. 4k pages are 12.  0 for unspecified ]
5456 
5457           if (strcmp ("main bin spec", data_owner) == 0 && size >= 32)
5458           {
5459               offset = fileoff;
5460               uint32_t version;
5461               if (m_data.GetU32 (&offset, &version, 1) != nullptr && version == 1)
5462               {
5463                   uint32_t type = 0;
5464                   uuid_t raw_uuid;
5465                   memset (raw_uuid, 0, sizeof (uuid_t));
5466 
5467                   if (m_data.GetU32 (&offset, &type, 1)
5468                       && m_data.GetU64 (&offset, &address, 1)
5469                       && m_data.CopyData (offset, sizeof (uuid_t), raw_uuid) != 0
5470                       && uuid.SetBytes (raw_uuid, sizeof (uuid_t)))
5471                   {
5472                       return true;
5473                   }
5474               }
5475           }
5476       }
5477       offset = cmd_offset + lc.cmdsize;
5478     }
5479   }
5480   return false;
5481 }
5482 
5483 lldb::RegisterContextSP
5484 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5485                                          lldb_private::Thread &thread) {
5486   lldb::RegisterContextSP reg_ctx_sp;
5487 
5488   ModuleSP module_sp(GetModule());
5489   if (module_sp) {
5490     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5491     if (!m_thread_context_offsets_valid)
5492       GetNumThreadContexts();
5493 
5494     const FileRangeArray::Entry *thread_context_file_range =
5495         m_thread_context_offsets.GetEntryAtIndex(idx);
5496     if (thread_context_file_range) {
5497 
5498       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5499                          thread_context_file_range->GetByteSize());
5500 
5501       switch (m_header.cputype) {
5502       case llvm::MachO::CPU_TYPE_ARM64:
5503         reg_ctx_sp.reset(new RegisterContextDarwin_arm64_Mach(thread, data));
5504         break;
5505 
5506       case llvm::MachO::CPU_TYPE_ARM:
5507         reg_ctx_sp.reset(new RegisterContextDarwin_arm_Mach(thread, data));
5508         break;
5509 
5510       case llvm::MachO::CPU_TYPE_I386:
5511         reg_ctx_sp.reset(new RegisterContextDarwin_i386_Mach(thread, data));
5512         break;
5513 
5514       case llvm::MachO::CPU_TYPE_X86_64:
5515         reg_ctx_sp.reset(new RegisterContextDarwin_x86_64_Mach(thread, data));
5516         break;
5517       }
5518     }
5519   }
5520   return reg_ctx_sp;
5521 }
5522 
5523 ObjectFile::Type ObjectFileMachO::CalculateType() {
5524   switch (m_header.filetype) {
5525   case MH_OBJECT: // 0x1u
5526     if (GetAddressByteSize() == 4) {
5527       // 32 bit kexts are just object files, but they do have a valid
5528       // UUID load command.
5529       UUID uuid;
5530       if (GetUUID(&uuid)) {
5531         // this checking for the UUID load command is not enough
5532         // we could eventually look for the symbol named
5533         // "OSKextGetCurrentIdentifier" as this is required of kexts
5534         if (m_strata == eStrataInvalid)
5535           m_strata = eStrataKernel;
5536         return eTypeSharedLibrary;
5537       }
5538     }
5539     return eTypeObjectFile;
5540 
5541   case MH_EXECUTE:
5542     return eTypeExecutable; // 0x2u
5543   case MH_FVMLIB:
5544     return eTypeSharedLibrary; // 0x3u
5545   case MH_CORE:
5546     return eTypeCoreFile; // 0x4u
5547   case MH_PRELOAD:
5548     return eTypeSharedLibrary; // 0x5u
5549   case MH_DYLIB:
5550     return eTypeSharedLibrary; // 0x6u
5551   case MH_DYLINKER:
5552     return eTypeDynamicLinker; // 0x7u
5553   case MH_BUNDLE:
5554     return eTypeSharedLibrary; // 0x8u
5555   case MH_DYLIB_STUB:
5556     return eTypeStubLibrary; // 0x9u
5557   case MH_DSYM:
5558     return eTypeDebugInfo; // 0xAu
5559   case MH_KEXT_BUNDLE:
5560     return eTypeSharedLibrary; // 0xBu
5561   default:
5562     break;
5563   }
5564   return eTypeUnknown;
5565 }
5566 
5567 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5568   switch (m_header.filetype) {
5569   case MH_OBJECT: // 0x1u
5570   {
5571     // 32 bit kexts are just object files, but they do have a valid
5572     // UUID load command.
