1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/FileSpecList.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/ModuleSpec.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/Progress.h"
22 #include "lldb/Core/Section.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Symbol/DWARFCallFrameInfo.h"
26 #include "lldb/Symbol/LocateSymbolFile.h"
27 #include "lldb/Symbol/ObjectFile.h"
28 #include "lldb/Target/DynamicLoader.h"
29 #include "lldb/Target/MemoryRegionInfo.h"
30 #include "lldb/Target/Platform.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/SectionLoadList.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Target/ThreadList.h"
36 #include "lldb/Utility/ArchSpec.h"
37 #include "lldb/Utility/DataBuffer.h"
38 #include "lldb/Utility/FileSpec.h"
39 #include "lldb/Utility/LLDBLog.h"
40 #include "lldb/Utility/Log.h"
41 #include "lldb/Utility/RangeMap.h"
42 #include "lldb/Utility/RegisterValue.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StreamString.h"
45 #include "lldb/Utility/Timer.h"
46 #include "lldb/Utility/UUID.h"
47 
48 #include "lldb/Host/SafeMachO.h"
49 
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/MemoryBuffer.h"
53 
54 #include "ObjectFileMachO.h"
55 
56 #if defined(__APPLE__)
57 #include <TargetConditionals.h>
58 // GetLLDBSharedCacheUUID() needs to call dlsym()
59 #include <dlfcn.h>
60 #include <mach/mach_init.h>
61 #include <mach/vm_map.h>
62 #include <lldb/Host/SafeMachO.h>
63 #endif
64 
65 #ifndef __APPLE__
66 #include "Utility/UuidCompatibility.h"
67 #else
68 #include <uuid/uuid.h>
69 #endif
70 
71 #include <bitset>
72 #include <memory>
73 
74 // Unfortunately the signpost header pulls in the system MachO header, too.
75 #ifdef CPU_TYPE_ARM
76 #undef CPU_TYPE_ARM
77 #endif
78 #ifdef CPU_TYPE_ARM64
79 #undef CPU_TYPE_ARM64
80 #endif
81 #ifdef CPU_TYPE_ARM64_32
82 #undef CPU_TYPE_ARM64_32
83 #endif
84 #ifdef CPU_TYPE_I386
85 #undef CPU_TYPE_I386
86 #endif
87 #ifdef CPU_TYPE_X86_64
88 #undef CPU_TYPE_X86_64
89 #endif
90 #ifdef MH_DYLINKER
91 #undef MH_DYLINKER
92 #endif
93 #ifdef MH_OBJECT
94 #undef MH_OBJECT
95 #endif
96 #ifdef LC_VERSION_MIN_MACOSX
97 #undef LC_VERSION_MIN_MACOSX
98 #endif
99 #ifdef LC_VERSION_MIN_IPHONEOS
100 #undef LC_VERSION_MIN_IPHONEOS
101 #endif
102 #ifdef LC_VERSION_MIN_TVOS
103 #undef LC_VERSION_MIN_TVOS
104 #endif
105 #ifdef LC_VERSION_MIN_WATCHOS
106 #undef LC_VERSION_MIN_WATCHOS
107 #endif
108 #ifdef LC_BUILD_VERSION
109 #undef LC_BUILD_VERSION
110 #endif
111 #ifdef PLATFORM_MACOS
112 #undef PLATFORM_MACOS
113 #endif
114 #ifdef PLATFORM_MACCATALYST
115 #undef PLATFORM_MACCATALYST
116 #endif
117 #ifdef PLATFORM_IOS
118 #undef PLATFORM_IOS
119 #endif
120 #ifdef PLATFORM_IOSSIMULATOR
121 #undef PLATFORM_IOSSIMULATOR
122 #endif
123 #ifdef PLATFORM_TVOS
124 #undef PLATFORM_TVOS
125 #endif
126 #ifdef PLATFORM_TVOSSIMULATOR
127 #undef PLATFORM_TVOSSIMULATOR
128 #endif
129 #ifdef PLATFORM_WATCHOS
130 #undef PLATFORM_WATCHOS
131 #endif
132 #ifdef PLATFORM_WATCHOSSIMULATOR
133 #undef PLATFORM_WATCHOSSIMULATOR
134 #endif
135 
136 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
137 using namespace lldb;
138 using namespace lldb_private;
139 using namespace llvm::MachO;
140 
141 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
142 
143 // Some structure definitions needed for parsing the dyld shared cache files
144 // found on iOS devices.
145 
146 struct lldb_copy_dyld_cache_header_v1 {
147   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
148   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
149   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
150   uint32_t imagesOffset;
151   uint32_t imagesCount;
152   uint64_t dyldBaseAddress;
153   uint64_t codeSignatureOffset;
154   uint64_t codeSignatureSize;
155   uint64_t slideInfoOffset;
156   uint64_t slideInfoSize;
157   uint64_t localSymbolsOffset;
158   uint64_t localSymbolsSize;
159   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
160                     // and later
161 };
162 
163 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
164                                const char *alt_name, size_t reg_byte_size,
165                                Stream &data) {
166   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
167   if (reg_info == nullptr)
168     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
169   if (reg_info) {
170     lldb_private::RegisterValue reg_value;
171     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
172       if (reg_info->byte_size >= reg_byte_size)
173         data.Write(reg_value.GetBytes(), reg_byte_size);
174       else {
175         data.Write(reg_value.GetBytes(), reg_info->byte_size);
176         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
177           data.PutChar(0);
178       }
179       return;
180     }
181   }
182   // Just write zeros if all else fails
183   for (size_t i = 0; i < reg_byte_size; ++i)
184     data.PutChar(0);
185 }
186 
187 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
188 public:
189   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
190                                     const DataExtractor &data)
191       : RegisterContextDarwin_x86_64(thread, 0) {
192     SetRegisterDataFrom_LC_THREAD(data);
193   }
194 
195   void InvalidateAllRegisters() override {
196     // Do nothing... registers are always valid...
197   }
198 
199   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
200     lldb::offset_t offset = 0;
201     SetError(GPRRegSet, Read, -1);
202     SetError(FPURegSet, Read, -1);
203     SetError(EXCRegSet, Read, -1);
204     bool done = false;
205 
206     while (!done) {
207       int flavor = data.GetU32(&offset);
208       if (flavor == 0)
209         done = true;
210       else {
211         uint32_t i;
212         uint32_t count = data.GetU32(&offset);
213         switch (flavor) {
214         case GPRRegSet:
215           for (i = 0; i < count; ++i)
216             (&gpr.rax)[i] = data.GetU64(&offset);
217           SetError(GPRRegSet, Read, 0);
218           done = true;
219 
220           break;
221         case FPURegSet:
222           // TODO: fill in FPU regs....
223           // SetError (FPURegSet, Read, -1);
224           done = true;
225 
226           break;
227         case EXCRegSet:
228           exc.trapno = data.GetU32(&offset);
229           exc.err = data.GetU32(&offset);
230           exc.faultvaddr = data.GetU64(&offset);
231           SetError(EXCRegSet, Read, 0);
232           done = true;
233           break;
234         case 7:
235         case 8:
236         case 9:
237           // fancy flavors that encapsulate of the above flavors...
238           break;
239 
240         default:
241           done = true;
242           break;
243         }
244       }
245     }
246   }
247 
248   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
249     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
250     if (reg_ctx_sp) {
251       RegisterContext *reg_ctx = reg_ctx_sp.get();
252 
253       data.PutHex32(GPRRegSet); // Flavor
254       data.PutHex32(GPRWordCount);
255       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
256       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
258       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
259       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
260       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
261       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
262       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
263       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
264       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
265       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
266       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
267       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
268       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
269       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
270       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
271       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
272       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
275       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
276 
277       //            // Write out the FPU registers
278       //            const size_t fpu_byte_size = sizeof(FPU);
279       //            size_t bytes_written = 0;
280       //            data.PutHex32 (FPURegSet);
281       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
282       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
283       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
284       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
285       //            data);   // uint16_t    fcw;    // "fctrl"
286       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
287       //            data);  // uint16_t    fsw;    // "fstat"
288       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
289       //            data);   // uint8_t     ftw;    // "ftag"
290       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
291       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
292       //            data);     // uint16_t    fop;    // "fop"
293       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
294       //            data);    // uint32_t    ip;     // "fioff"
295       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
296       //            data);    // uint16_t    cs;     // "fiseg"
297       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
298       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
299       //            data);   // uint32_t    dp;     // "fooff"
300       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
301       //            data);    // uint16_t    ds;     // "foseg"
302       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
303       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
304       //            data);    // uint32_t    mxcsr;
305       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
306       //            4, data);// uint32_t    mxcsrmask;
307       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
308       //            sizeof(MMSReg), data);
309       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
310       //            sizeof(MMSReg), data);
311       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
312       //            sizeof(MMSReg), data);
313       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
314       //            sizeof(MMSReg), data);
315       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
316       //            sizeof(MMSReg), data);
317       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
318       //            sizeof(MMSReg), data);
319       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
320       //            sizeof(MMSReg), data);
321       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
322       //            sizeof(MMSReg), data);
323       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
324       //            sizeof(XMMReg), data);
325       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
326       //            sizeof(XMMReg), data);
327       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
328       //            sizeof(XMMReg), data);
329       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
330       //            sizeof(XMMReg), data);
331       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
332       //            sizeof(XMMReg), data);
333       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
334       //            sizeof(XMMReg), data);
335       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
336       //            sizeof(XMMReg), data);
337       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
338       //            sizeof(XMMReg), data);
339       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
340       //            sizeof(XMMReg), data);
341       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
342       //            sizeof(XMMReg), data);
343       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
344       //            sizeof(XMMReg), data);
345       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
346       //            sizeof(XMMReg), data);
347       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
348       //            sizeof(XMMReg), data);
349       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
350       //            sizeof(XMMReg), data);
351       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
352       //            sizeof(XMMReg), data);
353       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
354       //            sizeof(XMMReg), data);
355       //
356       //            // Fill rest with zeros
357       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
358       //            i)
359       //                data.PutChar(0);
360 
361       // Write out the EXC registers
362       data.PutHex32(EXCRegSet);
363       data.PutHex32(EXCWordCount);
364       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
365       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
366       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
367       return true;
368     }
369     return false;
370   }
371 
372 protected:
373   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
374 
375   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
376 
377   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
378 
379   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
380     return 0;
381   }
382 
383   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
384     return 0;
385   }
386 
387   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
388     return 0;
389   }
390 };
391 
392 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
393 public:
394   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
395                                   const DataExtractor &data)
396       : RegisterContextDarwin_i386(thread, 0) {
397     SetRegisterDataFrom_LC_THREAD(data);
398   }
399 
400   void InvalidateAllRegisters() override {
401     // Do nothing... registers are always valid...
402   }
403 
404   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
405     lldb::offset_t offset = 0;
406     SetError(GPRRegSet, Read, -1);
407     SetError(FPURegSet, Read, -1);
408     SetError(EXCRegSet, Read, -1);
409     bool done = false;
410 
411     while (!done) {
412       int flavor = data.GetU32(&offset);
413       if (flavor == 0)
414         done = true;
415       else {
416         uint32_t i;
417         uint32_t count = data.GetU32(&offset);
418         switch (flavor) {
419         case GPRRegSet:
420           for (i = 0; i < count; ++i)
421             (&gpr.eax)[i] = data.GetU32(&offset);
422           SetError(GPRRegSet, Read, 0);
423           done = true;
424 
425           break;
426         case FPURegSet:
427           // TODO: fill in FPU regs....
428           // SetError (FPURegSet, Read, -1);
429           done = true;
430 
431           break;
432         case EXCRegSet:
433           exc.trapno = data.GetU32(&offset);
434           exc.err = data.GetU32(&offset);
435           exc.faultvaddr = data.GetU32(&offset);
436           SetError(EXCRegSet, Read, 0);
437           done = true;
438           break;
439         case 7:
440         case 8:
441         case 9:
442           // fancy flavors that encapsulate of the above flavors...
443           break;
444 
445         default:
446           done = true;
447           break;
448         }
449       }
450     }
451   }
452 
453   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
454     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
455     if (reg_ctx_sp) {
456       RegisterContext *reg_ctx = reg_ctx_sp.get();
457 
458       data.PutHex32(GPRRegSet); // Flavor
459       data.PutHex32(GPRWordCount);
460       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
461       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
462       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
465       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
466       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
467       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
468       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
469       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
470       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
471       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
472       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
473       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
474       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
475       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
476 
477       // Write out the EXC registers
478       data.PutHex32(EXCRegSet);
479       data.PutHex32(EXCWordCount);
480       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
481       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
482       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
483       return true;
484     }
485     return false;
486   }
487 
488 protected:
489   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
490 
491   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
492 
493   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
494 
495   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
496     return 0;
497   }
498 
499   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
500     return 0;
501   }
502 
503   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
504     return 0;
505   }
506 };
507 
508 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
509 public:
510   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
511                                  const DataExtractor &data)
512       : RegisterContextDarwin_arm(thread, 0) {
513     SetRegisterDataFrom_LC_THREAD(data);
514   }
515 
516   void InvalidateAllRegisters() override {
517     // Do nothing... registers are always valid...
518   }
519 
520   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
521     lldb::offset_t offset = 0;
522     SetError(GPRRegSet, Read, -1);
523     SetError(FPURegSet, Read, -1);
524     SetError(EXCRegSet, Read, -1);
525     bool done = false;
526 
527     while (!done) {
528       int flavor = data.GetU32(&offset);
529       uint32_t count = data.GetU32(&offset);
530       lldb::offset_t next_thread_state = offset + (count * 4);
531       switch (flavor) {
532       case GPRAltRegSet:
533       case GPRRegSet:
534         // On ARM, the CPSR register is also included in the count but it is
535         // not included in gpr.r so loop until (count-1).
536         for (uint32_t i = 0; i < (count - 1); ++i) {
537           gpr.r[i] = data.GetU32(&offset);
538         }
539         // Save cpsr explicitly.
540         gpr.cpsr = data.GetU32(&offset);
541 
542         SetError(GPRRegSet, Read, 0);
543         offset = next_thread_state;
544         break;
545 
546       case FPURegSet: {
547         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats.s[0];
548         const int fpu_reg_buf_size = sizeof(fpu.floats);
549         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
550                               fpu_reg_buf) == fpu_reg_buf_size) {
551           offset += fpu_reg_buf_size;
552           fpu.fpscr = data.GetU32(&offset);
553           SetError(FPURegSet, Read, 0);
554         } else {
555           done = true;
556         }
557       }
558         offset = next_thread_state;
559         break;
560 
561       case EXCRegSet:
562         if (count == 3) {
563           exc.exception = data.GetU32(&offset);
564           exc.fsr = data.GetU32(&offset);
565           exc.far = data.GetU32(&offset);
566           SetError(EXCRegSet, Read, 0);
567         }
568         done = true;
569         offset = next_thread_state;
570         break;
571 
572       // Unknown register set flavor, stop trying to parse.
573       default:
574         done = true;
575       }
576     }
577   }
578 
579   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
580     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
581     if (reg_ctx_sp) {
582       RegisterContext *reg_ctx = reg_ctx_sp.get();
583 
584       data.PutHex32(GPRRegSet); // Flavor
585       data.PutHex32(GPRWordCount);
586       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
587       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
588       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
589       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
590       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
591       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
592       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
593       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
594       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
595       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
596       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
597       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
598       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
599       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
600       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
601       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
602       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
603 
604       // Write out the EXC registers
605       //            data.PutHex32 (EXCRegSet);
606       //            data.PutHex32 (EXCWordCount);
607       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
608       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
609       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
610       return true;
611     }
612     return false;
613   }
614 
615 protected:
616   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
617 
618   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
619 
620   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
621 
622   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
623 
624   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
625     return 0;
626   }
627 
628   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
629     return 0;
630   }
631 
632   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
633     return 0;
634   }
635 
636   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
637     return -1;
638   }
639 };
640 
641 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
642 public:
643   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
644                                    const DataExtractor &data)
645       : RegisterContextDarwin_arm64(thread, 0) {
646     SetRegisterDataFrom_LC_THREAD(data);
647   }
648 
649   void InvalidateAllRegisters() override {
650     // Do nothing... registers are always valid...
651   }
652 
653   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
654     lldb::offset_t offset = 0;
655     SetError(GPRRegSet, Read, -1);
656     SetError(FPURegSet, Read, -1);
657     SetError(EXCRegSet, Read, -1);
658     bool done = false;
659     while (!done) {
660       int flavor = data.GetU32(&offset);
661       uint32_t count = data.GetU32(&offset);
662       lldb::offset_t next_thread_state = offset + (count * 4);
663       switch (flavor) {
664       case GPRRegSet:
665         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
666         // 32-bit register)
667         if (count >= (33 * 2) + 1) {
668           for (uint32_t i = 0; i < 29; ++i)
669             gpr.x[i] = data.GetU64(&offset);
670           gpr.fp = data.GetU64(&offset);
671           gpr.lr = data.GetU64(&offset);
672           gpr.sp = data.GetU64(&offset);
673           gpr.pc = data.GetU64(&offset);
674           gpr.cpsr = data.GetU32(&offset);
675           SetError(GPRRegSet, Read, 0);
676         }
677         offset = next_thread_state;
678         break;
679       case FPURegSet: {
680         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
681         const int fpu_reg_buf_size = sizeof(fpu);
682         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
683             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
684                               fpu_reg_buf) == fpu_reg_buf_size) {
685           SetError(FPURegSet, Read, 0);
686         } else {
687           done = true;
688         }
689       }
690         offset = next_thread_state;
691         break;
692       case EXCRegSet:
693         if (count == 4) {
694           exc.far = data.GetU64(&offset);
695           exc.esr = data.GetU32(&offset);
696           exc.exception = data.GetU32(&offset);
697           SetError(EXCRegSet, Read, 0);
698         }
699         offset = next_thread_state;
700         break;
701       default:
702         done = true;
703         break;
704       }
705     }
706   }
707 
708   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
709     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
710     if (reg_ctx_sp) {
711       RegisterContext *reg_ctx = reg_ctx_sp.get();
712 
713       data.PutHex32(GPRRegSet); // Flavor
714       data.PutHex32(GPRWordCount);
715       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
716       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
717       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
718       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
719       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
720       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
721       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
748       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
749       data.PutHex32(0); // uint32_t pad at the end
750 
751       // Write out the EXC registers
752       data.PutHex32(EXCRegSet);
753       data.PutHex32(EXCWordCount);
754       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
755       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
756       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
757       return true;
758     }
759     return false;
760   }
761 
762 protected:
763   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
764 
765   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
766 
767   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
768 
769   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
770 
771   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
772     return 0;
773   }
774 
775   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
776     return 0;
777   }
778 
779   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
780     return 0;
781   }
782 
783   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
784     return -1;
785   }
786 };
787 
788 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
789   switch (magic) {
790   case MH_MAGIC:
791   case MH_CIGAM:
792     return sizeof(struct llvm::MachO::mach_header);
793 
794   case MH_MAGIC_64:
795   case MH_CIGAM_64:
796     return sizeof(struct llvm::MachO::mach_header_64);
797     break;
798 
799   default:
800     break;
801   }
802   return 0;
803 }
804 
805 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
806 
807 char ObjectFileMachO::ID;
808 
809 void ObjectFileMachO::Initialize() {
810   PluginManager::RegisterPlugin(
811       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
812       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
813 }
814 
815 void ObjectFileMachO::Terminate() {
816   PluginManager::UnregisterPlugin(CreateInstance);
817 }
818 
819 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
820                                             DataBufferSP data_sp,
821                                             lldb::offset_t data_offset,
822                                             const FileSpec *file,
823                                             lldb::offset_t file_offset,
824                                             lldb::offset_t length) {
825   if (!data_sp) {
826     data_sp = MapFileData(*file, length, file_offset);
827     if (!data_sp)
828       return nullptr;
829     data_offset = 0;
830   }
831 
832   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
833     return nullptr;
834 
835   // Update the data to contain the entire file if it doesn't already
836   if (data_sp->GetByteSize() < length) {
837     data_sp = MapFileData(*file, length, file_offset);
838     if (!data_sp)
839       return nullptr;
840     data_offset = 0;
841   }
842   auto objfile_up = std::make_unique<ObjectFileMachO>(
843       module_sp, data_sp, data_offset, file, file_offset, length);
844   if (!objfile_up || !objfile_up->ParseHeader())
845     return nullptr;
846 
847   return objfile_up.release();
848 }
849 
850 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
851     const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
852     const ProcessSP &process_sp, lldb::addr_t header_addr) {
853   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
854     std::unique_ptr<ObjectFile> objfile_up(
855         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
856     if (objfile_up.get() && objfile_up->ParseHeader())
857       return objfile_up.release();
858   }
859   return nullptr;
860 }
861 
862 size_t ObjectFileMachO::GetModuleSpecifications(
863     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
864     lldb::offset_t data_offset, lldb::offset_t file_offset,
865     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
866   const size_t initial_count = specs.GetSize();
867 
868   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
869     DataExtractor data;
870     data.SetData(data_sp);
871     llvm::MachO::mach_header header;
872     if (ParseHeader(data, &data_offset, header)) {
873       size_t header_and_load_cmds =
874           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
875       if (header_and_load_cmds >= data_sp->GetByteSize()) {
876         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
877         data.SetData(data_sp);
878         data_offset = MachHeaderSizeFromMagic(header.magic);
879       }
880       if (data_sp) {
881         ModuleSpec base_spec;
882         base_spec.GetFileSpec() = file;
883         base_spec.SetObjectOffset(file_offset);
884         base_spec.SetObjectSize(length);
885         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
886       }
887     }
888   }
889   return specs.GetSize() - initial_count;
890 }
891 
892 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
893   static ConstString g_segment_name_TEXT("__TEXT");
894   return g_segment_name_TEXT;
895 }
896 
897 ConstString ObjectFileMachO::GetSegmentNameDATA() {
898   static ConstString g_segment_name_DATA("__DATA");
899   return g_segment_name_DATA;
900 }
901 
902 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
903   static ConstString g_segment_name("__DATA_DIRTY");
904   return g_segment_name;
905 }
906 
907 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
908   static ConstString g_segment_name("__DATA_CONST");
909   return g_segment_name;
910 }
911 
912 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
913   static ConstString g_segment_name_OBJC("__OBJC");
914   return g_segment_name_OBJC;
915 }
916 
917 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
918   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
919   return g_section_name_LINKEDIT;
920 }
921 
922 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
923   static ConstString g_section_name("__DWARF");
924   return g_section_name;
925 }
926 
927 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
928   static ConstString g_section_name_eh_frame("__eh_frame");
929   return g_section_name_eh_frame;
930 }
931 
932 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
933                                       lldb::addr_t data_offset,
934                                       lldb::addr_t data_length) {
935   DataExtractor data;
936   data.SetData(data_sp, data_offset, data_length);
937   lldb::offset_t offset = 0;
938   uint32_t magic = data.GetU32(&offset);
939   return MachHeaderSizeFromMagic(magic) != 0;
940 }
941 
942 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
943                                  DataBufferSP data_sp,
944                                  lldb::offset_t data_offset,
945                                  const FileSpec *file,
946                                  lldb::offset_t file_offset,
947                                  lldb::offset_t length)
948     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
949       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
950       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
951       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
952   ::memset(&m_header, 0, sizeof(m_header));
953   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
954 }
955 
956 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
957                                  lldb::WritableDataBufferSP header_data_sp,
958                                  const lldb::ProcessSP &process_sp,
959                                  lldb::addr_t header_addr)
960     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
961       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
962       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
963       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
964   ::memset(&m_header, 0, sizeof(m_header));
965   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
966 }
967 
968 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
969                                   lldb::offset_t *data_offset_ptr,
970                                   llvm::MachO::mach_header &header) {
971   data.SetByteOrder(endian::InlHostByteOrder());
972   // Leave magic in the original byte order
973   header.magic = data.GetU32(data_offset_ptr);
974   bool can_parse = false;
975   bool is_64_bit = false;
976   switch (header.magic) {
977   case MH_MAGIC:
978     data.SetByteOrder(endian::InlHostByteOrder());
979     data.SetAddressByteSize(4);
980     can_parse = true;
981     break;
982 
983   case MH_MAGIC_64:
984     data.SetByteOrder(endian::InlHostByteOrder());
985     data.SetAddressByteSize(8);
986     can_parse = true;
987     is_64_bit = true;
988     break;
989 
990   case MH_CIGAM:
991     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
992                           ? eByteOrderLittle
993                           : eByteOrderBig);
994     data.SetAddressByteSize(4);
995     can_parse = true;
996     break;
997 
998   case MH_CIGAM_64:
999     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1000                           ? eByteOrderLittle
1001                           : eByteOrderBig);
1002     data.SetAddressByteSize(8);
1003     is_64_bit = true;
1004     can_parse = true;
1005     break;
1006 
1007   default:
1008     break;
1009   }
1010 
1011   if (can_parse) {
1012     data.GetU32(data_offset_ptr, &header.cputype, 6);
1013     if (is_64_bit)
1014       *data_offset_ptr += 4;
1015     return true;
1016   } else {
1017     memset(&header, 0, sizeof(header));
1018   }
1019   return false;
1020 }
1021 
1022 bool ObjectFileMachO::ParseHeader() {
1023   ModuleSP module_sp(GetModule());
1024   if (!module_sp)
1025     return false;
1026 
1027   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1028   bool can_parse = false;
1029   lldb::offset_t offset = 0;
1030   m_data.SetByteOrder(endian::InlHostByteOrder());
1031   // Leave magic in the original byte order
1032   m_header.magic = m_data.GetU32(&offset);
1033   switch (m_header.magic) {
1034   case MH_MAGIC:
1035     m_data.SetByteOrder(endian::InlHostByteOrder());
1036     m_data.SetAddressByteSize(4);
1037     can_parse = true;
1038     break;
1039 
1040   case MH_MAGIC_64:
1041     m_data.SetByteOrder(endian::InlHostByteOrder());
1042     m_data.SetAddressByteSize(8);
1043     can_parse = true;
1044     break;
1045 
1046   case MH_CIGAM:
1047     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1048                             ? eByteOrderLittle
1049                             : eByteOrderBig);
1050     m_data.SetAddressByteSize(4);
1051     can_parse = true;
1052     break;
1053 
1054   case MH_CIGAM_64:
1055     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1056                             ? eByteOrderLittle
1057                             : eByteOrderBig);
1058     m_data.SetAddressByteSize(8);
1059     can_parse = true;
1060     break;
1061 
1062   default:
1063     break;
1064   }
1065 
1066   if (can_parse) {
1067     m_data.GetU32(&offset, &m_header.cputype, 6);
1068 
1069     ModuleSpecList all_specs;
1070     ModuleSpec base_spec;
1071     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1072                     base_spec, all_specs);
1073 
1074     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1075       ArchSpec mach_arch =
1076           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1077 
1078       // Check if the module has a required architecture
1079       const ArchSpec &module_arch = module_sp->GetArchitecture();
1080       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1081         continue;
1082 
1083       if (SetModulesArchitecture(mach_arch)) {
1084         const size_t header_and_lc_size =
1085             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1086         if (m_data.GetByteSize() < header_and_lc_size) {
1087           DataBufferSP data_sp;
1088           ProcessSP process_sp(m_process_wp.lock());
1089           if (process_sp) {
1090             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1091           } else {
1092             // Read in all only the load command data from the file on disk
1093             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1094             if (data_sp->GetByteSize() != header_and_lc_size)
1095               continue;
1096           }
1097           if (data_sp)
1098             m_data.SetData(data_sp);
1099         }
1100       }
1101       return true;
1102     }
1103     // None found.
1104     return false;
1105   } else {
1106     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1107   }
1108   return false;
1109 }
1110 
1111 ByteOrder ObjectFileMachO::GetByteOrder() const {
1112   return m_data.GetByteOrder();
1113 }
1114 
1115 bool ObjectFileMachO::IsExecutable() const {
1116   return m_header.filetype == MH_EXECUTE;
1117 }
1118 
1119 bool ObjectFileMachO::IsDynamicLoader() const {
1120   return m_header.filetype == MH_DYLINKER;
1121 }
1122 
1123 bool ObjectFileMachO::IsSharedCacheBinary() const {
1124   return m_header.flags & MH_DYLIB_IN_CACHE;
1125 }
1126 
1127 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1128   return m_data.GetAddressByteSize();
1129 }
1130 
1131 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1132   Symtab *symtab = GetSymtab();
1133   if (!symtab)
1134     return AddressClass::eUnknown;
1135 
1136   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1137   if (symbol) {
1138     if (symbol->ValueIsAddress()) {
1139       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1140       if (section_sp) {
1141         const lldb::SectionType section_type = section_sp->GetType();
1142         switch (section_type) {
1143         case eSectionTypeInvalid:
1144           return AddressClass::eUnknown;
1145 
1146         case eSectionTypeCode:
1147           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1148             // For ARM we have a bit in the n_desc field of the symbol that
1149             // tells us ARM/Thumb which is bit 0x0008.
