1 //===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 12 #include "lldb/Core/ArchSpec.h" 13 #include "lldb/Core/DataBuffer.h" 14 #include "lldb/Core/Debugger.h" 15 #include "lldb/Core/Error.h" 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Log.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/ModuleSpec.h" 20 #include "lldb/Core/PluginManager.h" 21 #include "lldb/Core/RangeMap.h" 22 #include "lldb/Core/Section.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Core/UUID.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/FileSpec.h" 29 #include "lldb/Symbol/ClangNamespaceDecl.h" 30 #include "lldb/Symbol/DWARFCallFrameInfo.h" 31 #include "lldb/Symbol/ObjectFile.h" 32 #include "lldb/Target/MemoryRegionInfo.h" 33 #include "lldb/Target/Platform.h" 34 #include "lldb/Target/Process.h" 35 #include "lldb/Target/SectionLoadList.h" 36 #include "lldb/Target/Target.h" 37 #include "lldb/Target/Thread.h" 38 #include "lldb/Target/ThreadList.h" 39 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h" 40 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h" 41 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h" 42 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h" 43 44 #include "lldb/Utility/SafeMachO.h" 45 46 #include "ObjectFileMachO.h" 47 48 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 49 // GetLLDBSharedCacheUUID() needs to call dlsym() 50 #include <dlfcn.h> 51 #endif 52 53 #ifndef __APPLE__ 54 #include "Utility/UuidCompatibility.h" 55 #endif 56 57 using namespace lldb; 58 using namespace lldb_private; 59 using namespace llvm::MachO; 60 61 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 62 { 63 public: 64 RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 65 RegisterContextDarwin_x86_64 (thread, 0) 66 { 67 SetRegisterDataFrom_LC_THREAD (data); 68 } 69 70 virtual void 71 InvalidateAllRegisters () 72 { 73 // Do nothing... registers are always valid... 74 } 75 76 void 77 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 78 { 79 lldb::offset_t offset = 0; 80 SetError (GPRRegSet, Read, -1); 81 SetError (FPURegSet, Read, -1); 82 SetError (EXCRegSet, Read, -1); 83 bool done = false; 84 85 while (!done) 86 { 87 int flavor = data.GetU32 (&offset); 88 if (flavor == 0) 89 done = true; 90 else 91 { 92 uint32_t i; 93 uint32_t count = data.GetU32 (&offset); 94 switch (flavor) 95 { 96 case GPRRegSet: 97 for (i=0; i<count; ++i) 98 (&gpr.rax)[i] = data.GetU64(&offset); 99 SetError (GPRRegSet, Read, 0); 100 done = true; 101 102 break; 103 case FPURegSet: 104 // TODO: fill in FPU regs.... 105 //SetError (FPURegSet, Read, -1); 106 done = true; 107 108 break; 109 case EXCRegSet: 110 exc.trapno = data.GetU32(&offset); 111 exc.err = data.GetU32(&offset); 112 exc.faultvaddr = data.GetU64(&offset); 113 SetError (EXCRegSet, Read, 0); 114 done = true; 115 break; 116 case 7: 117 case 8: 118 case 9: 119 // fancy flavors that encapsulate of the above 120 // flavors... 121 break; 122 123 default: 124 done = true; 125 break; 126 } 127 } 128 } 129 } 130 131 132 static size_t 133 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 134 { 135 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 136 if (reg_info == NULL) 137 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 138 if (reg_info) 139 { 140 lldb_private::RegisterValue reg_value; 141 if (reg_ctx->ReadRegister(reg_info, reg_value)) 142 { 143 if (reg_info->byte_size >= reg_byte_size) 144 data.Write(reg_value.GetBytes(), reg_byte_size); 145 else 146 { 147 data.Write(reg_value.GetBytes(), reg_info->byte_size); 148 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 149 data.PutChar(0); 150 } 151 return reg_byte_size; 152 } 153 } 154 // Just write zeros if all else fails 155 for (size_t i=0; i<reg_byte_size; ++ i) 156 data.PutChar(0); 157 return reg_byte_size; 158 } 159 160 static bool 161 Create_LC_THREAD (Thread *thread, Stream &data) 162 { 163 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 164 if (reg_ctx_sp) 165 { 166 RegisterContext *reg_ctx = reg_ctx_sp.get(); 167 168 data.PutHex32 (GPRRegSet); // Flavor 169 data.PutHex32 (GPRWordCount); 170 WriteRegister (reg_ctx, "rax", NULL, 8, data); 171 WriteRegister (reg_ctx, "rbx", NULL, 8, data); 172 WriteRegister (reg_ctx, "rcx", NULL, 8, data); 173 WriteRegister (reg_ctx, "rdx", NULL, 8, data); 174 WriteRegister (reg_ctx, "rdi", NULL, 8, data); 175 WriteRegister (reg_ctx, "rsi", NULL, 8, data); 176 WriteRegister (reg_ctx, "rbp", NULL, 8, data); 177 WriteRegister (reg_ctx, "rsp", NULL, 8, data); 178 WriteRegister (reg_ctx, "r8", NULL, 8, data); 179 WriteRegister (reg_ctx, "r9", NULL, 8, data); 180 WriteRegister (reg_ctx, "r10", NULL, 8, data); 181 WriteRegister (reg_ctx, "r11", NULL, 8, data); 182 WriteRegister (reg_ctx, "r12", NULL, 8, data); 183 WriteRegister (reg_ctx, "r13", NULL, 8, data); 184 WriteRegister (reg_ctx, "r14", NULL, 8, data); 185 WriteRegister (reg_ctx, "r15", NULL, 8, data); 186 WriteRegister (reg_ctx, "rip", NULL, 8, data); 187 WriteRegister (reg_ctx, "rflags", NULL, 8, data); 188 WriteRegister (reg_ctx, "cs", NULL, 8, data); 189 WriteRegister (reg_ctx, "fs", NULL, 8, data); 190 WriteRegister (reg_ctx, "gs", NULL, 8, data); 191 192 // // Write out the FPU registers 193 // const size_t fpu_byte_size = sizeof(FPU); 194 // size_t bytes_written = 0; 195 // data.PutHex32 (FPURegSet); 196 // data.PutHex32 (fpu_byte_size/sizeof(uint64_t)); 197 // bytes_written += data.PutHex32(0); // uint32_t pad[0] 198 // bytes_written += data.PutHex32(0); // uint32_t pad[1] 199 // bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2, data); // uint16_t fcw; // "fctrl" 200 // bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2, data); // uint16_t fsw; // "fstat" 201 // bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1, data); // uint8_t ftw; // "ftag" 202 // bytes_written += data.PutHex8 (0); // uint8_t pad1; 203 // bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2, data); // uint16_t fop; // "fop" 204 // bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4, data); // uint32_t ip; // "fioff" 205 // bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2, data); // uint16_t cs; // "fiseg" 206 // bytes_written += data.PutHex16 (0); // uint16_t pad2; 207 // bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4, data); // uint32_t dp; // "fooff" 208 // bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2, data); // uint16_t ds; // "foseg" 209 // bytes_written += data.PutHex16 (0); // uint16_t pad3; 210 // bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4, data); // uint32_t mxcsr; 211 // bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL, 4, data);// uint32_t mxcsrmask; 212 // bytes_written += WriteRegister (reg_ctx, "stmm0", NULL, sizeof(MMSReg), data); 213 // bytes_written += WriteRegister (reg_ctx, "stmm1", NULL, sizeof(MMSReg), data); 214 // bytes_written += WriteRegister (reg_ctx, "stmm2", NULL, sizeof(MMSReg), data); 215 // bytes_written += WriteRegister (reg_ctx, "stmm3", NULL, sizeof(MMSReg), data); 216 // bytes_written += WriteRegister (reg_ctx, "stmm4", NULL, sizeof(MMSReg), data); 217 // bytes_written += WriteRegister (reg_ctx, "stmm5", NULL, sizeof(MMSReg), data); 218 // bytes_written += WriteRegister (reg_ctx, "stmm6", NULL, sizeof(MMSReg), data); 219 // bytes_written += WriteRegister (reg_ctx, "stmm7", NULL, sizeof(MMSReg), data); 220 // bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL, sizeof(XMMReg), data); 221 // bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL, sizeof(XMMReg), data); 222 // bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL, sizeof(XMMReg), data); 223 // bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL, sizeof(XMMReg), data); 224 // bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL, sizeof(XMMReg), data); 225 // bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL, sizeof(XMMReg), data); 226 // bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL, sizeof(XMMReg), data); 227 // bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL, sizeof(XMMReg), data); 228 // bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL, sizeof(XMMReg), data); 229 // bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL, sizeof(XMMReg), data); 230 // bytes_written += WriteRegister (reg_ctx, "xmm10", NULL, sizeof(XMMReg), data); 231 // bytes_written += WriteRegister (reg_ctx, "xmm11", NULL, sizeof(XMMReg), data); 232 // bytes_written += WriteRegister (reg_ctx, "xmm12", NULL, sizeof(XMMReg), data); 233 // bytes_written += WriteRegister (reg_ctx, "xmm13", NULL, sizeof(XMMReg), data); 234 // bytes_written += WriteRegister (reg_ctx, "xmm14", NULL, sizeof(XMMReg), data); 235 // bytes_written += WriteRegister (reg_ctx, "xmm15", NULL, sizeof(XMMReg), data); 236 // 237 // // Fill rest with zeros 238 // for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++ i) 239 // data.PutChar(0); 240 241 // Write out the EXC registers 242 data.PutHex32 (EXCRegSet); 243 data.PutHex32 (EXCWordCount); 244 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 245 WriteRegister (reg_ctx, "err", NULL, 4, data); 246 WriteRegister (reg_ctx, "faultvaddr", NULL, 8, data); 247 return true; 248 } 249 return false; 250 } 251 252 protected: 253 virtual int 254 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 255 { 256 return 0; 257 } 258 259 virtual int 260 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 261 { 262 return 0; 263 } 264 265 virtual int 266 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 267 { 268 return 0; 269 } 270 271 virtual int 272 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 273 { 274 return 0; 275 } 276 277 virtual int 278 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 279 { 280 return 0; 281 } 282 283 virtual int 284 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 285 { 286 return 0; 287 } 288 }; 289 290 291 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 292 { 293 public: 294 RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 295 RegisterContextDarwin_i386 (thread, 0) 296 { 297 SetRegisterDataFrom_LC_THREAD (data); 298 } 299 300 virtual void 301 InvalidateAllRegisters () 302 { 303 // Do nothing... registers are always valid... 304 } 305 306 void 307 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 308 { 309 lldb::offset_t offset = 0; 310 SetError (GPRRegSet, Read, -1); 311 SetError (FPURegSet, Read, -1); 312 SetError (EXCRegSet, Read, -1); 313 bool done = false; 314 315 while (!done) 316 { 317 int flavor = data.GetU32 (&offset); 318 if (flavor == 0) 319 done = true; 320 else 321 { 322 uint32_t i; 323 uint32_t count = data.GetU32 (&offset); 324 switch (flavor) 325 { 326 case GPRRegSet: 327 for (i=0; i<count; ++i) 328 (&gpr.eax)[i] = data.GetU32(&offset); 329 SetError (GPRRegSet, Read, 0); 330 done = true; 331 332 break; 333 case FPURegSet: 334 // TODO: fill in FPU regs.... 335 //SetError (FPURegSet, Read, -1); 336 done = true; 337 338 break; 339 case EXCRegSet: 340 exc.trapno = data.GetU32(&offset); 341 exc.err = data.GetU32(&offset); 342 exc.faultvaddr = data.GetU32(&offset); 343 SetError (EXCRegSet, Read, 0); 344 done = true; 345 break; 346 case 7: 347 case 8: 348 case 9: 349 // fancy flavors that encapsulate of the above 350 // flavors... 351 break; 352 353 default: 354 done = true; 355 break; 356 } 357 } 358 } 359 } 360 361 static size_t 362 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 363 { 364 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 365 if (reg_info == NULL) 366 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 367 if (reg_info) 368 { 369 lldb_private::RegisterValue reg_value; 370 if (reg_ctx->ReadRegister(reg_info, reg_value)) 371 { 372 if (reg_info->byte_size >= reg_byte_size) 373 data.Write(reg_value.GetBytes(), reg_byte_size); 374 else 375 { 376 data.Write(reg_value.GetBytes(), reg_info->byte_size); 377 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 378 data.PutChar(0); 379 } 380 return reg_byte_size; 381 } 382 } 383 // Just write zeros if all else fails 384 for (size_t i=0; i<reg_byte_size; ++ i) 385 data.PutChar(0); 386 return reg_byte_size; 387 } 388 389 static bool 390 Create_LC_THREAD (Thread *thread, Stream &data) 391 { 392 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 393 if (reg_ctx_sp) 394 { 395 RegisterContext *reg_ctx = reg_ctx_sp.get(); 396 397 data.PutHex32 (GPRRegSet); // Flavor 398 data.PutHex32 (GPRWordCount); 399 WriteRegister (reg_ctx, "eax", NULL, 4, data); 400 WriteRegister (reg_ctx, "ebx", NULL, 4, data); 401 WriteRegister (reg_ctx, "ecx", NULL, 4, data); 402 WriteRegister (reg_ctx, "edx", NULL, 4, data); 403 WriteRegister (reg_ctx, "edi", NULL, 4, data); 404 WriteRegister (reg_ctx, "esi", NULL, 4, data); 405 WriteRegister (reg_ctx, "ebp", NULL, 4, data); 406 WriteRegister (reg_ctx, "esp", NULL, 4, data); 407 WriteRegister (reg_ctx, "ss", NULL, 4, data); 408 WriteRegister (reg_ctx, "eflags", NULL, 4, data); 409 WriteRegister (reg_ctx, "eip", NULL, 4, data); 410 WriteRegister (reg_ctx, "cs", NULL, 4, data); 411 WriteRegister (reg_ctx, "ds", NULL, 4, data); 412 WriteRegister (reg_ctx, "es", NULL, 4, data); 413 WriteRegister (reg_ctx, "fs", NULL, 4, data); 414 WriteRegister (reg_ctx, "gs", NULL, 4, data); 415 416 // Write out the EXC registers 417 data.PutHex32 (EXCRegSet); 418 data.PutHex32 (EXCWordCount); 419 WriteRegister (reg_ctx, "trapno", NULL, 4, data); 420 WriteRegister (reg_ctx, "err", NULL, 4, data); 421 WriteRegister (reg_ctx, "faultvaddr", NULL, 4, data); 422 return true; 423 } 424 return false; 425 } 426 427 protected: 428 virtual int 429 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 430 { 431 return 0; 432 } 433 434 virtual int 435 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 436 { 437 return 0; 438 } 439 440 virtual int 441 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 442 { 443 return 0; 444 } 445 446 virtual int 447 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 448 { 449 return 0; 450 } 451 452 virtual int 453 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 454 { 455 return 0; 456 } 457 458 virtual int 459 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 460 { 461 return 0; 462 } 463 }; 464 465 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm 466 { 467 public: 468 RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 469 RegisterContextDarwin_arm (thread, 0) 470 { 471 SetRegisterDataFrom_LC_THREAD (data); 472 } 473 474 virtual void 475 InvalidateAllRegisters () 476 { 477 // Do nothing... registers are always valid... 478 } 479 480 void 481 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 482 { 483 lldb::offset_t offset = 0; 484 SetError (GPRRegSet, Read, -1); 485 SetError (FPURegSet, Read, -1); 486 SetError (EXCRegSet, Read, -1); 487 bool done = false; 488 489 while (!done) 490 { 491 int flavor = data.GetU32 (&offset); 492 uint32_t count = data.GetU32 (&offset); 493 lldb::offset_t next_thread_state = offset + (count * 4); 494 switch (flavor) 495 { 496 case GPRRegSet: 497 for (uint32_t i=0; i<count; ++i) 498 { 499 gpr.r[i] = data.GetU32(&offset); 500 } 501 502 // Note that gpr.cpsr is also copied by the above loop; this loop technically extends 503 // one element past the end of the gpr.r[] array. 504 505 SetError (GPRRegSet, Read, 0); 506 offset = next_thread_state; 507 break; 508 509 case FPURegSet: 510 { 511 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.floats.s[0]; 512 const int fpu_reg_buf_size = sizeof (fpu.floats); 513 if (data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 514 { 515 offset += fpu_reg_buf_size; 516 fpu.fpscr = data.GetU32(&offset); 517 SetError (FPURegSet, Read, 0); 518 } 519 else 520 { 521 done = true; 522 } 523 } 524 offset = next_thread_state; 525 break; 526 527 case EXCRegSet: 528 if (count == 3) 529 { 530 exc.exception = data.GetU32(&offset); 531 exc.fsr = data.GetU32(&offset); 532 exc.far = data.GetU32(&offset); 533 SetError (EXCRegSet, Read, 0); 534 } 535 done = true; 536 offset = next_thread_state; 537 break; 538 539 // Unknown register set flavor, stop trying to parse. 540 default: 541 done = true; 542 } 543 } 544 } 545 546 static size_t 547 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 548 { 549 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 550 if (reg_info == NULL) 551 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 552 if (reg_info) 553 { 554 lldb_private::RegisterValue reg_value; 555 if (reg_ctx->ReadRegister(reg_info, reg_value)) 556 { 557 if (reg_info->byte_size >= reg_byte_size) 558 data.Write(reg_value.GetBytes(), reg_byte_size); 559 else 560 { 561 data.Write(reg_value.GetBytes(), reg_info->byte_size); 562 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 563 data.PutChar(0); 564 } 565 return reg_byte_size; 566 } 567 } 568 // Just write zeros if all else fails 569 for (size_t i=0; i<reg_byte_size; ++ i) 570 data.PutChar(0); 571 return reg_byte_size; 572 } 573 574 static bool 575 Create_LC_THREAD (Thread *thread, Stream &data) 576 { 577 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 578 if (reg_ctx_sp) 579 { 580 RegisterContext *reg_ctx = reg_ctx_sp.get(); 581 582 data.PutHex32 (GPRRegSet); // Flavor 583 data.PutHex32 (GPRWordCount); 584 WriteRegister (reg_ctx, "r0", NULL, 4, data); 585 WriteRegister (reg_ctx, "r1", NULL, 4, data); 586 WriteRegister (reg_ctx, "r2", NULL, 4, data); 587 WriteRegister (reg_ctx, "r3", NULL, 4, data); 588 WriteRegister (reg_ctx, "r4", NULL, 4, data); 589 WriteRegister (reg_ctx, "r5", NULL, 4, data); 590 WriteRegister (reg_ctx, "r6", NULL, 4, data); 591 WriteRegister (reg_ctx, "r7", NULL, 4, data); 592 WriteRegister (reg_ctx, "r8", NULL, 4, data); 593 WriteRegister (reg_ctx, "r9", NULL, 4, data); 594 WriteRegister (reg_ctx, "r10", NULL, 4, data); 595 WriteRegister (reg_ctx, "r11", NULL, 4, data); 596 WriteRegister (reg_ctx, "r12", NULL, 4, data); 597 WriteRegister (reg_ctx, "sp", NULL, 4, data); 598 WriteRegister (reg_ctx, "lr", NULL, 4, data); 599 WriteRegister (reg_ctx, "pc", NULL, 4, data); 600 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 601 602 // Write out the EXC registers 603 // data.PutHex32 (EXCRegSet); 604 // data.PutHex32 (EXCWordCount); 605 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 606 // WriteRegister (reg_ctx, "fsr", NULL, 4, data); 607 // WriteRegister (reg_ctx, "far", NULL, 4, data); 608 return true; 609 } 610 return false; 611 } 612 613 protected: 614 virtual int 615 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 616 { 617 return -1; 618 } 619 620 virtual int 621 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 622 { 623 return -1; 624 } 625 626 virtual int 627 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 628 { 629 return -1; 630 } 631 632 virtual int 633 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 634 { 635 return -1; 636 } 637 638 virtual int 639 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 640 { 641 return 0; 642 } 643 644 virtual int 645 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 646 { 647 return 0; 648 } 649 650 virtual int 651 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 652 { 653 return 0; 654 } 655 656 virtual int 657 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 658 { 659 return -1; 660 } 661 }; 662 663 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 664 { 665 public: 666 RegisterContextDarwin_arm64_Mach (lldb_private::Thread &thread, const DataExtractor &data) : 667 RegisterContextDarwin_arm64 (thread, 0) 668 { 669 SetRegisterDataFrom_LC_THREAD (data); 670 } 671 672 virtual void 673 InvalidateAllRegisters () 674 { 675 // Do nothing... registers are always valid... 676 } 677 678 void 679 SetRegisterDataFrom_LC_THREAD (const DataExtractor &data) 680 { 681 lldb::offset_t offset = 0; 682 SetError (GPRRegSet, Read, -1); 683 SetError (FPURegSet, Read, -1); 684 SetError (EXCRegSet, Read, -1); 685 bool done = false; 686 while (!done) 687 { 688 int flavor = data.GetU32 (&offset); 689 uint32_t count = data.GetU32 (&offset); 690 lldb::offset_t next_thread_state = offset + (count * 4); 691 switch (flavor) 692 { 693 case GPRRegSet: 694 // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1 32-bit register) 695 if (count >= (33 * 2) + 1) 696 { 697 for (uint32_t i=0; i<33; ++i) 698 gpr.x[i] = data.GetU64(&offset); 699 gpr.cpsr = data.GetU32(&offset); 700 SetError (GPRRegSet, Read, 0); 701 } 702 offset = next_thread_state; 703 break; 704 case FPURegSet: 705 { 706 uint8_t *fpu_reg_buf = (uint8_t*) &fpu.v[0]; 707 const int fpu_reg_buf_size = sizeof (fpu); 708 if (fpu_reg_buf_size == count 709 && data.ExtractBytes (offset, fpu_reg_buf_size, eByteOrderLittle, fpu_reg_buf) == fpu_reg_buf_size) 710 { 711 SetError (FPURegSet, Read, 0); 712 } 713 else 714 { 715 done = true; 716 } 717 } 718 offset = next_thread_state; 719 break; 720 case EXCRegSet: 721 if (count == 4) 722 { 723 exc.far = data.GetU64(&offset); 724 exc.esr = data.GetU32(&offset); 725 exc.exception = data.GetU32(&offset); 726 SetError (EXCRegSet, Read, 0); 727 } 728 offset = next_thread_state; 729 break; 730 default: 731 done = true; 732 break; 733 } 734 } 735 } 736 737 static size_t 738 WriteRegister (RegisterContext *reg_ctx, const char *name, const char *alt_name, size_t reg_byte_size, Stream &data) 739 { 740 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name); 741 if (reg_info == NULL) 742 reg_info = reg_ctx->GetRegisterInfoByName(alt_name); 743 if (reg_info) 744 { 745 lldb_private::RegisterValue reg_value; 746 if (reg_ctx->ReadRegister(reg_info, reg_value)) 747 { 748 if (reg_info->byte_size >= reg_byte_size) 749 data.Write(reg_value.GetBytes(), reg_byte_size); 750 else 751 { 752 data.Write(reg_value.GetBytes(), reg_info->byte_size); 753 for (size_t i=0, n = reg_byte_size - reg_info->byte_size; i<n; ++ i) 754 data.PutChar(0); 755 } 756 return reg_byte_size; 757 } 758 } 759 // Just write zeros if all else fails 760 for (size_t i=0; i<reg_byte_size; ++ i) 761 data.PutChar(0); 762 return reg_byte_size; 763 } 764 765 static bool 766 Create_LC_THREAD (Thread *thread, Stream &data) 767 { 768 RegisterContextSP reg_ctx_sp (thread->GetRegisterContext()); 769 if (reg_ctx_sp) 770 { 771 RegisterContext *reg_ctx = reg_ctx_sp.get(); 772 773 data.PutHex32 (GPRRegSet); // Flavor 774 data.PutHex32 (GPRWordCount); 775 WriteRegister (reg_ctx, "x0", NULL, 8, data); 776 WriteRegister (reg_ctx, "x1", NULL, 8, data); 777 WriteRegister (reg_ctx, "x2", NULL, 8, data); 778 WriteRegister (reg_ctx, "x3", NULL, 8, data); 779 WriteRegister (reg_ctx, "x4", NULL, 8, data); 780 WriteRegister (reg_ctx, "x5", NULL, 8, data); 781 WriteRegister (reg_ctx, "x6", NULL, 8, data); 782 WriteRegister (reg_ctx, "x7", NULL, 8, data); 783 WriteRegister (reg_ctx, "x8", NULL, 8, data); 784 WriteRegister (reg_ctx, "x9", NULL, 8, data); 785 WriteRegister (reg_ctx, "x10", NULL, 8, data); 786 WriteRegister (reg_ctx, "x11", NULL, 8, data); 787 WriteRegister (reg_ctx, "x12", NULL, 8, data); 788 WriteRegister (reg_ctx, "x13", NULL, 8, data); 789 WriteRegister (reg_ctx, "x14", NULL, 8, data); 790 WriteRegister (reg_ctx, "x15", NULL, 8, data); 791 WriteRegister (reg_ctx, "x16", NULL, 8, data); 792 WriteRegister (reg_ctx, "x17", NULL, 8, data); 793 WriteRegister (reg_ctx, "x18", NULL, 8, data); 794 WriteRegister (reg_ctx, "x19", NULL, 8, data); 795 WriteRegister (reg_ctx, "x20", NULL, 8, data); 796 WriteRegister (reg_ctx, "x21", NULL, 8, data); 797 WriteRegister (reg_ctx, "x22", NULL, 8, data); 798 WriteRegister (reg_ctx, "x23", NULL, 8, data); 799 WriteRegister (reg_ctx, "x24", NULL, 8, data); 800 WriteRegister (reg_ctx, "x25", NULL, 8, data); 801 WriteRegister (reg_ctx, "x26", NULL, 8, data); 802 WriteRegister (reg_ctx, "x27", NULL, 8, data); 803 WriteRegister (reg_ctx, "x28", NULL, 8, data); 804 WriteRegister (reg_ctx, "fp", NULL, 8, data); 805 WriteRegister (reg_ctx, "lr", NULL, 8, data); 806 WriteRegister (reg_ctx, "sp", NULL, 8, data); 807 WriteRegister (reg_ctx, "pc", NULL, 8, data); 808 WriteRegister (reg_ctx, "cpsr", NULL, 4, data); 809 810 // Write out the EXC registers 811 // data.PutHex32 (EXCRegSet); 812 // data.PutHex32 (EXCWordCount); 813 // WriteRegister (reg_ctx, "far", NULL, 8, data); 814 // WriteRegister (reg_ctx, "esr", NULL, 4, data); 815 // WriteRegister (reg_ctx, "exception", NULL, 4, data); 816 return true; 817 } 818 return false; 819 } 820 821 protected: 822 virtual int 823 DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr) 824 { 825 return -1; 826 } 827 828 virtual int 829 DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu) 830 { 831 return -1; 832 } 833 834 virtual int 835 DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc) 836 { 837 return -1; 838 } 839 840 virtual int 841 DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg) 842 { 843 return -1; 844 } 845 846 virtual int 847 DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr) 848 { 849 return 0; 850 } 851 852 virtual int 853 DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu) 854 { 855 return 0; 856 } 857 858 virtual int 859 DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc) 860 { 861 return 0; 862 } 863 864 virtual int 865 DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg) 866 { 867 return -1; 868 } 869 }; 870 871 static uint32_t 872 MachHeaderSizeFromMagic(uint32_t magic) 873 { 874 switch (magic) 875 { 876 case MH_MAGIC: 877 case MH_CIGAM: 878 return sizeof(struct mach_header); 879 880 case MH_MAGIC_64: 881 case MH_CIGAM_64: 882 return sizeof(struct mach_header_64); 883 break; 884 885 default: 886 break; 887 } 888 return 0; 889 } 890 891 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008 892 893 void 894 ObjectFileMachO::Initialize() 895 { 896 PluginManager::RegisterPlugin (GetPluginNameStatic(), 897 GetPluginDescriptionStatic(), 898 CreateInstance, 899 CreateMemoryInstance, 900 GetModuleSpecifications, 901 SaveCore); 902 } 903 904 void 905 ObjectFileMachO::Terminate() 906 { 907 PluginManager::UnregisterPlugin (CreateInstance); 908 } 909 910 911 lldb_private::ConstString 912 ObjectFileMachO::GetPluginNameStatic() 913 { 914 static ConstString g_name("mach-o"); 915 return g_name; 916 } 917 918 const char * 919 ObjectFileMachO::GetPluginDescriptionStatic() 920 { 921 return "Mach-o object file reader (32 and 64 bit)"; 922 } 923 924 ObjectFile * 925 ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, 926 DataBufferSP& data_sp, 927 lldb::offset_t data_offset, 928 const FileSpec* file, 929 lldb::offset_t file_offset, 930 lldb::offset_t length) 931 { 932 if (!data_sp) 933 { 934 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 935 data_offset = 0; 936 } 937 938 if (ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length)) 939 { 940 // Update the data to contain the entire file if it doesn't already 941 if (data_sp->GetByteSize() < length) 942 { 943 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 944 data_offset = 0; 945 } 946 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, data_offset, file, file_offset, length)); 947 if (objfile_ap.get() && objfile_ap->ParseHeader()) 948 return objfile_ap.release(); 949 } 950 return NULL; 951 } 952 953 ObjectFile * 954 ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 955 DataBufferSP& data_sp, 956 const ProcessSP &process_sp, 957 lldb::addr_t header_addr) 958 { 959 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 960 { 961 std::unique_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr)); 962 if (objfile_ap.get() && objfile_ap->ParseHeader()) 963 return objfile_ap.release(); 964 } 965 return NULL; 966 } 967 968 size_t 969 ObjectFileMachO::GetModuleSpecifications (const lldb_private::FileSpec& file, 970 lldb::DataBufferSP& data_sp, 971 lldb::offset_t data_offset, 972 lldb::offset_t file_offset, 973 lldb::offset_t length, 974 lldb_private::ModuleSpecList &specs) 975 { 976 const size_t initial_count = specs.GetSize(); 977 978 if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 979 { 980 DataExtractor data; 981 data.SetData(data_sp); 982 llvm::MachO::mach_header header; 983 if (ParseHeader (data, &data_offset, header)) 984 { 985 size_t header_and_load_cmds = header.sizeofcmds + MachHeaderSizeFromMagic(header.magic); 986 if (header_and_load_cmds >= data_sp->GetByteSize()) 987 { 988 data_sp = file.ReadFileContents(file_offset, header_and_load_cmds); 989 data.SetData(data_sp); 990 data_offset = MachHeaderSizeFromMagic(header.magic); 991 } 992 if (data_sp) 993 { 994 ModuleSpec spec; 995 spec.GetFileSpec() = file; 996 spec.SetObjectOffset(file_offset); 997 spec.SetObjectSize(length); 998 999 if (GetArchitecture (header, data, data_offset, spec.GetArchitecture())) 1000 { 1001 if (spec.GetArchitecture().IsValid()) 1002 { 1003 GetUUID (header, data, data_offset, spec.GetUUID()); 1004 specs.Append(spec); 1005 } 1006 } 1007 } 1008 } 1009 } 1010 return specs.GetSize() - initial_count; 1011 } 1012 1013 1014 1015 const ConstString & 1016 ObjectFileMachO::GetSegmentNameTEXT() 1017 { 1018 static ConstString g_segment_name_TEXT ("__TEXT"); 1019 return g_segment_name_TEXT; 1020 } 1021 1022 const ConstString & 1023 ObjectFileMachO::GetSegmentNameDATA() 1024 { 1025 static ConstString g_segment_name_DATA ("__DATA"); 1026 return g_segment_name_DATA; 1027 } 1028 1029 const ConstString & 1030 ObjectFileMachO::GetSegmentNameOBJC() 1031 { 1032 static ConstString g_segment_name_OBJC ("__OBJC"); 1033 return g_segment_name_OBJC; 1034 } 1035 1036 const ConstString & 1037 ObjectFileMachO::GetSegmentNameLINKEDIT() 1038 { 1039 static ConstString g_section_name_LINKEDIT ("__LINKEDIT"); 1040 return g_section_name_LINKEDIT; 1041 } 1042 1043 const ConstString & 1044 ObjectFileMachO::GetSectionNameEHFrame() 1045 { 1046 static ConstString g_section_name_eh_frame ("__eh_frame"); 1047 return g_section_name_eh_frame; 1048 } 1049 1050 bool 1051 ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp, 1052 lldb::addr_t data_offset, 1053 lldb::addr_t data_length) 1054 { 1055 DataExtractor data; 1056 data.SetData (data_sp, data_offset, data_length); 1057 lldb::offset_t offset = 0; 1058 uint32_t magic = data.GetU32(&offset); 1059 return MachHeaderSizeFromMagic(magic) != 0; 1060 } 1061 1062 1063 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, 1064 DataBufferSP& data_sp, 1065 lldb::offset_t data_offset, 1066 const FileSpec* file, 1067 lldb::offset_t file_offset, 1068 lldb::offset_t length) : 1069 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 1070 m_mach_segments(), 1071 m_mach_sections(), 1072 m_entry_point_address(), 1073 m_thread_context_offsets(), 1074 m_thread_context_offsets_valid(false) 1075 { 1076 ::memset (&m_header, 0, sizeof(m_header)); 1077 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1078 } 1079 1080 ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp, 1081 lldb::DataBufferSP& header_data_sp, 1082 const lldb::ProcessSP &process_sp, 1083 lldb::addr_t header_addr) : 1084 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 1085 m_mach_segments(), 1086 m_mach_sections(), 1087 m_entry_point_address(), 1088 m_thread_context_offsets(), 1089 m_thread_context_offsets_valid(false) 1090 { 1091 ::memset (&m_header, 0, sizeof(m_header)); 1092 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1093 } 1094 1095 ObjectFileMachO::~ObjectFileMachO() 1096 { 1097 } 1098 1099 bool 1100 ObjectFileMachO::ParseHeader (DataExtractor &data, 1101 lldb::offset_t *data_offset_ptr, 1102 llvm::MachO::mach_header &header) 1103 { 1104 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1105 // Leave magic in the original byte order 1106 header.magic = data.GetU32(data_offset_ptr); 1107 bool can_parse = false; 1108 bool is_64_bit = false; 1109 switch (header.magic) 1110 { 1111 case MH_MAGIC: 1112 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1113 data.SetAddressByteSize(4); 1114 can_parse = true; 1115 break; 1116 1117 case MH_MAGIC_64: 1118 data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1119 data.SetAddressByteSize(8); 1120 can_parse = true; 1121 is_64_bit = true; 1122 break; 1123 1124 case MH_CIGAM: 1125 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1126 data.SetAddressByteSize(4); 1127 can_parse = true; 1128 break; 1129 1130 case MH_CIGAM_64: 1131 data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1132 data.SetAddressByteSize(8); 1133 is_64_bit = true; 1134 can_parse = true; 1135 break; 1136 1137 default: 1138 break; 1139 } 1140 1141 if (can_parse) 1142 { 1143 data.GetU32(data_offset_ptr, &header.cputype, 6); 1144 if (is_64_bit) 1145 *data_offset_ptr += 4; 1146 return true; 1147 } 1148 else 1149 { 1150 memset(&header, 0, sizeof(header)); 1151 } 1152 return false; 1153 } 1154 1155 bool 1156 ObjectFileMachO::ParseHeader () 1157 { 1158 ModuleSP module_sp(GetModule()); 1159 if (module_sp) 1160 { 1161 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1162 bool can_parse = false; 1163 lldb::offset_t offset = 0; 1164 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1165 // Leave magic in the original byte order 1166 m_header.magic = m_data.GetU32(&offset); 1167 switch (m_header.magic) 1168 { 1169 case MH_MAGIC: 1170 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1171 m_data.SetAddressByteSize(4); 1172 can_parse = true; 1173 break; 1174 1175 case MH_MAGIC_64: 1176 m_data.SetByteOrder (lldb::endian::InlHostByteOrder()); 1177 m_data.SetAddressByteSize(8); 1178 can_parse = true; 1179 break; 1180 1181 case MH_CIGAM: 1182 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1183 m_data.SetAddressByteSize(4); 1184 can_parse = true; 1185 break; 1186 1187 case MH_CIGAM_64: 1188 m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig); 1189 m_data.SetAddressByteSize(8); 1190 can_parse = true; 1191 break; 1192 1193 default: 1194 break; 1195 } 1196 1197 if (can_parse) 1198 { 1199 m_data.GetU32(&offset, &m_header.cputype, 6); 1200 1201 1202 ArchSpec mach_arch; 1203 1204 if (GetArchitecture (mach_arch)) 1205 { 1206 // Check if the module has a required architecture 1207 const ArchSpec &module_arch = module_sp->GetArchitecture(); 1208 if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch)) 1209 return false; 1210 1211 if (SetModulesArchitecture (mach_arch)) 1212 { 1213 const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic); 1214 if (m_data.GetByteSize() < header_and_lc_size) 1215 { 1216 DataBufferSP data_sp; 1217 ProcessSP process_sp (m_process_wp.lock()); 1218 if (process_sp) 1219 { 1220 data_sp = ReadMemory (process_sp, m_memory_addr, header_and_lc_size); 1221 } 1222 else 1223 { 1224 // Read in all only the load command data from the file on disk 1225 data_sp = m_file.ReadFileContents(m_file_offset, header_and_lc_size); 1226 if (data_sp->GetByteSize() != header_and_lc_size) 1227 return false; 1228 } 1229 if (data_sp) 1230 m_data.SetData (data_sp); 1231 } 1232 } 1233 return true; 1234 } 1235 } 1236 else 1237 { 1238 memset(&m_header, 0, sizeof(struct mach_header)); 1239 } 1240 } 1241 return false; 1242 } 1243 1244 1245 ByteOrder 1246 ObjectFileMachO::GetByteOrder () const 1247 { 1248 return m_data.GetByteOrder (); 1249 } 1250 1251 bool 1252 ObjectFileMachO::IsExecutable() const 1253 { 1254 return m_header.filetype == MH_EXECUTE; 1255 } 1256 1257 uint32_t 1258 ObjectFileMachO::GetAddressByteSize () const 1259 { 1260 return m_data.GetAddressByteSize (); 1261 } 1262 1263 AddressClass 1264 ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr) 1265 { 1266 Symtab *symtab = GetSymtab(); 1267 if (symtab) 1268 { 1269 Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr); 1270 if (symbol) 1271 { 1272 if (symbol->ValueIsAddress()) 1273 { 1274 SectionSP section_sp (symbol->GetAddressRef().GetSection()); 1275 if (section_sp) 1276 { 1277 const lldb::SectionType section_type = section_sp->GetType(); 1278 switch (section_type) 1279 { 1280 case eSectionTypeInvalid: 1281 return eAddressClassUnknown; 1282 1283 case eSectionTypeCode: 1284 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1285 { 1286 // For ARM we have a bit in the n_desc field of the symbol 1287 // that tells us ARM/Thumb which is bit 0x0008. 1288 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1289 return eAddressClassCodeAlternateISA; 1290 } 1291 return eAddressClassCode; 1292 1293 case eSectionTypeContainer: 1294 return eAddressClassUnknown; 1295 1296 case eSectionTypeData: 1297 case eSectionTypeDataCString: 1298 case eSectionTypeDataCStringPointers: 1299 case eSectionTypeDataSymbolAddress: 1300 case eSectionTypeData4: 1301 case eSectionTypeData8: 1302 case eSectionTypeData16: 1303 case eSectionTypeDataPointers: 1304 case eSectionTypeZeroFill: 1305 case eSectionTypeDataObjCMessageRefs: 1306 case eSectionTypeDataObjCCFStrings: 1307 return eAddressClassData; 1308 1309 case eSectionTypeDebug: 1310 case eSectionTypeDWARFDebugAbbrev: 1311 case eSectionTypeDWARFDebugAranges: 1312 case eSectionTypeDWARFDebugFrame: 1313 case eSectionTypeDWARFDebugInfo: 1314 case eSectionTypeDWARFDebugLine: 1315 case eSectionTypeDWARFDebugLoc: 1316 case eSectionTypeDWARFDebugMacInfo: 1317 case eSectionTypeDWARFDebugPubNames: 1318 case eSectionTypeDWARFDebugPubTypes: 1319 case eSectionTypeDWARFDebugRanges: 1320 case eSectionTypeDWARFDebugStr: 1321 case eSectionTypeDWARFAppleNames: 1322 case eSectionTypeDWARFAppleTypes: 1323 case eSectionTypeDWARFAppleNamespaces: 1324 case eSectionTypeDWARFAppleObjC: 1325 return eAddressClassDebug; 1326 1327 case eSectionTypeEHFrame: 1328 case eSectionTypeCompactUnwind: 1329 return eAddressClassRuntime; 1330 1331 case eSectionTypeELFSymbolTable: 1332 case eSectionTypeELFDynamicSymbols: 1333 case eSectionTypeELFRelocationEntries: 1334 case eSectionTypeELFDynamicLinkInfo: 1335 case eSectionTypeOther: 1336 return eAddressClassUnknown; 1337 } 1338 } 1339 } 1340 1341 const SymbolType symbol_type = symbol->GetType(); 1342 switch (symbol_type) 1343 { 1344 case eSymbolTypeAny: return eAddressClassUnknown; 1345 case eSymbolTypeAbsolute: return eAddressClassUnknown; 1346 1347 case eSymbolTypeCode: 1348 case eSymbolTypeTrampoline: 1349 case eSymbolTypeResolver: 1350 if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) 1351 { 1352 // For ARM we have a bit in the n_desc field of the symbol 1353 // that tells us ARM/Thumb which is bit 0x0008. 1354 if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB) 1355 return eAddressClassCodeAlternateISA; 1356 } 1357 return eAddressClassCode; 1358 1359 case eSymbolTypeData: return eAddressClassData; 1360 case eSymbolTypeRuntime: return eAddressClassRuntime; 1361 case eSymbolTypeException: return eAddressClassRuntime; 1362 case eSymbolTypeSourceFile: return eAddressClassDebug; 1363 case eSymbolTypeHeaderFile: return eAddressClassDebug; 1364 case eSymbolTypeObjectFile: return eAddressClassDebug; 1365 case eSymbolTypeCommonBlock: return eAddressClassDebug; 1366 case eSymbolTypeBlock: return eAddressClassDebug; 1367 case eSymbolTypeLocal: return eAddressClassData; 1368 case eSymbolTypeParam: return eAddressClassData; 1369 case eSymbolTypeVariable: return eAddressClassData; 1370 case eSymbolTypeVariableType: return eAddressClassDebug; 1371 case eSymbolTypeLineEntry: return eAddressClassDebug; 1372 case eSymbolTypeLineHeader: return eAddressClassDebug; 1373 case eSymbolTypeScopeBegin: return eAddressClassDebug; 1374 case eSymbolTypeScopeEnd: return eAddressClassDebug; 1375 case eSymbolTypeAdditional: return eAddressClassUnknown; 1376 case eSymbolTypeCompiler: return eAddressClassDebug; 1377 case eSymbolTypeInstrumentation:return eAddressClassDebug; 1378 case eSymbolTypeUndefined: return eAddressClassUnknown; 1379 case eSymbolTypeObjCClass: return eAddressClassRuntime; 1380 case eSymbolTypeObjCMetaClass: return eAddressClassRuntime; 1381 case eSymbolTypeObjCIVar: return eAddressClassRuntime; 1382 case eSymbolTypeReExported: return eAddressClassRuntime; 1383 } 1384 } 1385 } 1386 return eAddressClassUnknown; 1387 } 1388 1389 Symtab * 1390 ObjectFileMachO::GetSymtab() 1391 { 1392 ModuleSP module_sp(GetModule()); 1393 if (module_sp) 1394 { 1395 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 1396 if (m_symtab_ap.get() == NULL) 1397 { 1398 m_symtab_ap.reset(new Symtab(this)); 1399 Mutex::Locker symtab_locker (m_symtab_ap->GetMutex()); 1400 ParseSymtab (); 1401 m_symtab_ap->Finalize (); 1402 } 1403 } 1404 return m_symtab_ap.get(); 1405 } 1406 1407 bool 1408 ObjectFileMachO::IsStripped () 1409 { 1410 if (m_dysymtab.cmd == 0) 1411 { 1412 ModuleSP module_sp(GetModule()); 1413 if (module_sp) 1414 { 1415 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1416 for (uint32_t i=0; i<m_header.ncmds; ++i) 1417 { 1418 const lldb::offset_t load_cmd_offset = offset; 1419 1420 load_command lc; 1421 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 1422 break; 1423 if (lc.cmd == LC_DYSYMTAB) 1424 { 1425 m_dysymtab.cmd = lc.cmd; 1426 m_dysymtab.cmdsize = lc.cmdsize; 1427 if (m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) == NULL) 1428 { 1429 // Clear m_dysymtab if we were unable to read all items from the load command 1430 ::memset (&m_dysymtab, 0, sizeof(m_dysymtab)); 1431 } 1432 } 1433 offset = load_cmd_offset + lc.cmdsize; 1434 } 1435 } 1436 } 1437 if (m_dysymtab.cmd) 1438 return m_dysymtab.nlocalsym <= 1; 1439 return false; 1440 } 1441 1442 void 1443 ObjectFileMachO::CreateSections (SectionList &unified_section_list) 1444 { 1445 if (!m_sections_ap.get()) 1446 { 1447 m_sections_ap.reset(new SectionList()); 1448 1449 const bool is_dsym = (m_header.filetype == MH_DSYM); 1450 lldb::user_id_t segID = 0; 1451 lldb::user_id_t sectID = 0; 1452 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 1453 uint32_t i; 1454 const bool is_core = GetType() == eTypeCoreFile; 1455 //bool dump_sections = false; 1456 ModuleSP module_sp (GetModule()); 1457 // First look up any LC_ENCRYPTION_INFO load commands 1458 typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges; 1459 EncryptedFileRanges encrypted_file_ranges; 1460 encryption_info_command encryption_cmd; 1461 for (i=0; i<m_header.ncmds; ++i) 1462 { 1463 const lldb::offset_t load_cmd_offset = offset; 1464 if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL) 1465 break; 1466 1467 // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for 1468 // the 3 fields we care about, so treat them the same. 1469 if (encryption_cmd.cmd == LC_ENCRYPTION_INFO || encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) 1470 { 1471 if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) 1472 { 1473 if (encryption_cmd.cryptid != 0) 1474 { 1475 EncryptedFileRanges::Entry entry; 1476 entry.SetRangeBase(encryption_cmd.cryptoff); 1477 entry.SetByteSize(encryption_cmd.cryptsize); 1478 encrypted_file_ranges.Append(entry); 1479 } 1480 } 1481 } 1482 offset = load_cmd_offset + encryption_cmd.cmdsize; 1483 } 1484 1485 bool section_file_addresses_changed = false; 1486 1487 offset = MachHeaderSizeFromMagic(m_header.magic); 1488 1489 struct segment_command_64 load_cmd; 1490 for (i=0; i<m_header.ncmds; ++i) 1491 { 1492 const lldb::offset_t load_cmd_offset = offset; 1493 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 1494 break; 1495 1496 if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64) 1497 { 1498 if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16)) 1499 { 1500 bool add_section = true; 1501 bool add_to_unified = true; 1502 ConstString const_segname (load_cmd.segname, std::min<size_t>(strlen(load_cmd.segname), sizeof(load_cmd.segname))); 1503 1504 SectionSP unified_section_sp(unified_section_list.FindSectionByName(const_segname)); 1505 if (is_dsym && unified_section_sp) 1506 { 1507 if (const_segname == GetSegmentNameLINKEDIT()) 1508 { 1509 // We need to keep the __LINKEDIT segment private to this object file only 1510 add_to_unified = false; 1511 } 1512 else 1513 { 1514 // This is the dSYM file and this section has already been created by 1515 // the object file, no need to create it. 1516 add_section = false; 1517 } 1518 } 1519 load_cmd.vmaddr = m_data.GetAddress(&offset); 1520 load_cmd.vmsize = m_data.GetAddress(&offset); 1521 load_cmd.fileoff = m_data.GetAddress(&offset); 1522 load_cmd.filesize = m_data.GetAddress(&offset); 1523 if (m_length != 0 && load_cmd.filesize != 0) 1524 { 1525 if (load_cmd.fileoff > m_length) 1526 { 1527 // We have a load command that says it extends past the end of the file. This is likely 1528 // a corrupt file. We don't have any way to return an error condition here (this method 1529 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1530 // is null out the SectionList vector and if a process has been set up, dump a message 1531 // to stdout. The most common case here is core file debugging with a truncated file. 1532 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1533 module_sp->ReportWarning("load command %u %s has a fileoff (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), ignoring this section", 1534 i, 1535 lc_segment_name, 1536 load_cmd.fileoff, 1537 m_length); 1538 1539 load_cmd.fileoff = 0; 1540 load_cmd.filesize = 0; 1541 } 1542 1543 if (load_cmd.fileoff + load_cmd.filesize > m_length) 1544 { 1545 // We have a load command that says it extends past the end of the file. This is likely 1546 // a corrupt file. We don't have any way to return an error condition here (this method 1547 // was likely invoked from something like ObjectFile::GetSectionList()) -- all we can do 1548 // is null out the SectionList vector and if a process has been set up, dump a message 1549 // to stdout. The most common case here is core file debugging with a truncated file. 1550 const char *lc_segment_name = load_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT"; 1551 GetModule()->ReportWarning("load command %u %s has a fileoff + filesize (0x%" PRIx64 ") that extends beyond the end of the file (0x%" PRIx64 "), the segment will be truncated to match", 1552 i, 1553 lc_segment_name, 1554 load_cmd.fileoff + load_cmd.filesize, 1555 m_length); 1556 1557 // Tuncase the length 1558 load_cmd.filesize = m_length - load_cmd.fileoff; 1559 } 1560 } 1561 if (m_data.GetU32(&offset, &load_cmd.maxprot, 4)) 1562 { 1563 1564 const bool segment_is_encrypted = (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0; 1565 1566 // Keep a list of mach segments around in case we need to 1567 // get at data that isn't stored in the abstracted Sections. 1568 m_mach_segments.push_back (load_cmd); 1569 1570 // Use a segment ID of the segment index shifted left by 8 so they 1571 // never conflict with any of the sections. 1572 SectionSP segment_sp; 1573 if (add_section && (const_segname || is_core)) 1574 { 1575 segment_sp.reset(new Section (module_sp, // Module to which this section belongs 1576 this, // Object file to which this sections belongs 1577 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1578 const_segname, // Name of this section 1579 eSectionTypeContainer, // This section is a container of other sections. 1580 load_cmd.vmaddr, // File VM address == addresses as they are found in the object file 1581 load_cmd.vmsize, // VM size in bytes of this section 1582 load_cmd.fileoff, // Offset to the data for this section in the file 1583 load_cmd.filesize, // Size in bytes of this section as found in the file 1584 0, // Segments have no alignment information 1585 load_cmd.flags)); // Flags for this section 1586 1587 segment_sp->SetIsEncrypted (segment_is_encrypted); 1588 m_sections_ap->AddSection(segment_sp); 1589 if (add_to_unified) 1590 unified_section_list.AddSection(segment_sp); 1591 } 1592 else if (unified_section_sp) 1593 { 1594 if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) 1595 { 1596 // Check to see if the module was read from memory? 1597 if (module_sp->GetObjectFile()->GetHeaderAddress().IsValid()) 1598 { 1599 // We have a module that is in memory and needs to have its 1600 // file address adjusted. We need to do this because when we 1601 // load a file from memory, its addresses will be slid already, 1602 // yet the addresses in the new symbol file will still be unslid. 1603 // Since everything is stored as section offset, this shouldn't 1604 // cause any problems. 1605 1606 // Make sure we've parsed the symbol table from the 1607 // ObjectFile before we go around changing its Sections. 1608 module_sp->GetObjectFile()->GetSymtab(); 1609 // eh_frame would present the same problems but we parse that on 1610 // a per-function basis as-needed so it's more difficult to 1611 // remove its use of the Sections. Realistically, the environments 1612 // where this code path will be taken will not have eh_frame sections. 