5573     UUID uuid;
5574     if (GetUUID(&uuid)) {
5575       // this checking for the UUID load command is not enough
5576       // we could eventually look for the symbol named
5577       // "OSKextGetCurrentIdentifier" as this is required of kexts
5578       if (m_type == eTypeInvalid)
5579         m_type = eTypeSharedLibrary;
5580 
5581       return eStrataKernel;
5582     }
5583   }
5584     return eStrataUnknown;
5585 
5586   case MH_EXECUTE: // 0x2u
5587     // Check for the MH_DYLDLINK bit in the flags
5588     if (m_header.flags & MH_DYLDLINK) {
5589       return eStrataUser;
5590     } else {
5591       SectionList *section_list = GetSectionList();
5592       if (section_list) {
5593         static ConstString g_kld_section_name("__KLD");
5594         if (section_list->FindSectionByName(g_kld_section_name))
5595           return eStrataKernel;
5596       }
5597     }
5598     return eStrataRawImage;
5599 
5600   case MH_FVMLIB:
5601     return eStrataUser; // 0x3u
5602   case MH_CORE:
5603     return eStrataUnknown; // 0x4u
5604   case MH_PRELOAD:
5605     return eStrataRawImage; // 0x5u
5606   case MH_DYLIB:
5607     return eStrataUser; // 0x6u
5608   case MH_DYLINKER:
5609     return eStrataUser; // 0x7u
5610   case MH_BUNDLE:
5611     return eStrataUser; // 0x8u
5612   case MH_DYLIB_STUB:
5613     return eStrataUser; // 0x9u
5614   case MH_DSYM:
5615     return eStrataUnknown; // 0xAu
5616   case MH_KEXT_BUNDLE:
5617     return eStrataKernel; // 0xBu
5618   default:
5619     break;
5620   }
5621   return eStrataUnknown;
5622 }
5623 
5624 uint32_t ObjectFileMachO::GetVersion(uint32_t *versions,
5625                                      uint32_t num_versions) {
5626   ModuleSP module_sp(GetModule());
5627   if (module_sp) {
5628     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5629     struct dylib_command load_cmd;
5630     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5631     uint32_t version_cmd = 0;
5632     uint64_t version = 0;
5633     uint32_t i;
5634     for (i = 0; i < m_header.ncmds; ++i) {
5635       const lldb::offset_t cmd_offset = offset;
5636       if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
5637         break;
5638 
5639       if (load_cmd.cmd == LC_ID_DYLIB) {
5640         if (version_cmd == 0) {
5641           version_cmd = load_cmd.cmd;
5642           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
5643             break;
5644           version = load_cmd.dylib.current_version;
5645         }
5646         break; // Break for now unless there is another more complete version
5647                // number load command in the future.