1150             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1151               return AddressClass::eCodeAlternateISA;
1152           }
1153           return AddressClass::eCode;
1154 
1155         case eSectionTypeContainer:
1156           return AddressClass::eUnknown;
1157 
1158         case eSectionTypeData:
1159         case eSectionTypeDataCString:
1160         case eSectionTypeDataCStringPointers:
1161         case eSectionTypeDataSymbolAddress:
1162         case eSectionTypeData4:
1163         case eSectionTypeData8:
1164         case eSectionTypeData16:
1165         case eSectionTypeDataPointers:
1166         case eSectionTypeZeroFill:
1167         case eSectionTypeDataObjCMessageRefs:
1168         case eSectionTypeDataObjCCFStrings:
1169         case eSectionTypeGoSymtab:
1170           return AddressClass::eData;
1171 
1172         case eSectionTypeDebug:
1173         case eSectionTypeDWARFDebugAbbrev:
1174         case eSectionTypeDWARFDebugAbbrevDwo:
1175         case eSectionTypeDWARFDebugAddr:
1176         case eSectionTypeDWARFDebugAranges:
1177         case eSectionTypeDWARFDebugCuIndex:
1178         case eSectionTypeDWARFDebugFrame:
1179         case eSectionTypeDWARFDebugInfo:
1180         case eSectionTypeDWARFDebugInfoDwo:
1181         case eSectionTypeDWARFDebugLine:
1182         case eSectionTypeDWARFDebugLineStr:
1183         case eSectionTypeDWARFDebugLoc:
1184         case eSectionTypeDWARFDebugLocDwo:
1185         case eSectionTypeDWARFDebugLocLists:
1186         case eSectionTypeDWARFDebugLocListsDwo:
1187         case eSectionTypeDWARFDebugMacInfo:
1188         case eSectionTypeDWARFDebugMacro:
1189         case eSectionTypeDWARFDebugNames:
1190         case eSectionTypeDWARFDebugPubNames:
1191         case eSectionTypeDWARFDebugPubTypes:
1192         case eSectionTypeDWARFDebugRanges:
1193         case eSectionTypeDWARFDebugRngLists:
1194         case eSectionTypeDWARFDebugRngListsDwo:
1195         case eSectionTypeDWARFDebugStr:
1196         case eSectionTypeDWARFDebugStrDwo:
1197         case eSectionTypeDWARFDebugStrOffsets:
1198         case eSectionTypeDWARFDebugStrOffsetsDwo:
1199         case eSectionTypeDWARFDebugTuIndex:
1200         case eSectionTypeDWARFDebugTypes:
1201         case eSectionTypeDWARFDebugTypesDwo:
1202         case eSectionTypeDWARFAppleNames:
1203         case eSectionTypeDWARFAppleTypes:
1204         case eSectionTypeDWARFAppleNamespaces:
1205         case eSectionTypeDWARFAppleObjC:
1206         case eSectionTypeDWARFGNUDebugAltLink:
1207           return AddressClass::eDebug;
1208 
1209         case eSectionTypeEHFrame:
1210         case eSectionTypeARMexidx:
1211         case eSectionTypeARMextab:
1212         case eSectionTypeCompactUnwind:
1213           return AddressClass::eRuntime;
1214 
1215         case eSectionTypeAbsoluteAddress:
1216         case eSectionTypeELFSymbolTable:
1217         case eSectionTypeELFDynamicSymbols:
1218         case eSectionTypeELFRelocationEntries:
1219         case eSectionTypeELFDynamicLinkInfo:
1220         case eSectionTypeOther:
1221           return AddressClass::eUnknown;
1222         }
1223       }
1224     }
1225 
1226     const SymbolType symbol_type = symbol->GetType();
1227     switch (symbol_type) {
1228     case eSymbolTypeAny:
1229       return AddressClass::eUnknown;
1230     case eSymbolTypeAbsolute:
1231       return AddressClass::eUnknown;
1232 
1233     case eSymbolTypeCode:
1234     case eSymbolTypeTrampoline:
1235     case eSymbolTypeResolver:
1236       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1237         // For ARM we have a bit in the n_desc field of the symbol that tells
1238         // us ARM/Thumb which is bit 0x0008.
1239         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1240           return AddressClass::eCodeAlternateISA;
1241       }
1242       return AddressClass::eCode;
1243 
1244     case eSymbolTypeData:
1245       return AddressClass::eData;
1246     case eSymbolTypeRuntime:
1247       return AddressClass::eRuntime;
1248     case eSymbolTypeException:
1249       return AddressClass::eRuntime;
1250     case eSymbolTypeSourceFile:
1251       return AddressClass::eDebug;
1252     case eSymbolTypeHeaderFile:
1253       return AddressClass::eDebug;
1254     case eSymbolTypeObjectFile:
1255       return AddressClass::eDebug;
1256     case eSymbolTypeCommonBlock:
1257       return AddressClass::eDebug;
1258     case eSymbolTypeBlock:
1259       return AddressClass::eDebug;
1260     case eSymbolTypeLocal:
1261       return AddressClass::eData;
1262     case eSymbolTypeParam:
1263       return AddressClass::eData;
1264     case eSymbolTypeVariable:
1265       return AddressClass::eData;
1266     case eSymbolTypeVariableType:
1267       return AddressClass::eDebug;
1268     case eSymbolTypeLineEntry:
1269       return AddressClass::eDebug;
1270     case eSymbolTypeLineHeader:
1271       return AddressClass::eDebug;
1272     case eSymbolTypeScopeBegin:
1273       return AddressClass::eDebug;
1274     case eSymbolTypeScopeEnd:
1275       return AddressClass::eDebug;
1276     case eSymbolTypeAdditional:
1277       return AddressClass::eUnknown;
1278     case eSymbolTypeCompiler:
1279       return AddressClass::eDebug;
1280     case eSymbolTypeInstrumentation:
1281       return AddressClass::eDebug;
1282     case eSymbolTypeUndefined:
1283       return AddressClass::eUnknown;
1284     case eSymbolTypeObjCClass:
1285       return AddressClass::eRuntime;
1286     case eSymbolTypeObjCMetaClass:
1287       return AddressClass::eRuntime;
1288     case eSymbolTypeObjCIVar:
1289       return AddressClass::eRuntime;
1290     case eSymbolTypeReExported:
1291       return AddressClass::eRuntime;
1292     }
1293   }
1294   return AddressClass::eUnknown;
1295 }
1296 
1297 bool ObjectFileMachO::IsStripped() {
1298   if (m_dysymtab.cmd == 0) {
1299     ModuleSP module_sp(GetModule());
1300     if (module_sp) {
1301       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1302       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1303         const lldb::offset_t load_cmd_offset = offset;
1304 
1305         llvm::MachO::load_command lc;
1306         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1307           break;
1308         if (lc.cmd == LC_DYSYMTAB) {
1309           m_dysymtab.cmd = lc.cmd;
1310           m_dysymtab.cmdsize = lc.cmdsize;
1311           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1312                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1313               nullptr) {
1314             // Clear m_dysymtab if we were unable to read all items from the
1315             // load command
1316             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1317           }
1318         }
1319         offset = load_cmd_offset + lc.cmdsize;
1320       }
1321     }
1322   }
1323   if (m_dysymtab.cmd)
1324     return m_dysymtab.nlocalsym <= 1;
1325   return false;
1326 }
1327 
1328 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1329   EncryptedFileRanges result;
1330   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1331 
1332   llvm::MachO::encryption_info_command encryption_cmd;
1333   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1334     const lldb::offset_t load_cmd_offset = offset;
1335     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1336       break;
1337 
1338     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1339     // 3 fields we care about, so treat them the same.
1340     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1341         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1342       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1343         if (encryption_cmd.cryptid != 0) {
1344           EncryptedFileRanges::Entry entry;
1345           entry.SetRangeBase(encryption_cmd.cryptoff);
1346           entry.SetByteSize(encryption_cmd.cryptsize);
1347           result.Append(entry);
1348         }
1349       }
1350     }
1351     offset = load_cmd_offset + encryption_cmd.cmdsize;
1352   }
1353 
1354   return result;
1355 }
1356 
1357 void ObjectFileMachO::SanitizeSegmentCommand(
1358     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1359   if (m_length == 0 || seg_cmd.filesize == 0)
1360     return;
1361 
1362   if (IsSharedCacheBinary() && !IsInMemory()) {
1363     // In shared cache images, the load commands are relative to the
1364     // shared cache file, and not the specific image we are
1365     // examining. Let's fix this up so that it looks like a normal
1366     // image.
1367     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1368       m_text_address = seg_cmd.vmaddr;
1369     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1370       m_linkedit_original_offset = seg_cmd.fileoff;
1371 
1372     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1373   }
1374 
1375   if (seg_cmd.fileoff > m_length) {
1376     // We have a load command that says it extends past the end of the file.
1377     // This is likely a corrupt file.  We don't have any way to return an error
1378     // condition here (this method was likely invoked from something like
1379     // ObjectFile::GetSectionList()), so we just null out the section contents,
1380     // and dump a message to stdout.  The most common case here is core file
1381     // debugging with a truncated file.
1382     const char *lc_segment_name =
1383         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1384     GetModule()->ReportWarning(
1385         "load command %u %s has a fileoff (0x%" PRIx64
1386         ") that extends beyond the end of the file (0x%" PRIx64
1387         "), ignoring this section",
1388         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1389 
1390     seg_cmd.fileoff = 0;
1391     seg_cmd.filesize = 0;
1392   }
1393 
1394   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1395     // We have a load command that says it extends past the end of the file.
1396     // This is likely a corrupt file.  We don't have any way to return an error
1397     // condition here (this method was likely invoked from something like
1398     // ObjectFile::GetSectionList()), so we just null out the section contents,
1399     // and dump a message to stdout.  The most common case here is core file
1400     // debugging with a truncated file.
1401     const char *lc_segment_name =
1402         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1403     GetModule()->ReportWarning(
1404         "load command %u %s has a fileoff + filesize (0x%" PRIx64
1405         ") that extends beyond the end of the file (0x%" PRIx64
1406         "), the segment will be truncated to match",
1407         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1408 
1409     // Truncate the length
1410     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1411   }
1412 }
1413 
1414 static uint32_t
1415 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1416   uint32_t result = 0;
1417   if (seg_cmd.initprot & VM_PROT_READ)
1418     result |= ePermissionsReadable;
1419   if (seg_cmd.initprot & VM_PROT_WRITE)
1420     result |= ePermissionsWritable;
1421   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1422     result |= ePermissionsExecutable;
1423   return result;
1424 }
1425 
1426 static lldb::SectionType GetSectionType(uint32_t flags,
1427                                         ConstString section_name) {
1428 
1429   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1430     return eSectionTypeCode;
1431 
1432   uint32_t mach_sect_type = flags & SECTION_TYPE;
1433   static ConstString g_sect_name_objc_data("__objc_data");
1434   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1435   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1436   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1437   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1438   static ConstString g_sect_name_objc_const("__objc_const");
1439   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1440   static ConstString g_sect_name_cfstring("__cfstring");
1441 
1442   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1443   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1444   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1445   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1446   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1447   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1448   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1449   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1450   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1451   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1452   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1453   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1454   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1455   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1456   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1457   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1458   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1459   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1460   static ConstString g_sect_name_eh_frame("__eh_frame");
1461   static ConstString g_sect_name_compact_unwind("__unwind_info");
1462   static ConstString g_sect_name_text("__text");
1463   static ConstString g_sect_name_data("__data");
1464   static ConstString g_sect_name_go_symtab("__gosymtab");
1465 
1466   if (section_name == g_sect_name_dwarf_debug_abbrev)
1467     return eSectionTypeDWARFDebugAbbrev;
1468   if (section_name == g_sect_name_dwarf_debug_aranges)
1469     return eSectionTypeDWARFDebugAranges;
1470   if (section_name == g_sect_name_dwarf_debug_frame)
1471     return eSectionTypeDWARFDebugFrame;
1472   if (section_name == g_sect_name_dwarf_debug_info)
1473     return eSectionTypeDWARFDebugInfo;
1474   if (section_name == g_sect_name_dwarf_debug_line)
1475     return eSectionTypeDWARFDebugLine;
1476   if (section_name == g_sect_name_dwarf_debug_loc)
1477     return eSectionTypeDWARFDebugLoc;
1478   if (section_name == g_sect_name_dwarf_debug_loclists)
1479     return eSectionTypeDWARFDebugLocLists;
1480   if (section_name == g_sect_name_dwarf_debug_macinfo)
1481     return eSectionTypeDWARFDebugMacInfo;
1482   if (section_name == g_sect_name_dwarf_debug_names)
1483     return eSectionTypeDWARFDebugNames;
1484   if (section_name == g_sect_name_dwarf_debug_pubnames)
1485     return eSectionTypeDWARFDebugPubNames;
1486   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1487     return eSectionTypeDWARFDebugPubTypes;
1488   if (section_name == g_sect_name_dwarf_debug_ranges)
1489     return eSectionTypeDWARFDebugRanges;
1490   if (section_name == g_sect_name_dwarf_debug_str)
1491     return eSectionTypeDWARFDebugStr;
1492   if (section_name == g_sect_name_dwarf_debug_types)
1493     return eSectionTypeDWARFDebugTypes;
1494   if (section_name == g_sect_name_dwarf_apple_names)
1495     return eSectionTypeDWARFAppleNames;
1496   if (section_name == g_sect_name_dwarf_apple_types)
1497     return eSectionTypeDWARFAppleTypes;
1498   if (section_name == g_sect_name_dwarf_apple_namespaces)
1499     return eSectionTypeDWARFAppleNamespaces;
1500   if (section_name == g_sect_name_dwarf_apple_objc)
1501     return eSectionTypeDWARFAppleObjC;
1502   if (section_name == g_sect_name_objc_selrefs)
1503     return eSectionTypeDataCStringPointers;
1504   if (section_name == g_sect_name_objc_msgrefs)
1505     return eSectionTypeDataObjCMessageRefs;
1506   if (section_name == g_sect_name_eh_frame)
1507     return eSectionTypeEHFrame;
1508   if (section_name == g_sect_name_compact_unwind)
1509     return eSectionTypeCompactUnwind;
1510   if (section_name == g_sect_name_cfstring)
1511     return eSectionTypeDataObjCCFStrings;
1512   if (section_name == g_sect_name_go_symtab)
1513     return eSectionTypeGoSymtab;
1514   if (section_name == g_sect_name_objc_data ||
1515       section_name == g_sect_name_objc_classrefs ||
1516       section_name == g_sect_name_objc_superrefs ||
1517       section_name == g_sect_name_objc_const ||
1518       section_name == g_sect_name_objc_classlist) {
1519     return eSectionTypeDataPointers;
1520   }
1521 
1522   switch (mach_sect_type) {
1523   // TODO: categorize sections by other flags for regular sections
1524   case S_REGULAR:
1525     if (section_name == g_sect_name_text)
1526       return eSectionTypeCode;
1527     if (section_name == g_sect_name_data)
1528       return eSectionTypeData;
1529     return eSectionTypeOther;
1530   case S_ZEROFILL:
1531     return eSectionTypeZeroFill;
1532   case S_CSTRING_LITERALS: // section with only literal C strings
1533     return eSectionTypeDataCString;
1534   case S_4BYTE_LITERALS: // section with only 4 byte literals
1535     return eSectionTypeData4;
1536   case S_8BYTE_LITERALS: // section with only 8 byte literals
1537     return eSectionTypeData8;
1538   case S_LITERAL_POINTERS: // section with only pointers to literals
1539     return eSectionTypeDataPointers;
1540   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1541     return eSectionTypeDataPointers;
1542   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1543     return eSectionTypeDataPointers;
1544   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1545                        // the reserved2 field
1546     return eSectionTypeCode;
1547   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1548                                  // initialization
1549     return eSectionTypeDataPointers;
1550   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1551                                  // termination
1552     return eSectionTypeDataPointers;
1553   case S_COALESCED:
1554     return eSectionTypeOther;
1555   case S_GB_ZEROFILL:
1556     return eSectionTypeZeroFill;
1557   case S_INTERPOSING: // section with only pairs of function pointers for
1558                       // interposing
1559     return eSectionTypeCode;
1560   case S_16BYTE_LITERALS: // section with only 16 byte literals
1561     return eSectionTypeData16;
1562   case S_DTRACE_DOF:
1563     return eSectionTypeDebug;
1564   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1565     return eSectionTypeDataPointers;
1566   default:
1567     return eSectionTypeOther;
1568   }
1569 }
1570 
1571 struct ObjectFileMachO::SegmentParsingContext {
1572   const EncryptedFileRanges EncryptedRanges;
1573   lldb_private::SectionList &UnifiedList;
1574   uint32_t NextSegmentIdx = 0;
1575   uint32_t NextSectionIdx = 0;
1576   bool FileAddressesChanged = false;
1577 
1578   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1579                         lldb_private::SectionList &UnifiedList)
1580       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1581 };
1582 
1583 void ObjectFileMachO::ProcessSegmentCommand(
1584     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1585     uint32_t cmd_idx, SegmentParsingContext &context) {
1586   llvm::MachO::segment_command_64 load_cmd;
1587   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1588 
1589   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1590     return;
1591 
1592   ModuleSP module_sp = GetModule();
1593   const bool is_core = GetType() == eTypeCoreFile;
1594   const bool is_dsym = (m_header.filetype == MH_DSYM);
1595   bool add_section = true;
1596   bool add_to_unified = true;
1597   ConstString const_segname(
1598       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1599 
1600   SectionSP unified_section_sp(
1601       context.UnifiedList.FindSectionByName(const_segname));
1602   if (is_dsym && unified_section_sp) {
1603     if (const_segname == GetSegmentNameLINKEDIT()) {
1604       // We need to keep the __LINKEDIT segment private to this object file
1605       // only
1606       add_to_unified = false;
1607     } else {
1608       // This is the dSYM file and this section has already been created by the
1609       // object file, no need to create it.
1610       add_section = false;
1611     }
1612   }
1613   load_cmd.vmaddr = m_data.GetAddress(&offset);
1614   load_cmd.vmsize = m_data.GetAddress(&offset);
1615   load_cmd.fileoff = m_data.GetAddress(&offset);
1616   load_cmd.filesize = m_data.GetAddress(&offset);
1617   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1618     return;
1619 
1620   SanitizeSegmentCommand(load_cmd, cmd_idx);
1621 
1622   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1623   const bool segment_is_encrypted =
1624       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1625 
1626   // Keep a list of mach segments around in case we need to get at data that
1627   // isn't stored in the abstracted Sections.
1628   m_mach_segments.push_back(load_cmd);
1629 
1630   // Use a segment ID of the segment index shifted left by 8 so they never
1631   // conflict with any of the sections.
1632   SectionSP segment_sp;
1633   if (add_section && (const_segname || is_core)) {
1634     segment_sp = std::make_shared<Section>(
1635         module_sp, // Module to which this section belongs
1636         this,      // Object file to which this sections belongs
1637         ++context.NextSegmentIdx
1638             << 8, // Section ID is the 1 based segment index
1639         // shifted right by 8 bits as not to collide with any of the 256
1640         // section IDs that are possible
1641         const_segname,         // Name of this section
1642         eSectionTypeContainer, // This section is a container of other
1643         // sections.
1644         load_cmd.vmaddr, // File VM address == addresses as they are
1645         // found in the object file
1646         load_cmd.vmsize,  // VM size in bytes of this section
1647         load_cmd.fileoff, // Offset to the data for this section in
1648         // the file
1649         load_cmd.filesize, // Size in bytes of this section as found
1650         // in the file
1651         0,               // Segments have no alignment information
1652         load_cmd.flags); // Flags for this section
1653 
1654     segment_sp->SetIsEncrypted(segment_is_encrypted);
1655     m_sections_up->AddSection(segment_sp);
1656     segment_sp->SetPermissions(segment_permissions);
1657     if (add_to_unified)
1658       context.UnifiedList.AddSection(segment_sp);
1659   } else if (unified_section_sp) {
1660     // If this is a dSYM and the file addresses in the dSYM differ from the
1661     // file addresses in the ObjectFile, we must use the file base address for
1662     // the Section from the dSYM for the DWARF to resolve correctly.
1663     // This only happens with binaries in the shared cache in practice;
1664     // normally a mismatch like this would give a binary & dSYM that do not
1665     // match UUIDs. When a binary is included in the shared cache, its
1666     // segments are rearranged to optimize the shared cache, so its file
1667     // addresses will differ from what the ObjectFile had originally,
1668     // and what the dSYM has.
1669     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1670       Log *log = GetLog(LLDBLog::Symbols);
1671       if (log) {
1672         log->Printf(
1673             "Installing dSYM's %s segment file address over ObjectFile's "
1674             "so symbol table/debug info resolves correctly for %s",
1675             const_segname.AsCString(),
1676             module_sp->GetFileSpec().GetFilename().AsCString());
1677       }
1678 
1679       // Make sure we've parsed the symbol table from the ObjectFile before
1680       // we go around changing its Sections.
1681       module_sp->GetObjectFile()->GetSymtab();
1682       // eh_frame would present the same problems but we parse that on a per-
1683       // function basis as-needed so it's more difficult to remove its use of
1684       // the Sections.  Realistically, the environments where this code path
1685       // will be taken will not have eh_frame sections.
1686 
1687       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1688 
1689       // Notify the module that the section addresses have been changed once
1690       // we're done so any file-address caches can be updated.
1691       context.FileAddressesChanged = true;
1692     }
1693     m_sections_up->AddSection(unified_section_sp);
1694   }
1695 
1696   llvm::MachO::section_64 sect64;
1697   ::memset(&sect64, 0, sizeof(sect64));
1698   // Push a section into our mach sections for the section at index zero
1699   // (NO_SECT) if we don't have any mach sections yet...
1700   if (m_mach_sections.empty())
1701     m_mach_sections.push_back(sect64);
1702   uint32_t segment_sect_idx;
1703   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1704 
1705   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1706   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1707        ++segment_sect_idx) {
1708     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1709                      sizeof(sect64.sectname)) == nullptr)
1710       break;
1711     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1712                      sizeof(sect64.segname)) == nullptr)
1713       break;
1714     sect64.addr = m_data.GetAddress(&offset);
1715     sect64.size = m_data.GetAddress(&offset);
1716 
1717     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1718       break;
1719 
1720     if (IsSharedCacheBinary() && !IsInMemory()) {
1721       sect64.offset = sect64.addr - m_text_address;
1722     }
1723 
1724     // Keep a list of mach sections around in case we need to get at data that
1725     // isn't stored in the abstracted Sections.
1726     m_mach_sections.push_back(sect64);
1727 
1728     if (add_section) {
1729       ConstString section_name(
1730           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1731       if (!const_segname) {
1732         // We have a segment with no name so we need to conjure up segments
1733         // that correspond to the section's segname if there isn't already such
1734         // a section. If there is such a section, we resize the section so that
1735         // it spans all sections.  We also mark these sections as fake so
1736         // address matches don't hit if they land in the gaps between the child
1737         // sections.
1738         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1739                                                   sizeof(sect64.segname));
1740         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1741         if (segment_sp.get()) {
1742           Section *segment = segment_sp.get();
1743           // Grow the section size as needed.
1744           const lldb::addr_t sect64_min_addr = sect64.addr;
1745           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1746           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1747           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1748           const lldb::addr_t curr_seg_max_addr =
1749               curr_seg_min_addr + curr_seg_byte_size;
1750           if (sect64_min_addr >= curr_seg_min_addr) {
1751             const lldb::addr_t new_seg_byte_size =
1752                 sect64_max_addr - curr_seg_min_addr;
1753             // Only grow the section size if needed
1754             if (new_seg_byte_size > curr_seg_byte_size)
1755               segment->SetByteSize(new_seg_byte_size);
1756           } else {
1757             // We need to change the base address of the segment and adjust the
1758             // child section offsets for all existing children.
1759             const lldb::addr_t slide_amount =
1760                 sect64_min_addr - curr_seg_min_addr;
1761             segment->Slide(slide_amount, false);
1762             segment->GetChildren().Slide(-slide_amount, false);
1763             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1764           }
1765 
1766           // Grow the section size as needed.
1767           if (sect64.offset) {
1768             const lldb::addr_t segment_min_file_offset =
1769                 segment->GetFileOffset();
1770             const lldb::addr_t segment_max_file_offset =
1771                 segment_min_file_offset + segment->GetFileSize();
1772 
1773             const lldb::addr_t section_min_file_offset = sect64.offset;
1774             const lldb::addr_t section_max_file_offset =
1775                 section_min_file_offset + sect64.size;
1776             const lldb::addr_t new_file_offset =
1777                 std::min(section_min_file_offset, segment_min_file_offset);
1778             const lldb::addr_t new_file_size =
1779                 std::max(section_max_file_offset, segment_max_file_offset) -
1780                 new_file_offset;
1781             segment->SetFileOffset(new_file_offset);
1782             segment->SetFileSize(new_file_size);
1783           }
1784         } else {
1785           // Create a fake section for the section's named segment
1786           segment_sp = std::make_shared<Section>(
1787               segment_sp, // Parent section
1788               module_sp,  // Module to which this section belongs
1789               this,       // Object file to which this section belongs
1790               ++context.NextSegmentIdx
1791                   << 8, // Section ID is the 1 based segment index
1792               // shifted right by 8 bits as not to
1793               // collide with any of the 256 section IDs
1794               // that are possible
1795               const_segname,         // Name of this section
1796               eSectionTypeContainer, // This section is a container of
1797               // other sections.
1798               sect64.addr, // File VM address == addresses as they are
1799               // found in the object file
1800               sect64.size,   // VM size in bytes of this section
1801               sect64.offset, // Offset to the data for this section in
1802               // the file
1803               sect64.offset ? sect64.size : 0, // Size in bytes of
1804               // this section as
1805               // found in the file
1806               sect64.align,
1807               load_cmd.flags); // Flags for this section
1808           segment_sp->SetIsFake(true);
1809           segment_sp->SetPermissions(segment_permissions);
1810           m_sections_up->AddSection(segment_sp);
1811           if (add_to_unified)
1812             context.UnifiedList.AddSection(segment_sp);
1813           segment_sp->SetIsEncrypted(segment_is_encrypted);
1814         }
1815       }
1816       assert(segment_sp.get());
1817 
1818       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1819 
1820       SectionSP section_sp(new Section(
1821           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1822           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1823           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1824           sect64.flags));
1825       // Set the section to be encrypted to match the segment
1826 
1827       bool section_is_encrypted = false;
1828       if (!segment_is_encrypted && load_cmd.filesize != 0)
1829         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1830                                    sect64.offset) != nullptr;
1831 
1832       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1833       section_sp->SetPermissions(segment_permissions);
1834       segment_sp->GetChildren().AddSection(section_sp);
1835 
1836       if (segment_sp->IsFake()) {
1837         segment_sp.reset();
1838         const_segname.Clear();
1839       }
1840     }
1841   }
1842   if (segment_sp && is_dsym) {
1843     if (first_segment_sectID <= context.NextSectionIdx) {
1844       lldb::user_id_t sect_uid;
1845       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1846            ++sect_uid) {
1847         SectionSP curr_section_sp(
1848             segment_sp->GetChildren().FindSectionByID(sect_uid));
1849         SectionSP next_section_sp;
1850         if (sect_uid + 1 <= context.NextSectionIdx)
1851           next_section_sp =
1852               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1853 
1854         if (curr_section_sp.get()) {
1855           if (curr_section_sp->GetByteSize() == 0) {
1856             if (next_section_sp.get() != nullptr)
1857               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1858                                            curr_section_sp->GetFileAddress());
1859             else
1860               curr_section_sp->SetByteSize(load_cmd.vmsize);
1861           }
1862         }
1863       }
1864     }
1865   }
1866 }
1867 
1868 void ObjectFileMachO::ProcessDysymtabCommand(
1869     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1870   m_dysymtab.cmd = load_cmd.cmd;
1871   m_dysymtab.cmdsize = load_cmd.cmdsize;
1872   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1873                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1874 }
1875 
1876 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1877   if (m_sections_up)
1878     return;
1879 
1880   m_sections_up = std::make_unique<SectionList>();
1881 
1882   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1883   // bool dump_sections = false;
1884   ModuleSP module_sp(GetModule());
1885 
1886   offset = MachHeaderSizeFromMagic(m_header.magic);
1887 
1888   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1889   llvm::MachO::load_command load_cmd;
1890   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1891     const lldb::offset_t load_cmd_offset = offset;
1892     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1893       break;
1894 
1895     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1896       ProcessSegmentCommand(load_cmd, offset, i, context);
1897     else if (load_cmd.cmd == LC_DYSYMTAB)
1898       ProcessDysymtabCommand(load_cmd, offset);
1899 
1900     offset = load_cmd_offset + load_cmd.cmdsize;
1901   }
1902 
1903   if (context.FileAddressesChanged && module_sp)
1904     module_sp->SectionFileAddressesChanged();
1905 }
1906 
1907 class MachSymtabSectionInfo {
1908 public:
1909   MachSymtabSectionInfo(SectionList *section_list)
1910       : m_section_list(section_list), m_section_infos() {
1911     // Get the number of sections down to a depth of 1 to include all segments
1912     // and their sections, but no other sections that may be added for debug
1913     // map or
1914     m_section_infos.resize(section_list->GetNumSections(1));
1915   }
1916 
1917   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1918     if (n_sect == 0)
1919       return SectionSP();
1920     if (n_sect < m_section_infos.size()) {
1921       if (!m_section_infos[n_sect].section_sp) {
1922         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1923         m_section_infos[n_sect].section_sp = section_sp;
1924         if (section_sp) {
1925           m_section_infos[n_sect].vm_range.SetBaseAddress(
1926               section_sp->GetFileAddress());
1927           m_section_infos[n_sect].vm_range.SetByteSize(
1928               section_sp->GetByteSize());
1929         } else {
1930           std::string filename = "<unknown>";
1931           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1932           if (first_section_sp)
1933             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1934 
1935           Host::SystemLog(Host::eSystemLogError,
1936                           "error: unable to find section %d for a symbol in "
1937                           "%s, corrupt file?\n",
1938                           n_sect, filename.c_str());
1939         }
1940       }
1941       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1942         // Symbol is in section.