1613 1614 unified_section_sp->SetFileAddress(load_cmd.vmaddr); 1615 1616 // Notify the module that the section addresses have been changed once 1617 // we're done so any file-address caches can be updated. 1618 section_file_addresses_changed = true; 1619 } 1620 } 1621 m_sections_ap->AddSection(unified_section_sp); 1622 } 1623 1624 struct section_64 sect64; 1625 ::memset (§64, 0, sizeof(sect64)); 1626 // Push a section into our mach sections for the section at 1627 // index zero (NO_SECT) if we don't have any mach sections yet... 1628 if (m_mach_sections.empty()) 1629 m_mach_sections.push_back(sect64); 1630 uint32_t segment_sect_idx; 1631 const lldb::user_id_t first_segment_sectID = sectID + 1; 1632 1633 1634 const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8; 1635 for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx) 1636 { 1637 if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL) 1638 break; 1639 if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL) 1640 break; 1641 sect64.addr = m_data.GetAddress(&offset); 1642 sect64.size = m_data.GetAddress(&offset); 1643 1644 if (m_data.GetU32(&offset, §64.offset, num_u32s) == NULL) 1645 break; 1646 1647 // Keep a list of mach sections around in case we need to 1648 // get at data that isn't stored in the abstracted Sections. 1649 m_mach_sections.push_back (sect64); 1650 1651 if (add_section) 1652 { 1653 ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname))); 1654 if (!const_segname) 1655 { 1656 // We have a segment with no name so we need to conjure up 1657 // segments that correspond to the section's segname if there 1658 // isn't already such a section. If there is such a section, 1659 // we resize the section so that it spans all sections. 1660 // We also mark these sections as fake so address matches don't 1661 // hit if they land in the gaps between the child sections. 1662 const_segname.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname)); 1663 segment_sp = unified_section_list.FindSectionByName (const_segname); 1664 if (segment_sp.get()) 1665 { 1666 Section *segment = segment_sp.get(); 1667 // Grow the section size as needed. 1668 const lldb::addr_t sect64_min_addr = sect64.addr; 1669 const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size; 1670 const lldb::addr_t curr_seg_byte_size = segment->GetByteSize(); 1671 const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress(); 1672 const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size; 1673 if (sect64_min_addr >= curr_seg_min_addr) 1674 { 1675 const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr; 1676 // Only grow the section size if needed 1677 if (new_seg_byte_size > curr_seg_byte_size) 1678 segment->SetByteSize (new_seg_byte_size); 1679 } 1680 else 1681 { 1682 // We need to change the base address of the segment and 1683 // adjust the child section offsets for all existing children. 1684 const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr; 1685 segment->Slide(slide_amount, false); 1686 segment->GetChildren().Slide(-slide_amount, false); 1687 segment->SetByteSize (curr_seg_max_addr - sect64_min_addr); 1688 } 1689 1690 // Grow the section size as needed. 1691 if (sect64.offset) 1692 { 1693 const lldb::addr_t segment_min_file_offset = segment->GetFileOffset(); 1694 const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize(); 1695 1696 const lldb::addr_t section_min_file_offset = sect64.offset; 1697 const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size; 1698 const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset); 1699 const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset; 1700 segment->SetFileOffset (new_file_offset); 1701 segment->SetFileSize (new_file_size); 1702 } 1703 } 1704 else 1705 { 1706 // Create a fake section for the section's named segment 1707 segment_sp.reset(new Section (segment_sp, // Parent section 1708 module_sp, // Module to which this section belongs 1709 this, // Object file to which this section belongs 1710 ++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible 1711 const_segname, // Name of this section 1712 eSectionTypeContainer, // This section is a container of other sections. 1713 sect64.addr, // File VM address == addresses as they are found in the object file 1714 sect64.size, // VM size in bytes of this section 1715 sect64.offset, // Offset to the data for this section in the file 1716 sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the file 1717 sect64.align, 1718 load_cmd.flags)); // Flags for this section 1719 segment_sp->SetIsFake(true); 1720 1721 m_sections_ap->AddSection(segment_sp); 1722 if (add_to_unified) 1723 unified_section_list.AddSection(segment_sp); 1724 segment_sp->SetIsEncrypted (segment_is_encrypted); 1725 } 1726 } 1727 assert (segment_sp.get()); 1728 1729 lldb::SectionType sect_type = eSectionTypeOther; 1730 1731 if (sect64.flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS)) 1732 sect_type = eSectionTypeCode; 1733 else 1734 { 1735 uint32_t mach_sect_type = sect64.flags & SECTION_TYPE; 1736 static ConstString g_sect_name_objc_data ("__objc_data"); 1737 static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs"); 1738 static ConstString g_sect_name_objc_selrefs ("__objc_selrefs"); 1739 static ConstString g_sect_name_objc_classrefs ("__objc_classrefs"); 1740 static ConstString g_sect_name_objc_superrefs ("__objc_superrefs"); 1741 static ConstString g_sect_name_objc_const ("__objc_const"); 1742 static ConstString g_sect_name_objc_classlist ("__objc_classlist"); 1743 static ConstString g_sect_name_cfstring ("__cfstring"); 1744 1745 static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev"); 1746 static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges"); 1747 static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame"); 1748 static ConstString g_sect_name_dwarf_debug_info ("__debug_info"); 1749 static ConstString g_sect_name_dwarf_debug_line ("__debug_line"); 1750 static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc"); 1751 static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo"); 1752 static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames"); 1753 static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes"); 1754 static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges"); 1755 static ConstString g_sect_name_dwarf_debug_str ("__debug_str"); 1756 static ConstString g_sect_name_dwarf_apple_names ("__apple_names"); 1757 static ConstString g_sect_name_dwarf_apple_types ("__apple_types"); 1758 static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac"); 1759 static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc"); 1760 static ConstString g_sect_name_eh_frame ("__eh_frame"); 1761 static ConstString g_sect_name_compact_unwind ("__unwind_info"); 1762 static ConstString g_sect_name_text ("__text"); 1763 static ConstString g_sect_name_data ("__data"); 1764 1765 1766 if (section_name == g_sect_name_dwarf_debug_abbrev) 1767 sect_type = eSectionTypeDWARFDebugAbbrev; 1768 else if (section_name == g_sect_name_dwarf_debug_aranges) 1769 sect_type = eSectionTypeDWARFDebugAranges; 1770 else if (section_name == g_sect_name_dwarf_debug_frame) 1771 sect_type = eSectionTypeDWARFDebugFrame; 1772 else if (section_name == g_sect_name_dwarf_debug_info) 1773 sect_type = eSectionTypeDWARFDebugInfo; 1774 else if (section_name == g_sect_name_dwarf_debug_line) 1775 sect_type = eSectionTypeDWARFDebugLine; 1776 else if (section_name == g_sect_name_dwarf_debug_loc) 1777 sect_type = eSectionTypeDWARFDebugLoc; 1778 else if (section_name == g_sect_name_dwarf_debug_macinfo) 1779 sect_type = eSectionTypeDWARFDebugMacInfo; 1780 else if (section_name == g_sect_name_dwarf_debug_pubnames) 1781 sect_type = eSectionTypeDWARFDebugPubNames; 1782 else if (section_name == g_sect_name_dwarf_debug_pubtypes) 1783 sect_type = eSectionTypeDWARFDebugPubTypes; 1784 else if (section_name == g_sect_name_dwarf_debug_ranges) 1785 sect_type = eSectionTypeDWARFDebugRanges; 1786 else if (section_name == g_sect_name_dwarf_debug_str) 1787 sect_type = eSectionTypeDWARFDebugStr; 1788 else if (section_name == g_sect_name_dwarf_apple_names) 1789 sect_type = eSectionTypeDWARFAppleNames; 1790 else if (section_name == g_sect_name_dwarf_apple_types) 1791 sect_type = eSectionTypeDWARFAppleTypes; 1792 else if (section_name == g_sect_name_dwarf_apple_namespaces) 1793 sect_type = eSectionTypeDWARFAppleNamespaces; 1794 else if (section_name == g_sect_name_dwarf_apple_objc) 1795 sect_type = eSectionTypeDWARFAppleObjC; 1796 else if (section_name == g_sect_name_objc_selrefs) 1797 sect_type = eSectionTypeDataCStringPointers; 1798 else if (section_name == g_sect_name_objc_msgrefs) 1799 sect_type = eSectionTypeDataObjCMessageRefs; 1800 else if (section_name == g_sect_name_eh_frame) 1801 sect_type = eSectionTypeEHFrame; 1802 else if (section_name == g_sect_name_compact_unwind) 1803 sect_type = eSectionTypeCompactUnwind; 1804 else if (section_name == g_sect_name_cfstring) 1805 sect_type = eSectionTypeDataObjCCFStrings; 1806 else if (section_name == g_sect_name_objc_data || 1807 section_name == g_sect_name_objc_classrefs || 1808 section_name == g_sect_name_objc_superrefs || 1809 section_name == g_sect_name_objc_const || 1810 section_name == g_sect_name_objc_classlist) 1811 { 1812 sect_type = eSectionTypeDataPointers; 1813 } 1814 1815 if (sect_type == eSectionTypeOther) 1816 { 1817 switch (mach_sect_type) 1818 { 1819 // TODO: categorize sections by other flags for regular sections 1820 case S_REGULAR: 1821 if (section_name == g_sect_name_text) 1822 sect_type = eSectionTypeCode; 1823 else if (section_name == g_sect_name_data) 1824 sect_type = eSectionTypeData; 1825 else 1826 sect_type = eSectionTypeOther; 1827 break; 1828 case S_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1829 case S_CSTRING_LITERALS: sect_type = eSectionTypeDataCString; break; // section with only literal C strings 1830 case S_4BYTE_LITERALS: sect_type = eSectionTypeData4; break; // section with only 4 byte literals 1831 case S_8BYTE_LITERALS: sect_type = eSectionTypeData8; break; // section with only 8 byte literals 1832 case S_LITERAL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals 1833 case S_NON_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers 1834 case S_LAZY_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers 1835 case S_SYMBOL_STUBS: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field 1836 case S_MOD_INIT_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization 1837 case S_MOD_TERM_FUNC_POINTERS: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination 1838 case S_COALESCED: sect_type = eSectionTypeOther; break; 1839 case S_GB_ZEROFILL: sect_type = eSectionTypeZeroFill; break; 1840 case S_INTERPOSING: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing 1841 case S_16BYTE_LITERALS: sect_type = eSectionTypeData16; break; // section with only 16 byte literals 1842 case S_DTRACE_DOF: sect_type = eSectionTypeDebug; break; 1843 case S_LAZY_DYLIB_SYMBOL_POINTERS: sect_type = eSectionTypeDataPointers; break; 1844 default: break; 1845 } 1846 } 1847 } 1848 1849 SectionSP section_sp(new Section (segment_sp, 1850 module_sp, 1851 this, 1852 ++sectID, 1853 section_name, 1854 sect_type, 1855 sect64.addr - segment_sp->GetFileAddress(), 1856 sect64.size, 1857 sect64.offset, 1858 sect64.offset == 0 ? 0 : sect64.size, 1859 sect64.align, 1860 sect64.flags)); 1861 // Set the section to be encrypted to match the segment 1862 1863 bool section_is_encrypted = false; 1864 if (!segment_is_encrypted && load_cmd.filesize != 0) 1865 section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL; 1866 1867 section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted); 1868 segment_sp->GetChildren().AddSection(section_sp); 1869 1870 if (segment_sp->IsFake()) 1871 { 1872 segment_sp.reset(); 1873 const_segname.Clear(); 1874 } 1875 } 1876 } 1877 if (segment_sp && is_dsym) 1878 { 1879 if (first_segment_sectID <= sectID) 1880 { 1881 lldb::user_id_t sect_uid; 1882 for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid) 1883 { 1884 SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid)); 1885 SectionSP next_section_sp; 1886 if (sect_uid + 1 <= sectID) 1887 next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1); 1888 1889 if (curr_section_sp.get()) 1890 { 1891 if (curr_section_sp->GetByteSize() == 0) 1892 { 1893 if (next_section_sp.get() != NULL) 1894 curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() ); 1895 else 1896 curr_section_sp->SetByteSize ( load_cmd.vmsize ); 1897 } 1898 } 1899 } 1900 } 1901 } 1902 } 1903 } 1904 } 1905 else if (load_cmd.cmd == LC_DYSYMTAB) 1906 { 1907 m_dysymtab.cmd = load_cmd.cmd; 1908 m_dysymtab.cmdsize = load_cmd.cmdsize; 1909 m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2); 1910 } 1911 1912 offset = load_cmd_offset + load_cmd.cmdsize; 1913 } 1914 1915 1916 if (section_file_addresses_changed && module_sp.get()) 1917 { 1918 module_sp->SectionFileAddressesChanged(); 1919 } 1920 } 1921 } 1922 1923 class MachSymtabSectionInfo 1924 { 1925 public: 1926 1927 MachSymtabSectionInfo (SectionList *section_list) : 1928 m_section_list (section_list), 1929 m_section_infos() 1930 { 1931 // Get the number of sections down to a depth of 1 to include 1932 // all segments and their sections, but no other sections that 1933 // may be added for debug map or 1934 m_section_infos.resize(section_list->GetNumSections(1)); 1935 } 1936 1937 1938 SectionSP 1939 GetSection (uint8_t n_sect, addr_t file_addr) 1940 { 1941 if (n_sect == 0) 1942 return SectionSP(); 1943 if (n_sect < m_section_infos.size()) 1944 { 1945 if (!m_section_infos[n_sect].section_sp) 1946 { 1947 SectionSP section_sp (m_section_list->FindSectionByID (n_sect)); 1948 m_section_infos[n_sect].section_sp = section_sp; 1949 if (section_sp) 1950 { 1951 m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress()); 1952 m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize()); 1953 } 1954 else 1955 { 1956 Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect); 1957 } 1958 } 1959 if (m_section_infos[n_sect].vm_range.Contains(file_addr)) 1960 { 1961 // Symbol is in section. 1962 return m_section_infos[n_sect].section_sp; 1963 } 1964 else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 && 1965 m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr) 1966 { 1967 // Symbol is in section with zero size, but has the same start 1968 // address as the section. This can happen with linker symbols 1969 // (symbols that start with the letter 'l' or 'L'. 1970 return m_section_infos[n_sect].section_sp; 1971 } 1972 } 1973 return m_section_list->FindSectionContainingFileAddress(file_addr); 1974 } 1975 1976 protected: 1977 struct SectionInfo 1978 { 1979 SectionInfo () : 1980 vm_range(), 1981 section_sp () 1982 { 1983 } 1984 1985 VMRange vm_range; 1986 SectionSP section_sp; 1987 }; 1988 SectionList *m_section_list; 1989 std::vector<SectionInfo> m_section_infos; 1990 }; 1991 1992 struct TrieEntry 1993 { 1994 TrieEntry () : 1995 name(), 1996 address(LLDB_INVALID_ADDRESS), 1997 flags (0), 1998 other(0), 1999 import_name() 2000 { 2001 } 2002 2003 void 2004 Clear () 2005 { 2006 name.Clear(); 2007 address = LLDB_INVALID_ADDRESS; 2008 flags = 0; 2009 other = 0; 2010 import_name.Clear(); 2011 } 2012 2013 void 2014 Dump () const 2015 { 2016 printf ("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"", 2017 static_cast<unsigned long long>(address), 2018 static_cast<unsigned long long>(flags), 2019 static_cast<unsigned long long>(other), name.GetCString()); 2020 if (import_name) 2021 printf (" -> \"%s\"\n", import_name.GetCString()); 2022 else 2023 printf ("\n"); 2024 } 2025 ConstString name; 2026 uint64_t address; 2027 uint64_t flags; 2028 uint64_t other; 2029 ConstString import_name; 2030 }; 2031 2032 struct TrieEntryWithOffset 2033 { 2034 lldb::offset_t nodeOffset; 2035 TrieEntry entry; 2036 2037 TrieEntryWithOffset (lldb::offset_t offset) : 2038 nodeOffset (offset), 2039 entry() 2040 { 2041 } 2042 2043 void 2044 Dump (uint32_t idx) const 2045 { 2046 printf ("[%3u] 0x%16.16llx: ", idx, 2047 static_cast<unsigned long long>(nodeOffset)); 2048 entry.Dump(); 2049 } 2050 2051 bool 2052 operator<(const TrieEntryWithOffset& other) const 2053 { 2054 return ( nodeOffset < other.nodeOffset ); 2055 } 2056 }; 2057 2058 static void 2059 ParseTrieEntries (DataExtractor &data, 2060 lldb::offset_t offset, 2061 std::vector<llvm::StringRef> &nameSlices, 2062 std::set<lldb::addr_t> &resolver_addresses, 2063 std::vector<TrieEntryWithOffset>& output) 2064 { 2065 if (!data.ValidOffset(offset)) 2066 return; 2067 2068 const uint64_t terminalSize = data.GetULEB128(&offset); 2069 lldb::offset_t children_offset = offset + terminalSize; 2070 if ( terminalSize != 0 ) { 2071 TrieEntryWithOffset e (offset); 2072 e.entry.flags = data.GetULEB128(&offset); 2073 const char *import_name = NULL; 2074 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT ) { 2075 e.entry.address = 0; 2076 e.entry.other = data.GetULEB128(&offset); // dylib ordinal 2077 import_name = data.GetCStr(&offset); 2078 } 2079 else { 2080 e.entry.address = data.GetULEB128(&offset); 2081 if ( e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER ) 2082 { 2083 //resolver_addresses.insert(e.entry.address); 2084 e.entry.other = data.GetULEB128(&offset); 2085 resolver_addresses.insert(e.entry.other); 2086 } 2087 else 2088 e.entry.other = 0; 2089 } 2090 // Only add symbols that are reexport symbols with a valid import name 2091 if (EXPORT_SYMBOL_FLAGS_REEXPORT & e.entry.flags && import_name && import_name[0]) 2092 { 2093 std::string name; 2094 if (!nameSlices.empty()) 2095 { 2096 for (auto name_slice: nameSlices) 2097 name.append(name_slice.data(), name_slice.size()); 2098 } 2099 if (name.size() > 1) 2100 { 2101 // Skip the leading '_' 2102 e.entry.name.SetCStringWithLength(name.c_str() + 1,name.size() - 1); 2103 } 2104 if (import_name) 2105 { 2106 // Skip the leading '_' 2107 e.entry.import_name.SetCString(import_name+1); 2108 } 2109 output.push_back(e); 2110 } 2111 } 2112 2113 const uint8_t childrenCount = data.GetU8(&children_offset); 2114 for (uint8_t i=0; i < childrenCount; ++i) { 2115 nameSlices.push_back(data.GetCStr(&children_offset)); 2116 lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset); 2117 if (childNodeOffset) 2118 { 2119 ParseTrieEntries(data, 2120 childNodeOffset, 2121 nameSlices, 2122 resolver_addresses, 2123 output); 2124 } 2125 nameSlices.pop_back(); 2126 } 2127 } 2128 2129 size_t 2130 ObjectFileMachO::ParseSymtab () 2131 { 2132 Timer scoped_timer(__PRETTY_FUNCTION__, 2133 "ObjectFileMachO::ParseSymtab () module = %s", 2134 m_file.GetFilename().AsCString("")); 2135 ModuleSP module_sp (GetModule()); 2136 if (!module_sp) 2137 return 0; 2138 2139 struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 }; 2140 struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 }; 2141 struct dyld_info_command dyld_info = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2142 typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts; 2143 FunctionStarts function_starts; 2144 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 2145 uint32_t i; 2146 FileSpecList dylib_files; 2147 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 2148 static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_"); 2149 static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_"); 2150 static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_"); 2151 2152 for (i=0; i<m_header.ncmds; ++i) 2153 { 2154 const lldb::offset_t cmd_offset = offset; 2155 // Read in the load command and load command size 2156 struct load_command lc; 2157 if (m_data.GetU32(&offset, &lc, 2) == NULL) 2158 break; 2159 // Watch for the symbol table load command 2160 switch (lc.cmd) 2161 { 2162 case LC_SYMTAB: 2163 symtab_load_command.cmd = lc.cmd; 2164 symtab_load_command.cmdsize = lc.cmdsize; 2165 // Read in the rest of the symtab load command 2166 if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields 2167 return 0; 2168 if (symtab_load_command.symoff == 0) 2169 { 2170 if (log) 2171 module_sp->LogMessage(log, "LC_SYMTAB.symoff == 0"); 2172 return 0; 2173 } 2174 2175 if (symtab_load_command.stroff == 0) 2176 { 2177 if (log) 2178 module_sp->LogMessage(log, "LC_SYMTAB.stroff == 0"); 2179 return 0; 2180 } 2181 2182 if (symtab_load_command.nsyms == 0) 2183 { 2184 if (log) 2185 module_sp->LogMessage(log, "LC_SYMTAB.nsyms == 0"); 2186 return 0; 2187 } 2188 2189 if (symtab_load_command.strsize == 0) 2190 { 2191 if (log) 2192 module_sp->LogMessage(log, "LC_SYMTAB.strsize == 0"); 2193 return 0; 2194 } 2195 break; 2196 2197 case LC_DYLD_INFO: 2198 case LC_DYLD_INFO_ONLY: 2199 if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) 2200 { 2201 dyld_info.cmd = lc.cmd; 2202 dyld_info.cmdsize = lc.cmdsize; 2203 } 2204 else 2205 { 2206 memset (&dyld_info, 0, sizeof(dyld_info)); 2207 } 2208 break; 2209 2210 case LC_LOAD_DYLIB: 2211 case LC_LOAD_WEAK_DYLIB: 2212 case LC_REEXPORT_DYLIB: 2213 case LC_LOADFVMLIB: 2214 case LC_LOAD_UPWARD_DYLIB: 2215 { 2216 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 2217 const char *path = m_data.PeekCStr(name_offset); 2218 if (path) 2219 { 2220 FileSpec file_spec(path, false); 2221 // Strip the path if there is @rpath, @executable, etc so we just use the basename 2222 if (path[0] == '@') 2223 file_spec.GetDirectory().Clear(); 2224 2225 if (lc.cmd == LC_REEXPORT_DYLIB) 2226 { 2227 m_reexported_dylibs.AppendIfUnique(file_spec); 2228 } 2229 2230 dylib_files.Append(file_spec); 2231 } 2232 } 2233 break; 2234 2235 case LC_FUNCTION_STARTS: 2236 function_starts_load_command.cmd = lc.cmd; 2237 function_starts_load_command.cmdsize = lc.cmdsize; 2238 if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields 2239 memset (&function_starts_load_command, 0, sizeof(function_starts_load_command)); 2240 break; 2241 2242 default: 2243 break; 2244 } 2245 offset = cmd_offset + lc.cmdsize; 2246 } 2247 2248 if (symtab_load_command.cmd) 2249 { 2250 Symtab *symtab = m_symtab_ap.get(); 2251 SectionList *section_list = GetSectionList(); 2252 if (section_list == NULL) 2253 return 0; 2254 2255 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 2256 const ByteOrder byte_order = m_data.GetByteOrder(); 2257 bool bit_width_32 = addr_byte_size == 4; 2258 const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64); 2259 2260 DataExtractor nlist_data (NULL, 0, byte_order, addr_byte_size); 2261 DataExtractor strtab_data (NULL, 0, byte_order, addr_byte_size); 2262 DataExtractor function_starts_data (NULL, 0, byte_order, addr_byte_size); 2263 DataExtractor indirect_symbol_index_data (NULL, 0, byte_order, addr_byte_size); 2264 DataExtractor dyld_trie_data (NULL, 0, byte_order, addr_byte_size); 2265 2266 const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size; 2267 const addr_t strtab_data_byte_size = symtab_load_command.strsize; 2268 addr_t strtab_addr = LLDB_INVALID_ADDRESS; 2269 2270 ProcessSP process_sp (m_process_wp.lock()); 2271 Process *process = process_sp.get(); 2272 2273 uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete; 2274 2275 if (process && m_header.filetype != llvm::MachO::MH_OBJECT) 2276 { 2277 Target &target = process->GetTarget(); 2278 2279 memory_module_load_level = target.GetMemoryModuleLoadLevel(); 2280 2281 SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT())); 2282 // Reading mach file from memory in a process or core file... 2283 2284 if (linkedit_section_sp) 2285 { 2286 addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target); 2287 if (linkedit_load_addr == LLDB_INVALID_ADDRESS) 2288 { 2289 // We might be trying to access the symbol table before the __LINKEDIT's load 2290 // address has been set in the target. We can't fail to read the symbol table, 2291 // so calculate the right address manually 2292 linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get()); 2293 } 2294 2295 const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset(); 2296 const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset; 2297 strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset; 2298 2299 bool data_was_read = false; 2300 2301 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2302 if (m_header.flags & 0x80000000u && process->GetAddressByteSize() == sizeof (void*)) 2303 { 2304 // This mach-o memory file is in the dyld shared cache. If this 2305 // program is not remote and this is iOS, then this process will 2306 // share the same shared cache as the process we are debugging and 2307 // we can read the entire __LINKEDIT from the address space in this 2308 // process. This is a needed optimization that is used for local iOS 2309 // debugging only since all shared libraries in the shared cache do 2310 // not have corresponding files that exist in the file system of the 2311 // device. They have been combined into a single file. This means we 2312 // always have to load these files from memory. All of the symbol and 2313 // string tables from all of the __LINKEDIT sections from the shared 2314 // libraries in the shared cache have been merged into a single large 2315 // symbol and string table. Reading all of this symbol and string table 2316 // data across can slow down debug launch times, so we optimize this by 2317 // reading the memory for the __LINKEDIT section from this process. 