5648       }
5649       offset = cmd_offset + load_cmd.cmdsize;
5650     }
5651 
5652     if (version_cmd == LC_ID_DYLIB) {
5653       if (versions != NULL && num_versions > 0) {
5654         if (num_versions > 0)
5655           versions[0] = (version & 0xFFFF0000ull) >> 16;
5656         if (num_versions > 1)
5657           versions[1] = (version & 0x0000FF00ull) >> 8;
5658         if (num_versions > 2)
5659           versions[2] = (version & 0x000000FFull);
5660         // Fill in an remaining version numbers with invalid values
5661         for (i = 3; i < num_versions; ++i)
5662           versions[i] = UINT32_MAX;
5663       }
5664       // The LC_ID_DYLIB load command has a version with 3 version numbers
5665       // in it, so always return 3
5666       return 3;
5667     }
5668   }
5669   return false;
5670 }
5671 
5672 bool ObjectFileMachO::GetArchitecture(ArchSpec &arch) {
5673   ModuleSP module_sp(GetModule());
5674   if (module_sp) {
5675     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5676     return GetArchitecture(m_header, m_data,
5677                            MachHeaderSizeFromMagic(m_header.magic), arch);
5678   }
5679   return false;
5680 }
5681 
5682 UUID ObjectFileMachO::GetProcessSharedCacheUUID(Process *process) {
5683   UUID uuid;
5684   if (process && process->GetDynamicLoader()) {
5685     DynamicLoader *dl = process->GetDynamicLoader();
5686     addr_t load_address;
5687     LazyBool using_shared_cache;
5688     LazyBool private_shared_cache;
5689     dl->GetSharedCacheInformation(load_address, uuid, using_shared_cache,
5690                                   private_shared_cache);
5691   }
5692   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5693   if (log)
5694     log->Printf("inferior process shared cache has a UUID of %s", uuid.GetAsString().c_str());
5695   return uuid;
5696 }
5697 
5698 UUID ObjectFileMachO::GetLLDBSharedCacheUUID() {
5699   UUID uuid;
5700 #if defined(__APPLE__) &&                                                      \
5701     (defined(__arm__) || defined(__arm64__) || defined(__aarch64__))
5702   uint8_t *(*dyld_get_all_image_infos)(void);
5703   dyld_get_all_image_infos =
5704       (uint8_t * (*)())dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5705   if (dyld_get_all_image_infos) {
5706     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5707     if (dyld_all_image_infos_address) {
5708       uint32_t *version = (uint32_t *)
5709           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5710       if (*version >= 13) {
5711         uuid_t *sharedCacheUUID_address = 0;
5712         int wordsize = sizeof(uint8_t *);
5713         if (wordsize == 8) {
5714           sharedCacheUUID_address =
5715               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5716                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5717         } else {
5718           sharedCacheUUID_address =
5719               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5720                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5721         }
5722         uuid.SetBytes(sharedCacheUUID_address);
5723       }
5724     }
5725   } else {
5726     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5727     bool *(*dyld_get_shared_cache_uuid)(uuid_t);
5728     dyld_get_shared_cache_uuid = (bool *(*)(uuid_t))
5729         dlsym(RTLD_DEFAULT, "_dyld_get_shared_cache_uuid");
5730     if (dyld_get_shared_cache_uuid) {
5731       uuid_t tmp_uuid;
5732       if (dyld_get_shared_cache_uuid(tmp_uuid))
5733         uuid.SetBytes(tmp_uuid);
5734     }
5735   }
5736   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS | LIBLLDB_LOG_PROCESS));
5737   if (log && uuid.IsValid())
5738     log->Printf("lldb's in-memory shared cache has a UUID of %s", uuid.GetAsString().c_str());
5739 #endif
5740   return uuid;
5741 }
5742 
5743 uint32_t ObjectFileMachO::GetMinimumOSVersion(uint32_t *versions,
5744                                               uint32_t num_versions) {
5745   if (m_min_os_versions.empty()) {
5746     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5747     bool success = false;
5748     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5749       const lldb::offset_t load_cmd_offset = offset;