1943         return m_section_infos[n_sect].section_sp;
1944       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1945                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1946                      file_addr) {
1947         // Symbol is in section with zero size, but has the same start address
1948         // as the section. This can happen with linker symbols (symbols that
1949         // start with the letter 'l' or 'L'.
1950         return m_section_infos[n_sect].section_sp;
1951       }
1952     }
1953     return m_section_list->FindSectionContainingFileAddress(file_addr);
1954   }
1955 
1956 protected:
1957   struct SectionInfo {
1958     SectionInfo() : vm_range(), section_sp() {}
1959 
1960     VMRange vm_range;
1961     SectionSP section_sp;
1962   };
1963   SectionList *m_section_list;
1964   std::vector<SectionInfo> m_section_infos;
1965 };
1966 
1967 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1968 struct TrieEntry {
1969   void Dump() const {
1970     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1971            static_cast<unsigned long long>(address),
1972            static_cast<unsigned long long>(flags),
1973            static_cast<unsigned long long>(other), name.GetCString());
1974     if (import_name)
1975       printf(" -> \"%s\"\n", import_name.GetCString());
1976     else
1977       printf("\n");
1978   }
1979   ConstString name;
1980   uint64_t address = LLDB_INVALID_ADDRESS;
1981   uint64_t flags =
1982       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1983          // TRIE_SYMBOL_IS_THUMB
1984   uint64_t other = 0;
1985   ConstString import_name;
1986 };
1987 
1988 struct TrieEntryWithOffset {
1989   lldb::offset_t nodeOffset;
1990   TrieEntry entry;
1991 
1992   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
1993 
1994   void Dump(uint32_t idx) const {
1995     printf("[%3u] 0x%16.16llx: ", idx,
1996            static_cast<unsigned long long>(nodeOffset));
1997     entry.Dump();
1998   }
1999 
2000   bool operator<(const TrieEntryWithOffset &other) const {
2001     return (nodeOffset < other.nodeOffset);
2002   }
2003 };
2004 
2005 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2006                              const bool is_arm, addr_t text_seg_base_addr,
2007                              std::vector<llvm::StringRef> &nameSlices,
2008                              std::set<lldb::addr_t> &resolver_addresses,
2009                              std::vector<TrieEntryWithOffset> &reexports,
2010                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2011   if (!data.ValidOffset(offset))
2012     return true;
2013 
2014   // Terminal node -- end of a branch, possibly add this to
2015   // the symbol table or resolver table.
2016   const uint64_t terminalSize = data.GetULEB128(&offset);
2017   lldb::offset_t children_offset = offset + terminalSize;
2018   if (terminalSize != 0) {
2019     TrieEntryWithOffset e(offset);
2020     e.entry.flags = data.GetULEB128(&offset);
2021     const char *import_name = nullptr;
2022     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2023       e.entry.address = 0;
2024       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2025       import_name = data.GetCStr(&offset);
2026     } else {
2027       e.entry.address = data.GetULEB128(&offset);
2028       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2029         e.entry.address += text_seg_base_addr;
2030       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2031         e.entry.other = data.GetULEB128(&offset);
2032         uint64_t resolver_addr = e.entry.other;
2033         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2034           resolver_addr += text_seg_base_addr;
2035         if (is_arm)
2036           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2037         resolver_addresses.insert(resolver_addr);
2038       } else
2039         e.entry.other = 0;
2040     }
2041     bool add_this_entry = false;
2042     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2043         import_name && import_name[0]) {
2044       // add symbols that are reexport symbols with a valid import name.
2045       add_this_entry = true;
2046     } else if (e.entry.flags == 0 &&
2047                (import_name == nullptr || import_name[0] == '\0')) {
2048       // add externally visible symbols, in case the nlist record has
2049       // been stripped/omitted.
2050       add_this_entry = true;
2051     }
2052     if (add_this_entry) {
2053       std::string name;
2054       if (!nameSlices.empty()) {
2055         for (auto name_slice : nameSlices)
2056           name.append(name_slice.data(), name_slice.size());
2057       }
2058       if (name.size() > 1) {
2059         // Skip the leading '_'
2060         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2061       }
2062       if (import_name) {
2063         // Skip the leading '_'
2064         e.entry.import_name.SetCString(import_name + 1);
2065       }
2066       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2067         reexports.push_back(e);
2068       } else {
2069         if (is_arm && (e.entry.address & 1)) {
2070           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2071           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2072         }
2073         ext_symbols.push_back(e);
2074       }
2075     }
2076   }
2077 
2078   const uint8_t childrenCount = data.GetU8(&children_offset);
2079   for (uint8_t i = 0; i < childrenCount; ++i) {
2080     const char *cstr = data.GetCStr(&children_offset);
2081     if (cstr)
2082       nameSlices.push_back(llvm::StringRef(cstr));
2083     else
2084       return false; // Corrupt data
2085     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2086     if (childNodeOffset) {
2087       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2088                             nameSlices, resolver_addresses, reexports,
2089                             ext_symbols)) {
2090         return false;
2091       }
2092     }
2093     nameSlices.pop_back();
2094   }
2095   return true;
2096 }
2097 
2098 static SymbolType GetSymbolType(const char *&symbol_name,
2099                                 bool &demangled_is_synthesized,
2100                                 const SectionSP &text_section_sp,
2101                                 const SectionSP &data_section_sp,
2102                                 const SectionSP &data_dirty_section_sp,
2103                                 const SectionSP &data_const_section_sp,
2104                                 const SectionSP &symbol_section) {
2105   SymbolType type = eSymbolTypeInvalid;
2106 
2107   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2108   if (symbol_section->IsDescendant(text_section_sp.get())) {
2109     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2110                                 S_ATTR_SELF_MODIFYING_CODE |
2111                                 S_ATTR_SOME_INSTRUCTIONS))
2112       type = eSymbolTypeData;
2113     else
2114       type = eSymbolTypeCode;
2115   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2116              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2117              symbol_section->IsDescendant(data_const_section_sp.get())) {
2118     if (symbol_sect_name &&
2119         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2120       type = eSymbolTypeRuntime;
2121 
2122       if (symbol_name) {
2123         llvm::StringRef symbol_name_ref(symbol_name);
2124         if (symbol_name_ref.startswith("OBJC_")) {
2125           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2126           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2127               "OBJC_METACLASS_$_");
2128           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2129           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2130             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2131             type = eSymbolTypeObjCClass;
2132             demangled_is_synthesized = true;
2133           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2134             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2135             type = eSymbolTypeObjCMetaClass;
2136             demangled_is_synthesized = true;
2137           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2138             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2139             type = eSymbolTypeObjCIVar;
2140             demangled_is_synthesized = true;
2141           }
2142         }
2143       }
2144     } else if (symbol_sect_name &&
2145                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2146                    symbol_sect_name) {
2147       type = eSymbolTypeException;
2148     } else {
2149       type = eSymbolTypeData;
2150     }
2151   } else if (symbol_sect_name &&
2152              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2153     type = eSymbolTypeTrampoline;
2154   }
2155   return type;
2156 }
2157 
2158 // Read the UUID out of a dyld_shared_cache file on-disk.
2159 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2160                                          const ByteOrder byte_order,
2161                                          const uint32_t addr_byte_size) {
2162   UUID dsc_uuid;
2163   DataBufferSP DscData = MapFileData(
2164       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2165   if (!DscData)
2166     return dsc_uuid;
2167   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2168 
2169   char version_str[7];
2170   lldb::offset_t offset = 0;
2171   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2172   version_str[6] = '\0';
2173   if (strcmp(version_str, "dyld_v") == 0) {
2174     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2175     dsc_uuid = UUID::fromOptionalData(
2176         dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2177   }
2178   Log *log = GetLog(LLDBLog::Symbols);
2179   if (log && dsc_uuid.IsValid()) {
2180     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2181               dyld_shared_cache.GetPath().c_str(),
2182               dsc_uuid.GetAsString().c_str());
2183   }
2184   return dsc_uuid;
2185 }
2186 
2187 static llvm::Optional<struct nlist_64>
2188 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2189            size_t nlist_byte_size) {
2190   struct nlist_64 nlist;
2191   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2192     return {};
2193   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2194   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2195   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2196   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2197   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2198   return nlist;
2199 }
2200 
2201 enum { DebugSymbols = true, NonDebugSymbols = false };
2202 
2203 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2204   ModuleSP module_sp(GetModule());
2205   if (!module_sp)
2206     return;
2207 
2208   const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2209   const char *file_name = file.GetFilename().AsCString("<Unknown>");
2210   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
2211   Progress progress(llvm::formatv("Parsing symbol table for {0}", file_name));
2212 
2213   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2214   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2215   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2216   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2217   llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2218   // The data element of type bool indicates that this entry is thumb
2219   // code.
2220   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2221 
2222   // Record the address of every function/data that we add to the symtab.
2223   // We add symbols to the table in the order of most information (nlist
2224   // records) to least (function starts), and avoid duplicating symbols
2225   // via this set.
2226   llvm::DenseSet<addr_t> symbols_added;
2227 
2228   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2229   // do not add the tombstone or empty keys to the set.
2230   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2231     // Don't add the tombstone or empty keys.
2232     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2233       return;
2234     symbols_added.insert(file_addr);
2235   };
2236   FunctionStarts function_starts;
2237   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2238   uint32_t i;
2239   FileSpecList dylib_files;
2240   Log *log = GetLog(LLDBLog::Symbols);
2241   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2242   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2243   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2244   UUID image_uuid;
2245 
2246   for (i = 0; i < m_header.ncmds; ++i) {
2247     const lldb::offset_t cmd_offset = offset;
2248     // Read in the load command and load command size
2249     llvm::MachO::load_command lc;
2250     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2251       break;
2252     // Watch for the symbol table load command
2253     switch (lc.cmd) {
2254     case LC_SYMTAB:
2255       symtab_load_command.cmd = lc.cmd;
2256       symtab_load_command.cmdsize = lc.cmdsize;
2257       // Read in the rest of the symtab load command
2258       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2259           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2260         return;
2261       break;
2262 
2263     case LC_DYLD_INFO:
2264     case LC_DYLD_INFO_ONLY:
2265       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2266         dyld_info.cmd = lc.cmd;
2267         dyld_info.cmdsize = lc.cmdsize;
2268       } else {
2269         memset(&dyld_info, 0, sizeof(dyld_info));
2270       }
2271       break;
2272 
2273     case LC_LOAD_DYLIB:
2274     case LC_LOAD_WEAK_DYLIB:
2275     case LC_REEXPORT_DYLIB:
2276     case LC_LOADFVMLIB:
2277     case LC_LOAD_UPWARD_DYLIB: {
2278       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2279       const char *path = m_data.PeekCStr(name_offset);
2280       if (path) {
2281         FileSpec file_spec(path);
2282         // Strip the path if there is @rpath, @executable, etc so we just use
2283         // the basename
2284         if (path[0] == '@')
2285           file_spec.GetDirectory().Clear();
2286 
2287         if (lc.cmd == LC_REEXPORT_DYLIB) {
2288           m_reexported_dylibs.AppendIfUnique(file_spec);
2289         }
2290 
2291         dylib_files.Append(file_spec);
2292       }
2293     } break;
2294 
2295     case LC_DYLD_EXPORTS_TRIE:
2296       exports_trie_load_command.cmd = lc.cmd;
2297       exports_trie_load_command.cmdsize = lc.cmdsize;
2298       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2299           nullptr) // fill in offset and size fields
2300         memset(&exports_trie_load_command, 0,
2301                sizeof(exports_trie_load_command));
2302       break;
2303     case LC_FUNCTION_STARTS:
2304       function_starts_load_command.cmd = lc.cmd;
2305       function_starts_load_command.cmdsize = lc.cmdsize;
2306       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2307           nullptr) // fill in data offset and size fields
2308         memset(&function_starts_load_command, 0,
2309                sizeof(function_starts_load_command));
2310       break;
2311 
2312     case LC_UUID: {
2313       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2314 
2315       if (uuid_bytes)
2316         image_uuid = UUID::fromOptionalData(uuid_bytes, 16);
2317       break;
2318     }
2319 
2320     default:
2321       break;
2322     }
2323     offset = cmd_offset + lc.cmdsize;
2324   }
2325 
2326   if (!symtab_load_command.cmd)
2327     return;
2328 
2329   SectionList *section_list = GetSectionList();
2330   if (section_list == nullptr)
2331     return;
2332 
2333   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2334   const ByteOrder byte_order = m_data.GetByteOrder();
2335   bool bit_width_32 = addr_byte_size == 4;
2336   const size_t nlist_byte_size =
2337       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2338 
2339   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2340   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2341   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2342   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2343                                            addr_byte_size);
2344   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2345 
2346   const addr_t nlist_data_byte_size =
2347       symtab_load_command.nsyms * nlist_byte_size;
2348   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2349   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2350 
2351   ProcessSP process_sp(m_process_wp.lock());
2352   Process *process = process_sp.get();
2353 
2354   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2355   bool is_shared_cache_image = IsSharedCacheBinary();
2356   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2357   SectionSP linkedit_section_sp(
2358       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2359 
2360   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2361       !is_local_shared_cache_image) {
2362     Target &target = process->GetTarget();
2363 
2364     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2365 
2366     // Reading mach file from memory in a process or core file...
2367 
2368     if (linkedit_section_sp) {
2369       addr_t linkedit_load_addr =
2370           linkedit_section_sp->GetLoadBaseAddress(&target);
2371       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2372         // We might be trying to access the symbol table before the
2373         // __LINKEDIT's load address has been set in the target. We can't
2374         // fail to read the symbol table, so calculate the right address
2375         // manually
2376         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2377             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2378       }
2379 
2380       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2381       const addr_t symoff_addr = linkedit_load_addr +
2382                                  symtab_load_command.symoff -
2383                                  linkedit_file_offset;
2384       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2385                     linkedit_file_offset;
2386 
2387         // Always load dyld - the dynamic linker - from memory if we didn't
2388         // find a binary anywhere else. lldb will not register
2389         // dylib/framework/bundle loads/unloads if we don't have the dyld
2390         // symbols, we force dyld to load from memory despite the user's
2391         // target.memory-module-load-level setting.
2392         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2393             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2394           DataBufferSP nlist_data_sp(
2395               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2396           if (nlist_data_sp)
2397             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2398           if (dysymtab.nindirectsyms != 0) {
2399             const addr_t indirect_syms_addr = linkedit_load_addr +
2400                                               dysymtab.indirectsymoff -
2401                                               linkedit_file_offset;
2402             DataBufferSP indirect_syms_data_sp(ReadMemory(
2403                 process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2404             if (indirect_syms_data_sp)
2405               indirect_symbol_index_data.SetData(
2406                   indirect_syms_data_sp, 0,
2407                   indirect_syms_data_sp->GetByteSize());
2408             // If this binary is outside the shared cache,
2409             // cache the string table.
2410             // Binaries in the shared cache all share a giant string table,
2411             // and we can't share the string tables across multiple
2412             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2413             // for every binary in the shared cache - it would be a big perf
2414             // problem. For binaries outside the shared cache, it's faster to
2415             // read the entire strtab at once instead of piece-by-piece as we
2416             // process the nlist records.
2417             if (!is_shared_cache_image) {
2418               DataBufferSP strtab_data_sp(
2419                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2420               if (strtab_data_sp) {
2421                 strtab_data.SetData(strtab_data_sp, 0,
2422                                     strtab_data_sp->GetByteSize());
2423               }
2424             }
2425           }
2426         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2427           if (function_starts_load_command.cmd) {
2428             const addr_t func_start_addr =
2429                 linkedit_load_addr + function_starts_load_command.dataoff -
2430                 linkedit_file_offset;
2431             DataBufferSP func_start_data_sp(
2432                 ReadMemory(process_sp, func_start_addr,
2433                            function_starts_load_command.datasize));
2434             if (func_start_data_sp)
2435               function_starts_data.SetData(func_start_data_sp, 0,
2436                                            func_start_data_sp->GetByteSize());
2437           }
2438         }
2439       }
2440     }
2441   } else {
2442     if (is_local_shared_cache_image) {
2443       // The load commands in shared cache images are relative to the
2444       // beginning of the shared cache, not the library image. The
2445       // data we get handed when creating the ObjectFileMachO starts
2446       // at the beginning of a specific library and spans to the end
2447       // of the cache to be able to reach the shared LINKEDIT
2448       // segments. We need to convert the load command offsets to be
2449       // relative to the beginning of our specific image.
2450       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2451       lldb::offset_t linkedit_slide =
2452           linkedit_offset - m_linkedit_original_offset;
2453       symtab_load_command.symoff += linkedit_slide;
2454       symtab_load_command.stroff += linkedit_slide;
2455       dyld_info.export_off += linkedit_slide;
2456       dysymtab.indirectsymoff += linkedit_slide;
2457       function_starts_load_command.dataoff += linkedit_slide;
2458       exports_trie_load_command.dataoff += linkedit_slide;
2459     }
2460 
2461     nlist_data.SetData(m_data, symtab_load_command.symoff,
2462                        nlist_data_byte_size);
2463     strtab_data.SetData(m_data, symtab_load_command.stroff,
2464                         strtab_data_byte_size);
2465 
2466     // We shouldn't have exports data from both the LC_DYLD_INFO command
2467     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2468     lldbassert(!((dyld_info.export_size > 0)
2469                  && (exports_trie_load_command.datasize > 0)));
2470     if (dyld_info.export_size > 0) {
2471       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2472                              dyld_info.export_size);
2473     } else if (exports_trie_load_command.datasize > 0) {
2474       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2475                              exports_trie_load_command.datasize);
2476     }
2477 
2478     if (dysymtab.nindirectsyms != 0) {
2479       indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2480                                          dysymtab.nindirectsyms * 4);
2481     }
2482     if (function_starts_load_command.cmd) {
2483       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2484                                    function_starts_load_command.datasize);
2485     }
2486   }
2487 
2488   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2489 
2490   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2491   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2492   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2493   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2494   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2495   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2496   SectionSP text_section_sp(
2497       section_list->FindSectionByName(g_segment_name_TEXT));
2498   SectionSP data_section_sp(
2499       section_list->FindSectionByName(g_segment_name_DATA));
2500   SectionSP data_dirty_section_sp(
2501       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2502   SectionSP data_const_section_sp(
2503       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2504   SectionSP objc_section_sp(
2505       section_list->FindSectionByName(g_segment_name_OBJC));
2506   SectionSP eh_frame_section_sp;
2507   if (text_section_sp.get())
2508     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2509         g_section_name_eh_frame);
2510   else
2511     eh_frame_section_sp =
2512         section_list->FindSectionByName(g_section_name_eh_frame);
2513 
2514   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2515   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2516 
2517   // lldb works best if it knows the start address of all functions in a
2518   // module. Linker symbols or debug info are normally the best source of
2519   // information for start addr / size but they may be stripped in a released
2520   // binary. Two additional sources of information exist in Mach-O binaries:
2521   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2522   //    function's start address in the
2523   //                         binary, relative to the text section.
2524   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2525   //    each function
2526   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2527   //  all modern binaries.
2528   //  Binaries built to run on older releases may need to use eh_frame
2529   //  information.
2530 
2531   if (text_section_sp && function_starts_data.GetByteSize()) {
2532     FunctionStarts::Entry function_start_entry;
2533     function_start_entry.data = false;
2534     lldb::offset_t function_start_offset = 0;
2535     function_start_entry.addr = text_section_sp->GetFileAddress();
2536     uint64_t delta;
2537     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2538            0) {
2539       // Now append the current entry
2540       function_start_entry.addr += delta;
2541       if (is_arm) {
2542         if (function_start_entry.addr & 1) {
2543           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2544           function_start_entry.data = true;
2545         } else if (always_thumb) {
2546           function_start_entry.data = true;
2547         }
2548       }
2549       function_starts.Append(function_start_entry);
2550     }
2551   } else {
2552     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2553     // load command claiming an eh_frame but it doesn't actually have the
2554     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2555     // this fill-in-the-missing-symbols works anyway - the debug info should
2556     // give us all the functions in the module.
2557     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2558         m_type != eTypeDebugInfo) {
2559       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2560                                   DWARFCallFrameInfo::EH);
2561       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2562       eh_frame.GetFunctionAddressAndSizeVector(functions);
2563       addr_t text_base_addr = text_section_sp->GetFileAddress();
2564       size_t count = functions.GetSize();
2565       for (size_t i = 0; i < count; ++i) {
2566         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2567             functions.GetEntryAtIndex(i);
2568         if (func) {
2569           FunctionStarts::Entry function_start_entry;
2570           function_start_entry.addr = func->base - text_base_addr;
2571           if (is_arm) {
2572             if (function_start_entry.addr & 1) {
2573               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2574               function_start_entry.data = true;
2575             } else if (always_thumb) {
2576               function_start_entry.data = true;
2577             }
2578           }
2579           function_starts.Append(function_start_entry);
2580         }
2581       }
2582     }
2583   }
2584 
2585   const size_t function_starts_count = function_starts.GetSize();
2586 
2587   // For user process binaries (executables, dylibs, frameworks, bundles), if
2588   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2589   // going to assume the binary has been stripped.  Don't allow assembly
2590   // language instruction emulation because we don't know proper function
2591   // start boundaries.
2592   //
2593   // For all other types of binaries (kernels, stand-alone bare board
2594   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2595   // sections - we should not make any assumptions about them based on that.
2596   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2597     m_allow_assembly_emulation_unwind_plans = false;
2598     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2599 
2600     if (unwind_or_symbol_log)
2601       module_sp->LogMessage(
2602           unwind_or_symbol_log,
2603           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2604   }
2605 
2606   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2607                                              ? eh_frame_section_sp->GetID()
2608                                              : static_cast<user_id_t>(NO_SECT);
2609 
2610   uint32_t N_SO_index = UINT32_MAX;
2611 
2612   MachSymtabSectionInfo section_info(section_list);
2613   std::vector<uint32_t> N_FUN_indexes;
2614   std::vector<uint32_t> N_NSYM_indexes;
2615   std::vector<uint32_t> N_INCL_indexes;
2616   std::vector<uint32_t> N_BRAC_indexes;
2617   std::vector<uint32_t> N_COMM_indexes;
2618   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2619   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2620   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2621   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2622   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2623   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2624   // Any symbols that get merged into another will get an entry in this map
2625   // so we know
2626   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2627   uint32_t nlist_idx = 0;
2628   Symbol *symbol_ptr = nullptr;
2629 
2630   uint32_t sym_idx = 0;
2631   Symbol *sym = nullptr;
2632   size_t num_syms = 0;
2633   std::string memory_symbol_name;
2634   uint32_t unmapped_local_symbols_found = 0;
2635 
2636   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2637   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2638   std::set<lldb::addr_t> resolver_addresses;
2639 
2640   if (dyld_trie_data.GetByteSize() > 0) {
2641     ConstString text_segment_name("__TEXT");
2642     SectionSP text_segment_sp =
2643         GetSectionList()->FindSectionByName(text_segment_name);
2644     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2645     if (text_segment_sp)
2646       text_segment_file_addr = text_segment_sp->GetFileAddress();
2647     std::vector<llvm::StringRef> nameSlices;
2648     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2649                      nameSlices, resolver_addresses, reexport_trie_entries,
2650                      external_sym_trie_entries);
2651   }
2652 
2653   typedef std::set<ConstString> IndirectSymbols;
2654   IndirectSymbols indirect_symbol_names;
2655 
2656 #if TARGET_OS_IPHONE
2657 
2658   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2659   // optimized by moving LOCAL symbols out of the memory mapped portion of
2660   // the DSC. The symbol information has all been retained, but it isn't
2661   // available in the normal nlist data. However, there *are* duplicate
2662   // entries of *some*
2663   // LOCAL symbols in the normal nlist data. To handle this situation
2664   // correctly, we must first attempt
2665   // to parse any DSC unmapped symbol information. If we find any, we set a
2666   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2667 
2668   if (IsSharedCacheBinary()) {
2669     // Before we can start mapping the DSC, we need to make certain the
2670     // target process is actually using the cache we can find.
2671 
2672     // Next we need to determine the correct path for the dyld shared cache.
2673 
2674     ArchSpec header_arch = GetArchitecture();
2675 
2676     UUID dsc_uuid;
2677     UUID process_shared_cache_uuid;
2678     addr_t process_shared_cache_base_addr;
2679 
2680     if (process) {
2681       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2682                                 process_shared_cache_uuid);
2683     }
2684 
2685     __block bool found_image = false;
2686     __block void *nlist_buffer = nullptr;
2687     __block unsigned nlist_count = 0;
2688     __block char *string_table = nullptr;
2689     __block vm_offset_t vm_nlist_memory = 0;
2690     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2691     __block vm_offset_t vm_string_memory = 0;
2692     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2693 
2694     auto _ = llvm::make_scope_exit(^{
2695       if (vm_nlist_memory)
2696         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2697       if (vm_string_memory)
2698         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2699     });
2700 
2701     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2702     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2703     UndefinedNameToDescMap undefined_name_to_desc;
2704     SymbolIndexToName reexport_shlib_needs_fixup;
2705 
2706     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2707       uuid_t cache_uuid;
2708       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2709       if (found_image)
2710         return;
2711 
2712         if (process_shared_cache_uuid.IsValid() &&
2713           process_shared_cache_uuid != UUID::fromOptionalData(&cache_uuid, 16))
2714         return;
2715 
2716       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2717         uuid_t dsc_image_uuid;
2718         if (found_image)
2719           return;
2720 
2721         dyld_image_copy_uuid(image, &dsc_image_uuid);
2722         if (image_uuid != UUID::fromOptionalData(dsc_image_uuid, 16))
2723           return;
2724 
2725         found_image = true;
2726 
2727         // Compute the size of the string table. We need to ask dyld for a
2728         // new SPI to avoid this step.
2729         dyld_image_local_nlist_content_4Symbolication(
2730             image, ^(const void *nlistStart, uint64_t nlistCount,
2731                      const char *stringTable) {
2732               if (!nlistStart || !nlistCount)
2733                 return;
2734 
2735               // The buffers passed here are valid only inside the block.
2736               // Use vm_read to make a cheap copy of them available for our
2737               // processing later.
2738               kern_return_t ret =
2739                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2740                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2741                           &vm_nlist_bytes_read);
2742               if (ret != KERN_SUCCESS)
2743                 return;
2744               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2745 
2746               // We don't know the size of the string table. It's cheaper
2747               // to map the whol VM region than to determine the size by
2748               // parsing all teh nlist entries.
2749               vm_address_t string_address = (vm_address_t)stringTable;
2750               vm_size_t region_size;
2751               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2752               vm_region_basic_info_data_t info;
2753               memory_object_name_t object;
2754               ret = vm_region_64(mach_task_self(), &string_address,
2755                                  &region_size, VM_REGION_BASIC_INFO_64,
2756                                  (vm_region_info_t)&info, &info_count, &object);
2757               if (ret != KERN_SUCCESS)
2758                 return;
2759 
2760               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2761                             region_size -
2762                                 ((vm_address_t)stringTable - string_address),
2763                             &vm_string_memory, &vm_string_bytes_read);
2764               if (ret != KERN_SUCCESS)
2765                 return;
2766 
2767               nlist_buffer = (void *)vm_nlist_memory;
2768               string_table = (char *)vm_string_memory;
2769               nlist_count = nlistCount;
2770             });
2771       });
2772     });
2773     if (nlist_buffer) {
2774       DataExtractor dsc_local_symbols_data(nlist_buffer,
2775                                            nlist_count * nlist_byte_size,
2776                                            byte_order, addr_byte_size);
2777       unmapped_local_symbols_found = nlist_count;
2778 
2779                 // The normal nlist code cannot correctly size the Symbols
2780                 // array, we need to allocate it here.