2318 2319 UUID lldb_shared_cache(GetLLDBSharedCacheUUID()); 2320 UUID process_shared_cache(GetProcessSharedCacheUUID(process)); 2321 bool use_lldb_cache = true; 2322 if (lldb_shared_cache.IsValid() && process_shared_cache.IsValid() && lldb_shared_cache != process_shared_cache) 2323 { 2324 use_lldb_cache = false; 2325 ModuleSP module_sp (GetModule()); 2326 if (module_sp) 2327 module_sp->ReportWarning ("shared cache in process does not match lldb's own shared cache, startup will be slow."); 2328 2329 } 2330 2331 PlatformSP platform_sp (target.GetPlatform()); 2332 if (platform_sp && platform_sp->IsHost() && use_lldb_cache) 2333 { 2334 data_was_read = true; 2335 nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle); 2336 strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle); 2337 if (function_starts_load_command.cmd) 2338 { 2339 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2340 function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle); 2341 } 2342 } 2343 } 2344 #endif 2345 2346 if (!data_was_read) 2347 { 2348 if (memory_module_load_level == eMemoryModuleLoadLevelComplete) 2349 { 2350 DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size)); 2351 if (nlist_data_sp) 2352 nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize()); 2353 // Load strings individually from memory when loading from memory since shared cache 2354 // string tables contain strings for all symbols from all shared cached libraries 2355 //DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size)); 2356 //if (strtab_data_sp) 2357 // strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize()); 2358 if (m_dysymtab.nindirectsyms != 0) 2359 { 2360 const addr_t indirect_syms_addr = linkedit_load_addr + m_dysymtab.indirectsymoff - linkedit_file_offset; 2361 DataBufferSP indirect_syms_data_sp (ReadMemory (process_sp, indirect_syms_addr, m_dysymtab.nindirectsyms * 4)); 2362 if (indirect_syms_data_sp) 2363 indirect_symbol_index_data.SetData (indirect_syms_data_sp, 0, indirect_syms_data_sp->GetByteSize()); 2364 } 2365 } 2366 2367 if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) 2368 { 2369 if (function_starts_load_command.cmd) 2370 { 2371 const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset; 2372 DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize)); 2373 if (func_start_data_sp) 2374 function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize()); 2375 } 2376 } 2377 } 2378 } 2379 } 2380 else 2381 { 2382 nlist_data.SetData (m_data, 2383 symtab_load_command.symoff, 2384 nlist_data_byte_size); 2385 strtab_data.SetData (m_data, 2386 symtab_load_command.stroff, 2387 strtab_data_byte_size); 2388 2389 if (dyld_info.export_size > 0) 2390 { 2391 dyld_trie_data.SetData (m_data, 2392 dyld_info.export_off, 2393 dyld_info.export_size); 2394 } 2395 2396 if (m_dysymtab.nindirectsyms != 0) 2397 { 2398 indirect_symbol_index_data.SetData (m_data, 2399 m_dysymtab.indirectsymoff, 2400 m_dysymtab.nindirectsyms * 4); 2401 } 2402 if (function_starts_load_command.cmd) 2403 { 2404 function_starts_data.SetData (m_data, 2405 function_starts_load_command.dataoff, 2406 function_starts_load_command.datasize); 2407 } 2408 } 2409 2410 if (nlist_data.GetByteSize() == 0 && memory_module_load_level == eMemoryModuleLoadLevelComplete) 2411 { 2412 if (log) 2413 module_sp->LogMessage(log, "failed to read nlist data"); 2414 return 0; 2415 } 2416 2417 2418 const bool have_strtab_data = strtab_data.GetByteSize() > 0; 2419 if (!have_strtab_data) 2420 { 2421 if (process) 2422 { 2423 if (strtab_addr == LLDB_INVALID_ADDRESS) 2424 { 2425 if (log) 2426 module_sp->LogMessage(log, "failed to locate the strtab in memory"); 2427 return 0; 2428 } 2429 } 2430 else 2431 { 2432 if (log) 2433 module_sp->LogMessage(log, "failed to read strtab data"); 2434 return 0; 2435 } 2436 } 2437 2438 const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT(); 2439 const ConstString &g_segment_name_DATA = GetSegmentNameDATA(); 2440 const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC(); 2441 const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame(); 2442 SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT)); 2443 SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA)); 2444 SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC)); 2445 SectionSP eh_frame_section_sp; 2446 if (text_section_sp.get()) 2447 eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame); 2448 else 2449 eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame); 2450 2451 const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM); 2452 2453 // lldb works best if it knows the start address of all functions in a module. 2454 // Linker symbols or debug info are normally the best source of information for start addr / size but 2455 // they may be stripped in a released binary. 2456 // Two additional sources of information exist in Mach-O binaries: 2457 // LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each function's start address in the 2458 // binary, relative to the text section. 2459 // eh_frame - the eh_frame FDEs have the start addr & size of each function 2460 // LC_FUNCTION_STARTS is the fastest source to read in, and is present on all modern binaries. 2461 // Binaries built to run on older releases may need to use eh_frame information. 2462 2463 if (text_section_sp && function_starts_data.GetByteSize()) 2464 { 2465 FunctionStarts::Entry function_start_entry; 2466 function_start_entry.data = false; 2467 lldb::offset_t function_start_offset = 0; 2468 function_start_entry.addr = text_section_sp->GetFileAddress(); 2469 uint64_t delta; 2470 while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0) 2471 { 2472 // Now append the current entry 2473 function_start_entry.addr += delta; 2474 function_starts.Append(function_start_entry); 2475 } 2476 } 2477 else 2478 { 2479 // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the load command claiming an eh_frame 2480 // but it doesn't actually have the eh_frame content. And if we have a dSYM, we don't need to do any 2481 // of this fill-in-the-missing-symbols works anyway - the debug info should give us all the functions in 2482 // the module. 2483 if (text_section_sp.get() && eh_frame_section_sp.get() && m_type != eTypeDebugInfo) 2484 { 2485 DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp, eRegisterKindGCC, true); 2486 DWARFCallFrameInfo::FunctionAddressAndSizeVector functions; 2487 eh_frame.GetFunctionAddressAndSizeVector (functions); 2488 addr_t text_base_addr = text_section_sp->GetFileAddress(); 2489 size_t count = functions.GetSize(); 2490 for (size_t i = 0; i < count; ++i) 2491 { 2492 const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func = functions.GetEntryAtIndex (i); 2493 if (func) 2494 { 2495 FunctionStarts::Entry function_start_entry; 2496 function_start_entry.addr = func->base - text_base_addr; 2497 function_starts.Append(function_start_entry); 2498 } 2499 } 2500 } 2501 } 2502 2503 const size_t function_starts_count = function_starts.GetSize(); 2504 2505 const user_id_t TEXT_eh_frame_sectID = 2506 eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() 2507 : static_cast<user_id_t>(NO_SECT); 2508 2509 lldb::offset_t nlist_data_offset = 0; 2510 2511 uint32_t N_SO_index = UINT32_MAX; 2512 2513 MachSymtabSectionInfo section_info (section_list); 2514 std::vector<uint32_t> N_FUN_indexes; 2515 std::vector<uint32_t> N_NSYM_indexes; 2516 std::vector<uint32_t> N_INCL_indexes; 2517 std::vector<uint32_t> N_BRAC_indexes; 2518 std::vector<uint32_t> N_COMM_indexes; 2519 typedef std::multimap <uint64_t, uint32_t> ValueToSymbolIndexMap; 2520 typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap; 2521 typedef std::map <const char *, uint32_t> ConstNameToSymbolIndexMap; 2522 ValueToSymbolIndexMap N_FUN_addr_to_sym_idx; 2523 ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx; 2524 ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx; 2525 // Any symbols that get merged into another will get an entry 2526 // in this map so we know 2527 NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx; 2528 uint32_t nlist_idx = 0; 2529 Symbol *symbol_ptr = NULL; 2530 2531 uint32_t sym_idx = 0; 2532 Symbol *sym = NULL; 2533 size_t num_syms = 0; 2534 std::string memory_symbol_name; 2535 uint32_t unmapped_local_symbols_found = 0; 2536 2537 std::vector<TrieEntryWithOffset> trie_entries; 2538 std::set<lldb::addr_t> resolver_addresses; 2539 2540 if (dyld_trie_data.GetByteSize() > 0) 2541 { 2542 std::vector<llvm::StringRef> nameSlices; 2543 ParseTrieEntries (dyld_trie_data, 2544 0, 2545 nameSlices, 2546 resolver_addresses, 2547 trie_entries); 2548 2549 ConstString text_segment_name ("__TEXT"); 2550 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 2551 if (text_segment_sp) 2552 { 2553 const lldb::addr_t text_segment_file_addr = text_segment_sp->GetFileAddress(); 2554 if (text_segment_file_addr != LLDB_INVALID_ADDRESS) 2555 { 2556 for (auto &e : trie_entries) 2557 e.entry.address += text_segment_file_addr; 2558 } 2559 } 2560 } 2561 2562 typedef std::set<ConstString> IndirectSymbols; 2563 IndirectSymbols indirect_symbol_names; 2564 2565 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 2566 2567 // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL 2568 // symbols out of the memory mapped portion of the DSC. The symbol information has all been retained, 2569 // but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some* 2570 // LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt 2571 // to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal 2572 // nlist parser to ignore all LOCAL symbols. 2573 2574 if (m_header.flags & 0x80000000u) 2575 { 2576 // Before we can start mapping the DSC, we need to make certain the target process is actually 2577 // using the cache we can find. 2578 2579 // Next we need to determine the correct path for the dyld shared cache. 2580 2581 ArchSpec header_arch; 2582 GetArchitecture(header_arch); 2583 char dsc_path[PATH_MAX]; 2584 2585 snprintf(dsc_path, sizeof(dsc_path), "%s%s%s", 2586 "/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */ 2587 "dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */ 2588 header_arch.GetArchitectureName()); 2589 2590 FileSpec dsc_filespec(dsc_path, false); 2591 2592 // We need definitions of two structures in the on-disk DSC, copy them here manually 2593 struct lldb_copy_dyld_cache_header_v0 2594 { 2595 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2596 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2597 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2598 uint32_t imagesOffset; 2599 uint32_t imagesCount; 2600 uint64_t dyldBaseAddress; 2601 uint64_t codeSignatureOffset; 2602 uint64_t codeSignatureSize; 2603 uint64_t slideInfoOffset; 2604 uint64_t slideInfoSize; 2605 uint64_t localSymbolsOffset; // file offset of where local symbols are stored 2606 uint64_t localSymbolsSize; // size of local symbols information 2607 }; 2608 struct lldb_copy_dyld_cache_header_v1 2609 { 2610 char magic[16]; // e.g. "dyld_v0 i386", "dyld_v1 armv7", etc. 2611 uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info 2612 uint32_t mappingCount; // number of dyld_cache_mapping_info entries 2613 uint32_t imagesOffset; 2614 uint32_t imagesCount; 2615 uint64_t dyldBaseAddress; 2616 uint64_t codeSignatureOffset; 2617 uint64_t codeSignatureSize; 2618 uint64_t slideInfoOffset; 2619 uint64_t slideInfoSize; 2620 uint64_t localSymbolsOffset; 2621 uint64_t localSymbolsSize; 2622 uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13 and later 2623 }; 2624 2625 struct lldb_copy_dyld_cache_mapping_info 2626 { 2627 uint64_t address; 2628 uint64_t size; 2629 uint64_t fileOffset; 2630 uint32_t maxProt; 2631 uint32_t initProt; 2632 }; 2633 2634 struct lldb_copy_dyld_cache_local_symbols_info 2635 { 2636 uint32_t nlistOffset; 2637 uint32_t nlistCount; 2638 uint32_t stringsOffset; 2639 uint32_t stringsSize; 2640 uint32_t entriesOffset; 2641 uint32_t entriesCount; 2642 }; 2643 struct lldb_copy_dyld_cache_local_symbols_entry 2644 { 2645 uint32_t dylibOffset; 2646 uint32_t nlistStartIndex; 2647 uint32_t nlistCount; 2648 }; 2649 2650 /* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset). 2651 The dyld_cache_local_symbols_info structure gives us three things: 2652 1. The start and count of the nlist records in the dyld_shared_cache file 2653 2. The start and size of the strings for these nlist records 2654 3. The start and count of dyld_cache_local_symbols_entry entries 2655 2656 There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache. 2657 The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache. 2658 The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records 2659 and the count of how many nlist records there are for this dylib/framework. 2660 */ 2661 2662 // Process the dsc header to find the unmapped symbols 2663 // 2664 // Save some VM space, do not map the entire cache in one shot. 2665 2666 DataBufferSP dsc_data_sp; 2667 dsc_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(0, sizeof(struct lldb_copy_dyld_cache_header_v1)); 2668 2669 if (dsc_data_sp) 2670 { 2671 DataExtractor dsc_header_data(dsc_data_sp, byte_order, addr_byte_size); 2672 2673 char version_str[17]; 2674 int version = -1; 2675 lldb::offset_t offset = 0; 2676 memcpy (version_str, dsc_header_data.GetData (&offset, 16), 16); 2677 version_str[16] = '\0'; 2678 if (strncmp (version_str, "dyld_v", 6) == 0 && isdigit (version_str[6])) 2679 { 2680 int v; 2681 if (::sscanf (version_str + 6, "%d", &v) == 1) 2682 { 2683 version = v; 2684 } 2685 } 2686 2687 UUID dsc_uuid; 2688 if (version >= 1) 2689 { 2690 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, uuid); 2691 uint8_t uuid_bytes[sizeof (uuid_t)]; 2692 memcpy (uuid_bytes, dsc_header_data.GetData (&offset, sizeof (uuid_t)), sizeof (uuid_t)); 2693 dsc_uuid.SetBytes (uuid_bytes); 2694 } 2695 2696 bool uuid_match = true; 2697 if (dsc_uuid.IsValid() && process) 2698 { 2699 UUID shared_cache_uuid(GetProcessSharedCacheUUID(process)); 2700 2701 if (shared_cache_uuid.IsValid() && dsc_uuid != shared_cache_uuid) 2702 { 2703 // The on-disk dyld_shared_cache file is not the same as the one in this 2704 // process' memory, don't use it. 2705 uuid_match = false; 2706 ModuleSP module_sp (GetModule()); 2707 if (module_sp) 2708 module_sp->ReportWarning ("process shared cache does not match on-disk dyld_shared_cache file, some symbol names will be missing."); 2709 } 2710 } 2711 2712 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, mappingOffset); 2713 2714 uint32_t mappingOffset = dsc_header_data.GetU32(&offset); 2715 2716 // If the mappingOffset points to a location inside the header, we've 2717 // opened an old dyld shared cache, and should not proceed further. 2718 if (uuid_match && mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header_v0)) 2719 { 2720 2721 DataBufferSP dsc_mapping_info_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(mappingOffset, sizeof (struct lldb_copy_dyld_cache_mapping_info)); 2722 DataExtractor dsc_mapping_info_data(dsc_mapping_info_data_sp, byte_order, addr_byte_size); 2723 offset = 0; 2724 2725 // The File addresses (from the in-memory Mach-O load commands) for the shared libraries 2726 // in the shared library cache need to be adjusted by an offset to match up with the 2727 // dylibOffset identifying field in the dyld_cache_local_symbol_entry's. This offset is 2728 // recorded in mapping_offset_value. 2729 const uint64_t mapping_offset_value = dsc_mapping_info_data.GetU64(&offset); 2730 2731 offset = offsetof (struct lldb_copy_dyld_cache_header_v1, localSymbolsOffset); 2732 uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset); 2733 uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset); 2734 2735 if (localSymbolsOffset && localSymbolsSize) 2736 { 2737 // Map the local symbols 2738 if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContentsIfLocal(localSymbolsOffset, localSymbolsSize)) 2739 { 2740 DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, byte_order, addr_byte_size); 2741 2742 offset = 0; 2743 2744 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 2745 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 2746 UndefinedNameToDescMap undefined_name_to_desc; 2747 SymbolIndexToName reexport_shlib_needs_fixup; 2748 2749 2750 // Read the local_symbols_infos struct in one shot 2751 struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info; 2752 dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6); 2753 2754 SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT())); 2755 2756 uint32_t header_file_offset = (text_section_sp->GetFileAddress() - mapping_offset_value); 2757 2758 offset = local_symbols_info.entriesOffset; 2759 for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++) 2760 { 2761 struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry; 2762 local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset); 2763 local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset); 2764 local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset); 2765 2766 if (header_file_offset == local_symbols_entry.dylibOffset) 2767 { 2768 unmapped_local_symbols_found = local_symbols_entry.nlistCount; 2769 2770 // The normal nlist code cannot correctly size the Symbols array, we need to allocate it here. 2771 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym); 2772 num_syms = symtab->GetNumSymbols(); 2773 2774 nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex); 2775 uint32_t string_table_offset = local_symbols_info.stringsOffset; 2776 2777 for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++) 2778 { 2779 ///////////////////////////// 2780 { 2781 struct nlist_64 nlist; 2782 if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 2783 break; 2784 2785 nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset); 2786 nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2787 nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset); 2788 nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset); 2789 nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset); 2790 2791 SymbolType type = eSymbolTypeInvalid; 2792 const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx); 2793 2794 if (symbol_name == NULL) 2795 { 2796 // No symbol should be NULL, even the symbols with no 2797 // string values should have an offset zero which points 2798 // to an empty C-string 2799 Host::SystemLog (Host::eSystemLogError, 2800 "error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 2801 entry_index, 2802 nlist.n_strx, 2803 module_sp->GetFileSpec().GetPath().c_str()); 2804 continue; 2805 } 2806 if (symbol_name[0] == '\0') 2807 symbol_name = NULL; 2808 2809 const char *symbol_name_non_abi_mangled = NULL; 2810 2811 SectionSP symbol_section; 2812 uint32_t symbol_byte_size = 0; 2813 bool add_nlist = true; 2814 bool is_debug = ((nlist.n_type & N_STAB) != 0); 2815 bool demangled_is_synthesized = false; 2816 bool is_gsym = false; 2817 bool set_value = true; 2818 2819 assert (sym_idx < num_syms); 2820 2821 sym[sym_idx].SetDebug (is_debug); 2822 2823 if (is_debug) 2824 { 2825 switch (nlist.n_type) 2826 { 2827 case N_GSYM: 2828 // global symbol: name,,NO_SECT,type,0 2829 // Sometimes the N_GSYM value contains the address. 2830 2831 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 2832 // have the same address, but we want to ensure that we always find only the real symbol, 2833 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 2834 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 2835 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 2836 // same address. 