5750 
5751       version_min_command lc;
5752       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5753         break;
5754       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5755           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5756           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5757           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5758         if (m_data.GetU32(&offset, &lc.version,
5759                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5760           const uint32_t xxxx = lc.version >> 16;
5761           const uint32_t yy = (lc.version >> 8) & 0xffu;
5762           const uint32_t zz = lc.version & 0xffu;
5763           if (xxxx) {
5764             m_min_os_versions.push_back(xxxx);
5765             m_min_os_versions.push_back(yy);
5766             m_min_os_versions.push_back(zz);
5767           }
5768           success = true;
5769         }
5770       }
5771       offset = load_cmd_offset + lc.cmdsize;
5772     }
5773 
5774     if (success == false) {
5775       // Push an invalid value so we don't keep trying to
5776       m_min_os_versions.push_back(UINT32_MAX);
5777     }
5778   }
5779 
5780   if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) {
5781     if (versions != NULL && num_versions > 0) {
5782       for (size_t i = 0; i < num_versions; ++i) {
5783         if (i < m_min_os_versions.size())
5784           versions[i] = m_min_os_versions[i];
5785         else
5786           versions[i] = 0;
5787       }
5788     }
5789     return m_min_os_versions.size();
5790   }
5791   // Call the superclasses version that will empty out the data
5792   return ObjectFile::GetMinimumOSVersion(versions, num_versions);
5793 }
5794 
5795 uint32_t ObjectFileMachO::GetSDKVersion(uint32_t *versions,
5796                                         uint32_t num_versions) {
5797   if (m_sdk_versions.empty()) {
5798     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5799     bool success = false;
5800     for (uint32_t i = 0; success == false && i < m_header.ncmds; ++i) {
5801       const lldb::offset_t load_cmd_offset = offset;
5802 
5803       version_min_command lc;
5804       if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL)
5805         break;
5806       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5807           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5808           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5809           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5810         if (m_data.GetU32(&offset, &lc.version,
5811                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5812           const uint32_t xxxx = lc.sdk >> 16;
5813           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
5814           const uint32_t zz = lc.sdk & 0xffu;
5815           if (xxxx) {
5816             m_sdk_versions.push_back(xxxx);
5817             m_sdk_versions.push_back(yy);
5818             m_sdk_versions.push_back(zz);
5819           }
5820           success = true;
5821         }
5822       }
5823       offset = load_cmd_offset + lc.cmdsize;
5824     }
5825 
5826     if (success == false) {
5827       // Push an invalid value so we don't keep trying to
5828       m_sdk_versions.push_back(UINT32_MAX);
5829     }
5830   }
5831 
5832   if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) {
5833     if (versions != NULL && num_versions > 0) {
5834       for (size_t i = 0; i < num_versions; ++i) {
5835         if (i < m_sdk_versions.size())
5836           versions[i] = m_sdk_versions[i];
5837         else
5838           versions[i] = 0;
5839       }
5840     }
5841     return m_sdk_versions.size();
5842   }
5843   // Call the superclasses version that will empty out the data
5844   return ObjectFile::GetSDKVersion(versions, num_versions);
5845 }
5846 
5847 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
5848   return m_header.filetype == llvm::MachO::MH_DYLINKER;
5849 }
5850 
5851 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
5852   return m_allow_assembly_emulation_unwind_plans;
5853 }
5854 
5855 //------------------------------------------------------------------