2781                 sym = symtab.Resize(
2782                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2783                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2784                 num_syms = symtab.GetNumSymbols();
2785 
2786       lldb::offset_t nlist_data_offset = 0;
2787 
2788                 for (uint32_t nlist_index = 0;
2789                      nlist_index < nlist_count;
2790                      nlist_index++) {
2791                   /////////////////////////////
2792                   {
2793                     llvm::Optional<struct nlist_64> nlist_maybe =
2794                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2795                                    nlist_byte_size);
2796                     if (!nlist_maybe)
2797                       break;
2798                     struct nlist_64 nlist = *nlist_maybe;
2799 
2800                     SymbolType type = eSymbolTypeInvalid;
2801           const char *symbol_name = string_table + nlist.n_strx;
2802 
2803                     if (symbol_name == NULL) {
2804                       // No symbol should be NULL, even the symbols with no
2805                       // string values should have an offset zero which
2806                       // points to an empty C-string
2807                       Host::SystemLog(
2808                           Host::eSystemLogError,
2809                           "error: DSC unmapped local symbol[%u] has invalid "
2810                           "string table offset 0x%x in %s, ignoring symbol\n",
2811                           nlist_index, nlist.n_strx,
2812                           module_sp->GetFileSpec().GetPath().c_str());
2813                       continue;
2814                     }
2815                     if (symbol_name[0] == '\0')
2816                       symbol_name = NULL;
2817 
2818                     const char *symbol_name_non_abi_mangled = NULL;
2819 
2820                     SectionSP symbol_section;
2821                     uint32_t symbol_byte_size = 0;
2822                     bool add_nlist = true;
2823                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2824                     bool demangled_is_synthesized = false;
2825                     bool is_gsym = false;
2826                     bool set_value = true;
2827 
2828                     assert(sym_idx < num_syms);
2829 
2830                     sym[sym_idx].SetDebug(is_debug);
2831 
2832                     if (is_debug) {
2833                       switch (nlist.n_type) {
2834                       case N_GSYM:
2835                         // global symbol: name,,NO_SECT,type,0
2836                         // Sometimes the N_GSYM value contains the address.
2837 
2838                         // FIXME: In the .o files, we have a GSYM and a debug
2839                         // symbol for all the ObjC data.  They
2840                         // have the same address, but we want to ensure that
2841                         // we always find only the real symbol, 'cause we
2842                         // don't currently correctly attribute the
2843                         // GSYM one to the ObjCClass/Ivar/MetaClass
2844                         // symbol type.  This is a temporary hack to make
2845                         // sure the ObjectiveC symbols get treated correctly.
2846                         // To do this right, we should coalesce all the GSYM
2847                         // & global symbols that have the same address.
2848 
2849                         is_gsym = true;
2850                         sym[sym_idx].SetExternal(true);
2851 
2852                         if (symbol_name && symbol_name[0] == '_' &&
2853                             symbol_name[1] == 'O') {
2854                           llvm::StringRef symbol_name_ref(symbol_name);
2855                           if (symbol_name_ref.startswith(
2856                                   g_objc_v2_prefix_class)) {
2857                             symbol_name_non_abi_mangled = symbol_name + 1;
2858                             symbol_name =
2859                                 symbol_name + g_objc_v2_prefix_class.size();
2860                             type = eSymbolTypeObjCClass;
2861                             demangled_is_synthesized = true;
2862 
2863                           } else if (symbol_name_ref.startswith(
2864                                          g_objc_v2_prefix_metaclass)) {
2865                             symbol_name_non_abi_mangled = symbol_name + 1;
2866                             symbol_name =
2867                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2868                             type = eSymbolTypeObjCMetaClass;
2869                             demangled_is_synthesized = true;
2870                           } else if (symbol_name_ref.startswith(
2871                                          g_objc_v2_prefix_ivar)) {
2872                             symbol_name_non_abi_mangled = symbol_name + 1;
2873                             symbol_name =
2874                                 symbol_name + g_objc_v2_prefix_ivar.size();
2875                             type = eSymbolTypeObjCIVar;
2876                             demangled_is_synthesized = true;
2877                           }
2878                         } else {
2879                           if (nlist.n_value != 0)
2880                             symbol_section = section_info.GetSection(
2881                                 nlist.n_sect, nlist.n_value);
2882                           type = eSymbolTypeData;
2883                         }
2884                         break;
2885 
2886                       case N_FNAME:
2887                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2888                         type = eSymbolTypeCompiler;
2889                         break;
2890 
2891                       case N_FUN:
2892                         // procedure: name,,n_sect,linenumber,address
2893                         if (symbol_name) {
2894                           type = eSymbolTypeCode;
2895                           symbol_section = section_info.GetSection(
2896                               nlist.n_sect, nlist.n_value);
2897 
2898                           N_FUN_addr_to_sym_idx.insert(
2899                               std::make_pair(nlist.n_value, sym_idx));
2900                           // We use the current number of symbols in the
2901                           // symbol table in lieu of using nlist_idx in case
2902                           // we ever start trimming entries out
2903                           N_FUN_indexes.push_back(sym_idx);
2904                         } else {
2905                           type = eSymbolTypeCompiler;
2906 
2907                           if (!N_FUN_indexes.empty()) {
2908                             // Copy the size of the function into the
2909                             // original
2910                             // STAB entry so we don't have
2911                             // to hunt for it later
2912                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2913                                 ->SetByteSize(nlist.n_value);
2914                             N_FUN_indexes.pop_back();
2915                             // We don't really need the end function STAB as
2916                             // it contains the size which we already placed
2917                             // with the original symbol, so don't add it if
2918                             // we want a minimal symbol table
2919                             add_nlist = false;
2920                           }
2921                         }
2922                         break;
2923 
2924                       case N_STSYM:
2925                         // static symbol: name,,n_sect,type,address
2926                         N_STSYM_addr_to_sym_idx.insert(
2927                             std::make_pair(nlist.n_value, sym_idx));
2928                         symbol_section = section_info.GetSection(nlist.n_sect,
2929                                                                  nlist.n_value);
2930                         if (symbol_name && symbol_name[0]) {
2931                           type = ObjectFile::GetSymbolTypeFromName(
2932                               symbol_name + 1, eSymbolTypeData);
2933                         }
2934                         break;
2935 
2936                       case N_LCSYM:
2937                         // .lcomm symbol: name,,n_sect,type,address
2938                         symbol_section = section_info.GetSection(nlist.n_sect,
2939                                                                  nlist.n_value);
2940                         type = eSymbolTypeCommonBlock;
2941                         break;
2942 
2943                       case N_BNSYM:
2944                         // We use the current number of symbols in the symbol
2945                         // table in lieu of using nlist_idx in case we ever
2946                         // start trimming entries out Skip these if we want
2947                         // minimal symbol tables
2948                         add_nlist = false;
2949                         break;
2950 
2951                       case N_ENSYM:
2952                         // Set the size of the N_BNSYM to the terminating
2953                         // index of this N_ENSYM so that we can always skip
2954                         // the entire symbol if we need to navigate more
2955                         // quickly at the source level when parsing STABS
2956                         // Skip these if we want minimal symbol tables
2957                         add_nlist = false;
2958                         break;
2959 
2960                       case N_OPT:
2961                         // emitted with gcc2_compiled and in gcc source
2962                         type = eSymbolTypeCompiler;
2963                         break;
2964 
2965                       case N_RSYM:
2966                         // register sym: name,,NO_SECT,type,register
2967                         type = eSymbolTypeVariable;
2968                         break;
2969 
2970                       case N_SLINE:
2971                         // src line: 0,,n_sect,linenumber,address
2972                         symbol_section = section_info.GetSection(nlist.n_sect,
2973                                                                  nlist.n_value);
2974                         type = eSymbolTypeLineEntry;
2975                         break;
2976 
2977                       case N_SSYM:
2978                         // structure elt: name,,NO_SECT,type,struct_offset
2979                         type = eSymbolTypeVariableType;
2980                         break;
2981 
2982                       case N_SO:
2983                         // source file name
2984                         type = eSymbolTypeSourceFile;
2985                         if (symbol_name == NULL) {
2986                           add_nlist = false;
2987                           if (N_SO_index != UINT32_MAX) {
2988                             // Set the size of the N_SO to the terminating
2989                             // index of this N_SO so that we can always skip
2990                             // the entire N_SO if we need to navigate more
2991                             // quickly at the source level when parsing STABS
2992                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
2993                             symbol_ptr->SetByteSize(sym_idx);
2994                             symbol_ptr->SetSizeIsSibling(true);
2995                           }
2996                           N_NSYM_indexes.clear();
2997                           N_INCL_indexes.clear();
2998                           N_BRAC_indexes.clear();
2999                           N_COMM_indexes.clear();
3000                           N_FUN_indexes.clear();
3001                           N_SO_index = UINT32_MAX;
3002                         } else {
3003                           // We use the current number of symbols in the
3004                           // symbol table in lieu of using nlist_idx in case
3005                           // we ever start trimming entries out
3006                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3007                           if (N_SO_has_full_path) {
3008                             if ((N_SO_index == sym_idx - 1) &&
3009                                 ((sym_idx - 1) < num_syms)) {
3010                               // We have two consecutive N_SO entries where
3011                               // the first contains a directory and the
3012                               // second contains a full path.
3013                               sym[sym_idx - 1].GetMangled().SetValue(
3014                                   ConstString(symbol_name), false);
3015                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3016                               add_nlist = false;
3017                             } else {
3018                               // This is the first entry in a N_SO that
3019                               // contains a directory or
3020                               // a full path to the source file
3021                               N_SO_index = sym_idx;
3022                             }
3023                           } else if ((N_SO_index == sym_idx - 1) &&
3024                                      ((sym_idx - 1) < num_syms)) {
3025                             // This is usually the second N_SO entry that
3026                             // contains just the filename, so here we combine
3027                             // it with the first one if we are minimizing the
3028                             // symbol table
3029                             const char *so_path = sym[sym_idx - 1]
3030                                                       .GetMangled()
3031                                                       .GetDemangledName()
3032                                                       .AsCString();
3033                             if (so_path && so_path[0]) {
3034                               std::string full_so_path(so_path);
3035                               const size_t double_slash_pos =
3036                                   full_so_path.find("//");
3037                               if (double_slash_pos != std::string::npos) {
3038                                 // The linker has been generating bad N_SO
3039                                 // entries with doubled up paths
3040                                 // in the format "%s%s" where the first
3041                                 // string in the DW_AT_comp_dir, and the
3042                                 // second is the directory for the source
3043                                 // file so you end up with a path that looks
3044                                 // like "/tmp/src//tmp/src/"
3045                                 FileSpec so_dir(so_path);
3046                                 if (!FileSystem::Instance().Exists(so_dir)) {
3047                                   so_dir.SetFile(
3048                                       &full_so_path[double_slash_pos + 1],
3049                                       FileSpec::Style::native);
3050                                   if (FileSystem::Instance().Exists(so_dir)) {
3051                                     // Trim off the incorrect path
3052                                     full_so_path.erase(0, double_slash_pos + 1);
3053                                   }
3054                                 }
3055                               }
3056                               if (*full_so_path.rbegin() != '/')
3057                                 full_so_path += '/';
3058                               full_so_path += symbol_name;
3059                               sym[sym_idx - 1].GetMangled().SetValue(
3060                                   ConstString(full_so_path.c_str()), false);
3061                               add_nlist = false;
3062                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3063                             }
3064                           } else {
3065                             // This could be a relative path to a N_SO
3066                             N_SO_index = sym_idx;
3067                           }
3068                         }
3069                         break;
3070 
3071                       case N_OSO:
3072                         // object file name: name,,0,0,st_mtime
3073                         type = eSymbolTypeObjectFile;
3074                         break;
3075 
3076                       case N_LSYM:
3077                         // local sym: name,,NO_SECT,type,offset
3078                         type = eSymbolTypeLocal;
3079                         break;
3080 
3081                       // INCL scopes
3082                       case N_BINCL:
3083                         // include file beginning: name,,NO_SECT,0,sum We use
3084                         // the current number of symbols in the symbol table
3085                         // in lieu of using nlist_idx in case we ever start
3086                         // trimming entries out
3087                         N_INCL_indexes.push_back(sym_idx);
3088                         type = eSymbolTypeScopeBegin;
3089                         break;
3090 
3091                       case N_EINCL:
3092                         // include file end: name,,NO_SECT,0,0
3093                         // Set the size of the N_BINCL to the terminating
3094                         // index of this N_EINCL so that we can always skip
3095                         // the entire symbol if we need to navigate more
3096                         // quickly at the source level when parsing STABS
3097                         if (!N_INCL_indexes.empty()) {
3098                           symbol_ptr =
3099                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3100                           symbol_ptr->SetByteSize(sym_idx + 1);
3101                           symbol_ptr->SetSizeIsSibling(true);
3102                           N_INCL_indexes.pop_back();
3103                         }
3104                         type = eSymbolTypeScopeEnd;
3105                         break;
3106 
3107                       case N_SOL:
3108                         // #included file name: name,,n_sect,0,address
3109                         type = eSymbolTypeHeaderFile;
3110 
3111                         // We currently don't use the header files on darwin
3112                         add_nlist = false;
3113                         break;
3114 
3115                       case N_PARAMS:
3116                         // compiler parameters: name,,NO_SECT,0,0
3117                         type = eSymbolTypeCompiler;
3118                         break;
3119 
3120                       case N_VERSION:
3121                         // compiler version: name,,NO_SECT,0,0
3122                         type = eSymbolTypeCompiler;
3123                         break;
3124 
3125                       case N_OLEVEL:
3126                         // compiler -O level: name,,NO_SECT,0,0
3127                         type = eSymbolTypeCompiler;
3128                         break;
3129 
3130                       case N_PSYM:
3131                         // parameter: name,,NO_SECT,type,offset
3132                         type = eSymbolTypeVariable;
3133                         break;
3134 
3135                       case N_ENTRY:
3136                         // alternate entry: name,,n_sect,linenumber,address
3137                         symbol_section = section_info.GetSection(nlist.n_sect,
3138                                                                  nlist.n_value);
3139                         type = eSymbolTypeLineEntry;
3140                         break;
3141 
3142                       // Left and Right Braces
3143                       case N_LBRAC:
3144                         // left bracket: 0,,NO_SECT,nesting level,address We
3145                         // use the current number of symbols in the symbol
3146                         // table in lieu of using nlist_idx in case we ever
3147                         // start trimming entries out
3148                         symbol_section = section_info.GetSection(nlist.n_sect,
3149                                                                  nlist.n_value);
3150                         N_BRAC_indexes.push_back(sym_idx);
3151                         type = eSymbolTypeScopeBegin;
3152                         break;
3153 
3154                       case N_RBRAC:
3155                         // right bracket: 0,,NO_SECT,nesting level,address
3156                         // Set the size of the N_LBRAC to the terminating
3157                         // index of this N_RBRAC so that we can always skip
3158                         // the entire symbol if we need to navigate more
3159                         // quickly at the source level when parsing STABS
3160                         symbol_section = section_info.GetSection(nlist.n_sect,
3161                                                                  nlist.n_value);
3162                         if (!N_BRAC_indexes.empty()) {
3163                           symbol_ptr =
3164                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3165                           symbol_ptr->SetByteSize(sym_idx + 1);
3166                           symbol_ptr->SetSizeIsSibling(true);
3167                           N_BRAC_indexes.pop_back();
3168                         }
3169                         type = eSymbolTypeScopeEnd;
3170                         break;
3171 
3172                       case N_EXCL:
3173                         // deleted include file: name,,NO_SECT,0,sum
3174                         type = eSymbolTypeHeaderFile;
3175                         break;
3176 
3177                       // COMM scopes
3178                       case N_BCOMM:
3179                         // begin common: name,,NO_SECT,0,0
3180                         // We use the current number of symbols in the symbol
3181                         // table in lieu of using nlist_idx in case we ever
3182                         // start trimming entries out
3183                         type = eSymbolTypeScopeBegin;
3184                         N_COMM_indexes.push_back(sym_idx);
3185                         break;
3186 
3187                       case N_ECOML:
3188                         // end common (local name): 0,,n_sect,0,address
3189                         symbol_section = section_info.GetSection(nlist.n_sect,
3190                                                                  nlist.n_value);
3191                         // Fall through
3192 
3193                       case N_ECOMM:
3194                         // end common: name,,n_sect,0,0
3195                         // Set the size of the N_BCOMM to the terminating
3196                         // index of this N_ECOMM/N_ECOML so that we can
3197                         // always skip the entire symbol if we need to
3198                         // navigate more quickly at the source level when
3199                         // parsing STABS
3200                         if (!N_COMM_indexes.empty()) {
3201                           symbol_ptr =
3202                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3203                           symbol_ptr->SetByteSize(sym_idx + 1);
3204                           symbol_ptr->SetSizeIsSibling(true);
3205                           N_COMM_indexes.pop_back();
3206                         }
3207                         type = eSymbolTypeScopeEnd;
3208                         break;
3209 
3210                       case N_LENG:
3211                         // second stab entry with length information
3212                         type = eSymbolTypeAdditional;
3213                         break;
3214 
3215                       default:
3216                         break;
3217                       }
3218                     } else {
3219                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3220                       uint8_t n_type = N_TYPE & nlist.n_type;
3221                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3222 
3223                       switch (n_type) {
3224                       case N_INDR: {
3225                         const char *reexport_name_cstr =
3226                             strtab_data.PeekCStr(nlist.n_value);
3227                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3228                           type = eSymbolTypeReExported;
3229                           ConstString reexport_name(
3230                               reexport_name_cstr +
3231                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3232                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3233                           set_value = false;
3234                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3235                           indirect_symbol_names.insert(ConstString(
3236                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3237                         } else
3238                           type = eSymbolTypeUndefined;
3239                       } break;
3240 
3241                       case N_UNDF:
3242                         if (symbol_name && symbol_name[0]) {
3243                           ConstString undefined_name(
3244                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3245                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3246                         }
3247                       // Fall through
3248                       case N_PBUD:
3249                         type = eSymbolTypeUndefined;
3250                         break;
3251 
3252                       case N_ABS:
3253                         type = eSymbolTypeAbsolute;
3254                         break;
3255 
3256                       case N_SECT: {
3257                         symbol_section = section_info.GetSection(nlist.n_sect,
3258                                                                  nlist.n_value);
3259 
3260                         if (symbol_section == NULL) {
3261                           // TODO: warn about this?
3262                           add_nlist = false;
3263                           break;
3264                         }
3265 
3266                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3267                           type = eSymbolTypeException;
3268                         } else {
3269                           uint32_t section_type =
3270                               symbol_section->Get() & SECTION_TYPE;
3271 
3272                           switch (section_type) {
3273                           case S_CSTRING_LITERALS:
3274                             type = eSymbolTypeData;
3275                             break; // section with only literal C strings
3276                           case S_4BYTE_LITERALS:
3277                             type = eSymbolTypeData;
3278                             break; // section with only 4 byte literals
3279                           case S_8BYTE_LITERALS:
3280                             type = eSymbolTypeData;
3281                             break; // section with only 8 byte literals
3282                           case S_LITERAL_POINTERS:
3283                             type = eSymbolTypeTrampoline;
3284                             break; // section with only pointers to literals
3285                           case S_NON_LAZY_SYMBOL_POINTERS:
3286                             type = eSymbolTypeTrampoline;
3287                             break; // section with only non-lazy symbol
3288                                    // pointers
3289                           case S_LAZY_SYMBOL_POINTERS:
3290                             type = eSymbolTypeTrampoline;
3291                             break; // section with only lazy symbol pointers
3292                           case S_SYMBOL_STUBS:
3293                             type = eSymbolTypeTrampoline;
3294                             break; // section with only symbol stubs, byte
3295                                    // size of stub in the reserved2 field
3296                           case S_MOD_INIT_FUNC_POINTERS:
3297                             type = eSymbolTypeCode;
3298                             break; // section with only function pointers for
3299                                    // initialization
3300                           case S_MOD_TERM_FUNC_POINTERS:
3301                             type = eSymbolTypeCode;
3302                             break; // section with only function pointers for
3303                                    // termination
3304                           case S_INTERPOSING:
3305                             type = eSymbolTypeTrampoline;
3306                             break; // section with only pairs of function
3307                                    // pointers for interposing
3308                           case S_16BYTE_LITERALS:
3309                             type = eSymbolTypeData;
3310                             break; // section with only 16 byte literals
3311                           case S_DTRACE_DOF:
3312                             type = eSymbolTypeInstrumentation;
3313                             break;
3314                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3315                             type = eSymbolTypeTrampoline;
3316                             break;
3317                           default:
3318                             switch (symbol_section->GetType()) {
3319                             case lldb::eSectionTypeCode:
3320                               type = eSymbolTypeCode;
3321                               break;
3322                             case eSectionTypeData:
3323                             case eSectionTypeDataCString: // Inlined C string
3324                                                           // data
3325                             case eSectionTypeDataCStringPointers: // Pointers
3326                                                                   // to C
3327                                                                   // string
3328                                                                   // data
3329                             case eSectionTypeDataSymbolAddress:   // Address of
3330                                                                   // a symbol in
3331                                                                   // the symbol
3332                                                                   // table
3333                             case eSectionTypeData4:
3334                             case eSectionTypeData8:
3335                             case eSectionTypeData16:
3336                               type = eSymbolTypeData;
3337                               break;
3338                             default:
3339                               break;
3340                             }
3341                             break;
3342                           }
3343 
3344                           if (type == eSymbolTypeInvalid) {
3345                             const char *symbol_sect_name =
3346                                 symbol_section->GetName().AsCString();
3347                             if (symbol_section->IsDescendant(
3348                                     text_section_sp.get())) {
3349                               if (symbol_section->IsClear(
3350                                       S_ATTR_PURE_INSTRUCTIONS |
3351                                       S_ATTR_SELF_MODIFYING_CODE |
3352                                       S_ATTR_SOME_INSTRUCTIONS))
3353                                 type = eSymbolTypeData;
3354                               else
3355                                 type = eSymbolTypeCode;
3356                             } else if (symbol_section->IsDescendant(
3357                                            data_section_sp.get()) ||
3358                                        symbol_section->IsDescendant(
3359                                            data_dirty_section_sp.get()) ||
3360                                        symbol_section->IsDescendant(
3361                                            data_const_section_sp.get())) {
3362                               if (symbol_sect_name &&
3363                                   ::strstr(symbol_sect_name, "__objc") ==
3364                                       symbol_sect_name) {
3365                                 type = eSymbolTypeRuntime;
3366 
3367                                 if (symbol_name) {
3368                                   llvm::StringRef symbol_name_ref(symbol_name);
3369                                   if (symbol_name_ref.startswith("_OBJC_")) {
3370                                     llvm::StringRef
3371                                         g_objc_v2_prefix_class(
3372                                             "_OBJC_CLASS_$_");
3373                                     llvm::StringRef
3374                                         g_objc_v2_prefix_metaclass(
3375                                             "_OBJC_METACLASS_$_");
3376                                     llvm::StringRef
3377                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3378                                     if (symbol_name_ref.startswith(
3379                                             g_objc_v2_prefix_class)) {
3380                                       symbol_name_non_abi_mangled =
3381                                           symbol_name + 1;
3382                                       symbol_name =
3383                                           symbol_name +
3384                                           g_objc_v2_prefix_class.size();
3385                                       type = eSymbolTypeObjCClass;
3386                                       demangled_is_synthesized = true;
3387                                     } else if (
3388                                         symbol_name_ref.startswith(
3389                                             g_objc_v2_prefix_metaclass)) {
3390                                       symbol_name_non_abi_mangled =
3391                                           symbol_name + 1;
3392                                       symbol_name =
3393                                           symbol_name +
3394                                           g_objc_v2_prefix_metaclass.size();
3395                                       type = eSymbolTypeObjCMetaClass;
3396                                       demangled_is_synthesized = true;
3397                                     } else if (symbol_name_ref.startswith(
3398                                                    g_objc_v2_prefix_ivar)) {
3399                                       symbol_name_non_abi_mangled =
3400                                           symbol_name + 1;
3401                                       symbol_name =
3402                                           symbol_name +
3403                                           g_objc_v2_prefix_ivar.size();
3404                                       type = eSymbolTypeObjCIVar;
3405                                       demangled_is_synthesized = true;
3406                                     }
3407                                   }
3408                                 }
3409                               } else if (symbol_sect_name &&
3410                                          ::strstr(symbol_sect_name,
3411                                                   "__gcc_except_tab") ==
3412                                              symbol_sect_name) {
3413                                 type = eSymbolTypeException;
3414                               } else {
3415                                 type = eSymbolTypeData;
3416                               }
3417                             } else if (symbol_sect_name &&
3418                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3419                                            symbol_sect_name) {
3420                               type = eSymbolTypeTrampoline;
3421                             } else if (symbol_section->IsDescendant(
3422                                            objc_section_sp.get())) {
3423                               type = eSymbolTypeRuntime;
3424                               if (symbol_name && symbol_name[0] == '.') {
3425                                 llvm::StringRef symbol_name_ref(symbol_name);
3426                                 llvm::StringRef
3427                                     g_objc_v1_prefix_class(".objc_class_name_");
3428                                 if (symbol_name_ref.startswith(
3429                                         g_objc_v1_prefix_class)) {
3430                                   symbol_name_non_abi_mangled = symbol_name;
3431                                   symbol_name = symbol_name +
3432                                                 g_objc_v1_prefix_class.size();
3433                                   type = eSymbolTypeObjCClass;
3434                                   demangled_is_synthesized = true;
3435                                 }
3436                               }
3437                             }
3438                           }
3439                         }
3440                       } break;
3441                       }
3442                     }
3443 
3444                     if (add_nlist) {
3445                       uint64_t symbol_value = nlist.n_value;
3446                       if (symbol_name_non_abi_mangled) {
3447                         sym[sym_idx].GetMangled().SetMangledName(
3448                             ConstString(symbol_name_non_abi_mangled));
3449                         sym[sym_idx].GetMangled().SetDemangledName(
3450                             ConstString(symbol_name));
3451                       } else {
3452                         bool symbol_name_is_mangled = false;
3453 
3454                         if (symbol_name && symbol_name[0] == '_') {
3455                           symbol_name_is_mangled = symbol_name[1] == '_';
3456                           symbol_name++; // Skip the leading underscore
3457                         }
3458 
3459                         if (symbol_name) {
3460                           ConstString const_symbol_name(symbol_name);
3461                           sym[sym_idx].GetMangled().SetValue(
3462                               const_symbol_name, symbol_name_is_mangled);
3463                           if (is_gsym && is_debug) {
3464                             const char *gsym_name =
3465                                 sym[sym_idx]
3466                                     .GetMangled()
3467                                     .GetName(Mangled::ePreferMangled)
3468                                     .GetCString();
3469                             if (gsym_name)
3470                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3471                           }
3472                         }
3473                       }
3474                       if (symbol_section) {
3475                         const addr_t section_file_addr =
3476                             symbol_section->GetFileAddress();
3477                         if (symbol_byte_size == 0 &&
3478                             function_starts_count > 0) {
3479                           addr_t symbol_lookup_file_addr = nlist.n_value;
3480                           // Do an exact address match for non-ARM addresses,
3481                           // else get the closest since the symbol might be a
3482                           // thumb symbol which has an address with bit zero
3483                           // set
3484                           FunctionStarts::Entry *func_start_entry =
3485                               function_starts.FindEntry(symbol_lookup_file_addr,
3486                                                         !is_arm);
3487                           if (is_arm && func_start_entry) {
3488                             // Verify that the function start address is the
3489                             // symbol address (ARM) or the symbol address + 1
3490                             // (thumb)
3491                             if (func_start_entry->addr !=
3492                                     symbol_lookup_file_addr &&
3493                                 func_start_entry->addr !=
3494                                     (symbol_lookup_file_addr + 1)) {
3495                               // Not the right entry, NULL it out...