2837 2838 is_gsym = true; 2839 sym[sym_idx].SetExternal(true); 2840 2841 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 2842 { 2843 llvm::StringRef symbol_name_ref(symbol_name); 2844 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 2845 { 2846 symbol_name_non_abi_mangled = symbol_name + 1; 2847 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 2848 type = eSymbolTypeObjCClass; 2849 demangled_is_synthesized = true; 2850 2851 } 2852 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 2853 { 2854 symbol_name_non_abi_mangled = symbol_name + 1; 2855 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 2856 type = eSymbolTypeObjCMetaClass; 2857 demangled_is_synthesized = true; 2858 } 2859 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 2860 { 2861 symbol_name_non_abi_mangled = symbol_name + 1; 2862 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 2863 type = eSymbolTypeObjCIVar; 2864 demangled_is_synthesized = true; 2865 } 2866 } 2867 else 2868 { 2869 if (nlist.n_value != 0) 2870 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2871 type = eSymbolTypeData; 2872 } 2873 break; 2874 2875 case N_FNAME: 2876 // procedure name (f77 kludge): name,,NO_SECT,0,0 2877 type = eSymbolTypeCompiler; 2878 break; 2879 2880 case N_FUN: 2881 // procedure: name,,n_sect,linenumber,address 2882 if (symbol_name) 2883 { 2884 type = eSymbolTypeCode; 2885 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2886 2887 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2888 // We use the current number of symbols in the symbol table in lieu of 2889 // using nlist_idx in case we ever start trimming entries out 2890 N_FUN_indexes.push_back(sym_idx); 2891 } 2892 else 2893 { 2894 type = eSymbolTypeCompiler; 2895 2896 if ( !N_FUN_indexes.empty() ) 2897 { 2898 // Copy the size of the function into the original STAB entry so we don't have 2899 // to hunt for it later 2900 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 2901 N_FUN_indexes.pop_back(); 2902 // We don't really need the end function STAB as it contains the size which 2903 // we already placed with the original symbol, so don't add it if we want a 2904 // minimal symbol table 2905 add_nlist = false; 2906 } 2907 } 2908 break; 2909 2910 case N_STSYM: 2911 // static symbol: name,,n_sect,type,address 2912 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 2913 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2914 type = eSymbolTypeData; 2915 break; 2916 2917 case N_LCSYM: 2918 // .lcomm symbol: name,,n_sect,type,address 2919 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2920 type = eSymbolTypeCommonBlock; 2921 break; 2922 2923 case N_BNSYM: 2924 // We use the current number of symbols in the symbol table in lieu of 2925 // using nlist_idx in case we ever start trimming entries out 2926 // Skip these if we want minimal symbol tables 2927 add_nlist = false; 2928 break; 2929 2930 case N_ENSYM: 2931 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 2932 // so that we can always skip the entire symbol if we need to navigate 2933 // more quickly at the source level when parsing STABS 2934 // Skip these if we want minimal symbol tables 2935 add_nlist = false; 2936 break; 2937 2938 2939 case N_OPT: 2940 // emitted with gcc2_compiled and in gcc source 2941 type = eSymbolTypeCompiler; 2942 break; 2943 2944 case N_RSYM: 2945 // register sym: name,,NO_SECT,type,register 2946 type = eSymbolTypeVariable; 2947 break; 2948 2949 case N_SLINE: 2950 // src line: 0,,n_sect,linenumber,address 2951 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 2952 type = eSymbolTypeLineEntry; 2953 break; 2954 2955 case N_SSYM: 2956 // structure elt: name,,NO_SECT,type,struct_offset 2957 type = eSymbolTypeVariableType; 2958 break; 2959 2960 case N_SO: 2961 // source file name 2962 type = eSymbolTypeSourceFile; 2963 if (symbol_name == NULL) 2964 { 2965 add_nlist = false; 2966 if (N_SO_index != UINT32_MAX) 2967 { 2968 // Set the size of the N_SO to the terminating index of this N_SO 2969 // so that we can always skip the entire N_SO if we need to navigate 2970 // more quickly at the source level when parsing STABS 2971 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 2972 symbol_ptr->SetByteSize(sym_idx); 2973 symbol_ptr->SetSizeIsSibling(true); 2974 } 2975 N_NSYM_indexes.clear(); 2976 N_INCL_indexes.clear(); 2977 N_BRAC_indexes.clear(); 2978 N_COMM_indexes.clear(); 2979 N_FUN_indexes.clear(); 2980 N_SO_index = UINT32_MAX; 2981 } 2982 else 2983 { 2984 // We use the current number of symbols in the symbol table in lieu of 2985 // using nlist_idx in case we ever start trimming entries out 2986 const bool N_SO_has_full_path = symbol_name[0] == '/'; 2987 if (N_SO_has_full_path) 2988 { 2989 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 2990 { 2991 // We have two consecutive N_SO entries where the first contains a directory 2992 // and the second contains a full path. 2993 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 2994 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 2995 add_nlist = false; 2996 } 2997 else 2998 { 2999 // This is the first entry in a N_SO that contains a directory or 3000 // a full path to the source file 3001 N_SO_index = sym_idx; 3002 } 3003 } 3004 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3005 { 3006 // This is usually the second N_SO entry that contains just the filename, 3007 // so here we combine it with the first one if we are minimizing the symbol table 3008 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString(); 3009 if (so_path && so_path[0]) 3010 { 3011 std::string full_so_path (so_path); 3012 const size_t double_slash_pos = full_so_path.find("//"); 3013 if (double_slash_pos != std::string::npos) 3014 { 3015 // The linker has been generating bad N_SO entries with doubled up paths 3016 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3017 // and the second is the directory for the source file so you end up with 3018 // a path that looks like "/tmp/src//tmp/src/" 3019 FileSpec so_dir(so_path, false); 3020 if (!so_dir.Exists()) 3021 { 3022 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3023 if (so_dir.Exists()) 3024 { 3025 // Trim off the incorrect path 3026 full_so_path.erase(0, double_slash_pos + 1); 3027 } 3028 } 3029 } 3030 if (*full_so_path.rbegin() != '/') 3031 full_so_path += '/'; 3032 full_so_path += symbol_name; 3033 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3034 add_nlist = false; 3035 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3036 } 3037 } 3038 else 3039 { 3040 // This could be a relative path to a N_SO 3041 N_SO_index = sym_idx; 3042 } 3043 } 3044 break; 3045 3046 case N_OSO: 3047 // object file name: name,,0,0,st_mtime 3048 type = eSymbolTypeObjectFile; 3049 break; 3050 3051 case N_LSYM: 3052 // local sym: name,,NO_SECT,type,offset 3053 type = eSymbolTypeLocal; 3054 break; 3055 3056 //---------------------------------------------------------------------- 3057 // INCL scopes 3058 //---------------------------------------------------------------------- 3059 case N_BINCL: 3060 // include file beginning: name,,NO_SECT,0,sum 3061 // We use the current number of symbols in the symbol table in lieu of 3062 // using nlist_idx in case we ever start trimming entries out 3063 N_INCL_indexes.push_back(sym_idx); 3064 type = eSymbolTypeScopeBegin; 3065 break; 3066 3067 case N_EINCL: 3068 // include file end: name,,NO_SECT,0,0 3069 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3070 // so that we can always skip the entire symbol if we need to navigate 3071 // more quickly at the source level when parsing STABS 3072 if ( !N_INCL_indexes.empty() ) 3073 { 3074 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3075 symbol_ptr->SetByteSize(sym_idx + 1); 3076 symbol_ptr->SetSizeIsSibling(true); 3077 N_INCL_indexes.pop_back(); 3078 } 3079 type = eSymbolTypeScopeEnd; 3080 break; 3081 3082 case N_SOL: 3083 // #included file name: name,,n_sect,0,address 3084 type = eSymbolTypeHeaderFile; 3085 3086 // We currently don't use the header files on darwin 3087 add_nlist = false; 3088 break; 3089 3090 case N_PARAMS: 3091 // compiler parameters: name,,NO_SECT,0,0 3092 type = eSymbolTypeCompiler; 3093 break; 3094 3095 case N_VERSION: 3096 // compiler version: name,,NO_SECT,0,0 3097 type = eSymbolTypeCompiler; 3098 break; 3099 3100 case N_OLEVEL: 3101 // compiler -O level: name,,NO_SECT,0,0 3102 type = eSymbolTypeCompiler; 3103 break; 3104 3105 case N_PSYM: 3106 // parameter: name,,NO_SECT,type,offset 3107 type = eSymbolTypeVariable; 3108 break; 3109 3110 case N_ENTRY: 3111 // alternate entry: name,,n_sect,linenumber,address 3112 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3113 type = eSymbolTypeLineEntry; 3114 break; 3115 3116 //---------------------------------------------------------------------- 3117 // Left and Right Braces 3118 //---------------------------------------------------------------------- 3119 case N_LBRAC: 3120 // left bracket: 0,,NO_SECT,nesting level,address 3121 // We use the current number of symbols in the symbol table in lieu of 3122 // using nlist_idx in case we ever start trimming entries out 3123 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3124 N_BRAC_indexes.push_back(sym_idx); 3125 type = eSymbolTypeScopeBegin; 3126 break; 3127 3128 case N_RBRAC: 3129 // right bracket: 0,,NO_SECT,nesting level,address 3130 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3131 // so that we can always skip the entire symbol if we need to navigate 3132 // more quickly at the source level when parsing STABS 3133 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3134 if ( !N_BRAC_indexes.empty() ) 3135 { 3136 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3137 symbol_ptr->SetByteSize(sym_idx + 1); 3138 symbol_ptr->SetSizeIsSibling(true); 3139 N_BRAC_indexes.pop_back(); 3140 } 3141 type = eSymbolTypeScopeEnd; 3142 break; 3143 3144 case N_EXCL: 3145 // deleted include file: name,,NO_SECT,0,sum 3146 type = eSymbolTypeHeaderFile; 3147 break; 3148 3149 //---------------------------------------------------------------------- 3150 // COMM scopes 3151 //---------------------------------------------------------------------- 3152 case N_BCOMM: 3153 // begin common: name,,NO_SECT,0,0 3154 // We use the current number of symbols in the symbol table in lieu of 3155 // using nlist_idx in case we ever start trimming entries out 3156 type = eSymbolTypeScopeBegin; 3157 N_COMM_indexes.push_back(sym_idx); 3158 break; 3159 3160 case N_ECOML: 3161 // end common (local name): 0,,n_sect,0,address 3162 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3163 // Fall through 3164 3165 case N_ECOMM: 3166 // end common: name,,n_sect,0,0 3167 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 3168 // so that we can always skip the entire symbol if we need to navigate 3169 // more quickly at the source level when parsing STABS 3170 if ( !N_COMM_indexes.empty() ) 3171 { 3172 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 3173 symbol_ptr->SetByteSize(sym_idx + 1); 3174 symbol_ptr->SetSizeIsSibling(true); 3175 N_COMM_indexes.pop_back(); 3176 } 3177 type = eSymbolTypeScopeEnd; 3178 break; 3179 3180 case N_LENG: 3181 // second stab entry with length information 3182 type = eSymbolTypeAdditional; 3183 break; 3184 3185 default: break; 3186 } 3187 } 3188 else 3189 { 3190 //uint8_t n_pext = N_PEXT & nlist.n_type; 3191 uint8_t n_type = N_TYPE & nlist.n_type; 3192 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 3193 3194 switch (n_type) 3195 { 3196 case N_INDR: 3197 { 3198 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 3199 if (reexport_name_cstr && reexport_name_cstr[0]) 3200 { 3201 type = eSymbolTypeReExported; 3202 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 3203 sym[sym_idx].SetReExportedSymbolName(reexport_name); 3204 set_value = false; 3205 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 3206 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 3207 } 3208 else 3209 type = eSymbolTypeUndefined; 3210 } 3211 break; 3212 3213 case N_UNDF: 3214 if (symbol_name && symbol_name[0]) 3215 { 3216 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 3217 undefined_name_to_desc[undefined_name] = nlist.n_desc; 3218 } 3219 // Fall through 3220 case N_PBUD: 3221 type = eSymbolTypeUndefined; 3222 break; 3223 3224 case N_ABS: 3225 type = eSymbolTypeAbsolute; 3226 break; 3227 3228 case N_SECT: 3229 { 3230 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3231 3232 if (symbol_section == NULL) 3233 { 3234 // TODO: warn about this? 3235 add_nlist = false; 3236 break; 3237 } 3238 3239 if (TEXT_eh_frame_sectID == nlist.n_sect) 3240 { 3241 type = eSymbolTypeException; 3242 } 3243 else 3244 { 3245 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 3246 3247 switch (section_type) 3248 { 3249 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 3250 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 3251 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 3252 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 3253 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 3254 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 3255 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 3256 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 3257 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 3258 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 3259 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 3260 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 3261 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 3262 default: 3263 switch (symbol_section->GetType()) 3264 { 3265 case lldb::eSectionTypeCode: 3266 type = eSymbolTypeCode; 3267 break; 3268 case eSectionTypeData: 3269 case eSectionTypeDataCString: // Inlined C string data 3270 case eSectionTypeDataCStringPointers: // Pointers to C string data 3271 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 3272 case eSectionTypeData4: 3273 case eSectionTypeData8: 3274 case eSectionTypeData16: 3275 type = eSymbolTypeData; 3276 break; 3277 default: 3278 break; 3279 } 3280 break; 3281 } 3282 3283 if (type == eSymbolTypeInvalid) 3284 { 3285 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 3286 if (symbol_section->IsDescendant (text_section_sp.get())) 3287 { 3288 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 3289 S_ATTR_SELF_MODIFYING_CODE | 3290 S_ATTR_SOME_INSTRUCTIONS)) 3291 type = eSymbolTypeData; 3292 else 3293 type = eSymbolTypeCode; 3294 } 3295 else if (symbol_section->IsDescendant(data_section_sp.get())) 3296 { 3297 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 3298 { 3299 type = eSymbolTypeRuntime; 3300 3301 if (symbol_name && 3302 symbol_name[0] == '_' && 3303 symbol_name[1] == 'O' && 3304 symbol_name[2] == 'B') 3305 { 3306 llvm::StringRef symbol_name_ref(symbol_name); 3307 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3308 { 3309 symbol_name_non_abi_mangled = symbol_name + 1; 3310 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3311 type = eSymbolTypeObjCClass; 3312 demangled_is_synthesized = true; 3313 } 3314 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3315 { 3316 symbol_name_non_abi_mangled = symbol_name + 1; 3317 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3318 type = eSymbolTypeObjCMetaClass; 3319 demangled_is_synthesized = true; 3320 } 3321 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3322 { 3323 symbol_name_non_abi_mangled = symbol_name + 1; 3324 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3325 type = eSymbolTypeObjCIVar; 3326 demangled_is_synthesized = true; 3327 } 3328 } 3329 } 3330 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 3331 { 3332 type = eSymbolTypeException; 3333 } 3334 else 3335 { 3336 type = eSymbolTypeData; 3337 } 3338 } 3339 else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 3340 { 3341 type = eSymbolTypeTrampoline; 3342 } 3343 else if (symbol_section->IsDescendant(objc_section_sp.get())) 3344 { 3345 type = eSymbolTypeRuntime; 3346 if (symbol_name && symbol_name[0] == '.') 3347 { 3348 llvm::StringRef symbol_name_ref(symbol_name); 3349 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 3350 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 3351 { 3352 symbol_name_non_abi_mangled = symbol_name; 3353 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 3354 type = eSymbolTypeObjCClass; 3355 demangled_is_synthesized = true; 3356 } 3357 } 3358 } 3359 } 3360 } 3361 } 3362 break; 3363 } 3364 } 3365 3366 if (add_nlist) 3367 { 3368 uint64_t symbol_value = nlist.n_value; 3369 if (symbol_name_non_abi_mangled) 3370 { 3371 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 3372 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 3373 } 3374 else 3375 { 3376 bool symbol_name_is_mangled = false; 3377 3378 if (symbol_name && symbol_name[0] == '_') 3379 { 3380 symbol_name_is_mangled = symbol_name[1] == '_'; 3381 symbol_name++; // Skip the leading underscore 3382 } 3383 3384 if (symbol_name) 3385 { 3386 ConstString const_symbol_name(symbol_name); 3387 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 3388 if (is_gsym && is_debug) 3389 { 3390 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3391 if (gsym_name) 3392 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 3393 } 3394 } 3395 } 3396 if (symbol_section) 3397 { 3398 const addr_t section_file_addr = symbol_section->GetFileAddress(); 3399 if (symbol_byte_size == 0 && function_starts_count > 0) 3400 { 3401 addr_t symbol_lookup_file_addr = nlist.n_value; 3402 // Do an exact address match for non-ARM addresses, else get the closest since 3403 // the symbol might be a thumb symbol which has an address with bit zero set 3404 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 3405 if (is_arm && func_start_entry) 3406 { 3407 // Verify that the function start address is the symbol address (ARM) 3408 // or the symbol address + 1 (thumb) 3409 if (func_start_entry->addr != symbol_lookup_file_addr && 3410 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 3411 { 3412 // Not the right entry, NULL it out... 3413 func_start_entry = NULL; 3414 } 3415 } 3416 if (func_start_entry) 3417 { 3418 func_start_entry->data = true; 3419 3420 addr_t symbol_file_addr = func_start_entry->addr; 3421 uint32_t symbol_flags = 0; 3422 if (is_arm) 3423 { 3424 if (symbol_file_addr & 1) 3425 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 3426 symbol_file_addr &= 0xfffffffffffffffeull; 3427 } 3428 3429 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 3430 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 3431 if (next_func_start_entry) 3432 { 3433 addr_t next_symbol_file_addr = next_func_start_entry->addr; 3434 // Be sure the clear the Thumb address bit when we calculate the size 3435 // from the current and next address 3436 if (is_arm) 3437 next_symbol_file_addr &= 0xfffffffffffffffeull; 3438 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 3439 } 3440 else 3441 { 3442 symbol_byte_size = section_end_file_addr - symbol_file_addr; 3443 } 3444 } 3445 } 3446 symbol_value -= section_file_addr; 3447 } 3448 3449 if (is_debug == false) 3450 { 3451 if (type == eSymbolTypeCode) 3452 { 3453 // See if we can find a N_FUN entry for any code symbols. 3454 // If we do find a match, and the name matches, then we 3455 // can merge the two into just the function symbol to avoid 3456 // duplicate entries in the symbol table 3457 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3458 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 3459 if (range.first != range.second) 3460 { 3461 bool found_it = false; 3462 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3463 { 3464 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3465 { 3466 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3467 // We just need the flags from the linker symbol, so put these flags 3468 // into the N_FUN flags to avoid duplicate symbols in the symbol table 3469 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3470 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3471 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3472 sym[pos->second].SetType (eSymbolTypeResolver); 3473 sym[sym_idx].Clear(); 3474 found_it = true; 3475 break; 3476 } 3477 } 3478 if (found_it) 3479 continue; 3480 } 3481 else 3482 { 3483 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 3484 type = eSymbolTypeResolver; 3485 } 3486 } 3487 else if (type == eSymbolTypeData || 3488 type == eSymbolTypeObjCClass || 3489 type == eSymbolTypeObjCMetaClass || 3490 type == eSymbolTypeObjCIVar ) 3491 { 3492 // See if we can find a N_STSYM entry for any data symbols. 3493 // If we do find a match, and the name matches, then we 3494 // can merge the two into just the Static symbol to avoid 3495 // duplicate entries in the symbol table 3496 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 3497 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 3498 if (range.first != range.second) 3499 { 3500 bool found_it = false; 3501 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 3502 { 3503 if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(Mangled::ePreferMangled)) 3504 { 3505 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 3506 // We just need the flags from the linker symbol, so put these flags 3507 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 3508 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 3509 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3510 sym[sym_idx].Clear(); 3511 found_it = true; 3512 break; 3513 } 3514 } 3515 if (found_it) 3516 continue; 3517 } 3518 else 3519 { 3520 const char *gsym_name = sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled).GetCString(); 3521 if (gsym_name) 3522 { 3523 // Combine N_GSYM stab entries with the non stab symbol 3524 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 3525 if (pos != N_GSYM_name_to_sym_idx.end()) 3526 { 3527 const uint32_t GSYM_sym_idx = pos->second; 3528 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 3529 // Copy the address, because often the N_GSYM address has an invalid address of zero 3530 // when the global is a common symbol 3531 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 3532 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 3533 // We just need the flags from the linker symbol, so put these flags 3534 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 3535 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3536 sym[sym_idx].Clear(); 3537 continue; 3538 } 3539 } 3540 } 3541 } 3542 } 3543 3544 sym[sym_idx].SetID (nlist_idx); 3545 sym[sym_idx].SetType (type); 3546 if (set_value) 3547 { 3548 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 3549 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 3550 } 3551 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 3552 3553 if (symbol_byte_size > 0) 3554 sym[sym_idx].SetByteSize(symbol_byte_size); 3555 3556 if (demangled_is_synthesized) 3557 sym[sym_idx].SetDemangledNameIsSynthesized(true); 3558 ++sym_idx; 3559 } 3560 else 3561 { 3562 sym[sym_idx].Clear(); 3563 } 3564 3565 } 3566 ///////////////////////////// 3567 } 3568 break; // No more entries to consider 3569 } 3570 } 3571 3572 for (const auto &pos :reexport_shlib_needs_fixup) 3573 { 3574 const auto undef_pos = undefined_name_to_desc.find(pos.second); 3575 if (undef_pos != undefined_name_to_desc.end()) 3576 { 3577 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 3578 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 3579 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 3580 } 3581 } 3582 } 3583 } 3584 } 3585 } 3586 } 3587 3588 // Must reset this in case it was mutated above! 3589 nlist_data_offset = 0; 3590 #endif 3591 3592 if (nlist_data.GetByteSize() > 0) 3593 { 3594 3595 // If the sym array was not created while parsing the DSC unmapped 3596 // symbols, create it now. 3597 if (sym == NULL) 3598 { 3599 sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms); 3600 num_syms = symtab->GetNumSymbols(); 3601 } 3602 3603 if (unmapped_local_symbols_found) 3604 { 3605 assert(m_dysymtab.ilocalsym == 0); 3606 nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size); 3607 nlist_idx = m_dysymtab.nlocalsym; 3608 } 3609 else 3610 { 3611 nlist_idx = 0; 3612 } 3613 3614 typedef std::map<ConstString, uint16_t> UndefinedNameToDescMap; 3615 typedef std::map<uint32_t, ConstString> SymbolIndexToName; 3616 UndefinedNameToDescMap undefined_name_to_desc; 3617 SymbolIndexToName reexport_shlib_needs_fixup; 3618 for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) 3619 { 3620 struct nlist_64 nlist; 3621 if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size)) 3622 break; 3623 3624 nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset); 3625 nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset); 3626 nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset); 3627 nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset); 3628 nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset); 3629 3630 SymbolType type = eSymbolTypeInvalid; 3631 const char *symbol_name = NULL; 3632 3633 if (have_strtab_data) 3634 { 3635 symbol_name = strtab_data.PeekCStr(nlist.n_strx); 3636 3637 if (symbol_name == NULL) 3638 { 3639 // No symbol should be NULL, even the symbols with no 3640 // string values should have an offset zero which points 3641 // to an empty C-string 3642 Host::SystemLog (Host::eSystemLogError, 3643 "error: symbol[%u] has invalid string table offset 0x%x in %s, ignoring symbol\n", 3644 nlist_idx, 3645 nlist.n_strx, 3646 module_sp->GetFileSpec().GetPath().c_str()); 3647 continue; 3648 } 3649 if (symbol_name[0] == '\0') 3650 symbol_name = NULL; 3651 } 3652 else 3653 { 3654 const addr_t str_addr = strtab_addr + nlist.n_strx; 3655 Error str_error; 3656 if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error)) 3657 symbol_name = memory_symbol_name.c_str(); 3658 } 3659 const char *symbol_name_non_abi_mangled = NULL; 3660 3661 SectionSP symbol_section; 3662 lldb::addr_t symbol_byte_size = 0; 3663 bool add_nlist = true; 3664 bool is_gsym = false; 3665 bool is_debug = ((nlist.n_type & N_STAB) != 0); 3666 bool demangled_is_synthesized = false; 3667 bool set_value = true; 3668 assert (sym_idx < num_syms); 3669 3670 sym[sym_idx].SetDebug (is_debug); 3671 3672 if (is_debug) 3673 { 3674 switch (nlist.n_type) 3675 { 3676 case N_GSYM: 3677 // global symbol: name,,NO_SECT,type,0 3678 // Sometimes the N_GSYM value contains the address. 3679 3680 // FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They 3681 // have the same address, but we want to ensure that we always find only the real symbol, 3682 // 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass 3683 // symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated 3684 // correctly. To do this right, we should coalesce all the GSYM & global symbols that have the 3685 // same address. 