5856 // PluginInterface protocol
5857 //------------------------------------------------------------------
5858 lldb_private::ConstString ObjectFileMachO::GetPluginName() {
5859   return GetPluginNameStatic();
5860 }
5861 
5862 uint32_t ObjectFileMachO::GetPluginVersion() { return 1; }
5863 
5864 Section *ObjectFileMachO::GetMachHeaderSection() {
5865   // Find the first address of the mach header which is the first non-zero
5866   // file sized section whose file offset is zero. This is the base file address
5867   // of the mach-o file which can be subtracted from the vmaddr of the other
5868   // segments found in memory and added to the load address
5869   ModuleSP module_sp = GetModule();
5870   if (module_sp) {
5871     SectionList *section_list = GetSectionList();
5872     if (section_list) {
5873       lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS;
5874       const size_t num_sections = section_list->GetSize();
5875 
5876       for (size_t sect_idx = 0; sect_idx < num_sections &&
5877                                 mach_base_file_addr == LLDB_INVALID_ADDRESS;
5878            ++sect_idx) {
5879         Section *section = section_list->GetSectionAtIndex(sect_idx).get();
5880         if (section && section->GetFileSize() > 0 &&
5881             section->GetFileOffset() == 0 &&
5882             section->IsThreadSpecific() == false &&
5883             module_sp.get() == section->GetModule().get()) {
5884           return section;
5885         }
5886       }
5887     }
5888   }
5889   return nullptr;
5890 }
5891 
5892 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
5893     lldb::addr_t mach_header_load_address, const Section *mach_header_section,
5894     const Section *section) {
5895   ModuleSP module_sp = GetModule();
5896   if (module_sp && mach_header_section && section &&
5897       mach_header_load_address != LLDB_INVALID_ADDRESS) {
5898     lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress();
5899     if (mach_header_file_addr != LLDB_INVALID_ADDRESS) {
5900       if (section && section->GetFileSize() > 0 &&
5901           section->IsThreadSpecific() == false &&
5902           module_sp.get() == section->GetModule().get()) {
5903         // Ignore __LINKEDIT and __DWARF segments
5904         if (section->GetName() == GetSegmentNameLINKEDIT()) {
5905           // Only map __LINKEDIT if we have an in memory image and this isn't
5906           // a kernel binary like a kext or mach_kernel.
5907           const bool is_memory_image = (bool)m_process_wp.lock();
5908           const Strata strata = GetStrata();
5909           if (is_memory_image == false || strata == eStrataKernel)
5910             return LLDB_INVALID_ADDRESS;
5911         }
5912         return section->GetFileAddress() - mach_header_file_addr +
5913                mach_header_load_address;
5914       }
5915     }
5916   }
5917   return LLDB_INVALID_ADDRESS;
5918 }
5919 
5920 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
5921                                      bool value_is_offset) {
5922   ModuleSP module_sp = GetModule();
5923   if (module_sp) {
5924     size_t num_loaded_sections = 0;
5925     SectionList *section_list = GetSectionList();
5926     if (section_list) {
5927       const size_t num_sections = section_list->GetSize();
5928 
5929       if (value_is_offset) {
5930         // "value" is an offset to apply to each top level segment
5931         for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5932           // Iterate through the object file sections to find all
5933           // of the sections that size on disk (to avoid __PAGEZERO)
5934           // and load them
5935           SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5936           if (section_sp && section_sp->GetFileSize() > 0 &&
5937               section_sp->IsThreadSpecific() == false &&
5938               module_sp.get() == section_sp->GetModule().get()) {
5939             // Ignore __LINKEDIT and __DWARF segments
5940             if (section_sp->GetName() == GetSegmentNameLINKEDIT()) {
5941               // Only map __LINKEDIT if we have an in memory image and this
5942               // isn't
5943               // a kernel binary like a kext or mach_kernel.