3496                               func_start_entry = NULL;
3497                             }
3498                           }
3499                           if (func_start_entry) {
3500                             func_start_entry->data = true;
3501 
3502                             addr_t symbol_file_addr = func_start_entry->addr;
3503                             uint32_t symbol_flags = 0;
3504                             if (is_arm) {
3505                               if (symbol_file_addr & 1)
3506                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3507                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3508                             }
3509 
3510                             const FunctionStarts::Entry *next_func_start_entry =
3511                                 function_starts.FindNextEntry(func_start_entry);
3512                             const addr_t section_end_file_addr =
3513                                 section_file_addr +
3514                                 symbol_section->GetByteSize();
3515                             if (next_func_start_entry) {
3516                               addr_t next_symbol_file_addr =
3517                                   next_func_start_entry->addr;
3518                               // Be sure the clear the Thumb address bit when
3519                               // we calculate the size from the current and
3520                               // next address
3521                               if (is_arm)
3522                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3523                               symbol_byte_size = std::min<lldb::addr_t>(
3524                                   next_symbol_file_addr - symbol_file_addr,
3525                                   section_end_file_addr - symbol_file_addr);
3526                             } else {
3527                               symbol_byte_size =
3528                                   section_end_file_addr - symbol_file_addr;
3529                             }
3530                           }
3531                         }
3532                         symbol_value -= section_file_addr;
3533                       }
3534 
3535                       if (is_debug == false) {
3536                         if (type == eSymbolTypeCode) {
3537                           // See if we can find a N_FUN entry for any code
3538                           // symbols. If we do find a match, and the name
3539                           // matches, then we can merge the two into just the
3540                           // function symbol to avoid duplicate entries in
3541                           // the symbol table
3542                           auto range =
3543                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3544                           if (range.first != range.second) {
3545                             bool found_it = false;
3546                             for (auto pos = range.first; pos != range.second;
3547                                  ++pos) {
3548                               if (sym[sym_idx].GetMangled().GetName(
3549                                       Mangled::ePreferMangled) ==
3550                                   sym[pos->second].GetMangled().GetName(
3551                                       Mangled::ePreferMangled)) {
3552                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3553                                 // We just need the flags from the linker
3554                                 // symbol, so put these flags
3555                                 // into the N_FUN flags to avoid duplicate
3556                                 // symbols in the symbol table
3557                                 sym[pos->second].SetExternal(
3558                                     sym[sym_idx].IsExternal());
3559                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3560                                                           nlist.n_desc);
3561                                 if (resolver_addresses.find(nlist.n_value) !=
3562                                     resolver_addresses.end())
3563                                   sym[pos->second].SetType(eSymbolTypeResolver);
3564                                 sym[sym_idx].Clear();
3565                                 found_it = true;
3566                                 break;
3567                               }
3568                             }
3569                             if (found_it)
3570                               continue;
3571                           } else {
3572                             if (resolver_addresses.find(nlist.n_value) !=
3573                                 resolver_addresses.end())
3574                               type = eSymbolTypeResolver;
3575                           }
3576                         } else if (type == eSymbolTypeData ||
3577                                    type == eSymbolTypeObjCClass ||
3578                                    type == eSymbolTypeObjCMetaClass ||
3579                                    type == eSymbolTypeObjCIVar) {
3580                           // See if we can find a N_STSYM entry for any data
3581                           // symbols. If we do find a match, and the name
3582                           // matches, then we can merge the two into just the
3583                           // Static symbol to avoid duplicate entries in the
3584                           // symbol table
3585                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3586                               nlist.n_value);
3587                           if (range.first != range.second) {
3588                             bool found_it = false;
3589                             for (auto pos = range.first; pos != range.second;
3590                                  ++pos) {
3591                               if (sym[sym_idx].GetMangled().GetName(
3592                                       Mangled::ePreferMangled) ==
3593                                   sym[pos->second].GetMangled().GetName(
3594                                       Mangled::ePreferMangled)) {
3595                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3596                                 // We just need the flags from the linker
3597                                 // symbol, so put these flags
3598                                 // into the N_STSYM flags to avoid duplicate
3599                                 // symbols in the symbol table
3600                                 sym[pos->second].SetExternal(
3601                                     sym[sym_idx].IsExternal());
3602                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3603                                                           nlist.n_desc);
3604                                 sym[sym_idx].Clear();
3605                                 found_it = true;
3606                                 break;
3607                               }
3608                             }
3609                             if (found_it)
3610                               continue;
3611                           } else {
3612                             const char *gsym_name =
3613                                 sym[sym_idx]
3614                                     .GetMangled()
3615                                     .GetName(Mangled::ePreferMangled)
3616                                     .GetCString();
3617                             if (gsym_name) {
3618                               // Combine N_GSYM stab entries with the non
3619                               // stab symbol
3620                               ConstNameToSymbolIndexMap::const_iterator pos =
3621                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3622                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3623                                 const uint32_t GSYM_sym_idx = pos->second;
3624                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3625                                     GSYM_sym_idx;
3626                                 // Copy the address, because often the N_GSYM
3627                                 // address has an invalid address of zero
3628                                 // when the global is a common symbol
3629                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3630                                     symbol_section);
3631                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3632                                     symbol_value);
3633                                 add_symbol_addr(sym[GSYM_sym_idx]
3634                                                     .GetAddress()
3635                                                     .GetFileAddress());
3636                                 // We just need the flags from the linker
3637                                 // symbol, so put these flags
3638                                 // into the N_GSYM flags to avoid duplicate
3639                                 // symbols in the symbol table
3640                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3641                                                            nlist.n_desc);
3642                                 sym[sym_idx].Clear();
3643                                 continue;
3644                               }
3645                             }
3646                           }
3647                         }
3648                       }
3649 
3650                       sym[sym_idx].SetID(nlist_idx);
3651                       sym[sym_idx].SetType(type);
3652                       if (set_value) {
3653                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3654                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3655                         add_symbol_addr(
3656                             sym[sym_idx].GetAddress().GetFileAddress());
3657                       }
3658                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3659 
3660                       if (symbol_byte_size > 0)
3661                         sym[sym_idx].SetByteSize(symbol_byte_size);
3662 
3663                       if (demangled_is_synthesized)
3664                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3665                       ++sym_idx;
3666                     } else {
3667                       sym[sym_idx].Clear();
3668                     }
3669                   }
3670                   /////////////////////////////
3671                 }
3672             }
3673 
3674             for (const auto &pos : reexport_shlib_needs_fixup) {
3675               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3676               if (undef_pos != undefined_name_to_desc.end()) {
3677                 const uint8_t dylib_ordinal =
3678                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3679                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3680                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3681                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3682               }
3683             }
3684           }
3685 
3686 #endif
3687   lldb::offset_t nlist_data_offset = 0;
3688 
3689   if (nlist_data.GetByteSize() > 0) {
3690 
3691     // If the sym array was not created while parsing the DSC unmapped
3692     // symbols, create it now.
3693     if (sym == nullptr) {
3694       sym =
3695           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3696       num_syms = symtab.GetNumSymbols();
3697     }
3698 
3699     if (unmapped_local_symbols_found) {
3700       assert(m_dysymtab.ilocalsym == 0);
3701       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3702       nlist_idx = m_dysymtab.nlocalsym;
3703     } else {
3704       nlist_idx = 0;
3705     }
3706 
3707     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3708     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3709     UndefinedNameToDescMap undefined_name_to_desc;
3710     SymbolIndexToName reexport_shlib_needs_fixup;
3711 
3712     // Symtab parsing is a huge mess. Everything is entangled and the code
3713     // requires access to a ridiculous amount of variables. LLDB depends
3714     // heavily on the proper merging of symbols and to get that right we need
3715     // to make sure we have parsed all the debug symbols first. Therefore we
3716     // invoke the lambda twice, once to parse only the debug symbols and then
3717     // once more to parse the remaining symbols.
3718     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3719                                  bool debug_only) {
3720       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3721       if (is_debug != debug_only)
3722         return true;
3723 
3724       const char *symbol_name_non_abi_mangled = nullptr;
3725       const char *symbol_name = nullptr;
3726 
3727       if (have_strtab_data) {
3728         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3729 
3730         if (symbol_name == nullptr) {
3731           // No symbol should be NULL, even the symbols with no string values
3732           // should have an offset zero which points to an empty C-string
3733           Host::SystemLog(Host::eSystemLogError,
3734                           "error: symbol[%u] has invalid string table offset "
3735                           "0x%x in %s, ignoring symbol\n",
3736                           nlist_idx, nlist.n_strx,
3737                           module_sp->GetFileSpec().GetPath().c_str());
3738           return true;
3739         }
3740         if (symbol_name[0] == '\0')
3741           symbol_name = nullptr;
3742       } else {
3743         const addr_t str_addr = strtab_addr + nlist.n_strx;
3744         Status str_error;
3745         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3746                                            str_error))
3747           symbol_name = memory_symbol_name.c_str();
3748       }
3749 
3750       SymbolType type = eSymbolTypeInvalid;
3751       SectionSP symbol_section;
3752       lldb::addr_t symbol_byte_size = 0;
3753       bool add_nlist = true;
3754       bool is_gsym = false;
3755       bool demangled_is_synthesized = false;
3756       bool set_value = true;
3757 
3758       assert(sym_idx < num_syms);
3759       sym[sym_idx].SetDebug(is_debug);
3760 
3761       if (is_debug) {
3762         switch (nlist.n_type) {
3763         case N_GSYM:
3764           // global symbol: name,,NO_SECT,type,0
3765           // Sometimes the N_GSYM value contains the address.
3766 
3767           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3768           // the ObjC data.  They
3769           // have the same address, but we want to ensure that we always find
3770           // only the real symbol, 'cause we don't currently correctly
3771           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3772           // type.  This is a temporary hack to make sure the ObjectiveC
3773           // symbols get treated correctly.  To do this right, we should
3774           // coalesce all the GSYM & global symbols that have the same
3775           // address.
3776           is_gsym = true;
3777           sym[sym_idx].SetExternal(true);
3778 
3779           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3780             llvm::StringRef symbol_name_ref(symbol_name);
3781             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3782               symbol_name_non_abi_mangled = symbol_name + 1;
3783               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3784               type = eSymbolTypeObjCClass;
3785               demangled_is_synthesized = true;
3786 
3787             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3788               symbol_name_non_abi_mangled = symbol_name + 1;
3789               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3790               type = eSymbolTypeObjCMetaClass;
3791               demangled_is_synthesized = true;
3792             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3793               symbol_name_non_abi_mangled = symbol_name + 1;
3794               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3795               type = eSymbolTypeObjCIVar;
3796               demangled_is_synthesized = true;
3797             }
3798           } else {
3799             if (nlist.n_value != 0)
3800               symbol_section =
3801                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3802             type = eSymbolTypeData;
3803           }
3804           break;
3805 
3806         case N_FNAME:
3807           // procedure name (f77 kludge): name,,NO_SECT,0,0
3808           type = eSymbolTypeCompiler;
3809           break;
3810 
3811         case N_FUN:
3812           // procedure: name,,n_sect,linenumber,address
3813           if (symbol_name) {
3814             type = eSymbolTypeCode;
3815             symbol_section =
3816                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3817 
3818             N_FUN_addr_to_sym_idx.insert(
3819                 std::make_pair(nlist.n_value, sym_idx));
3820             // We use the current number of symbols in the symbol table in
3821             // lieu of using nlist_idx in case we ever start trimming entries
3822             // out
3823             N_FUN_indexes.push_back(sym_idx);
3824           } else {
3825             type = eSymbolTypeCompiler;
3826 
3827             if (!N_FUN_indexes.empty()) {
3828               // Copy the size of the function into the original STAB entry
3829               // so we don't have to hunt for it later
3830               symtab.SymbolAtIndex(N_FUN_indexes.back())
3831                   ->SetByteSize(nlist.n_value);
3832               N_FUN_indexes.pop_back();
3833               // We don't really need the end function STAB as it contains
3834               // the size which we already placed with the original symbol,
3835               // so don't add it if we want a minimal symbol table
3836               add_nlist = false;
3837             }
3838           }
3839           break;
3840 
3841         case N_STSYM:
3842           // static symbol: name,,n_sect,type,address
3843           N_STSYM_addr_to_sym_idx.insert(
3844               std::make_pair(nlist.n_value, sym_idx));
3845           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3846           if (symbol_name && symbol_name[0]) {
3847             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3848                                                      eSymbolTypeData);
3849           }
3850           break;
3851 
3852         case N_LCSYM:
3853           // .lcomm symbol: name,,n_sect,type,address
3854           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3855           type = eSymbolTypeCommonBlock;
3856           break;
3857 
3858         case N_BNSYM:
3859           // We use the current number of symbols in the symbol table in lieu
3860           // of using nlist_idx in case we ever start trimming entries out
3861           // Skip these if we want minimal symbol tables
3862           add_nlist = false;
3863           break;
3864 
3865         case N_ENSYM:
3866           // Set the size of the N_BNSYM to the terminating index of this
3867           // N_ENSYM so that we can always skip the entire symbol if we need
3868           // to navigate more quickly at the source level when parsing STABS
3869           // Skip these if we want minimal symbol tables
3870           add_nlist = false;
3871           break;
3872 
3873         case N_OPT:
3874           // emitted with gcc2_compiled and in gcc source
3875           type = eSymbolTypeCompiler;
3876           break;
3877 
3878         case N_RSYM:
3879           // register sym: name,,NO_SECT,type,register
3880           type = eSymbolTypeVariable;
3881           break;
3882 
3883         case N_SLINE:
3884           // src line: 0,,n_sect,linenumber,address
3885           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3886           type = eSymbolTypeLineEntry;
3887           break;
3888 
3889         case N_SSYM:
3890           // structure elt: name,,NO_SECT,type,struct_offset
3891           type = eSymbolTypeVariableType;
3892           break;
3893 
3894         case N_SO:
3895           // source file name
3896           type = eSymbolTypeSourceFile;
3897           if (symbol_name == nullptr) {
3898             add_nlist = false;
3899             if (N_SO_index != UINT32_MAX) {
3900               // Set the size of the N_SO to the terminating index of this
3901               // N_SO so that we can always skip the entire N_SO if we need
3902               // to navigate more quickly at the source level when parsing
3903               // STABS
3904               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3905               symbol_ptr->SetByteSize(sym_idx);
3906               symbol_ptr->SetSizeIsSibling(true);
3907             }
3908             N_NSYM_indexes.clear();
3909             N_INCL_indexes.clear();
3910             N_BRAC_indexes.clear();
3911             N_COMM_indexes.clear();
3912             N_FUN_indexes.clear();
3913             N_SO_index = UINT32_MAX;
3914           } else {
3915             // We use the current number of symbols in the symbol table in
3916             // lieu of using nlist_idx in case we ever start trimming entries
3917             // out
3918             const bool N_SO_has_full_path = symbol_name[0] == '/';
3919             if (N_SO_has_full_path) {
3920               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3921                 // We have two consecutive N_SO entries where the first
3922                 // contains a directory and the second contains a full path.
3923                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3924                                                        false);
3925                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3926                 add_nlist = false;
3927               } else {
3928                 // This is the first entry in a N_SO that contains a
3929                 // directory or a full path to the source file
3930                 N_SO_index = sym_idx;
3931               }
3932             } else if ((N_SO_index == sym_idx - 1) &&
3933                        ((sym_idx - 1) < num_syms)) {
3934               // This is usually the second N_SO entry that contains just the
3935               // filename, so here we combine it with the first one if we are
3936               // minimizing the symbol table
3937               const char *so_path =
3938                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3939               if (so_path && so_path[0]) {
3940                 std::string full_so_path(so_path);
3941                 const size_t double_slash_pos = full_so_path.find("//");
3942                 if (double_slash_pos != std::string::npos) {
3943                   // The linker has been generating bad N_SO entries with
3944                   // doubled up paths in the format "%s%s" where the first
3945                   // string in the DW_AT_comp_dir, and the second is the
3946                   // directory for the source file so you end up with a path
3947                   // that looks like "/tmp/src//tmp/src/"
3948                   FileSpec so_dir(so_path);
3949                   if (!FileSystem::Instance().Exists(so_dir)) {
3950                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3951                                    FileSpec::Style::native);
3952                     if (FileSystem::Instance().Exists(so_dir)) {
3953                       // Trim off the incorrect path
3954                       full_so_path.erase(0, double_slash_pos + 1);
3955                     }
3956                   }
3957                 }
3958                 if (*full_so_path.rbegin() != '/')
3959                   full_so_path += '/';
3960                 full_so_path += symbol_name;
3961                 sym[sym_idx - 1].GetMangled().SetValue(
3962                     ConstString(full_so_path.c_str()), false);
3963                 add_nlist = false;
3964                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3965               }
3966             } else {
3967               // This could be a relative path to a N_SO
3968               N_SO_index = sym_idx;
3969             }
3970           }
3971           break;
3972 
3973         case N_OSO:
3974           // object file name: name,,0,0,st_mtime
3975           type = eSymbolTypeObjectFile;
3976           break;
3977 
3978         case N_LSYM:
3979           // local sym: name,,NO_SECT,type,offset
3980           type = eSymbolTypeLocal;
3981           break;
3982 
3983         // INCL scopes
3984         case N_BINCL:
3985           // include file beginning: name,,NO_SECT,0,sum We use the current
3986           // number of symbols in the symbol table in lieu of using nlist_idx
3987           // in case we ever start trimming entries out
3988           N_INCL_indexes.push_back(sym_idx);
3989           type = eSymbolTypeScopeBegin;
3990           break;
3991 
3992         case N_EINCL:
3993           // include file end: name,,NO_SECT,0,0
3994           // Set the size of the N_BINCL to the terminating index of this
3995           // N_EINCL so that we can always skip the entire symbol if we need
3996           // to navigate more quickly at the source level when parsing STABS
3997           if (!N_INCL_indexes.empty()) {
3998             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
3999             symbol_ptr->SetByteSize(sym_idx + 1);
4000             symbol_ptr->SetSizeIsSibling(true);
4001             N_INCL_indexes.pop_back();
4002           }
4003           type = eSymbolTypeScopeEnd;
4004           break;
4005 
4006         case N_SOL:
4007           // #included file name: name,,n_sect,0,address
4008           type = eSymbolTypeHeaderFile;
4009 
4010           // We currently don't use the header files on darwin
4011           add_nlist = false;
4012           break;
4013 
4014         case N_PARAMS:
4015           // compiler parameters: name,,NO_SECT,0,0
4016           type = eSymbolTypeCompiler;
4017           break;
4018 
4019         case N_VERSION:
4020           // compiler version: name,,NO_SECT,0,0
4021           type = eSymbolTypeCompiler;
4022           break;
4023 
4024         case N_OLEVEL:
4025           // compiler -O level: name,,NO_SECT,0,0
4026           type = eSymbolTypeCompiler;
4027           break;
4028 
4029         case N_PSYM:
4030           // parameter: name,,NO_SECT,type,offset
4031           type = eSymbolTypeVariable;
4032           break;
4033 
4034         case N_ENTRY:
4035           // alternate entry: name,,n_sect,linenumber,address
4036           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4037           type = eSymbolTypeLineEntry;
4038           break;
4039 
4040         // Left and Right Braces
4041         case N_LBRAC:
4042           // left bracket: 0,,NO_SECT,nesting level,address We use the
4043           // current number of symbols in the symbol table in lieu of using
4044           // nlist_idx in case we ever start trimming entries out
4045           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4046           N_BRAC_indexes.push_back(sym_idx);
4047           type = eSymbolTypeScopeBegin;
4048           break;
4049 
4050         case N_RBRAC:
4051           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4052           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4053           // can always skip the entire symbol if we need to navigate more
4054           // quickly at the source level when parsing STABS
4055           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4056           if (!N_BRAC_indexes.empty()) {
4057             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4058             symbol_ptr->SetByteSize(sym_idx + 1);
4059             symbol_ptr->SetSizeIsSibling(true);
4060             N_BRAC_indexes.pop_back();
4061           }
4062           type = eSymbolTypeScopeEnd;
4063           break;
4064 
4065         case N_EXCL:
4066           // deleted include file: name,,NO_SECT,0,sum
4067           type = eSymbolTypeHeaderFile;
4068           break;
4069 
4070         // COMM scopes
4071         case N_BCOMM:
4072           // begin common: name,,NO_SECT,0,0
4073           // We use the current number of symbols in the symbol table in lieu
4074           // of using nlist_idx in case we ever start trimming entries out
4075           type = eSymbolTypeScopeBegin;
4076           N_COMM_indexes.push_back(sym_idx);
4077           break;
4078 
4079         case N_ECOML:
4080           // end common (local name): 0,,n_sect,0,address
4081           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4082           LLVM_FALLTHROUGH;
4083 
4084         case N_ECOMM:
4085           // end common: name,,n_sect,0,0
4086           // Set the size of the N_BCOMM to the terminating index of this
4087           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4088           // we need to navigate more quickly at the source level when
4089           // parsing STABS
4090           if (!N_COMM_indexes.empty()) {
4091             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4092             symbol_ptr->SetByteSize(sym_idx + 1);
4093             symbol_ptr->SetSizeIsSibling(true);
4094             N_COMM_indexes.pop_back();
4095           }
4096           type = eSymbolTypeScopeEnd;
4097           break;
4098 
4099         case N_LENG:
4100           // second stab entry with length information
4101           type = eSymbolTypeAdditional;
4102           break;
4103 
4104         default:
4105           break;
4106         }
4107       } else {
4108         uint8_t n_type = N_TYPE & nlist.n_type;
4109         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4110 
4111         switch (n_type) {
4112         case N_INDR: {
4113           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4114           if (reexport_name_cstr && reexport_name_cstr[0]) {
4115             type = eSymbolTypeReExported;
4116             ConstString reexport_name(reexport_name_cstr +
4117                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4118             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4119             set_value = false;
4120             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4121             indirect_symbol_names.insert(
4122                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4123           } else
4124             type = eSymbolTypeUndefined;
4125         } break;
4126 
4127         case N_UNDF:
4128           if (symbol_name && symbol_name[0]) {
4129             ConstString undefined_name(symbol_name +
4130                                        ((symbol_name[0] == '_') ? 1 : 0));
4131             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4132           }
4133           LLVM_FALLTHROUGH;
4134 
4135         case N_PBUD:
4136           type = eSymbolTypeUndefined;
4137           break;
4138 
4139         case N_ABS:
4140           type = eSymbolTypeAbsolute;
4141           break;
4142 
4143         case N_SECT: {
4144           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4145 
4146           if (!symbol_section) {
4147             // TODO: warn about this?
4148             add_nlist = false;
4149             break;
4150           }
4151 
4152           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4153             type = eSymbolTypeException;
4154           } else {
4155             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4156 
4157             switch (section_type) {
4158             case S_CSTRING_LITERALS:
4159               type = eSymbolTypeData;
4160               break; // section with only literal C strings
4161             case S_4BYTE_LITERALS:
4162               type = eSymbolTypeData;
4163               break; // section with only 4 byte literals
4164             case S_8BYTE_LITERALS:
4165               type = eSymbolTypeData;
4166               break; // section with only 8 byte literals
4167             case S_LITERAL_POINTERS:
4168               type = eSymbolTypeTrampoline;
4169               break; // section with only pointers to literals
4170             case S_NON_LAZY_SYMBOL_POINTERS:
4171               type = eSymbolTypeTrampoline;
4172               break; // section with only non-lazy symbol pointers
4173             case S_LAZY_SYMBOL_POINTERS:
4174               type = eSymbolTypeTrampoline;
4175               break; // section with only lazy symbol pointers
4176             case S_SYMBOL_STUBS:
4177               type = eSymbolTypeTrampoline;
4178               break; // section with only symbol stubs, byte size of stub in
4179                      // the reserved2 field
4180             case S_MOD_INIT_FUNC_POINTERS:
4181               type = eSymbolTypeCode;
4182               break; // section with only function pointers for initialization
4183             case S_MOD_TERM_FUNC_POINTERS:
4184               type = eSymbolTypeCode;
4185               break; // section with only function pointers for termination
4186             case S_INTERPOSING:
4187               type = eSymbolTypeTrampoline;
4188               break; // section with only pairs of function pointers for
4189                      // interposing
4190             case S_16BYTE_LITERALS:
4191               type = eSymbolTypeData;
4192               break; // section with only 16 byte literals
4193             case S_DTRACE_DOF:
4194               type = eSymbolTypeInstrumentation;
4195               break;
4196             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4197               type = eSymbolTypeTrampoline;
4198               break;
4199             default:
4200               switch (symbol_section->GetType()) {
4201               case lldb::eSectionTypeCode:
4202                 type = eSymbolTypeCode;
4203                 break;
4204               case eSectionTypeData:
4205               case eSectionTypeDataCString:         // Inlined C string data
4206               case eSectionTypeDataCStringPointers: // Pointers to C string
4207                                                     // data
4208               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4209                                                     // the symbol table
4210               case eSectionTypeData4:
4211               case eSectionTypeData8:
4212               case eSectionTypeData16:
4213                 type = eSymbolTypeData;
4214                 break;
4215               default:
4216                 break;
4217               }
4218               break;
4219             }
4220 
4221             if (type == eSymbolTypeInvalid) {
4222               const char *symbol_sect_name =
4223                   symbol_section->GetName().AsCString();
4224               if (symbol_section->IsDescendant(text_section_sp.get())) {
4225                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4226                                             S_ATTR_SELF_MODIFYING_CODE |
4227                                             S_ATTR_SOME_INSTRUCTIONS))
4228                   type = eSymbolTypeData;
4229                 else
4230                   type = eSymbolTypeCode;
4231               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4232                          symbol_section->IsDescendant(
4233                              data_dirty_section_sp.get()) ||
4234                          symbol_section->IsDescendant(
4235                              data_const_section_sp.get())) {
4236                 if (symbol_sect_name &&
4237                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4238                   type = eSymbolTypeRuntime;
4239 
4240                   if (symbol_name) {
4241                     llvm::StringRef symbol_name_ref(symbol_name);
4242                     if (symbol_name_ref.startswith("_OBJC_")) {
4243                       llvm::StringRef g_objc_v2_prefix_class(
4244                           "_OBJC_CLASS_$_");
4245                       llvm::StringRef g_objc_v2_prefix_metaclass(
4246                           "_OBJC_METACLASS_$_");
4247                       llvm::StringRef g_objc_v2_prefix_ivar(
4248                           "_OBJC_IVAR_$_");
4249                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4250                         symbol_name_non_abi_mangled = symbol_name + 1;
4251                         symbol_name =
4252                             symbol_name + g_objc_v2_prefix_class.size();
4253                         type = eSymbolTypeObjCClass;
4254                         demangled_is_synthesized = true;
4255                       } else if (symbol_name_ref.startswith(
4256                                      g_objc_v2_prefix_metaclass)) {
4257                         symbol_name_non_abi_mangled = symbol_name + 1;
4258                         symbol_name =
4259                             symbol_name + g_objc_v2_prefix_metaclass.size();
4260                         type = eSymbolTypeObjCMetaClass;
4261                         demangled_is_synthesized = true;
4262                       } else if (symbol_name_ref.startswith(
4263                                      g_objc_v2_prefix_ivar)) {
4264                         symbol_name_non_abi_mangled = symbol_name + 1;
4265                         symbol_name =
4266                             symbol_name + g_objc_v2_prefix_ivar.size();
4267                         type = eSymbolTypeObjCIVar;
4268                         demangled_is_synthesized = true;
4269                       }
4270                     }
4271                   }
4272                 } else if (symbol_sect_name &&
4273                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4274                                symbol_sect_name) {
4275                   type = eSymbolTypeException;
4276                 } else {
4277                   type = eSymbolTypeData;
4278                 }
4279               } else if (symbol_sect_name &&
4280                          ::strstr(symbol_sect_name, "__IMPORT") ==
4281                              symbol_sect_name) {
4282                 type = eSymbolTypeTrampoline;
4283               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4284                 type = eSymbolTypeRuntime;
4285                 if (symbol_name && symbol_name[0] == '.') {
4286                   llvm::StringRef symbol_name_ref(symbol_name);
4287                   llvm::StringRef g_objc_v1_prefix_class(
4288                       ".objc_class_name_");
4289                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4290                     symbol_name_non_abi_mangled = symbol_name;
4291                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4292                     type = eSymbolTypeObjCClass;
4293                     demangled_is_synthesized = true;
4294                   }
4295                 }
4296               }
4297             }
4298           }
4299         } break;
4300         }
4301       }
4302 
4303       if (!add_nlist) {
4304         sym[sym_idx].Clear();
4305         return true;
4306       }
4307 
4308       uint64_t symbol_value = nlist.n_value;
4309 
4310       if (symbol_name_non_abi_mangled) {
4311         sym[sym_idx].GetMangled().SetMangledName(
4312             ConstString(symbol_name_non_abi_mangled));
4313         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4314       } else {
4315         bool symbol_name_is_mangled = false;
4316 
4317         if (symbol_name && symbol_name[0] == '_') {
4318           symbol_name_is_mangled = symbol_name[1] == '_';
4319           symbol_name++; // Skip the leading underscore
4320         }
4321 
4322         if (symbol_name) {
4323           ConstString const_symbol_name(symbol_name);
4324           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4325                                              symbol_name_is_mangled);
4326         }
4327       }
4328 
4329       if (is_gsym) {
4330         const char *gsym_name = sym[sym_idx]
4331                                     .GetMangled()
4332                                     .GetName(Mangled::ePreferMangled)
4333                                     .GetCString();
4334         if (gsym_name)
4335           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4336       }
4337 
4338       if (symbol_section) {
4339         const addr_t section_file_addr = symbol_section->GetFileAddress();
4340         if (symbol_byte_size == 0 && function_starts_count > 0) {
4341           addr_t symbol_lookup_file_addr = nlist.n_value;
4342           // Do an exact address match for non-ARM addresses, else get the
4343           // closest since the symbol might be a thumb symbol which has an
4344           // address with bit zero set.
4345           FunctionStarts::Entry *func_start_entry =
4346               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4347           if (is_arm && func_start_entry) {
4348             // Verify that the function start address is the symbol address
4349             // (ARM) or the symbol address + 1 (thumb).
4350             if (func_start_entry->addr != symbol_lookup_file_addr &&
4351                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4352               // Not the right entry, NULL it out...
4353               func_start_entry = nullptr;
4354             }
4355           }
4356           if (func_start_entry) {
4357             func_start_entry->data = true;
4358 
4359             addr_t symbol_file_addr = func_start_entry->addr;
4360             if (is_arm)
4361               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4362 
4363             const FunctionStarts::Entry *next_func_start_entry =
4364                 function_starts.FindNextEntry(func_start_entry);
4365             const addr_t section_end_file_addr =
4366                 section_file_addr + symbol_section->GetByteSize();
4367             if (next_func_start_entry) {
4368               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4369               // Be sure the clear the Thumb address bit when we calculate the
4370               // size from the current and next address
4371               if (is_arm)
4372                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4373               symbol_byte_size = std::min<lldb::addr_t>(
4374                   next_symbol_file_addr - symbol_file_addr,
4375                   section_end_file_addr - symbol_file_addr);
4376             } else {
4377               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4378             }
4379           }
4380         }
4381         symbol_value -= section_file_addr;
4382       }
4383 
4384       if (!is_debug) {
4385         if (type == eSymbolTypeCode) {
4386           // See if we can find a N_FUN entry for any code symbols. If we do
4387           // find a match, and the name matches, then we can merge the two into
4388           // just the function symbol to avoid duplicate entries in the symbol
4389           // table.