3686 is_gsym = true; 3687 sym[sym_idx].SetExternal(true); 3688 3689 if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') 3690 { 3691 llvm::StringRef symbol_name_ref(symbol_name); 3692 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 3693 { 3694 symbol_name_non_abi_mangled = symbol_name + 1; 3695 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 3696 type = eSymbolTypeObjCClass; 3697 demangled_is_synthesized = true; 3698 3699 } 3700 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 3701 { 3702 symbol_name_non_abi_mangled = symbol_name + 1; 3703 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 3704 type = eSymbolTypeObjCMetaClass; 3705 demangled_is_synthesized = true; 3706 } 3707 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 3708 { 3709 symbol_name_non_abi_mangled = symbol_name + 1; 3710 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 3711 type = eSymbolTypeObjCIVar; 3712 demangled_is_synthesized = true; 3713 } 3714 } 3715 else 3716 { 3717 if (nlist.n_value != 0) 3718 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3719 type = eSymbolTypeData; 3720 } 3721 break; 3722 3723 case N_FNAME: 3724 // procedure name (f77 kludge): name,,NO_SECT,0,0 3725 type = eSymbolTypeCompiler; 3726 break; 3727 3728 case N_FUN: 3729 // procedure: name,,n_sect,linenumber,address 3730 if (symbol_name) 3731 { 3732 type = eSymbolTypeCode; 3733 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3734 3735 N_FUN_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3736 // We use the current number of symbols in the symbol table in lieu of 3737 // using nlist_idx in case we ever start trimming entries out 3738 N_FUN_indexes.push_back(sym_idx); 3739 } 3740 else 3741 { 3742 type = eSymbolTypeCompiler; 3743 3744 if ( !N_FUN_indexes.empty() ) 3745 { 3746 // Copy the size of the function into the original STAB entry so we don't have 3747 // to hunt for it later 3748 symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value); 3749 N_FUN_indexes.pop_back(); 3750 // We don't really need the end function STAB as it contains the size which 3751 // we already placed with the original symbol, so don't add it if we want a 3752 // minimal symbol table 3753 add_nlist = false; 3754 } 3755 } 3756 break; 3757 3758 case N_STSYM: 3759 // static symbol: name,,n_sect,type,address 3760 N_STSYM_addr_to_sym_idx.insert(std::make_pair(nlist.n_value, sym_idx)); 3761 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3762 type = eSymbolTypeData; 3763 break; 3764 3765 case N_LCSYM: 3766 // .lcomm symbol: name,,n_sect,type,address 3767 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3768 type = eSymbolTypeCommonBlock; 3769 break; 3770 3771 case N_BNSYM: 3772 // We use the current number of symbols in the symbol table in lieu of 3773 // using nlist_idx in case we ever start trimming entries out 3774 // Skip these if we want minimal symbol tables 3775 add_nlist = false; 3776 break; 3777 3778 case N_ENSYM: 3779 // Set the size of the N_BNSYM to the terminating index of this N_ENSYM 3780 // so that we can always skip the entire symbol if we need to navigate 3781 // more quickly at the source level when parsing STABS 3782 // Skip these if we want minimal symbol tables 3783 add_nlist = false; 3784 break; 3785 3786 3787 case N_OPT: 3788 // emitted with gcc2_compiled and in gcc source 3789 type = eSymbolTypeCompiler; 3790 break; 3791 3792 case N_RSYM: 3793 // register sym: name,,NO_SECT,type,register 3794 type = eSymbolTypeVariable; 3795 break; 3796 3797 case N_SLINE: 3798 // src line: 0,,n_sect,linenumber,address 3799 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3800 type = eSymbolTypeLineEntry; 3801 break; 3802 3803 case N_SSYM: 3804 // structure elt: name,,NO_SECT,type,struct_offset 3805 type = eSymbolTypeVariableType; 3806 break; 3807 3808 case N_SO: 3809 // source file name 3810 type = eSymbolTypeSourceFile; 3811 if (symbol_name == NULL) 3812 { 3813 add_nlist = false; 3814 if (N_SO_index != UINT32_MAX) 3815 { 3816 // Set the size of the N_SO to the terminating index of this N_SO 3817 // so that we can always skip the entire N_SO if we need to navigate 3818 // more quickly at the source level when parsing STABS 3819 symbol_ptr = symtab->SymbolAtIndex(N_SO_index); 3820 symbol_ptr->SetByteSize(sym_idx); 3821 symbol_ptr->SetSizeIsSibling(true); 3822 } 3823 N_NSYM_indexes.clear(); 3824 N_INCL_indexes.clear(); 3825 N_BRAC_indexes.clear(); 3826 N_COMM_indexes.clear(); 3827 N_FUN_indexes.clear(); 3828 N_SO_index = UINT32_MAX; 3829 } 3830 else 3831 { 3832 // We use the current number of symbols in the symbol table in lieu of 3833 // using nlist_idx in case we ever start trimming entries out 3834 const bool N_SO_has_full_path = symbol_name[0] == '/'; 3835 if (N_SO_has_full_path) 3836 { 3837 if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3838 { 3839 // We have two consecutive N_SO entries where the first contains a directory 3840 // and the second contains a full path. 3841 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false); 3842 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3843 add_nlist = false; 3844 } 3845 else 3846 { 3847 // This is the first entry in a N_SO that contains a directory or 3848 // a full path to the source file 3849 N_SO_index = sym_idx; 3850 } 3851 } 3852 else if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) 3853 { 3854 // This is usually the second N_SO entry that contains just the filename, 3855 // so here we combine it with the first one if we are minimizing the symbol table 3856 const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName(lldb::eLanguageTypeUnknown).AsCString(); 3857 if (so_path && so_path[0]) 3858 { 3859 std::string full_so_path (so_path); 3860 const size_t double_slash_pos = full_so_path.find("//"); 3861 if (double_slash_pos != std::string::npos) 3862 { 3863 // The linker has been generating bad N_SO entries with doubled up paths 3864 // in the format "%s%s" where the first string in the DW_AT_comp_dir, 3865 // and the second is the directory for the source file so you end up with 3866 // a path that looks like "/tmp/src//tmp/src/" 3867 FileSpec so_dir(so_path, false); 3868 if (!so_dir.Exists()) 3869 { 3870 so_dir.SetFile(&full_so_path[double_slash_pos + 1], false); 3871 if (so_dir.Exists()) 3872 { 3873 // Trim off the incorrect path 3874 full_so_path.erase(0, double_slash_pos + 1); 3875 } 3876 } 3877 } 3878 if (*full_so_path.rbegin() != '/') 3879 full_so_path += '/'; 3880 full_so_path += symbol_name; 3881 sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false); 3882 add_nlist = false; 3883 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1; 3884 } 3885 } 3886 else 3887 { 3888 // This could be a relative path to a N_SO 3889 N_SO_index = sym_idx; 3890 } 3891 } 3892 3893 break; 3894 3895 case N_OSO: 3896 // object file name: name,,0,0,st_mtime 3897 type = eSymbolTypeObjectFile; 3898 break; 3899 3900 case N_LSYM: 3901 // local sym: name,,NO_SECT,type,offset 3902 type = eSymbolTypeLocal; 3903 break; 3904 3905 //---------------------------------------------------------------------- 3906 // INCL scopes 3907 //---------------------------------------------------------------------- 3908 case N_BINCL: 3909 // include file beginning: name,,NO_SECT,0,sum 3910 // We use the current number of symbols in the symbol table in lieu of 3911 // using nlist_idx in case we ever start trimming entries out 3912 N_INCL_indexes.push_back(sym_idx); 3913 type = eSymbolTypeScopeBegin; 3914 break; 3915 3916 case N_EINCL: 3917 // include file end: name,,NO_SECT,0,0 3918 // Set the size of the N_BINCL to the terminating index of this N_EINCL 3919 // so that we can always skip the entire symbol if we need to navigate 3920 // more quickly at the source level when parsing STABS 3921 if ( !N_INCL_indexes.empty() ) 3922 { 3923 symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back()); 3924 symbol_ptr->SetByteSize(sym_idx + 1); 3925 symbol_ptr->SetSizeIsSibling(true); 3926 N_INCL_indexes.pop_back(); 3927 } 3928 type = eSymbolTypeScopeEnd; 3929 break; 3930 3931 case N_SOL: 3932 // #included file name: name,,n_sect,0,address 3933 type = eSymbolTypeHeaderFile; 3934 3935 // We currently don't use the header files on darwin 3936 add_nlist = false; 3937 break; 3938 3939 case N_PARAMS: 3940 // compiler parameters: name,,NO_SECT,0,0 3941 type = eSymbolTypeCompiler; 3942 break; 3943 3944 case N_VERSION: 3945 // compiler version: name,,NO_SECT,0,0 3946 type = eSymbolTypeCompiler; 3947 break; 3948 3949 case N_OLEVEL: 3950 // compiler -O level: name,,NO_SECT,0,0 3951 type = eSymbolTypeCompiler; 3952 break; 3953 3954 case N_PSYM: 3955 // parameter: name,,NO_SECT,type,offset 3956 type = eSymbolTypeVariable; 3957 break; 3958 3959 case N_ENTRY: 3960 // alternate entry: name,,n_sect,linenumber,address 3961 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3962 type = eSymbolTypeLineEntry; 3963 break; 3964 3965 //---------------------------------------------------------------------- 3966 // Left and Right Braces 3967 //---------------------------------------------------------------------- 3968 case N_LBRAC: 3969 // left bracket: 0,,NO_SECT,nesting level,address 3970 // We use the current number of symbols in the symbol table in lieu of 3971 // using nlist_idx in case we ever start trimming entries out 3972 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3973 N_BRAC_indexes.push_back(sym_idx); 3974 type = eSymbolTypeScopeBegin; 3975 break; 3976 3977 case N_RBRAC: 3978 // right bracket: 0,,NO_SECT,nesting level,address 3979 // Set the size of the N_LBRAC to the terminating index of this N_RBRAC 3980 // so that we can always skip the entire symbol if we need to navigate 3981 // more quickly at the source level when parsing STABS 3982 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 3983 if ( !N_BRAC_indexes.empty() ) 3984 { 3985 symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back()); 3986 symbol_ptr->SetByteSize(sym_idx + 1); 3987 symbol_ptr->SetSizeIsSibling(true); 3988 N_BRAC_indexes.pop_back(); 3989 } 3990 type = eSymbolTypeScopeEnd; 3991 break; 3992 3993 case N_EXCL: 3994 // deleted include file: name,,NO_SECT,0,sum 3995 type = eSymbolTypeHeaderFile; 3996 break; 3997 3998 //---------------------------------------------------------------------- 3999 // COMM scopes 4000 //---------------------------------------------------------------------- 4001 case N_BCOMM: 4002 // begin common: name,,NO_SECT,0,0 4003 // We use the current number of symbols in the symbol table in lieu of 4004 // using nlist_idx in case we ever start trimming entries out 4005 type = eSymbolTypeScopeBegin; 4006 N_COMM_indexes.push_back(sym_idx); 4007 break; 4008 4009 case N_ECOML: 4010 // end common (local name): 0,,n_sect,0,address 4011 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4012 // Fall through 4013 4014 case N_ECOMM: 4015 // end common: name,,n_sect,0,0 4016 // Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML 4017 // so that we can always skip the entire symbol if we need to navigate 4018 // more quickly at the source level when parsing STABS 4019 if ( !N_COMM_indexes.empty() ) 4020 { 4021 symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back()); 4022 symbol_ptr->SetByteSize(sym_idx + 1); 4023 symbol_ptr->SetSizeIsSibling(true); 4024 N_COMM_indexes.pop_back(); 4025 } 4026 type = eSymbolTypeScopeEnd; 4027 break; 4028 4029 case N_LENG: 4030 // second stab entry with length information 4031 type = eSymbolTypeAdditional; 4032 break; 4033 4034 default: break; 4035 } 4036 } 4037 else 4038 { 4039 //uint8_t n_pext = N_PEXT & nlist.n_type; 4040 uint8_t n_type = N_TYPE & nlist.n_type; 4041 sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0); 4042 4043 switch (n_type) 4044 { 4045 case N_INDR: 4046 { 4047 const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value); 4048 if (reexport_name_cstr && reexport_name_cstr[0]) 4049 { 4050 type = eSymbolTypeReExported; 4051 ConstString reexport_name(reexport_name_cstr + ((reexport_name_cstr[0] == '_') ? 1 : 0)); 4052 sym[sym_idx].SetReExportedSymbolName(reexport_name); 4053 set_value = false; 4054 reexport_shlib_needs_fixup[sym_idx] = reexport_name; 4055 indirect_symbol_names.insert(ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0))); 4056 } 4057 else 4058 type = eSymbolTypeUndefined; 4059 } 4060 break; 4061 4062 case N_UNDF: 4063 if (symbol_name && symbol_name[0]) 4064 { 4065 ConstString undefined_name(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)); 4066 undefined_name_to_desc[undefined_name] = nlist.n_desc; 4067 } 4068 // Fall through 4069 case N_PBUD: 4070 type = eSymbolTypeUndefined; 4071 break; 4072 4073 case N_ABS: 4074 type = eSymbolTypeAbsolute; 4075 break; 4076 4077 case N_SECT: 4078 { 4079 symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value); 4080 4081 if (!symbol_section) 4082 { 4083 // TODO: warn about this? 4084 add_nlist = false; 4085 break; 4086 } 4087 4088 if (TEXT_eh_frame_sectID == nlist.n_sect) 4089 { 4090 type = eSymbolTypeException; 4091 } 4092 else 4093 { 4094 uint32_t section_type = symbol_section->Get() & SECTION_TYPE; 4095 4096 switch (section_type) 4097 { 4098 case S_CSTRING_LITERALS: type = eSymbolTypeData; break; // section with only literal C strings 4099 case S_4BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 4 byte literals 4100 case S_8BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 8 byte literals 4101 case S_LITERAL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only pointers to literals 4102 case S_NON_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers 4103 case S_LAZY_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers 4104 case S_SYMBOL_STUBS: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field 4105 case S_MOD_INIT_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for initialization 4106 case S_MOD_TERM_FUNC_POINTERS: type = eSymbolTypeCode; break; // section with only function pointers for termination 4107 case S_INTERPOSING: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing 4108 case S_16BYTE_LITERALS: type = eSymbolTypeData; break; // section with only 16 byte literals 4109 case S_DTRACE_DOF: type = eSymbolTypeInstrumentation; break; 4110 case S_LAZY_DYLIB_SYMBOL_POINTERS: type = eSymbolTypeTrampoline; break; 4111 default: 4112 switch (symbol_section->GetType()) 4113 { 4114 case lldb::eSectionTypeCode: 4115 type = eSymbolTypeCode; 4116 break; 4117 case eSectionTypeData: 4118 case eSectionTypeDataCString: // Inlined C string data 4119 case eSectionTypeDataCStringPointers: // Pointers to C string data 4120 case eSectionTypeDataSymbolAddress: // Address of a symbol in the symbol table 4121 case eSectionTypeData4: 4122 case eSectionTypeData8: 4123 case eSectionTypeData16: 4124 type = eSymbolTypeData; 4125 break; 4126 default: 4127 break; 4128 } 4129 break; 4130 } 4131 4132 if (type == eSymbolTypeInvalid) 4133 { 4134 const char *symbol_sect_name = symbol_section->GetName().AsCString(); 4135 if (symbol_section->IsDescendant (text_section_sp.get())) 4136 { 4137 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS | 4138 S_ATTR_SELF_MODIFYING_CODE | 4139 S_ATTR_SOME_INSTRUCTIONS)) 4140 type = eSymbolTypeData; 4141 else 4142 type = eSymbolTypeCode; 4143 } 4144 else 4145 if (symbol_section->IsDescendant(data_section_sp.get())) 4146 { 4147 if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name) 4148 { 4149 type = eSymbolTypeRuntime; 4150 4151 if (symbol_name && 4152 symbol_name[0] == '_' && 4153 symbol_name[1] == 'O' && 4154 symbol_name[2] == 'B') 4155 { 4156 llvm::StringRef symbol_name_ref(symbol_name); 4157 if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) 4158 { 4159 symbol_name_non_abi_mangled = symbol_name + 1; 4160 symbol_name = symbol_name + g_objc_v2_prefix_class.size(); 4161 type = eSymbolTypeObjCClass; 4162 demangled_is_synthesized = true; 4163 } 4164 else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) 4165 { 4166 symbol_name_non_abi_mangled = symbol_name + 1; 4167 symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size(); 4168 type = eSymbolTypeObjCMetaClass; 4169 demangled_is_synthesized = true; 4170 } 4171 else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) 4172 { 4173 symbol_name_non_abi_mangled = symbol_name + 1; 4174 symbol_name = symbol_name + g_objc_v2_prefix_ivar.size(); 4175 type = eSymbolTypeObjCIVar; 4176 demangled_is_synthesized = true; 4177 } 4178 } 4179 } 4180 else 4181 if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name) 4182 { 4183 type = eSymbolTypeException; 4184 } 4185 else 4186 { 4187 type = eSymbolTypeData; 4188 } 4189 } 4190 else 4191 if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name) 4192 { 4193 type = eSymbolTypeTrampoline; 4194 } 4195 else 4196 if (symbol_section->IsDescendant(objc_section_sp.get())) 4197 { 4198 type = eSymbolTypeRuntime; 4199 if (symbol_name && symbol_name[0] == '.') 4200 { 4201 llvm::StringRef symbol_name_ref(symbol_name); 4202 static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_"); 4203 if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) 4204 { 4205 symbol_name_non_abi_mangled = symbol_name; 4206 symbol_name = symbol_name + g_objc_v1_prefix_class.size(); 4207 type = eSymbolTypeObjCClass; 4208 demangled_is_synthesized = true; 4209 } 4210 } 4211 } 4212 } 4213 } 4214 } 4215 break; 4216 } 4217 } 4218 4219 if (add_nlist) 4220 { 4221 uint64_t symbol_value = nlist.n_value; 4222 4223 if (symbol_name_non_abi_mangled) 4224 { 4225 sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled)); 4226 sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name)); 4227 } 4228 else 4229 { 4230 bool symbol_name_is_mangled = false; 4231 4232 if (symbol_name && symbol_name[0] == '_') 4233 { 4234 symbol_name_is_mangled = symbol_name[1] == '_'; 4235 symbol_name++; // Skip the leading underscore 4236 } 4237 4238 if (symbol_name) 4239 { 4240 ConstString const_symbol_name(symbol_name); 4241 sym[sym_idx].GetMangled().SetValue(const_symbol_name, symbol_name_is_mangled); 4242 } 4243 } 4244 4245 if (is_gsym) 4246 { 4247 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4248 if (gsym_name) 4249 N_GSYM_name_to_sym_idx[gsym_name] = sym_idx; 4250 } 4251 4252 if (symbol_section) 4253 { 4254 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4255 if (symbol_byte_size == 0 && function_starts_count > 0) 4256 { 4257 addr_t symbol_lookup_file_addr = nlist.n_value; 4258 // Do an exact address match for non-ARM addresses, else get the closest since 4259 // the symbol might be a thumb symbol which has an address with bit zero set 4260 FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm); 4261 if (is_arm && func_start_entry) 4262 { 4263 // Verify that the function start address is the symbol address (ARM) 4264 // or the symbol address + 1 (thumb) 4265 if (func_start_entry->addr != symbol_lookup_file_addr && 4266 func_start_entry->addr != (symbol_lookup_file_addr + 1)) 4267 { 4268 // Not the right entry, NULL it out... 4269 func_start_entry = NULL; 4270 } 4271 } 4272 if (func_start_entry) 4273 { 4274 func_start_entry->data = true; 4275 4276 addr_t symbol_file_addr = func_start_entry->addr; 4277 if (is_arm) 4278 symbol_file_addr &= 0xfffffffffffffffeull; 4279 4280 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4281 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4282 if (next_func_start_entry) 4283 { 4284 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4285 // Be sure the clear the Thumb address bit when we calculate the size 4286 // from the current and next address 4287 if (is_arm) 4288 next_symbol_file_addr &= 0xfffffffffffffffeull; 4289 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4290 } 4291 else 4292 { 4293 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4294 } 4295 } 4296 } 4297 symbol_value -= section_file_addr; 4298 } 4299 4300 if (is_debug == false) 4301 { 4302 if (type == eSymbolTypeCode) 4303 { 4304 // See if we can find a N_FUN entry for any code symbols. 4305 // If we do find a match, and the name matches, then we 4306 // can merge the two into just the function symbol to avoid 4307 // duplicate entries in the symbol table 4308 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4309 range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value); 4310 if (range.first != range.second) 4311 { 4312 bool found_it = false; 4313 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4314 { 4315 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4316 { 4317 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4318 // We just need the flags from the linker symbol, so put these flags 4319 // into the N_FUN flags to avoid duplicate symbols in the symbol table 4320 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4321 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4322 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4323 sym[pos->second].SetType (eSymbolTypeResolver); 4324 sym[sym_idx].Clear(); 4325 found_it = true; 4326 break; 4327 } 4328 } 4329 if (found_it) 4330 continue; 4331 } 4332 else 4333 { 4334 if (resolver_addresses.find(nlist.n_value) != resolver_addresses.end()) 4335 type = eSymbolTypeResolver; 4336 } 4337 } 4338 else if (type == eSymbolTypeData || 4339 type == eSymbolTypeObjCClass || 4340 type == eSymbolTypeObjCMetaClass || 4341 type == eSymbolTypeObjCIVar ) 4342 { 4343 // See if we can find a N_STSYM entry for any data symbols. 4344 // If we do find a match, and the name matches, then we 4345 // can merge the two into just the Static symbol to avoid 4346 // duplicate entries in the symbol table 4347 std::pair<ValueToSymbolIndexMap::const_iterator, ValueToSymbolIndexMap::const_iterator> range; 4348 range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value); 4349 if (range.first != range.second) 4350 { 4351 bool found_it = false; 4352 for (ValueToSymbolIndexMap::const_iterator pos = range.first; pos != range.second; ++pos) 4353 { 4354 if (sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled) == sym[pos->second].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled)) 4355 { 4356 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second; 4357 // We just need the flags from the linker symbol, so put these flags 4358 // into the N_STSYM flags to avoid duplicate symbols in the symbol table 4359 sym[pos->second].SetExternal(sym[sym_idx].IsExternal()); 4360 sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4361 sym[sym_idx].Clear(); 4362 found_it = true; 4363 break; 4364 } 4365 } 4366 if (found_it) 4367 continue; 4368 } 4369 else 4370 { 4371 // Combine N_GSYM stab entries with the non stab symbol 4372 const char *gsym_name = sym[sym_idx].GetMangled().GetName(lldb::eLanguageTypeUnknown, Mangled::ePreferMangled).GetCString(); 4373 if (gsym_name) 4374 { 4375 ConstNameToSymbolIndexMap::const_iterator pos = N_GSYM_name_to_sym_idx.find(gsym_name); 4376 if (pos != N_GSYM_name_to_sym_idx.end()) 4377 { 4378 const uint32_t GSYM_sym_idx = pos->second; 4379 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx; 4380 // Copy the address, because often the N_GSYM address has an invalid address of zero 4381 // when the global is a common symbol 4382 sym[GSYM_sym_idx].GetAddressRef().SetSection (symbol_section); 4383 sym[GSYM_sym_idx].GetAddressRef().SetOffset (symbol_value); 4384 // We just need the flags from the linker symbol, so put these flags 4385 // into the N_GSYM flags to avoid duplicate symbols in the symbol table 4386 sym[GSYM_sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4387 sym[sym_idx].Clear(); 4388 continue; 4389 } 4390 } 4391 } 4392 } 4393 } 4394 4395 sym[sym_idx].SetID (nlist_idx); 4396 sym[sym_idx].SetType (type); 4397 if (set_value) 4398 { 4399 sym[sym_idx].GetAddressRef().SetSection (symbol_section); 4400 sym[sym_idx].GetAddressRef().SetOffset (symbol_value); 4401 } 4402 sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc); 4403 4404 if (symbol_byte_size > 0) 4405 sym[sym_idx].SetByteSize(symbol_byte_size); 4406 4407 if (demangled_is_synthesized) 4408 sym[sym_idx].SetDemangledNameIsSynthesized(true); 4409 4410 ++sym_idx; 4411 } 4412 else 4413 { 4414 sym[sym_idx].Clear(); 4415 } 4416 } 4417 4418 for (const auto &pos :reexport_shlib_needs_fixup) 4419 { 4420 const auto undef_pos = undefined_name_to_desc.find(pos.second); 4421 if (undef_pos != undefined_name_to_desc.end()) 4422 { 4423 const uint8_t dylib_ordinal = llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second); 4424 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize()) 4425 sym[pos.first].