5944               const bool is_memory_image = (bool)m_process_wp.lock();
5945               const Strata strata = GetStrata();
5946               if (is_memory_image == false || strata == eStrataKernel)
5947                 continue;
5948             }
5949             if (target.GetSectionLoadList().SetSectionLoadAddress(
5950                     section_sp, section_sp->GetFileAddress() + value))
5951               ++num_loaded_sections;
5952           }
5953         }
5954       } else {
5955         // "value" is the new base address of the mach_header, adjust each
5956         // section accordingly
5957 
5958         Section *mach_header_section = GetMachHeaderSection();
5959         if (mach_header_section) {
5960           for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
5961             SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
5962 
5963             lldb::addr_t section_load_addr =
5964                 CalculateSectionLoadAddressForMemoryImage(
5965                     value, mach_header_section, section_sp.get());
5966             if (section_load_addr != LLDB_INVALID_ADDRESS) {
5967               if (target.GetSectionLoadList().SetSectionLoadAddress(
5968                       section_sp, section_load_addr))
5969                 ++num_loaded_sections;
5970             }
5971           }
5972         }
5973       }
5974     }
5975     return num_loaded_sections > 0;
5976   }
5977   return false;
5978 }
5979 
5980 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
5981                                const FileSpec &outfile, Status &error) {
5982   if (process_sp) {
5983     Target &target = process_sp->GetTarget();
5984     const ArchSpec target_arch = target.GetArchitecture();
5985     const llvm::Triple &target_triple = target_arch.GetTriple();
5986     if (target_triple.getVendor() == llvm::Triple::Apple &&
5987         (target_triple.getOS() == llvm::Triple::MacOSX ||
5988          target_triple.getOS() == llvm::Triple::IOS ||
5989          target_triple.getOS() == llvm::Triple::WatchOS ||
5990          target_triple.getOS() == llvm::Triple::TvOS)) {
5991       bool make_core = false;
5992       switch (target_arch.GetMachine()) {
5993       case llvm::Triple::aarch64:
5994       case llvm::Triple::arm:
5995       case llvm::Triple::thumb:
5996       case llvm::Triple::x86:
5997       case llvm::Triple::x86_64:
5998         make_core = true;
5999         break;
6000       default:
6001         error.SetErrorStringWithFormat("unsupported core architecture: %s",
6002                                        target_triple.str().c_str());
6003         break;
6004       }
6005 
6006       if (make_core) {
6007         std::vector<segment_command_64> segment_load_commands;
6008         //                uint32_t range_info_idx = 0;
6009         MemoryRegionInfo range_info;
6010         Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6011         const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6012         const ByteOrder byte_order = target_arch.GetByteOrder();
6013         if (range_error.Success()) {
6014           while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6015             const addr_t addr = range_info.GetRange().GetRangeBase();
6016             const addr_t size = range_info.GetRange().GetByteSize();
6017 
6018             if (size == 0)
6019               break;
6020 
6021             // Calculate correct protections
6022             uint32_t prot = 0;
6023             if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6024               prot |= VM_PROT_READ;
6025             if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6026               prot |= VM_PROT_WRITE;
6027             if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6028               prot |= VM_PROT_EXECUTE;
6029 
6030             //                        printf ("[%3u] [0x%16.16" PRIx64 " -
6031             //                        0x%16.16" PRIx64 ") %c%c%c\n",
6032             //                                range_info_idx,
6033             //                                addr,
6034             //                                size,
6035             //                                (prot & VM_PROT_READ   ) ? 'r' :
6036             //                                '-',
6037             //                                (prot & VM_PROT_WRITE  ) ? 'w' :
6038             //                                '-',
6039             //                                (prot & VM_PROT_EXECUTE) ? 'x' :
6040             //                                '-');
6041 
6042             if (prot != 0) {
6043               uint32_t cmd_type = LC_SEGMENT_64;
6044               uint32_t segment_size = sizeof(segment_command_64);
6045               if (addr_byte_size == 4) {
6046                 cmd_type = LC_SEGMENT;
6047                 segment_size = sizeof(segment_command);
6048               }
6049               segment_command_64 segment = {
6050                   cmd_type,     // uint32_t cmd;
6051                   segment_size, // uint32_t cmdsize;
6052                   {0},          // char segname[16];
6053                   addr, // uint64_t vmaddr;    // uint32_t for 32-bit Mach-O
6054                   size, // uint64_t vmsize;    // uint32_t for 32-bit Mach-O
6055                   0,    // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6056                   size, // uint64_t filesize;  // uint32_t for 32-bit Mach-O
6057                   prot, // uint32_t maxprot;
6058                   prot, // uint32_t initprot;
6059                   0,    // uint32_t nsects;
6060                   0};   // uint32_t flags;
6061               segment_load_commands.push_back(segment);
6062             } else {
6063               // No protections and a size of 1 used to be returned from old
6064               // debugservers when we asked about a region that was past the
6065               // last memory region and it indicates the end...