4390           std::pair<ValueToSymbolIndexMap::const_iterator,
4391                     ValueToSymbolIndexMap::const_iterator>
4392               range;
4393           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4394           if (range.first != range.second) {
4395             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4396                  pos != range.second; ++pos) {
4397               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4398                   sym[pos->second].GetMangled().GetName(
4399                       Mangled::ePreferMangled)) {
4400                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4401                 // We just need the flags from the linker symbol, so put these
4402                 // flags into the N_FUN flags to avoid duplicate symbols in the
4403                 // symbol table.
4404                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4405                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4406                 if (resolver_addresses.find(nlist.n_value) !=
4407                     resolver_addresses.end())
4408                   sym[pos->second].SetType(eSymbolTypeResolver);
4409                 sym[sym_idx].Clear();
4410                 return true;
4411               }
4412             }
4413           } else {
4414             if (resolver_addresses.find(nlist.n_value) !=
4415                 resolver_addresses.end())
4416               type = eSymbolTypeResolver;
4417           }
4418         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4419                    type == eSymbolTypeObjCMetaClass ||
4420                    type == eSymbolTypeObjCIVar) {
4421           // See if we can find a N_STSYM entry for any data symbols. If we do
4422           // find a match, and the name matches, then we can merge the two into
4423           // just the Static symbol to avoid duplicate entries in the symbol
4424           // table.
4425           std::pair<ValueToSymbolIndexMap::const_iterator,
4426                     ValueToSymbolIndexMap::const_iterator>
4427               range;
4428           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4429           if (range.first != range.second) {
4430             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4431                  pos != range.second; ++pos) {
4432               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4433                   sym[pos->second].GetMangled().GetName(
4434                       Mangled::ePreferMangled)) {
4435                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4436                 // We just need the flags from the linker symbol, so put these
4437                 // flags into the N_STSYM flags to avoid duplicate symbols in
4438                 // the symbol table.
4439                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4440                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4441                 sym[sym_idx].Clear();
4442                 return true;
4443               }
4444             }
4445           } else {
4446             // Combine N_GSYM stab entries with the non stab symbol.
4447             const char *gsym_name = sym[sym_idx]
4448                                         .GetMangled()
4449                                         .GetName(Mangled::ePreferMangled)
4450                                         .GetCString();
4451             if (gsym_name) {
4452               ConstNameToSymbolIndexMap::const_iterator pos =
4453                   N_GSYM_name_to_sym_idx.find(gsym_name);
4454               if (pos != N_GSYM_name_to_sym_idx.end()) {
4455                 const uint32_t GSYM_sym_idx = pos->second;
4456                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4457                 // Copy the address, because often the N_GSYM address has an
4458                 // invalid address of zero when the global is a common symbol.
4459                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4460                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4461                 add_symbol_addr(
4462                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4463                 // We just need the flags from the linker symbol, so put these
4464                 // flags into the N_GSYM flags to avoid duplicate symbols in
4465                 // the symbol table.
4466                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4467                 sym[sym_idx].Clear();
4468                 return true;
4469               }
4470             }
4471           }
4472         }
4473       }
4474 
4475       sym[sym_idx].SetID(nlist_idx);
4476       sym[sym_idx].SetType(type);
4477       if (set_value) {
4478         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4479         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4480         if (symbol_section)
4481           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4482       }
4483       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4484       if (nlist.n_desc & N_WEAK_REF)
4485         sym[sym_idx].SetIsWeak(true);
4486 
4487       if (symbol_byte_size > 0)
4488         sym[sym_idx].SetByteSize(symbol_byte_size);
4489 
4490       if (demangled_is_synthesized)
4491         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4492 
4493       ++sym_idx;
4494       return true;
4495     };
4496 
4497     // First parse all the nlists but don't process them yet. See the next
4498     // comment for an explanation why.
4499     std::vector<struct nlist_64> nlists;
4500     nlists.reserve(symtab_load_command.nsyms);
4501     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4502       if (auto nlist =
4503               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4504         nlists.push_back(*nlist);
4505       else
4506         break;
4507     }
4508 
4509     // Now parse all the debug symbols. This is needed to merge non-debug
4510     // symbols in the next step. Non-debug symbols are always coalesced into
4511     // the debug symbol. Doing this in one step would mean that some symbols
4512     // won't be merged.
4513     nlist_idx = 0;
4514     for (auto &nlist : nlists) {
4515       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4516         break;
4517     }
4518 
4519     // Finally parse all the non debug symbols.
4520     nlist_idx = 0;
4521     for (auto &nlist : nlists) {
4522       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4523         break;
4524     }
4525 
4526     for (const auto &pos : reexport_shlib_needs_fixup) {
4527       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4528       if (undef_pos != undefined_name_to_desc.end()) {
4529         const uint8_t dylib_ordinal =
4530             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4531         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4532           sym[pos.first].SetReExportedSymbolSharedLibrary(
4533               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4534       }
4535     }
4536   }
4537 
4538   // Count how many trie symbols we'll add to the symbol table
4539   int trie_symbol_table_augment_count = 0;
4540   for (auto &e : external_sym_trie_entries) {
4541     if (symbols_added.find(e.entry.address) == symbols_added.end())
4542       trie_symbol_table_augment_count++;
4543   }
4544 
4545   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4546     num_syms = sym_idx + trie_symbol_table_augment_count;
4547     sym = symtab.Resize(num_syms);
4548   }
4549   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4550 
4551   // Add symbols from the trie to the symbol table.
4552   for (auto &e : external_sym_trie_entries) {
4553     if (symbols_added.contains(e.entry.address))
4554       continue;
4555 
4556     // Find the section that this trie address is in, use that to annotate
4557     // symbol type as we add the trie address and name to the symbol table.
4558     Address symbol_addr;
4559     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4560       SectionSP symbol_section(symbol_addr.GetSection());
4561       const char *symbol_name = e.entry.name.GetCString();
4562       bool demangled_is_synthesized = false;
4563       SymbolType type =
4564           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4565                         data_section_sp, data_dirty_section_sp,
4566                         data_const_section_sp, symbol_section);
4567 
4568       sym[sym_idx].SetType(type);
4569       if (symbol_section) {
4570         sym[sym_idx].SetID(synthetic_sym_id++);
4571         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4572         if (demangled_is_synthesized)
4573           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4574         sym[sym_idx].SetIsSynthetic(true);
4575         sym[sym_idx].SetExternal(true);
4576         sym[sym_idx].GetAddressRef() = symbol_addr;
4577         add_symbol_addr(symbol_addr.GetFileAddress());
4578         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4579           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4580         ++sym_idx;
4581       }
4582     }
4583   }
4584 
4585   if (function_starts_count > 0) {
4586     uint32_t num_synthetic_function_symbols = 0;
4587     for (i = 0; i < function_starts_count; ++i) {
4588       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4589           symbols_added.end())
4590         ++num_synthetic_function_symbols;
4591     }
4592 
4593     if (num_synthetic_function_symbols > 0) {
4594       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4595         num_syms = sym_idx + num_synthetic_function_symbols;
4596         sym = symtab.Resize(num_syms);
4597       }
4598       for (i = 0; i < function_starts_count; ++i) {
4599         const FunctionStarts::Entry *func_start_entry =
4600             function_starts.GetEntryAtIndex(i);
4601         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4602           addr_t symbol_file_addr = func_start_entry->addr;
4603           uint32_t symbol_flags = 0;
4604           if (func_start_entry->data)
4605             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4606           Address symbol_addr;
4607           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4608             SectionSP symbol_section(symbol_addr.GetSection());
4609             uint32_t symbol_byte_size = 0;
4610             if (symbol_section) {
4611               const addr_t section_file_addr = symbol_section->GetFileAddress();
4612               const FunctionStarts::Entry *next_func_start_entry =
4613                   function_starts.FindNextEntry(func_start_entry);
4614               const addr_t section_end_file_addr =
4615                   section_file_addr + symbol_section->GetByteSize();
4616               if (next_func_start_entry) {
4617                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4618                 if (is_arm)
4619                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4620                 symbol_byte_size = std::min<lldb::addr_t>(
4621                     next_symbol_file_addr - symbol_file_addr,
4622                     section_end_file_addr - symbol_file_addr);
4623               } else {
4624                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4625               }
4626               sym[sym_idx].SetID(synthetic_sym_id++);
4627               // Don't set the name for any synthetic symbols, the Symbol
4628               // object will generate one if needed when the name is accessed
4629               // via accessors.
4630               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4631               sym[sym_idx].SetType(eSymbolTypeCode);
4632               sym[sym_idx].SetIsSynthetic(true);
4633               sym[sym_idx].GetAddressRef() = symbol_addr;
4634               add_symbol_addr(symbol_addr.GetFileAddress());
4635               if (symbol_flags)
4636                 sym[sym_idx].SetFlags(symbol_flags);
4637               if (symbol_byte_size)
4638                 sym[sym_idx].SetByteSize(symbol_byte_size);
4639               ++sym_idx;
4640             }
4641           }
4642         }
4643       }
4644     }
4645   }
4646 
4647   // Trim our symbols down to just what we ended up with after removing any
4648   // symbols.
4649   if (sym_idx < num_syms) {
4650     num_syms = sym_idx;
4651     sym = symtab.Resize(num_syms);
4652   }
4653 
4654   // Now synthesize indirect symbols
4655   if (m_dysymtab.nindirectsyms != 0) {
4656     if (indirect_symbol_index_data.GetByteSize()) {
4657       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4658           m_nlist_idx_to_sym_idx.end();
4659 
4660       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4661            ++sect_idx) {
4662         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4663             S_SYMBOL_STUBS) {
4664           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4665           if (symbol_stub_byte_size == 0)
4666             continue;
4667 
4668           const uint32_t num_symbol_stubs =
4669               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4670 
4671           if (num_symbol_stubs == 0)
4672             continue;
4673 
4674           const uint32_t symbol_stub_index_offset =
4675               m_mach_sections[sect_idx].reserved1;
4676           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4677             const uint32_t symbol_stub_index =
4678                 symbol_stub_index_offset + stub_idx;
4679             const lldb::addr_t symbol_stub_addr =
4680                 m_mach_sections[sect_idx].addr +
4681                 (stub_idx * symbol_stub_byte_size);
4682             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4683             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4684                     symbol_stub_offset, 4)) {
4685               const uint32_t stub_sym_id =
4686                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4687               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4688                 continue;
4689 
4690               NListIndexToSymbolIndexMap::const_iterator index_pos =
4691                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4692               Symbol *stub_symbol = nullptr;
4693               if (index_pos != end_index_pos) {
4694                 // We have a remapping from the original nlist index to a
4695                 // current symbol index, so just look this up by index
4696                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4697               } else {
4698                 // We need to lookup a symbol using the original nlist symbol
4699                 // index since this index is coming from the S_SYMBOL_STUBS
4700                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4701               }
4702 
4703               if (stub_symbol) {
4704                 Address so_addr(symbol_stub_addr, section_list);
4705 
4706                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4707                   // Change the external symbol into a trampoline that makes
4708                   // sense These symbols were N_UNDF N_EXT, and are useless
4709                   // to us, so we can re-use them so we don't have to make up
4710                   // a synthetic symbol for no good reason.
4711                   if (resolver_addresses.find(symbol_stub_addr) ==
4712                       resolver_addresses.end())
4713                     stub_symbol->SetType(eSymbolTypeTrampoline);
4714                   else
4715                     stub_symbol->SetType(eSymbolTypeResolver);
4716                   stub_symbol->SetExternal(false);
4717                   stub_symbol->GetAddressRef() = so_addr;
4718                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4719                 } else {
4720                   // Make a synthetic symbol to describe the trampoline stub
4721                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4722                   if (sym_idx >= num_syms) {
4723                     sym = symtab.Resize(++num_syms);
4724                     stub_symbol = nullptr; // this pointer no longer valid
4725                   }
4726                   sym[sym_idx].SetID(synthetic_sym_id++);
4727                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4728                   if (resolver_addresses.find(symbol_stub_addr) ==
4729                       resolver_addresses.end())
4730                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4731                   else
4732                     sym[sym_idx].SetType(eSymbolTypeResolver);
4733                   sym[sym_idx].SetIsSynthetic(true);
4734                   sym[sym_idx].GetAddressRef() = so_addr;
4735                   add_symbol_addr(so_addr.GetFileAddress());
4736                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4737                   ++sym_idx;
4738                 }
4739               } else {
4740                 if (log)
4741                   log->Warning("symbol stub referencing symbol table symbol "
4742                                "%u that isn't in our minimal symbol table, "
4743                                "fix this!!!",
4744                                stub_sym_id);
4745               }
4746             }
4747           }
4748         }
4749       }
4750     }
4751   }
4752 
4753   if (!reexport_trie_entries.empty()) {
4754     for (const auto &e : reexport_trie_entries) {
4755       if (e.entry.import_name) {
4756         // Only add indirect symbols from the Trie entries if we didn't have
4757         // a N_INDR nlist entry for this already
4758         if (indirect_symbol_names.find(e.entry.name) ==
4759             indirect_symbol_names.end()) {
4760           // Make a synthetic symbol to describe re-exported symbol.
4761           if (sym_idx >= num_syms)
4762             sym = symtab.Resize(++num_syms);
4763           sym[sym_idx].SetID(synthetic_sym_id++);
4764           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4765           sym[sym_idx].SetType(eSymbolTypeReExported);
4766           sym[sym_idx].SetIsSynthetic(true);
4767           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4768           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4769             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4770                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4771           }
4772           ++sym_idx;
4773         }
4774       }
4775     }
4776   }
4777 }
4778 
4779 void ObjectFileMachO::Dump(Stream *s) {
4780   ModuleSP module_sp(GetModule());
4781   if (module_sp) {
4782     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4783     s->Printf("%p: ", static_cast<void *>(this));
4784     s->Indent();
4785     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4786       s->PutCString("ObjectFileMachO64");
4787     else
4788       s->PutCString("ObjectFileMachO32");
4789 
4790     *s << ", file = '" << m_file;
4791     ModuleSpecList all_specs;
4792     ModuleSpec base_spec;
4793     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4794                     base_spec, all_specs);
4795     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4796       *s << "', triple";
4797       if (e)
4798         s->Printf("[%d]", i);
4799       *s << " = ";
4800       *s << all_specs.GetModuleSpecRefAtIndex(i)
4801                 .GetArchitecture()
4802                 .GetTriple()
4803                 .getTriple();
4804     }
4805     *s << "\n";
4806     SectionList *sections = GetSectionList();
4807     if (sections)
4808       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4809                      UINT32_MAX);
4810 
4811     if (m_symtab_up)
4812       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4813   }
4814 }
4815 
4816 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4817                               const lldb_private::DataExtractor &data,
4818                               lldb::offset_t lc_offset) {
4819   uint32_t i;
4820   llvm::MachO::uuid_command load_cmd;
4821 
4822   lldb::offset_t offset = lc_offset;
4823   for (i = 0; i < header.ncmds; ++i) {
4824     const lldb::offset_t cmd_offset = offset;
4825     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4826       break;
4827 
4828     if (load_cmd.cmd == LC_UUID) {
4829       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4830 
4831       if (uuid_bytes) {
4832         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4833         // We pretend these object files have no UUID to prevent crashing.
4834 
4835         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4836                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4837                                        0xbb, 0x14, 0xf0, 0x0d};
4838 
4839         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4840           return UUID();
4841 
4842         return UUID::fromOptionalData(uuid_bytes, 16);
4843       }
4844       return UUID();
4845     }
4846     offset = cmd_offset + load_cmd.cmdsize;
4847   }
4848   return UUID();
4849 }
4850 
4851 static llvm::StringRef GetOSName(uint32_t cmd) {
4852   switch (cmd) {
4853   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4854     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4855   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4856     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4857   case llvm::MachO::LC_VERSION_MIN_TVOS:
4858     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4859   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4860     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4861   default:
4862     llvm_unreachable("unexpected LC_VERSION load command");
4863   }
4864 }
4865 
4866 namespace {
4867 struct OSEnv {
4868   llvm::StringRef os_type;
4869   llvm::StringRef environment;
4870   OSEnv(uint32_t cmd) {
4871     switch (cmd) {
4872     case llvm::MachO::PLATFORM_MACOS:
4873       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4874       return;
4875     case llvm::MachO::PLATFORM_IOS:
4876       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4877       return;
4878     case llvm::MachO::PLATFORM_TVOS:
4879       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4880       return;
4881     case llvm::MachO::PLATFORM_WATCHOS:
4882       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4883       return;
4884     // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
4885     // NEED_BRIDGEOS_TRIPLE
4886     // case llvm::MachO::PLATFORM_BRIDGEOS:
4887     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4888     //   return;
4889     // case llvm::MachO::PLATFORM_DRIVERKIT:
4890     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4891     //   return;
4892     case llvm::MachO::PLATFORM_MACCATALYST:
4893       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4894       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4895       return;
4896     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4897       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4898       environment =
4899           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4900       return;
4901     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4902       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4903       environment =
4904           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4905       return;
4906     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4907       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4908       environment =
4909           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4910       return;
4911     default: {
4912       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4913       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4914     }
4915     }
4916   }
4917 };
4918 
4919 struct MinOS {
4920   uint32_t major_version, minor_version, patch_version;
4921   MinOS(uint32_t version)
4922       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4923         patch_version(version & 0xffu) {}
4924 };
4925 } // namespace
4926 
4927 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4928                                       const lldb_private::DataExtractor &data,
4929                                       lldb::offset_t lc_offset,
4930                                       ModuleSpec &base_spec,
4931                                       lldb_private::ModuleSpecList &all_specs) {
4932   auto &base_arch = base_spec.GetArchitecture();
4933   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4934   if (!base_arch.IsValid())
4935     return;
4936 
4937   bool found_any = false;
4938   auto add_triple = [&](const llvm::Triple &triple) {
4939     auto spec = base_spec;
4940     spec.GetArchitecture().GetTriple() = triple;
4941     if (spec.GetArchitecture().IsValid()) {
4942       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4943       all_specs.Append(spec);
4944       found_any = true;
4945     }
4946   };
4947 
4948   // Set OS to an unspecified unknown or a "*" so it can match any OS
4949   llvm::Triple base_triple = base_arch.GetTriple();
4950   base_triple.setOS(llvm::Triple::UnknownOS);
4951   base_triple.setOSName(llvm::StringRef());
4952 
4953   if (header.filetype == MH_PRELOAD) {
4954     if (header.cputype == CPU_TYPE_ARM) {
4955       // If this is a 32-bit arm binary, and it's a standalone binary, force
4956       // the Vendor to Apple so we don't accidentally pick up the generic
4957       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4958       // frame pointer register; most other armv7 ABIs use a combination of
4959       // r7 and r11.
4960       base_triple.setVendor(llvm::Triple::Apple);
4961     } else {
4962       // Set vendor to an unspecified unknown or a "*" so it can match any
4963       // vendor This is required for correct behavior of EFI debugging on
4964       // x86_64
4965       base_triple.setVendor(llvm::Triple::UnknownVendor);
4966       base_triple.setVendorName(llvm::StringRef());
4967     }
4968     return add_triple(base_triple);
4969   }
4970 
4971   llvm::MachO::load_command load_cmd;
4972 
4973   // See if there is an LC_VERSION_MIN_* load command that can give
4974   // us the OS type.
4975   lldb::offset_t offset = lc_offset;
4976   for (uint32_t i = 0; i < header.ncmds; ++i) {
4977     const lldb::offset_t cmd_offset = offset;
4978     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4979       break;
4980 
4981     llvm::MachO::version_min_command version_min;
4982     switch (load_cmd.cmd) {
4983     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4984     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4985     case llvm::MachO::LC_VERSION_MIN_TVOS:
4986     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
4987       if (load_cmd.cmdsize != sizeof(version_min))
4988         break;
4989       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
4990                             data.GetByteOrder(), &version_min) == 0)
4991         break;
4992       MinOS min_os(version_min.version);
4993       llvm::SmallString<32> os_name;
4994       llvm::raw_svector_ostream os(os_name);
4995       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
4996          << min_os.minor_version << '.' << min_os.patch_version;
4997 
4998       auto triple = base_triple;
4999       triple.setOSName(os.str());
5000 
5001       // Disambiguate legacy simulator platforms.
5002       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5003           (base_triple.getArch() == llvm::Triple::x86_64 ||
5004            base_triple.getArch() == llvm::Triple::x86)) {
5005         // The combination of legacy LC_VERSION_MIN load command and
5006         // x86 architecture always indicates a simulator environment.
5007         // The combination of LC_VERSION_MIN and arm architecture only
5008         // appears for native binaries. Back-deploying simulator
5009         // binaries on Apple Silicon Macs use the modern unambigous
5010         // LC_BUILD_VERSION load commands; no special handling required.
5011         triple.setEnvironment(llvm::Triple::Simulator);
5012       }
5013       add_triple(triple);
5014       break;
5015     }
5016     default:
5017       break;
5018     }
5019 
5020     offset = cmd_offset + load_cmd.cmdsize;
5021   }
5022 
5023   // See if there are LC_BUILD_VERSION load commands that can give
5024   // us the OS type.
5025   offset = lc_offset;
5026   for (uint32_t i = 0; i < header.ncmds; ++i) {
5027     const lldb::offset_t cmd_offset = offset;
5028     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5029       break;
5030 
5031     do {
5032       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5033         llvm::MachO::build_version_command build_version;
5034         if (load_cmd.cmdsize < sizeof(build_version)) {
5035           // Malformed load command.
5036           break;
5037         }
5038         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5039                               data.GetByteOrder(), &build_version) == 0)
5040           break;
5041         MinOS min_os(build_version.minos);
5042         OSEnv os_env(build_version.platform);
5043         llvm::SmallString<16> os_name;
5044         llvm::raw_svector_ostream os(os_name);
5045         os << os_env.os_type << min_os.major_version << '.'
5046            << min_os.minor_version << '.' << min_os.patch_version;
5047         auto triple = base_triple;
5048         triple.setOSName(os.str());
5049         os_name.clear();
5050         if (!os_env.environment.empty())
5051           triple.setEnvironmentName(os_env.environment);
5052         add_triple(triple);
5053       }
5054     } while (false);
5055     offset = cmd_offset + load_cmd.cmdsize;
5056   }
5057 
5058   if (!found_any) {
5059     add_triple(base_triple);
5060   }
5061 }
5062 
5063 ArchSpec ObjectFileMachO::GetArchitecture(
5064     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5065     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5066   ModuleSpecList all_specs;
5067   ModuleSpec base_spec;
5068   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5069                   base_spec, all_specs);
5070 
5071   // If the object file offers multiple alternative load commands,
5072   // pick the one that matches the module.
5073   if (module_sp) {
5074     const ArchSpec &module_arch = module_sp->GetArchitecture();
5075     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5076       ArchSpec mach_arch =
5077           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5078       if (module_arch.IsCompatibleMatch(mach_arch))
5079         return mach_arch;
5080     }
5081   }
5082 
5083   // Return the first arch we found.
5084   if (all_specs.GetSize() == 0)
5085     return {};
5086   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5087 }
5088 
5089 UUID ObjectFileMachO::GetUUID() {
5090   ModuleSP module_sp(GetModule());
5091   if (module_sp) {
5092     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5093     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5094     return GetUUID(m_header, m_data, offset);
5095   }
5096   return UUID();
5097 }
5098 
5099 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5100   uint32_t count = 0;
5101   ModuleSP module_sp(GetModule());
5102   if (module_sp) {
5103     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5104     llvm::MachO::load_command load_cmd;
5105     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5106     std::vector<std::string> rpath_paths;
5107     std::vector<std::string> rpath_relative_paths;
5108     std::vector<std::string> at_exec_relative_paths;
5109     uint32_t i;
5110     for (i = 0; i < m_header.ncmds; ++i) {
5111       const uint32_t cmd_offset = offset;
5112       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5113         break;
5114 
5115       switch (load_cmd.cmd) {
5116       case LC_RPATH:
5117       case LC_LOAD_DYLIB:
5118       case LC_LOAD_WEAK_DYLIB:
5119       case LC_REEXPORT_DYLIB:
5120       case LC_LOAD_DYLINKER:
5121       case LC_LOADFVMLIB:
5122       case LC_LOAD_UPWARD_DYLIB: {
5123         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5124         const char *path = m_data.PeekCStr(name_offset);
5125         if (path) {
5126           if (load_cmd.cmd == LC_RPATH)
5127             rpath_paths.push_back(path);
5128           else {
5129             if (path[0] == '@') {
5130               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5131                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5132               else if (strncmp(path, "@executable_path",
5133                                strlen("@executable_path")) == 0)
5134                 at_exec_relative_paths.push_back(path +
5135                                                  strlen("@executable_path"));
5136             } else {
5137               FileSpec file_spec(path);
5138               if (files.AppendIfUnique(file_spec))
5139                 count++;
5140             }
5141           }
5142         }
5143       } break;
5144 
5145       default:
5146         break;
5147       }
5148       offset = cmd_offset + load_cmd.cmdsize;
5149     }
5150 
5151     FileSpec this_file_spec(m_file);
5152     FileSystem::Instance().Resolve(this_file_spec);
5153 
5154     if (!rpath_paths.empty()) {
5155       // Fixup all LC_RPATH values to be absolute paths
5156       std::string loader_path("@loader_path");
5157       std::string executable_path("@executable_path");
5158       for (auto &rpath : rpath_paths) {
5159         if (llvm::StringRef(rpath).startswith(loader_path)) {
5160           rpath.erase(0, loader_path.size());
5161           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5162         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5163           rpath.erase(0, executable_path.size());
5164           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5165         }
5166       }
5167 
5168       for (const auto &rpath_relative_path : rpath_relative_paths) {
5169         for (const auto &rpath : rpath_paths) {
5170           std::string path = rpath;
5171           path += rpath_relative_path;
5172           // It is OK to resolve this path because we must find a file on disk
5173           // for us to accept it anyway if it is rpath relative.
5174           FileSpec file_spec(path);
5175           FileSystem::Instance().Resolve(file_spec);
5176           if (FileSystem::Instance().Exists(file_spec) &&
5177               files.AppendIfUnique(file_spec)) {
5178             count++;
5179             break;
5180           }
5181         }
5182       }
5183     }
5184 
5185     // We may have @executable_paths but no RPATHS.  Figure those out here.
5186     // Only do this if this object file is the executable.  We have no way to
5187     // get back to the actual executable otherwise, so we won't get the right
5188     // path.
5189     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5190       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5191       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5192         FileSpec file_spec =
5193             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5194         if (FileSystem::Instance().Exists(file_spec) &&
5195             files.AppendIfUnique(file_spec))
5196           count++;
5197       }
5198     }
5199   }
5200   return count;
5201 }
5202 
5203 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5204   // If the object file is not an executable it can't hold the entry point.
5205   // m_entry_point_address is initialized to an invalid address, so we can just
5206   // return that. If m_entry_point_address is valid it means we've found it
5207   // already, so return the cached value.
5208 
5209   if ((!IsExecutable() && !IsDynamicLoader()) ||
5210       m_entry_point_address.IsValid()) {
5211     return m_entry_point_address;
5212   }
5213 
5214   // Otherwise, look for the UnixThread or Thread command.  The data for the
5215   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5216   //
5217   //  uint32_t flavor  - this is the flavor argument you would pass to
5218   //  thread_get_state
5219   //  uint32_t count   - this is the count of longs in the thread state data
5220   //  struct XXX_thread_state state - this is the structure from
5221   //  <machine/thread_status.h> corresponding to the flavor.
5222   //  <repeat this trio>
5223   //
5224   // So we just keep reading the various register flavors till we find the GPR
5225   // one, then read the PC out of there.
5226   // FIXME: We will need to have a "RegisterContext data provider" class at some
5227   // point that can get all the registers
5228   // out of data in this form & attach them to a given thread.  That should
5229   // underlie the MacOS X User process plugin, and we'll also need it for the
5230   // MacOS X Core File process plugin.  When we have that we can also use it
5231   // here.
5232   //
5233   // For now we hard-code the offsets and flavors we need:
5234   //
5235   //
5236 
5237   ModuleSP module_sp(GetModule());
5238   if (module_sp) {
5239     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5240     llvm::MachO::load_command load_cmd;
5241     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5242     uint32_t i;
5243     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5244     bool done = false;
5245 
5246     for (i = 0; i < m_header.ncmds; ++i) {
5247       const lldb::offset_t cmd_offset = offset;
5248       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5249         break;
5250 
5251       switch (load_cmd.cmd) {
5252       case LC_UNIXTHREAD:
5253       case LC_THREAD: {
5254         while (offset < cmd_offset + load_cmd.cmdsize) {
5255           uint32_t flavor = m_data.GetU32(&offset);
5256           uint32_t count = m_data.GetU32(&offset);
5257           if (count == 0) {
5258             // We've gotten off somehow, log and exit;
5259             return m_entry_point_address;
5260           }
5261 
5262           switch (m_header.cputype) {
5263           case llvm::MachO::CPU_TYPE_ARM:
5264             if (flavor == 1 ||
5265                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5266                              // from mach/arm/thread_status.h
5267             {
5268               offset += 60; // This is the offset of pc in the GPR thread state
5269                             // data structure.