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(dylib_ordinal-1)); 4426 } 4427 } 4428 4429 } 4430 4431 uint32_t synthetic_sym_id = symtab_load_command.nsyms; 4432 4433 if (function_starts_count > 0) 4434 { 4435 char synthetic_function_symbol[PATH_MAX]; 4436 uint32_t num_synthetic_function_symbols = 0; 4437 for (i=0; i<function_starts_count; ++i) 4438 { 4439 if (function_starts.GetEntryRef (i).data == false) 4440 ++num_synthetic_function_symbols; 4441 } 4442 4443 if (num_synthetic_function_symbols > 0) 4444 { 4445 if (num_syms < sym_idx + num_synthetic_function_symbols) 4446 { 4447 num_syms = sym_idx + num_synthetic_function_symbols; 4448 sym = symtab->Resize (num_syms); 4449 } 4450 uint32_t synthetic_function_symbol_idx = 0; 4451 for (i=0; i<function_starts_count; ++i) 4452 { 4453 const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i); 4454 if (func_start_entry->data == false) 4455 { 4456 addr_t symbol_file_addr = func_start_entry->addr; 4457 uint32_t symbol_flags = 0; 4458 if (is_arm) 4459 { 4460 if (symbol_file_addr & 1) 4461 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB; 4462 symbol_file_addr &= 0xfffffffffffffffeull; 4463 } 4464 Address symbol_addr; 4465 if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr)) 4466 { 4467 SectionSP symbol_section (symbol_addr.GetSection()); 4468 uint32_t symbol_byte_size = 0; 4469 if (symbol_section) 4470 { 4471 const addr_t section_file_addr = symbol_section->GetFileAddress(); 4472 const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry); 4473 const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize(); 4474 if (next_func_start_entry) 4475 { 4476 addr_t next_symbol_file_addr = next_func_start_entry->addr; 4477 if (is_arm) 4478 next_symbol_file_addr &= 0xfffffffffffffffeull; 4479 symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr); 4480 } 4481 else 4482 { 4483 symbol_byte_size = section_end_file_addr - symbol_file_addr; 4484 } 4485 snprintf (synthetic_function_symbol, 4486 sizeof(synthetic_function_symbol), 4487 "___lldb_unnamed_function%u$$%s", 4488 ++synthetic_function_symbol_idx, 4489 module_sp->GetFileSpec().GetFilename().GetCString()); 4490 sym[sym_idx].SetID (synthetic_sym_id++); 4491 sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol)); 4492 sym[sym_idx].SetType (eSymbolTypeCode); 4493 sym[sym_idx].SetIsSynthetic (true); 4494 sym[sym_idx].GetAddressRef() = symbol_addr; 4495 if (symbol_flags) 4496 sym[sym_idx].SetFlags (symbol_flags); 4497 if (symbol_byte_size) 4498 sym[sym_idx].SetByteSize (symbol_byte_size); 4499 ++sym_idx; 4500 } 4501 } 4502 } 4503 } 4504 } 4505 } 4506 4507 // Trim our symbols down to just what we ended up with after 4508 // removing any symbols. 4509 if (sym_idx < num_syms) 4510 { 4511 num_syms = sym_idx; 4512 sym = symtab->Resize (num_syms); 4513 } 4514 4515 // Now synthesize indirect symbols 4516 if (m_dysymtab.nindirectsyms != 0) 4517 { 4518 if (indirect_symbol_index_data.GetByteSize()) 4519 { 4520 NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end(); 4521 4522 for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx) 4523 { 4524 if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) == S_SYMBOL_STUBS) 4525 { 4526 uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2; 4527 if (symbol_stub_byte_size == 0) 4528 continue; 4529 4530 const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size; 4531 4532 if (num_symbol_stubs == 0) 4533 continue; 4534 4535 const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1; 4536 for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) 4537 { 4538 const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx; 4539 const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size); 4540 lldb::offset_t symbol_stub_offset = symbol_stub_index * 4; 4541 if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4)) 4542 { 4543 const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset); 4544 if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL)) 4545 continue; 4546 4547 NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id); 4548 Symbol *stub_symbol = NULL; 4549 if (index_pos != end_index_pos) 4550 { 4551 // We have a remapping from the original nlist index to 4552 // a current symbol index, so just look this up by index 4553 stub_symbol = symtab->SymbolAtIndex (index_pos->second); 4554 } 4555 else 4556 { 4557 // We need to lookup a symbol using the original nlist 4558 // symbol index since this index is coming from the 4559 // S_SYMBOL_STUBS 4560 stub_symbol = symtab->FindSymbolByID (stub_sym_id); 4561 } 4562 4563 if (stub_symbol) 4564 { 4565 Address so_addr(symbol_stub_addr, section_list); 4566 4567 if (stub_symbol->GetType() == eSymbolTypeUndefined) 4568 { 4569 // Change the external symbol into a trampoline that makes sense 4570 // These symbols were N_UNDF N_EXT, and are useless to us, so we 4571 // can re-use them so we don't have to make up a synthetic symbol 4572 // for no good reason. 4573 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4574 stub_symbol->SetType (eSymbolTypeTrampoline); 4575 else 4576 stub_symbol->SetType (eSymbolTypeResolver); 4577 stub_symbol->SetExternal (false); 4578 stub_symbol->GetAddressRef() = so_addr; 4579 stub_symbol->SetByteSize (symbol_stub_byte_size); 4580 } 4581 else 4582 { 4583 // Make a synthetic symbol to describe the trampoline stub 4584 Mangled stub_symbol_mangled_name(stub_symbol->GetMangled()); 4585 if (sym_idx >= num_syms) 4586 { 4587 sym = symtab->Resize (++num_syms); 4588 stub_symbol = NULL; // this pointer no longer valid 4589 } 4590 sym[sym_idx].SetID (synthetic_sym_id++); 4591 sym[sym_idx].GetMangled() = stub_symbol_mangled_name; 4592 if (resolver_addresses.find(symbol_stub_addr) == resolver_addresses.end()) 4593 sym[sym_idx].SetType (eSymbolTypeTrampoline); 4594 else 4595 sym[sym_idx].SetType (eSymbolTypeResolver); 4596 sym[sym_idx].SetIsSynthetic (true); 4597 sym[sym_idx].GetAddressRef() = so_addr; 4598 sym[sym_idx].SetByteSize (symbol_stub_byte_size); 4599 ++sym_idx; 4600 } 4601 } 4602 else 4603 { 4604 if (log) 4605 log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id); 4606 } 4607 } 4608 } 4609 } 4610 } 4611 } 4612 } 4613 4614 4615 if (!trie_entries.empty()) 4616 { 4617 for (const auto &e : trie_entries) 4618 { 4619 if (e.entry.import_name) 4620 { 4621 // Only add indirect symbols from the Trie entries if we 4622 // didn't have a N_INDR nlist entry for this already 4623 if (indirect_symbol_names.find(e.entry.name) == indirect_symbol_names.end()) 4624 { 4625 // Make a synthetic symbol to describe re-exported symbol. 4626 if (sym_idx >= num_syms) 4627 sym = symtab->Resize (++num_syms); 4628 sym[sym_idx].SetID (synthetic_sym_id++); 4629 sym[sym_idx].GetMangled() = Mangled(e.entry.name); 4630 sym[sym_idx].SetType (eSymbolTypeReExported); 4631 sym[sym_idx].SetIsSynthetic (true); 4632 sym[sym_idx].SetReExportedSymbolName(e.entry.import_name); 4633 if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) 4634 { 4635 sym[sym_idx].SetReExportedSymbolSharedLibrary(dylib_files.GetFileSpecAtIndex(e.entry.other-1)); 4636 } 4637 ++sym_idx; 4638 } 4639 } 4640 } 4641 } 4642 4643 4644 4645 // StreamFile s(stdout, false); 4646 // s.Printf ("Symbol table before CalculateSymbolSizes():\n"); 4647 // symtab->Dump(&s, NULL, eSortOrderNone); 4648 // Set symbol byte sizes correctly since mach-o nlist entries don't have sizes 4649 symtab->CalculateSymbolSizes(); 4650 4651 // s.Printf ("Symbol table after CalculateSymbolSizes():\n"); 4652 // symtab->Dump(&s, NULL, eSortOrderNone); 4653 4654 return symtab->GetNumSymbols(); 4655 } 4656 return 0; 4657 } 4658 4659 4660 void 4661 ObjectFileMachO::Dump (Stream *s) 4662 { 4663 ModuleSP module_sp(GetModule()); 4664 if (module_sp) 4665 { 4666 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4667 s->Printf("%p: ", static_cast<void*>(this)); 4668 s->Indent(); 4669 if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64) 4670 s->PutCString("ObjectFileMachO64"); 4671 else 4672 s->PutCString("ObjectFileMachO32"); 4673 4674 ArchSpec header_arch; 4675 GetArchitecture(header_arch); 4676 4677 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 4678 4679 SectionList *sections = GetSectionList(); 4680 if (sections) 4681 sections->Dump(s, NULL, true, UINT32_MAX); 4682 4683 if (m_symtab_ap.get()) 4684 m_symtab_ap->Dump(s, NULL, eSortOrderNone); 4685 } 4686 } 4687 4688 bool 4689 ObjectFileMachO::GetUUID (const llvm::MachO::mach_header &header, 4690 const lldb_private::DataExtractor &data, 4691 lldb::offset_t lc_offset, 4692 lldb_private::UUID& uuid) 4693 { 4694 uint32_t i; 4695 struct uuid_command load_cmd; 4696 4697 lldb::offset_t offset = lc_offset; 4698 for (i=0; i<header.ncmds; ++i) 4699 { 4700 const lldb::offset_t cmd_offset = offset; 4701 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4702 break; 4703 4704 if (load_cmd.cmd == LC_UUID) 4705 { 4706 const uint8_t *uuid_bytes = data.PeekData(offset, 16); 4707 4708 if (uuid_bytes) 4709 { 4710 // OpenCL on Mac OS X uses the same UUID for each of its object files. 4711 // We pretend these object files have no UUID to prevent crashing. 4712 4713 const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b, 4714 0x3b, 0xa8, 4715 0x4b, 0x16, 4716 0xb6, 0xa4, 4717 0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d }; 4718 4719 if (!memcmp(uuid_bytes, opencl_uuid, 16)) 4720 return false; 4721 4722 uuid.SetBytes (uuid_bytes); 4723 return true; 4724 } 4725 return false; 4726 } 4727 offset = cmd_offset + load_cmd.cmdsize; 4728 } 4729 return false; 4730 } 4731 4732 4733 bool 4734 ObjectFileMachO::GetArchitecture (const llvm::MachO::mach_header &header, 4735 const lldb_private::DataExtractor &data, 4736 lldb::offset_t lc_offset, 4737 ArchSpec &arch) 4738 { 4739 arch.SetArchitecture (eArchTypeMachO, header.cputype, header.cpusubtype); 4740 4741 if (arch.IsValid()) 4742 { 4743 llvm::Triple &triple = arch.GetTriple(); 4744 if (header.filetype == MH_PRELOAD) 4745 { 4746 // Set OS to "unknown" - this is a standalone binary with no dyld et al 4747 triple.setOS(llvm::Triple::UnknownOS); 4748 return true; 4749 } 4750 else 4751 { 4752 struct load_command load_cmd; 4753 4754 lldb::offset_t offset = lc_offset; 4755 for (uint32_t i=0; i<header.ncmds; ++i) 4756 { 4757 const lldb::offset_t cmd_offset = offset; 4758 if (data.GetU32(&offset, &load_cmd, 2) == NULL) 4759 break; 4760 4761 switch (load_cmd.cmd) 4762 { 4763 case LC_VERSION_MIN_IPHONEOS: 4764 triple.setOS (llvm::Triple::IOS); 4765 return true; 4766 4767 case LC_VERSION_MIN_MACOSX: 4768 triple.setOS (llvm::Triple::MacOSX); 4769 return true; 4770 4771 default: 4772 break; 4773 } 4774 4775 offset = cmd_offset + load_cmd.cmdsize; 4776 } 4777 4778 // Only set the OS to iOS for ARM, we don't want to set it for x86 and x86_64. 4779 // We do this because we now have MacOSX or iOS as the OS value for x86 and 4780 // x86_64 for normal desktop (MacOSX) and simulator (iOS) binaries. And if 4781 // we compare a "x86_64-apple-ios" to a "x86_64-apple-" triple, it will say 4782 // it is compatible (because the OS is unspecified in the second one and will 4783 // match anything in the first 4784 if (header.cputype == CPU_TYPE_ARM || header.cputype == CPU_TYPE_ARM64) 4785 triple.setOS (llvm::Triple::IOS); 4786 } 4787 } 4788 return arch.IsValid(); 4789 } 4790 4791 bool 4792 ObjectFileMachO::GetUUID (lldb_private::UUID* uuid) 4793 { 4794 ModuleSP module_sp(GetModule()); 4795 if (module_sp) 4796 { 4797 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4798 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4799 return GetUUID (m_header, m_data, offset, *uuid); 4800 } 4801 return false; 4802 } 4803 4804 4805 uint32_t 4806 ObjectFileMachO::GetDependentModules (FileSpecList& files) 4807 { 4808 uint32_t count = 0; 4809 ModuleSP module_sp(GetModule()); 4810 if (module_sp) 4811 { 4812 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4813 struct load_command load_cmd; 4814 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4815 std::vector<std::string> rpath_paths; 4816 std::vector<std::string> rpath_relative_paths; 4817 const bool resolve_path = false; // Don't resolve the dependent file paths since they may not reside on this system 4818 uint32_t i; 4819 for (i=0; i<m_header.ncmds; ++i) 4820 { 4821 const uint32_t cmd_offset = offset; 4822 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4823 break; 4824 4825 switch (load_cmd.cmd) 4826 { 4827 case LC_RPATH: 4828 case LC_LOAD_DYLIB: 4829 case LC_LOAD_WEAK_DYLIB: 4830 case LC_REEXPORT_DYLIB: 4831 case LC_LOAD_DYLINKER: 4832 case LC_LOADFVMLIB: 4833 case LC_LOAD_UPWARD_DYLIB: 4834 { 4835 uint32_t name_offset = cmd_offset + m_data.GetU32(&offset); 4836 const char *path = m_data.PeekCStr(name_offset); 4837 if (path) 4838 { 4839 if (load_cmd.cmd == LC_RPATH) 4840 rpath_paths.push_back(path); 4841 else 4842 { 4843 if (path[0] == '@') 4844 { 4845 if (strncmp(path, "@rpath", strlen("@rpath")) == 0) 4846 rpath_relative_paths.push_back(path + strlen("@rpath")); 4847 } 4848 else 4849 { 4850 FileSpec file_spec(path, resolve_path); 4851 if (files.AppendIfUnique(file_spec)) 4852 count++; 4853 } 4854 } 4855 } 4856 } 4857 break; 4858 4859 default: 4860 break; 4861 } 4862 offset = cmd_offset + load_cmd.cmdsize; 4863 } 4864 4865 if (!rpath_paths.empty()) 4866 { 4867 // Fixup all LC_RPATH values to be absolute paths 4868 FileSpec this_file_spec(m_file); 4869 this_file_spec.ResolvePath(); 4870 std::string loader_path("@loader_path"); 4871 std::string executable_path("@executable_path"); 4872 for (auto &rpath : rpath_paths) 4873 { 4874 if (rpath.find(loader_path) == 0) 4875 { 4876 rpath.erase(0, loader_path.size()); 4877 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4878 } 4879 else if (rpath.find(executable_path) == 0) 4880 { 4881 rpath.erase(0, executable_path.size()); 4882 rpath.insert(0, this_file_spec.GetDirectory().GetCString()); 4883 } 4884 } 4885 4886 for (const auto &rpath_relative_path : rpath_relative_paths) 4887 { 4888 for (const auto &rpath : rpath_paths) 4889 { 4890 std::string path = rpath; 4891 path += rpath_relative_path; 4892 // It is OK to resolve this path because we must find a file on 4893 // disk for us to accept it anyway if it is rpath relative. 4894 FileSpec file_spec(path, true); 4895 // Remove any redundant parts of the path (like "../foo") since 4896 // LC_RPATH values often contain "..". 4897 file_spec.NormalizePath (); 4898 if (file_spec.Exists() && files.AppendIfUnique(file_spec)) 4899 { 4900 count++; 4901 break; 4902 } 4903 } 4904 } 4905 } 4906 } 4907 return count; 4908 } 4909 4910 lldb_private::Address 4911 ObjectFileMachO::GetEntryPointAddress () 4912 { 4913 // If the object file is not an executable it can't hold the entry point. m_entry_point_address 4914 // is initialized to an invalid address, so we can just return that. 4915 // If m_entry_point_address is valid it means we've found it already, so return the cached value. 4916 4917 if (!IsExecutable() || m_entry_point_address.IsValid()) 4918 return m_entry_point_address; 4919 4920 // Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in 4921 // /usr/include/mach-o.h, but it is basically: 4922 // 4923 // uint32_t flavor - this is the flavor argument you would pass to thread_get_state 4924 // uint32_t count - this is the count of longs in the thread state data 4925 // struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor. 4926 // <repeat this trio> 4927 // 4928 // So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there. 4929 // FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers 4930 // out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin, 4931 // and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here. 4932 // 4933 // For now we hard-code the offsets and flavors we need: 4934 // 4935 // 4936 4937 ModuleSP module_sp(GetModule()); 4938 if (module_sp) 4939 { 4940 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 4941 struct load_command load_cmd; 4942 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 4943 uint32_t i; 4944 lldb::addr_t start_address = LLDB_INVALID_ADDRESS; 4945 bool done = false; 4946 4947 for (i=0; i<m_header.ncmds; ++i) 4948 { 4949 const lldb::offset_t cmd_offset = offset; 4950 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 4951 break; 4952 4953 switch (load_cmd.cmd) 4954 { 4955 case LC_UNIXTHREAD: 4956 case LC_THREAD: 4957 { 4958 while (offset < cmd_offset + load_cmd.cmdsize) 4959 { 4960 uint32_t flavor = m_data.GetU32(&offset); 4961 uint32_t count = m_data.GetU32(&offset); 4962 if (count == 0) 4963 { 4964 // We've gotten off somehow, log and exit; 4965 return m_entry_point_address; 4966 } 4967 4968 switch (m_header.cputype) 4969 { 4970 case llvm::MachO::CPU_TYPE_ARM: 4971 if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h 4972 { 4973 offset += 60; // This is the offset of pc in the GPR thread state data structure. 4974 start_address = m_data.GetU32(&offset); 4975 done = true; 4976 } 4977 break; 4978 case llvm::MachO::CPU_TYPE_ARM64: 4979 if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h 4980 { 4981 offset += 256; // This is the offset of pc in the GPR thread state data structure. 4982 start_address = m_data.GetU64(&offset); 4983 done = true; 4984 } 4985 break; 4986 case llvm::MachO::CPU_TYPE_I386: 4987 if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h 4988 { 4989 offset += 40; // This is the offset of eip in the GPR thread state data structure. 4990 start_address = m_data.GetU32(&offset); 4991 done = true; 4992 } 4993 break; 4994 case llvm::MachO::CPU_TYPE_X86_64: 4995 if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h 4996 { 4997 offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure. 4998 start_address = m_data.GetU64(&offset); 4999 done = true; 5000 } 5001 break; 5002 default: 5003 return m_entry_point_address; 5004 } 5005 // Haven't found the GPR flavor yet, skip over the data for this flavor: 5006 if (done) 5007 break; 5008 offset += count * 4; 5009 } 5010 } 5011 break; 5012 case LC_MAIN: 5013 { 5014 ConstString text_segment_name ("__TEXT"); 5015 uint64_t entryoffset = m_data.GetU64(&offset); 5016 SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name); 5017 if (text_segment_sp) 5018 { 5019 done = true; 5020 start_address = text_segment_sp->GetFileAddress() + entryoffset; 5021 } 5022 } 5023 5024 default: 5025 break; 5026 } 5027 if (done) 5028 break; 5029 5030 // Go to the next load command: 5031 offset = cmd_offset + load_cmd.cmdsize; 5032 } 5033 5034 if (start_address != LLDB_INVALID_ADDRESS) 5035 { 5036 // We got the start address from the load commands, so now resolve that address in the sections 5037 // of this ObjectFile: 5038 if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList())) 5039 { 5040 m_entry_point_address.Clear(); 5041 } 5042 } 5043 else 5044 { 5045 // We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the 5046 // "start" symbol in the main executable. 5047 5048 ModuleSP module_sp (GetModule()); 5049 5050 if (module_sp) 5051 { 5052 SymbolContextList contexts; 5053 SymbolContext context; 5054 if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts)) 5055 { 5056 if (contexts.GetContextAtIndex(0, context)) 5057 m_entry_point_address = context.symbol->GetAddress(); 5058 } 5059 } 5060 } 5061 } 5062 5063 return m_entry_point_address; 5064 5065 } 5066 5067 lldb_private::Address 5068 ObjectFileMachO::GetHeaderAddress () 5069 { 5070 lldb_private::Address header_addr; 5071 SectionList *section_list = GetSectionList(); 5072 if (section_list) 5073 { 5074 SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT())); 5075 if (text_segment_sp) 5076 { 5077 header_addr.SetSection (text_segment_sp); 5078 header_addr.SetOffset (0); 5079 } 5080 } 5081 return header_addr; 5082 } 5083 5084 uint32_t 5085 ObjectFileMachO::GetNumThreadContexts () 5086 { 5087 ModuleSP module_sp(GetModule()); 5088 if (module_sp) 5089 { 5090 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5091 if (!m_thread_context_offsets_valid) 5092 { 5093 m_thread_context_offsets_valid = true; 5094 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5095 FileRangeArray::Entry file_range; 5096 thread_command thread_cmd; 5097 for (uint32_t i=0; i<m_header.ncmds; ++i) 5098 { 5099 const uint32_t cmd_offset = offset; 5100 if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL) 5101 break; 5102 5103 if (thread_cmd.cmd == LC_THREAD) 5104 { 5105 file_range.SetRangeBase (offset); 5106 file_range.SetByteSize (thread_cmd.cmdsize - 8); 5107 m_thread_context_offsets.Append (file_range); 5108 } 5109 offset = cmd_offset + thread_cmd.cmdsize; 5110 } 5111 } 5112 } 5113 return m_thread_context_offsets.GetSize(); 5114 } 5115 5116 lldb::RegisterContextSP 5117 ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread) 5118 { 5119 lldb::RegisterContextSP reg_ctx_sp; 5120 5121 ModuleSP module_sp(GetModule()); 5122 if (module_sp) 5123 { 5124 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5125 if (!m_thread_context_offsets_valid) 5126 GetNumThreadContexts (); 5127 5128 const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx); 5129 if (thread_context_file_range) 5130 { 5131 5132 DataExtractor data (m_data, 5133 thread_context_file_range->GetRangeBase(), 5134 thread_context_file_range->GetByteSize()); 5135 5136 switch (m_header.cputype) 5137 { 5138 case llvm::MachO::CPU_TYPE_ARM64: 5139 reg_ctx_sp.reset (new RegisterContextDarwin_arm64_Mach (thread, data)); 5140 break; 5141 5142 case llvm::MachO::CPU_TYPE_ARM: 5143 reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data)); 5144 break; 5145 5146 case llvm::MachO::CPU_TYPE_I386: 5147 reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data)); 5148 break; 5149 5150 case llvm::MachO::CPU_TYPE_X86_64: 5151 reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data)); 5152 break; 5153 } 5154 } 5155 } 5156 return reg_ctx_sp; 5157 } 5158 5159 5160 ObjectFile::Type 5161 ObjectFileMachO::CalculateType() 5162 { 5163 switch (m_header.filetype) 5164 { 5165 case MH_OBJECT: // 0x1u 5166 if (GetAddressByteSize () == 4) 5167 { 5168 // 32 bit kexts are just object files, but they do have a valid 5169 // UUID load command. 5170 UUID uuid; 5171 if (GetUUID(&uuid)) 5172 { 5173 // this checking for the UUID load command is not enough 5174 // we could eventually look for the symbol named 5175 // "OSKextGetCurrentIdentifier" as this is required of kexts 5176 if (m_strata == eStrataInvalid) 5177 m_strata = eStrataKernel; 5178 return eTypeSharedLibrary; 5179 } 5180 } 5181 return eTypeObjectFile; 5182 5183 case MH_EXECUTE: return eTypeExecutable; // 0x2u 5184 case MH_FVMLIB: return eTypeSharedLibrary; // 0x3u 5185 case MH_CORE: return eTypeCoreFile; // 0x4u 5186 case MH_PRELOAD: return eTypeSharedLibrary; // 0x5u 5187 case MH_DYLIB: return eTypeSharedLibrary; // 0x6u 5188 case MH_DYLINKER: return eTypeDynamicLinker; // 0x7u 5189 case MH_BUNDLE: return eTypeSharedLibrary; // 0x8u 5190 case MH_DYLIB_STUB: return eTypeStubLibrary; // 0x9u 5191 case MH_DSYM: return eTypeDebugInfo; // 0xAu 5192 case MH_KEXT_BUNDLE: return eTypeSharedLibrary; // 0xBu 5193 default: 5194 break; 5195 } 5196 return eTypeUnknown; 5197 } 5198 5199 ObjectFile::Strata 5200 ObjectFileMachO::CalculateStrata() 5201 { 5202 switch (m_header.filetype) 5203 { 5204 case MH_OBJECT: // 0x1u 5205 { 5206 // 32 bit kexts are just object files, but they do have a valid 5207 // UUID load command. 