6066               if (size == 1)
6067                 break;
6068             }
6069 
6070             range_error = process_sp->GetMemoryRegionInfo(
6071                 range_info.GetRange().GetRangeEnd(), range_info);
6072             if (range_error.Fail())
6073               break;
6074           }
6075 
6076           StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6077 
6078           mach_header_64 mach_header;
6079           if (addr_byte_size == 8) {
6080             mach_header.magic = MH_MAGIC_64;
6081           } else {
6082             mach_header.magic = MH_MAGIC;
6083           }
6084           mach_header.cputype = target_arch.GetMachOCPUType();
6085           mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6086           mach_header.filetype = MH_CORE;
6087           mach_header.ncmds = segment_load_commands.size();
6088           mach_header.flags = 0;
6089           mach_header.reserved = 0;
6090           ThreadList &thread_list = process_sp->GetThreadList();
6091           const uint32_t num_threads = thread_list.GetSize();
6092 
6093           // Make an array of LC_THREAD data items. Each one contains
6094           // the contents of the LC_THREAD load command. The data doesn't
6095           // contain the load command + load command size, we will
6096           // add the load command and load command size as we emit the data.
6097           std::vector<StreamString> LC_THREAD_datas(num_threads);
6098           for (auto &LC_THREAD_data : LC_THREAD_datas) {
6099             LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6100             LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6101             LC_THREAD_data.SetByteOrder(byte_order);
6102           }
6103           for (uint32_t thread_idx = 0; thread_idx < num_threads;
6104                ++thread_idx) {
6105             ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6106             if (thread_sp) {
6107               switch (mach_header.cputype) {
6108               case llvm::MachO::CPU_TYPE_ARM64:
6109                 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6110                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6111                 break;
6112 
6113               case llvm::MachO::CPU_TYPE_ARM:
6114                 RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6115                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6116                 break;
6117 
6118               case llvm::MachO::CPU_TYPE_I386:
6119                 RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6120                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6121                 break;
6122 
6123               case llvm::MachO::CPU_TYPE_X86_64:
6124                 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6125                     thread_sp.get(), LC_THREAD_datas[thread_idx]);
6126                 break;
6127               }
6128             }
6129           }
6130 
6131           // The size of the load command is the size of the segments...
6132           if (addr_byte_size == 8) {
6133             mach_header.sizeofcmds = segment_load_commands.size() *
6134                                      sizeof(struct segment_command_64);
6135           } else {
6136             mach_header.sizeofcmds =
6137                 segment_load_commands.size() * sizeof(struct segment_command);
6138           }
6139 
6140           // and the size of all LC_THREAD load command
6141           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6142             ++mach_header.ncmds;
6143             mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6144           }
6145 
6146           printf("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x "
6147                  "0x%8.8x 0x%8.8x\n",
6148                  mach_header.magic, mach_header.cputype, mach_header.cpusubtype,
6149                  mach_header.filetype, mach_header.ncmds,
6150                  mach_header.sizeofcmds, mach_header.flags,
6151                  mach_header.reserved);
6152 
6153           // Write the mach header
6154           buffer.PutHex32(mach_header.magic);
6155           buffer.PutHex32(mach_header.cputype);
6156           buffer.PutHex32(mach_header.cpusubtype);
6157           buffer.PutHex32(mach_header.filetype);
6158           buffer.PutHex32(mach_header.ncmds);
6159           buffer.PutHex32(mach_header.sizeofcmds);
6160           buffer.PutHex32(mach_header.flags);
6161           if (addr_byte_size == 8) {
6162             buffer.PutHex32(mach_header.reserved);
6163           }
6164 
6165           // Skip the mach header and all load commands and align to the next
6166           // 0x1000 byte boundary
6167           addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6168           if (file_offset & 0x00000fff) {
6169             file_offset += 0x00001000ull;
6170             file_offset &= (~0x00001000ull + 1);
6171           }
6172 
6173           for (auto &segment : segment_load_commands) {
6174             segment.fileoff = file_offset;
6175             file_offset += segment.filesize;
6176           }
6177 