5270               start_address = m_data.GetU32(&offset);
5271               done = true;
5272             }
5273             break;
5274           case llvm::MachO::CPU_TYPE_ARM64:
5275           case llvm::MachO::CPU_TYPE_ARM64_32:
5276             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5277             {
5278               offset += 256; // This is the offset of pc in the GPR thread state
5279                              // data structure.
5280               start_address = m_data.GetU64(&offset);
5281               done = true;
5282             }
5283             break;
5284           case llvm::MachO::CPU_TYPE_I386:
5285             if (flavor ==
5286                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5287             {
5288               offset += 40; // This is the offset of eip in the GPR thread state
5289                             // data structure.
5290               start_address = m_data.GetU32(&offset);
5291               done = true;
5292             }
5293             break;
5294           case llvm::MachO::CPU_TYPE_X86_64:
5295             if (flavor ==
5296                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5297             {
5298               offset += 16 * 8; // This is the offset of rip in the GPR thread
5299                                 // state data structure.
5300               start_address = m_data.GetU64(&offset);
5301               done = true;
5302             }
5303             break;
5304           default:
5305             return m_entry_point_address;
5306           }
5307           // Haven't found the GPR flavor yet, skip over the data for this
5308           // flavor:
5309           if (done)
5310             break;
5311           offset += count * 4;
5312         }
5313       } break;
5314       case LC_MAIN: {
5315         ConstString text_segment_name("__TEXT");
5316         uint64_t entryoffset = m_data.GetU64(&offset);
5317         SectionSP text_segment_sp =
5318             GetSectionList()->FindSectionByName(text_segment_name);
5319         if (text_segment_sp) {
5320           done = true;
5321           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5322         }
5323       } break;
5324 
5325       default:
5326         break;
5327       }
5328       if (done)
5329         break;
5330 
5331       // Go to the next load command:
5332       offset = cmd_offset + load_cmd.cmdsize;
5333     }
5334 
5335     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5336       if (GetSymtab()) {
5337         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5338             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5339             Symtab::eDebugAny, Symtab::eVisibilityAny);
5340         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5341           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5342         }
5343       }
5344     }
5345 
5346     if (start_address != LLDB_INVALID_ADDRESS) {
5347       // We got the start address from the load commands, so now resolve that
5348       // address in the sections of this ObjectFile:
5349       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5350               start_address, GetSectionList())) {
5351         m_entry_point_address.Clear();
5352       }
5353     } else {
5354       // We couldn't read the UnixThread load command - maybe it wasn't there.
5355       // As a fallback look for the "start" symbol in the main executable.
5356 
5357       ModuleSP module_sp(GetModule());
5358 
5359       if (module_sp) {
5360         SymbolContextList contexts;
5361         SymbolContext context;
5362         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5363                                               eSymbolTypeCode, contexts);
5364         if (contexts.GetSize()) {
5365           if (contexts.GetContextAtIndex(0, context))
5366             m_entry_point_address = context.symbol->GetAddress();
5367         }
5368       }
5369     }
5370   }
5371 
5372   return m_entry_point_address;
5373 }
5374 
5375 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5376   lldb_private::Address header_addr;
5377   SectionList *section_list = GetSectionList();
5378   if (section_list) {
5379     SectionSP text_segment_sp(
5380         section_list->FindSectionByName(GetSegmentNameTEXT()));
5381     if (text_segment_sp) {
5382       header_addr.SetSection(text_segment_sp);
5383       header_addr.SetOffset(0);
5384     }
5385   }
5386   return header_addr;
5387 }
5388 
5389 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5390   ModuleSP module_sp(GetModule());
5391   if (module_sp) {
5392     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5393     if (!m_thread_context_offsets_valid) {
5394       m_thread_context_offsets_valid = true;
5395       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5396       FileRangeArray::Entry file_range;
5397       llvm::MachO::thread_command thread_cmd;
5398       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5399         const uint32_t cmd_offset = offset;
5400         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5401           break;
5402 
5403         if (thread_cmd.cmd == LC_THREAD) {
5404           file_range.SetRangeBase(offset);
5405           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5406           m_thread_context_offsets.Append(file_range);
5407         }
5408         offset = cmd_offset + thread_cmd.cmdsize;
5409       }
5410     }
5411   }
5412   return m_thread_context_offsets.GetSize();
5413 }
5414 
5415 std::string ObjectFileMachO::GetIdentifierString() {
5416   std::string result;
5417   ModuleSP module_sp(GetModule());
5418   if (module_sp) {
5419     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5420 
5421     // First, look over the load commands for an LC_NOTE load command with
5422     // data_owner string "kern ver str" & use that if found.
5423     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5424     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5425       const uint32_t cmd_offset = offset;
5426       llvm::MachO::load_command lc;
5427       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5428         break;
5429       if (lc.cmd == LC_NOTE) {
5430         char data_owner[17];
5431         m_data.CopyData(offset, 16, data_owner);
5432         data_owner[16] = '\0';
5433         offset += 16;
5434         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5435         uint64_t size = m_data.GetU64_unchecked(&offset);
5436 
5437         // "kern ver str" has a uint32_t version and then a nul terminated
5438         // c-string.
5439         if (strcmp("kern ver str", data_owner) == 0) {
5440           offset = fileoff;
5441           uint32_t version;
5442           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5443             if (version == 1) {
5444               uint32_t strsize = size - sizeof(uint32_t);
5445               char *buf = (char *)malloc(strsize);
5446               if (buf) {
5447                 m_data.CopyData(offset, strsize, buf);
5448                 buf[strsize - 1] = '\0';
5449                 result = buf;
5450                 if (buf)
5451                   free(buf);
5452                 return result;
5453               }
5454             }
5455           }
5456         }
5457       }
5458       offset = cmd_offset + lc.cmdsize;
5459     }
5460 
5461     // Second, make a pass over the load commands looking for an obsolete
5462     // LC_IDENT load command.
5463     offset = MachHeaderSizeFromMagic(m_header.magic);
5464     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5465       const uint32_t cmd_offset = offset;
5466       llvm::MachO::ident_command ident_command;
5467       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5468         break;
5469       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5470         char *buf = (char *)malloc(ident_command.cmdsize);
5471         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5472                                               buf) == ident_command.cmdsize) {
5473           buf[ident_command.cmdsize - 1] = '\0';
5474           result = buf;
5475         }
5476         if (buf)
5477           free(buf);
5478       }
5479       offset = cmd_offset + ident_command.cmdsize;
5480     }
5481   }
5482   return result;
5483 }
5484 
5485 addr_t ObjectFileMachO::GetAddressMask() {
5486   addr_t mask = 0;
5487   ModuleSP module_sp(GetModule());
5488   if (module_sp) {
5489     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5490     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5491     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5492       const uint32_t cmd_offset = offset;
5493       llvm::MachO::load_command lc;
5494       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5495         break;
5496       if (lc.cmd == LC_NOTE) {
5497         char data_owner[17];
5498         m_data.CopyData(offset, 16, data_owner);
5499         data_owner[16] = '\0';
5500         offset += 16;
5501         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5502 
5503         // "addrable bits" has a uint32_t version and a uint32_t
5504         // number of bits used in addressing.
5505         if (strcmp("addrable bits", data_owner) == 0) {
5506           offset = fileoff;
5507           uint32_t version;
5508           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5509             if (version == 3) {
5510               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5511               if (num_addr_bits != 0) {
5512                 mask = ~((1ULL << num_addr_bits) - 1);
5513               }
5514               break;
5515             }
5516           }
5517         }
5518       }
5519       offset = cmd_offset + lc.cmdsize;
5520     }
5521   }
5522   return mask;
5523 }
5524 
5525 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5526                                                 bool &value_is_offset,
5527                                                 UUID &uuid,
5528                                                 ObjectFile::BinaryType &type) {
5529   value = LLDB_INVALID_ADDRESS;
5530   value_is_offset = false;
5531   uuid.Clear();
5532   uint32_t log2_pagesize = 0; // not currently passed up to caller
5533   uint32_t platform = 0;      // not currently passed up to caller
5534   ModuleSP module_sp(GetModule());
5535   if (module_sp) {
5536     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5537     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5538     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5539       const uint32_t cmd_offset = offset;
5540       llvm::MachO::load_command lc;
5541       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5542         break;
5543       if (lc.cmd == LC_NOTE) {
5544         char data_owner[17];
5545         memset(data_owner, 0, sizeof(data_owner));
5546         m_data.CopyData(offset, 16, data_owner);
5547         offset += 16;
5548         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5549         uint64_t size = m_data.GetU64_unchecked(&offset);
5550 
5551         // struct main_bin_spec
5552         // {
5553         //     uint32_t version;       // currently 2
5554         //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5555         //                             // 2 == user process,
5556         //                             // 3 == standalone binary
5557         //     uint64_t address;       // UINT64_MAX if address not specified
5558         //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5559         //                             // 0 if no slide needs to be applied to
5560         //                             // file address
5561         //     uuid_t   uuid;          // all zero's if uuid not specified
5562         //     uint32_t log2_pagesize; // process page size in log base 2,
5563         //                             // e.g. 4k pages are 12.
5564         //                             // 0 for unspecified
5565         //     uint32_t platform;      // The Mach-O platform for this corefile.
5566         //                             // 0 for unspecified.
5567         //                             // The values are defined in
5568         //                             // <mach-o/loader.h>, PLATFORM_*.
5569         // } __attribute((packed));
5570 
5571         // "main bin spec" (main binary specification) data payload is
5572         // formatted:
5573         //    uint32_t version       [currently 1]
5574         //    uint32_t type          [0 == unspecified, 1 == kernel,
5575         //                            2 == user process, 3 == firmware ]
5576         //    uint64_t address       [ UINT64_MAX if address not specified ]
5577         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5578         //    uint32_t log2_pagesize [ process page size in log base
5579         //                             2, e.g. 4k pages are 12.
5580         //                             0 for unspecified ]
5581         //    uint32_t unused        [ for alignment ]
5582 
5583         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5584           offset = fileoff;
5585           uint32_t version;
5586           if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
5587             uint32_t binspec_type = 0;
5588             uuid_t raw_uuid;
5589             memset(raw_uuid, 0, sizeof(uuid_t));
5590 
5591             if (!m_data.GetU32(&offset, &binspec_type, 1))
5592               return false;
5593             if (!m_data.GetU64(&offset, &value, 1))
5594               return false;
5595             uint64_t slide = LLDB_INVALID_ADDRESS;
5596             if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
5597               return false;
5598             if (value == LLDB_INVALID_ADDRESS &&
5599                 slide != LLDB_INVALID_ADDRESS) {
5600               value = slide;
5601               value_is_offset = true;
5602             }
5603 
5604             if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5605               uuid = UUID::fromOptionalData(raw_uuid, sizeof(uuid_t));
5606               // convert the "main bin spec" type into our
5607               // ObjectFile::BinaryType enum
5608               switch (binspec_type) {
5609               case 0:
5610                 type = eBinaryTypeUnknown;
5611                 break;
5612               case 1:
5613                 type = eBinaryTypeKernel;
5614                 break;
5615               case 2:
5616                 type = eBinaryTypeUser;
5617                 break;
5618               case 3:
5619                 type = eBinaryTypeStandalone;
5620                 break;
5621               }
5622               if (!m_data.GetU32(&offset, &log2_pagesize, 1))
5623                 return false;
5624               if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
5625                 return false;
5626               return true;
5627             }
5628           }
5629         }
5630       }
5631       offset = cmd_offset + lc.cmdsize;
5632     }
5633   }
5634   return false;
5635 }
5636 
5637 lldb::RegisterContextSP
5638 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5639                                          lldb_private::Thread &thread) {
5640   lldb::RegisterContextSP reg_ctx_sp;
5641 
5642   ModuleSP module_sp(GetModule());
5643   if (module_sp) {
5644     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5645     if (!m_thread_context_offsets_valid)
5646       GetNumThreadContexts();
5647 
5648     const FileRangeArray::Entry *thread_context_file_range =
5649         m_thread_context_offsets.GetEntryAtIndex(idx);
5650     if (thread_context_file_range) {
5651 
5652       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5653                          thread_context_file_range->GetByteSize());
5654 
5655       switch (m_header.cputype) {
5656       case llvm::MachO::CPU_TYPE_ARM64:
5657       case llvm::MachO::CPU_TYPE_ARM64_32:
5658         reg_ctx_sp =
5659             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5660         break;
5661 
5662       case llvm::MachO::CPU_TYPE_ARM:
5663         reg_ctx_sp =
5664             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5665         break;
5666 
5667       case llvm::MachO::CPU_TYPE_I386:
5668         reg_ctx_sp =
5669             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5670         break;
5671 
5672       case llvm::MachO::CPU_TYPE_X86_64:
5673         reg_ctx_sp =
5674             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5675         break;
5676       }
5677     }
5678   }
5679   return reg_ctx_sp;
5680 }
5681 
5682 ObjectFile::Type ObjectFileMachO::CalculateType() {
5683   switch (m_header.filetype) {
5684   case MH_OBJECT: // 0x1u
5685     if (GetAddressByteSize() == 4) {
5686       // 32 bit kexts are just object files, but they do have a valid
5687       // UUID load command.
5688       if (GetUUID()) {
5689         // this checking for the UUID load command is not enough we could
5690         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5691         // this is required of kexts
5692         if (m_strata == eStrataInvalid)
5693           m_strata = eStrataKernel;
5694         return eTypeSharedLibrary;
5695       }
5696     }
5697     return eTypeObjectFile;
5698 
5699   case MH_EXECUTE:
5700     return eTypeExecutable; // 0x2u
5701   case MH_FVMLIB:
5702     return eTypeSharedLibrary; // 0x3u
5703   case MH_CORE:
5704     return eTypeCoreFile; // 0x4u
5705   case MH_PRELOAD:
5706     return eTypeSharedLibrary; // 0x5u
5707   case MH_DYLIB:
5708     return eTypeSharedLibrary; // 0x6u
5709   case MH_DYLINKER:
5710     return eTypeDynamicLinker; // 0x7u
5711   case MH_BUNDLE:
5712     return eTypeSharedLibrary; // 0x8u
5713   case MH_DYLIB_STUB:
5714     return eTypeStubLibrary; // 0x9u
5715   case MH_DSYM:
5716     return eTypeDebugInfo; // 0xAu
5717   case MH_KEXT_BUNDLE:
5718     return eTypeSharedLibrary; // 0xBu
5719   default:
5720     break;
5721   }
5722   return eTypeUnknown;
5723 }
5724 
5725 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5726   switch (m_header.filetype) {
5727   case MH_OBJECT: // 0x1u
5728   {
5729     // 32 bit kexts are just object files, but they do have a valid
5730     // UUID load command.
5731     if (GetUUID()) {
5732       // this checking for the UUID load command is not enough we could
5733       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5734       // this is required of kexts
5735       if (m_type == eTypeInvalid)
5736         m_type = eTypeSharedLibrary;
5737 
5738       return eStrataKernel;
5739     }
5740   }
5741     return eStrataUnknown;
5742 
5743   case MH_EXECUTE: // 0x2u
5744     // Check for the MH_DYLDLINK bit in the flags
5745     if (m_header.flags & MH_DYLDLINK) {
5746       return eStrataUser;
5747     } else {
5748       SectionList *section_list = GetSectionList();
5749       if (section_list) {
5750         static ConstString g_kld_section_name("__KLD");
5751         if (section_list->FindSectionByName(g_kld_section_name))
5752           return eStrataKernel;
5753       }
5754     }
5755     return eStrataRawImage;
5756 
5757   case MH_FVMLIB:
5758     return eStrataUser; // 0x3u
5759   case MH_CORE:
5760     return eStrataUnknown; // 0x4u
5761   case MH_PRELOAD:
5762     return eStrataRawImage; // 0x5u
5763   case MH_DYLIB:
5764     return eStrataUser; // 0x6u
5765   case MH_DYLINKER:
5766     return eStrataUser; // 0x7u
5767   case MH_BUNDLE:
5768     return eStrataUser; // 0x8u
5769   case MH_DYLIB_STUB:
5770     return eStrataUser; // 0x9u
5771   case MH_DSYM:
5772     return eStrataUnknown; // 0xAu
5773   case MH_KEXT_BUNDLE:
5774     return eStrataKernel; // 0xBu
5775   default:
5776     break;
5777   }
5778   return eStrataUnknown;
5779 }
5780 
5781 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5782   ModuleSP module_sp(GetModule());
5783   if (module_sp) {
5784     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5785     llvm::MachO::dylib_command load_cmd;
5786     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5787     uint32_t version_cmd = 0;
5788     uint64_t version = 0;
5789     uint32_t i;
5790     for (i = 0; i < m_header.ncmds; ++i) {
5791       const lldb::offset_t cmd_offset = offset;
5792       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5793         break;
5794 
5795       if (load_cmd.cmd == LC_ID_DYLIB) {
5796         if (version_cmd == 0) {
5797           version_cmd = load_cmd.cmd;
5798           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5799             break;
5800           version = load_cmd.dylib.current_version;
5801         }
5802         break; // Break for now unless there is another more complete version
5803                // number load command in the future.
5804       }
5805       offset = cmd_offset + load_cmd.cmdsize;
5806     }
5807 
5808     if (version_cmd == LC_ID_DYLIB) {
5809       unsigned major = (version & 0xFFFF0000ull) >> 16;
5810       unsigned minor = (version & 0x0000FF00ull) >> 8;
5811       unsigned subminor = (version & 0x000000FFull);
5812       return llvm::VersionTuple(major, minor, subminor);
5813     }
5814   }
5815   return llvm::VersionTuple();
5816 }
5817 
5818 ArchSpec ObjectFileMachO::GetArchitecture() {
5819   ModuleSP module_sp(GetModule());
5820   ArchSpec arch;
5821   if (module_sp) {
5822     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5823 
5824     return GetArchitecture(module_sp, m_header, m_data,
5825                            MachHeaderSizeFromMagic(m_header.magic));
5826   }
5827   return arch;
5828 }
5829 
5830 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5831                                                 addr_t &base_addr, UUID &uuid) {
5832   uuid.Clear();
5833   base_addr = LLDB_INVALID_ADDRESS;
5834   if (process && process->GetDynamicLoader()) {
5835     DynamicLoader *dl = process->GetDynamicLoader();
5836     LazyBool using_shared_cache;
5837     LazyBool private_shared_cache;
5838     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5839                                   private_shared_cache);
5840   }
5841   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5842   LLDB_LOGF(
5843       log,
5844       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5845       uuid.GetAsString().c_str(), base_addr);
5846 }
5847 
5848 // From dyld SPI header dyld_process_info.h
5849 typedef void *dyld_process_info;
5850 struct lldb_copy__dyld_process_cache_info {
5851   uuid_t cacheUUID;          // UUID of cache used by process
5852   uint64_t cacheBaseAddress; // load address of dyld shared cache
5853   bool noCache;              // process is running without a dyld cache
5854   bool privateCache; // process is using a private copy of its dyld cache
5855 };
5856 
5857 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5858 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5859 // errors. So we need to use the actual underlying types of task_t and
5860 // kern_return_t below.
5861 extern "C" unsigned int /*task_t*/ mach_task_self();
5862 
5863 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5864   uuid.Clear();
5865   base_addr = LLDB_INVALID_ADDRESS;
5866 
5867 #if defined(__APPLE__)
5868   uint8_t *(*dyld_get_all_image_infos)(void);
5869   dyld_get_all_image_infos =
5870       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5871   if (dyld_get_all_image_infos) {
5872     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5873     if (dyld_all_image_infos_address) {
5874       uint32_t *version = (uint32_t *)
5875           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5876       if (*version >= 13) {
5877         uuid_t *sharedCacheUUID_address = 0;
5878         int wordsize = sizeof(uint8_t *);
5879         if (wordsize == 8) {
5880           sharedCacheUUID_address =
5881               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5882                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5883           if (*version >= 15)
5884             base_addr =
5885                 *(uint64_t
5886                       *)((uint8_t *)dyld_all_image_infos_address +
5887                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5888         } else {
5889           sharedCacheUUID_address =
5890               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5891                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5892           if (*version >= 15) {
5893             base_addr = 0;
5894             base_addr =
5895                 *(uint32_t
5896                       *)((uint8_t *)dyld_all_image_infos_address +
5897                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5898           }
5899         }
5900         uuid = UUID::fromOptionalData(sharedCacheUUID_address, sizeof(uuid_t));
5901       }
5902     }
5903   } else {
5904     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5905     dyld_process_info (*dyld_process_info_create)(
5906         unsigned int /* task_t */ task, uint64_t timestamp,
5907         unsigned int /*kern_return_t*/ *kernelError);
5908     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5909     void (*dyld_process_info_release)(dyld_process_info info);
5910 
5911     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5912                                           unsigned int /*kern_return_t*/ *))
5913         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5914     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5915         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5916     dyld_process_info_release =
5917         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5918 
5919     if (dyld_process_info_create && dyld_process_info_get_cache) {
5920       unsigned int /*kern_return_t */ kern_ret;
5921       dyld_process_info process_info =
5922           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5923       if (process_info) {
5924         struct lldb_copy__dyld_process_cache_info sc_info;
5925         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5926         dyld_process_info_get_cache(process_info, &sc_info);
5927         if (sc_info.cacheBaseAddress != 0) {
5928           base_addr = sc_info.cacheBaseAddress;
5929           uuid = UUID::fromOptionalData(sc_info.cacheUUID, sizeof(uuid_t));
5930         }
5931         dyld_process_info_release(process_info);
5932       }
5933     }
5934   }
5935   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5936   if (log && uuid.IsValid())
5937     LLDB_LOGF(log,
5938               "lldb's in-memory shared cache has a UUID of %s base address of "
5939               "0x%" PRIx64,
5940               uuid.GetAsString().c_str(), base_addr);
5941 #endif
5942 }
5943 
5944 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5945   if (!m_min_os_version) {
5946     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5947     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5948       const lldb::offset_t load_cmd_offset = offset;
5949 
5950       llvm::MachO::version_min_command lc;
5951       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5952         break;
5953       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5954           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5955           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5956           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5957         if (m_data.GetU32(&offset, &lc.version,
5958                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5959           const uint32_t xxxx = lc.version >> 16;
5960           const uint32_t yy = (lc.version >> 8) & 0xffu;
5961           const uint32_t zz = lc.version & 0xffu;
5962           if (xxxx) {
5963             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5964             break;
5965           }
5966         }
5967       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5968         // struct build_version_command {
5969         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5970         //     uint32_t    cmdsize;        /* sizeof(struct
5971         //     build_version_command) plus */
5972         //                                 /* ntools * sizeof(struct
5973         //                                 build_tool_version) */
5974         //     uint32_t    platform;       /* platform */
5975         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5976         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5977         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5978         //     tool entries following this */
5979         // };
5980 
5981         offset += 4; // skip platform
5982         uint32_t minos = m_data.GetU32(&offset);
5983 
5984         const uint32_t xxxx = minos >> 16;
5985         const uint32_t yy = (minos >> 8) & 0xffu;
5986         const uint32_t zz = minos & 0xffu;
5987         if (xxxx) {
5988           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5989           break;
5990         }
5991       }
5992 
5993       offset = load_cmd_offset + lc.cmdsize;
5994     }
5995 
5996     if (!m_min_os_version) {
5997       // Set version to an empty value so we don't keep trying to
5998       m_min_os_version = llvm::VersionTuple();
5999     }
6000   }
6001 
6002   return *m_min_os_version;
6003 }
6004 
6005 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6006   if (!m_sdk_versions) {
6007     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6008     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6009       const lldb::offset_t load_cmd_offset = offset;
6010 
6011       llvm::MachO::version_min_command lc;
6012       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6013         break;
6014       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6015           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6016           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6017           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6018         if (m_data.GetU32(&offset, &lc.version,
6019                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6020           const uint32_t xxxx = lc.sdk >> 16;
6021           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6022           const uint32_t zz = lc.sdk & 0xffu;
6023           if (xxxx) {
6024             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6025             break;
6026           } else {
6027             GetModule()->ReportWarning("minimum OS version load command with "
6028                                        "invalid (0) version found.");
6029           }
6030         }
6031       }
6032       offset = load_cmd_offset + lc.cmdsize;
6033     }
6034 
6035     if (!m_sdk_versions) {
6036       offset = MachHeaderSizeFromMagic(m_header.magic);
6037       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6038         const lldb::offset_t load_cmd_offset = offset;
6039 
6040         llvm::MachO::version_min_command lc;
6041         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6042           break;
6043         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6044           // struct build_version_command {
6045           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6046           //     uint32_t    cmdsize;        /* sizeof(struct
6047           //     build_version_command) plus */
6048           //                                 /* ntools * sizeof(struct
6049           //                                 build_tool_version) */
6050           //     uint32_t    platform;       /* platform */
6051           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6052           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6053           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6054           //     of tool entries following this */
6055           // };
6056 
6057           offset += 4; // skip platform
6058           uint32_t minos = m_data.GetU32(&offset);
6059 
6060           const uint32_t xxxx = minos >> 16;
6061           const uint32_t yy = (minos >> 8) & 0xffu;
6062           const uint32_t zz = minos & 0xffu;
6063           if (xxxx) {
6064             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6065             break;
6066           }
6067         }
6068         offset = load_cmd_offset + lc.cmdsize;
6069       }
6070     }
6071 
6072     if (!m_sdk_versions)
6073       m_sdk_versions = llvm::VersionTuple();
6074   }
6075 
6076   return *m_sdk_versions;
6077 }
6078 
6079 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6080   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6081 }
6082 
6083 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6084   return m_allow_assembly_emulation_unwind_plans;
6085 }
6086 
6087 Section *ObjectFileMachO::GetMachHeaderSection() {
6088   // Find the first address of the mach header which is the first non-zero file
6089   // sized section whose file offset is zero. This is the base file address of
6090   // the mach-o file which can be subtracted from the vmaddr of the other
6091   // segments found in memory and added to the load address
6092   ModuleSP module_sp = GetModule();
6093   if (!module_sp)
6094     return nullptr;
6095   SectionList *section_list = GetSectionList();
6096   if (!section_list)
6097     return nullptr;
6098   const size_t num_sections = section_list->GetSize();
6099   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6100     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6101     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6102       return section;
6103   }
6104 
6105   // We may have a binary in the shared cache that has a non-zero
6106   // file address for its first segment, traditionally the __TEXT segment.
6107   // Search for it by name and return it as our next best guess.
6108   SectionSP text_segment_sp =
6109       GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
6110   if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6111     return text_segment_sp.get();
6112 
6113   return nullptr;
6114 }
6115 
6116 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6117   if (!section)
6118     return false;
6119   const bool is_dsym = (m_header.filetype == MH_DSYM);
6120   if (section->GetFileSize() == 0 && !is_dsym)
6121     return false;
6122   if (section->IsThreadSpecific())
6123     return false;
6124   if (GetModule().get() != section->GetModule().get())
6125     return false;
6126   // Be careful with __LINKEDIT and __DWARF segments
6127   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6128       section->GetName() == GetSegmentNameDWARF()) {
6129     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6130     // this isn't a kernel binary like a kext or mach_kernel.
6131     const bool is_memory_image = (bool)m_process_wp.lock();
6132     const Strata strata = GetStrata();
6133     if (is_memory_image == false || strata == eStrataKernel)
6134       return false;
6135   }
6136   return true;
6137 }
6138 
6139 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6140     lldb::addr_t header_load_address, const Section *header_section,
6141     const Section *section) {
6142   ModuleSP module_sp = GetModule();
6143   if (module_sp && header_section && section &&
6144       header_load_address != LLDB_INVALID_ADDRESS) {
6145     lldb::addr_t file_addr = header_section->GetFileAddress();
6146     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6147       return section->GetFileAddress() - file_addr + header_load_address;
6148   }
6149   return LLDB_INVALID_ADDRESS;
6150 }
6151 
6152 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6153                                      bool value_is_offset) {
6154   ModuleSP module_sp = GetModule();
6155   if (!module_sp)
6156     return false;
6157 
6158   SectionList *section_list = GetSectionList();
6159   if (!section_list)
6160     return false;
6161 
6162   size_t num_loaded_sections = 0;
6163   const size_t num_sections = section_list->GetSize();
6164 
6165   if (value_is_offset) {
6166     // "value" is an offset to apply to each top level segment
6167     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6168       // Iterate through the object file sections to find all of the
6169       // sections that size on disk (to avoid __PAGEZERO) and load them
6170       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6171       if (SectionIsLoadable(section_sp.get()))
6172         if (target.GetSectionLoadList().SetSectionLoadAddress(
6173                 section_sp, section_sp->GetFileAddress() + value))
6174           ++num_loaded_sections;
6175     }
6176   } else {
6177     // "value" is the new base address of the mach_header, adjust each
6178     // section accordingly
6179 
6180     Section *mach_header_section = GetMachHeaderSection();
6181     if (mach_header_section) {
6182       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6183         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6184 
6185         lldb::addr_t section_load_addr =
6186             CalculateSectionLoadAddressForMemoryImage(
6187                 value, mach_header_section, section_sp.get());
6188         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6189           if (target.GetSectionLoadList().SetSectionLoadAddress(
6190                   section_sp, section_load_addr))
6191             ++num_loaded_sections;
6192         }
6193       }
6194     }
6195   }
6196   return num_loaded_sections > 0;
6197 }
6198 
6199 struct all_image_infos_header {
6200   uint32_t version;         // currently 1
6201   uint32_t imgcount;        // number of binary images
6202   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6203                             // struct entry's begin.