5208 UUID uuid; 5209 if (GetUUID(&uuid)) 5210 { 5211 // this checking for the UUID load command is not enough 5212 // we could eventually look for the symbol named 5213 // "OSKextGetCurrentIdentifier" as this is required of kexts 5214 if (m_type == eTypeInvalid) 5215 m_type = eTypeSharedLibrary; 5216 5217 return eStrataKernel; 5218 } 5219 } 5220 return eStrataUnknown; 5221 5222 case MH_EXECUTE: // 0x2u 5223 // Check for the MH_DYLDLINK bit in the flags 5224 if (m_header.flags & MH_DYLDLINK) 5225 { 5226 return eStrataUser; 5227 } 5228 else 5229 { 5230 SectionList *section_list = GetSectionList(); 5231 if (section_list) 5232 { 5233 static ConstString g_kld_section_name ("__KLD"); 5234 if (section_list->FindSectionByName(g_kld_section_name)) 5235 return eStrataKernel; 5236 } 5237 } 5238 return eStrataRawImage; 5239 5240 case MH_FVMLIB: return eStrataUser; // 0x3u 5241 case MH_CORE: return eStrataUnknown; // 0x4u 5242 case MH_PRELOAD: return eStrataRawImage; // 0x5u 5243 case MH_DYLIB: return eStrataUser; // 0x6u 5244 case MH_DYLINKER: return eStrataUser; // 0x7u 5245 case MH_BUNDLE: return eStrataUser; // 0x8u 5246 case MH_DYLIB_STUB: return eStrataUser; // 0x9u 5247 case MH_DSYM: return eStrataUnknown; // 0xAu 5248 case MH_KEXT_BUNDLE: return eStrataKernel; // 0xBu 5249 default: 5250 break; 5251 } 5252 return eStrataUnknown; 5253 } 5254 5255 5256 uint32_t 5257 ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions) 5258 { 5259 ModuleSP module_sp(GetModule()); 5260 if (module_sp) 5261 { 5262 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5263 struct dylib_command load_cmd; 5264 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5265 uint32_t version_cmd = 0; 5266 uint64_t version = 0; 5267 uint32_t i; 5268 for (i=0; i<m_header.ncmds; ++i) 5269 { 5270 const lldb::offset_t cmd_offset = offset; 5271 if (m_data.GetU32(&offset, &load_cmd, 2) == NULL) 5272 break; 5273 5274 if (load_cmd.cmd == LC_ID_DYLIB) 5275 { 5276 if (version_cmd == 0) 5277 { 5278 version_cmd = load_cmd.cmd; 5279 if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL) 5280 break; 5281 version = load_cmd.dylib.current_version; 5282 } 5283 break; // Break for now unless there is another more complete version 5284 // number load command in the future. 5285 } 5286 offset = cmd_offset + load_cmd.cmdsize; 5287 } 5288 5289 if (version_cmd == LC_ID_DYLIB) 5290 { 5291 if (versions != NULL && num_versions > 0) 5292 { 5293 if (num_versions > 0) 5294 versions[0] = (version & 0xFFFF0000ull) >> 16; 5295 if (num_versions > 1) 5296 versions[1] = (version & 0x0000FF00ull) >> 8; 5297 if (num_versions > 2) 5298 versions[2] = (version & 0x000000FFull); 5299 // Fill in an remaining version numbers with invalid values 5300 for (i=3; i<num_versions; ++i) 5301 versions[i] = UINT32_MAX; 5302 } 5303 // The LC_ID_DYLIB load command has a version with 3 version numbers 5304 // in it, so always return 3 5305 return 3; 5306 } 5307 } 5308 return false; 5309 } 5310 5311 bool 5312 ObjectFileMachO::GetArchitecture (ArchSpec &arch) 5313 { 5314 ModuleSP module_sp(GetModule()); 5315 if (module_sp) 5316 { 5317 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 5318 return GetArchitecture (m_header, m_data, MachHeaderSizeFromMagic(m_header.magic), arch); 5319 } 5320 return false; 5321 } 5322 5323 5324 UUID 5325 ObjectFileMachO::GetProcessSharedCacheUUID (Process *process) 5326 { 5327 UUID uuid; 5328 if (process) 5329 { 5330 addr_t all_image_infos = process->GetImageInfoAddress(); 5331 5332 // The address returned by GetImageInfoAddress may be the address of dyld (don't want) 5333 // or it may be the address of the dyld_all_image_infos structure (want). The first four 5334 // bytes will be either the version field (all_image_infos) or a Mach-O file magic constant. 5335 // Version 13 and higher of dyld_all_image_infos is required to get the sharedCacheUUID field. 5336 5337 Error err; 5338 uint32_t version_or_magic = process->ReadUnsignedIntegerFromMemory (all_image_infos, 4, -1, err); 5339 if (version_or_magic != static_cast<uint32_t>(-1) 5340 && version_or_magic != MH_MAGIC 5341 && version_or_magic != MH_CIGAM 5342 && version_or_magic != MH_MAGIC_64 5343 && version_or_magic != MH_CIGAM_64 5344 && version_or_magic >= 13) 5345 { 5346 addr_t sharedCacheUUID_address = LLDB_INVALID_ADDRESS; 5347 int wordsize = process->GetAddressByteSize(); 5348 if (wordsize == 8) 5349 { 5350 sharedCacheUUID_address = all_image_infos + 160; // sharedCacheUUID <mach-o/dyld_images.h> 5351 } 5352 if (wordsize == 4) 5353 { 5354 sharedCacheUUID_address = all_image_infos + 84; // sharedCacheUUID <mach-o/dyld_images.h> 5355 } 5356 if (sharedCacheUUID_address != LLDB_INVALID_ADDRESS) 5357 { 5358 uuid_t shared_cache_uuid; 5359 if (process->ReadMemory (sharedCacheUUID_address, shared_cache_uuid, sizeof (uuid_t), err) == sizeof (uuid_t)) 5360 { 5361 uuid.SetBytes (shared_cache_uuid); 5362 } 5363 } 5364 } 5365 } 5366 return uuid; 5367 } 5368 5369 UUID 5370 ObjectFileMachO::GetLLDBSharedCacheUUID () 5371 { 5372 UUID uuid; 5373 #if defined (__APPLE__) && (defined (__arm__) || defined (__arm64__) || defined (__aarch64__)) 5374 uint8_t *(*dyld_get_all_image_infos)(void); 5375 dyld_get_all_image_infos = (uint8_t*(*)()) dlsym (RTLD_DEFAULT, "_dyld_get_all_image_infos"); 5376 if (dyld_get_all_image_infos) 5377 { 5378 uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos(); 5379 if (dyld_all_image_infos_address) 5380 { 5381 uint32_t *version = (uint32_t*) dyld_all_image_infos_address; // version <mach-o/dyld_images.h> 5382 if (*version >= 13) 5383 { 5384 uuid_t *sharedCacheUUID_address = 0; 5385 int wordsize = sizeof (uint8_t *); 5386 if (wordsize == 8) 5387 { 5388 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 160); // sharedCacheUUID <mach-o/dyld_images.h> 5389 } 5390 else 5391 { 5392 sharedCacheUUID_address = (uuid_t*) ((uint8_t*) dyld_all_image_infos_address + 84); // sharedCacheUUID <mach-o/dyld_images.h> 5393 } 5394 uuid.SetBytes (sharedCacheUUID_address); 5395 } 5396 } 5397 } 5398 #endif 5399 return uuid; 5400 } 5401 5402 uint32_t 5403 ObjectFileMachO::GetMinimumOSVersion (uint32_t *versions, uint32_t num_versions) 5404 { 5405 if (m_min_os_versions.empty()) 5406 { 5407 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5408 bool success = false; 5409 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5410 { 5411 const lldb::offset_t load_cmd_offset = offset; 5412 5413 version_min_command lc; 5414 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5415 break; 5416 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5417 { 5418 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5419 { 5420 const uint32_t xxxx = lc.version >> 16; 5421 const uint32_t yy = (lc.version >> 8) & 0xffu; 5422 const uint32_t zz = lc.version & 0xffu; 5423 if (xxxx) 5424 { 5425 m_min_os_versions.push_back(xxxx); 5426 m_min_os_versions.push_back(yy); 5427 m_min_os_versions.push_back(zz); 5428 } 5429 success = true; 5430 } 5431 } 5432 offset = load_cmd_offset + lc.cmdsize; 5433 } 5434 5435 if (success == false) 5436 { 5437 // Push an invalid value so we don't keep trying to 5438 m_min_os_versions.push_back(UINT32_MAX); 5439 } 5440 } 5441 5442 if (m_min_os_versions.size() > 1 || m_min_os_versions[0] != UINT32_MAX) 5443 { 5444 if (versions != NULL && num_versions > 0) 5445 { 5446 for (size_t i=0; i<num_versions; ++i) 5447 { 5448 if (i < m_min_os_versions.size()) 5449 versions[i] = m_min_os_versions[i]; 5450 else 5451 versions[i] = 0; 5452 } 5453 } 5454 return m_min_os_versions.size(); 5455 } 5456 // Call the superclasses version that will empty out the data 5457 return ObjectFile::GetMinimumOSVersion (versions, num_versions); 5458 } 5459 5460 uint32_t 5461 ObjectFileMachO::GetSDKVersion(uint32_t *versions, uint32_t num_versions) 5462 { 5463 if (m_sdk_versions.empty()) 5464 { 5465 lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic); 5466 bool success = false; 5467 for (uint32_t i=0; success == false && i < m_header.ncmds; ++i) 5468 { 5469 const lldb::offset_t load_cmd_offset = offset; 5470 5471 version_min_command lc; 5472 if (m_data.GetU32(&offset, &lc.cmd, 2) == NULL) 5473 break; 5474 if (lc.cmd == LC_VERSION_MIN_MACOSX || lc.cmd == LC_VERSION_MIN_IPHONEOS) 5475 { 5476 if (m_data.GetU32 (&offset, &lc.version, (sizeof(lc) / sizeof(uint32_t)) - 2)) 5477 { 5478 const uint32_t xxxx = lc.sdk >> 16; 5479 const uint32_t yy = (lc.sdk >> 8) & 0xffu; 5480 const uint32_t zz = lc.sdk & 0xffu; 5481 if (xxxx) 5482 { 5483 m_sdk_versions.push_back(xxxx); 5484 m_sdk_versions.push_back(yy); 5485 m_sdk_versions.push_back(zz); 5486 } 5487 success = true; 5488 } 5489 } 5490 offset = load_cmd_offset + lc.cmdsize; 5491 } 5492 5493 if (success == false) 5494 { 5495 // Push an invalid value so we don't keep trying to 5496 m_sdk_versions.push_back(UINT32_MAX); 5497 } 5498 } 5499 5500 if (m_sdk_versions.size() > 1 || m_sdk_versions[0] != UINT32_MAX) 5501 { 5502 if (versions != NULL && num_versions > 0) 5503 { 5504 for (size_t i=0; i<num_versions; ++i) 5505 { 5506 if (i < m_sdk_versions.size()) 5507 versions[i] = m_sdk_versions[i]; 5508 else 5509 versions[i] = 0; 5510 } 5511 } 5512 return m_sdk_versions.size(); 5513 } 5514 // Call the superclasses version that will empty out the data 5515 return ObjectFile::GetSDKVersion (versions, num_versions); 5516 } 5517 5518 5519 bool 5520 ObjectFileMachO::GetIsDynamicLinkEditor() 5521 { 5522 return m_header.filetype == llvm::MachO::MH_DYLINKER; 5523 } 5524 5525 //------------------------------------------------------------------ 5526 // PluginInterface protocol 5527 //------------------------------------------------------------------ 5528 lldb_private::ConstString 5529 ObjectFileMachO::GetPluginName() 5530 { 5531 return GetPluginNameStatic(); 5532 } 5533 5534 uint32_t 5535 ObjectFileMachO::GetPluginVersion() 5536 { 5537 return 1; 5538 } 5539 5540 5541 Section * 5542 ObjectFileMachO::GetMachHeaderSection() 5543 { 5544 // Find the first address of the mach header which is the first non-zero 5545 // file sized section whose file offset is zero. This is the base file address 5546 // of the mach-o file which can be subtracted from the vmaddr of the other 5547 // segments found in memory and added to the load address 5548 ModuleSP module_sp = GetModule(); 5549 if (module_sp) 5550 { 5551 SectionList *section_list = GetSectionList (); 5552 if (section_list) 5553 { 5554 lldb::addr_t mach_base_file_addr = LLDB_INVALID_ADDRESS; 5555 const size_t num_sections = section_list->GetSize(); 5556 5557 for (size_t sect_idx = 0; 5558 sect_idx < num_sections && mach_base_file_addr == LLDB_INVALID_ADDRESS; 5559 ++sect_idx) 5560 { 5561 Section *section = section_list->GetSectionAtIndex (sect_idx).get(); 5562 if (section && 5563 section->GetFileSize() > 0 && 5564 section->GetFileOffset() == 0 && 5565 section->IsThreadSpecific() == false && 5566 module_sp.get() == section->GetModule().get()) 5567 { 5568 return section; 5569 } 5570 } 5571 } 5572 } 5573 return nullptr; 5574 } 5575 5576 lldb::addr_t 5577 ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(lldb::addr_t mach_header_load_address, const Section *mach_header_section, const Section *section) 5578 { 5579 ModuleSP module_sp = GetModule(); 5580 if (module_sp && mach_header_section && section && mach_header_load_address != LLDB_INVALID_ADDRESS) 5581 { 5582 lldb::addr_t mach_header_file_addr = mach_header_section->GetFileAddress(); 5583 if (mach_header_file_addr != LLDB_INVALID_ADDRESS) 5584 { 5585 if (section && 5586 section->GetFileSize() > 0 && 5587 section->IsThreadSpecific() == false && 5588 module_sp.get() == section->GetModule().get()) 5589 { 5590 // Ignore __LINKEDIT and __DWARF segments 5591 if (section->GetName() == GetSegmentNameLINKEDIT()) 5592 { 5593 // Only map __LINKEDIT if we have an in memory image and this isn't 5594 // a kernel binary like a kext or mach_kernel. 5595 const bool is_memory_image = (bool)m_process_wp.lock(); 5596 const Strata strata = GetStrata(); 5597 if (is_memory_image == false || strata == eStrataKernel) 5598 return LLDB_INVALID_ADDRESS; 5599 } 5600 return section->GetFileAddress() - mach_header_file_addr + mach_header_load_address; 5601 } 5602 } 5603 } 5604 return LLDB_INVALID_ADDRESS; 5605 } 5606 5607 bool 5608 ObjectFileMachO::SetLoadAddress (Target &target, 5609 lldb::addr_t value, 5610 bool value_is_offset) 5611 { 5612 ModuleSP module_sp = GetModule(); 5613 if (module_sp) 5614 { 5615 size_t num_loaded_sections = 0; 5616 SectionList *section_list = GetSectionList (); 5617 if (section_list) 5618 { 5619 const size_t num_sections = section_list->GetSize(); 5620 5621 if (value_is_offset) 5622 { 5623 // "value" is an offset to apply to each top level segment 5624 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5625 { 5626 // Iterate through the object file sections to find all 5627 // of the sections that size on disk (to avoid __PAGEZERO) 5628 // and load them 5629 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5630 if (section_sp && 5631 section_sp->GetFileSize() > 0 && 5632 section_sp->IsThreadSpecific() == false && 5633 module_sp.get() == section_sp->GetModule().get()) 5634 { 5635 // Ignore __LINKEDIT and __DWARF segments 5636 if (section_sp->GetName() == GetSegmentNameLINKEDIT()) 5637 { 5638 // Only map __LINKEDIT if we have an in memory image and this isn't 5639 // a kernel binary like a kext or mach_kernel. 5640 const bool is_memory_image = (bool)m_process_wp.lock(); 5641 const Strata strata = GetStrata(); 5642 if (is_memory_image == false || strata == eStrataKernel) 5643 continue; 5644 } 5645 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 5646 ++num_loaded_sections; 5647 } 5648 } 5649 } 5650 else 5651 { 5652 // "value" is the new base address of the mach_header, adjust each 5653 // section accordingly 5654 5655 Section *mach_header_section = GetMachHeaderSection(); 5656 if (mach_header_section) 5657 { 5658 for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) 5659 { 5660 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 5661 5662 lldb::addr_t section_load_addr = CalculateSectionLoadAddressForMemoryImage(value, mach_header_section, section_sp.get()); 5663 if (section_load_addr != LLDB_INVALID_ADDRESS) 5664 { 5665 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_load_addr)) 5666 ++num_loaded_sections; 5667 } 5668 } 5669 } 5670 } 5671 } 5672 return num_loaded_sections > 0; 5673 } 5674 return false; 5675 } 5676 5677 bool 5678 ObjectFileMachO::SaveCore (const lldb::ProcessSP &process_sp, 5679 const FileSpec &outfile, 5680 Error &error) 5681 { 5682 if (process_sp) 5683 { 5684 Target &target = process_sp->GetTarget(); 5685 const ArchSpec target_arch = target.GetArchitecture(); 5686 const llvm::Triple &target_triple = target_arch.GetTriple(); 5687 if (target_triple.getVendor() == llvm::Triple::Apple && 5688 (target_triple.getOS() == llvm::Triple::MacOSX || 5689 target_triple.getOS() == llvm::Triple::IOS)) 5690 { 5691 bool make_core = false; 5692 switch (target_arch.GetMachine()) 5693 { 5694 case llvm::Triple::aarch64: 5695 case llvm::Triple::arm: 5696 case llvm::Triple::x86: 5697 case llvm::Triple::x86_64: 5698 make_core = true; 5699 break; 5700 default: 5701 error.SetErrorStringWithFormat ("unsupported core architecture: %s", target_triple.str().c_str()); 5702 break; 5703 } 5704 5705 if (make_core) 5706 { 5707 std::vector<segment_command_64> segment_load_commands; 5708 // uint32_t range_info_idx = 0; 5709 MemoryRegionInfo range_info; 5710 Error range_error = process_sp->GetMemoryRegionInfo(0, range_info); 5711 const uint32_t addr_byte_size = target_arch.GetAddressByteSize(); 5712 const ByteOrder byte_order = target_arch.GetByteOrder(); 5713 if (range_error.Success()) 5714 { 5715 while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) 5716 { 5717 const addr_t addr = range_info.GetRange().GetRangeBase(); 5718 const addr_t size = range_info.GetRange().GetByteSize(); 5719 5720 if (size == 0) 5721 break; 5722 5723 // Calculate correct protections 5724 uint32_t prot = 0; 5725 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 5726 prot |= VM_PROT_READ; 5727 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 5728 prot |= VM_PROT_WRITE; 5729 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 5730 prot |= VM_PROT_EXECUTE; 5731 5732 // printf ("[%3u] [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") %c%c%c\n", 5733 // range_info_idx, 5734 // addr, 5735 // size, 5736 // (prot & VM_PROT_READ ) ? 'r' : '-', 5737 // (prot & VM_PROT_WRITE ) ? 'w' : '-', 5738 // (prot & VM_PROT_EXECUTE) ? 'x' : '-'); 5739 5740 if (prot != 0) 5741 { 5742 uint32_t cmd_type = LC_SEGMENT_64; 5743 uint32_t segment_size = sizeof (segment_command_64); 5744 if (addr_byte_size == 4) 5745 { 5746 cmd_type = LC_SEGMENT; 5747 segment_size = sizeof (segment_command); 5748 } 5749 segment_command_64 segment = { 5750 cmd_type, // uint32_t cmd; 5751 segment_size, // uint32_t cmdsize; 5752 {0}, // char segname[16]; 5753 addr, // uint64_t vmaddr; // uint32_t for 32-bit Mach-O 5754 size, // uint64_t vmsize; // uint32_t for 32-bit Mach-O 5755 0, // uint64_t fileoff; // uint32_t for 32-bit Mach-O 5756 size, // uint64_t filesize; // uint32_t for 32-bit Mach-O 5757 prot, // uint32_t maxprot; 5758 prot, // uint32_t initprot; 5759 0, // uint32_t nsects; 5760 0 }; // uint32_t flags; 5761 segment_load_commands.push_back(segment); 5762 } 5763 else 5764 { 5765 // No protections and a size of 1 used to be returned from old 5766 // debugservers when we asked about a region that was past the 5767 // last memory region and it indicates the end... 5768 if (size == 1) 5769 break; 5770 } 5771 5772 range_error = process_sp->GetMemoryRegionInfo(range_info.GetRange().GetRangeEnd(), range_info); 5773 if (range_error.Fail()) 5774 break; 5775 } 5776 5777 StreamString buffer (Stream::eBinary, 5778 addr_byte_size, 5779 byte_order); 5780 5781 mach_header_64 mach_header; 5782 if (addr_byte_size == 8) 5783 { 5784 mach_header.magic = MH_MAGIC_64; 5785 } 5786 else 5787 { 5788 mach_header.magic = MH_MAGIC; 5789 } 5790 mach_header.cputype = target_arch.GetMachOCPUType(); 5791 mach_header.cpusubtype = target_arch.GetMachOCPUSubType(); 5792 mach_header.filetype = MH_CORE; 5793 mach_header.ncmds = segment_load_commands.size(); 5794 mach_header.flags = 0; 5795 mach_header.reserved = 0; 5796 ThreadList &thread_list = process_sp->GetThreadList(); 5797 const uint32_t num_threads = thread_list.GetSize(); 5798 5799 // Make an array of LC_THREAD data items. Each one contains 5800 // the contents of the LC_THREAD load command. The data doesn't 5801 // contain the load command + load command size, we will 5802 // add the load command and load command size as we emit the data. 5803 std::vector<StreamString> LC_THREAD_datas(num_threads); 5804 for (auto &LC_THREAD_data : LC_THREAD_datas) 5805 { 5806 LC_THREAD_data.GetFlags().Set(Stream::eBinary); 5807 LC_THREAD_data.SetAddressByteSize(addr_byte_size); 5808 LC_THREAD_data.SetByteOrder(byte_order); 5809 } 5810 for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) 5811 { 5812 ThreadSP thread_sp (thread_list.GetThreadAtIndex(thread_idx)); 5813 if (thread_sp) 5814 { 5815 switch (mach_header.cputype) 5816 { 5817 case llvm::MachO::CPU_TYPE_ARM64: 5818 RegisterContextDarwin_arm64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5819 break; 5820 5821 case llvm::MachO::CPU_TYPE_ARM: 5822 RegisterContextDarwin_arm_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5823 break; 5824 5825 case llvm::MachO::CPU_TYPE_I386: 5826 RegisterContextDarwin_i386_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5827 break; 5828 5829 case llvm::MachO::CPU_TYPE_X86_64: 5830 RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD (thread_sp.get(), LC_THREAD_datas[thread_idx]); 5831 break; 5832 } 5833 5834 } 5835 } 5836 5837 // The size of the load command is the size of the segments... 5838 if (addr_byte_size == 8) 5839 { 5840 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command_64); 5841 } 5842 else 5843 { 5844 mach_header.sizeofcmds = segment_load_commands.size() * sizeof (struct segment_command); 5845 } 5846 5847 // and the size of all LC_THREAD load command 5848 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5849 { 5850 ++mach_header.ncmds; 5851 mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize(); 5852 } 5853 5854 printf ("mach_header: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 5855 mach_header.magic, 5856 mach_header.cputype, 5857 mach_header.cpusubtype, 5858 mach_header.filetype, 5859 mach_header.ncmds, 5860 mach_header.sizeofcmds, 5861 mach_header.flags, 5862 mach_header.reserved); 5863 5864 // Write the mach header 5865 buffer.PutHex32(mach_header.magic); 5866 buffer.PutHex32(mach_header.cputype); 5867 buffer.PutHex32(mach_header.cpusubtype); 5868 buffer.PutHex32(mach_header.filetype); 5869 buffer.PutHex32(mach_header.ncmds); 5870 buffer.PutHex32(mach_header.sizeofcmds); 5871 buffer.PutHex32(mach_header.flags); 5872 if (addr_byte_size == 8) 5873 { 5874 buffer.PutHex32(mach_header.reserved); 5875 } 5876 5877 // Skip the mach header and all load commands and align to the next 5878 // 0x1000 byte boundary 5879 addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds; 5880 if (file_offset & 0x00000fff) 5881 { 5882 file_offset += 0x00001000ull; 5883 file_offset &= (~0x00001000ull + 1); 5884 } 5885 5886 for (auto &segment : segment_load_commands) 5887 { 5888 segment.fileoff = file_offset; 5889 file_offset += segment.filesize; 5890 } 5891 5892 // Write out all of the LC_THREAD load commands 5893 for (const auto &LC_THREAD_data : LC_THREAD_datas) 5894 { 5895 const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize(); 5896 buffer.PutHex32(LC_THREAD); 5897 buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data 5898 buffer.Write(LC_THREAD_data.GetData(), LC_THREAD_data_size); 5899 } 5900 5901 // Write out all of the segment load commands 5902 for (const auto &segment : segment_load_commands) 5903 { 5904 printf ("0x%8.8x 0x%8.8x [0x%16.16" PRIx64 " - 0x%16.16" PRIx64 ") [0x%16.16" PRIx64 " 0x%16.16" PRIx64 ") 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x]\n", 5905 segment.cmd, 5906 segment.cmdsize, 5907 segment.vmaddr, 5908 segment.vmaddr + segment.vmsize, 5909 segment.fileoff, 5910 segment.filesize, 5911 segment.maxprot, 5912 segment.initprot, 5913 segment.nsects, 5914 segment.flags); 5915 5916 buffer.PutHex32(segment.cmd); 5917 buffer.PutHex32(segment.cmdsize); 5918 buffer.PutRawBytes(segment.segname, sizeof(segment.segname)); 5919 if (addr_byte_size == 8) 5920 { 5921 buffer.PutHex64(segment.vmaddr); 5922 buffer.PutHex64(segment.vmsize); 5923 buffer.PutHex64(segment.fileoff); 5924 buffer.PutHex64(segment.filesize); 5925 } 5926 else 5927 { 5928 buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr)); 5929 buffer.PutHex32(static_cast<uint32_t>(segment.vmsize)); 5930 buffer.PutHex32(static_cast<uint32_t>(segment.fileoff)); 5931 buffer.PutHex32(static_cast<uint32_t>(segment.filesize)); 5932 } 5933 buffer.PutHex32(segment.maxprot); 5934 buffer.PutHex32(segment.initprot); 5935 buffer.PutHex32(segment.nsects); 5936 buffer.PutHex32(segment.flags); 5937 } 5938 5939 File core_file; 5940 std::string core_file_path(outfile.GetPath()); 5941 error = core_file.Open(core_file_path.c_str(), 5942 File::eOpenOptionWrite | 5943 File::eOpenOptionTruncate | 5944 File::eOpenOptionCanCreate); 5945 if (error.Success()) 5946 { 5947 // Read 1 page at a time 5948 uint8_t bytes[0x1000]; 5949 // Write the mach header and load commands out to the core file 5950 size_t bytes_written = buffer.GetString().size(); 5951 error = core_file.Write(buffer.GetString().data(), bytes_written); 5952 if (error.Success()) 5953 { 5954 // Now write the file data for all memory segments in the process 5955 for (const auto &segment : segment_load_commands) 5956 { 5957 if (core_file.SeekFromStart(segment.fileoff) == -1) 5958 { 5959 error.SetErrorStringWithFormat("unable to seek to offset 0x%" PRIx64 " in '%s'", segment.fileoff, core_file_path.c_str()); 5960 break; 5961 } 5962 5963 printf ("Saving %" PRId64 " bytes of data for memory region at 0x%" PRIx64 "\n", segment.vmsize, segment.vmaddr); 5964 addr_t bytes_left = segment.vmsize; 5965 addr_t addr = segment.vmaddr; 5966 Error memory_read_error; 5967 while (bytes_left > 0 && error.Success()) 5968 { 5969 const size_t bytes_to_read = bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left; 5970 const size_t bytes_read = process_sp->ReadMemory(addr, bytes, bytes_to_read, memory_read_error); 5971 if (bytes_read == bytes_to_read) 5972 { 5973 size_t bytes_written = bytes_read; 5974 error = core_file.Write(bytes, bytes_written); 5975 bytes_left -= bytes_read; 5976 addr += bytes_read; 5977 } 5978 else 5979 { 5980 // Some pages within regions are not readable, those 5981 // should be zero filled 5982 memset (bytes, 0, bytes_to_read); 5983 size_t bytes_written = bytes_to_read; 5984 error = core_file.Write(bytes, bytes_written); 5985 bytes_left -= bytes_to_read; 5986 addr += bytes_to_read; 5987 } 5988 } 5989 } 5990 } 5991 } 5992 } 5993 else 5994 { 5995 error.SetErrorString("process doesn't support getting memory region info"); 5996 } 5997 } 5998 return true; // This is the right plug to handle saving core files for this process 5999 } 6000 } 6001 return false; 6002 } 6003 6004