6178           // Write out all of the LC_THREAD load commands
6179           for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6180             const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6181             buffer.PutHex32(LC_THREAD);
6182             buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6183             buffer.Write(LC_THREAD_data.GetString().data(),
6184                          LC_THREAD_data_size);
6185           }
6186 
6187           // Write out all of the segment load commands
6188           for (const auto &segment : segment_load_commands) {
6189             printf("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64
6190                    ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64
6191                    ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n",
6192                    segment.cmd, segment.cmdsize, segment.vmaddr,
6193                    segment.vmaddr + segment.vmsize, segment.fileoff,
6194                    segment.filesize, segment.maxprot, segment.initprot,
6195                    segment.nsects, segment.flags);
6196 
6197             buffer.PutHex32(segment.cmd);
6198             buffer.PutHex32(segment.cmdsize);
6199             buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6200             if (addr_byte_size == 8) {
6201               buffer.PutHex64(segment.vmaddr);
6202               buffer.PutHex64(segment.vmsize);
6203               buffer.PutHex64(segment.fileoff);
6204               buffer.PutHex64(segment.filesize);
6205             } else {
6206               buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6207               buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6208               buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6209               buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6210             }
6211             buffer.PutHex32(segment.maxprot);
6212             buffer.PutHex32(segment.initprot);
6213             buffer.PutHex32(segment.nsects);
6214             buffer.PutHex32(segment.flags);
6215           }
6216 
6217           File core_file;
6218           std::string core_file_path(outfile.GetPath());
6219           error = core_file.Open(core_file_path.c_str(),
6220                                  File::eOpenOptionWrite |
6221                                      File::eOpenOptionTruncate |
6222                                      File::eOpenOptionCanCreate);
6223           if (error.Success()) {
6224             // Read 1 page at a time
6225             uint8_t bytes[0x1000];
6226             // Write the mach header and load commands out to the core file
6227             size_t bytes_written = buffer.GetString().size();
6228             error = core_file.Write(buffer.GetString().data(), bytes_written);
6229             if (error.Success()) {
6230               // Now write the file data for all memory segments in the process
6231               for (const auto &segment : segment_load_commands) {
6232                 if (core_file.SeekFromStart(segment.fileoff) == -1) {
6233                   error.SetErrorStringWithFormat(
6234                       "unable to seek to offset 0x%" PRIx64 " in '%s'",
6235                       segment.fileoff, core_file_path.c_str());
6236                   break;
6237                 }
6238 
6239                 printf("Saving %" PRId64
6240                        " bytes of data for memory region at 0x%" PRIx64 "\n",
6241                        segment.vmsize, segment.vmaddr);
6242                 addr_t bytes_left = segment.vmsize;
6243                 addr_t addr = segment.vmaddr;
6244                 Status memory_read_error;
6245                 while (bytes_left > 0 && error.Success()) {
6246                   const size_t bytes_to_read =
6247                       bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6248                   const size_t bytes_read = process_sp->ReadMemory(
6249                       addr, bytes, bytes_to_read, memory_read_error);
6250                   if (bytes_read == bytes_to_read) {
6251                     size_t bytes_written = bytes_read;
6252                     error = core_file.Write(bytes, bytes_written);
6253                     bytes_left -= bytes_read;
6254                     addr += bytes_read;
6255                   } else {
6256                     // Some pages within regions are not readable, those
6257                     // should be zero filled
6258                     memset(bytes, 0, bytes_to_read);
6259                     size_t bytes_written = bytes_to_read;
6260                     error = core_file.Write(bytes, bytes_written);
6261                     bytes_left -= bytes_to_read;
6262                     addr += bytes_to_read;
6263                   }
6264                 }
6265               }
6266             }
6267           }
6268         } else {
6269           error.SetErrorString(
6270               "process doesn't support getting memory region info");
6271         }
6272       }
6273       return true; // This is the right plug to handle saving core files for
6274                    // this process
6275     }
6276   }
6277   return false;
6278 }
6279