6204   uint32_t entries_size;    // size of 'struct entry'.
6205   uint32_t unused;
6206 };
6207 
6208 struct image_entry {
6209   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6210                              // UINT64_MAX if unavailable.
6211   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6212                              // uuid is unknown.
6213   uint64_t load_address;     // UINT64_MAX if unknown.
6214   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6215   uint32_t segment_count;    // The number of segments for this binary.
6216   uint32_t unused;
6217 
6218   image_entry() {
6219     filepath_offset = UINT64_MAX;
6220     memset(&uuid, 0, sizeof(uuid_t));
6221     segment_count = 0;
6222     load_address = UINT64_MAX;
6223     seg_addrs_offset = UINT64_MAX;
6224     unused = 0;
6225   }
6226   image_entry(const image_entry &rhs) {
6227     filepath_offset = rhs.filepath_offset;
6228     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6229     segment_count = rhs.segment_count;
6230     seg_addrs_offset = rhs.seg_addrs_offset;
6231     load_address = rhs.load_address;
6232     unused = rhs.unused;
6233   }
6234 };
6235 
6236 struct segment_vmaddr {
6237   char segname[16];
6238   uint64_t vmaddr;
6239   uint64_t unused;
6240 
6241   segment_vmaddr() {
6242     memset(&segname, 0, 16);
6243     vmaddr = UINT64_MAX;
6244     unused = 0;
6245   }
6246   segment_vmaddr(const segment_vmaddr &rhs) {
6247     memcpy(&segname, &rhs.segname, 16);
6248     vmaddr = rhs.vmaddr;
6249     unused = rhs.unused;
6250   }
6251 };
6252 
6253 // Write the payload for the "all image infos" LC_NOTE into
6254 // the supplied all_image_infos_payload, assuming that this
6255 // will be written into the corefile starting at
6256 // initial_file_offset.
6257 //
6258 // The placement of this payload is a little tricky.  We're
6259 // laying this out as
6260 //
6261 // 1. header (struct all_image_info_header)
6262 // 2. Array of fixed-size (struct image_entry)'s, one
6263 //    per binary image present in the process.
6264 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6265 //    for each binary image.
6266 // 4. Variable length c-strings of binary image filepaths,
6267 //    one per binary.
6268 //
6269 // To compute where everything will be laid out in the
6270 // payload, we need to iterate over the images and calculate
6271 // how many segment_vmaddr structures each image will need,
6272 // and how long each image's filepath c-string is. There
6273 // are some multiple passes over the image list while calculating
6274 // everything.
6275 
6276 static offset_t CreateAllImageInfosPayload(
6277     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6278     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6279   Target &target = process_sp->GetTarget();
6280   ModuleList modules = target.GetImages();
6281 
6282   // stack-only corefiles have no reason to include binaries that
6283   // are not executing; we're trying to make the smallest corefile
6284   // we can, so leave the rest out.
6285   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6286     modules.Clear();
6287 
6288   std::set<std::string> executing_uuids;
6289   ThreadList &thread_list(process_sp->GetThreadList());
6290   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6291     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6292     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6293     for (uint32_t j = 0; j < stack_frame_count; j++) {
6294       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6295       Address pc = stack_frame_sp->GetFrameCodeAddress();
6296       ModuleSP module_sp = pc.GetModule();
6297       if (module_sp) {
6298         UUID uuid = module_sp->GetUUID();
6299         if (uuid.IsValid()) {
6300           executing_uuids.insert(uuid.GetAsString());
6301           modules.AppendIfNeeded(module_sp);
6302         }
6303       }
6304     }
6305   }
6306   size_t modules_count = modules.GetSize();
6307 
6308   struct all_image_infos_header infos;
6309   infos.version = 1;
6310   infos.imgcount = modules_count;
6311   infos.entries_size = sizeof(image_entry);
6312   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6313   infos.unused = 0;
6314 
6315   all_image_infos_payload.PutHex32(infos.version);
6316   all_image_infos_payload.PutHex32(infos.imgcount);
6317   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6318   all_image_infos_payload.PutHex32(infos.entries_size);
6319   all_image_infos_payload.PutHex32(infos.unused);
6320 
6321   // First create the structures for all of the segment name+vmaddr vectors
6322   // for each module, so we will know the size of them as we add the
6323   // module entries.
6324   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6325   for (size_t i = 0; i < modules_count; i++) {
6326     ModuleSP module = modules.GetModuleAtIndex(i);
6327 
6328     SectionList *sections = module->GetSectionList();
6329     size_t sections_count = sections->GetSize();
6330     std::vector<segment_vmaddr> segment_vmaddrs;
6331     for (size_t j = 0; j < sections_count; j++) {
6332       SectionSP section = sections->GetSectionAtIndex(j);
6333       if (!section->GetParent().get()) {
6334         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6335         if (vmaddr == LLDB_INVALID_ADDRESS)
6336           continue;
6337         ConstString name = section->GetName();
6338         segment_vmaddr seg_vmaddr;
6339         strncpy(seg_vmaddr.segname, name.AsCString(),
6340                 sizeof(seg_vmaddr.segname));
6341         seg_vmaddr.vmaddr = vmaddr;
6342         seg_vmaddr.unused = 0;
6343         segment_vmaddrs.push_back(seg_vmaddr);
6344       }
6345     }
6346     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6347   }
6348 
6349   offset_t size_of_vmaddr_structs = 0;
6350   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6351     size_of_vmaddr_structs +=
6352         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6353   }
6354 
6355   offset_t size_of_filepath_cstrings = 0;
6356   for (size_t i = 0; i < modules_count; i++) {
6357     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6358     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6359   }
6360 
6361   // Calculate the file offsets of our "all image infos" payload in the
6362   // corefile. initial_file_offset the original value passed in to this method.
6363 
6364   offset_t start_of_entries =
6365       initial_file_offset + sizeof(all_image_infos_header);
6366   offset_t start_of_seg_vmaddrs =
6367       start_of_entries + sizeof(image_entry) * modules_count;
6368   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6369 
6370   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6371 
6372   // Now write the one-per-module 'struct image_entry' into the
6373   // StringStream; keep track of where the struct segment_vmaddr
6374   // entries for each module will end up in the corefile.
6375 
6376   offset_t current_string_offset = start_of_filenames;
6377   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6378   std::vector<struct image_entry> image_entries;
6379   for (size_t i = 0; i < modules_count; i++) {
6380     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6381 
6382     struct image_entry ent;
6383     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6384     if (modules_segment_vmaddrs[i].size() > 0) {
6385       ent.segment_count = modules_segment_vmaddrs[i].size();
6386       ent.seg_addrs_offset = current_segaddrs_offset;
6387     }
6388     ent.filepath_offset = current_string_offset;
6389     ObjectFile *objfile = module_sp->GetObjectFile();
6390     if (objfile) {
6391       Address base_addr(objfile->GetBaseAddress());
6392       if (base_addr.IsValid()) {
6393         ent.load_address = base_addr.GetLoadAddress(&target);
6394       }
6395     }
6396 
6397     all_image_infos_payload.PutHex64(ent.filepath_offset);
6398     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6399     all_image_infos_payload.PutHex64(ent.load_address);
6400     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6401     all_image_infos_payload.PutHex32(ent.segment_count);
6402 
6403     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6404         executing_uuids.end())
6405       all_image_infos_payload.PutHex32(1);
6406     else
6407       all_image_infos_payload.PutHex32(0);
6408 
6409     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6410     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6411   }
6412 
6413   // Now write the struct segment_vmaddr entries into the StringStream.
6414 
6415   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6416     if (modules_segment_vmaddrs[i].size() == 0)
6417       continue;
6418     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6419       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6420       all_image_infos_payload.PutHex64(segvm.vmaddr);
6421       all_image_infos_payload.PutHex64(segvm.unused);
6422     }
6423   }
6424 
6425   for (size_t i = 0; i < modules_count; i++) {
6426     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6427     std::string filepath = module_sp->GetFileSpec().GetPath();
6428     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6429   }
6430 
6431   return final_file_offset;
6432 }
6433 
6434 // Temp struct used to combine contiguous memory regions with
6435 // identical permissions.
6436 struct page_object {
6437   addr_t addr;
6438   addr_t size;
6439   uint32_t prot;
6440 };
6441 
6442 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6443                                const FileSpec &outfile,
6444                                lldb::SaveCoreStyle &core_style, Status &error) {
6445   if (!process_sp)
6446     return false;
6447 
6448   // Default on macOS is to create a dirty-memory-only corefile.
6449   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6450     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6451   }
6452 
6453   Target &target = process_sp->GetTarget();
6454   const ArchSpec target_arch = target.GetArchitecture();
6455   const llvm::Triple &target_triple = target_arch.GetTriple();
6456   if (target_triple.getVendor() == llvm::Triple::Apple &&
6457       (target_triple.getOS() == llvm::Triple::MacOSX ||
6458        target_triple.getOS() == llvm::Triple::IOS ||
6459        target_triple.getOS() == llvm::Triple::WatchOS ||
6460        target_triple.getOS() == llvm::Triple::TvOS)) {
6461     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6462     // {
6463     bool make_core = false;
6464     switch (target_arch.GetMachine()) {
6465     case llvm::Triple::aarch64:
6466     case llvm::Triple::aarch64_32:
6467     case llvm::Triple::arm:
6468     case llvm::Triple::thumb:
6469     case llvm::Triple::x86:
6470     case llvm::Triple::x86_64:
6471       make_core = true;
6472       break;
6473     default:
6474       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6475                                      target_triple.str().c_str());
6476       break;
6477     }
6478 
6479     if (make_core) {
6480       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6481       //                uint32_t range_info_idx = 0;
6482       MemoryRegionInfo range_info;
6483       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6484       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6485       const ByteOrder byte_order = target_arch.GetByteOrder();
6486       std::vector<page_object> pages_to_copy;
6487 
6488       if (range_error.Success()) {
6489         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6490           // Calculate correct protections
6491           uint32_t prot = 0;
6492           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6493             prot |= VM_PROT_READ;
6494           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6495             prot |= VM_PROT_WRITE;
6496           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6497             prot |= VM_PROT_EXECUTE;
6498 
6499           const addr_t addr = range_info.GetRange().GetRangeBase();
6500           const addr_t size = range_info.GetRange().GetByteSize();
6501 
6502           if (size == 0)
6503             break;
6504 
6505           bool include_this_region = true;
6506           bool dirty_pages_only = false;
6507           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6508             dirty_pages_only = true;
6509             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6510               include_this_region = false;
6511             }
6512           }
6513           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6514             dirty_pages_only = true;
6515           }
6516 
6517           if (prot != 0 && include_this_region) {
6518             addr_t pagesize = range_info.GetPageSize();
6519             const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
6520                 range_info.GetDirtyPageList();
6521             if (dirty_pages_only && dirty_page_list.hasValue()) {
6522               for (addr_t dirtypage : dirty_page_list.getValue()) {
6523                 page_object obj;
6524                 obj.addr = dirtypage;
6525                 obj.size = pagesize;
6526                 obj.prot = prot;
6527                 pages_to_copy.push_back(obj);
6528               }
6529             } else {
6530               page_object obj;
6531               obj.addr = addr;
6532               obj.size = size;
6533               obj.prot = prot;
6534               pages_to_copy.push_back(obj);
6535             }
6536           }
6537 
6538           range_error = process_sp->GetMemoryRegionInfo(
6539               range_info.GetRange().GetRangeEnd(), range_info);
6540           if (range_error.Fail())
6541             break;
6542         }
6543 
6544         // Combine contiguous entries that have the same
6545         // protections so we don't have an excess of
6546         // load commands.
6547         std::vector<page_object> combined_page_objects;
6548         page_object last_obj;
6549         last_obj.addr = LLDB_INVALID_ADDRESS;
6550         last_obj.size = 0;
6551         for (page_object obj : pages_to_copy) {
6552           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6553             last_obj = obj;
6554             continue;
6555           }
6556           if (last_obj.addr + last_obj.size == obj.addr &&
6557               last_obj.prot == obj.prot) {
6558             last_obj.size += obj.size;
6559             continue;
6560           }
6561           combined_page_objects.push_back(last_obj);
6562           last_obj = obj;
6563         }
6564         // Add the last entry we were looking to combine
6565         // on to the array.
6566         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6567           combined_page_objects.push_back(last_obj);
6568 
6569         for (page_object obj : combined_page_objects) {
6570           uint32_t cmd_type = LC_SEGMENT_64;
6571           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6572           if (addr_byte_size == 4) {
6573             cmd_type = LC_SEGMENT;
6574             segment_size = sizeof(llvm::MachO::segment_command);
6575           }
6576           llvm::MachO::segment_command_64 segment = {
6577               cmd_type,     // uint32_t cmd;
6578               segment_size, // uint32_t cmdsize;
6579               {0},          // char segname[16];
6580               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6581                             // Mach-O
6582               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6583                             // Mach-O
6584               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6585               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6586                             // Mach-O
6587               obj.prot,     // uint32_t maxprot;
6588               obj.prot,     // uint32_t initprot;
6589               0,            // uint32_t nsects;
6590               0};           // uint32_t flags;
6591           segment_load_commands.push_back(segment);
6592         }
6593 
6594         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6595 
6596         llvm::MachO::mach_header_64 mach_header;
6597         if (addr_byte_size == 8) {
6598           mach_header.magic = MH_MAGIC_64;
6599         } else {
6600           mach_header.magic = MH_MAGIC;
6601         }
6602         mach_header.cputype = target_arch.GetMachOCPUType();
6603         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6604         mach_header.filetype = MH_CORE;
6605         mach_header.ncmds = segment_load_commands.size();
6606         mach_header.flags = 0;
6607         mach_header.reserved = 0;
6608         ThreadList &thread_list = process_sp->GetThreadList();
6609         const uint32_t num_threads = thread_list.GetSize();
6610 
6611         // Make an array of LC_THREAD data items. Each one contains the
6612         // contents of the LC_THREAD load command. The data doesn't contain
6613         // the load command + load command size, we will add the load command
6614         // and load command size as we emit the data.
6615         std::vector<StreamString> LC_THREAD_datas(num_threads);
6616         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6617           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6618           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6619           LC_THREAD_data.SetByteOrder(byte_order);
6620         }
6621         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6622           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6623           if (thread_sp) {
6624             switch (mach_header.cputype) {
6625             case llvm::MachO::CPU_TYPE_ARM64:
6626             case llvm::MachO::CPU_TYPE_ARM64_32:
6627               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6628                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6629               break;
6630 
6631             case llvm::MachO::CPU_TYPE_ARM:
6632               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6633                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6634               break;
6635 
6636             case llvm::MachO::CPU_TYPE_I386:
6637               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6638                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6639               break;
6640 
6641             case llvm::MachO::CPU_TYPE_X86_64:
6642               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6643                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6644               break;
6645             }
6646           }
6647         }
6648 
6649         // The size of the load command is the size of the segments...
6650         if (addr_byte_size == 8) {
6651           mach_header.sizeofcmds = segment_load_commands.size() *
6652                                    sizeof(llvm::MachO::segment_command_64);
6653         } else {
6654           mach_header.sizeofcmds = segment_load_commands.size() *
6655                                    sizeof(llvm::MachO::segment_command);
6656         }
6657 
6658         // and the size of all LC_THREAD load command
6659         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6660           ++mach_header.ncmds;
6661           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6662         }
6663 
6664         // Bits will be set to indicate which bits are NOT used in
6665         // addressing in this process or 0 for unknown.
6666         uint64_t address_mask = process_sp->GetCodeAddressMask();
6667         if (address_mask != 0) {
6668           // LC_NOTE "addrable bits"
6669           mach_header.ncmds++;
6670           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6671         }
6672 
6673         // LC_NOTE "all image infos"
6674         mach_header.ncmds++;
6675         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6676 
6677         // Write the mach header
6678         buffer.PutHex32(mach_header.magic);
6679         buffer.PutHex32(mach_header.cputype);
6680         buffer.PutHex32(mach_header.cpusubtype);
6681         buffer.PutHex32(mach_header.filetype);
6682         buffer.PutHex32(mach_header.ncmds);
6683         buffer.PutHex32(mach_header.sizeofcmds);
6684         buffer.PutHex32(mach_header.flags);
6685         if (addr_byte_size == 8) {
6686           buffer.PutHex32(mach_header.reserved);
6687         }
6688 
6689         // Skip the mach header and all load commands and align to the next
6690         // 0x1000 byte boundary
6691         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6692 
6693         file_offset = llvm::alignTo(file_offset, 16);
6694         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6695 
6696         // Add "addrable bits" LC_NOTE when an address mask is available
6697         if (address_mask != 0) {
6698           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6699               new LCNoteEntry(addr_byte_size, byte_order));
6700           addrable_bits_lcnote_up->name = "addrable bits";
6701           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6702           int bits = std::bitset<64>(~address_mask).count();
6703           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6704           addrable_bits_lcnote_up->payload.PutHex32(
6705               bits); // # of bits used for addressing
6706           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6707 
6708           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6709 
6710           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6711         }
6712 
6713         // Add "all image infos" LC_NOTE
6714         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6715             new LCNoteEntry(addr_byte_size, byte_order));
6716         all_image_infos_lcnote_up->name = "all image infos";
6717         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6718         file_offset = CreateAllImageInfosPayload(
6719             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6720             core_style);
6721         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6722 
6723         // Add LC_NOTE load commands
6724         for (auto &lcnote : lc_notes) {
6725           // Add the LC_NOTE load command to the file.
6726           buffer.PutHex32(LC_NOTE);
6727           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6728           char namebuf[16];
6729           memset(namebuf, 0, sizeof(namebuf));
6730           // this is the uncommon case where strncpy is exactly
6731           // the right one, doesn't need to be nul terminated.
6732           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6733           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6734           buffer.PutHex64(lcnote->payload_file_offset);
6735           buffer.PutHex64(lcnote->payload.GetSize());
6736         }
6737 
6738         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6739         file_offset = llvm::alignTo(file_offset, 4096);
6740 
6741         for (auto &segment : segment_load_commands) {
6742           segment.fileoff = file_offset;
6743           file_offset += segment.filesize;
6744         }
6745 
6746         // Write out all of the LC_THREAD load commands
6747         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6748           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6749           buffer.PutHex32(LC_THREAD);
6750           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6751           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6752         }
6753 
6754         // Write out all of the segment load commands
6755         for (const auto &segment : segment_load_commands) {
6756           buffer.PutHex32(segment.cmd);
6757           buffer.PutHex32(segment.cmdsize);
6758           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6759           if (addr_byte_size == 8) {
6760             buffer.PutHex64(segment.vmaddr);
6761             buffer.PutHex64(segment.vmsize);
6762             buffer.PutHex64(segment.fileoff);
6763             buffer.PutHex64(segment.filesize);
6764           } else {
6765             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6766             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6767             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6768             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6769           }
6770           buffer.PutHex32(segment.maxprot);
6771           buffer.PutHex32(segment.initprot);
6772           buffer.PutHex32(segment.nsects);
6773           buffer.PutHex32(segment.flags);
6774         }
6775 
6776         std::string core_file_path(outfile.GetPath());
6777         auto core_file = FileSystem::Instance().Open(
6778             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6779                          File::eOpenOptionCanCreate);
6780         if (!core_file) {
6781           error = core_file.takeError();
6782         } else {
6783           // Read 1 page at a time
6784           uint8_t bytes[0x1000];
6785           // Write the mach header and load commands out to the core file
6786           size_t bytes_written = buffer.GetString().size();
6787           error =
6788               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6789           if (error.Success()) {
6790 
6791             for (auto &lcnote : lc_notes) {
6792               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6793                   -1) {
6794                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6795                                                "to write '%s' LC_NOTE payload",
6796                                                lcnote->name.c_str());
6797                 return false;
6798               }
6799               bytes_written = lcnote->payload.GetSize();
6800               error = core_file.get()->Write(lcnote->payload.GetData(),
6801                                              bytes_written);
6802               if (!error.Success())
6803                 return false;
6804             }
6805 
6806             // Now write the file data for all memory segments in the process
6807             for (const auto &segment : segment_load_commands) {
6808               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6809                 error.SetErrorStringWithFormat(
6810                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6811                     segment.fileoff, core_file_path.c_str());
6812                 break;
6813               }
6814 
6815               target.GetDebugger().GetAsyncOutputStream()->Printf(
6816                   "Saving %" PRId64
6817                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6818                   segment.vmsize, segment.vmaddr);
6819               addr_t bytes_left = segment.vmsize;
6820               addr_t addr = segment.vmaddr;
6821               Status memory_read_error;
6822               while (bytes_left > 0 && error.Success()) {
6823                 const size_t bytes_to_read =
6824                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6825 
6826                 // In a savecore setting, we don't really care about caching,
6827                 // as the data is dumped and very likely never read again,
6828                 // so we call ReadMemoryFromInferior to bypass it.
6829                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6830                     addr, bytes, bytes_to_read, memory_read_error);
6831 
6832                 if (bytes_read == bytes_to_read) {
6833                   size_t bytes_written = bytes_read;
6834                   error = core_file.get()->Write(bytes, bytes_written);
6835                   bytes_left -= bytes_read;
6836                   addr += bytes_read;
6837                 } else {
6838                   // Some pages within regions are not readable, those should
6839                   // be zero filled
6840                   memset(bytes, 0, bytes_to_read);
6841                   size_t bytes_written = bytes_to_read;
6842                   error = core_file.get()->Write(bytes, bytes_written);
6843                   bytes_left -= bytes_to_read;
6844                   addr += bytes_to_read;
6845                 }
6846               }
6847             }
6848           }
6849         }
6850       } else {
6851         error.SetErrorString(
6852             "process doesn't support getting memory region info");
6853       }
6854     }
6855     return true; // This is the right plug to handle saving core files for
6856                  // this process
6857   }
6858   return false;
6859 }
6860 
6861 ObjectFileMachO::MachOCorefileAllImageInfos
6862 ObjectFileMachO::GetCorefileAllImageInfos() {
6863   MachOCorefileAllImageInfos image_infos;
6864 
6865   // Look for an "all image infos" LC_NOTE.
6866   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6867   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6868     const uint32_t cmd_offset = offset;
6869     llvm::MachO::load_command lc;
6870     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6871       break;
6872     if (lc.cmd == LC_NOTE) {
6873       char data_owner[17];
6874       m_data.CopyData(offset, 16, data_owner);
6875       data_owner[16] = '\0';
6876       offset += 16;
6877       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6878       offset += 4; /* size unused */
6879 
6880       if (strcmp("all image infos", data_owner) == 0) {
6881         offset = fileoff;
6882         // Read the struct all_image_infos_header.
6883         uint32_t version = m_data.GetU32(&offset);
6884         if (version != 1) {
6885           return image_infos;
6886         }
6887         uint32_t imgcount = m_data.GetU32(&offset);
6888         uint64_t entries_fileoff = m_data.GetU64(&offset);
6889         offset += 4; // uint32_t entries_size;
6890         offset += 4; // uint32_t unused;
6891 
6892         offset = entries_fileoff;
6893         for (uint32_t i = 0; i < imgcount; i++) {
6894           // Read the struct image_entry.
6895           offset_t filepath_offset = m_data.GetU64(&offset);
6896           uuid_t uuid;
6897           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6898                  sizeof(uuid_t));
6899           uint64_t load_address = m_data.GetU64(&offset);
6900           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6901           uint32_t segment_count = m_data.GetU32(&offset);
6902           uint32_t currently_executing = m_data.GetU32(&offset);
6903 
6904           MachOCorefileImageEntry image_entry;
6905           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6906           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6907           image_entry.load_address = load_address;
6908           image_entry.currently_executing = currently_executing;
6909 
6910           offset_t seg_vmaddrs_offset = seg_addrs_offset;
6911           for (uint32_t j = 0; j < segment_count; j++) {
6912             char segname[17];
6913             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6914             segname[16] = '\0';
6915             seg_vmaddrs_offset += 16;
6916             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6917             seg_vmaddrs_offset += 8; /* unused */
6918 
6919             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
6920                                                     vmaddr};
6921             image_entry.segment_load_addresses.push_back(new_seg);
6922           }
6923           image_infos.all_image_infos.push_back(image_entry);
6924         }
6925       } else if (strcmp("load binary", data_owner) == 0) {
6926         uint32_t version = m_data.GetU32(&fileoff);
6927         if (version == 1) {
6928           uuid_t uuid;
6929           memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
6930                  sizeof(uuid_t));
6931           uint64_t load_address = m_data.GetU64(&fileoff);
6932           uint64_t slide = m_data.GetU64(&fileoff);
6933           std::string filename = m_data.GetCStr(&fileoff);
6934 
6935           MachOCorefileImageEntry image_entry;
6936           image_entry.filename = filename;
6937           image_entry.uuid = UUID::fromData(uuid, sizeof(uuid_t));
6938           image_entry.load_address = load_address;
6939           image_entry.slide = slide;
6940           image_infos.all_image_infos.push_back(image_entry);
6941         }
6942       }
6943     }
6944     offset = cmd_offset + lc.cmdsize;
6945   }
6946 
6947   return image_infos;
6948 }
6949 
6950 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6951   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6952   Log *log = GetLog(LLDBLog::DynamicLoader);
6953 
6954   ModuleList added_modules;
6955   for (const MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6956     ModuleSpec module_spec;
6957     module_spec.GetUUID() = image.uuid;
6958     if (image.filename.empty()) {
6959       char namebuf[80];
6960       if (image.load_address != LLDB_INVALID_ADDRESS)
6961         snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64,
6962                  image.load_address);
6963       else
6964         snprintf(namebuf, sizeof(namebuf), "mem-image+0x%" PRIx64, image.slide);
6965       module_spec.GetFileSpec() = FileSpec(namebuf);
6966     } else {
6967       module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
6968     }
6969     if (image.currently_executing) {
6970       Status error;
6971       Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
6972       if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
6973         process.GetTarget().GetOrCreateModule(module_spec, false);
6974       }
6975     }
6976     Status error;
6977     ModuleSP module_sp =
6978         process.GetTarget().GetOrCreateModule(module_spec, false, &error);
6979     if (!module_sp.get() || !module_sp->GetObjectFile()) {
6980       if (image.load_address != LLDB_INVALID_ADDRESS) {
6981         module_sp = process.ReadModuleFromMemory(module_spec.GetFileSpec(),
6982                                                  image.load_address);
6983       }
6984     }
6985     if (module_sp.get()) {
6986       // Will call ModulesDidLoad with all modules once they've all
6987       // been added to the Target with load addresses.  Don't notify
6988       // here, before the load address is set.
6989       const bool notify = false;
6990       process.GetTarget().GetImages().AppendIfNeeded(module_sp, notify);
6991       added_modules.Append(module_sp, notify);
6992       if (image.segment_load_addresses.size() > 0) {
6993         if (log) {
6994           std::string uuidstr = image.uuid.GetAsString();
6995           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
6996                       "UUID %s with section load addresses",
6997                       image.filename.c_str(), uuidstr.c_str());
6998         }
6999         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7000           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7001           if (sectlist) {
7002             SectionSP sect_sp =
7003                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7004             if (sect_sp) {
7005               process.GetTarget().SetSectionLoadAddress(
7006                   sect_sp, std::get<1>(name_vmaddr_tuple));
7007             }
7008           }
7009         }
7010       } else if (image.load_address != LLDB_INVALID_ADDRESS) {
7011         if (log) {
7012           std::string uuidstr = image.uuid.GetAsString();
7013           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7014                       "UUID %s with load address 0x%" PRIx64,
7015                       image.filename.c_str(), uuidstr.c_str(),
7016                       image.load_address);
7017         }
7018         const bool address_is_slide = false;
7019         bool changed = false;
7020         module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
7021                                   address_is_slide, changed);
7022       } else if (image.slide != 0) {
7023         if (log) {
7024           std::string uuidstr = image.uuid.GetAsString();
7025           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7026                       "UUID %s with slide amount 0x%" PRIx64,
7027                       image.filename.c_str(), uuidstr.c_str(), image.slide);
7028         }
7029         const bool address_is_slide = true;
7030         bool changed = false;
7031         module_sp->SetLoadAddress(process.GetTarget(), image.slide,
7032                                   address_is_slide, changed);
7033       } else {
7034         if (log) {
7035           std::string uuidstr = image.uuid.GetAsString();
7036           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7037                       "UUID %s at its file address, no slide applied",
7038                       image.filename.c_str(), uuidstr.c_str());
7039         }
7040         const bool address_is_slide = true;
7041         bool changed = false;
7042         module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
7043                                   changed);
7044       }
7045     }
7046   }
7047   if (added_modules.GetSize() > 0) {
7048     process.GetTarget().ModulesDidLoad(added_modules);
7049     process.Flush();
7050     return true;
7051   }
7052   return false;
7053 }
7054